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Figure 2-261. Finite Element Mesh for the SC-2, End Impact, 0' Support Structure

Figure 2-262. Finite Element Mesh for the SC-2, End Impact, 0' Support Structure - Final
Displacement
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Figure 2-261. Finite Element Mesh for the SC-2, End Impact, 0° Support Structure 

Figure 2-262. Finite Element Mesh for the SC-2, End Impact, 0° Support Structure - Final 
Displacement 
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Figure 2-263. Kinetic Energy Time History for the SC-2, End Impact, 0' Support
Structure
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Figure 2-264. Plot of EQPS in the TB-i for the SC-2, End Impact, 0' Support Structure
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Figure 2-263. Kinetic Energy Time History for the SC-2, End Impact, 0° Support 
Structure 
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Figure 2-264. Plot ofEQPS in the TB-l for the SC-2, End Impact, 0° Support Structure 
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Figure 2-265. Plot of von Mises Stress in the TB-1 for the SC-2, End Impact, 0' Support
Structure
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Figure 2-266. Plot of Contact Forces in the TB-1 for the SC-2, End Impact, 00 Support
Structure
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Figure 2-265. Plot of von Mises Stress in the TB-l for the SC-2, End Impact, 0° Support 
Structure 
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Figure 2-266. Plot of Contact Forces in the TB-l for the SC-2, End Impact, 0° Support 
Structure 
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2.12.5.5.7 Run 17 - SC-2 Sample Container, Side Impact, Support Structure 0'

The side impact model for the larger SC-2 each with 338 g of delta Pu contents (inner cradle
rotated 0 degrees) is shown in Figure 2-267. Note that each Pu cylinder is located at the far left
side of each SC-2 so that its net impact velocity with the right side of the T-Ampoule is
maximized. The post-impact deformation is shown in Figure 2-268 and its kinetic energy history
in Figure 2-269. The Pu contents penetrate each of the SC-2 side walls and directly impact the
T-Ampoule.

Average stress-triaxiality versus EQPS is shown in Figure 2-270 for the 55 elements extending
beyond the tested Bao-Wierzbicki strain locus. All of these elements are outside the B-W locus,
for a variety of stress triaxialities, although most of the 580,000 T-Ampoule elements are inside
the B-W locus. The Tearing Parameter values for these same 55 elements are shown in Figure
2-271 and all are below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V. These
elements are highlighted in red in Figures 2-272 and 2-273, but note that these elements are still
below the initiation of a ductile tear and thus, T-Ampoule integrity is maintained.

Equivalent Plastic Strain (EQPS) in the TB- 1 vessel is shown in Figures 2-274 and 2-275 to be
less than 39% but only in some localized outer contact regions with the redwood overpack. The
EQPS due to internal denting of the upper TB-I is shown in Figure 2-275 to be less than 0.07%,
which is essentially elastic. The von Mises stresses (see Figure 2-276) peak at 225 ksi, is above
the elevated-temperature minimum yield strength for the TB-1 of 141 ksi but more importantly,
through-thickness TB-I stress values are in the less-than-135 ksi range, which is below yield.

0

Figure 2-267. Finite Element Mesh for the SC-2, Side Impact, 00 Support Structure
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Figure 2-267. Finite Element Mesh for the SC-2, Side Impact, 0° Support Structure 
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Figure 2-268. Finite Element Mesh for the SC-2, Side Impact, 0' Support Structure - Final
Displacement
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Figure 2-269. Kinetic Energy Time History for the SC-2, Side Impact, 00 Support
Structure
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Figure 2-268. Finite Element Mesh for the SC-2, Side Impact, 0° Support Structure - Final 
Displacement 
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Figure 2-269. Kinetic Energy Time History for the SC-2, Side Impact, 0° Support 
Structure 
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Figure 2-272. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 0' Support Structure

Figure 2-273. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 0' Support Structure
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/ 

Figure 2-272. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 0° Support Structure 

Figure 2-273. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 0° Support Structure 
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Figure 2-274. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 0' Support Structure

0 029E-30.167E-3

0.333E-3
0.500E-3
0.667E-3
0.833E-3
1.000E-3

F 0.3860

Figure 2-275. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 0' Support Structure
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Figure 2-274. Plot of EQPS in the TB-l for the SC-2, Side Impact, 0° Support Structure 

[OPS 

0.000[- '3 

1
0 . 167[-3 
O. '33 '3[ - '3 
0.500[- '3 
0.667[- '3 
0.8'3 '3[- '3 
1.000[- '3 

~ = 0.'3860 

Figure 2-275. Plot of EQPS in the TB-l for the SC-2, Side Impact, 0° Support Structure 
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Figure 2-276. Plot of von Mises Stress in the TB-1 for
Ithe SC-2, Side Impact, 00 Support Structure

2.12.5.5.8 Run 18 - SC-2 Sample Container, Side Impact, Support Structure 450

The side impact model for each of the larger SC-2 sample containers with 338 g of delta Pu
contents (inner cradle rotated 45 degrees for SC impingement onto sharp cradle edge) is shown
in Figure 2-277. Note that each Pu cylinder is located at the far left side of each SC-2 so that its
net impact velocity with the right side of the T-Ampoule is maximized. The post-impact
deformation is shown in Figure 2-278 and its kinetic energy history in Figure 2-279. The Pu
contents penetrate each of the SC-2 side walls and directly impact the T-Ampoule.

Average stress-triaxiality versus EQPS is shown in Figure 2-280 for the 82 elements extending
beyond the tested Bao-Wierzbicki strain locus. All of these elements are outside the B-W locus,
for a variety of stress triaxialities, although most of the 580,000 T-Ampoule elements are inside
the B-W locus. The Tearing Parameter values for these same 82 elements are shown in Figure
2-281 and all are below the critical Tearing Parameter value of 1.012 for Ti-6A1-4V. These
elements are highlighted in red in Figures 2-282 and 2-283, but note that these elements are still
below the initiation of a ductile tear and thus T-Ampoule integrity is maintained.

Equivalent Plastic Strain (EQPS) in the TB-I vessel is shown in Figures 2-284, 2-285, and 2-286
to be less than 29%, but only in some localized outer contact regions with the redwood overpack.
The EQPS due to internal denting of the upper TB- I is shown in Figure 2-286 to be less than
0.083%, which is essentially elastic. The von Mises stresses (see Figure 2-287) peak at 227 ksi,
above the elevated-temperature minimum yield strength for the TB-I of 141 ksi but more
importantly, through-thickness TB-I stress values are in the less-than- 120 ksi range, which is
below yield.
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2.12.5.5.B Run IB - SC-2 Sample Container, Side Impact, Support Structure 45° 

The side impact model for each of the larger SC-2 sample containers with 338 g of delta Pu 
contents (inner cradle rotated 45 degrees for SC impingement onto sharp cradle edge) is shown 
in Figure 2-277. Note that each Pu cylinder is located at the far left side of each SC-2 so that its 
net impact velocity with the right side of the T-Ampoule is maximized. The post-impact 
deformation is shown in Figure 2-278 and its kinetic energy history in Figure 2-279. The Pu 
contents penetrate each of the SC-2 side walls and directly impact the T-Ampoule. 

Average stress-triaxiality versus EQPS is shown in Figure 2-280 for the 82 elements extending 
beyond the tested Bao-Wierzbicki strain locus. All of these elements are outside the B-W locus, 
for a variety of stress triaxialities, although most of the 580,000 T -Ampoule elements are inside 
the B-W locus. The Tearing Parameter values for these same 82 elements are shown in Figure 
2-281 and all are below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V. These 
elements are highlighted in red in Figures 2-282 and 2-283, but note that these elements are still 
below the initiation of a ductile tear and thus T-Ampoule integrity is maintained. 

Equivalent Plastic Strain (EQPS) in the TB-l vessel is shown in Figures 2-284, 2-285, and 2-286 
to be less than 29%, but only in some localized outer contact regions with the redwood overpack. 
The EQPS due to internal denting of the upper TB-l is shown in Figure 2-286 to be less than 
0.083%, which is essentially elastic. The von Mises stresses (see Figure 2-287) peak at 227 ksi, 
above the elevated-temperature minimum yield strength for the TB-l of 141 ksi but more 
importantly, through-thickness TB-l stress values are in the less-than-120 ksi range, which is 
below yield. 
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Figure 2-277. Finite Element Mesh for the SC-2, Side Impact, 450 Support Structure

Figure 2-278. Finite Element Mesh for the SC-2, Side Impact, 45' Support Structure -
Final Displacement
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Figure 2-277. Finite Element Mesh for the SC-2, Side Impact, 45° Support Structure 

Figure 2-278. Finite Element Mesh for the SC-2, Side Impact, 45° Support Structure -
Final Displacement 
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Figure 2-280. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the 
Experimental Strain Locus for the SC-2, Side Impact, 45° Support Structure 
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Figure 2-281. Graph of Tearing Parameter versus EQPS of Elements Exceeding the
Experimental Strain Locus for the SC-2, Side Impact, 45' Support Structure
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Figure 2-281. Graph of Tearing Parameter versus EQPS of Elements Exceeding the 
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Figure 2-282. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 450 Support Structure
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Figure 2-282. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 45° Support Structure 
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Figure 2-283. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 450 Support Structure
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Figure 2-284. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 45' Support Structure
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Figure 2-283. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 45° Support Structure 
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Figure 2-284. Plot of EQPS in the TB-l for the SC-2, Side Impact, 45° Support Structure • 
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Figure 2-285. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 450 Support Structure

Figure 2-286. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 450 Support Structure

2-223

PAT-l Safety Analysis Report Addendum 

[Of'::'> 

0 .000[-3 
0 . 167[-3 
0.333[- 3 
0.500[- 3 
0.667[- 3 
0 .833[ - 3 
1.000[-3 

~ = 0.2888 

Docket No. 71-0361 Rev. 0, September 2009 

, 

Figure 2-285. Plot of EQPS in the TB-l for the SC-2, Side Impact, 45° Support Structure 
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Figure 2-286. Plot of EQPS in the TB-l for the SC-2, Side Impact, 45° Support Structure 
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Figure 2-287. Plot of von Mises Stress in the TB-1 for the SC-2, Side Impact, 450 Support
Structure

2.12.5.5.9 Run 19 - SC-2 Sample Container, CGOC Impact, Support Structure 0'
The lid end CG-over-corner impact model for each large SC-2 with delta Pu contents (inner
cradle rotated 0 degrees) is shown in Figure 2-288. Each Pu cylinder is located at the rotated
bottom of each SC-2 so that its net impact velocity with the top of the T-Ampoule is maximized.
The post-impact deformation is shown in Figure 2-289 and its kinetic energy history in Figure
2-290. The Pu cylinder contents remain largely confined within the SC-2's, although significant
localized deformation of the SC-2's has occurred.

Equivalent Plastic Strain (EQPS) in the TB-I vessel is shown in Figure 2-291 to peak at about
18.5%, but only in some localized outer contact regions with the redwood overpack. The von
Mises stresses (see Figure 2-292) peak at 145 ksi, just above the elevated-temperature minimum
yield strength for the TB-I of 141 ksi but more importantly, through-thickness TB-I stress
values are in the 47 ksi range, below yield. The time at which the peak value of the von Mises
stress occurs coincides with the peak value of the contact force (summed over the lid area). A
plot of this force as a function of time is shown in Figure 2-293. A maximum contact load of
34,253 lbs is applied to the inner surface of the TB- 1 lid during the impact. No T-Ampoule
elements exceeded the tested B-W strain locus, and the peak Tearing Parameter value (see Table
2-11, run #19) of 0.0953 was below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V.
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Figure 2-287. Plot of von Mises Stress in the TB-l for the SC-2, Side Impact, 45° Support 
Structure 

2.12.5.5.9 Run 19 - SC-2 Sample Container, CGOC Impact, Support Structure 0° 

The lid end CG-over-corner impact model for each large SC-2 with delta Pu contents (inner 
cradle rotated 0 degrees) is shown in Figure 2-288. Each Pu cylinder is located at the rotated 
bottom of each SC-2 so that its net impact velocity with the top of the T-Ampoule is maximized. 
The post-impact deformation is shown in Figure 2-289 and its kinetic energy history in Figure 
2-290. The Pu cylinder contents remain largely confined within the SC-2's, although significant 
localized deformation of the SC-2's has occurred. 

Equivalent Plastic Strain (EQPS) in the TB-l vessel is shown in Figure 2-291 to peak at about 
18.5%, but only in some localized outer contact regions with the redwood overpack. The von 
Mises stresses (see Figure 2-292) peak at 145 ksi, just above the elevated-temperature minimum 
yield strength for the TB-l of 141 ksi but more importantly, through-thickness TB-l stress 
values are in the 47 ksi range, below yield. The time at which the peak value of the von Mises 
stress occurs coincides with the peak value of the contact force (summed over the lid area). A 
plot of this force as a function of time is shown in Figure 2-293. A maximum contact load of 
34,253 lbs is applied to the inner surface of the TB-l lid during the impact. No T -Ampoule 
elements exceeded the tested B-W strain locus, and the peak Tearing Parameter value (see Table 
2-11, run #19) of 0.0953 was below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V. 
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Figure 2-288. Finite Element Mesh for the SC-2, CGOC Impact, 0' Support Structure

Figure 2-289. Finite Element Mesh for the SC-2, CGOC Impact, 0' Support Structure -
Final Displacement
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Figure 2-288. Finite Element Mesh for the SC-2, CGOC Impact, 0° Support Structure 

Figure 2-289. Finite Element Mesh for the SC-2, CGOC Impact, 0° Support Structure -
Final Displacement 
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Figure 2-290. Kinetic Energy Time History for the SC-2, CGOC Impact, 00 Support
Structure

Figure 2-291. Plot of EQPS in the TB-1 for the SC-2, CGOC Impact, 00 Support Structure
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Figure 2-290. Kinetic Energy Time History for the SC-2, CGOC Impact, 0° Support 
Structure 
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Figure 2-291. Plot of EQPS in the TB-l for the SC-2, CGOC Impact, 0° Support Structure 
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Figure 2-292. Plot of von Mises Stress in the TB-1 for the SC-2, CGOC Impact, 0' Support
Structure

Sum of Contact Force in TB- Top for High Speed SC-2 Full Model with
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Figure 2-293. Plot of Contact Forces in the TB-1 for the SC-2, CGOC Impact, 0' Support
Structure
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Structure 
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2.12.5.5.10 Run 20 - SC-2 Sample Container, CGOC Impact, Support Structure 450

The lid end CG-over-corner impact model for each large SC-2 with delta Pu contents (inner
cradle rotated 45 degrees) is shown in Figure 2-294. Each Pu cylinder is located at the rotated
bottom of each SC-2 so that its net impact velocity with the top of the T-Ampoule is maximized.
The post-impact deformation is shown in Figure 2-295 and its kinetic energy history in Figure
2-296. The Pu cylinder contents remain largely confined within each SC-2, although localized
deformation of the SC-2 has occurred.

Equivalent Plastic Strain (EQPS) in the TB-I vessel is shown in Figure 2-297 to peak at about
20%, but only in some localized outer contact regions with the redwood overpack. The von
Mises stresses (see Figure 2-298) peak at 143 ksi, just above the elevated-temperature minimum
yield strength for the TB-I of 141 ksi but more importantly, through-thickness TB-I stress
values are in the 37.5 ksi range, below yield. The time at which the peak value of the von Mises
stress occurs coincides with the peak value of the contact force (summed over the lid area). A
plot of this force as a function of time is shown in Figure 2-299. A maximum contact load of
31,307 lbs is applied to the inner surface of theTB- 1 lid during the impact. No T-Ampoule
elements exceeded the tested B-W strain locus, and the peak Tearing Parameter value (see Table
2-11, run #20) of 0.054 was below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V.

Figure 2-294. Finite Element Mesh for the SC-2, CGOC Impact, 450 Support Structure
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2.12.5.5.10 Run 20 - SC-2 Sample Container, CGOC Impact, Support Structure 45° 

The lid end CG-over-corner impact model for each large SC-2 with delta Pu contents (inner 
cradle rotated 45 degrees) is shown in Figure 2-294. Each Pu cylinder is located at the rotated 
bottom of each SC-2 so that its net impact velocity with the top of the T-Ampoule is maximized. 
The post-impact deformation is shown in Figure 2-295 and its kinetic energy history in Figure 
2-296. The Pu cylinder contents remain largely confined within each SC-2, although localized 
deformation of the SC-2 has occurred. 

Equivalent Plastic Strain (EQPS) in the TB-l vessel is shown in Figure 2-297 to peak at about 
20%, but only in some localized outer contact regions with the redwood overpack. The von 
Mises stresses (see Figure 2-298) peak at 143 ksi, just above the elevated-temperature minimum 
yield strength for the TB-1 of 141 ksi but more importantly, through-thickness TB-1 stress 
values are in the 37.5 ksi range, below yield. The time at which the peak value of the von Mises 
stress occurs coincides with the peak value of the contact force (summed over the lid area). A 
plot of this force as a function of time is shown in Figure 2-299. A maximum contact load of 
31,307 lbs is applied to the inner surface of theTB-l lid during the impact. No T -Ampoule 
elements exceeded the tested B-W strain locus, and the peak Tearing Parameter value (see Table 
2-11, run #20) of 0.054 was below the critical Tearing Parameter value of 1.012 for Ti-6AI-4 V. 

Figure 2-294. Finite Element Mesh for the SC-2, CGOC Impact, 45° Support Structure 
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Figure 2-295. Finite Element Mesh for the SC-2, CGOC Impact, 450 Support Structure -
Final Displacement
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Figure 2-296. Kinetic Energy Time History for the SC-2, CGOC Impact, 45' Support
Structure
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Figure 2-295. Finite Element Mesh for the SC-2, CGOC Impact, 45° Support Structure -
Final Displacement 
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Figure 2-296. Kinetic Energy Time History for the SC-2, CGOC Impact, 45° Support 
Structure 
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Figure 2-297. Plot of EQPS in the TB-1 for the SC-2, CGOC Impact, 450 Support
Structure

Figure 2-298. Plot of von Mises Stress in the TB-1 for the SC-2, CGOC Impact, 450
Support Structure
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Figure 2-297. Plot of EQPS in the TB-l for the SC-2, CGOC Impact, 45° Support 
Structure 
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Figure 2-298. Plot of von Mises Stress in the TB-l for the SC-2, CGOC Impact, 45° 
Support Structure 
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Sum of Contact Force in TB-1 Top for High Speed SC-2 Full Model with
CGOC Impact and Support Structure Rotated 45 Degrees
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Figure 2-299. Plot of Contact Forces in the TB-1 for the SC-2, CGOC Impact, 45' Support
Structure

2.12.5.5.11 Run 21 - SC-I Sample Container, End Impact, Support Structure 0, Be Contents

The top end impact model for each SC-I with a smaller solid cylinder Be composite contents is
shown in Figure 2-300. Note that each Be cylinder is located at the bottom of each SC- I so that
its net impact velocity with the top of the T-Ampoule is maximized. Also note that the
orientation of each Be cylinder is CG-over-corner so its sharp corner is first to impact the SC- 1
and the T-Ampoule. The post-impact deformation is shown in Figure 2-301 and its kinetic
energy history in Figure 2-302. The top SC-I is crushed from the subsequent impacts from the
lower SC-1, and its Be contents do not quite locally penetrate its upper wall, which directly
impacts the T-Ampoule. Note the relatively smaller deformation of the Be cylinders versus the
previous (softer) Pu cylinders.

Equivalent Plastic Strain (EQPS) in the TB-I vessel is shown in Figure 2-303 to be less than 3%,
and only in some localized outer contact regions with the redwood overpack. A very small area
of localized internal denting occurs, with plasticity less than 0.05%. The von Mises stresses (see
Figure 2-304) peak at 143 ksi, just above the elevated-temperature minimum yield strength for
the TB-I of 141 ksi, but more importantly, through-thickness TB-I stress values are in the less-
than-75 ksi range, below yield. No T-Ampoule elements exceeded the tested B-W strain locus,
and the peak Tearing Parameter value (see, Table 2-11 run #21) of 0.0155 was below the critical
Tearing Parameter value of 1.012 for Ti-6AI-4V.
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Figure 2-299. Plot of Contact Forces in the TB-l for the SC-2, CGOC Impact, 45° Support 
Structure 

2.12.5.5.11 Run 21 - SC-1 Sample Container, End Impact, Support Structure 0°, Be Contents 

The top end impact model for each SC-1 with a smaller solid cylinder Be composite contents is 
shown in Figure 2-300. Note that each Be cylinder is located at the bottom of each SC-1 so that 
its net impact velocity with the top of the T-Ampoule is maximized. Also note that the 
orientation of each Be cylinder is CG-over-comer so its sharp corner is first to impact the SC-I 
and the T-Ampoule. The post-impact deformation is shown in Figure 2-301 and its kinetic 
energy history in Figure 2-302. The top SC-l is crushed from the subsequent impacts from the 
lower SC-1, and its Be contents do not quite locally penetrate its upper wall, which directly 
impacts the T-Ampoule. Note the relatively smaller deformation of the Be cylinders versus the 
previous (softer) Pu cylinders. 

Equivalent Plastic Strain (EQPS) in the TB-1 vessel is shown in Figure 2-303 to be less than 3%, 
and only in some localized outer contact regions with the redwood overpack. A very small area 
of localized internal denting occurs, with plasticity less than 0.05%. The von Mises stresses (see 
Figure 2-304) peak at 143 ksi, just above the elevated-temperature minimum yield strength for 
the TB-l of 141 ksi, but more importantly, through-thickness TB-l stress values are in the less­
than-75 ksi range, below yield. No T -Ampoule elements exceeded the tested B-W strain locus, 
and the peak Tearing Parameter value (see, Table 2-11 run #21) of 0.0155 was below the critical 
Tearing Parameter value of 1.012 for Ti-6AI-4V. 
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0

Figure 2-300. Finite Element Mesh for the SC-1, End Impact, 0' Support Structure,
Be Contents

Figure 2-301. Finite Element Mesh for the SC-1, End Impact, 0' Support Structure, Be
Contents - Final Displacement

2-232

PAT-I Safety Analysis Report Addendum Docket No. 71 -0361 Rev. 0, September 2009 

Figure 2-300. Finite Element Mesh for the SC-l, End Impact, 0° Support Structure, 
Be Contents 

Figure 2-301. Finite Element Mesh for the SC-l, End Impact, 0° Support Structure, Be 
Contents - Final Displacement 
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Figure 2-302. Kinetic Energy Time History for the SC-1, End Impact, 0' Support
Structure, Be Contents
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Figure 2-303. Plot of EQPS in the TB-1 for the SC-1, End Impact, 0' Support Structure,
Be Contents
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Figure 2-302. Kinetic Energy Time History for the SC-l, End Impact, 0° Support 
Structure, Be Contents 
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Figure 2-304. Plot of von Mises Stress in the TB-1 for the SC-1, End Impact, 0' Support
Structure, Be Contents

2.12.5.5.12 Run 22 - SC-] Sample Container, Side Impact, Support Structure 00, Be Contents

The side impact model for each SC-1 with a smaller Be composite cylinder contents (inner
cradle rotated 0 degrees) is shown in Figure 2-305. Note that each Be cylinder is located at the
far left side of each SC- so that its net impact velocity with the right side of the T-Ampoule is
maximized. Also note that the orientation of each Be cylinder is CG-over-corner so it sharp
comer is first to impact the SC-1 and the T-Ampoule. The post-impact deformation is shown in
Figure 2-306 and its kinetic energy history in Figure 2-307. Unlike the heavier Pu cylinders, the
lighter Be contents do not penetrate the SC-1 side walls and directly impact the T-Ampoule.

Average stress-triaxiality versus EQPS is shown in Figures 2-308 and 2-309 (zoomed in view)
for the 14 elements extending beyond the tested Bao-Wierzbicki strain locus. All of these
elements are outside the B-W locus, in a region of high stress triaxiality. The Tearing Parameter
values for these same 14 elements are shown in Figure 2-310, and all are below the critical
Tearing Parameter value of 1.0 12 for Ti-6AI-4V. These elements are highlighted in red in
Figures 2-311 and 2-312, but note that these elements are still below the initiation of a ductile
tear and thus T-Ampoule integrity is maintained.

Equivalent Plastic Strain (EQPS) in the TB-I vessel is shown in Figure 2-313 to be less than
37%, but only in some localized outer contact regions with the redwood overpack. The EQPS
due to internal denting of the upper TB-I is less than 0.07%, which is nearly elastic. The von
Mises stresses (see Figure 2-314) peak at 205 ksi, above the elevated-temperature minimum
yield strength for the TB-1 of 141 ksi, but more importantly, through-thickness TB-I stress
values are in the 85 ksi range, below yield. 0
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2.12.5.5.12 Run 22 - SC-J Sample Container, Side Impact, Support Structure 0°, Be Contents 

The side impact model for each SC-l with a smaller Be composite cylinder contents (inner 
cradle rotated 0 degrees) is shown in Figure 2-305. Note that each Be cylinder is located at the 
far left side of each SC-l so that its net impact velocity with the right side of the T -Ampoule is 
maximized. Also note that the orientation of each Be cylinder is CG-over-corner so it sharp 
corner is first to impact the SC-l and the T-Ampoule. The post-impact deformation is shown in 
Figure 2-306 and its kinetic energy history in Figure 2-307. Unlike the heavier Pu cylinders, the 
lighter Be contents do not penetrate the SC-l side walls and directly impact the T -Ampoule. 

Average stress-triaxiality versus EQPS is shown in Figures 2-308 and 2-309 (zoomed in view) 
for the 14 elements extending beyond the tested Bao-Wierzbicki strain locus. All of these 
elements are outside the B-W locus, in a region of high stress triaxiality. The Tearing Parameter 
values for these same 14 elements are shown in Figure 2-310, and all are below the critical 
Tearing Parameter value of 1.012 for Ti-6AI-4 V. These elements are highlighted in red in 
Figures 2-311 and 2-312, but note that these elements are still below the initiation of a ductile 
tear and thus T -Ampoule integrity is maintained. 

Equivalent Plastic Strain (EQPS) in the TB-l vessel is shown in Figure 2-313 to be less than 
37%, but only in some localized outer contact regions with the redwood overpack. The EQPS 
due to internal denting of the upper TB-l is less than 0.07%, which is nearly elastic. The von 
Mises stresses (see Figure 2-314) peak at 205 ksi, above the elevated-temperature minimum 
yield strength for the TB-l of 141 ksi, but more importantly, through-thickness TB-l stress 
values are in the 85 ksi range, below yield. 
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Figure 2-305. Finite Element Mesh for the SC-1, Side Impact, 0' Support Structure, Be
Contents

Figure 2-306. Finite Element Mesh for the SC-1, Side Impact, 00 Support Structure, Be
Contents - Final Displacement
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Figure 2-305. Finite Element Mesh for the SC-l, Side Impact, 0° Support Structure, Be 
Contents 

Figure 2-306. Finite Element Mesh for the SC-l, Side Impact, 0° Support Structure, Be 
Contents - Final Displacement 
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Figure 2-311. Plot of the Elements Exceeding the Experimental Strain Locus for the SC-1,
Side Impact, 0' Support Structure, Be Contents

Figure 2-312. Plot of the Elements Exceeding the Experimental Strain Locus for the SC-1,
Side Impact, 0' Support Structure, Be Contents
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Figure 2-311. Plot of the Elements Exceeding the Experimental Strain Locus for the SC-l, 
Side Impact, 0° Support Structure, Be Contents 

Figure 2-312. Plot of the Elements Exceeding the Experimental Strain Locus for the SC-l, 
Side Impact, 0° Support Structure, Be Contents 
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Figure 2-313. Plot of EQPS in the TB-1 for the SC-1, Side Impact, 0' Support Structure,
Be Contents

(D= ' 2E:
Xi= 205 3E 3

Figure 2-314. Plot of von Mises Stress in the TB-1 for the SC-1, Side Impact, 0' Support
Structure, Be Contents
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2.12.5.5.13 Run 23 - SC-I Sample Container, Side Impact, Support Structure 450, Be
Contents

The side impact model for each SC-I with a smaller Be composite cylinder contents (inner
cradle rotated 45 degrees) is shown in Figure 2-315. Note that each Be cylinder is located at the
far left side of each SC- 1 so that its net impact velocity with the right side of the T-Ampoule is
maximized. Also note that the orientation of each Be cylinder is CG-over-corner so it sharp
corner is first to impact the SC-I and the T-Ampoule. The post-impact deformation is shown in
Figure 2-316 and its kinetic energy history in Figure 2-317. The lighter Be contents do not
penetrate the SC-I side walls and directly impact the T-Ampoule.

Average stress-triaxiality versus EQPS is shown in Figure 2-318 for the 13 elements extending
beyond the tested Bao-Wierzbicki strain locus. All of these elements are outside the B-W locus,
in a region of high stress triaxiality. The Tearing Parameter values for these same 13 elements
are shown in Figure 2-319, and all are below the critical Tearing Parameter value of 1.012 for
Ti-6A1-4V. These elements are highlighted in red in Figures 2-320 and 2-321, but note that these
elements are still below the initiation of a ductile tear and thus T-Ampoule integrity is
maintained.

Equivalent Plastic Strain (EQPS) in the TB-1 vessel is shown in Figure 2-322 to be less than
28%, but only in some localized outer contact regions with the redwood overpack. The EQPS
due to internal denting of the upper TB-I is less than 0.083%, which is nearly elastic. The von
Mises stresses (see Figure 2-323) peak at 206 ksi, above the elevated-temperature minimum
yield strength for the TB-I of 141 ksi, but more importantly, through-thickness TB-I stress
values are in the 75 ksi range, below yield.

Figure 2-315. Finite Element Mesh for the SC-1, Side Impact, 45' Support Structure, Be
Contents

2-240

PAT-1 Safety Analysis Report Addendum Docket No. 71-0361 Rev. 0, September 2009 

2.12.5.5.13 Run 23 - SC-1 Sample Container, Side Impact, Support Structure 45°, Be 
Contents 

The side impact model for each SC-l with a smaller Be composite cylinder contents (inner 
cradle rotated 45 degrees) is shown in Figure 2-315. Note that each Be cylinder is located at the 
far left side of each SC-l so that its net impact velocity with the right side of the T -Ampoule is 
maximized. Also note that the orientation of each Be cylinder is CG-over-corner so it sharp 
corner is first to impact the SC-l and the T -Ampoule. The post-impact deformation is shown in 
Figure 2-316 and its kinetic energy history in Figure 2-317. The lighter Be contents do not 
penetrate the SC-1 side walls and directly impact the T -Ampoule. 

Average stress-triaxiality versus EQPS is shown in Figure 2-318 for the 13 elements extending 
beyond the tested Bao-Wierzbicki strain locus. All of these elements are outside the B-W locus, 
in a region of high stress triaxiality. The Tearing Parameter values for these same 13 elements 
are shown in Figure 2-319, and all are below the critical Tearing Parameter value of 1.012 for 
Ti-6AI-4V. These elements are highlighted in red in Figures 2-320 and 2-321, but note that these 
elements are still below the initiation of a ductile tear and thus T -Ampoule integrity is 
maintained. 

Equivalent Plastic Strain (EQPS) in the TB-l vessel is shown in Figure 2-322 to be less than 
28%, but only in some localized outer contact regions with the redwood overpack. The EQPS 
due to internal denting of the upper TB-l is less than 0.083%, which is nearly elastic. The von 
Mises stresses (see Figure 2-323) peak at 206 ksi, above the elevated-temperature minimum 
yield strength for the TB-1 of 141 ksi, but more importantly, through-thickness TB-1 stress 
values are in the 75 ksi range, below yield. 

Figure 2-315. Finite Element Mesh for the SC-l, Side Impact, 45° Support Structure, Be 
Contents 
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Figure 2-316. Finite Element Mesh for the SC-1, Side Impact, 450 Support Structure, Be
Contents - Final Displacement
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Figure 2-317. Kinetic Energy Time History for the SC-1, Side Impact, 450 Support
Structure, Be Contents
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Figure 2-316. Finite Element Mesh for the SC-l, Side Impact, 45° Support Structure, Be 
Contents - Final Displacement 
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Figure 2-320. Plot of Elements Exceeding the Experimental Strain Locus for the SC-1, Side
Impact, 450 Support Structure, Be Contents

Figure 2-321. Plot of Elements Exceeding the Experimental Strain Locus for the SC-1, Side
Impact, 450 Support Structure, Be Contents

2-243

PAT-I Safety Analysis Report Addendum Docket No. 71-0361 Rev. 0, September 2009 

Figure 2-320. Plot of Elements Exceeding the Experimental Strain Locus for the SC-l, Side 
Impact, 45° Support Structure, Be Contents 

Figure 2-321. Plot of Elements Exceeding the Experimental Strain Locus for the SC-l, Side 
Impact, 45° Support Structure, Be Contents 
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Figure 2-322. Plot of EQPS in the TB-1 for the SC-1, Side Impact, 450 Support Structure,
Be Contents
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Figure 2-323. Plot of von Mises Stress in the TB-1 for the SC-1, Side Impact, 45' Support
Structure, Be Contents 0
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Figure 2-322. Plot ofEQPS in the TB-l for the SC-l, Side Impact, 45° Support Structure, 
Be Contents 
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Figure 2-323. Plot of von Mises Stress in the TB-l for the SC-l, Side Impact, 45° Support 
Structure, Be Contents 

2-244 



PAT-I Safety Analysis Report Addendum Docket No. 71-0361 Rev. 0, September 2009

2.12.5.5.14 Run 24 - SC-I Sample Container, CGOC Impact, Support Structure 00, Be
Contents

The lid end CG-over-corner impact model for each SC-I with Be composite contents (inner
cradle rotated 0 degrees) is shown in Figure 2-324. Each Be cylinder is located at the rotated
bottom of each SC- so that its net impact velocity with the top of the T-Ampoule is maximized.
The post-impact deformation is shown in Figure 2-325 and its kinetic energy history in Figure
2-326. The Be cylinder contents remain largely confined within the SC-I's, although localized
deformation of the SC- I's has occurred.

Equivalent Plastic Strain (EQPS) in the TB-I vessel is shown in Figure 2-327 to peak at about
19%, but only in some localized outer contact regions with the redwood overpack. The von
Mises stresses (see Figure 2-328) peak at 181 ksi, just above the elevated-temperature minimum
yield strength for the TB-I of 141 ksi, but more importantly, through-thickness TB-I stress
values are in the 23 ksi range, below yield. No T-Ampoule elements exceeded the tested B-W
strain locus, and the peak Tearing Parameter value (see Table 2-11, run #24) of 0.0597 was
below the critical Tearing Parameter value of 1.0 12 for Ti-6AI-4V.

Figure 2-324. Finite Element Mesh for the SC-1, CGOC Impact, 00 Support Structure, Be
Contents
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Figure 2-324. Finite Element Mesh for the SC-l, CGOC Impact, 00 Support Structure, Be 
Contents 
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Figure 2-325. Finite Element Mesh for the SC-1, CGOC Impact, 0' Support Structure, Be
Contents - Final Displacement
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Figure 2-326. Kinetic Energy Time History for the SC-1, CGOC Impact, 0' Support
Structure, Be Contents
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Figure 2-325. Finite Element Mesh for the SC-l, CGOC Impact, 0° Support Structure, Be 
Contents - Final Displacement 
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Figure 2-326. Kinetic Energy Time History for the SC-l, CGOC Impact, 0° Support 
Structure, Be Contents 
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Figure 2-327. Plot of EQPS in the TB-1 for the SC-1, CGOC Impact, 0' Support Structure,
Be Contents

Figure 2-328. Plot of von Mises Stress in the TB-1 for the SC-1, CGOC Impact, 0' Support
Structure, Be Contents
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Figure 2-327. Plot of EQPS in the TB-l for the SC-l, CGOC Impact, 0° Support Structure, 
Be Contents 

Figure 2-328. Plot of von Mises Stress in the TB-l for the SC-l, CGOC Impact, 0° Support 
Structure, Be Contents 
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2.12.5.5.15 Run 25 - SC-] Sample Container, CGOC Impact, Support Structure 450, Be
Contents

The lid end CG-over-comer impact model for each SC-I with Be composite contents (inner
cradle rotated 45 degrees) is shown in Figure 2-329. Each Be cylinder is located at the rotated
bottom of each SC- 1 so that its net impact velocity with the top of the T-Ampoule is maximized.
The post-impact deformation is shown in Figure 2-330 and its kinetic energy history in Figure
2-331. The Be cylinder contents remain largely confined within the SC-i 's, although localized
deformation of the SC- 's has occurred.

Equivalent Plastic Strain (EQPS) in the TB-i vessel is shown in Figures 2-332 and 2-333 to peak
at about 21.3%, but only in some localized outer contact regions with the redwood overpack.
The von Mises stresses (see Figure 2-334) peak at 143.3 ksi, just above the elevated-temperature
minimum yield strength for the TB-1 of 141 ksi, but more importantly, through-thickness TB-1
stress values are in the 23.3 ksi range, below yield. No T-Ampoule elements exceeded the tested
B-W strain locus, and the peak Tearing Parameter value (see Table 2-11, run #25) of 0.1197 was
below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V.

Figure 2-329. Finite Element Mesh for the SC-1, CGOC Impact, 450 Support Structure, Be
Contents
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2.12.5.5.15 Run 25 - SC-l Sample Container, CGOC Impact, Support Structure 45°, Be 
Contents 
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Figure 2-329. Finite Element Mesh for the SC-l, CGOC Impact, 45° Support Structure, Be 
Contents 
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Figure 2-330. Finite Element Mesh for the SC-1, CGOC Impact, 450 Support Structure, Be
Contents - Final Displacement
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Figure 2-331. Kinetic Energy Time History for the SC-1, CGOC Impact, 45' Support
Structure, Be Contents
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Figure 2-330. Finite Element Mesh for the SC-1, CGOC Impact, 45° Support Structure, Be 
Contents - Final Displacement 
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Figure 2-331. Kinetic Energy Time History for the SC-1, CGOC Impact, 45° Support 
Structure, Be Contents 
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0

Figure 2-332. Plot of EQPS in the TB-1 for the SC-1, CGOC Impact, 450 Support
Structure, Be Contents

Figure 2-333. Plot of EQPS in the TB-1 for the SC-1, CGOC Impact, 45' Support
Structure, Be Contents
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Figure 2-332. Plot of EQPS in the TB-l for the SC-l, CGOC Impact, 45° Support 
Structure, Be Contents 
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Figure 2-333. Plot of EQPS in the TB-l for the SC-l, CGOC Impact, 45° Support 
Structure, Be Contents 
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Figure 2-334. Plot of von Mises Stress in the TB-1 for the SC-1, CGOC Impact, 450
Support Structure, Be Contents

2.12.5.5.16 Run 26 - SC-2 Sample Container, Side Impact, Support Structure 450, Friction
0.4

Two additional analyses were performed to determine the effect of variation in dynamic friction
coefficient. The baseline values for all the analyses are 0.30 for dynamic friction and 0.36 for
static between each SC and the T-Ampoule, as well as between the Pu cylinders and the
T-Ampoule (since they penetrate the SC-2). This analysis was performed increasing the baseline
dynamic friction coefficient by 33% to 0.40 (static is the same value). The side impact model for
each larger SC-2 with 338 g of delta Pu contents (inner cradle rotated 45 degrees for SC
impingement onto sharp cradle edge) was chosen for this parameter study since it produced some
element with a relatively high Tearing Parameter value using baseline friction coefficients.

The side impact model with higher friction is shown in Figure 2-335. Note that each Pu cylinder
is located at the far left side of each SC-2 so that its net impact velocity with the right side of the
T-Ampoule is maximized. The post-impact deformation is shown in Figure 2-336 and its kinetic
energy history in Figure 2-337. The Pu contents penetrate each of the SC-2 side walls and
directly impact the T-Ampoule.

Average stress-triaxiality versus EQPS is shown in Figure 2-338 for the 73 elements extending
beyond the tested Bao-Wierzbicki strain locus (similar to the 82 elements for the 0.3 friction
case). All of these elements are outside the B-W locus, for a variety of stress triaxialities,
although most of the 580,000 T-Ampoule elements are inside the B-W 1 locus. The Tearing
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Figure 2-334. Plot of von Mises Stress in the TB-l for the SC-l, CGOC Impact, 45° 
Support Structure, Be Contents 
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Parameter values for these same 73 elements are shown in Figure 2-339, and all are below the
critical Tearing Parameter value of 1.012 for Ti-6AI-4V. These elements are highlighted in red
in Figures 2-340, 2-341, and 2-342, but note that these elements are still below the initiation of a
ductile tear and thus T-Ampoule integrity is maintained. The higher friction coefficients
produced only slightly fewer elements exceeding the B-W strain locus, and essentially the same
peak Tearing Parameter values (-0.5), indicating lower T-Ampoule "deformation" dependence
on the friction coefficient at higher friction values.

Equivalent Plastic Strain (EQPS) in the TB-1 vessel is shown in Figures 2-343 and 2-344 to be less
than 29%, but only in some localized outer contact regions with the redwood overpack. The EQPS
due to internal denting of the upper SC- I is shown in Figure 2-344 to be less than 0.067%, which is
essentially elastic. The von Mises stresses (see Figure 2-345) peak at 226 ksi, above the elevated-
temperature minimum yield strength for the TB-1 of 141 ksi, but more importantly, through-
thickness TB- 1 stress values are in the less-than- 120 ksi range, which is below yield. Stresses and
strains in the TB- 1 for the higher-friction case appear to be similar to the baseline case.

Figure 2-335. Finite Element Mesh for the SC-2, Side Impact, 450 Support Structure,
Friction 0.4
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Figure 2-336. Finite Element Mesh for the SC-2, Side Impact, 450 Support Structure,
Friction 0.4 - Final Displacement
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Figure 2-337. Kinetic Energy Time History for the SC-2, Side Impact, 450 Support
Structure, Friction 0.4
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Figure 2-336. Finite Element Mesh for the SC-2, Side Impact, 45° Support Structure, 
Friction 0.4 - Final Displacement 
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Figure 2-337. Kinetic Energy Time History for the SC-2, Side Impact, 45° Support 
Structure, Friction 0.4 
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Figure 2-338. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus for the SC-2, Side Impact, 45' Support Structure, Friction 0.4
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Figure 2-339. Graph of Tearing Parameter versus EQPS of Elements Exceeding the
Experimental Strain Locus for the SC-2, Side Impact, 45' Support Structure, Friction 0.4
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Figure 2-338. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the 
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Figure 2-339. Graph of Tearing Parameter versus EQPS of Elements Exceeding the 
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Figure 2-340. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 450 Support Structure, Friction 0.4

Figure 2-341. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 450 Support Structure, Friction 0.4
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Figure 2-340. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 45° Support Structure, Friction 0.4 

Figure 2-341. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 45° Support Structure, Friction 0.4 

2-255 



PAT-I Safety Analysis Report Addendum Docket No. 71-0361 Rev. 0, September 2009

Figure 2-342. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 450 Support Structure, Friction 0.4

Figure 2-343. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 45' Support Structure,
Friction 0.4
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Figure 2-342. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 45° Support Structure, Friction 0.4 
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Figure 2-343. Plot of EQPS in the TB-l for the SC-2, Side Impact, 45° Support Structure, 
Friction 0.4 
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Figure 2-344. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 450 Support Structure,
Friction 0.4

Figure 2-345. Plot of von Mises Stress in the TB-1 for the SC-2, Side Impact, 45' Support
Structure, Friction 0.4
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Figure 2-344. Plot ofEQPS in the TB-l for the SC-2, Side Impact, 45° Support Structure, 
Friction 0.4 

Figure 2-345. Plot of von Mises Stress in the TB-l for the SC-2, Side Impact, 45° Support 
Structure, Friction 0.4 
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2.12.5.5.17 Run 27 - SC-2 Sample Container, Side Impact, Support Structure 450, Friction
0.2

The second of two additional analyses was also performed to determine the effect of variation in
dynamic friction coefficient. The baseline values for all the analyses are 0.30 for dynamic
friction and 0.36 for static between each SC and the T-Ampoule, as well as between the Pu
cylinders and the T-Ampoule (since they penetrate the SC-2). This analysis was performed
decreasing the baseline dynamic friction coefficient by 33% to 0.20 (static is the same value).
The side impact model for the larger SC-2's each with 338 g of delta Pu contents (inner cradle
rotated 45 degrees for SC impingement onto sharp cradle edge) was chosen for this parameter
study since it produced some elements with a relatively high Tearing Parameter value using
baseline friction coefficients.

The side impact model with lower friction is shown in Figure 2-346. Note that each Pu cylinder
is located at the far left side of each SC-2 so that its net impact velocity with the right side of the
T-Ampoule is maximized. The post-impact deformation is shown in Figure 2-347 and its kinetic
energy history in Figure 2-348. The Pu contents penetrate each of the SC-2 side walls and
directly impact the T-Ampoule.

Average stress-triaxiality versus EQPS is shown in Figure 2-349 for the 49 elements extending
beyond the tested Bao-Wierzbicki strain locus (almost half of that for the 0.3 friction case). All
of these elements are outside the B-W locus, for a variety of stress triaxialities, although most of
the 580,000 T-Ampoule elements are inside the B-W locus. The Tearing Parameter values for
these same 49 elements are shown in Figure 2-350, and all are below the critical Tearing
Parameter value of 1.012 for Ti-6A1-4V. These elements are highlighted in red in Figures 2-351
and 2-352, but note that these elements are still below the initiation of a ductile tear and thus
T-Ampoule integrity is maintained. Fewer T-Ampoule elements extended beyond the B-W locus
with lower friction, and the Tearing Parameter values were significantly lower (-0.1 vs. -0.5,
peak), so reducing friction generally decreases the traction loading and deformation in the T-
Ampoule. Although the zero-friction case was not included here because it is not realistic, there
were zero T-Ampoule elements exceeding the tested strain locus, indicating a high T-Ampoule
"deformation" dependence on the friction coefficient at lower friction values.

Equivalent Plastic Strain (EQPS) in the TB-I vessel is shown in Figures 2-353 and 2-354 to be
less than 20.2%, but only in some localized outer contact regions with the redwood overpack.
The EQPS due to internal denting of the upper SC-I is shown in Figure 2-354 to be less than
0.0833%, which is nearly elastic. The von Mises stresses (see Figure 2-355) peak at 225 ksi,
above the elevated-temperature minimum yield strength for the TB-I of 141 ksi, but more
importantly, through-thickness TB-1 stress values are in the less-than-120 ksi range, which is
below yield. Stresses and strains in the TB-1 appear relatively similar to the baseline and higher-
friction analyses. From this lower-friction analysis and the higher-friction analysis, there does
not appear to be a strong TB-I stress or T-Ampoule deformation dependency on friction, at least
in the nominal plus/minus 33% range.
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Figure 2-346. Finite Element Mesh for the SC-2, Side Impact, 450 Support Structure,
Friction 0.2

Figure 2-347. Finite Element Mesh for the SC-2, Side Impact, 450 Support Structure,
Friction 0.2 - Final Displacement

2-259

• 

PAT -1 Safety Analysis Report Addendum Docket No. 71-0361 Rev. 0, September 2009 

Figure 2-346. Finite Element Mesh for the SC-2, Side Impact, 45° Support Structure, 
Friction 0.2 

Figure 2-347. Finite Element Mesh for the SC-2, Side Impact, 45° Support Structure, 
Friction 0.2 - Final Displacement 
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Figure 2-348. Kinetic Energy Time History for the SC-2, Side Impact, 450 Support
Structure, Friction 0.2
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Figure 2-351. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 450 Support Structure, Friction 0.2
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Figure 2-351. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 45° Support Structure, Friction 0.2 
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Figure 2-352. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side
Impact, 450 Support Structure, Friction 0.2
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Figure 2-353. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 450 Support Structure,
Friction 0.2

2-262

PAT-I Safety Analysis Report Addendum Docket No. 71-0361 Rev. 0, September 2009 

Figure 2-352. Plot of Elements Exceeding the Experimental Strain Locus for the SC-2, Side 
Impact, 45° Support Structure, Friction 0.2 
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Figure 2-353. Plot of EQPS in the TB-l for the SC-2, Side Impact, 45° Support Structure, 
Friction 0.2 
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Figure 2-354. Plot of EQPS in the TB-1 for the SC-2, Side Impact, 450 Support Structure,
Friction 0.2

Figure 2-355. Plot of von Mises Stress in the TB-1 for the SC-2, Side Impact, 45' Support
Structure, Friction 0.2
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Figure 2-354. Plot of EQPS in the TB-l for the SC-2, Side Impact, 45° Support Structure, 
Friction 0.2 
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2.12.5.5.18 Summary and Conclusion (for High Velocity Impact Analyses)

Although plastic deformation is produced in the T-Ampoule body during the high-speed aircraft
accident condition (10 CFR 71.74), using the strain based fracture model developed by Bao and
Wierzbicki 5 along with data derived from experimental impact tests, these strains were found not
to pose a threat to the integrity of the T-Ampoule body. In addition, stresses in the TB- I remain
virtually elastic and do not threaten the structural integrity of this vessel.

Analyses presented in the high velocity impact section have demonstrated that the PAT-I package
maintains its structural integrity under regulatory 422 ft/sec impacts. Bolt loads, as shown in
Figure 2-356 comparing the sum of redwood compression and bolt preload against the under-lid
forces from impacting solid metal contents, are minimal and thus lid closure is maintained.
Through-thickness stresses in the primary containment vessel, the TB-1, are shown to be below
yield values for the S 13800 high strength stainless steel material (see Section 2.12.4.9). Only
localized minor "denting" occurs in the TB-1, and it would be invisible to the naked eye. And
deformations in the T-Ampoule eutectic barrier are shown to be below levels that could initiate a
ductile tear, and are largely within the tested locus of stress-triaxiality and plastic strain that
precludes failure. Many of the elements with the highest Tearing Parameter values are plotted in
stress-triaxiality versus EQPS space in Figure 2-357, demonstrating how close they are to the
tested locus, which is not a failure boundary: it is a tested locus of non-failure.

All 27 of the high velocity impact analysis are summarized in Table 2-19, which lists the
T-Ampoule contents, overall model and contents orientations, as well as the maximum Tearing
Parameter value for all T-Ampoule elements in that particular run or analysis number. The
lowest factor of safety against merely initiating a ductile tear occurs for a single element in run
number 3 with a maximum Tearing Parameter value of 0.6177 (compared to a critical Tearing
Parameter value of 1.012 for Ti-6A1-4V, so Factor of Safety = 1.012/0.6177 = 1.64). This factor
of safety pertains to the integrity of the eutectic barrier T-Ampoule, NOT the TB- I containment
boundary, which is has been shown in previous certification tests and the current analyses to
fully maintain its integrity (through-thickness stresses below yield), as well.

The numerous additional conservatisms associated with all of these impact analyses should
provide additional confidence that containment (and eutectic barrier integrity) would be
maintained, even under severe aircraft accident conditions. Additional conservatisms include:
neglecting the tantalum foil packing material which would perform some small load spreading
and energy absorbing function; neglecting the rolled lid of the outer package skin in aircraft
impacts; always assuming the content location and orientation most damaging to the T-Ampoule,
e.g., "strongest" plutonium metal hollow cylinder dimensions to resist buckling; most dense,
compact, and sharp shape for the delta Pu and Be composite cylinders; delta Pu contents have
higher density of alpha Pu; sharpest orientation for the strong Be cylinders, etc. Also, the
material properties for these contents are conservatively assumed to have infinite plasticity, when
in fact the alpha Pu is very brittle and the Be has rather limited ductility. The Be cylinders were
conservatively assumed to have delta Pu density, thus maximizing their impact velocity (due to
smaller size). These conservative assumptions maximize the loading and damage potential to the
T-Ampoule (as well as TB-1), yet it retains structural integrity as a eutectic barrier.
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tested locus, which is not a failure boundary: it is a tested locus of non-failure.

All 27 of the high velocity impact analysis are summarized in Table 2-19, which lists the
T-Ampoule contents, overall model and contents orientations, as well as the maximum Tearing
Parameter value for all T-Ampoule elements in that particular run or analysis number. The
lowest factor of safety against merely initiating a ductile tear occurs for a single element in run
number 3 with a maximum Tearing Parameter value of 0.6177 (compared to a critical Tearing
Parameter value of 1.012 for Ti-6A1-4V, so Factor of Safety = 1.012/0.6177 = 1.64). This factor
of safety pertains to the integrity of the eutectic barrier T-Ampoule, NOT the TB- I containment
boundary, which is has been shown in previous certification tests and the current analyses to
fully maintain its integrity (through-thickness stresses below yield), as well.

The numerous additional conservatisms associated with all of these impact analyses should
provide additional confidence that containment (and eutectic barrier integrity) would be
maintained, even under severe aircraft accident conditions. Additional conservatisms include:
neglecting the tantalum foil packing material which would perform some small load spreading
and energy absorbing function; neglecting the rolled lid of the outer package skin in aircraft
impacts; always assuming the content location and orientation most damaging to the T-Ampoule,
e.g., "strongest" plutonium metal hollow cylinder dimensions to resist buckling; most dense,
compact, and sharp shape for the delta Pu and Be composite cylinders; delta Pu contents have
higher density of alpha Pu; sharpest orientation for the strong Be cylinders, etc. Also, the
material properties for these contents are conservatively assumed to have infinite plasticity, when
in fact the alpha Pu is very brittle and the Be has rather limited ductility. The Be cylinders were
conservatively assumed to have delta Pu density, thus maximizing their impact velocity (due to
smaller size). These conservative assumptions maximize the loading and damage potential to the
T-Ampoule (as well as TB-1), yet it retains structural integrity as a eutectic barrier.
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2.12.5.5.18 Summary and Conclusion (jor High Velocity 1mpact Analyses) 

Although plastic deformation is produced in the T-Ampoule body during the high-speed aircraft 
accident condition (10 CFR 71.74), using the strain based fracture model developed by Bao and 
Wierzbicki5 along with data derived from experimental impact tests, these strains were found not 
to pose a threat to the integrity of the T -Ampoule body. In addition, stresses in the TB-l remain 
virtually elastic and do not threaten the structural integrity of this vessel. 

Analyses presented in the high velocity impact section have demonstrated that the PAT -1 package 
maintains its structural integrity underregulatory 422 ftlsec impacts. Bolt loads, as shown in 
Figure 2-356 comparing the sum of redwood compression and bolt preload against the under-lid 
forces from impacting solid metal contents, are minimal and thus lid closure is maintained. 
Through-thickness stresses in the primary containment vessel, the TB-1, are shown to be below 
yield values for the S 13800 high strength stainless steel material (see Section 2.12.4.9). Only 
localized minor "denting" occurs in the TB-1, and it would be invisible to the naked eye. And 
deformations in the T -Ampoule eutectic barrier are shown to be below levels that could initiate a 
ductile tear, and are largely within the tested locus of stress-triaxiality and plastic strain that 
precludes failure. Many of the elements with the highest Tearing Parameter values are plotted in 
stress-triaxiality versus EQPS space in Figure 2-357, demonstrating how close they are to the 
tested locus, which is not a failure boundary: it is a tested locus of non-failure. 

All 27 of the high velocity impact anal ysis are summarized in Table 2-19, which lists the 
T-Ampoule contents, overall model and contents orientations, as well as the maximum Tearing 
Parameter value for all T -Ampoule elements in that particular run or analysis number. The 
lowest factor of safety against merely initiating a ductile tear occurs for a single element in run 
number 3 with a maximum Tearing Parameter value of 0.6177 (compared to a critical Tearing 
Parameter value of 1.012 for Ti-6AI-4V, so Factor of Safety = 1.012/0.6177 = 1.64). This factor 
of safety pertains to the integrity of the eutectic barrier T -Ampoule, NOT the TB-l containment 
boundary, which is has been shown in previous certification tests and the current analyses to 
fully maintain its integrity (through-thickness stresses below yield), as well. 

The numerous additional conservatisms associated with all of these impact analyses should 
provide additional confidence that containment (and eutectic barrier integrity) would be 
maintained, even under severe aircraft accident conditions. Additional conservatisms include: 
neglecting the tantalum foil packing material which would perform some small load spreading 
and energy absorbing function; neglecting the rolled lid of the outer package skin in aircraft 
impacts; always assuming the content location and orientation most damaging to the T-Ampoule, 
e.g., "strongest" plutonium metal hollow cylinder dimensions to resist buckling; most dense, 
compact, and sharp shape for the delta Pu and Be composite cylinders; delta Pu contents have 
higher density of alpha Pu; sharpest orientation for the strong Be cylinders, etc. Also, the 
material properties for these contents are conservatively assumed to have infinite plasticity, when 
in fact the alpha Pu is very brittle and the Be has rather limited ductility. The Be cylinders were 
conservatively assumed to have delta Pu density, thus maximizing their impact velocity (due to 
smaller size). These conservative assumptions maximize the loading and damage potential to the 
T-Ampoule (as well as TB-l), yet it retains structural integrity as a eutectic barrier. 
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Table 2-19. High Velocity (Aircraft) Impact Analyses Peak Tearing Parameter Values

Run Component Model Orientation Maximum Tearing
No. Parameter (T-Ampoule)

1 831 g Plutonium Bottom position, top impact 0.0528
Metal Hollow

Cylinder

2 831 g Plutonium Bottom position (angled), top impact 0.2115
Metal Hollow

Cylinder

3 831 g Plutonium Bottom position (angled), CGOC impact 0.6177
Metal Hollow

Cylinder

4 831 g Plutonium Far side position, side impact 0.2896
Metal Hollow

Cylinder

5 831 g Plutonium Far side position (angled), side impact 0.2389
Metal Hollow

Cylinder

6 731 g Plutonium Bottom position, top impact 0.1507
Metal Hollow

Cylinder

7 731 g Plutonium Bottom position (angled), top impact 0.2831
Metal Hollow

Cylinder

8 731 g Plutonium Bottom position (angled), CGOC impact 0.3967
Metal Hollow

Cylinder

9 731 g Plutonium Far side position, side impact 0.4896
Metal Hollow

Cylinder

10 731 g Plutonium Far side position (angled), side impact 0.2842
Metal Hollow

Cylinder

11 SC-I - Pu Bottom position, support structure 00, top 0.0319
impact

12 SC-1 - Pu Far side position, support structure 0.2417
0°,side impact

13 SC-1 - Pu Far side position, support structure 450, 0.1958
side impact

14 SC-I - Pu Bottom position, support structure 0', 0.0935
CGOC impact

15 SC-1 - Pu Bottom position, support structure 450, 0.3061
CGOC impact
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Table 2-19. High Velocity (Aircraft) Impact Analyses Peak Tearing Parameter Values 

Run 
Component Model Orientation 

Maximum Tearing 
No. Parameter (T-Ampoule) 

1 831 g Plutonium Bottom position, top impact 0.0528 
Metal Hollow 

Cylinder 

2 831 g Plutonium Bottom position (angled), top impact 0.2115 
Metal Hollow 

Cylinder 

3 831 g Plutonium Bottom position (angled), CGOC impact 0.6177 
Metal Hollow 

Cylinder 

4 831 g Plutonium Far side position, side impact 0.2896 
Metal Hollow 

Cylinder 

5 831 g Plutonium Far side position (angled), side impact 0.2389 
Metal Hollow 

Cylinder 

6 731 g Plutonium Bottom position, top impact 0.1507 
Metal Hollow 

Cylinder 

7 731 g Plutonium Bottom position (angled), top impact 0.2831 
Metal Hollow 

Cylinder 

8 731 g Plutonium Bottom position (angled), CGOC impact 0.3967 
Metal Hollow 

Cylinder 

9 731 g Plutonium Far side position, side impact 0.4896 
Metal Hollow 

Cylinder 

10 731 g Plutonium Far side position (angled), side impact 0.2842 
Metal Hollow 

Cylinder 

II SC-I - Pu Bottom position, support structure 0°, top 0.0319 
impact 

12 SC-I - Pu Far side position, support structure 0.2417 
O°,side impact 

13 SC-I - Pu Far side position, support structure 45°, 0.1958 
side impact 

14 SC-I - Pu Bottom position, support structure 0°, 0.0935 
CGOC impact 

15 SC-I - Pu Bottom position, support structure 45°, 0.3061 
CGOC impact 
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Run Component Model Orientation Maximum Tearing
No. Parameter (T-Ampoule)

16 SC-2 - Pu Bottom position, support structure 0', top 0.0132
impact

17 SC-2 - Pu Far side position, support structure 0.4788
00,side impact

18 SC-2 - Pu Far side position, support structure 450, 0.5137
side impact

19 SC-2 - Pu Bottom position, support structure 00, 0.0953
CGOC impact

20 SC-2 - Pu Bottom position, support structure 45', 0.0540
CGOC impact

21 SC-I - Be Bottom position, angled Be, support 0.0155
structure 0', top impact

22 SC-1 - Be Far side position, angled Be, support 0.2075
structure 00, side impact

23 SC-I - Be Far side position, angled Be, support 0.4970
structure 450, side impact

24 SC-I -Be Bottom position, angled Be, support 0.0597
structure 0', CGOC impact

25 SC-I - Be Bottom position, angled Be, support 0.1197
structure 450, CGOC impact

26 SC-2 - Pu Far side position, support structure 450, 0.4888
side impact, friction 0.4

27 SC-2 - Pu Far side position, support structure 450, 0.4673
side impact, friction 0.2
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Run 
Component Model Orientation 

Maximum Tearing 
No. Parameter (T-Ampoule) 
16 SC-2 - Pu Bottom position, support structure 0°, top 0.0132 

impact 

17 SC-2 - Pu Far side position, support structure 0.4788 
O°,side impact 

18 SC-2 - Pu Far side position, support structure 45°, 0.5137 
side impact 

19 SC-2 - Pu Bottom position, support structure 0°, 0.0953 
CGOC impact 

20 SC-2 - Pu Bottom position, support structure 45°, 0.0540 
CGOC impact 

21 SC-1 - Be Bottom position, angled Be, support 0.0155 
structure 0°, top impact 

22 SC-l - Be Far side position, angled Be, support 0.2075 
structure 0°, side impact 

23 SC-I - Be Far side position, angled Be, support 0.4970 
structure 45°, side impact 

24 SC-J - Be Bottom position, angled Be, support 0.0597 
structure 0°, CGOC impact 

25 SC-I - Be Bottom position, angled Be, support 0.1197 
structure 45°, CGOC impact 

26 SC-2 - Pu Far side position, support structure 45°, 0.4888 
side impact, friction 0.4 

27 SC-2 - Pu Far side position, support structure 45°, 0.4673 
side impact, friction 0.2 
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2.12.5.6 HA C - Dynamic Crush Analysis Results

In addition to the high-speed aircraft accident analyses, twenty analyses were performed to
explore the HAC dynamic crush event described in 10 CFR 71.73. A description of these
analyses is provided in Table 2-20. In all of these models, the 1100-lb plate was given an initial
velocity of 528 in/s (which corresponds to a 30 ft drop), and was positioned within 0.12 in
(3 mm) of the overpack. The overpack and contents had an initial velocity of 0, and gravity was
included to ensure proper contact between the contents and the T-Ampoule. The material
properties used for each analysis are the same as for the high-speed aircraft impacts and are
provided in Section 2.12.4.

The performance of the T-Ampoule for each run was assessed using the same criteria as in the
aircraft impact analyses. The maximum Tearing Parameter results for each run are listed in
Table 2-20. None of the runs resulted in Tearing Parameters exceeding the maximum allowable
Tearing Parameter, termed critical Tearing Parameter (TPcfit = 1.012 for Ti-6A1-4V, based on
tensile tests to failure). The relatively large 0.44 and 0.22 Tearing Parameter values in run
numbers 2 and 3 came from single elements in each analysis associated with a minor localized
contact issue, and would otherwise be much smaller or zero (similar to the other analyses listed).

In addition, the stresses in the TB-I were compared against HAC Reg. Guide 7.6 and ASME
B&PV Code stress allowables. None of the runs resulted in through-thickness containment
vessel stresses exceeding the ASME limit of 106.6 ksi, shown in Table 2-4. More
conservatively, even using the NCT stress intensity limit of 50.8 ksi (see Table 2-4) or 50.0 from
Section II, Part D of the ASME Boiler and Pressure Vessel Code for the S 13800 material, none
of the runs resulted in through-thickness TB-I stresses exceeding these values in the dynamic
crush environment.8 Nonmandatory Appendix F of the ASME BPVC9 lists stress intensity limits
for inelastic analysis as the greater of 0.7Su =106.6 ksi or Sy + 0. 3 3 (Su-Sy) =144.8 ksi for the
general primary membrane stress intensity, not to exceed 0.9S,= 137.1 ksi at any location.
Conservatively, this limits the peak stress in the dynamic crush events to 137.1 ksi, which is
never even approached in any of the HAC analyses, except at the irrelevant regions (due to
minor contact modeling artifacts) on some very localized outer surfaces of the TB-1. For
example, in Run 3, Section 2.12.5.6.3 for the SC-2 side impact (45-degree rotated) dynamic
crush analysis, the through-thickness stress intensity (Tresca stress) is less than 23.5 ksi (Figure
2-382), and the peak stress intensity (excepting the highly localized 226.2 ksi peak due to a
contact modeling artifact) was 70.5 ksi where the TB-I closure diameter necks down to the main
body smaller diameter. This 70.5 ksi peak stress intensity is below the Nonmandatory Appendix
F peak stress limit of 137.1 ksi.
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2.12.5.6 HAC - Dynamic Crush Analysis Results 

In addition to the high-speed aircraft accident analyses, twenty analyses were performed to 
explore the HAC dynamic crush event described in 10 CFR 71.73. A description of these 
analyses is provided in Table 2-20. In all of these models, the 1100-lb plate was given an initial 
velocity of 528 inls (which corresponds to a 30 ft drop), and was positioned within 0.12 in 
(3 mm) of the overpack. The overpack and contents had an initial velocity of 0, and gravity was 
included to ensure proper contact between the contents and the T -Ampoule. The material 
properties used for each analysis are the same as for the high-speed aircraft impacts and are 
provided in Section 2.12.4. 

The performance of the T-Ampoule for each run was assessed using the same criteria as in the 
aircraft impact analyses. The maximum Tearing Parameter results for each run are listed in 
Table 2-20. None of the runs resulted in Tearing Parameters exceeding the maximum allowable 
Tearing Parameter, termed critical Tearing Parameter (TPerit = 1.012 for Ti-6AI-4V, based on 
tensile tests to failure). The relatively large 0.44 and 0.22 Tearing Parameter values in run 
numbers 2 and 3 came from single elements in each analysis associated with a minor localized 
contact issue, and would otherwise be much smaller or zero (similar to the other analyses listed). 

In addition, the stresses in the TB-1 were compared against HAC Reg. Guide 7.6 and ASME 
B&PV Code stress allowables. None of the runs resulted in through-thickness containment 
vessel stresses exceeding the ASME limit of 106.6 ksi, shown in Table 2-4. More 
conservatively, even using the NCT stress intensity limit of 50.8 ksi (see Table 2-4) or 50.0 from 
Section II, Part D of the ASME Boiler and Pressure Vessel Code for the S 13800 material, none 
of the runs resulted in through-thickness TB-l stresses exceeding these values in the dynamic 
crush environment.s Nonmandatory Appendix F of the ASME BPVC9 lists stress intensity limits 
for inelastic analysis as the greater of 0.7Su =106.6 ksi or Sy + 0.33(Su-Sy) =144.8 ksi for the 
general primary membrane stress intensity, not to exceed 0.9Su=137.1 ksi at any location. 
Conservatively, this limits the peak stress in the dynamic crush events to 137.1 ksi, which is 
never even approached in any of the HAC analyses, except at the irrelevant regions (due to 
minor contact modeling artifacts) on some very localized outer surfaces of the TB-l. For 
example, in Run 3, Section 2.12.5.6.3 for the SC-2 side impact (45-degree rotated) dynamic 
crush analysis, the through-thickness stress intensity (Tresca stress) is less than 23.5 ksi (Figure 
2-382), and the peak stress intensity (excepting the highly localized 226.2 ksi peak due to a 
contact modeling artifact) was 70.5 ksi where the TB-l closure diameter necks down to the main 
body smaller diameter. This 70.5 ksi peak stress intensity is below the Nonmandatory Appendix 
F peak stress limit of 137.1 ksi. 
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Table 2-20. Summary of Hypothetical Accident Condition (HAC) Dynamic Crush
Analyses (20), Components, and Orientations

Run MaximumNo. Component Submodel Orientation Tearing
Parameter

1 2 SC-2 Sample Containers, delta Pu Lid end impact 0

2 2 SC-2 Sample Containers, delta Pu Side impact 0.4464

3 2 SC-2 Sample Containers, delta Pu Side impact, 45-degree-rotated 0.2288

4 2 SC-2 Sample Containers, delta Pu CGOC impact 2.78e-3

5 2 SC-2 Sample Containers, delta Pu CGOC impact, 45-degree-rotated 0

6 3 SC-I Sample Containers, delta Pu Lid end impact 0

7 3 SC-I Sample Containers, delta Pu Side impact 3.03e-5

8 3 SC-I Sample Containers, delta Pu Side impact, 45-degree-rotated 1.6e-2

9 3 SC-I Sample Containers, delta Pu CGOC impact 0

10 3 SC-I Sample Containers, delta Pu CGOC impact, 45-degree-rotated 0

11 831 g Plutonium Metal Hollow Lid end impact 0
Cylinder, alpha Pu

12 831 g Plutonium Metal Hollow Side impact 2.94e-6
Cylinder, alpha Pu

13 831 g Plutonium Metal Hollow Lid end impact, angled cylinder 0
Cylinder, alpha Pu

14 831 g Plutonium Metal Hollow Side impact, angled cylinder 2.01e-2
Cylinder, alpha Pu

15 831 g Plutonium Metal Hollow CGOC impact, angled cylinder 0
Cylinder, alpha Pu

16 731 g Plutonium Metal Hollow Lid end impact 0
Cylinder, alpha Pu

17 731 g Plutonium Metal Hollow Side impact 0
Cylinder, alpha Pu

18 731 g Plutonium Metal Hollow Lid end impact, angled cylinder 0
Cylinder, alpha Pu

19 731 g Plutonium Metal Hollow Side impact, angled cylinder 5.09e-2
Cylinder, alpha Pu

20 731 g Plutonium Metal Hollow CGOC impact, angled cylinder 0
Cylinder, alpha Pu
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Table 2-20. Summary of Hypothetical Accident Condition (HAC) Dynamic Crush 
Analyses (20), Components, and Orientations 

Run 
Maximum 

No. 
Component Submodel Orientation Tearing 

Parameter 

I 2 SC-2 Sample Containers, delta Pu Lid end impact 0 

2 2 SC-2 Sample Containers, delta Pu Side impact 0.4464 

3 2 SC-2 Sample Containers, delta Pu Side impact, 45-degree-rotated 0.2288 

4 2 SC-2 Sample Containers, delta Pu CGOC impact 2.78e-3 

5 2 SC-2 Sample Containers, delta Pu CGOC impact, 45-degree-rotated 0 

6 3 SC-I Sample Containers, delta Pu Lid end impact 0 

7 3 SC-I Sample Containers, delta Pu Side impact 3.03e-5 

8 3 SC-I Sample Containers, delta Pu Side impact, 45-degree-rotated 1.6e-2 

9 3 SC-I Sample Containers, delta Pu CGOC impact 0 

10 3 SC-I Sample Containers, delta Pu CGOC impact, 45-degree-rotated 0 

II 831 g Plutonium Metal Hollow Lid end impact 0 
Cylinder, alpha Pu 

12 831 g Plutonium Metal Hollow Side impact 2.94e-6 
Cylinder, alpha Pu 

13 831 g Plutonium Metal Hollow Lid end impact, angled cylinder 0 
Cylinder, alpha Pu 

14 831 g Plutonium Metal Hollow Side impact, angled cylinder 2.0Ie-2 
Cylinder, alpha Pu 

15 831 g Plutonium Metal Hollow CGOC impact, angled cylinder 0 
Cylinder, alpha Pu 

16 731 g Plutonium Metal Hollow Lid end impact 0 
Cylinder, alpha Pu 

17 731 g Plutonium Metal Hollow Side impact 0 
Cylinder, alpha Pu 

18 731 g Plutonium Metal Hollow Lid end impact, angled cylinder 0 
Cylinder, alpha Pu 

19 731 g Plutonium Metal Hollow Side impact, angled cylinder 5.0ge-2 
Cylinder, alpha Pu 

20 731 g Plutonium Metal Hollow CGOC impact, angled cylinder 0 
Cylinder, alpha Pu 
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2.12.5.6.1 HAC - Run 1, SC-2, End Impact
The dynamic crush end impact HAC analysis for the 2 SC-2 sample container run uses the same
model as that used for the 4-ft-drop, but the flange is added to both ends so that it available to
deform where impacted by the plate and the rigid surface upon which it is resting. The finite
element mesh and initial position of the model is shown in Figure 2-358. The Pu contents and
support structure within the T-Ampoule are positioned at the bottom of the model because it was
considered to be at rest.

The post-impact deformation is shown in Figure 2-359 and its kinetic energy history in Figure
2-360. The flanges on the overpack deform, and the contents bounce due to the impact of the
plate, but there is no plastic deformation in the T-Ampoule or the TB- 1.

Figures 2-361 and 2-362 are plots of the Tresca stresses within the TB-1. The maximum Tresca
stress (stress intensity) in the TB- 1 is 137.9 ksi due again to a contact modeling artifact), but there
are no through thickness stresses exceeding the limit of 106.6 ksi, which can be seen clearly in
Figure 2-362. Figure 2-363 is a plot of the Tresca stresses at the time when all of the kinetic
energy of the plate has been transferred to the package, just as the plate begins to rebound. The
maximum through thickness stress at this time is below 16.7 ksi, below the allowable through
thickness stress of 106.6 ksi, as seen in the figure.

As in the high velocity impact analyses, there is a minor modeling artifact occurring due to slight
contact over closure between the redwood and the ring of TB- 1 top surface elements which is
causing this very slight non-realistic localized plasticity.

Figure 2-358. Finite Element Mesh for HAC Run 1, SC-2, End Impact
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2.12.5.6.1 HAC - Run I, SC-2, End Impact 

The dynamic crush end impact HAC analysis for the 2 SC-2 sample container run uses the same 
model as that used for the 4-ft-drop, but the flange is added to both ends so that it available to 
deform where impacted by the plate and the rigid surface upon which it is resting. The finite 
element mesh and initial position of the model is shown in Figure 2-358. The Pu contents and 
support structure within the T -Ampoule are positioned at the bottom of the model because it was 
considered to be at rest. 

The post-impact deformation is shown in Figure 2-359 and its kinetic energy history in Figure 
2-360. The flanges on the overpack deform, and the contents bounce due to the impact of the 
plate, but there is no plastic deformation in the T -Ampoule or the TB-l. 

Figures 2-361 and 2-362 are plots of the Tresca stresses within the TB-l. The maximum Tresca 
stress (stress intensity) in the TB-l is 137.9 ksi due again to a contact modeling artifact), but there 
are no through thickness stresses exceeding the limit of 106.6 ksi, which can be seen clearly in 
Figure 2-362. Figure 2-363 is a plot of the Tresca stresses at the time when all of the kinetic 
energy of the plate has been transferred to the package, just as the plate begins to rebound. The 
maximum through thickness stress at this time is below 16.7 ksi, below the allowable through 
thickness stress of 106.6 ksi, as seen in the figure. 

As in the high velocity impact analyses, there is a minor modeling artifact occurring due to slight 
contact over closure between the redwood and the ring of TB-l top surface elements which is 
causing this very slight non-realistic localized plasticity. 

Figure 2-358. Finite Element Mesh for HAC Run 1, SC-2, End Impact 
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Figure 2-359. Finite Element Mesh for HAC Run 1, SC-2, End Impact - Final
Displacement
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Figure 2-360. Kinetic Energy Time History for HAC Run 1, SC-2, End Impact
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Figure 2-359. Finite Element Mesh for HAC Run 1, SC-2, End Impact - Final 
Displacement 
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Figure 2-360. Kinetic Energy Time History for HAC Run 1, SC-2, End Impact 
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Figure 2-361. Tresca Stress in TB-1 for HAC Run 1, SC-2, End Impact
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Figure 2-362. Tresca Stress of TB-1 for HAC Run 1, SC-2, End Impact
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Figure 2-361. Tresca Stress in TB-I for HAC Run I, SC-2, End Impact 
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Figure 2-362. Tresca Stress of TB-I for HAC Run I, SC-2, End Impact 
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Figure 2-363. Tresca Stress of TB-1 for HAC Run 1, SC-2, End Impact when Plate
Velocity Reaches Zero

2.12.5.6.2 HAC- Run 2, SC-2, Side Impact, Support Structure 0'
The dynamic crush end impact HAC analysis for the 2 SC-2 sample container runs uses the same
model as that used for the 4-ft-drop, but the flange is added to both ends so that it available to
deform where impacted by the plate and the rigid surface upon which it is resting. The finite
element mesh and initial position of the model are shown in Figure 2-364. The Pu contents and
support structure within the T-Ampoule are positioned at the bottom of the model because it was
considered to be at rest. The plate was positioned between the flanges to be most damaging to
the TB-I and contents by preventing the flanges from absorbing energy and slowing down the
plate before it hits the overpack.

The post-impact deformation is shown in Figure 2-365 and its kinetic energy history in Figure
2-366. The flanges on the overpack deform, and the contents bounce due to the impact of the
plate. Average stress-triaxiality versus EQPS is shown in Figures 2-367 and 2-368 for the one
element extending beyond the tested Bao-Wierzbicki strain locus. This element is at high stress
triaxiality and low EQPS. The Tearing Parameter values for this same element are shown in
Figure 2-369, and are below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V. This
element is highlighted in red Figure 2-370, but note that this element is below the initiation of a
ductile tear, thus T-Ampoule integrity is maintained.

Peak EQPS in the TB-I vessel is shown in Figure 2-371 to be 28.3 le-3, and is localized in the
outer contact regions with the redwood overpack. Figure 2-372 is a plot of the Tresca stresses
within the TB-i. The maximum Tresca stress in the TB-I is 172.3 ksi, but there are no through
thickness stresses exceeding the limit of 106.6 ksi, which can be seen clearly in the figure.
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Figure 2-363. Tresca Stress of TB-l for HAC Run 1, SC-2, End Impact when Plate 
Velocity Reaches Zero 

2.12.5.6.2 HAC- Run 2, SC-2, Side Impact, Support Structure 0° 

The dynamic crush end impact HAC analysis for the 2 SC-2 sample container runs uses the same 
model as that used for the 4-ft-drop, but the flange is added to both ends so that it available to 
deform where impacted by the plate and the rigid surface upon which it is resting. The finite 
element mesh and initial position of the model are shown in Figure 2-364. The Pu contents and 
support structure within the T-Ampoule are positioned at the bottom of the model because it was 
considered to be at rest. The plate was positioned between the flanges to be most damaging to 
the TB-l and contents by preventing the flanges from absorbing energy and slowing down the 
plate before it hits the overpack. 

The post-impact deformation is shown in Figure 2-365 and its kinetic energy history in Figure 
2-366. The flanges on the overpack deform, and the contents bounce due to the impact of the 
plate. Average stress-triaxiality versus EQPS is shown in Figures 2-367 and 2-368 for the one 
element extending beyond the tested Bao-Wierzbicki strain locus. This element is at high stress 
triaxiality and low EQPS. The Tearing Parameter values for this same element are shown in 
Figure 2-369, and are below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V. This 
element is highlighted in red Figure 2-370, but note that this element is below the initiation of a 
ductile tear, thus T -Ampoule integrity is maintained. 

Peak EQPS in the TB-l vessel is shown in Figure 2-371 to be 28.31e-3, and is localized in the 
outer contact regions with the redwood overpack. Figure 2-372 is a plot of the Tresca stresses 
within the TB-l . The maximum Tresca stress in the TB-l is 172.3 ksi, but there are no through 
thickness stresses exceeding the limit of 106.6 ksi, which can be seen clearly in the figure. 

2-273 



PAT-I Safety Analysis Report Addendum Docket No. 71-0361 Rev. 0, September 2009

Figure 2-373 is a plot of the Tresca stresses at the time when all of the kinetic energy of the plate
has been transferred to the package, just as the plate begins to rebound. The maximum through
thickness stress at this time is below 26.7 ksi, below the allowable through thickness stress of
106.6 ksi, as seen in the figure.

I I I I I I I I I

Figure 2-364. Finite Element Mesh for HAC Run 2, SC-2, Side Impact, Support
Structure 0'

Figure 2-365. Finite Element Mesh for HAC Run 2, SC-2, Side Impact, Support Structure
0' - Final Displacement

0
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Figure 2-373 is a plot of the Tresca stresses at the time when all of the kinetic energy of the plate 
has been transferred to the package, just as the plate begins to rebound. The maximum through 
thickness stress at this time is below 26.7 ksi, below the allowable through thickness stress of 
106.6 ksi, as seen in the figure. 

Figure 2-364. Finite Element Mesh for HAC Run 2, SC-2, Side Impact, Support 
Structure 0° 

Figure 2-365. Finite Element Mesh for HAC Run 2, SC-2, Side Impact, Support Structure 
0° - Final Displacement 
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Figure 2-366. Kinetic Energy Time History for HAC Run 2, SC-2, Side Impact, Support
Structure 0'
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Comparison Graph Avg. Stress Triaxiality
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Figure 2-368. Graph of Average Stress Triaxiality versus EQPS for Element Exceeding
Experimental Strain Locus (Zoomed In) for HAC Run 2, SC-2, Side Impact, Support

Structure 0'
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Figure 2-370. Plot of Element Exceeding Experimental Strain Locus for HAC Run 2, SC-2,
Side Impact, Support Structure 0'
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Figure 2-371. Graph of EQPS in the TB-1 for HAC Run 2, SC-2, Side Impact, Support
Structure 0'
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Figure 2-370. Plot of Element Exceeding Experimental Strain Locus for HAC Run 2, SC-2, 
Side Impact, Support Structure 0° 
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Figure 2-371. Graph ofEQPS in the TB-! for HAC Run 2, SC-2, Side Impact, Support 
Structure 0° 
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Figure 2-372. Plot of Tresca Stress in the TB-1 for HAC Run 2, SC-2, Side Impact,
Support Structure 0'

Figure 2-373. Plot of Tresca Stress in the TB-1 for HAC Run 2, SC-2, Side Impact,
Support Structure 0' when Plate Velocity Reaches Zero
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Figure 2-372. Plot of Tresca Stress in the TB-l for HAC Run 2, SC-2, Side Impact, 
Support Structure 0° 

Figure 2-373. Plot of Tresca Stress in the TB-l for HAC Run 2, SC-2, Side Impact, 
Support Structure 0° when Plate Velocity Reaches Zero 
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2.12.5.6.3 HAC- Run 3, SC-2, Side Impact, Support Structure 450
The dynamic crush side impact HAC analysis run for the 2 SC-2 sample container with its
support structure rotated 45' uses the same model as that used for the 4-ft-drop, but the flange is
added to both ends so that it available to deform where impacted by the plate and the rigid
surface upon which it is resting. The finite element mesh and initial position of the model are
shown in Figure 2-374. The Pu contents and support structure within the T-Ampoule are
positioned at the bottom of the model because it was considered to be at rest at the time of
impact. The plate was positioned between the flanges to be most damaging to the TB-1 and
contents by preventing the flanges from absorbing energy and slowing down the plate before it
hits the overpack.

The post-impact deformation is shown in Figure 2-375 and its kinetic energy history in Figure
2-376. The flanges on the overpack deform, and the contents bounce due to the impact of the
plate. Average stress-triaxiality versus EQPS is shown in Figure 2-377 for the one element
extending beyond the tested Bao-Wierzbicki strain locus. This element is at high stress
triaxiality and low EQPS. The Tearing Parameter value for this same element is shown in Figure
2-378 and is below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V. This element is
highlighted in red Figure 2-379, but note that this element is below the initiation of a ductile tear,
thus T-Ampoule integrity is maintained.

Peak EQPS in the TB-1 vessel is shown in Figure 2-380 to be 0.21, and is localized in the outer
contact regions with the redwood overpack. Figures 2-381 and 2-382 are plots of the Tresca
stresses within the TB-i. The maximum Tresca stress in the TB- 1 is 226.7 ksi, but there are no
through thickness stresses exceeding the limit of 106.6 ksi, which can be seen clearly in the
figures. Figure 2-383 is a plot of the Tresca stresses at the time when all of the kinetic energy of
the plate has been transferred to the package, just as the plate begins to rebound. The maximum
through thickness stress at this time is below 16.7 ksi, below the allowable through thickness
stress of 106.6 ksi, as seen in the figure.

i I I I I I I i i

Figure 2-374. Finite Element Mesh for HAC Run 3,
SC-2, Side Impact, Support Structure 450
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2.12.5.6.3 HAC- Run 3, SC-2, Side Impact, Support Structure 45° 

The dynamic crush side impact HAC analysis run for the 2 SC-2 sample container with its 
support structure rotated 45° uses the same model as that used for the 4-ft-drop, but the flange is 
added to both ends so that it available to deform where impacted by the plate and the rigid 
surface upon which it is resting. The finite element mesh and initial position of the model are 
shown in Figure 2-374. The Pu contents and support structure within the T-Ampoule are 
positioned at the bottom of the model because it was considered to be at rest at the time of 
impact. The plate was positioned between the flanges to be most damaging to the TB-1 and 
contents by preventing the flanges from absorbing energy and slowing down the plate before it 
hits the overpack. 

The post-impact deformation is shown in Figure 2-375 and its kinetic energy history in Figure 
2-376. The flanges on the overpack deform, and the contents bounce due to the impact of the 
plate. Average stress-triaxiality versus EQPS is shown in Figure 2-377 for the one element 
extending beyond the tested Bao-Wierzbicki strain locus. This element is at high stress 
triaxiality and low EQPS. The Tearing Parameter value for this same element is shown in Figure 
2-378 and is below the critical Tearing Parameter value of 1.012 for Ti-6AI-4V. This element is 
highlighted in red Figure 2-379, but note that this element is below the initiation of a ductile tear, 
thus T -Ampoule integrity is maintained. 

Peak EQPS in the TB-1 vessel is shown in Figure 2-380 to be 0.21, and is localized in the outer 
contact regions with the redwood overpack. Figures 2-381 and 2-382 are plots of the Tresca 
stresses within the TB-l. The maximum Tresca stress in the TB-l is 226.7 ksi, but there are no 
through thickness stresses exceeding the limit of 106.6 ksi, which can be seen clearly in the 
figures. Figure 2-383 is a plot of the Tresca stresses at the time when all of the kinetic energy of 
the plate has been transferred to the package, just as the plate begins to rebound. The maximum 
through thickness stress at this time is below 16.7 ksi, below the allowable through thickness 
stress of 106.6 ksi, as seen in the figure. 

Figure 2-374. Finite Element Mesh for HAC Run 3, 
SC-2, Side Impact, Support Structure 45° 
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Figure 2-375. Finite Element Mesh for HAC Run 3, SC-2, Side Impact, Support Structure
450 - Final Displacement
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Figure 2-376. Kinetic Energy Time History for HAC Run 3, SC-2, Side Impact, Support
Structure 450
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Figure 2-375. Finite Element Mesh for HAC Run 3, SC-2, Side Impact, Support Structure 
45° - Final Displacement 
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Figure 2-376. Kinetic Energy Time History for HAC Run 3, SC-2, Side Impact, Support 
Structure 45° 
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Comparison Graph Avg. Stress Triaxiality
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Figure 2-377. Graph of Average Stress Triaxiality versus EQPS of Element Exceeding
Experimental Strain Locus for HAC Run 3, SC-2, Side Impact, Support Structure 450
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Figure 2-378. Graph of Tearing Parameter versus EQPS of Element Exceeding
Experimental Strain Locus (Zoomed In) for HAC Run 3, SC-2, Side Impact, Support

Structure 450

2-281

PAT- l Safety Analys is Report Addendum Docket No. 71-0361 Rev. 0, September 2009 

Comparison Graph Avg. Stress Triaxiality 
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Figure 2-377. Graph of Average Stress Triaxiality versus EQPS of Element Exceeding 
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Figure 2-379. Plot of Element Exceeding Experimental Strain Locus for HAC Run 3, SC-2,
Side Impact, Support Structure 450
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Figure 2-380. Plot of EQPS in the TB-1 for HAC Run 3, SC-2, Side Impact, Support
Structure 45'
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Figure 2-379. Plot of Element Exceeding Experimental Strain Locus for HAC Run 3, SC-2, 
Side Impact, Support Structure 45° 
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Figure 2-380. Plot ofEQPS in the TB-l for HAC Run 3, SC-2, Side Impact, Support 
Structure 45° 
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Figure 2-381. Plot of Tresca Stress in the TB-1 for HAC Run 3, SC-2, Side Impact,
Support Structure 450

Figure 2-382. Plot of Tresca Stress in the TB-1 for HAC Run 3, SC-2, Side Impact,
Support Structure 45'
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Figure 2-381. Plot of Tresca Stress in the TB-l for HAC Run 3, SC-2, Side Impact, 
Support Structure 45° 
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Figure 2-382. Plot of Tresca Stress in the TB-l for HAC Run 3, SC-2, Side Impact, 
Support Structure 45° 
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Figure 2-383. Plot of Tresca Stress in the TB-1 for HAC Run 3, SC-2, Side Impact,
Support Structure 450 when Plate Velocity Reaches Zero

2.12.5.6.4 HAC- Run 4, SC-2, CGOC Impact, Support Structure 0'
The dynamic crush CGOC impact HAC analysis for the 2 SC-2 sample container run uses the
same overpack model as those used in HAC runs 1 through 3. The finite element mesh and initial
position of the model are shown in Figure 2-384. The Pu contents and support structure within the
T-Ampoule are positioned at the bottom of the model because it was considered to be at rest.

The post-impact deformation is shown in Figure 2-385 and the resulting kinetic energy history is
shown in Figure 2-386. The kinetic energy does not drop completely to zero because the plate is
still vibrating and internal contents are still in motion. The plutonium cylinders have bounced off
of the top and bottom surface of the sample containers, and the plate is now rebounding slowly
with the package, ensuring that the highest containment vessel and contents loadings have
occurred.

There were no elements that extended beyond the tested Bao-Wierzbicki strain locus. The
maximum Tearing Parameter value for this analysis was 2.78e-3, which is below the critical
Tearing Parameter value of 1.012 for Ti-6AI-4V, thus T-Ampoule integrity is maintained.

Peak EQPS in the TB-1 vessel is shown in Figure 2-387 to be 1.548e-3, and is localized in the
outer contact regions with the redwood overpack. Figures 2-388 and 2-389 are plots of the
Tresca stresses within the TB-1. The maximum Tresca stress in the TB-1 is 159.1 ksi, but there
are no through thickness stresses exceeding the limit of 106.6 ksi, which can be seen clearly in
the figures. Figure 2-389 is a plot of the Tresca stresses at the time when all of the kinetic
energy of the plate has been transferred to the package, just as the plate begins to rebound. The
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Figure 2-383. Plot of Tresca Stress in the TB-l for HAC Run 3, SC-2, Side Impact, 
Support Structure 45° when Plate Velocity Reaches Zero 

2.12.5.6.4 HAC- Run 4, SC-2, CGOC Impact, Support Structure 0° 

The dynamic crush CGOC impact HAC analysis for the 2 SC-2 sample container run uses the 
same overpack model as those used in HAC runs 1 through 3. The finite element mesh and initial 
position of the model are shown in Figure 2-384. The Pu contents and support structure within the 
T -Ampoule are positioned at the bottom of the model because it was considered to be at rest. 

The post-impact deformation is shown in Figure 2-385 and the resulting kinetic energy history is 
shown in Figure 2-386. The kinetic energy does not drop completely to zero because the plate is 
still vibrating and internal contents are still in motion. The plutonium cylinders have bounced off 
of the top and bottom surface of the sample containers, and the plate is now rebounding slowly 
with the package, ensuring that the highest containment vessel and contents loadings have 
occurred. 

There were no elements that extended beyond the tested Bao-Wierzbicki strain locus. The 
maximum Tearing Parameter value for this analysis was 2.78e-3, which is below the critical 
Tearing Parameter value of 1.012 for Ti-6AI-4V, thus T-Ampoule integrity is maintained. 

Peak EQPS in the TB-l vessel is shown in Figure 2-387 to be 1.548e-3, and is localized in the 
outer contact regions with the redwood overpack. Figures 2-388 and 2-389 are plots of the 
Tresca stresses within the TB-1. The maximum Tresca stress in the TB-l is 159.1 ksi, but there 
are no through thickness stresses exceeding the limit of 106.6 ksi, which can be seen clearly in 
the figures. Figure 2-389 is a plot of the Tresca stresses at the time when all of the kinetic 
energy of the plate has been transferred to the package, just as the plate begins to rebound. The 
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maximum through thickness stress at this time is below 8.33 ksi, below the allowable through
thickness stress of 106.6 ksi, as seen in the figure.

Figure 2-384. Finite Element Mesh for HAC Run 4, SC-2, CGOC Impact, Support
Structure 0'

ý-= I -

Figure 2-385. Finite Element Mesh for HAC Run 4, SC-2, CGOC Impact, Support
Structure 0', Final Displacement
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maximum through thickness stress at this time is below 8.33 ksi, below the allowable through 
thickness stress of 106.6 ksi, as seen in the figure. 

Figure 2-384. Finite Element Mesh for HAC Run 4, SC-2, CGOC Impact, Support 
Structure 0° 

Figure 2-385. Finite Element Mesh for HAC Run 4, SC-2, CGOC Impact, Support 
Structure 0°, Final Displacement 
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Figure 2-386. Kinetic Energy Time History for HAC Run 4, SC-2, CGOC Impact, Support
Structure 0'

Figure 2-387. Plot of EQPS in TB-1 for HAC Run 4, SC-2, CGOC Impact, Support
Structure 0'
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Figure 2-386. Kinetic Energy Time History for HAC Run 4, SC-2, CGOC Impact, Support 
Structure 0° 

[ OFS 

0 . 000[ - 1 

1
0.275[-1 
0 . 550[-1 
0.825[ - 1 
1.100[ - 1 
1.175[-1 
1.650[-1 

34i; J.5~8[-1 

Figure 2-387. Plot of EQPS in TB-l for HAC Run 4, SC-2, CGOC Impact, Support 
Structure 0° 
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Figure 2-388. Plot of Tresca Stress in TB-1 for HAC Run 4, SC-2, CGOC Impact, Support
Structure 0'
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Figure 2-389. Plot of Tresca Stress in the TB-1 for HAC Run 4, SC-2, CGOC Impact,
Support Structure 0' when Plate Velocity Reaches Zero
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Figure 2-388. Plot of Tresca Stress in TB-l for HAC Run 4, SC-2, CGOC Impact, Support 
Structure 0° 
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Figure 2-389. Plot of Tresca Stress in the TB-l for HAC Run 4, SC-2, CGOC Impact, 
Support Structure 0° when Plate Velocity Reaches Zero 
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2.12.5.6.5 HAC- Run 5, SC-2, CGOC Impact, Support Structure 450
The dynamic crush CGOC impact HAC analysis for the 2 SC-2 sample container run uses the
same overpack model as those used in HAC runs 1 through 4. The finite element mesh and
initial position of the model are shown in Figure 2-390. The Pu contents and support structure
within the T-Ampoule are positioned at the bottom of the model because it was considered to be
at rest.

The post-impact deformation is shown in Figure 2-391 and its kinetic energy history in Figure
2-392. The flanges on the overpack deform, and the contents bounce due to the impact of the
plate. The kinetic energy does not drop completely to zero because the plate is still vibrating and
internal contents are still in motion. The plutonium cylinders have bounced off of the top and
bottom surface of the sample containers, and the plate is now rebounding slowly with the
package, ensuring that the highest containment vessel and contents loadings have occurred.

There was zero EQPS in the T-Ampoule and the TB-1, and the maximum Tearing Parameter was
0. Figure 2-393 is a plot of the Tresca stresses within the TB- 1. The maximum Tresca stress in
the TB-1 is 157.0 ksi, but there are no through thickness stresses exceeding the limit of 106.6 ksi,
which can be seen clearly in the figure. Figure 2-393 is a plot of the Tresca stresses at the time
when all of the kinetic energy of the plate has been transferred to the package, just as the plate
begins to rebound. The maximum through thickness stress at this time is below 16.7 ksi, below
the allowable through thickness stress of 106.6 ksi, as seen in the figure.

Figure 2-390. Finite Element Mesh for HAC Run 5, SC-2, CGOC Impact, Support
Structure 450
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2.12.5.6.5 HAC- Run 5, SC-2, CGOC Impact, Support Structure 45° 

The dynamic crush CGOC impact HAC analysis for the 2 SC-2 sample container run uses the 
same overpack model as those used in HAC runs 1 through 4. The finite element mesh and 
initial position of the model are shown in Figure 2-390. The Pu contents and support structure 
within the T -Ampoule are positioned at the bottom of the model because it was considered to be 
at rest. 

The post-impact deformation is shown in Figure 2-391 and its kinetic energy history in Figure 
2-392. The flanges on the overpack deform, and the contents bounce due to the impact of the 
plate. The kinetic energy does not drop completely to zero because the plate is still vibrating and 
internal contents are still in motion. The plutonium cylinders have bounced off of the top and 
bottom surface of the sample containers, and the plate is now rebounding slowly with the 
package, ensuring that the highest containment vessel and contents loadings have occurred. 

There was zero EQPS in the T-Ampoule and the TB-l, and the maximum Tearing Parameter was 
O. Figure 2-393 is a plot of the Tresca stresses within the TB-l. The maximum Tresca stress in 
the TB-l is 157.0 ksi, but there are no through thickness stresses exceeding the limit of 106.6 ksi, 
which can be seen clearly in the figure. Figure 2-393 is a plot of the Tresca stresses at the time 
when all of the kinetic energy of the plate has been transferred to the package, just as the plate 
begins to rebound. The maximum through thickness stress at this time is below 16.7 ksi, below 
the allowable through thickness stress of 106.6 ksi, as seen in the figure. 

Figure 2-390. Finite Element Mesh for HAC Run 5, SC-2, CGOC Impact, Support 
Structure 45° 
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