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ABSTRACT

The perlormance of the American Meteorological Society { AMS) and U1.S. Environmental Protection
Agency (EPA) Regulatory Model (AERMOD) Improvement Committee’s applied air dispersion mode!
against 17 field study databases is described. AERMOD is a steady-state plume model with significant
improvements over commonly applied regulatory models. The databases are characterized. and the per-
formance measures are described. Emphasis is placed on statistics that demonstrate the model’s abilities to
reproduce the upper end of the concentration distribution, This is most important for applied regulatory
modeling. The field measurements are characterized by flat and complex terrain, urban and rural condi-
tions. and elevated and surface releases with and without building wake cffects. As is indicated by com-
parisons of madeled and observed concentration distributions. with few exceptions AERMODs perfos-
mance is superior to that of the other applied models tested. This is the second of two articles, with the first

describing the model farmulations.

1. Introduction

In 1991, the U.S. Environmental Protection Agency
(EPA) in conjunction with the American Meteoro-
logical Society (AMS) formed the AMS and EPA
Regulatory Model (AERMOD) Improvement Com-
mittee (AERMIC) with the expressed purpose of in-
corporating the current understanding of the planetary
boundary layer (PBL) into a state-of-the-art applied
dispersion model, AERMOD.

AERMIC’s work clearly has benefited from the
model development activities worldwide over the past
few decades, especially in the parameterization of mean
winds and PBL turbulence. dispersion in the CBL. the
treatment of plume/terrain interactions. plume-—
building interactions, and urban dispersion.

AERMOD (Cimorelli et al. 2003) is a steady-state
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plume model aimed at short-range (up to 30 kmy) dis-
persion from stationary industrial-type sources—the
same scenarios that are currently handled by the EPA’s
Industrial Source Complex Short-Term model
(ISCST3) (U.S. Environmental Protection Agency
1995). The meteorological conditions are assumed to be
steady during the modeling period (typically 1 h) and
horizontally homogeneous. Vertical variations in the
PBL., however. are incorporated into the model’s pre-
dictions. For flow in complex terrain AERMOD incor-
porates the concept of a dividing streamline (Snyder et
al. 1985). The model considers the influence of building
wakes on plume rise and dispersion using the algo-
rithms of the Plume Rise Model Enhancements
(PRIME) model (Schulman et al. 2000). In urban areas,
AERMOD accounts for the dispersive nature of the
“convective like™ boundary layer that forms during
nighttime conditions by enhancing the turbulence re-
sulting from urban heat flux (Oke 1978, 1982).

This paper is the second of two describing the newly
developed AERMOD modeling system. Cimorelli et al.
(2005, hereinafter Part 1) describe the model formula-
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TABLE 1. Description of field studies (without building wake eftects).

Database

Description of field study

Prairie Girass

(50,)
Kincaid (SF,,)
Indianapolis

(SF)
Kincaid (SO5)

Very flat. rural (Nebraska): nonbuoyant single-point source: .46-m refease: 44 data hours; SO, samplers in ares
out to BX) m: 16-m meteorological tower (wind, turbulence, and temperature data), Barad (1938) and
Haugen (1959).
Flat, rural (Hlinois). highly buoyant single source: tal] stack release (187 m): 375 data hours: SE, samplers in ares
oul to 560 km: 100-m tower (wind, turbulence, and temperature); Liu and Moore (1934) and Bowne el al. (1983).
[fat, urban (Indiana). highly buoyant release (84 m): 170 data houss: SF, samplers in ares out to 12 km; Urban
tower (94 m): 10-m suburban and rural towers (wind, turbulence, and temperature): Murray and Bowne (198%).
Flat. rural (DMinois). highty buoyant single source; tall stack release (187 m): 4614 data hours; 30 samplers out to

20 km; 100-m tower (wind, turbulence, and temperature); Liu and Moore (1984) and Bowne ct al. (1983).

Lovett (50,)

Hilly. rural (New York), highly buoyant release (145 m): 12 monitors out to 3 km: | yr of data; 100-m (wind.

turbulence, and temperature); Paumier et al. (1992).

Baldwin (80,)

Flat. rural (Illinois): three highly buoyant stacks (184 m): 10 fixed samplers out to 10 km: | yr of data; 100-m

(wind and temperature data); Hanna and Chang (1993).

Clifty Creek

Moderately hilly, rural (Indiana); three highly buoyant stacks (cach 208 m): six fixed samplers out 1o 13 kin:

Hilly. rural (Pennsvlvania): multiple highly buovant releases (122-183 m): | yr of data: seven fixed samplers out

(SO;) 1 yr of data; 60-m tower on nearby plateau, 115 m above stack base (wind and temperature data).
Martinsg Creck
(50;) to 8 km: 10-m tower plus sodar (wind. turbulence. and temperature data).
Westvaco Hilly. rural (Maryland): highly buovant stack (183 m): 11 fixed samplers out to 3 km: | yr of data: two 30-m
(S0O;) towers: [00-m tower (wind. turbulence. and temperature data): Strimaitis et al. (1987).

Tracy (SF,)

Mountainous. rural (Nevada): moderately buovant stack (91 m): 128 h of datie SF, samplers out to 8 km:

150-m tower (wind. turbulence and temperature data): tethersonde temperatures: acoustic sounder: DiCristofaro

el al. (JURS).

tion, while this paper provides an overview of the mod-
el’s performance against the concentration abserva-
tions at 17 field study databases. The studies include
sites with flat and complex terrain, urban and rural con-
ditions, and elevated and surface releases with and
without building wake effects. The evaluation measures
are focused on those that are relevant to regulatory
applications, that is, emphasis on ability of the model to
simulate the upper end of the concentration distribu-
tions. AERMOD estimates have been compared with
those of other applied models, including ISCST3 (U.S.
Environmental Protection Agency 1995), the Hybrid
Plume Dispersion Model (HPDM) (Hanna and Paine
1989), the Rough Terrain Diffusion Model (RTDM)
(Painc and Egan 1987), and the Complex Terrain Dis-
persion Model Plus Algorithms for Unstable Situations
(CTDMPLUS) (Perry 1992).

2. Model evaluation field studies

Of the 17 databases that were considered, 10 were
designed to collect data [or overall model performance
where building wakes were not an issue, while the re-
maining 7 were specifically focused on building influ-
cnces. The studies are summarized in Tables 1 and 2.
Maps of the various sites can be [ound in Paine et al.
(1998. 2003). The first five databases listed in Table 1
were used during the AERMOD development process
to identify major problems with the model algorithms
but generally were not used to set empirical parameters
to improve the model results. An exception is found
with the use of the Prairie Grass Experiment data to
specifically develop the formulation for the lateral dis-
persion parameter. The remaining five databases were

independently applied to the developed maodel code.
The first four building wake databases in Table 2 were
cach subdivided to provide data for both model devel-
opment and evaluation of the PRIME building down-
wash algorithms. However. all of the data from the
seven building wake databases were used in the perfor-
mance results described in this paper.

3. Performance measures

Althaugh the model evaluation examined the guality
ol the predictions relative to the model physics, the
results reported here are focused primarily on answer-
ing the questions: how well does AERMOD predict the
high-end, ground-level concentrations that are gener-
ally used to assess compliance with air quality regula-
tions: and is AERMOI’s performance distinguishably
better than that of other applied models tor this pur-
pose? To answer these questions the analyses of the
model’s performance utilized all of the velevant input
data that are available with each dataset. The perfor-
mances of carher versions of AELRMOD were exam-
med with reductions in the number of height levels in
the measured profiles of PBL variables (e.g.. wind. tem-
perature). Paine (2003) found that the performance of
the model tended 1o degrade as more and more levels
of data were removed from the analysis. In general, the
model predictions tended toward higher concentrations
and, thus, provided move conservative results when
compared to the observed concentrations.

In the absence of model formulation errors and sto-
chastic variations, the major reasons for deviations be-
tween model estimates and observations are errors in
the model inputs, and the concentration observations
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This served to highlight the sensitivity of dispersion to
local meteorological behavior and the geometry of the
building wakes and cavities. Overall. the model [ound
the representative high-end concentrations (i.e.. RHC)
within a factor of 2 or better. Although it seems rather
obvious. the results here strongly suggest that specifi-
cation of the cavity extent and plume material height
and spread (near the building) is critical to appropri-
ately simulating the downwash effect.

AERMOID (Part 1) represents many formulation im-
provements over commonly applied regulatory models
such as ISCST3. In model-to-model comparisons.
AERMOD’s performance is clearly superior to that of
[SCST3. Madels such as HPDM and CTDMPLUS per-
form similarly to AERMOD in the selected circum-
stances for which these models were designed. This is
not surprising because many of the formulations of
AERMOD are based, to some extent, on earlier work
by others in developing these and other models.
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