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Summary: 

 The approach taken in assessing the integrity of the drywell shell against buckling 

is sound and in accord with the best practices.  However, in reviewing the various studies, 

it appears to this reviewer that the approach set out in ASME Code Case 2286-1 

accounting for transverse stress in the capacity reduction factors for spherical shells 

should be reviewed with eye to modification in the future.  The emphasis of this report 

will focus on what we believe are possible shortcomings and inconsistencies of Code 

Case 2286-1.  In spite of the concerns that will be spelled out about Code Case 2286-1, 

the capacity reduction factors generated by the alternative approach suggested here are in 

close agreement with those used in the assessment.  Moreover, it will be argued that the 

alternative approach provides conservative results for the effect of transverse stress on the 

capacity reduction factor for the baseline case of large spherical shell segments.  Thus, it 

is not our opinion that any possible shortcomings of Code Case 2286-1 should invalidate 

the conclusions of the buckling assessments. This report begins with a brief introduction 

to the use of the capacity reduction factor to account for the effect of imperfections on 

bucking of thin spherical shells with emphasis on the stabilizing role of transverse stress.  

It then reviews several prescriptions for reduction factors for spherical shells highlighting 

what this reviewer believes are the shortcomings of Code Case 2286-1.  Finally, capacity 

reduction factors from the two approaches as applied to the spherical portion of the 

drywell shell are presented adding confidence to the conclusions of the drywell 

assessments reported.   

 

Introductory Comments 

 The work summarized in the “Structural Evaluation of the Oyster Creek Drywell 

Summary Report” and in the earlier slides presented by AmerGen (all references are 

given at the end of this report) appears to be of high quality and in accord with current 

best practices, as far as the expertise of this reviewer enables him to judge.  The area to 



which I have been asked direct my attention concerns the buckling assessment of the 

drywell shell prompted by corrosion with consequent thinning in certain sections of the 

shell.  An essential step in the buckling assessment is the use of a capacity reduction 

factor (CRF) to account for the fact that the buckling of thin shells is highly sensitive to 

geometric imperfections in the shell.  Use of the reduction factor is necessary since the 

numerical methods that are used to compute the buckling load do not account for the 

initial imperfections.  The most recent assessments of integrity of the drywell against 

buckling make use of capacity reduction factors for cylindrical and spherical shells 

specified by ASME Code Case 2286-1.  In addition, the method for applying the capacity 

reduction factor in the recent assessments follows the procedures apparently dictated by 

this Code.  As far as I have been able to ascertain by my study of the several reports, this 

approach has been followed correctly and consistently.  This statement also applies to the 

procedures used to assess the effect of thinning on buckling in areas affected by corrosion. 

I have two concerns related to ASME Code Case 2286-1 that I believe should be 

addressed in the future.  The first concerns the prescription of the capacity reduction 

factor (CRF) as it depends on the transverse stress as well as the baseline CRF for large 

spherical shell segments subject to equi-biaxial compression and uniaxial compression.  

The second concern is the procedure for choosing the transverse stress in applying the 

reduction factor.  The issues identified here underlying these concerns constitute a mix of 

conservative and unconservative aspects which appear to cancel each other out in the 

current assessments.  As noted in the summary, this reviewer regards the issues raised 

here as ones that should be addressed in the longer term independent of the present 

assessment and without prejudicing confidence in the current assessment given the 

comfortable margins of safety that emerged in the several studies.  This will be made 

clear in the last section of the report. 

 In view of my concerns related to the prescription of the capacity reduction factor 

for spherical shells and to the manner in which it is applied, this report begins by laying 

out several results for the dependence of the reduction factor on transverse stress, 

including that used in the latest assessments and an accurate result for a specific initial 

imperfection.  These are the baseline reduction factors for elastic buckling of large 

spherical shell segments with radius to thickness ratios exceeding 600.  Then the report 



spells out two different ways in which the transverse stress can be accounted for in 

applying the reduction factor.  One method follows the procedure adopted in the drywell 

shell studies as apparently specified by ASME Code Case 2286-1.  The other, proposed 

here, is believed to be more consistent with both the underlying numerical bucking 

analysis and with the way transverse stresses develop for the most prevalent class of 

loadings in which all membrane stress components increase proportionally with load. 

As general background, it can be noted that capacity reduction factors have been 

widely used in the design of thin shell structures with most of the developments 

stemming from the large body of experimental data on cylindrical shells assembled by 

NASA around 1960.  In the aerospace industry it is common to refer to the capacity 

reduction factors as “knockdown factors”.  In addition to my own past research on the 

imperfection-sensitivity of shell buckling, I was involved as a consultant in the 1970’s in 

the design of spherical tanks of LNG ships against buckling where issues similar to those 

in the drywell assessment arose. Like the drywell shell, the huge spherical aluminum 

tanks fell into the category of very thin shells with radius to thickness exceeding 600.  

The tank was supported at its equator by a cylindrical shell “skirt” rising from the ship 

hull.  The critical condition with respect to buckling occurred under partial fill conditions 

when the segment of the spherical shell below the equator had a compressive 

circumferential membrane stress and a tensile meridional stress that was roughly equal in 

magnitude.  As a consultant, I was asked to help assign an appropriate knockdown factor.  

As in the present assessment, the factor 0.2α ≅ , based largely on NASA’s cylindrical 

shell data, was recognized to be overly conservative due to the stabilizing influence of the 

tensile transverse membrane stress component.  At the time there was not much else to go 

by other than Yao’s (1963) data on spherical shell segments which had a similar ratio of 

the pre-buckling membrane stresses.  Based on this limited data and several theoretical 

imperfection-sensitivity studies, together with what we hoped to be good judgment, a 

reduction factor, 0.4α ≈ , was proposed. (I am unable to recall the precise value.) 

 

 

 

 



A Brief Overview of Capacity Reduction Factors and Their Application for 

Spherical Shells Subject to Unequal Pre-buckling Membrane Stresses 

 

a) The transverse stress dependence of α  

 First let me define the capacity reduction factor, α , as I understand it for large 

spherical shell segments with radius, R , to thickness, t , falling in the range / 600R t ≥ .  

For most of the drywell shell buckling assessments, plasticity does not come into play 

and thus it will not be considered in this report—the plasticity reduction factor, η , will be 

taken to be unity.  Throughout this report the following notation will be used: 1σ  is the 

pre-buckling membrane stress in the meridional direction and 2σ  is the corresponding 

stress in the circumferential direction.  Both are taken to be positive in compression.  The 

ratio of the pre-buckling membrane stresses at any load level is 

 2

1
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σ
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Young’s modulus is E  and Poisson’s ratio is ν .     

In all cases considered here, 1 2σ σ≥  such that compression in the 1-direction 

drives the buckling.  Denote the elastic theoretical buckling stress by 1( )Cσ .  For example, 

1( )Cσ  has been obtained in the 3-dimentional drywell study from an FEM eigenvalue 

analysis for the lowest buckling eigenvalue Cλ  without accounting for initial 

imperfections.  With respect to one of the concerns raised in this report, it is important to 

distinguish between two classes of loadings:  (A) Those that produce membranes stress 

that increase in proportion with fixed ratio, r , as the load increases, such as gravity 

loading on the drywell or the loading of the spherical shell segments tested by Yao 

(1963).  (B) Those in which the transverse membrane stress is fixed while the primary 

compressive membrane stress increases with the load, such as an axially compressed 

cylindrical shell under internal pressure in which the pressure is fixed and the axial load 

is increased.  For want of better terminology, the first class will be referred to as 

proportional transverse stress and the latter class will be called fixed transverse stress.  

Of course, there are loadings which combine these two types of loadings, however the 

discussion in this report will treat them individually. In a theoretical buckling calculation 



for the first class of loadings, all of the membrane stress components are jointly scaled by 

λ .  This appears to be the case for the two main loading cases considered in the buckling 

analysis of the drywell shell in which λ  is identified with the acceleration of gravity, g .  

For the second class, the theoretical buckling calculation should fix the transverse stress 

(associated with a fixed secondary load parameter) at the appropriate level and scale 

stresses associated with the primary load by λ .  The relevance of these points will 

emerge later in discussion of how the reduction factor should be evaluated in terms of the 

transverse stress.   

The capacity reduction factor, α , relates the buckling stress accounting for 

imperfections to the theoretical buckling stress by 

 1 1( ) ( )Buckling Cσ α σ=         (2) 

Based on a large body of experimental data for buckling of  cylindrical shells under 

uniaxial compression assembled by NASA there is general agreement that 0.207α =  

applies to sufficiently large cylindrical shell segments (i.e. for sufficiently large 

/M Rt=  where  is the minimum length between reinforcements such as stiffeners 

or rings, as discussed in CC-2286-1).  One concern this reviewer has concerning CC-

2286-1 is that the code stipulates that 0.207α =  should also apply to large spherical shell 

segments with / 600R t ≥  under uniaxial compression ( 0r = ).  We believe this is not 

correct (and, in fact, is overly conservative) as discussed in the next paragraph.  As noted 

below, we believe 0.207α =  should apply to the spherical shell under equi-biaxial 

compression ( 1r =  ).  CC-2286-1 assumes 0.6 0.207 0.124α = × =  for large spherical 

shell segments under equal biaxial compression with / 600R t ≥ . 

 If there is experimental evidence for taking 0.124α =  for thin spherical shells 

under equi-biaxial compression and/or 0.207α =  for uniaxial compression, this reviewer 

is not aware of it.  If such experimental data exists then these values should indeed be 

regarded as being firmly grounded.  However, absent such experimental data, the 

understanding of cylindrical and spherical shell buckling would argue for similar values 

of the CRF, α , for the cylindrical shell under uniaxial axial compression and the 

spherical shell under equi-biaxial compression.  Both these loadings (and only these 

loadings) on the respective shell structures give rise to many simultaneous buckling 



modes associated with the lowest buckling eigenvalue.  It is the existence of the multiple 

modes and the way they couple together that produces the catastrophic buckling behavior 

and the extreme imperfection-sensitivity of these structures.  The background for these 

assertions is the extensive work of W.T. Koiter.  In this reviewer’s experience, this 

reasoning has led practioners in the field to conclude that the factor 0.207α =  (at least 

approximately) should apply to large spherical shell segments under equi-biaxial 

compression not under uniaxial compression.  Uniaxial compression of a spherical 

segment does not give rise to multiple simultaneous bucking modes and it should not be 

as imperfection-sensitive.  However, we emphasize again that ultimately the CRF is 

dictated by experimental data, and if there exists data on spherical shell bucking that 

would suggest that 0.124α =  is a better choice for equi-biaxial compression than 

0.207α =  then that choice should prevail. 

The issue addressed in the reminder of this sub-section is the dependence of α  on 

2 1/r σ σ=  for large elastic spherical shell segments.   In presenting the results from CC 

2286-1 we will use the recommendation of the Code that 0.207α =  for uniaxial 

compression ( 0r = ).  For the alternative approach suggested we take 0.207α =  for equi-

biaxial compression ( 1r = ) for the reasons stated above. 

 The capacity reduction factor used in the drywell assessments in the recent 

reports have been taken from ASME Code Case 2286-1.  For sufficiently large elastic 

spherical shell segments with / 600R t ≥  (ACRS January 18, 2007; Miller Report June 15, 

2006; Structural Evaluation of the Oyster Creek Drywell Summary Report, January 22, 

2009) the reduction factor for transverse stresses that are zero or tensile is 

2
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      (3) 

Note that for 2σ =0, 0.124 / 0.6 0.207α = = .  As Code Case 2286-1 is applied in the 

drywell shell studies, 2σ  in (3) is identified as the transverse stress component evaluated 

at the loading condition, as will be discussed in more detail in the next sub-section.1  This 

                                                 
1 Case Code 2286-1 as laid out in the cited reports at the end of this report and by  Miller (2006), for 
example, does not state clearly how 2σ  should be identified.  It appears to this reviewer that in all the 

drywell shell assessments 2σ  has been identified with the transverse stress at the applied load in (3), not 
the buckling load, whether the loading produces transverse stresses that are proportional or fixed. 



is clearly correct for loadings that produce fixed transverse stresses.  However, for 

loadings which produce proportional transverse stress, the transverse stress increases in 

direct proportion to the primary compressive stress according to 2 1rσ σ=  independent of 

load.  If 2σ  is identified as the transverse stress at buckling, such that 2 1rσ σ= , then (3) 

becomes 

1 1

1.752 1.7520.207 0.207 for  0
3.24 ( / ) /( ) 3.24 /( / )C
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E t R r c r

α
σ σ σ
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In the last expression the theoretical elastic buckling stress for large, perfect spherical 

shell segments with 1r ≤  has been introduced: 

 2
1( ) , with 3(1 )C C

Et c
cR

σ σ ν≡ = = −      (4) 

Noting that 1 / Cσ σ α= , one obtains from (3) the equation relating α  and r  for 0r ≤  

 1.7520.207
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which can be re-expressed as a quadratic equation for α : 

 ( )23.24 2.422 / 0.207 / 0c r c rα α− − − = ,     0r ≤     (5) 

This relation is plotted in Fig. 1 and it will be discussed following presentation of other 

results for the r -dependence of the reduction factor.  

 An accurate analysis of the effect of an imperfection in the shape of the 

axisymmetric buckling mode in a large segment of the sphere in regions away from its 

poles is reported in the Appendix.  This analysis closely parallels the approach that Koiter 

(1963) employed in his famous analysis of the effect of an axisymmetric imperfection on 

the buckling stress of an elastic cylindrical shell in axial compression.  By extending the 

analysis of the spherical shell to pre-buckling membrane stresses, 1σ  and 2 1rσ σ= ,  that 

are unequal, one can compute the dependence of α  on r  for specific values of the 

imperfection amplitude.  This dependence is plotted in Fig. 2 for four values of the 

imperfection amplitude.  The lowest curve is relevant to shells having / 600R t ≥  because 

the imperfection amplitude has been chosen such that 0.207α =  for the limit of equi-

biaxial compression ( r =1), as motivated earlier in this section.  This curve has also been 

included in Fig. 1. An important feature of this result is that the approach guarantees that 



it provides an upper-bound to the buckling stress for the imperfection assumed.  Table I 

lists three values of the capacity reduction factor of particular relevance. 

 
Fig. 1  Capacity reduction factor for large spherical shell segments as a function of 

2 1/r σ σ=  as predicted by CC 2286-1 with 2σ  set as 1rσ  and 0.3ν = , and as given by 
the results in the Appendix for a axisymmetric imperfection with amplitude chosen such 
that 0.207α =  for equi-biaxial compression ( 1r = ).  The experimental data of Yao 
(1963) is included. 
 

 

2 1/r σ σ=  ASME CC 2286-1 Imperfection analysis 

1r =  0.124α =  0.207α =  

0r =  0.207α =  0.281α =  

1r = −  0.465α =  0.381α =  

 
Table I.  Capacity reduction factor, α , for elastic buckling of large spherical shell 
segments with / 600R t >  based ASME Code Case 2286-1 as expressed in terms of r  
and based on the imperfection analysis in the Appendix. 
 
 



 
Fig. 2  Capacity reduction factor for large spherical shell segments as a function of 

2 1/r σ σ=  as predicted by the analysis in the Appendix for axisymmetric imperfections. 

The lowest curve has the imperfection set such that 0.207α =  at 1r =  such that it is 

relevant to shells with / 600R t ≥ . 

 
Included in Fig. 1 is the range of experimental data for the large spherical shell 

segments tested by Yao (1963).  These shells were tested in tension such that the 

circumferential stress was compressive with equal and opposite tensile stress in the 

meridional direction.  In the present notation, with axes rotated  90 degrees, all of these 

test correspond to 1r = − .  The seven shells had /R t  ranging from 455 to 1600 and the 

ratio of the experimental to the theoretical buckling loads ranged from 0.38 to 0.67. Two 

shells buckling at 0.38, including one shell with /R t =476. 

Another plot of capacity reduction factors as a function of r is included here in 

Fig. 3.  This plot is Slide #26 of the AmerGen presentation to the ACRS of February 2, 

2007.  The lower (red) curve is the same as that plotted in Fig. 1 for CC 2286-1.  The data 

range of the Yao tests has been plotted incorrectly in Fig. 3 (c.f. Fig.1). Four of the seven 

shells buckled below the prescription of CC 2286-1. 



 
Fig. 3  Capacity reduction factors for spherical shells from slides presented to ACSR on 

February 2, 2007. 

 

The spread in Fig. 1 between the capacity reduction factor based on ASME Code 

Case 2286-1 and that based the buckling analysis reported in the Appendix for 0.5r < −  

may be a cause for concern.  As noted earlier, this reviewer is not familiar with the 

deliberations that led to the development of the ASME Code Case 2286-1, nor am I 

aware of a significant new body of experimental results (more recent, say, than those of 

Yao (1963)) for spherical shell segments that could be used to motivate the capacity 

reduction factor dependence on 2σ  specified by (3) in the Code.  The pivotal role of 

0.207α =  for the uniaxial case, 2 0σ = , in (3) would seem to require validation by 

experiments. (I have not seen the experimental data generated by the Miller tests referred 

to in some of the correspondence.)  The Yao data shown in Fig. 1 (and incorrectly plotted 

in Fig. 3) indicates that the Code prescription is somewhat unconservative when 1r = −  

( 0.465α =  compared with 0.38 for two of the shells).   

The r -dependence from the imperfection analysis in the Appendix and plotted in 

Fig. 1 is almost certainly conservative for the following reason.  That analysis is based on 

an imperfection that varies only with 1x . Such imperfections are less influenced by the 

transverse stress, 2σ , than non-axisymmertic imperfections that have variations in both 

directions.  It is not possible to carry out an analysis for the r -dependence of α  for non-



axisymmetric imperfections without resorting to a full nonlinear FEM computation.  Such 

an analysis would almost certainly produce larger values of α  for 0r =  and 1r = −  than 

those listed in Table I for the axisymmetric imperfection.  Nevertheless, it remains true 

that shells with imperfection shapes exist that would buckle below predictions based on 

the capacity reduction factor specified by ASME Code Case 2286-1.  This point is driven 

home in Fig. 4 where trends are presented on the effect of a positive transverse stress on 

the buckling of cylindrical shells loaded by an axial load in combination with an internal 

pressure.  The lowest theoretical curve follows very closely the prediction based on the 

same type of Koiter-analysis presented in the Appendix for the effect of axisymmetric 

imperfections on cylindrical shells.  The conclusion to be drawn from the experimental 

data in Fig. 4 is that trends in the capacity reduction factor with the transverse stress as 

predicted under the assumption of an axisymmetric imperfection may not be overly 

conservative because shells dominated by axisymmetric imperfections do exist.  This 

conclusion is further reinforced by the fact that two of the seven shells tested by Yao 

(1963) coincide almost exactly with the prediction for axisymmetric imperfections with 

1r = − , i.e. 0.38α = . 

 

 



Fig. 4  The effect of both axisymmetric imperfections (lowest solid curve) and 
combinations of axisymmetric and non-axisymmetric imperfections (upper two solid 
curves) on the buckling of cylindrical shells under axial compression subject to internal 
pressure.  The circumferential transverse stress, 2σ , is tensile.  This is Fig. 7 taken from 
Hutchinson (1965), and the experimental points are data cited in that reference.  Note that 
these shells do not have radius to thickness exceeding 600 and therefore the capacity 
reduction factor lies above 0.207 when 2σ =0 for most of these shells.  The transverse 
stress stabilizes shells dominated by non-axisymmetric imperfections more effectively 
than those dominated by axisymmetric imperfections. In the latter case, the Koiter 
analysis (essentially the lower curve) accurately captures the increase of the capacity 
reduction ratio with increasing transverse stress.  
 
 

b) The procedure for determining the capacity reduction factor 

 

(i) The procedure as applied in the assessments of the drywell shell based on AMSE 

Code Case 2286-1 

As noted in the previous subsection, the method used to determine α  using CC 

2286-1 that appears to have been followed consistently in the drywell studies is as 

follows, illustrated here for large elastic spherical shell segments.  Evaluate α  using 

equation (3) based on the transverse membrane stress 2σ  computed at the applied load 

for the case in question.  With 1( )Cσ  as the theoretical stress computed with no 

imperfections taken into account, the actual buckling stress accounting for imperfections 

is given by (2), i.e., 1 1( ) ( )Buckling Cσ α σ= , assuming no further reduction due to plasticity.  

The maximum allowable stress is reduced by the factor of safety, FS , to  

1 1( ) ( ) /Allowable C FSσ α σ= . 

For loading cases producing a fixed transverse membrane stress, this reviewer 

believes that this procedure is correct because this is the transverse stress at buckling. 

However, for loading cases producing proportional transverse membrane stress, this 

reviewer believes that the appropriate choice of 2σ  should be its value at buckling.  This 

is the second of the two concerns this reviewer has about the procedure of CC 2286-1. 

 

 



(ii) An alternative procedure for loadings that produce proportional membrane 

stresses 

 To motivate the alternative proposal for determining the influence of the 

transverse stress on the capacity reduction factor, consider, as an example, the tests 

conducted by Yao (1963) on spherical shell segments.  The segments were loaded under 

axial tension so that the roles 1σ  and 2σ  are interchanged in the present notation.  The 

important point is that the ratio of these membrane stresses is fixed as the load is 

increased and corresponds to 1r ≅ − .  This fact is recognized by the data points of Yao 

plotted (incorrectly) in the AmerGen slide in Fig. 3.  Thus, 2 1rσ σ= , when buckling 

occurs in the test.  A second motivation for the alternative proposal is that the standard 

procedure for computing the theoretical buckling stress, 1( )Cσ , scales all of the 

membrane stress components by a single eigen-load parameter, λ , unless there are two 

independent loads, one of which increases until buckling occurs and the other is 

stationary.  In other words, for load cases producing proportional transverse stress, the 

ratio of the membrane stresses is fixed according to 2 1rσ σ=  in computing the theoretical 

buckling stress.  The fixed proportionality of the membrane stresses in such an analysis is 

a natural consequence of the fact that they depend linearly on the load parameter in the 

pre-buckling state.  In the numerical buckling calculations for this class of loads, it would 

not be permissible to fix the transverse stress. 

 From the above it follows that for loadings producing proportional transverse 

stress, a logical way to determine the dependence of the capacity reduction factor on the 

transverse stress is to evaluate α  in terms of 2 1/r σ σ= , independent of the applied load, 

ensuring that 2σ  is the transverse membrane stress at buckling (or at any other load).  

With this approach, α  is read directly off a curve such as one of those in Figs. 1-3 or 

evaluated from a formula for α  in terms of r . Once α  is identified, the remaining steps 

for determining the allowable stress are identical to those outlined above in (i). 

 

(iii) Comments on the two approaches 

 As indicated above, this reviewer believes that the capacity reduction factor 

should be evaluated using the transverse membrane stress at buckling in all cases.  For 



loading cases that produce fixed transverse stress, the fixed transverse stress is the value 

at buckling and thus there is no issue.  However, for loading cases which produce 

proportional transverse stress, the procedure used in the dry well assessment uses the 

transverse stress at the applied load and not at buckling.  The rationale for evaluating the 

transverse stress at buckling will be further motivated below. 

One could argue that the relevant value of the transverse stress is the value at the 

applied load and therefore this value should be used in determining α .  However, if this 

option is invoked, the buckling experiments used to establish α  should also be devised 

so that the transverse stress at buckling is that set by the applied load (as opposed to the 

buckling load).  This is not how most bucking tests are conducted.  Most buckling tests 

have a single load parameter such that all components of the membrane stress increase 

proportionally.  An example of an exception would be a cylindrical shell subject to a 

fixed internal pressure and an increasing axial load.  However, loading cases relevant to 

most of those for the spherical portion of drywell shell produce proportional membrane 

stresses.  The Yao tests exemplify this class of loading.  Moreover, if the factor of safety 

reflects an uncertainty of applied load, for example, such that an accidental overload 

might be twice the design applied load, then for this class of loading all the membrane 

stresses will be increased by a factor of two.  Here, again, it makes sense to adopt 

2 1rσ σ=  in the evaluation of α . 

 It is worth emphasizing again that the procedure for evaluating α  using all the 

pre-buckling membrane stress components at the buckling load encompasses both classes 

of loadings, fixed transverse stress and proportional transverse stress.  As noted earlier, 

for both classes of loadings, this procedure is consistent with the way in which the pre-

buckling membrane stresses vary, both in buckling tests and in the finite element 

computation of theoretical buckling stresses.  As noted above, the procedure which 

evaluates α  using the transverse stress at the applied load is not consistent with either of 

these two legs of buckling assessment when the actual loading produces a transverse 

stress that increases proportionally with the load. 

 The two procedures are identical when 2 0σ = .  They are also identical when the 

factor of safety is unity, 1FS = , because then the applied stresses, including the 

transverse stress, are the stresses at buckling.  However, for cases with 1FS >  with non-



zero transverse membrane stress the approaches differ.  For loading cases producing 

proportional transverse stress, a procedure evaluating α  at the transverse stress of the 

applied load, as has been done in the drywell shell assessments, will underestimate α  if 

2 0σ <  and overestimate α  if 2 0σ >  compared to the procedure that uses the transverse 

stress at buckling.  (This follows because the magnitude of transverse buckling stress at 

the applied load is never greater than its magnitude at buckling and becauseα  is a 

decreasing function of r , as seen in Figs. 1-3.)  Since many of the loading cases involved 

in the drywell shell assessment have 2 0σ < , it follows that this aspect of the procedure 

employed in the assessment is conservative compared to the proposed alternative.  This 

observation must be tempered by the fact that the capacity reduction factor employed in 

these assessments based on CC-2286-1 in Fig. 3 or in (3) may not be conservative when 

0.5r < − . 

 Finally, it can be mentioned that employing the capacity reduction factor, α , 

using the procedure favored by this reviewer for loads generating proportional transverse 

stress is no more difficult to apply than the procedure employed in the drywell shell 

assessments. One simply identifies 2 1/r σ σ=  from the pre-buckling calculation and then 

obtains α  from a formula or a curve as in Fig.1.  Cases that involve combinations of the 

two classes of loading are slightly more complicated but can be readily addressed. 

 

Comparisons of the Capacity Reduction Factors from the Two Approaches as 

Applied to the Spherical Sections of the Drywell Shell 

 Tables 8-5 and 8-6 in the SIA report present the applied stresses and the modified 

capacity reduction factor, mα α≡ , for the two most relevant loading cases of drywell 

shell, refueling and flooding, respectively.  Results are presented for upper, middle and 

lower sections the spherical shell.  These results are listed here in Table II.  Also included 

is the r -value based on the ratio of the applied membrane stresses listed in the SIA tables 

and the value of α  predicted based on the approach proposed here in conjunction with 

the lower curve in Fig. 1 based on the axisymmetric imperfection analysis. 

 The two sets of predictions are quite close and in all cases the values used in the 

assessment of the Oyster Creek drywell shell are slightly more conservative than those of 



the present approach except for the upper section in the refueling case.  In that one case, 

the spherical segment is smaller than a fully “large section” and the α -value in Table 8-5 

has been justifiably increased in accord to the procedure based on the value of M .   

 

Spherical sections Upper section Middle section Lower section 

α  SIA Table 8-5  

r  SIA Table 8-5 

α  From Appendix 

0.436 

-0.58 

0.35 

0.338 

-0.96 

0.37 

0.328 

-0.93 

0.36 

α  SIA Table 8-6  

r  SIA Table 8-6 

α  From Appendix 

0.533 

-2.5 

0.54 

0.492 

-3.4 

0.60 

0.502 

-2.15 

0.51 

 

Table II.  Comparisons between the capacity reduction factors from the SIA 2009 report 

and the approach suggested by the present report in conjunction with the results from the 

analysis in the Appendix and plotted in Fig. 1. 

 

 Tables 8-7 and 8-8 of the SIA report present similar results for the various bays of 

the sand bed region of the drywell shell.  For the refueling case, the modified capacity 

reduction factor, α , ranges from 0.30 to 0.34.  For all of the bays, 1r ≅ − , implying that 

0.38α =  based on the present approach, again falling just above the values used in the 

assessment.  For the flooding case, Table 8-8 gives α  in the range from 0.48 to 0.55.  For 

all bays, 2r ≅ − , such that Fig. 1 gives 0.50α = . 

 In conclusion, the procedure of ASME Case Code 2286-1 gives very similar 

predictions for the capacity reduction factor for large elastic spherical shell segments to 

the procedure advanced here, in spite of several significant differences between them.  It 

appears to this reviewer that the mix of conservative and unconservative aspects in the 

CC-2286-1 approach combine to yield sound results in the applications relevant to the 

drywell shell.  Nevertheless, for the reasons detailed in this report, this reviewer feels 

strongly that the approach laid out in CC-2286-1 should be carefully reviewed. 

 

 



Appendix:  Capacity Reduction Factor α  for Buckling of Large Spherical Shell 
Segments with Axisymmetric Imperfections  
 
 Consider an elastic spherical shell of radius, R , thickness, t , Young’s modulus, 

E , and Poisson’s ratio, ν , that is governed by the nonlinear Donnell-Mushtari-Vlasov 

(DMV) shell equations.  Denote the in-plane pre-buckling membrane stresses of the 

perfect shell by 1σ  and 2σ  defined to be positive in compression with 1 2σ σ≥   ( 12 0σ = ).  

These are aligned with middle surface coordinates, 1x  and 2x , where, consistent with the 

loadings of the spherical sections of the drywell shell, 1x  is in the direction of the 

meridian and 2x  in the circumferential direction.  The spherical segment is considered to 

be large compared to the wavelengths of the imperfection and buckling modes but still 

relatively shallow.  The analysis which follows is very similar to that given by Koiter 

(1963) in his solution for the upper-bound to the buckling of a cylindrical shell subject to 

axial compression with an axisymmetric imperfection.  The corresponding analysis of the 

large spherical shell segment subject to equi-biaxial compression was given by 

Hutchinson (1967), and the present results reduce to this case in the limit 1 2σ σ= .  The 

objective of the present analysis is to obtain explicit results for the dependence of the 

capacity reduction factor on the biaxial stressing ratio, 2 1/r σ σ= .  Only the essential 

details of the analysis will be included in this Appendix; the full details are similar to 

those given in the above two references. 

 The initial imperfection is  

 ( )1cos /w t qx Rξ=  

with ξ as the normalized amplitude of the imperfection and 4 2 212(1 )( / )q R tν= − .  The 

imperfection is in the shape of the classical axisymmetric buckling mode in a shallow 

section of the sphere (Hutchinson, 1967).  The nonlinear DMV equations for the 

imperfect shell admit an exact axisymmetric solution which written in terms of the 

normal displacement and the Airy stress function is 
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Here, the pressure, p , normal to shell equilibrates pre-bucking membrane stresses 

according to ( )1 2 /p t Rσ σ= + .  Additionally, 1 1 / Cσ σ σ≡  and 2 2 / Cσ σ σ≡  with  

 
23(1 )

C
Et

R
σ

ν
=

−
 

as the classical buckling stress of the perfect shell.  The classical stress applies to all large, 

perfect spherical shell segments as long as 1r ≤ . 

Following Koiter’s (1963) approach for cylindrical shells, we analyze the 

bifurcation problem for buckling from the axisymmetric state into a non-axisymmetic 

mode.  The bifurcation is generally unstable giving rise to a dynamic collapse.  An 

important feature of this approach is that it is carried out in such a way that the result is 

not only highly accurate but also provides a rigorous upper-bound to the bifurcation 

stress for the particular imperfection.  The reader is referred to Koiter’s paper for the 

physical motivation involving essential aspects of nonlinear mode coupling underlying 

the steps that follow. 

 The solution in the buckled state is written as 

 1 2 1 2( , ) & ( , )A AW W w x x F F f x x= + = +  

A non-axisymmetric buckling deflection of the form  

 1 1
1 2

1( , ) sin sin
2

qx qxw x x At
R R

γ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

is assumed where γ  sets the wavelength in the circumferential direction and is to be 

determined in the solution process.  The next step is to note that the nonlinear DMV 

compatibility equation can be solved exactly for f  in terms of w : 

 3 1 1 2
1 2

1 3sin sin sin
2 2

qx qx qxf AEt b b
R R R

γ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

where 
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with 23(1 )c ν= − .  Because only terms linear in A  will be required, the quadratic terms 

in A  are not shown. 



The final step in the analysis is to evaluate the potential energy difference of the 

shell in buckled state from that in the axisymmetric state.  The eigenvalue problem for the 

bifurcation problem only requires the quadratic terms in w  and f  in the potential energy 

change.  Koiter’s notation for this term is 2 ( , )P w f , and the expression for it is 
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The potential energy change can be evaluated in closed form: 
2 223 2
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where S  is the area of the spherical segment and 

 2

1

r σ
σ

=  

The only approximation in the above calculation occurs in the final step where terms such 

as 1cos( / )
S

qx R dS∫  are neglected compared to S .  The neglected terms are of order 1/ q  

relative to those retained. 

For prescribed ξ and r  with specified,γ , the eigenvalue for bifurcation from the 

axisymmetric state, 1σ , is given by 2 0P = .  For prescribed ξ  and r , the lowest buckling 

stress is obtained by minimizing this eigenvalue with respect to γ .  Note that the 

normalized lowest buckling stress, 1 1 / Cσ σ σ= , is precisely the desired capacity reduction 

factor, α .  The fact that the result so obtained is an upper-bound to the reduction factor 

follows because the field used to evaluate 2P  is kinematically admissible due to fact that 

f  is obtained exactly in terms of w .  Inspection of 2P  shows that cξ  appears in 

combination with no other dependence on ν .  Thus, the plots of the reduction factor as a 

function of r  introduced in this report do not depend on Poisson’s ratio. 

The capacity reduction factor, 1α σ= , is plotted for specified ξ and r  in Figs. 1 

and 2.  The lowest curve in Fig. 2 is relevant to the drywell sphere since the imperfection 

is set such that 0.207α =  for equi-biaxial compression ( 1r = ): 1.396cξ =  or 0.845ξ =  



for 0.3ν = .  The upper three curves correspond to 0.824cξ = , 0.512cξ =  and 

0.316cξ = , respectively.  The results for 1r =  coincide with those presented in Fig. 5 of 

Hutchinson (1967).  Analogous results for cylindrical shells subject to a combination of 

axial load and internal pressure have been presented by Hutchinson (1965).  
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