Enclosure 2

Report of the Construction Activities and Air Impacts from the Proposed Unit 3 at Calvert Cliffs Nuclear Power Plant, dated August 2008 Prepared for: UniStar Nuclear Energy, LLC and UniStar Nuclear Operating Services, LLC

Report of the Construction Activities and Air Impacts from the Proposed Unit 3 at Calvert Cliffs Nuclear Power Plant

ENSR Corporation August 2008 Document No.: 04189-025-0016

ENSR AECOM

Prepared for: UniStar Nuclear Energy, LLC and UniStar Nuclear Operating Services, LLC

Report of the Construction Activities and Air Impacts from the Proposed Unit 3 at Calvert Cliffs Nuclear Power Plant

Prepared By: Olga Kostrova

Reviewed By: Robert J. Paine

ENSR Corporation August 2008 Document No.: 04189-025-0016

ENSR

Contents

- -

-

1.0	Intro	luction 1-1						
	1.1	Purpose of the Report						
	1.2	Contents of the Report 1-1						
2.0	Env	onmental Effects of Site Preparation and Construction 2-1						
	2.1 2.2	Estimated Air Emissions During Construction2-12.1.1Vehicle Travel2-42.1.2Material Transfer2-42.1.3Site Preparation2-52.1.4Wind Erosion2-52.1.5Concrete Batch Plant2-62.1.6Combustion Equipment2-62.1.7Source Location2-7Air Pollution Control Measures2-10						
3.0	Dis	rsion Modeling Analysis						
	3.1	Overview						
	3.1 3.2	Dverview 3-1 Model Selection Criteria 3-1 3.2.1 Dispersion Environment 3-1 3.2.2 Terrain Considerations 3-1						
	3.13.23.3	Dverview 3-1 Model Selection Criteria 3-1 3.2.1 Dispersion Environment 3-1 3.2.2 Terrain Considerations 3-1 Representative Meteorological Data 3-2						
	3.13.23.33.4	Dverview 3-1 Model Selection Criteria 3-1 3.2.1 Dispersion Environment 3-1 3.2.2 Terrain Considerations 3-1 Representative Meteorological Data 3-2 Dispersion Model Selection and Application 3-5 3.4.1 Terrain and Receptor Data Processing with AERMAP 3-5 3.4.2 Meteorological Data Processing with AERMET 3-7						
	 3.1 3.2 3.3 3.4 3.5 	Dverview 3-1 Model Selection Criteria 3-1 3.2.1 Dispersion Environment 3-1 3.2.2 Terrain Considerations 3-1 Representative Meteorological Data 3-2 Dispersion Model Selection and Application 3-5 3.4.1 Terrain and Receptor Data Processing with AERMAP 3-5 3.4.2 Meteorological Data Processing with AERMET 3-7 Modeling Approach 3-11 3.5.1 PM _{2.5} NAAQS Compliance Analysis 3-11						
	 3.1 3.2 3.3 3.4 3.5 3.6 	Diverview 3-1 Model Selection Criteria 3-1 3.2.1 Dispersion Environment 3-1 3.2.2 Terrain Considerations 3-1 Representative Meteorological Data 3-2 Dispersion Model Selection and Application 3-5 3.4.1 Terrain and Receptor Data Processing with AERMAP 3-5 3.4.2 Meteorological Data Processing with AERMET 3-7 Modeling Approach 3-11 3.5.1 PM _{2.5} NAAQS Compliance Analysis 3-11 Background Air Quality 3-11						
4.0	 3.1 3.2 3.3 3.4 3.5 3.6 Mod 	Dispersion Criteria 3-1 Model Selection Criteria 3-1 B.2.1 Dispersion Environment 3-1 B.2.2 Terrain Considerations 3-1 B.2.2 Terrain Considerations 3-1 Representative Meteorological Data 3-2 Dispersion Model Selection and Application 3-5 B.4.1 Terrain and Receptor Data Processing with AERMAP 3-5 B.4.2 Meteorological Data Processing with AERMET 3-7 Modeling Approach 3-11 3-11 B.5.1 PM _{2.5} NAAQS Compliance Analysis 3-11 Background Air Quality 3-11 Iing Results for the Unit 3 Construction Emissions 4-1						

List of Appendices

Appendix A Construction Emissions

Appendix B Construction Emissions Calculations

ENSR

List of Tables

Table 2-1	Construction Activity Data	2-3
Table 2-2	Criteria Pollutant Emissions Summary	
Table 3-1	AERSURFACE Bowen Ratio Condition Designations	3-9
Table 3-2	Ambient Monitoring Background Concentrations	3-12
Table 4-1	PM ₁₀ Modeling Results of Unit 3 Construction Emission Sources	4-1
Table 4-2	SO ₂ Modeling Results of Unit 3 Construction Emission Sources	4-2
Table 4-3	CO Modeling Results of Unit 3 Construction Emission Sources	
Table 4-4	NOx Modeling Results of Unit 3 Construction Emission Sources	4-2

List of Figures

Figure 1-1:	CCNPP and Unit 3 Location	1-2
Figure 2-1	Location of Sources Associated with the Construction of CCNPP Unit 3	2-8
Figure 3-1	On-site Meteorological Tower Wind Rose, 33-ft Level	3-3
Figure 3-2	On-site Meteorological Tower Wind Rose, 197-ft Level	3-4
Figure 3-3	AERMOD Receptors	3-6

1.0 Introduction

UniStar Nuclear Energy, LLC (UNE) and UniStar Nuclear Operating Services, LLC (UNO) (Co-Applicants) are proposing to construct and operate a new nuclear power unit on the existing Calvert Cliffs Nuclear Power Plant (CCNPP) site. The new unit will be designated as CCNPP Unit 3, and will have a gross electric generation capacity of about 1,710 megawatts.

The CCNPP campus, currently owned by Calvert Cliffs Nuclear Power Plant, Inc., consists of 2,070 acres near Lusby, Calvert County, Maryland, on the west bank of the Chesapeake Bay, approximately halfway between the mouth of the bay and its headwaters at the Susquehanna River. Figure 1-1 shows the CCNPP location. The site is approximately 40 miles southeast of Washington, D.C. and 7.5 miles north of Solomons Island, Maryland.

The CCNPP property contains two existing pressurized water reactors designated as CCNPP Units 1 and 2. The proposed CCNPP Unit 3 will be located approximately 600 meters south of the existing nuclear power plant within the present CCNPP site.

Activities associated with construction of the proposed CCNPP Unit 3 will result in release of pollutants to the atmosphere. This document addresses emissions and air quality impacts from particulate matter (PM_{10}), sulfur dioxide (SO_2), carbon monoxide (CO), and oxides of nitrogen (NOx). Fugitive dust and fine particulate emissions will be generated as a result of vehicular traffic on paved and unpaved roads, earth moving, and material handing activities. The construction activities will require temporary installation of material processing and handing equipment as well as construction and operation of a concrete batch plant.

1.1 Purpose of the Report

This report provides the technical analyses and supporting data of the emissions associated with construction of the proposed CCNPP Unit 3 to ensure compliance with the National Ambient Air Quality Standards (NAAQS) during this temporary activity. The document addresses the following items:

- Calculations of PM₁₀ emissions that will result from vehicle travel, disturbed earth and aggregate movement, wind erosion, material and equipment handling activities. The document also discusses PM₁₀ emissions control measures, as well as SO₂, CO, and NOx emissions that will result from primarily vehicle travel and concrete batch plant operations.
- An air dispersion modeling analysis demonstrating that the impact of PM₁₀, SO₂, CO, and NOx emissions will be in compliance with the NAAQS. This analysis was completed in accordance with the U.S. EPA Guideline on Air Quality Models as codified at 40 CFR Part 51, Appendix W.

1.2 Contents of the Report

This report document consists of five sections, including this section, and one appendix. Section 2 presents a description of the construction activities and the calculated PM_{10} , SO_2 , CO, and NOx emission and their control measures. The dispersion modeling approach is discussed in Section 3 and results of the impact assessment for construction emissions are presented in Section 4. References are provided in Section 5. Appendix A provides the emissions calculations. A computer modeling archive is being provided separately.

DORCHESTER, CO. Beach rt Beach n_1 Long Beach rt Cliffs Dower Plant Walt JEFFERSON PATTERSON TORIC PARK AND MUSEUM CALVERT CLIFFS Ó 26 ove Point Cave Point Hollow REENWAR Ch. RIVE Legend Locus Map UniStar DH PA NY 🛧 CCNPP Unit 3 NĴ **Calvert Cliffs Nuclear** CCNPP Property Boundary **Power Plant Unit 3 Location** WV MD DI ENSR AECOM VA NC Scale 0 0.5 2 4 5 6 7 Kilometers 3 1

Figure 1-1: CCNPP and Unit 3 Location

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

2.0 Environmental Effects of Site Preparation and Construction

2.1 Estimated Air Emissions During Construction

Temporary construction related activities will result in the release of criteria pollutant emissions to the atmosphere. Oxides of nitrogen (NOx), carbon monoxide (CO), and small amounts of sulfur dioxide (SO₂), volatile organic compounds (VOC), and particulate matter (PM_{10}) will be released as a result of fuel combustion. Fuel combustion is primarily from off-road diesel engines used for generators, compressors, and construction equipment such as backhoes and bulldozers. Fugitive dust and fine particulate emissions (PM_{10}) will be generated as a result of vehicular traffic on paved and unpaved roads, earth moving, and material handling activities. Construction of Unit 3 and the cooling towers will require the temporary installation of a concrete batch plant.

The USEPA, along with several state and local air pollution control agencies, have developed methodologies and emission factors that are commonly used to develop emissions estimates from construction activities. These emission estimates are then input into an EPA developed air dispersion model along with localized metrological data to assess the net air quality impact of construction activities. The impact of construction activities must be less than the National Ambient Air Quality Standard (NAAQS), which were established to protect public health and welfare.

Portions of the CCNPP site will be cleared for roadways, facility construction, construction laydown areas, parking, and other construction-related uses. The current site elevation varies from 40 to 130 feet, with an average elevation around 100 feet. The final grading site plan leaves the majority of the impacted areas at an average elevation between 90 and 100 feet. The power block area will be slightly lower, at 80 to 85 feet. Suitable materials from grading higher elevations will be used as fill for lower elevations where possible.

Major earth moving activities that will generate air emissions include:

- Creation of construction access road from the main highway (MD 2 and 4) to CCNPP Unit 3 construction areas,
- Upgrading and extending the heavy haul road from the barge landing to CCNPP Unit 3 construction areas,
- Establishing general plant area grade,
- Excavation for building foundations, and
- Backfilling around foundations.

A variety of diesel powered equipment will be required to support construction activities. These include:

- Bulldozers, scrapers, and graders for land clearing, road construction and grading,
- Backhoes and loaders for excavating foundations and material transfer,
- Cranes for moving heavy equipment and transferring materials (such as sand and aggregate) from barges,
- Dump trucks for moving excavating earth to storage and returning as backfill material and for transferring sand and aggregates from barges, and

• Support vehicles, trucks, and compressors.

The project's temporary concrete batch plant will have a peak production of 200 cubic yards (152.9 cubic meters) per hour. The total cement production is estimated to be 555,000 cubic yards (424,328 cubic meters) over a four-year portion of the facility's construction period. This activity averages to approximately 138,750 cubic yards (106,082 cubic meters) per year. The batch plant will primarily use fabric filter baghouses to control air emissions.

Fugitive emissions will be generated by vehicular traffic on paved and unpaved (graveled) roadways on-site. An existing section of paved road leads from MD 2/4 to a branch-off onto the future unpaved construction road. The unpaved portion of the construction road will traverse the site, connecting to the heavy haul road to the barge area. Construction employee commuting and some delivery vehicles will ride on both stretches of road, while heavy construction vehicles will only use the unpaved portion. During CCNPP Unit 3 construction, a maximum of approximately 4,000 full time equivalent (FTE) workers will be employed. A concrete batch plant will be used to produce the estimated 555,000 cubic yards of concrete required. Trucks will bring sand and aggregate materials from the barge to storage piles at the concrete plant and mixed concrete from the batch plant to the construction locations.

Estimating construction-related emissions involves the use of activity data and emission factors, along with appropriate corrections as necessary. The design firm for the project, Bechtel Power, provided estimated activity data for the project. Construction activity data is summarized in Table 2-1. A detailed activity data sheet for the combustion equipment listing expected annual hours of use is located in Appendix B. Information is provided in the table for each of the various construction related activities by year. Emission factor data comes from EPA's AP-42 compilation of emission factors, EPA's NONROAD model background information, EPA's Mobile 6.2 model, and Mojave Desert AQMD Emission Inventory Guidance. Other ancillary sources of information were consulted as necessary.

Table 2-1 Construction Activity Data

Item No.	Construction Activity	Operation Type	Units	2010	2011	2012	2013	2014	2105	TOTAL
SITEWOR	κ.									
	Clear & Grub									
1	Vegetations Removal	Bulldozing (inc. w/Item 8)	Hours							
2	Scrapers removing topsoil		Tons	310,000	0	0	0	0	0	310,000
3	Scrapers in travel	Unpaved Roads	VMT	5,060	0	0	0	0	0	5,060
4	Scrapers unloading topsoil	Batch Drop	Tons	310,000	0	0	0	0	0	310,000
	General Site Grading & Fill									
5	Scrapers removing overburden		Tons	2,158,000	2,158,000	644,000	0	0	0	4,960,000
6	Scrapers in travel	Unpaved Roads	VMT	35,160	35,160	10,500	0	0	0	80,820
7	Scrapers unloading overburden as fill	Batch Drop	Tons	2,158,000	2,158,000	644,000	0	0	0	4,960,000
8	Bulldozing	Includes Items 1, 13, 17	Hours	7,800	7,800	4,100	2,000	500	0	
9	Compaction	Includes Items 18, 24	Hours	5,200	5,200	2,600	1,000	500	0	
BUILDING	EXCAVATION									
10	Load Excavated Mat'l into Trucks	Batch Drop	Tons	3,410,000	0	0	0	0	0	3,410,000
11	Haul to Stockpile Area	Unpaved Roads	VMT	546,000	0	0	0	0	0	546,000
12	Truck-Dump	Batch Drop	Tons	3,410,000	0	0	0	0	0	3,410,000
13	Spread material	Bulldozing (w/Item 8)	Hours							
STRUCTU	RAL BACKFILL									
14	Load Stockpile into Off-Road Truck	Batch Drop	Tons	0	2,790,000	0	0	0	0	2,790,000
15	Haul to Powerblock	Unpaved Roads	VMT		447,000					447,000
16	Truck-Dump	Batch Drop	Tons	0	2,790,000	0	0	0	0	2,790,000
17	Spread material	Bulldozing (w/Item 8)	Hours							
18	Compaction	Included with Item 9	Hours							
UNPAVED	ROAD CONSTRUCTION									
23	Motor Grading		VMT	2,500	3,800	2,500	1,300	0	0	10,100
24	Compaction	Included with Item 9	Hours							
CONCRET	E OPERATIONS									
25	Material transfer from Barge	Batch Drop	Tons	198,800	397,600	198,800	0	0	0	795,200
26	Material Transport - Barge to Plant	Unpaved Roads	VMT	35,200	70,380	35,200	0	0	0	140,780
27	Material Transport to Pile	Batch Drop	Tons	198,800	397,600	198,800	0	0	0	795,200
28	Material Transfers - Pile to Silo/Plant	Batch Drop	Tons	60,435	187,670	246,510	240,950	59,635	0	795,200
29	Ready Mix Transport	Unpaved Roads	VMT	13,300	41,200	54,000	52,800	13,200	0	174,500
OPEN AR	EAS									
19	Power-Block & Cooling Tower Areas	Wind & Erosion	Acres	45	45	45	0	0	0	n/a
20	Switchyard Area	Wind & Erosion	Acres	43	43	43	0	0	0	n/a
21	Soils Stockpile	Wind & Erosion	Acres	60	60	60	60	0	0	n/a
22	Temporary Gravel Parking Areas	Wind & Erosion	Acres	70	70	70	70	70	70	n/a
VEHICLE	TRAFFIC									
30	Commuters	Paved Road	VMT	44,000	179,000	356,000	540,000	184,000	15,000	1,318,000
31	Commuters	Unpaved Road	VMT	205,000	838,000	1,670,000	2,536,000	863,000	69,000	6,181,000
32	Commercial Deliveries	Paved Road	VMT	5,500	6,100	4,100	760	100	0	16,560
33	Commercial Deliveries	Unpaved Road	VMT	19,400	21,700	14,500	2,730	350	0	58,680

2-3

2.1.1 Vehicle Travel

As noted in Section 2.1, vehicle travel will occur on paved and unpaved roads as well as on disturbed earth at the site during construction. The emission factors for site preparation activities in Section 2.1.3 include disturbed earth travel for buildozing, grading, scraping, and compacting.

Unpaved road travel will consist of construction vehicles (trucks in transport) that will operate on roads from the barge area to the concrete plant, from the concrete plant to the application sites, from soil excavation points to storage locations, and from storage to backfill locations. Commuting vehicles will travel to and from parking lots and delivery vehicles will travel to various locations. Emissions were estimated for unpaved roads using Equation 1. Equation 1 is from AP-42 Section 13.2.2 (11/06) for Unpaved Roads.

$$E = k * \left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$$

(1)

(2)

where:

- E size-specific emission factor (lb/VMT)
- k particle size multiplier (lb/VMT)
- a, b empirical constants (dimensionless)
- s surface material silt content (%)
- W mean vehicle weight (tons)

Paved road travel will consist of commuting construction workers and some delivery trucks. Emissions were estimated from paved roads using Equation 2. Equation 2 is from AP-42 Section 13.2.1 (11/06) for Paved Roads.

$$E = \left[k^* \left(\frac{sL}{2}\right)^{0.65} \left(\frac{W}{3}\right)^{1.5} - C\right]^* \left(1 - \frac{P}{4N}\right)$$

where:

- E particulate emission factor (lb/VMT)
- k particle size multiplier (lb/VMT)
- a, b empirical constants (dimensionless)
- sL road surface silt loading (g/m²)
- W average vehicle weight of vehicles traveling the road (tons)
- C emission factor for exhaust, break wear, and tire wear
- P number of "wet" days with at least 0.01 inch of precipitation during the averaging period
- N number of days in the averaging period

It is important to note that per AP-42 instructions, the W in each of the equations represents the average that represents the "fleet" average weight of all vehicles travelling the road. Inputs for the Equations 1 and 2 and calculations of emissions are presented in Appendix B. Also, the precipitation correction factor in Equation 2 is only used for estimating annual emissions.

2.1.2 Material Transfer

Materials such as excavated earth, backfill, aggregates, and sand will be hauled and transferred by trucks to and from different locations on the site. Particulate emissions are potentially generated each time a load of material is loaded into or unloaded from a truck. Estimating emissions from material transfers was performed using Equation 3. Equation 3, colloquially known as the "batch drop equation", comes from AP-42 Section 13.2.4 (11/06) Aggregate Handling and Storage Piles.

August 2008

ENSR

$$E = k * 0.0032 \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$$

where:

- E emission factor (lb/ton material)
- k particle size multiplier (dimensionless
- U mean wind speed (miles/hour)
- M material moisture content (%)

The mean wind speed is based on the on-site CCNPP wind monitor. Material moisture content is based on AP-42 Table 13.2.4-1 for earth and footnote b to Table 11.2-2 for aggregates and sand. Inputs for the Equation 3 and calculations of emissions are presented in Appendix B.

2.1.3 Site Preparation

Site preparation will be performed by bulldozers, scrapers, compactors, and graders which will shape and clear the land before and while construction occurs. Bulldozing and compaction hours are noted in Table 2-1. Scraping and grading operating hours are estimated from the combustion equipment activity data presented in Appendix A.

Estimation of emissions from material transfers was performed using Equation 4. Equation 4 comes from Mojave Desert Air Quality Management District Emissions Inventory Guidance (4/2000) Method D – Bulldozing, Scraping, and Grading of Materials. The corresponding AP-42 emission factor as presented in Section 11.9 Western Surface Coal Mining for bulldozing was judged to be not representative of activities at CCNPP. In fact, the Mojave guidance references the AP-42 section as a basis, but presents a more refined version of the calculation, presented below. No control is assumed for this emissions category.

$$E = 2.76 * k * \frac{s^{1.5}}{M^{1.4}} \tag{4}$$

where:

- E emission factor (lb/hour of operation)
- k particle aerodynamic factor (dimensionless)
- s average silt content (%)
- M average material moisture content (%)

Silt content and moisture content come from AP-42 Table 13.2.4-1. Inputs for the Equation 4 and calculations of emissions are presented in Appendix B.

2.1.4 Wind Erosion

Wind erosion causes fugitive dust to be blown from open areas and storage piles.

The emission factor for estimating wind erosion from open areas comes from Clark County, NV Department of Air Quality and Environmental Management (DAQEM). DAQEM uses a PM₁₀ emission factor of 1.66 lb/acre/day to estimate wind erosion fugitive dust. Given the difference in climate between Clark County, Nevada and the CCNPP site, this is thought to be a conservative estimate.

(3)

Wind erosion will also occur at the material storage piles. The concrete batch plant will have separate storage piles for aggregates and sand. Estimating emissions from storage piles was performed using Equation 5. Equation 5 comes from Mojave Desert Air Quality Management District Emissions Inventory Guidance (4/2000) Method G – Wind Erosion from Stockpiles.

$$E = E_f * A$$

$$E_f = J * 1.7 * \frac{sL}{1.5} * \frac{365 - P}{235} * \frac{I}{15} * \frac{365}{2000}$$

where:

- E Emission rate (ton/yr)
- E_f Emission factor (tons/acre)
- A Exposed surface area of stockpile (acres)
- J Particulate aerodynamic factor
- sL average silt content (%)
- P Average number of days during the year with at least 0.01 inch of precipitation
- I Percentage of time with unobstructed wind speed > miles/hour (%)

Inputs for the Equations 5 and 6 and calculations of emissions are presented in Appendix B. Area watering may be necessary for the open areas to minimize windblown fugitive dust

2.1.5 Concrete Batch Plant

A concrete batch plant will be used to produce all of the concrete required for construction operations. The individual operations involved in the plant are aggregate and sand delivery, aggregate and sand transfer, sand transfer to elevated storage, cement and supplement loaded into storage silo, weight hopper loading of sand, gravel and cement, and loading concrete into mix trucks.

Emissions from batch plant operation are estimated using emission factors from AP-42 Section 11.12 (6/06) Concrete Batching, Tables 11.12-2 and 11.12-5. Calculations for concrete operations are presented in Appendix B.

2.1.6 Combustion Equipment

Construction equipment will require fuels primarily in the form of diesel fuel for power. Various types of equipment will require diesel fuel including bulldozers, scrapers, graders, cranes, and many others. Gasoline automobiles and light trucks will also be needed on-site. Appendix B contains a detailed listed of the expected equipment, the approximate engine size, expected annual use, and zero-hour steady state criteria pollutant emission factors.

Criteria pollutant emissions from diesel combustion engines are estimated using two background documents to EPA's NONROAD model documentation: "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling –Compression Ignition" (EPA420-P-04-009, 4/2004) and "Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling" (EPA420-P-04-005, 4/2004). These two documents provide the basis for calculating emissions from diesel equipment.

For purposes of emissions estimation, all diesel engines are assumed to be Tier 2 certified. However, when construction begins actual emissions are expected to be lower due to an increasing use of newer Tier 3 and Tier 4 certified engines.

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

.

(5)

(6)

Criteria pollutant emissions from on-site gasoline pickup trucks and automobiles are estimated using EPA's Mobile 6.2 model. Emission factors in g/VMT were taken for light duty gasoline vehicles (LDGV) and two classes of light duty gasoline trucks (LDGT12 and LDGT 34). The two truck categories are for gross vehicle weight ratings of above and below 6,000 pounds. The emission factors were turned into a composite emission factor for all three vehicle types by taking a weighted average of all three model output emission factors and using adjusted vehicle distributions by only looking at these three vehicle types. The emission factors were translated into g/hp-hr by assuming an average speed of 20 miles/hr and an engine size of 231 hp.

2.1.7 Source Location

Figure 2-1 shows the modeled areas of the plant. Unpaved roads are scattered among the seven labeled areas. Emissions are divided among the areas based on traffic flows, trip purpose, and destination areas.

The Unit 3 area is the future location of the power block and reactor. Area 2 is for parking and laydown. Area 3 is the future location of the cooling towers and also includes a storage area. Area 4 will contain parking ans laydown areas and will have the future switchyard. Area 5 is an existing laydown area which will be used for Unit 3 construction. Area 6 contains the concrete batch plant. Area 7 is the haul road to the barge. It is broken into four pieces for modeling purposes.

ENSR

Figure 2-1 Location of Sources Associated with the Construction of CCNPP Unit 3

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

Table 2-2 Criteria Pollutant Emissions Summary

		2010	2011	2012	2013	2014	2015
Paved Roads	PM ₁₀	0.07	0.27	0.53	0.8	0.27	0.02
Unpaved Roads	PM ₁₀	17.48	25.10	17.56	23.58	7.75	0.56
Material Transport	PM ₁₀	3.49	3.16	0.44	0.00	0.00	0.00
Site Preparation	PM ₁₀	50.40	52.79	24.28	9.38	2.58	0.37
Concrete Batch Plant	PM ₁₀	0.12	0.38	0.50	0.49	0.12	0.00
Wind Erosion	PM ₁₀	6.91	7.09	6.91	3.94	2.12	2.12
Combustion Equipment	P M 10	1.54	2.27				
Total	PM ₁₀	80.0	91.1	52.4	40.0	_ 18.4	8.0
Combustion Equipment	NO _x *	60.92	82.48	72.61	57.04	39.03	13.92
Combustion Equipment	co*	23.31	36.33	44.67	39.72	34.56	15.77
Combustion Equipment	voc*	4.36	6.37	7.18	5.55	4.40	1.78
Combustion Equipment	SO2*	2.45	3.32	2.91	2.27	1.54	0.54

* Combustion equipment emissions are the only sources of these pollutants

...

2.2 Air Pollution Control Measures

During construction of CCNPP Unit 3, several measures will be undertaken to minimize potential generation of emissions. The emissions data were calculated assuming the contractor will employ the watering practices and engine types listed below.

<u>Stabilizing unpaved areas with gravel</u> – Construction roads, parking lots, and laydown areas will be covered with gravel to stabilize surfaces and reduce the amount of materials that could become airborne as a result of wind movement and mechanical energy from movement of vehicles and equipment.

<u>Application of water</u> – Application of water to paved and unpaved roads and exposed areas will be effective in reducing the potential generation of fugitive dust. Water will be applied on a daily basis to the paved and unpaved roads and open areas cleared during construction. Daily application to paved and unpaved roads has the potential to reduce fugitive dust by limiting the . Application of water to open areas as needed has the potential to reduce fugitive dust generation. Natural fugitive dust mitigation will occur through rain or snowfall. According to AP-42 Figures 13.2.1-2 and 13.2.2-1, the CCNPP area receives 140 days of 0.01 inches or more of precipitation. This negates the need to apply water manually on precipitation days.

<u>Concrete batch plant</u> – The concrete batch plant will utilize fabric filters or other equivalent techniques to control emissions from the material transfer operations. The contractors that will be responsible for operating these plants will be required to obtain any necessary permits as temporary sources before bringing equipment on-site, ensuring that the until will be in full compliance with MDE's requirements and standards.

Storm water pollution prevention plan (SWPPP) – A dust control program will be incorporated into the SWPPP.

Diesel Engines – As noted in Section 2.1.6, the worst-case emissions associated with using all Tier 2 certified equipment has been assumed. Tier 3 standards have begun to come into effect for larger size engines in 2006 and Tier 4 standards are slated to come into effect in 2011. The use of tiered emissions levels is EPA's way of promoting the use of lower emitting engines, while allowing older models to operate throughout their useful lives. Heavy equipment used by contractors at the time of construction should gradually shift to using newer engines as construction progresses.

3.0 Dispersion Modeling Analysis

3.1 Overview

This section presents the modeling analysis of the Unit 3 construction activities that was conducted to assess ambient air quality impacts which will demonstrate compliance with applicable state and federal ambient air quality regulations. The analyses were conducted in accordance with USEPA Guideline on Air Quality Models (GAQM; as incorporated in Appendix W of 40 CFR Part 51). Note that the USEPA recently promulgated a revision to the GAQM on November 9, 2005. The revised version of GAQM adopts AERMOD as the preferred dispersion model.

Dispersion modeling was conducted with the US EPA's AERMOD model (Version 07026) and five years of onsite meteorological data. This 5-year data set was processed with AERMET, the meteorological processor for AERMOD, in accordance with guidance provided by US EPA in the recently revised *AERMOD Implementation Guide* (AIG; US EPA, January 9, 2008).

3.2 Model Selection Criteria

The suitability of an air quality dispersion model for a particular application is dependent upon several factors. For this study, the following selection criteria have been evaluated:

- stack height relative to nearby structures, where applicable,
- dispersion environment,
- local terrain, and
- availability of on-site or representative meteorological data.

3.2.1 Dispersion Environment

The application of the model requires characterization of the local (within 3 kilometers (km)) dispersion environment as either urban or rural, based on a US EPA-recommended procedure that characterizes an area by prevalent land use. This land use approach classifies an area according to 12 land use types. In this scheme, areas of industrial, commercial, and compact residential land use are designated urban. According to US EPA modeling guidelines, if more than 50 percent of an area within a three-kilometer radius of the proposed facility is classified as rural, then rural dispersion coefficients are to be used in the dispersion modeling analysis. Conversely, if more than 50% of the area is urban, urban dispersion coefficients are used.

For this analysis, an aerial photo and a topographical map of the facility area has been reviewed. Visual inspection of the map shows that the 3-kilometer area surrounding the proposed facility (see Figure 1-1) is predominantly rural. Therefore, a rural application approach to characterize the source dispersion environment was chosen for this dispersion modeling analysis.

3.2.2 Terrain Considerations

The US EPA modeling guidelines require that the differences in terrain elevations between the stack top, plume centerline and model receptor locations be considered in the modeling analyses. There are three types of terrain:

 simple terrain – locations where the terrain elevation is at or below the exhaust height of the stacks to be modeled;

- intermediate terrain locations where the terrain is between the top of the stack and the modeled exhaust "plume" centerline (this varies as a function of plume rise, which in turn, varies as a function of meteorological condition);
- complex terrain locations where the terrain is above the plume centerline.

Based on a review of USGS topographical maps, the terrain within the study area is all simple terrain with respect to the Unit 3 construction sources.

3.3 Representative Meteorological Data

For this analysis, five calendar years of on-site (2001-2005) meteorological data were used. The meteorological tower for the CCNPP site is located in an open field southwest of the CCNPP Unit 1 and 2. The base elevation of the tower is approximately 120.6 ft (37 m) above mean sea level (msl). The tower instrumentation consists of wind speed, wind direction, and duplicate sets of aspirated temperature sensors located at 197 ft (60 m) and 33 ft (10 m) above ground level. A tipping bucket rain gauge is located approximately 30 ft (9.1 m) from the meteorological tower in an open field and a barometric pressure device is located in the Met Building. No moisture measurements (dew point or wet bulb temperature, relative humidity) are currently taken. The onsite meteorological monitoring program was designed, and has been operated, according to U.S. NRC Regulatory Guide 1.23, Revision 0. This guidance includes the following specifications for meteorological measurements at the 10-m and 60-m levels:

- wind direction accuracy of +/- 5 degrees;
- wind speed accuracy of +/- 0.5 mph, with a starting threshold of under 1 mile per hour;
- temperature accuracy of +/- 0.5 deg C, and delta-T accuracy of +/- 0.1 deg C.

These system accuracies are consistent with United States Environmental Protection Agency (USEPA) guidance for on-site meteorological programs.

The data recovery goal of 90% was met for each of five years of data (2001 through 2005). Figures 3-1 and 3-2 show multi-year wind roses from the 33-ft and 197-ft tower levels.

Upper air data for the concurrent period is available from the Washington Dulles Airport, Virginia (KIAD), twicedaily soundings. For parameters not observed by the on-site meteorological instrumentation, such as cloud cover, hourly observations are available from the closest representative airport, Washington Reagan Airport, Virginia (KDCA).

Figure 3-1 On-site Meteorological Tower Wind Rose, 33-ft Level

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

3.4 Dispersion Model Selection and Application

Based on a review of the factors discussed above, US EPA's preferred dispersion model, AERMOD, was used to assess air quality impacts. AERMOD is a state-of-the-art dispersion model that incorporates modeling improvements especially for applications involving building downwash. The latest version of AERMOD (07026), the AERMET (06341) meteorological preprocessor, and the AERMAP (06341) terrain preprocessor was used in this application. In the application of AERMOD, the regulatory default options were used.

3.4.1 Terrain and Receptor Data Processing with AERMAP

A comprehensive Cartesian receptor grid extending to approximately 7 km from the Unit 3 site was used in the AERMOD modeling to assess maximum ground-level pollutant concentrations. This receptor grid was sufficient to resolve the maximum impacts and any potential significant impact area(s).

The Cartesian receptor grid consisted of the following receptor spacing:

- property boundary to approximately 1 kilometer at 100-meter increments,
- beyond 1 kilometer to 3 kilometers at 300-meter increments, and
- beyond 3 kilometers at 500-meter increments

Discrete receptors were placed at 100-meter intervals along the plant property boundary.

The AERMAP receptor locations are shown in Figure 3-3. Terrain elevations from Digital Elevation Model (DEM) data acquired from USGS were processed with AERMAP (Version 03107) to develop the receptor terrain elevations and corresponding hill height scale required by AERMOD.

ENSR

Figure 3-3 AERMOD Receptors

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

3.4.2 Meteorological Data Processing with AERMET

The meteorological data required for input to AERMOD was created with AERMET (Version 06341), the meteorological preprocessor, which utilizes hourly on-site weather data, nearby cloud cover data from Washington National Airport, and concurrent upper air sounding data from Washington Dulles Airport, VA. (Note that the poor data capture for the Patuxent River Naval Air Station precluded use of that meteorological station for input to AERMET.) AERMET creates two output files for input to AERMOD:

- SURFACE: a file with boundary layer parameters such as sensible heat flux, surface friction velocity, convective velocity scale, vertical potential temperature gradient in the 500-meter layer above the planetary boundary layer, and convective and mechanical mixing heights. Also provided are values of Monin-Obukhov length, surface roughness, albedo, Bowen ratio, wind speed, wind direction, temperature, and heights at which measurements were taken.
- PROFILE: a file containing multi-level meteorological data with wind speed, wind direction, temperature, sigma-theta (σ_θ) and sigma-w (σ_w) when such data are available. For this application involving on-site, the profile file contains a two levels (10-m and 60-m) of wind data and temperature data.

AERMET requires specification of site characteristics including surface roughness (z_o), albedo (r), and Bowen ratio (B_o). These parameters were developed according to the guidance provided by US EPA in the recently revised AERMOD Implementation Guide (AIG).

The revised AIG provides the following recommendations for determining the site characteristics:

- The determination of the surface roughness length should be based on an inverse distance-weighted geometric mean for a default upwind distance of 1 kilometer relative to the measurement site. Surface roughness length may be varied by sector to account for variations in land cover near the measurement site; however, the sector widths should be no smaller than 30 degrees. As discussed below, 3 sectors were used in this application.
- 2. The determination of the Bowen ratio should be based on a simple un-weighted geometric mean (i.e., no direction or distance dependency) for a representative domain, with a default domain defined by a 10-km by 10-km region centered on the measurement site.
- 3. The determination of the albedo should be based on a simple un-weighted arithmetic mean (i.e., no direction or distance dependency) for the same representative domain as defined for Bowen ratio, with a default domain defined by a 10-km by 10-km region centered on the measurement site.

The AIG recommends that the surface characteristics be determined based on digitized land cover data. US EPA has developed a tool called AERSURFACE that can be used to determine the site characteristics based on digitized land cover data in accordance with the recommendations from the AIG discussed above. AERSURFACE incorporates look-up tables of representative surface characteristic values by land cover category and seasonal category. AERSURFACE will be applied with the instructions provided in the *AERSURFACE User's Guide* (EPA, 2008).

The current version of AERSURFACE (Version 08009) supports the use of land cover data from the USGS National Land Cover Data 1992 archives¹ (NLCD92). The NLCD92 archive provides data at a spatial resolution of 30 meters based upon a 21-category classification scheme applied over the continental U.S. The

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

¹ <u>http://edcftp.cr.usgs.gov/pub/data/landcover/states/</u>

AIG recommends that the surface characteristics be determined based on the land use surrounding the site where the surface meteorological data were collected.

Since 1992, there has some conversion of the land south of the meteorological tower to native ground cover. However, that area is slated to be affected by the construction of Unit 3, will be cleared (see CPCN Technical Document, Figure 2.1-1), and will end up more like the 1992 land use characterization. Therefore, the 1992 land use characterization is reasonably representative for this application.

As recommended in the AIG for surface roughness, the 1-km radius circular area centered at the tower site can be divided into sectors for the analysis; each chosen sector has a mix of land uses that is different from that of other selected sectors. Three sectors were used for this analysis based upon visual observation of the land use about the site as shown on the land cover image (see Figure 3-4).

In AERSURFACE, the various land cover categories are linked to a set of seasonal surface characteristics. As such, AERSURFACE requires specification of the seasonal category for each month of the year. The following five seasonal categories are supported by AERSURFACE, with the applicable months of the year specified for this site.

- 1. Midsummer with lush vegetation (May-September).
- 2. Autumn with un-harvested cropland (October-November).
- 3. Late autumn after frost and harvest, or winter with no snow (January, February, December).
- 4. Winter with continuous snow on ground (Not present).
- 5. Transitional spring with partial green coverage or short annuals (March-April).

For Bowen ratio, the land use values are linked to three categories of surface moisture corresponding to average, wet and dry conditions. The surface moisture condition for the site may vary depending on the meteorological data period for which the surface characteristics will be applied. AERSURFACE applies the surface moisture condition for the entire data period. Therefore, if the surface moisture condition varies significantly across the data period, then AERSURFACE can be applied multiple times to account for those variations. As recommended in AERSURFACE User's Guide, the surface moisture condition for each month were determined by comparing precipitation for the period of data to be processed to the 30-year climatological record (for this application Washington Reagan Airport was used), selecting "wet" conditions if precipitation is in the upper 30th-percentile, "dry" conditions if precipitation is in the lower 30th-percentile, and "average" conditions if precipitation is in the middle 40th-percentile. The monthly designations of surface moisture input to AERSURFACE are also summarized in Table 5-1.

Month		Bo	owen Ratio Ca	tegory	
	2001	2002	2003	2004	2005
January	Dry	Dry	Average	Dry	Wet
February	Average	Dry	Wet	Average	Dry
March	Average	Average	Average	Dry	Wet
April	Dry	Average	Average	Wet	Wet
May	Average	Dry	Wet	Average	Wet
June	Wet	Wet	Wet	Average	Average
July	Wet	Dry	Wet	Wet	Average
August	Average	Dry	Wet	Wet	Average
September	Dry	Average	Wet	Average	Dry
October	Dry	Wet	Wet	Dry	Wet
November	Dry	Average	Average	Wet	Dry
December	Dry	Wet	Wet	Average	Average

Table 3-1 AERSURFACE Bowen Ratio Condition Designations

. .

.

.

Figure 3-4 Land-Use Sectors within 1 km of On-Site Meteorological Tower

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

3.5 Modeling Approach

Unit 3 construction activities were divided into seven area sources based on their location and they are shown in Figure 2-1. Emissions from activities on the paved access road were modeled as a line source. Each area source represented emissions from several types of activities. For activities that will occur less than a 24 hours per day, such as grading and compaction, dirt excavation and moving, unpaved road construction, barge to concrete plant deliveries, and dewatering and earthwork, the modeling assumed emissions only for hours between 6 AM and 6 PM. Emissions for all other activities were assumed to occur for all hours of the day.

The short-term emissions for all modeled pollutants were based on the 250 days of operation and annual emissions were based on 365 days of operations. The short-term PM_{10} emissions for the seven years of construction are listed in Appendix A in Tables A-1 through A-7 and annual PM_{10} emissions are listed in Tables A-8 through A-14. Modeling of PM_{10} emissions was conducted for the individual seven years of construction (years 2010 through 2016) due to large variations in activities relating to PM_{10} emissions from year to year. The second year of construction (year 2011) would result in the highest overall emissions from combustion sources. Therefore, modeling of SO_2 , NOx, and CO was conducted using the 2011 year emissions. The short-term SO_2 and CO emissions are listed in Table A-15 and annual SO_2 and NOx emissions are listed in Table A-16.

3.5.1 PM_{2.5} NAAQS Compliance Analysis

After the promulgation of the $PM_{2.5}$ National AAQS in 1997, USEPA determined that it does not have a suitable technical approach for modeling $PM_{2.5}$ concentrations. Therefore, USEPA established a policy to use the implementation of the New Source Review program for PM_{10} as a surrogate for $PM_{2.5}$ compliance until the necessary tools are in place to model $PM_{2.5}$ concentrations. This policy was articulated in a memorandum (Interim Implementation of New Source Review for $PM_{2.5}$) from John S. Seitz (Director of US EPA's Office of Air Quality Planning and Standards) to Regional Air Directors on October 23, 1997. This policy is still in effect (reaffirmed on April 5, 2005 in "Implementation of New Source Review Requirements in $PM_{2.5}$ Non-attainment Areas," by Stephen D. Page, Director, EPA Office of Air Quality Planning & Standards. The Co-Applicants are using compliance with the NAAQS for PM_{10} as a surrogate for compliance with the PM_{2.5} NAAQS. Mr. William Harnett, Director of EPA's Air Quality Policy Division, has indicated (2007) that the PM₁₀ surrogate policy remains in effect for attainment areas until the PM_{2.5} New Source Review State Implementation Rule is promulgated and the required State Implementation Plan for Maryland is adopted by EPA.

3.6 Background Air Quality

For the NAAQS compliance analysis, the modeled impacts are summed with representative background concentrations that account for distant or small local sources not explicitly modeled. The nearest available site of PM₁₀ measurements is located in Virginia, about 66 km northwest of the CCNPP. The nearest available site of SO₂, CO, and NOx measurements is also located in Virginia, about 100 km northwest of the CCNPP. The latest three years of background monitoring data was used. The representative monitoring location is plotted in Figure 3-5 and the monitored values are summarized in Table 3-2.

ENSR

.

Pollutant	Averaging Period	Ranking	Year	Concentration (µg/m³)	Monitor ID	Monitor Address	County	State
	24.5	H2H	2005	38.0	510590018	Mt.Vernon 2675 Sherwood Hall Lane	Fairfax Co	VA
		H2H	2006	40.0	510590018	Mt. Vernon 2675 Sherwood Hall Lane	Fairfax Co	VA
	24-11001	H2H	2007	36.0	510590018	Mt. Vernon 2675 Sherwood Hall Lane	Fairfax Co	VA
DM		3-Year Averag	e Value	38.0				
F 19110		Н	2005	21.0	510590018	Mt. Vernon 2675 Sherwood Hall Lane	Fairfax Co	VA
	Annual	H	2006	21.0	510590018	Mt.Vernon 2675 Sherwood Hall Lane	Fairfax Co	VA
	Annual	Н	2007	20.0	510590018	Mt. Vernon 2675 Sherwood Hall Lane	Fairfax Co	VA
		3-Year Averag	e Value	20.7				
		H2H	2005	65.5	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
	2 60.00	H2H	2006	52.4	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
	3-11001	H2H	2007	49.8	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
		3-Year Averag	e Value	55.9				
		H2H	2005	31.4	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
50	24-hour	H2H	2006	26.2	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
302		H2H	2007	21.0	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
		3-Year Averag	e Value	26.2				
	Annual	н	2005	7.9	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
		Н	2006	7.9	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
	Annuai	Н	2007	7.9	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
		3-Year Averag	e Value	7.9				
		Н	2005	18.8	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
NO	Annual	н	2006	15.0	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
NOX	Annual	н	2007	15.0	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
		3-Year Averag	e Value	16.3				
		H2H	2005	1,955	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
	1	H2H	2006	1,610	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
	I-nour	H2H	2007	1,610	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
~~	1	3-Year Averag	e Value	1725.0				
		H2H	2005	1,725	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
	0.1	H2H	2006	1,380	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
	B-nour	H2H	2007	1,495	510590005	Cub Run Lee Rd Chant	Fairfax Co	VA
		3-Year Averag	je Value	1533.3				

• 1

Table 3-2 Ambient Monitoring Background Concentrations

. .

ENSR

Figure 3-5 Location of the Ambient Background Monitors

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

4.0 Modeling Results for the Unit 3 Construction Emissions

NAAQS compliance modeling results for PM₁₀, SO₂, CO, and NOx are presented in Tables 4-1 through 4-4, respectively. The short-term impacts were estimated by adding the highest, second-high impact to the monitoring background value and annual impacts were estimated by adding the highest impact to the monitoring background value.

The PM_{10} modeling results are presented for the seven years of constructions and they indicate that the second year of constructions (year 2011) would result in the highest PM_{10} concentrations. Modeling of SO₂, CO, and NOx emissions was conducted only for year 2011 since it would result in the highest combustion-related emissions over the seven years of construction activity.

The predicted short-term and annual impacts of PM_{10} , SO_2 , CO, and NOx are well below their respective NAAQS, so compliance with the NAAQS is demonstrated.

Pollutant	Averaging Period	Unit 3 Construction	2001-2005 Modeled Concentration ¹	Ambient Monitoring Background	Total	NAAQS
		1 641	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
	24-hr	2010	70.6	38	108.6	150
	24-hr	2011	88.4	38	126.4	150
	24-hr	2012	56.3	38	94.3	150
	24-hr	2013	52.2	38	90.2	150
	24-hr	2014	20.7	38	58.7	150
	24-hr	2015	10.0	38	48.0	150
DM	24-hr	2016	9.9	38	47.9	150
	Annual	2010	4.8	21	25.5	50
	Annual	2011	6.4	21	27.1	50
	Annual	2012	5.0	21	25.7	50
	Annual	2013	5.4	21	26.1	50
	Annual	2014	2.6	21	23.3	50
	Annual	2015	1.3	21	22.0	50
	Annual	2016	1.3	21	22.0	50

Table 4-1 PM₁₀ Modeling Results of Unit 3 Construction Emission Sources

1 The reported concentration is the highest, second-highest for 24-hr periods, and the highest for annual periods.

Pollutant	Averaging Period	Unit 3 Construction Year	2001-2005 Modeled Concentration ¹ (µg/m ³)	Ambient Monitoring Background (µg/m³)	Total (μg/m³)	NAAQS (µg/m³)
,	3-hour	2011	18.9	55.9	74.8	1,300
SO ₂	24-hr	2011	3.9	26.2	30.1	365
	Annual	2011	0.5	7.9	8.4	80

 Table 4-2
 SO2 Modeling Results of Unit 3 Construction Emission Sources

1 The reported concentration is the highest, second-highest for 24-hr periods, and the highest for annual periods.

Table 4-3 CO Modeling	Results of Unit 3 Construction Emission Sources
-----------------------	--

Pollutant	Averaging Period	Unit 3 Construction Year	2001-2005 H2H Modeled Concentration	Ambient Monitoring Background	Total	NAAQS	
			(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	
<u> </u>	1-hour	2011	691.9	1,725.0	2,416.9	40,000	
CO	8-hour	2011	137.7	1,533.3	1,671.0	10,000	

Table 4-4	NOx Modeline	a Results of Unit 3 C	onstruction Emission Sources
-----------	--------------	-----------------------	------------------------------

Pollutant	Averaging Period	Unit 3 Construction Year	2001-2005 Max Modeled Concentration	Ambient Monitoring Background	Total	NAAQS
			(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
NOx	Annual	2011	12.9	16.3	29.2	100

.

~

.

1

5.0 References

Technical Report in Support of Application of UNISTAR Nuclear Energy, LLC and UNISTAR Nuclear Operating Services, LLC for Certificate of Public Convenience and Necessity Before the Maryland Public Service Commission for Authorization to Construct Unit 3 at Calvert Cliffs Nuclear Power Plant and Associated Transmission Lines. Available at

http://webapp.psc.state.md.us/intranet/Casenum/submit.cfm?DirPath=C:\Casenum\9100-9199\9127\Item 001\&CaseN=9127\Item 001.

U.S. EPA 2004. User's Guide for the AERMOD Meteorological Processor (AERMET) EPA Document No. EPA-454/B-03-002. Office of Air Quality Planning and Standards, Research Triangle Park, NC. November.

U.S. EPA 2005a. Guideline on Air Quality Models (Revised). Codified in the Appendix W to 40 CFR Part 51. Office of Air Quality Planning and Standards, Research Triangle Park, NC. November.

U.S. EPA 2005a. Implementation of New Source Review Requirements in PM-2.5 Nonattainment Areas. Memo by Stephen Page, available at <u>http://www.epa.gov/nsr/documents/nsrmemo.pdf</u>.

U.S. EPA 2008. AERMOD Implementation Guide. Office of Air Quality Planning and Standards, Research Triangle Park, NC. Revised January 9, 2008.

Appendix A

- -

Construction Emissions

									Emissions Di	stribution (TP	3								
				VEHICLI	E TRAVEL EN	IISSIONS			GRADING.E	XCAVATION			Die	esel & Gasol	ine Emissio	ns			
Modeled Area ID	Modeled Area (m²)	Assigned Acreage	Commuter and Commercia I Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation s	Earth Moving / Excavation	Grading and Compaction	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m²/s)	Commuter/C ommercial Traffic (g/m ² /s)
Hours of 0	perations (hou	r ending)	1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1-24	7-18	1-24
U3AREA	126,360	31			0.01	0.05	1.74		2.51	4.66		0.95	0.16		0.023	0.03	4.104E-07	7.358E-06	
AREA2	178,435	44	0.96		0.01	0.05	1,74		3.54	6.58		1.34	0.16		0.021	0.03	4.016E-07	6.900E-06	2.731E-07
AREA3	95,106	23	0.96		0.01	0.05	1.74		1.89	3.51		0.71	0.16		0.018	0.03	4.170E-07	7.873E-06	5.124E-07
AREA4	235,625	58	0.96	0.19	0.01	0.05	2.90		4.67	8.69		1.77	0.16	0.0098	0.018	0.03	3.984E-07	7.215E-06	2.068E-07
AREA5	245,982	61	0.96	0.19	0.01	0.05	3.49		4.88	9.08		1.84	0.16	0.0098	0.015	0.03	3.971E-07	7.396E-06	1.981E-07
AREA6	99,198	24.5	0.96	0.19	0.01	0.05		0.12		3.66		0.50	0.16	0.08	0.015	0.03	3.910E-07	4.163E-06	4.912E-07
AREA7	6,000	1.48		0.05							0.22		0.04	0.0147			1.250E-07	5.127E-06	
AREA7	6,000	1,48		0.05									0.04					1.470E-06	
AREA7	6,000	1.48		0.05									0.04					1.470E-06	
AREA7	6,000	1.48		0.05									0.04					1.470E-06	
Paved Road	Line		0.081																4.113E-03
TOTAL ALL	AREAS (TPY)	244	4.86	0.75	0.05	0.28	11.62	0.12	17.49	36.19	0.22	7.10	1.11	0.11	0.11	0.19			
															Total =	80.2			

Table A-1 PM₁₀ Short-Term Emissions for Year 2010

Table A-2 PM₁₀ Short-Term Emissions for Year 2011

	1		1					Em	issions Distrib	ution (TPY)									
				VEHICLI	TRAVEL EN	IISSIONS			GRADING/EX	CAVATION			Die	sel & Gaso	line Emissio	ans 🔰			
Modeled Area ID	Modeled Area (m²)	Assigned Acreage	Commuter and Commercial Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operations	Earth Moving / Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering 춘 Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/ Commercia I Traffic (g/m ² /s)
Hours of Open	rations (hour en	nding)	1-24/ Vary	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1-24	7-18	1-24
U3AREA	126,360	31			0.01	0.12	1.18		2.66	4.77		0.95	0.17		0.059	0.06	4.550E-07	7.145E-06	
AREA2	178,435	44	3.03		0.01	0.12	1.18		3.75	6.73		1.34	0.17		0.053	0.06	4.319E-07	6.809E-06	8.676E-07
AREA3	95,106	23	3.03		0.01	0.12	1.18		2.00	3.59		0.71	0.17		0.043	0.06	4.702E-07	7.523E-06	1.628E-06
AREA4	235,625	58	3.03	0.31	0.01	0.12	1.97		4.95	8.89		1.77	0.17	0.0375	0.043	0.06	4.259E-07	7.087E-06	6.570E-07
AREA5	245,982	61	3.03	0.31	0.01	0.12	2.37		5.17	9.28		1.84	0.17	0.0375	0.033	0.06	4.220E-07	7.205E-06	6.294E-07
AREA6	99,198	24.5	3.03	0.31	0.01	0.12		0,38		3.74		0.79	0.17	0.29	0.033	0.06	8.304E-07	4.418E-06	1.561E-06
AREA7	6,000	1		0.08							0.43		0.04	0.0562			4.781E-07	9.347E-06	
AREA7	6,000	1.48		0.08									0.04					2.034E-06	
AREA7	6,000	1.48		0.08									0.04					2.034E-06	
AREA7	6,000	1.48		0.08									0.04				 	2.034E-06	
Paved Road	Line Source		0.30																1.535E-02
TOTAL ALL ARE	AS (TPY)	244	15.47	1.24	0.07	0.73	7.89	0.38	18.52	37.00	0.43	7.39	1.18	0.42	0.26	0.38		رئیس الدور المانتین ۱۹۹۰ (۱۹۹	
						1									Total =	91.4			

	Contraction of the second	Section 4						Em	issions Dis	stribution (TPY)			and the later				and the data have	C Le Colorado (Col
				VEHICL	E TRAVEL EN	AISSIONS			GRADING.E	XCAVATION			Die	esel & Gaso	line Emissio	ns			
Modeled Area ID	Modeled Area (m²)	Assigned Acreage	Commute r and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation S	Earth Moving / Excavation	Grading and Compactio N	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m²/s	TOTAL (g/m ² /s)	Commuter/ Commercia I Traffic (g/m ² /s)
Hours of O	perations (hour	ending)	1-24/ Vary	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1-24	7-18	1-24
U3AREA	126,360	31			0.00	0.09	0.00		1.50	1.81		0.95	0.08		0.097	0.09	4.573E-	07 2.816E-08	i
AREA2	178,435	44	3.33		0.00	0.09	0.00		2.12	2.55		1.34	0.08		0.088	0.09	4.328E-	07 2.774E-08	9.522E-07
AREA3	95,106	23	3.33		0.00	0.09	0.00		1.13	1.36		0.71	0.08		0.074	0.09	4.698E-	07 2.863E-06	1.786E-06
AREA4	235,625	58	3.33	0.09	0.00	0.09	0.00		2.80	3.37		1.77	0.08	0.0527	0.074	0.09	4.290E-	07 2.787E-08	7.211E-07
AREA5	245,982	61	3.33	0.09	0.00	0.09	0.00		2.93	3.52		1.84	0.08	0.0527	0.061	0.09	4.242E-	07 2.782E-08	6.907E-07
AREA6	99,198	25	3.33	0.09	0.00	0.09		0.50		1.42		0.50	0.08	0.40	0.061	0.09	7.982E-	07 1.731E-08	1.713E-06
AREA7	6,000	1		0.02							0.22		0.02	0.0790			6.717E-	07 4.366E-08	i
AREA7	6,000	1.48		0.02									0.02					7.090E-07	·
AREA7	6,000	1.48		0.02									0.02					7.090E-07	
AREA7	6,000	1.48		0.02									0.02					7.090E-07	1
Paved Road	Line Source		0.59																2.989E-02
TOTAL ALL	AREAS (TPY)	244	17.24	0.35	0.02	0.53	0.00	0.50	10.49	14.02	0.22	7.10	0.56	0.59	0.45	0.56			
				811-141-02-11-100	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1					9. 			Total =	52.6			

Table A-3	PM ₁₀	Short-Term	Emissions	for '	Year 201	2

Table A-4PM10Short-Term Emissions for Year 2013

								Em	issions Dis	tribution (T	PY)								
	a constant			VEHICLE	TRAVEL EN	ISSIONS			GRADING E	XCAVATION			Die	sel & Gaso	line Emissio	ons			
Modeled Area ID	Modeled Area (m²)	Assigned Acreage	Commute r and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation S	Earth Moving / Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter /Commerc ial Traffic (g/m ² /s)
Hours of Op-	erations (hour	ending)	1-24/ Vary	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1-24	7-18	1-24
UJAREA	126,360	31			0.00	0.08	0.00		0.95	0.36		0.56	0.03		0.080	0.09	2.924E-07	1.154E-06	
AREA2	178,435	44	4.62		0.00	0.08	0.00		1.34	0.50		0.80	0.03		0.071	0.09	2.710E-07	1,125E-06	1.321E-06
AREA3	95,106	23	4.62		0.00	0.08	0.00		0.71	0.27		0.42	0.03		0.057	0.09	3.015E-07	1.187E-06	2.478E-06
AREA4	235,625	58	4.62	0.00	0.00	0.08	0.00		1.77	0.66		1.05	0.03	0.0527	0.057	0.09	2.690E-07	1.107E-06	1.000E-06
AREA5	245,982	61	4.62	0.00	0.00	0.08	0.00		1.85	0.69		1.10	0.03	0.0527	0.043	0.09	2.645E-07	1.105E-06	9.579E-07
AREA6	99,198	25	4.62	0.00	0.00	0.08		0.49		0.28		0.00	0.03	0.40	0.043	0.09	5.236E-07	4.150E-07	2.375E-06
AREA7	6,000	1.48		0.00							0.00		0.01	0.0790			6.717E-07	1.229E-07	
AREA7	6,000	1.48		0.00						·····			0.01					1.229E-07	
AREA7	6,000	1.48		0.00									0.01					1.229E-07	
AREA7	6,000	1.48		0.00									0.01					1.229E-07	
Paved Road	Line Source		0.88																4.496E-02
TOTAL ALL A	REAS (TPY)	244	23.97	0.00	0.01	0.48	0.00	0.49	6.62	2.76	0.00	3.94	0.20	0.59	0.35	0.56			
											1				Total =	40.0			

				Emissions Distribution (TPY)																
		P. Lambarra		VEHICLE	TRAVEL EM	ISSIONS			GRADING E	EXCAVATION			Di	esel & Gaso	line Emissio	ins				
Modeled Area ID	Modeled Area (m²)	Assigned Acreage	Commuter and Commercia I Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation S	Earth Moving / Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	1.1.1	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/ Commercia I Traffic (g/m ² /s)
Hours of Op	erations (hour en	nding)	1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18		1-24	7-18	1-24
UJAREA	126,360	31			0.00	0.02	0.00		0.24	0.12		0.95	0.01		0.050	0.08		4.101E-07	3.641E-07	
AREA2	178,435	44	1.53		0.00	0.02	0.00		0.34	0.17		1.34	0.01		0.048	0.08		4.015E-07	3.417E-07	4.365E-07
AREA3	95,106	23	1.53		0.00	0.02	0.00		0.18	0.09		0.71	0.01		0.045	0.08		4.169E-07	3.894E-07	8.190E-07
AREA4	235,625	58	1.53	0.00	0.00	0.02	0.00		0.44	0.22		1.77	0.01	0.0098	0.045	0.08		3.983E-07	3.285E-07	3.306E-07
AREA5	245,982	61	1.53	0.00	0.00	0.02	0.00		0.46	0.23		1.84	0.01	0.0098	0.042	0.08		3.971E-07	3.268E-07	3.167E-07
AREA6	99,198	25	1.53	0.00	0.00	0.02		0.12		0.09		0.00	0.01	0.08	0.042	0.08		1.352E-07	1.935E-07	7.852E-07
AREA7	6,000	1.48		0.00							0.00		0.00	0.0147				1.250E-07	6.301E-08	
AREA7	6,000	1.48		0.00									0.00						6.301E-08	
AREA7	6,000	1.48		0.00									0.00						6.301E-08	
AREA7	6,000	1.48		0.00									0.00						6.301E-08	
Paved Road			0.30																	1.530E-02
TOTAL ALL ARE	EAS (TPY)	244	7.93	0.00	0.00	0.12	0.00	0.12	1.66	0.92	0.00	6.60	0.10	0.11	0.27	0.48				
[Total =	18.3				

Table A-5 PM₁₀ Short-Term Emissions for Year 2014

Table A-6 PM₁₀ Short-Term Emissions for Year 2015

		1						Emis	ssions Dist	ribution (T	PY)								
				VEHICLE	TRAVEL EM	ISSIONS			GRADING E	CAVATION			Die	sel & Gaso	line Emissie	ns			Contraction of the
Modeled Area ID	Modeled Area (m²)	Assigned Acreage	Commuter and Commercial Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Baten Plant Operation S	Earth Moving / Excavation	Grading and Compacti on	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/ Commerci al Traffic (g/m ² /s)
Hours of Oper	ations (hour	ending)	1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1-24	7-18	1-24
UJAREA	126,360	31			0.00	0.00	0.00		0.05	0.00		0.95	0.00		0.017	0.03	3.892E-07	7.216E-08	
AREA2	178,435	44	0.11		0.00	0.00	0.00		0.07	0.00		1.34	0.00		0.017	0.03	3.870E-07	6.353E-08	3.211E-08
AREA3	95,106	23	0,11		0.00	0.00	0.00		0.04	0.00		0.71	0.00		0.016	0.03	3.906E-07	8.187E-08	6.024E-08
AREA4	235,625	58	0.11	0.00	0.00	0.00	0.00		0.10	0.00		1.77	0.00	0.0046	0.016	0.03	3.866E-07	5.844E-08	2.431E-08
AREA5	245,982	61	0.11	0.00	0.00	0.00	0.00		0.10	0.00		1.84	0.00	0.0046	0.015	0.03	3.862E-07	5.778E-08	2.329E-08
AREA6	99,198	25	0.11	0.00	0.00	0.00		0.00		0.00		0.00	0.00	0.04	0.015	0.03	2.658E-08	3.767E-08	5.775E-08
AREA7	6,000	1		0.00							0.00		0.00	0.0070			5.923E-08	1.441E-08	
AREA7	6,000	1.48		0.00									0.00					1.441E-08	
AREA7	6,000	1.48		0.00									0.00					1.441E-08	
AREA7	6,000	1.48		0.00									0.00					1.441E-08	
Paved Road			0.02																1.222E-03
TOTAL ALL AF	REAS (TPY)	244	0.59	0.00	0.00	0.00	0.00	0.00	0.37	0.00	0.00	6.60	0.02	0.05	0.09	0.20			
								1. See 2. See 3.	1						Total =	7.9			

(*************************************	T	1	1					Emi	ssions Dis	tribution ((PY)							T	1	
				VEHICLI	E TRAVEL EN	AISSIONS			GRADING E	XCAVATION			Die	sel & Gaso	line Emissio	ons				
Modeled Area ID	Modeled Area (m²)	Assigned Acreage	Commute r and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation \$	Earth Moving / Excavation	Grading and Compacti on	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	T ((FOTAL g/m ² /s)	TOTAL (g/m ² /s)	Commuter/ Commerci al Traffic (g/m ² /s)
Hours of Ope	rations (hour e	nding)	1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18		1-24	7-18	1-24
U3AREA	126,360	31			0.00	0.00	0.00		0.03	0.00		0.95	0.00		0.007	0.02	3.	.852E-07	3.474E-08	
AREA2	178,435	44	0.11		0.00	0.00	0.00		0.04	0.00		1.34	0.00		0.007	0.02	3.	.843E-07	3.082E-08	3.211E-08
AREA3	95,106	23	0.11		0.00	0.00	0.00		0.02	0.00		0.71	0.00		0.007	0.02	3.	.858E-07	3.916E-08	6.024E-08
AREA4	235,625	58	0.11	0.00	0.00	0.00	0.00		0.05	0.00		1.77	0.00	0.0023	0.007	0.02	3	.842E-07	2.851E-08	2.431E-08
AREA5	245,982	61	0.11	0.00	0.00	0.00	0.00		0.05	0.00		1,84	0.00	0.0023	0.006	0.02	3	.840E-07	2.820E-08	2.329E-08
AREA6	99,198	25	0.11	0.00	0.00	0.00		0.00		0.00			0.00	0.02	0.006	0.02	1	270E-08	1.713E-08	5.775E-08
AREA7	6,000	1		0.00							0.00		0.00	0.0034			2	.880E-08	4.046E-09	
AREA7	6,000	1.48		0.00									0.00						4.046E-09	
AREA7	6,000	1.48		0.00									0.00						4.046E-09	
AREA7	6,000	1.48		0.00									0.00						4.046E-09	
Paved Road	930	0.23	0.00																	0.000E+00
TOTAL ALL AR	EAS (TPY)	244	0.56	0.00	0.00	0.00	0.00	0.00	0.18	0.00	0.00	6.60	0.01	0.03	0.04	0.09	1			
															Total =	7.5				

Table A-7 PM₁₀ Short-Term Emissions for Year 2016

Table A-8 PM₁₀ Annual Emissions for Year 2010

	1			T					En	nissions Di	stribution (TPY)								
					VEHICLE	TRAVEL EM	ISSIONS			GRADING &	XCAVATION			Die	sel & Gasol	in e Emissio	15			
Modeled Area ID	Map Area Nos.	Modeled Area (m²)	Assigned Acreage	Commuter and Commercia I Traffie	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation S	Earth Moving / Excavation	Grading and Compactio N	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earth w ork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/C ommercial Traffic (g/m ² /s)
	Hours of Operations	s (hour ending)		1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1-24	7-18	1-24
UJAREA	Unit 3 Area	126,360	31			0.01	0.05	1.74		2.51	4.66		0.95	0.16		0.023	0.03	2.811E-07	5.041E-06	
AREA2	1,2,8,9	178,435	44	0.96		0.01	0.05	1,74		3.54	6.58		1.34	0,16		0.021	0.03	2.751E-07	4.727E-06	1.871E-07
AREA3	CTCWS,10,11	95,106	23	0.96		0.01	0.05	1.74		1.89	3.51		0.71	0.16		0.018	0.03	2.856E-07	5.394E-06	3.509E-07
AREA4	3,4,7,12	235,625	58	0.96	0.19	0.01	0.05	2.90		4.67	8.69		1.77	0.16	0.0098	0.018	0.03	2.729E-07	4.942E-06	1.417E-07
AREA5	5,13	245,982	61	0.96	0.19	0.01	0.05	3 49		4.88	9.08		1.84	0.16	0.0098	0.015	0.03	2.720E-07	5.066E-06	1.357E-07
AREA6	6	99,198	24.5	0.96	0.19	0.01	0.05		0.12		3.66		0.31	0.16	80,0	0.015	0.03	2.007E-07	2.853E-06	3.365E-07
AREA7	Barge 1	6,000	1.48		0.05							0.22		0.04	0.0147			8.565E-08	3.512E-06	
AREA7	Barge 2	6,000	1.48		0.05									0.04					1.007E-06	
AREA7	Barge 3	6,000	1.48		0.05									0.04					1.007E-06	
AREA7	Barge 4	6,000	1.48		0.05									0.04					1.007E-06	
Paved Road	Paved Road			0.073													and the second			2.547E-03
TOTAL ALI	AREAS (TPY)		244	4.85	0.75	0.05	0.28	11.62	0.12	17.49	36.19	0.22	6.91	1.11	0.11	0.11	0.21			
		1														Total =	80.0			

	1	1	1	T					I	Emissions Dist	ribution (TF	PY)									
					VEHICL	E TRAVEL EN	IISSIONS			GRADING EX	CAVATION			Die	sel & Gaso	line Emissio	ns				
Modeled Area ID	Map Area llos.	Modeled Area (m²)	Assigned Acreage	Commuter and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic, Site	Excavated Dirt to Map Area 5	Baten Plant Operation S	Earth Moving Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)		TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/C ommercial Traffic (g/m ² /s)
Hou	rs of Operations (h	our ending)	at saint a	1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18		1-24	7-18	1-24
U3AREA	Unit 3 Area	126,360	31			0.01	0.12	1.18		2.66	4.77		0.95	0.17		0.059	0.07	and and	3.116E-07	4.896E-06	
AREA2	1,2,8,9	178,435	44	3.03		0.01	0.12	1,18		3.75	6.73		1.34	0.17		0.053	0.07		2.958E-07	4.665E-06	5.942E-07
AREA3	CTCWS,10,11	95,106	23	3.03		0.01	0.12	1 18		2.00	3.59		0.71	0.17		0.043	0.07		3.221E-07	5.156E-06	1.115E-06
AREA4	3,4,7,12	235,625	58	3.03	0.31	0.01	0.12	1.97		4.95	8.89	1	1.77	0.17	0.0375	0.043	0.07		2.917E-07	4.856E-06	4.500E-07
AREA5	5,13	245,982	61	3.03	0.31	0.01	0.12	2.37		5.17	9.28		1.84	0.17	0.0375	0.033	0.07		2.891E-07	4.936E-06	4.311E-07
AREA6	6	99,198	24.5	3.03	0.31	0.01	0.12		0.38		3.74		0.49	0.17	0.29	0.033	0.07		4.622E-07	3.030E-06	1.069E-06
AREA7	Barge 1	6,000	1		0.08	a station of the				···		0.43		0.04	0.0562				3.275E-07	6.402E-06	
AREA7	Barge 2	6,000	1.48		0.08									0.04						1.393E-06	
AREA7	Barge 3	6,000	1.48		0.08									0.04						1.393E-06	
AREA7	Barge 4	6,000	1.48		0.08									0.04						1.393E-06	
Paved Road	Paved Road			0.27																	9.505E-03
TOTAL ALL ARE	EAS (TPY)		244	15.44	1.24	0.07	0.73	7.89	0.38	18.52	37.00	0.43	7.09	1.18	0.42	0.26	0.41				
1				1	1		100									Total =	91.1				

Table A-9 PM₁₀ Annual Emissions for Year 2011

PM₁₀ Annual Emissions for Year 2012 Table A-10

			1	1					Em	issions Dis	tribution ((PY)									
	220		the deat		VEHICLI	E TRAVEL EN	AISSIONS			GRADING E	XCAVATION			Die	sel & Gaso	line Emissio	กร				Contraction (
Modeled Area ID	a Map Area Nos.	Modeled Area (m²)	Assigned Acreage	Commute r and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Plant Operation S	Earth Moving / Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)		TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/C ommercial Traffic (g/m ² /s)
Ho	ours of Operations	(hour ending)		1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18		1-24	7-18	1-24
USAREA	Unit 3 Area	126,360	31			0.00	0.09	0.00		1.50	1.81		0.95	0.08		0.097	0,10		3.132E-07	1.934E-06	
AREA2	1,2,8,9	178,435	44	3.33		0.00	0.09	0.00		2.12	2.55		1.34	0.08		0.088	0.10		2.964E-07	1.904E-06	6.522E-07
AREA3	CTCWS,10,11	95,106	23	3.33		0.00	0.09	0.00		1.13	1.36		0.71	0.08		0.074	0.10		3.218E-07	1.968E-06	1.224E-06
AREA4	3,4,7,12	235,625	58	3.33	0.09	0.00	0.09	0.00		2.80	3.37		1.77	0.08	0.0527	0.074	0.10		2.938E-07	1.912E-06	4.939E-07
AREA5	5,13	245,982	61	3.33	0.09	0.00	0.09	0.00		2.93	3.52		1.84	0.08	0.0527	0.061	0.10		2.905E-07	1.909E-06	4.731E-07
AREA6	6	99,198	25	3.33	0.09	0.00	0.09		0.50		1.42		0.31	0.08	0.40	0.061	0.10	19411	4.796E-07	1.192E-06	1.173E-06
AREA7	Barge 1	6,000	1		0.02							0.22		0.02	0.0790				4.601E-07	2.990E-06	
AREA7	Barge 2	6,000	1.48		0.02									0.02						4.856E-07	
AREA7	Barge 3	6,000	1.48		0.02									0.02						4.856E-07	
AREA7	Barge 4	6,000	1.48		0.02									0.02						4.856E-07	
Paved Road	Paved Road			0.53																	1.851E-02
TOTAL ALL	AREAS (TPY)		244	17.18	0.35	0.02	0.53	0.00	0.50	10.49	14.02	0.22	6.91	0.56	0.59	0.45	0.62				
	1		1		£	a service service and the	S	Second second	in a second be							Total =	52.4				

	1		1						En	nissions Di	stribution (1	(YPY)								
	Sec. 24				VEHICL	E TRAVEL EN	ISSIONS			GRADINGE	XCAVATION			Di	esel & Gasol	line Emissio	ins			
Modeled Area ID	Map Area Ilos.	Modeled Area (m²)	Assigned Acreage	Commute r and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation S	Earth Moving / Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/C ommercial Traffic (g/m ² /s)
Hours	of Operation	s (hour endi	ng)	1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1-24	7-18	1-24
UBAREA	Unit 3 Area	126,360	31			0.00	0.08	0.00		0.95	0.36		0.56	0.03		0.080	0.10	2.003E-07	7.958E-07	
AREA2	1,2,8,9	178,435	44	4.62		0.00	0.08	0.00		1.34	0.50		0.80	0.03		0.071	0.10	1.856E-07	7.742E-07	9.045E-07
AREA3	TCWS,10,	95,106	23	4.62		0.00	0.08	0.00		0.71	0.27		0.42	0.03		0.057	0.10	2.065E-07	8.202E-07	1.697E-06
AREA4	3,4,7,12	235,625	58	4.62	0.00	0.00	0.08	0.00		1.77	0.66		1.05	0.03	0.0527	0.057	0.10	1.843E-07	7.614E-07	6.849E-07
AREA5	5,13	245,982	61	4.62	0.00	0.00	0.08	0.00		1.85	0.69		1.10	0.03	0.0527	0.043	0.10	1.812E-07	7.598E-07	6.561E-07
AREA6	6	99,198	25	4.62	0.00	0.00	0.08		0.49		0.28		0.00	0.03	0.40	0.043	0.10	3.586E-07	2.911E-07	1.627E-06
AREA7	Barge 1	6,000	1.48		0.00							0.00		0.01	0.0790			4.601E-07	8.421E-08	
AREA7	Barge 2	6,000	1.48		0.00									0.01					8.421E-08	
AREA7	Barge 3	6,000	1.48		0.00									0.01					8.421E-08	
AREA7	Barge 4	6,000	1.48		0.00									0.01					8.421E-08	
Paved Road				0.80																2.784E-02
TOTAL ALL A	REAS (TPY		244	23.89	0.00	0.01	0.48	0.00	0.49	6.62	2.76	0.00	3.94	0.20	0.59	0.35	0.62			
																Total =	40.0			

Table A-11 PM₁₀ Annual Emissions for Year 2013

Table A-12 PM₁₀ Annual Emissions for Year 2014

									Em	issions Dis	tribution (1	TPY)					100 C 40 C 100			
					VEHICL	E TRAVEL EN	ISSIONS			GRADING E	XCAVATION			Di	esel & Gaso	line Emissio	ns	1.1.1		
Modeled Area ID	Map Area Nos.	Modeled Area (m²)	Assigned Acreage	Commuter and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation S	Earth Moving / Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/C ommercial Traffic (g/m ² /s)
Hours	of Operation	is (hour ending)		1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	 1-24	7-18	1-24
U3AREA	Unit 3 Area	126,360	31			0.00	0.02	0.00		0.24	0.12		0.95	0.01		0.050	0.09	2.809E-07	2.548E-07	
AREA2	1,2,8,9	178,435	44	1.53		0.00	0.02	0.00		0.34	0.17		1.34	0.01		0.048	0.09	 2.750E-07	2.378E-07	2.990E-07
AREA3	TCWS,10,	95,106	23	1.53		0.00	0.02	0.00		0.18	0.09		0.71	0.01		0.045	0.09	 2.855E-07	2.738E-07	5.610E-07
AREA4	3,4,7,12	235,625	58	1.53	0.00	0.00	0.02	0.00		0.44	0.22		1.77	0.01	0.0098	0.045	0.09	2.728E-07	2.279E-07	2.264E-07
AREA5	5,13	245,982	61	1.53	0.00	0.00	0.02	0.00		0.46	0.23		1.84	0.01	0.0098	0.042	0.09	2.720E-07	2.266E-07	2.169E-07
AREA6	6	99,198	25	1.53	0.00	0.00	0.02		0.12		0.09		0.00	0.01	0.08	0.042	0.09	 9.258E-08	1.394E-07	5.378E-07
AREA7	Barge 1	6,000	1.48		0.00							0.00		0.00	0.0147			 8.565E-08	4.315E-08	
AREA7	Barge 2	6,000	1.48	the state of the second second	0.00									0.00					4.315E-08	
AREA7	Barge 3	6,000	1.48		0.00									0.00					4.315E-08	
AREA7	Barge 4	6,000	1.48		0.00									0.00					4.315E-08	
Paved Road				0.27																9.475E-03
TOTAL ALL ARE	AS (TPY)		244	7.90	0.00	0.00	0.12	0.00	0.12	1.66	0.92	0.00	6.60	0.10	0.11	0.27	0.54			
																Total =	18.4			

			1						Em	issions Di	stribution (TPY)				Salah Pangala				e contra de la con
	Print and the second				VEHICL	E TRAVEL EN	AISSIONS			GRADING E	EXCAVATION			Di	esel & Gaso	line Emissio	ons			
Modeled Area ID	Map Area Hos.	Modeled Area (m²)	Assigned Acreage	Commute r and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation s	Earth Moving / Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Commuter/ Commercia I Traffic (g/m ² /s)
Hours	of Operations (I	hour ending	J)	1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1-24	7-18	1-24
UJAREA	Unit 3 Area	126,360	31			0.00	0.00	0.00		0.05	0.00		0.95	0.00		0.017	0.04	2.666E-07	5.210E-08	
AREA2	1,2,8,9	178,435	44	0.11		0.00	0.00	0.00		0.07	0.00		1.34	0.00		0.017	0.04	2.651E-07	4.541E-08	2.199E-08
AREA3	CTCWS,10,11	95,106	23	0.11		0.00	0.00	0 00		0.04	0.00		0.71	0.00		0.016	0.04	2.675E-07	5.963E-08	4.126E-08
AREA4	3,4,7,12	235,625	58	0.11	0.00	0.00	0.00	0.00		0.10	0.00	· · · · · · · · · · · · · · · · · · ·	1.77	0.00	0.0046	0.016	0.04	2.648E-07	4.146E-08	1.665E-08
AREA5	5,13	245,982	61	0.11	0.00	0.00	0.00	0.00		0.10	0.00		1.84	0.00	0.0046	0.015	0.04	2.645E-07	4.095E-08	1.595E-08
AREA6	6	99,198	25	0.11	0.00	0.00	0.00		0.00		0.00		0.00	0.00	0.04	0.015	0.04	1.820E-08	2.921E-08	3.956E-08
AREA7	Barge 1	6,000	1		0.00							0.00		0.00	0.0070			4.057E-08	9.872E-09	
AREA7	Barge 2	6,000	1.48		0.00									0.00					9.872E-09	
AREA7	Barge 3	6,000	1.48		0.00									0.00					9.872E-09	
AREA7	Barge 4	6,000	1.48		0.00							1.1		0.00					9.872E-09	
Paved Road				0.02																7.569E-04
TOTAL ALL A	REAS (TPY)		244	0.58	0.00	0.00	0.00	0.00	0.00	0.37	0.00	0.00	6.60	0.02	0.05	0.09	0.23			*
																Total =	8.0			

Table A-13 PM₁₀ Annual Emissions for Year 2015

Table A-14 PM₁₀ Annual Emissions for Year 2016

		CONTRACTOR OF A							Em	issions Dis	stribution (TPY)								C G G G G G G G G G G G G G G G G G G G	
	1220		a E palitica		VEHICL	E TRAVEL EN	MISSIONS			GRADING/E	XCAVATION			Die	sel & Gaso	line Emissio	ans				
Modeled Area ID	Map Area Nos.	Modeled Area (m²)	Assigned Acreage	Commute r and Commerci al Traffic	Barge to Concrete Plant	Unpaved road constructi on	Concrete Plant to Applic. Site	Excavated Dirt to Map Area 5	Batch Plant Operation S	Earth Moving / Excavation	Grading and Compactio n	Sand and Aggregate at Barge	Wind Erosion	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	T0 (g/1	TAL n ² /s)	TOTAL (g/m ² /s)	Commuter/C ommercial Traffic (g/m ² /s)
Hours	of Operation	s (hour ending	1)	1-24	7-18	7-18	1-24	7-18	1-24	7-18	7-18	7-18	1-24	7-18	1-24	1-24	7-18	1	-24	7-18	1-24
UJAREA	Unit 3 Area	126,360	31			0.00	0.00	0.00		0.03	0.00		0.95	0.00		0.007	0.02	2.63	9E-07	2.513E-08	
AREA2	1,2,8,9	178,435	44	0.11		0.00	0.00	0.00		0.04	0.00		1.34	0.00		0.007	0.02	2.63	32E-07	2.206E-08	2.199E-08
AREA3	TCWS,10,	95,106	23	0.11		0.00	0.00	0.00		0.02	0.00		0.71	0.00		0.007	0.02	2.64	2E-07	2.860E-08	4.126E-08
AREA4	3,4,7,12	235,625	58	0.11	0.00	0.00	0.00	0.00		0.05	0.00		1.77	0.00	0.0023	0.007	0.02	2.63	31E-07	2.024E-08	1.665E-08
AREA5	5,13	245,982	61	0.11	0.00	0.00	0.00	0.00		0.05	0.00		1.84	0.00	0.0023	0.006	0.02	2.63	0E-07	2.000E-08	1.595E-08
AREA6	6	99,198	25	0.11	0.00	0.00	0.00		0.00		0.00			0.00	0.02	0.006	0.02	8.69	9E-09	1.344E-08	3.956E-08
AREA7	Barge 1	6,000	1		0.00							0.00		0.00	0.0034			1.97	72E-08	2.771E-09	
AREA7	Barge 2	6,000	1.48		0.00									0.00						2.771E-09	
AREA7	Barge 3	6,000	1.48		0.00									0.00						2.771E-09	
AREA7	Barge 4	6,000	1.48		0.00									0.00						2.771E-09	
Paved Road				0.00												1					0.000E+00
TOTAL ALL AR	EAS (TPY)		244	0.56	0.00	0.00	0.00	0.00	0.00	0.18	0.00	0.00	6.60	0.01	0.03	0.04	0.11				
			10					1								Total =	7.5				

					MOD	ELED CO	D EMISS	IONS			MC	DELED	SO2 EMISS	IONS	
				Dies	sel & Gasoli	ine Emissio	ns				Diesel & Gas	oline Emissio	ons		
Modeled Area ID	Map Area Hos.	Modeled Area (m²)	Assigned Acreage	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)
Hourso	of Operations (h	our ending)	7-18	1-24	1-24	7-18	1-24	7-18	7-18	1-24	1-24	7-18	1-24	7-18
U3AREA	Unit 3 Area	126,360	31	0.82		1.172	4.96	4.731E-07	4.675E-06	0.10		0.180	0.16	7.263E-08	2.129E-07
AREA2	1,2,8,9	178,435	44	0.82		1.084	4.96	3.098E-07	3.310E-06	0.10		0.162	0.16	4.620E-08	1.507E-07
AREA3	CTCWS,10,11	95,106	23	0.82		0.951	4.96	5.103E-07	6.211E-06	0.10		0.134	0.16	7.195E-08	2.828E-07
AREA4	3,4,7,12	235,625	58	0.82	0.5521	0.951	4.96	3.255E-07	2.507E-06	0.10	0.0666	0.134	0.16	4.347E-08	1.142E-07
AREA5	5,13	245,982	61	0.82	0.5521	0.819	4.96	2.844E-07	2.401E-06	0.10	0.0666	0.107	0.16	3.594E-08	1.093E-07
AREA6	6	99,198	25	0.82	1.3830	0.819	4.96	1.132E-06	5.955E-06	0.10	0.1653	0.107	0.16	1.399E-07	2.712E-07
AREA7	Barge 1	6,000	1	0.21	0.8281			7.041E-06	3.503E-06	0.03	0.0999			8.498E-07	4.442E-07
AREA7	Barge 2	6,000	1.48	0.21					3.503E-06	0.03					4.442E-07
AREA7	Barge 3	6,000	1.48	0.21					3.503E-06	0.03					4.442E-07
AREA7	Barge 4	6,000	1.48	0.21					3.503E-06	0.03					4.442E-07
				5.77	3.32	5.80	29.79			0.73	0.40	0.82	0.95		
						Total =	44.7					Total =	2.9		

Table A-15 CO and SO₂ Short-Term Emissions for Year 2011

Table A-16 NOx and SO ₂ Annual Emissions for Year	r 201	1	1		l		I	I	l	1	•	ľ)))))	1	C	Û	J)	J))	J)))))))))))))))	J	J	Û	Û	Û	Û	J	J	J	J	J	Û	Û	J	J	J	J	J	J	J	J	J	J	J	Û	Û	Û	1	J)	J	J	Q	ſ	l	ĺ	ĺ	l	ĺ	ĺ	l	l	l	l	ļ	ļ	1	2	2	2	1			1	ſ	l	1	ĉ	ŝ	h	9	e	(ſ	ſ	١	1		ľ	ľ	1)	C	Ī	f	1	k	5	S	۱	n	I)	0	C	i	j	5	ŝ	S	s	5	s	Ś	i	۱	n	n	r	2
12	2	0	0	01	01	01	01	01	01	0	0	0	0	0	0	(((l	(((((((0	0	0	0	0	(((0	0	0	0	0	(((((((((((((((((((((((((((((((((((l	ļ	ļ	ļ		ļ	ļ	1	1	1	1	ļ		í)))	2	2	2	2	2	r 2	r 2	ar 2	ar 2	ar 2	ar 2	ar 2	ear 2	ear 2	ear 2	ear 2	Year 2	Year 2	Year 2	Year 2	r Year 2	r Year 2	or Year 2	or Year 2	or Year 2	for Year 2	for Year 2	for Year 2	s for Year 2	s for Year 2	is for Year 2	ns for Year 2	ns for Year 2	ns for Year 2	ons for Year 2	ons for Year 2	ions for Year 2	ions for Year 2	ions for Year 2	sions for Year 2	ssions for Year 2	ssions for Year 2	issions for Year 2	issions for Year 2	hissions for Year 2	nissions for Year 2	missions for Year 2			
12	2	20	:0	.01	201	201	:01	:01	.01	:0°	.0	20	20	.0	<u>'C</u>	!(!((1	1	(!((!(!(!(<u>'C</u>	20	2	<u>'C</u>	<u>'C</u>	!(!(!(<u>'C</u>	<u>'C</u>	2	2	2	!(!((1	1	1	1	1	!(!(!(1	1	1	!(1	1	1	1	1	1	!(1	!(!(!(!(!(!(((!(((!(1	1	1	1	1	1	1	1	1	1	1)))				1	2	2	2	1	r i	Ir 2	ar 2	ar 2	ar 2	ari	ar a	ear 2	ear 2	ear 2	ear 2	Year 2	Year 2	Year	Year 2	r Year 2	r Year 2	or Year 2	or Year 2	or Year 2	for Year 2	for Year 2	for Year 2	s for Year 2	s for Year 2	is for Year 2	ns for Year 2	ns for Year 2	ns for Year 2	ons for Year 2	ons for Year 2	ons for Year 2	ions for Year 2	ions for Year 2	sions for Year 2	ssions for Year 2	ssions for Year 2	issions for Year 2	issions for Year 2	hissions for Year 2	nissions for Year 2	missions for Year 2			
12	ļ	20	<u>20</u>	201	201	201	201	201	201	<u>'0</u>	20	20	20	20	2	!(2	1	4	1	2	2	2	2	2	!(2	20	20	2	2	!(!(!(2	2	<u>'C</u>	<u>'C</u>	<u>'C</u>	!(!(2	1	1	1	1	1	1	1	1	1	1	1	1	4	4	4	1	1	4	1	4	1	1	1	1	1	1	4	!(2	!(!(1	4	4	4	4	4	4	4	4	4	4	4	2	2)					2	2	2	1	r i	r i	ir 2	ar 2	ar 2	ari	ear 2	rear 2	Year	Year	Year 2	r Year 2	r Year 2	or Year 2	or Year 2	or Year 2	for Year 2	for Year 2	for Year 2	s for Year 2	s for Year 2	is for Year 2	ns for Year 2	ns for Year 2	ns for Year 2	ons for Year 2	ons for Year 2	ons for Year 2	ions for Year 2	ions for Year 2	sions for Year 2	ssions for Year 2	ssions for Year 2	issions for Year 2	issions for Year 2	hissions for Year 2	nissions for Year 2	missions for Year 2							
l		r 20	r 20'	r 201	r 20'	r 20	r 2(r 2(r 2(r 21	r 20	r 2(r 20	r 20	r 20	r 20	r 20	r 20	r 2(r 2(r 2(r 20	r 2(r 2(r 2(r 20	r 21	r 21	r 21	r 20	r 20	r 21	r 20	r 21	r 20	r 2(r 20	r 21	r 2	r 2	r 2	r 2	r 2	r 2	r 2	r 2	r 2	r 2	٢	٢	٢	ľ			l	ł	a	a	a	a	ea	ea	ea	(ea	Yea	Yea	Yea	' Yea	r Yea	r Yea	or Yea	or Yea	or Yea	for Yea	for Yea	for Yea	s for Yea	s for Yea	is for Yea	ns for Yea	ns for Yea	ns for Yea	ons for Yea	ons for Yea	ons for Yea	ions for Yea	ions for Yea	sions for Yea	sions for Yea	sions for Yea	sions for Yea	ssions for Yea	ssions for Yea	issions for Yea	issions for Yea	nissions for Yea	nissions for Yea	missions for Yea																																											
I	ł	r 20	r 20'	r 201	r 20′	r 20	r 20	r 2(r 2(r 20	r 20	r 2(r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 20	r 2(r 20	r 2(r 20	r 20	r 21	r 21	r 21	r 20	r 21	r 21	r 2	r 2	r 2	r 2	r 2	r 2	r 2	r 2	r 2	r 2	r	r	r	ľ	ł	l	ļ	ļ	3	a	a	a	ea	ea	ea	(ea	Yea	Yea	Yea	· Yea	r Yea	r Yea	or Yea	or Yea	or Yea	for Yea	for Yea	for Yea	s for Yea	s for Yea	is for Yea	ns for Yea	ns for Yea	ns for Yea	ons for Yea	ons for Yea	ions for Yea	ions for Yea	ions for Yea	sions for Yea	sions for Yea	sions for Yea	sions for Yea	ssions for Yea	ssions for Yea	issions for Yea	issions for Yea	nissions for Yea	nissions for Yea	missions for Yea																																										

			1		MOD	ELED NO	Dx EMISS	SIONS			M	ODELED	SO2 EMIS	SIONS	a nasi inak
				Die	sel & Gaso	line Emissio	ns			Die	esel & Gase	oline Emissio	ons	21	
Modeled Area ID	Map Area Hos.	Modeled Area (m²)	Assigned Acreage	Dewatering 춘 Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)	Dewatering & Earthwork	Batch Plant	Concrete	Others (incl. gasoline)	TOTAL (g/m ² /s)	TOTAL (g/m ² /s)
Hours	s of Operations (ho	our ending)		7-18	1-24	1-24	7-18	1-24	7-18	7-18	1-24	1-24	7-18	1-24	7-18
U3AREA	Unit 3 Area	126,360	31	6.65		2.721	2.79	7.524E-07	5.223E-06	0.27		0.113	0.11	3.129E-08	2.085E-07
AREA2	1,2,8,9	178,435	44	6.65		2.381	2.79	4.662E-07	3.699E-06	0.27		0.099	0.11	1.947E-08	1.477E-07
AREA3	CTCWS,10,11	95,106	23	6.65		1.871	2.79	6.874E-07	6.940E-06	0.27		0.079	0.11	2.896E-08	2.770E-07
AREA4	3,4,7,12	235,625	58	6.65	1.2905	1.871	2.79	4.688E-07	2.801E-06	0.27	0.0513	0.079	0.11	1.929E-08	1.118E-07
AREA5	5,13	245,982	61	6.65	1.2905	1.361	2.79	3.767E-07	2.683E-06	0.27	0.0513	0.058	0.11	1.555E-08	1.071E-07
AREA6	6	99,198	25	6.65	3.0876	1.361	2.79	1.567E-06	6.653E-06	0.27	0.1259	0.058	0.11	6.485E-08	2.656E-07
AREA7	Barge 1	6,000	1	1.66	1.9357		1.4	1.127E-05	1.936E-05	0.07	0.0769			4.477E-07	7.846E-07
AREA7	Barge 2	6,000	1.48	1.66					1.936E-05	0.07					7.846E-07
AREA7	Barge 3	6,000	1.48	1.66					1.936E-05	0.07					7.846E-07
AREA7	Barge 4	6,000	1.48	1.66					1.936E-05	0.07					7.846E-07
		· · ·		46.54	7.60	11.57	16.77			1.89	0.31	0.49	0.65		
						Total =	82.5					Total =	3.3		

ENSR

Appendix B

Construction Emissions Calculations

				UNPAVED ROAL	DS					
Item No. Construction Activity	Operation Type	Mean vehicle weight (tons)	Units	2010	2011	2012	2013	2014	2015	TOTAL
11 Building Excavation	Haul to Stockpile	20.4	VMT	546,000	-	-	-	-	-	546,000
15 Structural Backfill	Haul to Power Block	20.4	VMT	-	447,000	-	-	-	-	447,000
23 Unpaved Construction	Motor Grading	29	VMT	2,500	3,800	2,500	1,300	-	-	10,100
26 Concrete Operations	Mat. Trans. Barge to	51.2	VMT	35,200	70,380	35,200		-	-	140,780
29 Concrete Operations	Ready Mix Transport	28.0	VMT	13,300	41,200	54,000	52,800	13,200	······································	174,500
31 Vehicle Traffic	Commuters	2	VMT	205,000	838,000	1,670,000	2,536,000	863,000	69,000	6,181,000
33 Vehicle Traffic	Commercial	2	VMT	19,400	21,700	14,500	2,730	350	-	58,680
										r
		EF Ib/VMT	PM ₁₀	1.22	1.01	0.56	0.52	0.51	0.46	
11 Building Excavation	Haul to Stockpile		tpy PM ₁₀	11.62	-	-	-	-	-	
15 Structural Backfill	Haul to Power Block	-	tpy PM ₁₀	0.00	7.89		-	-	-	
23 Unpaved Construction	Motor Grading	-	tpy PM ₁₀	0.05	0.07	0.02	0.01	Ξ.	.	
26 Concrete Operations	Mat. Trans. Barge to	Batch Plant	tpy PM ₁₀	0.75	1.24	0.35	-	-	÷	
29 Concrete Operations	Ready Mix Transport	(CP tp app site)	tpy PM ₁₀	0.28	0.73	0.53	0.48	0.12	÷	
31 Vehicle Traffic	Commuters		tpy PM ₁₀	4.36	14.79	16.51	23.07	7.63	0.56	
33 Vehicle Traffic	Commercial		tpy PM ₁₀	0.41	0.38	0.14	0.02	0.00	÷	
			Total	17.48	25.10	17.56	23.58	7.75	0.56	

Table B-1 Unpaved Road Emissions Calculation

k (PM ₁₀) s a b	1.5 4.0 0.9 0.45	Particle size multiplier, lb/VMT Surface Material silt content, g/m exponent exponent	1^2, Sand and	I Gravel Process	sing from AP-42	Table 13.2.2-1;u	sed lower end.	
			2010	2011	2012	2013	2014	2015
	W	Mean vehicle weight, tons	16.9	11.2	3.1	2.6	2.4	2.0

Watering efficiency	95%
Gravelling efficiency	30%

Paved Road Emissions Calculation Table B-2

				PAVED R	OADS					
Item No.	Construction Activity	Operation Type	Units	2010	2011	2012	2013	2014	2015	TOTAL
3	Vehicle Traffic	Commuters	VMT	44,000	178,500	355,400	539,900	183,900	14,700	1,316,400
33	Vehicle Traffic	Commercial	VMT	5,460	6,100	4,080	760	100	0	16,500

E (Ib/VMT) = k * (sl	_/2)^0.65 * (W/	/3)^1.5 - C * (1 - (P / (4 N))
k (PM ₁₀)	0.016	Particle size multiplier, lb/VMT
k (PM _{2.5})	0.0024	Particle size multiplier, lb/VMT
sL	3	Road surface silt content, g/m ² , Air Pollution Engineering Manual, 2nd Ed. AWM
W	2	Mean vehicle weight, tons
C (PM ₁₀)	0.00047	Exhaust, break wear, & tire wear correction, lb/VMT
C (PM _{2.5})	0.00036	Exhaust, break wear, & tire wear correction, lb/VMT
Р	140	Number of days of 0.01 inch of precipitation or greater (Figure 13.2.1-2)
Ν	365	Number of days in averaging period
watering/flushing efficiency	70.00%	
1- (P/(4N))		0.90411 0.90411 0.90411 0.90411 0.90411 0.90411

Uncontrolled	EF	2010	2011	2012	2013	2014	2015
	Ib/VMT	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr
PM ₁₀	0.011	0.27	1.00	1.95	2.94	1.00	0.08
PM _{2.5}	0.0013	0.03	0.12	0.24	0.36	0.12	0.01

Controlled (1)	EF	2010	2011	2012	2013	2014	2015
	Ib/VMT	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr
PM ₁₀	0.01	0.07	0.27	0.53	0.80	0.27	0.02
PM _{2.5}	0.0012	0.01	0.03	0.07	0.10	0.03	0.00

Note: (1) Only the annual emissions have the control efficiency of precipitation built in them

			B	ATCH DRO	P OPERATI	ONS					
Item No.	Construction Activity	Operation Type	Material	Units	2010	2011	2012	2013	2014	2105	TOTAL
4	Scrapers unloading topsoil	Batch Drop	Earth	Tons	310,000	0	0	0	0	0	310,000
7	Scrapers unloading overburden as fill	Batch Drop	Earth	Tons	2,158,000	2,158,000	644,000	0	0	0	4,960,000
10	Load Excavated Mat'l into Trucks	Batch Drop	Earth	Tons	3,410,000	0	0	0	0	0	3,410,000
12	Truck-Dump	Batch Drop	Earth	Tons	3,410,000	0	0	0	0	0	3,410,000
14	Load Stockpile into Off-Road Truck	Batch Drop	Earth	Tons	0	2,790,000	0	0	0	0	2,790,000
16	Truck-Dump	Batch Drop	Earth	Tons	0	2,790,000	0	0	0	0	2,790,000
25	Material Transfer from Barge	Batch Drop	Aggregates	Tons	198,800	397,600	198,800	0	0	0	795,200
		Batch Drop	Sand	Tons	152,218	304,436	152,218	0	0	0	608,872

Table B-3 Material Transfer Emissions Calculation

	А	P-42 Section 13.2.4-3 Aggregate Handling and Storage Piles E (lb/ton) = $0.0032 * k * (U/5)^{1.3} / (M/2)^{1.4}$
$k (PM_{10}) =$	0.35	
$k (PM_{2.5}) =$	0.053	
U =	6.2	miles per hour, Based on average of hourly values over multiyear period from CCNPP on-site monitor.
M (earth) =	3.4	%, Average moisture content Based on AP-42 Table 13.2.4-1 mean moisture content for exposed ground
M (aggregates) =	1.77	%, moisture content based on AP-42 Table 11.22 footnote b
M(sand) =	4.17	%, moisture content based on AP-42 Table 11.22 footnote b

		EF	2010	2011	2012	2013	2014	2015
		lb/ton	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr
earth grading	PM ₁₀	7.05E-04	0.87	0.76	0.23	-	-	
earth moving	PM ₁₀	7.05E-04	2.40	1.97	-			
aggregates	PM ₁₀	1.76E-03	0.17	0.35	0.17	-		
sand	PM ₁₀	5.30E-04	0.04	0.08	0.04	-	-	-
TOTAL	PM10	1	3.49	3.16	0.44	-	-	-

Table B-4 Site Preparation Emissions Calculation

				BULLDOZ	ING GRADI	NG COMP	ACTION				Constant and	
Б	Item No.	Construction Activity	Operation Type	Units	2010	2011	2012	2013	2014	2015	2016	TOTAL
Zin I	1	Vegetation Removal	Bulldozing (w/Item 8)	Hours								
inlidoz	8	Bulldozing	Includes Items 1, 13, and 17	Hours/year	8,200	9,000	5,700	3,600	900	200	100	27,600
m	13	Spread material	Bulldozing (w/Item 8)	Hours								
	17	Spread material	Bulldozing (w/Item 8)	Hours								
Bearing and the		EMISSIONS (PM10)	Units of Lb/year		30,168	33,111	20,970	13,244	3,311	736	368	101,541
	Item No.	Construction Activity	Operation Type	Units	2010	2011	2012	2013	2014	2015	2016	TOTAL
B u	2	Scrapers removing topsoil		Tons	310,000	0	0	0	0	0		310,000
sradi	5	Scrapers removing overburden		Tons	2,158,000	2,158,000	644,000	0	0	0		4,960,000
	23	Motor Grading		VMT	2,500	3,800	2,500	1,300	0	0		10,100
		Predicted hours of operation	for Items 2, 5, 23	Hours/year	14,000	14,500	4,900	500	0	0	0	33,900
		EMISSIONS (PM10)	Units of Lb/year		51,506	53,346	18,027	1,840	0	0	0	124,719
ctior	Item No.	Construction Activity	Operation Type	Units	2010	2011	2012	2013	2014	2015	2016	TOTAL
pa	9	Compaction	Includes Items 18, 24	Hours/year	5,200	5,200	2,600	1,000	500	0	0	14,500
5	18	Compaction	Included with Item 9	Hours								
Ŭ	24	Compaction	Included with Item 9	Hours								
Bennet		EMISSIONS (PM10)	Units of Lb/year		19130.941	19130.941	9565.4706	3679.0272	1839.5136	0		53345.89383
				Units	2010	2011	2012	2013	2014	2015	2016	
		Bulldozing	EMISSIONS (PM10)	TPY	15.08	16.56	10.49	6.62	1.66	0.37	0.18	
		Grading	EMISSIONS (PM10)	ТРҮ	25,75	26.67	9.01	0.92	0.00	0.00	0.00	
				TOV			1.70	1.04	0.00	0.00	0.00	

Compaction	EMISSIONS (PM10)	TPY	9.57	9.57	4.78	1.84	0.92	0.00	0.00	
		Total	50.40	52.79	24.28	9.38	2.58	0.37	0.18	
Mojave Desert Air Quality M E, (Ib/hr) = 2.76 * k * (s^1.	Management District Emis 5 / M^1.4)	sions Inventory C	Guidance Metho	od D Bulldoz	ing., Scraping	g, and Gradi	ng			
k (PM ₁₀) =	0.36	T		and the second of second second						
s =	7.5	%, Average si	It content Base	ed on AP-42	Table 13.2.4-	1 mean silt o	content for ov	verburden		
M =	3.4	%, Average m	oisture conten	t Based on A	P-42 Table 1	3.2.4-1 mea	n moisture c	ontent for ex	posed ground	

Ef (PM10) 3.679 lb/hr

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

ENSR

Table B-5 Wind Erosion B	Emissions Calculation –	Open Areas
--------------------------	-------------------------	------------

						
Wind Erosion	2010	2011	2012	2013	2014	2015
	acres	acres	acres	acres	acres	acres
Total Disturbed Acreage	218	218	218	130	70	70

Activity Data and Yearly Emissions from Wind Erosion

Uncontr. Emis.		PM	-10 Emis Und	ontr. (lb/day)		
Factor	2010	2011	2012	2013	2014	2015
(lb/ac/dv)						

361.9

Moisture Control Eff. (%)	PM-10 Emis Controlled. (TPY)									
	2010	2011	2012	2013	2014	2015				
90%	6.6	6.6	6.6	3.9	2.1	2.1				

361.9

215.8

116.2

116.2

¹ Uncontrolled emission factor for windblown dust from the Clark County Department of Air Qualilty and Environmental Management (DAQEM). Sufficient water will be added to maintain a 3% moisture content at the surface. DAQEM data indicate that 3% moisture produces over 90% reduction in uncontrolled emissions. Lack of data on PM-2.5 emissions led to the conservative assumption that PM-2.5 emissions are the same as PM-10 emissions.
* Table 5.5-1 from the CPCN application. This table provides a summary of the construction activity

data provided by Bechtel, the design firm for CCNPP Unit 3

361.9

1.66

Wind Erosion Emissions Calculation – Storage Piles Table B-6

	To Calculate the area of the SAND storage piles										
		2010	2011	2012	2013	2014	2015				
Aggregate deliveries by Barge	Tons	198,800	397,600	198,800	0	0	0				
Lbs of Sand required		304,435,817.69	608,871,635.39	304,435,817.69	0	0	0				
Density of Sand (lbs/cu.yd)		2,633	2,633	2,633	2,633	2,633	2,633				
Volume of Sand Required (cu.yd)		115,623.17	231,246.35	115,623.17	0	0	0				
Using a 1:3 ratio for h:base Height		36.61	46.13	36.61	0	0	0				
Base		109.83	138.38	109.83	0	0	0				
Slope (s)		66.00	83.16	66.00	0	0	0				
Curved surface area (exposed) (square vards)		11,386.89	18,075.57	11,386.89	0	0	0				

					PM10			
Units			2010	2011	2012	2013	2014	2015
TONS	E	=	0.12	0.20	0.12	0	0	0
tons/acre	Er	=	0.053	0.053	0.053	0.053	0.053	0.053
Watering Control efficiency	е	=	90%	90%	90%	90%	90%	90%
	J	=	0.5	0.5	0.5	0.5	0.5	0.5
%	sL	=	6	6	6	6	6	6
days	Р	=	140	140	140	140	140	140
%	1	=	13.3	13.3	13.3	13.3	13.3	13.3
acres	A	=	2.35	3.72	2.35	0	0	0

To Calculate the area of the AGGREGATE storage piles

		2010	2011	2012	2013	2014	2015
Aggregate deliveries by Barge	Tons	198,800	397,600	198,800	0	0	0
Lbs of Aggregate required (Lbs)		519,274,509.80	1,038,549,019.61	519,274,509.80	0	0	0
Density of Aggregate (lbs/cu.yd)		2,498	2,498	2,498	2,498	2,498	2,498
Volume of Sand Required (cu.yd)		207,876.10	415,752.21	207,876.10	0	0	0
Using a 1:3 ratio for h:base Height (yards)		44.52	56.09	44.52	0	0	0
Base (yards)		133.55	168.27	133.55	0	0	0
Slope (s) (yards)		80.26	101.12	80.26	0	0	0
Curved surface area (exposed) (square yards)		16,836.24	26,725.86	16,836.24	0	0	0

					PM10	(Defende)		
Units			2010	2011	2012	2013	2014	2015
TONS	E	=	0.18	0.29	0.18	0	0	0
tons/acre	E,	=	0.053	0.053	0.053	0.053	0.053	0.053
Watering Control efficiency	е	=	90%	90%	90%	90%	90%	90%
	J	=	0.5	0.5	0.5	0.5	0.5	0.5
%	sL	=	6	6	6	6	6	6
days	Р	=	140	140	140	140	140	140
%	1	=	13.3	13.3	13.3	13.3	13.3	13.3
acres	A	=	3.47	5.51	3.47	0	0	0

Mojave Desert Air Quality Management District Emissions Inventory Guidance Method G Wind Erosion from Stockpiles E = Er* A

Er = J * 1.7 * (sL/1.5) * (365-P)/235 * (I / 15) * (365/2000)

E_f = Emission factor (tons/acre)

 particulate aerodynamic factor
 silt loading J

- sL Average number of days in a year with at least 0.01 inches of precipitation
 Percentage of time with unobstructed wind speed > 12 mph in %
 Exposed surface area of stockpiles in acres Ρ
- Ť. А

Table B-7 Concrete Batch Plant Emissions Calculation

Activity	Data and	Maximum	Emissions	from	Concrete	Batch	Plants

Maximum Concrete Production			
Plants	number	1	
Maximum Production Rate per Concrete Batch Plant	cu. yds/hr	200	based on total concrete production for 1 plant from original calculations
Annual Avg. Production Rate	cubic yds/year	125,000	
Annual Max. Production Rate	cubic yds/year	206,061	

	2010	2011	2012	2013	2014	2015
Total Concrete Schedule (CY)	42250	131,000	171,750	168,000	42,000	0

Emissions Based on Plant Wide PM-10 Emission Factors for Concrete Plants from AP-42 Table 11.12-3 and the controlled truck loading PM-10 factor in Table 11.12-2; PM-2.5=PM-10 for controlled silo cement unloading, PM-2.5/PM-10 ratio from Table 11.12-3 for truck loading, and PM-2.5/PM-10 ratio from Section 13.2.4 for other categories. A control efficiency of 90% was applied for watering to those material transfer activities without control.

			HOURLY	HOURLY	PM-10 (tons/year)									
Activity	PM-10 lbs/cu. yd	PM-2.5 lbs/cu. yd	PM-10 lbs/hr	PM-2.5 lbs/hr	2010	2011	2012	2013	2014	2015				
Aggregate delivery to ground	0.00031	0.00005	0.06	0.01	0.007	0.020	0.027	0.026	0.007	0.000				
Sand delivery to ground	0.00007	0.00001	0.01	0.002	0.001	0.005	0.006	0.006	0.001	0.000				
Aggregate transfer to conveyor	0.00031	0.00005	0.06	0.01	0.007	0.020	0.027	0.026	0.007	0.000				
Sand transfer to conveyor	0.00007	0.00001	0.01	0.002	0.001	0.005	0.006	0.006	0.001	0.000				
Sand transfer to elevated storage	0.00007	0.00001	0.01	0.002	0.001	0.005	0.006	0.006	0.001	0.000				
Cement delivery to silo (controlled)	0.0001	0.0001	0.02	0.02	0.002	0.007	0.009	0.008	0.002	0.000				
Cement supplement to silo (controlled)	0.0002	0.0002	0.04	0.04	0.004	0.013	0.017	0.017	0.004	0.000				
Weigh Hopper loading (controlled)*	0.0002	0.00003	0.05	0.01	0.005	0.015	0.020	0.019	0.005	0.000				
Truck loading (controlled)*	0.0045	0.0008	0.90	0.16	0.095	0.296	0.387	0.379	0.095	0.000				
Totals			1.17	0.25	0.12	0.38	0.50	0.49	0.12	0.00				

*Based on applying controls to achieve the 94+% reduction in PM-10 emissions reflected in the AP-42 controlled emission factor in Table 11.12-2 for truck loading.

ENSR

Table B-8a Combustion Equipment Emissions Calculation

Act	livity Data and Emissions for Con	structi	on Equi	pment Fu	el Combusti	on										·					
GUIPMENT	DESCRIPTION	FUEL	QTY	NOTOR	median life (note	י 1	COMBIN	ED YEAR	D YEARLY TOTAL HOURS OF USE TIER						ENCIS	SION FACTO	R3-4+	[Note 2]	TAF		BSFC
ATEGORY		TYPE		SHZE (HP)	bours		1		T				[Note 1]	BSFC	HC	co	NOx	PM	Analight	ur I	TAF
			L			1	2	3	4	5		7	L	(B/hp-hr)	g/hp-hr	(g/tap-hr)	ghp-hr	(ghp-hr)	(HALo)	Note 7	Nots 4
0	DEWATERING & EARTHWORK																				
Dew	estarting Deep Well or Wellpoint Pumps (24-Hz/De Screenst Self-Protected 24cs Street	Diesel	+ +	180	4867	135000	17500	1 2000		L °	- °	<u>ا</u>	2	0,367	0.3085	0.7475	4,000	0,1316	None	0.43	1.00
	CAT Do Dozer	Diezel	1 Å	410	7000	5200	5200	2900	1500	0	10	ا،	2	0.367	0,1659	0.8425	4.3351	0.1318	H	0.59	1.01
	CAT D6 Dozer	Dissel	z	185	4057	2600	2600	1500	500	500_	0	0	2	0.367	0.3085	0.7475	4.000	0.1315	н	0,59	1.01
C.	AT 330 Crawled Hydraulic Backhoe, 3-1/4cy Struct	Diesel	4	268	4687	2500	5200	2800	2000	1000	0	0	2	0.367	0.3085	0.7475	4.000	0.1316	ما	0.21	1,18
	CAT 953 Crawlect, order, 2-1/2cy	Discol	++-	133	4567	2500	5200	2800	2000	1000	÷	1.	2	0.367	0.3384	0.8067	4.1	0,18		0,59	1.01
<u> </u>	Kerworth 1-800 Dump Trucks, 13/15cy	Dissol	10	250	4007	6500	13000	6500	2000	1000	10	۱÷-	2	0,387	0,3085	0.7475	4,000	0,1318	H	0.59	1,01
	CAT 825 Vibratory Compactor	Dissel	4	354	7000	5200	5200	2600	1000	500	0	0	2	0.367	0.1869	0.8425	4.3351	0.1318	None	0.43	1.00
	Case 580 Tractor Londer/Backhoe, 1cy/18"	Diesel	2	75	4887	0	0	1000	1000	1000	1000	500	2	0.408	0.3672	2.3655	4.7	0.24	Lo	0.21	1.18
	Case Stot Loader, 1/20y ICB Mini Backhroll varier 1/2mil 2*	Diesei	2-	50	4057	1 0	+ ÷	1000	1000	1000	1000	500	2	0.408	0.2789	1,5323	4,7279	0,3389		0.21	1.18
	CAT 14H Motor Grader, 14 Blade	Diesei	t-î-	220	4067	1000	1500	1000	0	0	0	1 ő	2	0,367	0,3085	0.7475	4.000	0,1318	Я	0.59	1.01
	Gradail	Diesel	1	220	4967	1000	1000	500	500	500	0	0	2	0,387	0,3085	0,7475	4.000	0,1316	н	0,59	1.01
	GMC Truck w6000 gal water tank	Dissel	1	300	7000	1000	1000	1000	1000	1000	0	0	2	0.367	0.3085	0,7475	4.000	0.1319	н	0.59	1.01
	BATCH PLANT	——				├ ──	+		+	<u>ا</u>	<u> </u>	·									-
	Central Mbr Plant wichiller & heater, ~ 130 cy/hr	Electric	2	0		400	1200	1600	1000	400	200	100	N/A	0.00	0.00	0.00	0.00	0.00	None	0.43	0.00
	CAT 965F Londer, Scy Bucket @ Stockpiles	Discol	1	266	4667	400	1200	1000	1600	400	200	100	2	0.367	0,3085	0.7475	4.000	0.131B	ما	0.21	1,15
	CAT D6H Dozer @ Stackples	Diesel	1	165	4967	400	1200	1800	1600	400	200	100	2	0.367	0.3384	0,8657	4.1	0.18	H	0.59	1.01
	GMC 12/14cv Darm Track & Roole	Cleaned	<u> </u>	300	400/	100	300	400	400	100	50	40	2	0.367	0.3085	0,8807	4.000	0.18	- H -	0.21	1.18
	IR 175cm Air Compressor, Trailer Mountad	Dissel	1- <u>†</u> -	113	4567	100	300	400	400	100	50	40	2	0,367	0.3384	0.0007	4.1	0.18	None	0.43	1.00
	Dump Trucks for Appregate and Sand, 30 or	Dissol	5	480	7000	1600	5000	6500	6500	1600	800	400	2	0,367	0.1659	0.8425	4.3351	0.1316	н	0.59	1.01
	A44.000 m	· · · · ·				_	_														
Cone	crete Transport Trucks, Apitalog/Mitcer, 10mv came	Dissel	15	250	4007	4220	13100	24000	17200	18800	4200	2100	2	0.367	0,3085	9,7475	4.000	0,1315	· · · ·	0.59	1.01
Cretar Crane v	aGrove RT990 Hydraulic Crane & 2008 Conveyor	Dieset	1 1	300	7000	200	000	800	800	0	0	0	2	0.367	0.3085	0,7475	4.000	0.1318	None	0,43	1,00
	Concrete Pump Truck @ 170 cythr	Disset	4	250	4867	800	2400	3200	3200	800	400	200	2	0.367	0.3085	0.7475	4,000	0.1315	None	0,43	1.00
c	Concrete Pump, Trailer Mounted @ 115/120 cyllz	Dieteri	14-	180	4967	800	2400	3200	3200	800	-	0	2	0.367	0.3085	0.7475	4.000	0,1318	None	0.43	1.00
	IR 750ctm Air Compressor, Trailer Mounted	Dese	1 1 -	250	400/	400	1200	1600	1600	400	200	100	1	0.367	0.3085	0.8007	4 000	0,18	None	0.43	1.00
			<u> </u>							,	-		-								
4	LIFTING/RIGGING	Oland	h		7000	h	1 1000			2000	1000			0.347					Mana		
Manifewor 4800	o S-o Criswer Crene wro-e Runger Attachment, 75	1040640	<u> </u>	685	/000	- <u>~</u>	1000	2000	2000	2000	1000		-	Q.36/	0,1000	1.32/2	4,1	0.1318	NONE	0.43	1.00
M	lamitowoc M-250 S-2 Crawler Crene w/300' Boom																				
	Attachment & Laffing Jb, 300-ton Capacity	Diesel	2	450	7000		1000	2000	2000	2000	500	0	2	0.367	0.1869	0.8425	4,3351	0,1318	None	0.43	1,00
	Manitowoc 4100 S-2 Crawler Crane 230-ton	1							1			{									
c	Capacity, wTower Attechmentm 31-ton Capacity	Discol	2	333	7000	1000	2000	4000	4005	2000	1000	0	2	0.367	0,1669	0.8425	4.3351	0,1318	None	0.43	1.00
M	Janizwoc 3900W Crawler Crawe, w1807 Boom &	-			4847				4000					4.747	0.000	a 3474			Ness		4.00
	at any, the capacity			451	4007	1000	2000		4000	2000	1000	- · ·	1	0.361	0.3003	0.1475	•	0.1310	PRACTO	0.45	1.00
u	Inidelt HC248 Lattice Boors Truck Crane w/ 2007		I .								1										
	Soom Alberhmerk & Liking Jb, 195-ton Capacity Kemersth T-820 Prime Mover for Memoridant	Dieset	<u><u></u></u>	405	7000	1000	2000	4000	4000	4000	1000	500	2	0.367	0.1869	0.8425	4.3351	0.1316	None	0,43	1.00
	Trains	Dissel	2	330	7000	•	200	400	400	200	0	•	2	0.367	0.1009	0.8425	4.3351	0.1316	н	0.59	1.01
6	Grove RT-635 Rough Termin Hyd. Crane, 35-ton																				
,	Clipsoly Oran ST 305 Rough Tagels last Cross 85 ton	Diesel		152	4557	2000	4000	4000	4000	4000	200	1000	2	0.367	0.3384	0,8667	4.1	0.18	None	0,43	1.00
	Capacity	Dissel	4	250	4667	2000	4000	4000	4000	4000	2000	1000	2	0,367	0.3085	0,7475	4	0,1316	None	0.43	1.00
	IR Teleboorn ForkEtt 4z4, 4,5-ton	Dissel	2	65	4667	0	1000	2000	2000	2000	1000	500	2	0.367	0.3672	2.3655	4.7	0.24	H	0.59	1.01
	GMC 16-R Flatbed Truck to heat rigging gear	Discol	1	180	4557	400	500	600	800	500	400	200	2	0.367	0,3085	0,7475	4	0,1316	H	0.59	1,01
	SHOP FARRICATION								ł												
C	Grove RT-528 Rough Terrain Hyd. Crane, 28-ton	Dietei	2	125	4867	1000	2000	2000	2000	2000	1000	500	2	0.367	0,3384	0,6667	4.1	0.18	None	0.43	1.00
•	Grove AP308 Carry Dack Hyd, Crane, 8-1/2-ton	Dissol	1	78	4867	500	750	1000	1000	1000	750	500	2	0.387	0,3672	2,3655	4.7	0.24	None	0.43	1.00
	IR Teleboom Forkitt 4z4, 4.5-ton	Diesel	2	65	4867	500	750	1000	1000	1000	750	500	2	0.387	0.3572	2.3655	4.7	0.24	H	0.59	1.01
	IR 375cm Air Compressor, Trader Mid	Dieset	⊢ ⊹−	113	406/	500	750	1000	1000	1000	750	500	2	0.367	0.3364	0.8967	4.1	0.18	None	0.59	1.01
							1														
	WAREHOUSE						1														
			1	360	4887	500	750	750	750	750	500	250	,	0.367	0 3025	0 7476		0 1316	None		1.00
	Linkbelt 228 Lattice Boom Truck Crane, 180-ft Boom, 30-ft Jb	Diane					1 100	1.00	1	2000	1000	500	2	0.367	0.3384	0.8657	4.1	0.18	Non	0.43	1.00
G	Unkbelt 228 Lattice Boom Truck Crane, 180-ft Boom, 30-ft Jib Grove RT-521 Rough Tertain Hyd. Crane, 28-Ion	Diesel	2	125	4887	1000	2000	2000	1 2000			100.00									
a	Linkbeit 228 Lattice Boom Truck Crene, 186-ft Boom, 30-8 Jb Grove RT-528 Rough Tertain Hyd. Crane, 28-ion IR Teleboom Fundst 4z4, 4.5-ion	Dieset Dieset Dieset	1 2 2	125 65	4887 4887	1000 500	2000 750	2000	1000	1000	750	500	2	0,367	0,3672	2,3655	4.7	0.24	н	0.59	1.01
G	Unkbelt 225 Latics Boom Youch Orane, 180-ft Boom, 30-d Jb Grove RT-528 Rough Tertain Hyd. Crane, 28-ton IR Teleboom Fontät 4z4, 4.5-ton GMC Topitick Knutcha Boom Truck w6-ton Catacity	Dieset Dieset Dieset	1 2 2	125	4887	1000	2000	2000	1000	1000	750	500	2	0,367	0,3672	2.3655	4.7	0.24	<u> </u>	0.50	1.01
G	Unided 225 Lattice Boom Truck Creme, 180-1 Boom, 30-1, 45 Grave RT-528 Raugh Terrish Hyd, Crame, 28-ton (R Teleboom Fund3 terl, 4.5-ton GAUT Toptick Knacka Boom Truck withon Gauestry Dack Hyd, Crame, 8-1/2-ton	Dieset Dieset Dieset Dieset	1 2 2 2	125 65 180 78	4887 4887 4887 4887 4887	1000 500 0 500	2000 750 500 750	2000 1000 750 750	1000 750 750	1000 750 750	25 3 3	50 50 50 50 50	2 2 2	0.367 0.387 0.367	0,3672 0,3085 0,3672	2.3655 0,7475 2.3655	4.7 4 4.7	0.24 0.1318 0.24	H	0.50 0.50 0.43	1.01 1.01 1.00
6	Unichell 225 Laticie Boom Truck Greus, 180-8 Boom, 20-2 Jab Brove RT-528 Rough Tertain Hyd. Crane, 28-ton IR Teebborn Fordit kz4, 43-ton GMC Teptick Kwickie Boom Truck wil-ton GMC Teptick Kwickie Boom Truck wil-ton Galo Tal Flastbedi Trucke	Disset Disset Disset Disset Disset Disset	1 2 2 1	125 65 180 78 185	4887 4887 4887 4887 4887 4887	1000 500 0 500 1000	2000 750 500 750 2000	2000 1000 750 750 3000	1000 1000 750 750 3000	1000 750 750 3000	2 3 3 3	500 500 500 1000	2 2 2 2	0.367 0.367 0.367 0.367	0.3672 0.3085 0.3672 0.3384	2.3655 0,7475 2.3655 0.8607	4.7 4 4.7 4.1	0.24 0.1318 0.24 0.18	H H None H	0.59 0.59 0.43 0.59	1.01 1.01 1.00 1.01
6 (Unboth 225 Latics Boom Truck Orean, 18-4 Boom, 32-6 Jb Orave RT-628 Raugh Twrish Hyd, Crane, 28-bo IR: Teeboom Frieldt & 4, 4-bo CMC Teptick Knucks Boom Truck wilk-to CMC Teptick Knucks Boom Truck wilk-to Capacity Orave AP306 Camy Data Hyd, Crane, 8-1/2-bo CAMC 18" Flatbad/Statubed Trucks	Dissel Dissel Dissel Dissel Dissel	1 2 2 1 4	125 65 180 78 185	4887 4887 4887 4887 4887 4887	1000 500 0 500 1000	2000 750 500 750 2000	2000 1000 750 750 3000	2000 1000 750 750 3000	1000 750 750 3000	750 500 500 1500	500 500 500 1000	2 2 2 2	0.387 0.387 0.387 0.387	0.3085 0.3085 0.3672 0.3184	2.3655 0,7475 2.3655 0,8967	4.7 4 4.7 4.1	0.24 0.1316 0.24 0.18	H H None H	0.59 0.59 0.43 0.59	1.01 1.01 1.00 1.01
¢ 	Liabat 221 Latics Boon Truck Orea, 18-6 Bore FT 620 Rough Terrish Hyd, Craes, 28-6 R Teeloon Fraht Set, 4.5-6 Gale Teptick Knacks Boon Truck wil-an Gale Teptick Knacks Boon Truck wil-an Gale 16 Ferdual/Staubed Trucks Ecologies/T MAINTEAMACE	Dissel Dissel Dissel Dissel Dissel		125 65 180 78 185	4887 4887 4887 4887 4887	1000 500 0 505 1000	2000 750 500 750 2000	2000 1000 750 750 3000	2000 1000 750 3000	1000 750 750 3000	750 53 550 150	500 500 1000	2 2 2	0,367 0,367 0,367 0,367	0.3672 0.3095 0.3672 0.3184	2.3655 0,7475 2.3655 0.6667	4.7 4 4.7 4.1	0.24 0.1316 0.24 0.18	H H Nons H	0.59 0.59 0.43 0.59	1.01 1.01 1.00 1.01
ہ ، 	Liabatt 221 Latics Boom Truck Orea, 18-4 Boom, 29-8 Jb Greve RT-628 Rough Terrish Hyd. Crane, 28-on IR Teeboom Freidt & 44, 4-5 on GMC Teptick Knucks Boom Truck wil-bon Capacity Greve A7300 Carry Dack Hyd. Crane, 8-1/2-ko GMC Freidt Liabatt Statute Trucks ECOMPMENT MAINTENANCE GMC Freid Liabatton Truck Willens Will Freid Liabatton Truck Willens	Dissel Dissel Dissel Dissel Dissel Dissel	1 2 2 1 4	125 65 180 76 185 250	4887 4887 4887 4887 4887 4887 4887	1000 500 0 500 1000 1500	2000 750 500 750 2000 1500	2000 1000 750 3000 1500	2000 1900 750 3000 1500	1000 750 750 3000	2 3 3 3 3	500 500 1000 0	2 2 2 2 2	0.367 0.387 0.367 0.367 0.367	0,3085 0.3085 0.3672 0.3384 0.3085	2.3655 0,7475 2.3655 0.6667 0,7475	4.7 4 4.7 4.1	0.24 0.1318 0.24 0.18 0.1318	H H None H	0.59 0.59 0.43 0.59 0.59	1.01 1.01 1.00 1.01
¢ 	Liabel 221 Lable Dean Trad Crans, 164 Bran FT 201 Rough Tarnish Hyd. Crans, 28-an IN Tealown Frad Leid, 15-an Call C Tealach M Fordial 44, 15-an Call C Tealach M Contact Method Call C Teal Tradit M Contact Method Call C Terl Franker; Doba Hyd. Crans, 51/2 an Call C Terl Tradit Method; 2000 Librar Fiel Call C Terl Tradit Method; 2000 Librar Fiel Call C Teal Tradit And Kind; 2000 Librar Fiel Call C Teal Librar Kind; 2000 Librar Fiel	Dissel Dissel Dissel Dissel Dissel Dissel		125 65 180 76 185 250 250	4587 4687 4587 4587 4587 4587 4587 4587	1000 500 500 1000 1500	2000 750 500 750 2000 1500	2000 1000 750 750 3000 1500	2000 1000 750 750 3000 1500	1000 750 750 3000 1000	50 50 50 50 50 50 50 50 50 50 50 50 50 5	500 500 1000 e 500	2 2 2 2 2 2	0.367 0.367 0.367 0.367 0.367 0.367	0,3085 0.3085 0.3072 0.3384 0.3085 0.3085	2.3655 0,7475 2.3655 0.8667 0,7475 0,7475	4.7 4 4.7 4.1 4	0.24 0.1318 0.24 0.18 0.1318 0.1318	H H NOR H	0.59 0.43 0.59 0.59 0.59	1.01 1.01 1.00 1.01 1.01 1.01
e 	Ukabal 251 Jalicio Brom Tudi Como, 1644 1000 HT Call Dancio Scal Julio Como, 2640 101 Tanborn Fueld Scal, Scale Scale Casasty Gere A250 Ecroty Oct. Hyd. Crass, 17246 Casasty Gere A250 Ecroty Oct. Hyd. Crass, 17246 Casasty Casasty Casasty Como, 1745 Casasty Casasty Casasty Como, 1745 Casasty Casasty Casasty Casasty Como Watasti Casasty Casasty Como Watasti Casasty Casasty Como Watasti Casasty Casasty Como Watasti Casasty Como Watasti Casasty Casas	Dissel Dissel Dissel Dissel Dissel Dissel Dissel		125 65 160 76 165 250 250	4887 4887 4887 4887 4887 4887 4887 4887	1000 500 0 500 1000 1500	2000 750 500 750 2000 1500	2000 1000 750 750 3000 1500 1000	2000 1000 750 3000 1500 1000	1000 750 750 3000 1000	29 33 38 38 58 58 58 58 58 58	500 500 500 1000 0 500	2 2 2 2 2 2	0.367 0.367 0.367 0.367 0.367 0.367	0,3085 0.3085 0.3672 0.3184 0.3085 0.3085	2.3655 0,7475 2.3655 0.8667 0,7475 0,7475	4.7 4 4.7 4.1 4	0.24 0.1316 0.24 0.18 0.1316	H H Nore H H	0.59 0.59 0.43 0.59 0.59 0.59	1.01 1.01 1.00 1.01 1.01 1.01
e 	Liabel 221 Lable Boom Trud Cores, 164 Green RT-63 Roady Trends Hyd, Care, 24-Jan Gall Topbak Kuncha Boos Truck off-bon Gall Topbak Kuncha Boos Truck off-bon Gall Topbak Kuncha Boos Truck off-bon Gall Topbak Kuncha Boos Truck off- Bon Argent Mahring Statushed Trucks Gall Parts Truck Minker, 2000gal Dave Fixed Gall Charl Truck Minker, 2000gal Dave Fixed Gall Charl Labrication Truck whow Wath Collowed Laboration Truck whow Wath Collowed Dave Trucks Truck, Winker, 2010 Wath Statushed Trucks	Disset Disset Disset Disset Disset Disset Disset Disset	1 2 2 1 4 3 2 2 2 2	125 65 160 76 185 250 250 180	4587 4687 4087 4087 4587 4587 4587 4587 7000	1000 500 500 1000 1500 1500	2000 750 500 750 2000 1500 1000	2000 1000 750 750 3000 1500 1000 1000	2000 1000 750 3000 1500 1000 500	1000 750 750 3000 1000 1000 250	22 33 38 38 38 38 38 38 38	500 500 1000 0 500 0 0	2 2 2 2 2 2 2 2 2	0.367 0.367 0.367 0.367 0.367 0.367 0.367	0,3085 0.3085 0.3072 0.3184 0.3085 0.3085 0.3085	2.3655 0.7475 2.3655 0.8667 0.7475 0.7475 0.7475	4.7 4.7 4.1 4 4	0.24 0.1316 0.24 0.18 0.1316 0.1316 0.1316		0.59 0.43 0.59 0.59 0.59 0.59	1.01 1.01 1.00 1.01 1.01 1.01 1.01
ء ، وا	Liabad 221 Jalicio Bran Tudi Curro, 154- 104 Januari Carlo Liaba Curro, Jako Karlov, Tanabaon Fucki Back, 45-an Gil Tabakon Fucki Back, 45-an Gil Tabakon Fucki Back, 54-an Galer Back Marking, 2004 Jack Fuck Gener AF30 Garry (Dach Hyd. Tudi Galer Vari Tuck wifelen, 2004) Diad Fuck Galer Fuck Jackson Tuck CostWatta Ol Tuck, 2004 Diase Fuck Gild Wandes Tuck, and Diase Fuck USA, Galer Marker, Tuck, 47-an Gild Wandes Tuck and Tuck USA, Galer Marker, Tuck, 47-an CostWatta Ol Tuck, 2004 Diase Fuck USA, Galer Marker, Tuck, 47-an Diad Science Tuck, 47-an Science	Dissel Dissel Dissel Dissel Dissel Dissel Dissel Dissel Dissel	1 2 1 4 3 2 1 2 1 2 1 2 1	125 65 180 78 185 250 250 250 180 300	4537 4857 4957 4957 4957 4957 4957 4957 4957 49	1000 500 500 1000 1000 1000 1000	2000 750 500 750 2000 1500 1000 1000	2000 1000 750 750 3000 1500 1000 1000 500	2000 1000 750 750 3000 1500 1000 500	1000 750 750 3000 1000 1000 250	22 23 28 28 28 28 28 28 28 28 28 28 28 28 28	500 500 500 1000 0 500 0 500	2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.387 0.387 0.387 0.387 0.387 0.387 0.387	0.3085 0.3072 0.3384 0.3085 0.3085 0.3085 0.3085	2.3655 0,7475 2.3655 0.8687 0,7475 0,7475 0,7475 0,7475	4.7 4 4.7 4.1 4 4	0.24 0.1318 0.24 0.1318 0.1318 0.1316 0.1318 0.1318	T T T T T	0.59 0.43 0.59 0.59 0.59 0.59 0.59	1.01 1.01 1.00 1.01 1.01 1.01 1.01
6 	Liabel 221 Lable Boom Trud Cores, 154 J Gran (T-C3) Boogh Trutsh Hys. 24 Ja Gran (T-C4) Boogh Trutsh Hys. 24 Jan (Carl Topksk Hys. 16 Jan Capacity GAC Topksk Hys. Care, 4 Jan Capacity GAC Topk Hys. Care, 8 Jan Care, 17 Jan Care, 17 Jan Care, 19 Carl Hys. 19 Care, 17 Car Care, 19 Carl Trutsh Minker, 2005 (Janes Trus GAC Topk Laboration, Trus, 19 Car Corporation, 20 Care, 19 Car Corporation, 20 Car Car Care, 20 Car Car, 20 Car Car, 20 Car Car, 20 Car Car, 20 Car Car, 20 Car Car, 20 Car Car Car Car, 20 Car Car Car Car Car Car Car Car	Dissei Dissei Dissei Dissei Dissei Dissei Dissei Dissei Dissei Gasoline	1 2 2 1 4 3 2 1 2 1 2 1 1 00	125 65 180 76 185 250 250 250 180 300 231	4837 4887 4987 4087 4087 4087 4087 4087 7000 4057	1000 500 500 1000 1000 1000 1000 25,400	2000 750 500 750 2000 1500 1000 500 500	2000 1000 750 759 3000 1500 1000 1000 1000 1000	2000 1000 750 750 3000 1500 1000 500 105,600	1000 750 750 3000 1000 1000 250 105,600	750 500 500 500 500 500 500 500 500 500	500 500 1000 0 500 20 500 20 500	2 2 2 2 2 2 2 2 2 4	0.367 0.387 0.367 0.367 0.367 0.367 0.387	0.30872 0.3085 0.3972 0.3384 0.3085 0.3085 0.3085 0.3085 0.3085 0.3085	2.3655 0,7475 2.3655 0.8667 0,7475 0,7475 0,7475 0,7475 0,7475	4.7 4 4.2 4.1 4 4 4 4 4 4 8.0803	0.24 0.1318 0.24 0.18 0.1318 0.1318 0.1318 0.1318 0.1318	H I NOR	0.59 0.43 0.59 0.59 0.59 0.59 0.59	1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01

CCNPP Unit 3 Construction Modeling Report 04189-025-0016

August 2008

Table B-8b Combustion Equipment Emissions Calculation (cont.)

Activity Data an	d Emissions for Construction	Equip																																		
EQUIPMENT	DESCRIPTION	FUEL		ANNUA	L ENGSSIONS	(iba)			ANNUA	L ENDSSION:	l (ibr)	- 11		ANNUAL	EMISSION	IS (ID+)	- 1		ANNUAL	EMISSION	\$ (fbs)			ANNUAL	EXISSIONS	ilba)	- 11		ANNUAL	EMISSION	KS (lbs)		1	ANNUAL	EMPSION	i (ibs)
CATEGORY		TYPE			Year 1	·				Year 2					Year 3			· ·		Year 4		t			Year 5					Year 6					Year 7	
		r	нс	co	NOx	PM	902	нс	co	NOx	PM	802	HC	co	NOx	PM	502	нс	co	NOx	PM	302	нс	co	NDx	PN	102	HC	CO	NOx	PM	SO2	нс	8	NOx	PM \$OZ
						,=						_															=	-		_	_	_			_	
DEWA	TERING & EARTHWORK																										<u>_</u> _	<u> </u>		·				-		
Devistoria	ng Deep Well of Wellpoint Pumps (24-HDDa	Discol	1.905	4,915	24,104	3/5	8/0	1 1 1 70	2,458	12,052	710	100		2040	9,479		375		~						- ř	<u> </u>	÷-l-	* 1				-			<u>_</u>	
	ocraper, see-Propered, 24cy Seuce	Dana	491	1 712	11.455	710	455	493	3 733	11.458	337	<u> </u>	- 60	1 827	5,722	145	228	143	1044	3 298	78	131		0	-	0	÷-1	0	-		0	i i	- i-t	- 0	0	0 0
	CAT OF Depart	Ormal	205	799	2 344	71	103	205	739	2 344	71	103	204	421	1 374	37	59	10	138	457	11	20	39	138	457	11	20	0 1	0	0	0	0	- 0 1	0	0	0 0
CAT 33	Consisting the section 3-14er Stat	Distal	229	627	1.421	60	62	459	1,269	2.845	130	123	458	827	1.421	60	62	178	481	1,093	48	47	65	239	546	22	24	0	0	0	0	Ο.	0		0	0 0
	CAT 953 Creaters order 2-1/2cv	Dissel	162	816	1,757	82	74	327	1.272	3,525	194	148	323	816	1,757	82	74	124	471	1,351	60	57	62	232	875	28	28	0	0	0	0	0	0	0	0	0 0
Cese 5	21D Anticulated 4X4 Wheel Loader, 2-1/4cy	Diesel	103	298	588	38	25	207	604	1,197	81	51	208	298	598	38	25	79	229	450	29	19	40	114	230	14	10	20	57	115	7	5	0	¢	0	0 0
· · · · ·	Kenworth \$-800 Dump Trucks, 13/15cy	Distal	704	2,618	8,091	318	347	1,418	5,323	16,208	395	693	1,408	2,818	8,091	319	347	212	763	2,477	70	107	106	377	1,237	32	\$3	0	0	0	0	0	0	0	0	0 0
	CAT 825 Vibratory Compactor	Diesel	294	1,518	7,587	136	284	294	1,518	7,587	136	284	293	747	3,788	60	142	58	284	1,456	21	55	28	142	728	10	27	<u> </u>	0	•	0	0		•	<u> </u>	0 0
Ce	se 580 Tractor Loader/Backhoe, 1cy/18	Diesel	0	0	0	0	0	0	٥	0	0	0.		212	180	13	7	20	212	180	13	7	- 29	212	180	t3		29	212	180	13		16	108		
	Case Skid Londer, 1/2cy	Diesel	0	0	0	0	0	•	0	0	0	0	•	- 92	120	14	- 6	15	62	120	- 14		1 15	92	120	-14	÷	10		120	- 14		<u> </u>			
	JCB Mini Beckhoe/Loader, 1/2cy/12"	Dissel	0	0	0	0	0	0 1	0	0	•	<u></u>		92	120	14	•	19	92	120	-	<u>-</u>		¥2	120			12		- 120	19		<u> </u>		-	
	CAT 14H Motor Grader, 14' Blade	Diesel	93	- 391	1,089		4/	140	500	1,0,34		-/ <u>v</u>	- 140	- 101	1,069	40		- <u>*</u>	105			<u> </u>	- <u>*</u>			ň	<u>*</u>	~ 	-				1 8		<u> </u>	0 0
	Grade	Diter	437	450	1,083			177	450	1.484	17	- in - 1	127	450	1 414	17	84	127	450	1434	37	- M	177	450	1484	37	<u>.</u> _ -	-	0	0	0	0	-	0	0	0 0
	GMC THER WOULD GE, WERE UNK	Transa .	- 10	***	1,464					1,704		<u> </u>							100						.,											
	RATCH PLANT	ł										1																							_	
Cent	rat bits Plant witchiller & heather - 130 cuffsr	Electric			0		•	0		٥	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	° T	0	0	0	0	0	0	0	0 0
CA.	T 906F Loeder, Scy Bucket C Stockples	Diesel	35	16	217			105	285	651	27	28	106	381	868	38	38	140	381	961	36	38	35	\$5	217	8	•	17	47	108	4	5		24	54	2 2
	CAT DOH Dozer @ Stockpiles	Output	31	114	335	13	14	92	347	1,004	42	42	\$2	465	1,340	58	50	123	465	1,340	54	50	31	114	335	13	14	15	67	167	6	7	•	28	. 84	3 4
	Crawler/Backhoe, 1cy @ Spoils	Dessei	4	12	24	1	1	12	36	72	4		12	48	90	6	4	17	48	- 96	6	4	4	12	24	1	1	2	8	12	1	1	2	- 5	10	1 0
	GMC 12/14cy Dump Truck () Spolls	Diesel	15	45	148	3	6	30	134	445	11	12	38	179	593	14	26	51	179	593	14	26	13	45	148			<u>-</u> +	22	74	2		<u> </u>		- 59	
R:	375ctm Air Compressor, Trailor Mounted	Diesel		\$	44	1	2	11	28	132	4	5	11	37	176	5		15	37	176	- 5	7					<u>.</u>	<u>.</u> +		- 22		·		+	18	
Dur	re Trucks for Aggregate and Band, 30 cy	Diesel	176	1,305	4,118	98	164	555	4,195	12,905	375	513	- 357	5,621	\$6,795	527	866	724	5,521	10,785		000	1/0	1,305	4,119		104	*	044	2,050	40	l ~	<u> </u>		1,020	
		-						\mapsto					+					L+										-+								
-	CONCRETE	Distri	40		8 240	177	- 25	1497	6.94	16 113	104	A00	1427	9.877	29 922	778	1780	1872	7.043	21 445	522	917	1.830	6.879	20,946	510		450	1.645	5,215	175	224	223	802	2.601	74 112
Concrete	- DTDM Indextly Cross # 2008 Comment	1 Cinet	14	41	228			63	128	A83	10	20	- A1	171	810	14	37	70	171	910	14	37	1 0	0	0	0	-11-	-	0	0	0	0	0	0	0	0 0
	Consula Dura Truck @ 170 cubr	Distal	50		759	12	- 11	177	435	2 280	41	-	177	5.84	3 042	58	123	238	584	3.042	58	123	59	143	758	12	31	29	71	379	6	15	15	35	195	3 6
Conce	wie Pump Trailer Mounted #1 115/120 puty	Diesel	42	103	546		22	127	313	1.641	30	67	126	420	2,190	42	89	170	420	2,190	42	89	42	103	540	9	22	0	0	0	0	0	0	0	0	0 0
IR	375ctm Air Compressor, Trailer Mounted	Diesei	29	76	352	10	14	88	228	1,055	32	42	88	308	1,409	45	58	117	306	1,409	45	56	29	75	352	10	14	15	37	178	5	7	7	19	88	2 3
18	750ctm As Compressor, Trailer Mounted	Dissel	29	71	379		15	88	213	1,138	17	46	88	283	1,517	22	62	197	283	1,517	22	62	29	71	379	6	15	15	35	190	3	\$	7	18	85	3 4
																												_								
	LIFTING/RIGGING																											<u></u>	-			104				
Manitowoc 4600 S-5	Crawler Crane w/S-4 Ringer Attachment, 75	Diesei	• •	0	Q	•	•	105	867	2,664	40	108	109	1,745	5,331	85	211	218	1,745	5,331	- 56	211	218	1,745	5,331			100	as/	2,004	40	100	<u> </u>	· · ·	· ·	·
	une M 260 B 2 Country Craws w2007 Beam		I I	1				1				- 11							1				I				- 11	_ I					E		I	
47	herbinnent & Luthen Sh. 300-ton Canacity	0		. 1				1 71	340	1 850	28	~	71	728	3 703	50	139	343	728	3,703	56	139	143	720	3,703	56	330	30 I	180	925	13	35	•	•	•	0 0
			<u> </u>					<u> </u>																		r	_1									
Ma Ma	nkowor: 4100 6-2 Crawler Crane 230-ton							1 1				- 11	1	1				F 1																		
Cepec	city, wTower Attachmentrs 31-ton Capacity	Diesel	53	268	1,369	20	51	105	539	2,740	42	103	108	1,090	5,485	\$3	205	213	1,090	5,486		205	108	539	2,740	42	100	<u>s</u>	258	1,369	20	51	•		•	0 0
Manito	wee 3900W Crawler Crane, w/180' Boom &							I I							4.300					4.784		177	100	414	2100		II	.	205	1089	17					
	30° Jib, 1404bh Capacay	L Dansen		2/5	1,089	1V	~	<u>⊢™</u> -+		2100		<u>~</u>			4,000					4.000							<u>~</u> - -									
Linkhe	at HC248 Latina Room Truck Crass of 200	4					1	1 1		1		- 11						1 1									- 11	- 1						- 1		
Boom	Attachment & Luffing Jib, 165-ton Capacity	Devel		125	1,865	24	62	129	655	3,332	51	125	120	1,325	6,672	113	250	254	1,328	6,672	113	250	258	1,326	8,672	113	250	64	325	1,665	24	62	32	162	\$32	12 31
Ken	neorth T-800 Prime Mover for Heavy-Haul																		_																	
	Trations	Dissel	0	8	0	0	0	16	111	354	8	-14	15	222	707	18	28	30	222	707	16	28	15	111	354	8	<u>*</u>	•		0	<u> </u>	0	<u> </u>		•	0 0
Grove	a RT-535 Rough Terrain Hyd. Crane, 35-ton	1										. 11					~ 1			2.27.			107		2 374		II	10	~					124	501	17 23
	OT ME Bauch Tamin Mad Cases 45 km	Detel	88	254	1,184	35	- "	19/	518	2.3/1			197	214	2,3/1	~~~		187	010	4,3/1		<u> </u>			2.3/1	~ +-					<u> </u>	· · · ·				
Grow	Canacity	Diesel	147	361	1 895	33	77	298	735	3.804	77	154	298	735	3.804	77	154	296	735	3,804	77	154	296	735	3,804	77	154	147	361	1,899	33	77	73	179	949	15 38
1	IR Teleboorn ForkUlt 4x4, 4.5-ton	Dissel	0	0	0	0	0	33	310	378	20	14	33	628	757	43	28	60	628	757	43	28	65	628	757	43	28	33	310	378	20	14	18	154	189	10 7
GA4	IC 18-It Flatbed Truck to have rigging gear	Diesel	30	108	358		15	35	135	445	11	19	38	162	534	13	23	46	162	534	13	23	38	135	445	11	19	30	108	350	9	15	15	54	178	4 8
		-																																·		
	SHOP FABRICATION								_							L																h				_
Grow	e RT-528 Rough Terrain Hyd. Crane, 28-Ion	Olecci	40	194	486	14	19	61	209	\$73	-29		<u>81</u>	206	973	28	<u></u>		209	873	29	- 38	17	200	120	22	<u>"</u>		104	480					159	- 10
Gree .	a Aroue Carry Deck Hyd. Crane, 8-1/2-lon	Diesel	13	56	169	8	- <u></u>		129	254		÷-1	- 20	1/2	3,59	13	- 14	- #	310	339	20	12	- "	110	3.50		÷-I-	25	212	281	15	1 6 1	1 10		189	10 7
1	PL COMPOSITI PORTER SET, 9,2-400	Cites of	<u>+-≞</u> -+	- 104	169	10		1 2 1	234	117		~~ -1		415	1254	- 2		116	435	1255	54	- 63		288	837	34	3	57	215	677	25	28	38	143	418	17 14
1.	E 175cm & Compassor Trains Mar	Come of	+ - + +	47	252	- <u>"</u>		27	70	178		~~ 	27		504	12		1 38		504	12	17	30		504	12	17	27	70	378	9	13	18	47	252	8 9
l '			<u>⊢</u> +			<u> </u>	<u> </u>	<u> </u>	····*									<u> </u>										-								
	WAREHOUSE	1	i −−−− †																																	
060	bel 228 Latice Boom Truck Crame, 180-8	1	1																																	
1	Boom, 30-tt Jib	Dissel	37	89	474	7	19	55	134	711	n	20	55	134	711	11	29	55	134	711	11	29	55	134	711	11	20	37	- 00	474	7	19	18	- 44	237	4 10
Grove	e RT-528 Rough Terrain Hyd. Crane, 28-ton	Diesel	40	104	486	14	19	B1	209	973	29	38	81	209	973	23	38	81	209	973	29	30		209	973	29	*	40	104	485		119		- 12	243	
	IR Teleboom Forktil 4x4, 4.5-ton	Diesel	16	154	189	10		25	232	283	15	10	25	310	378	20	14	33	310	378	20			310	3/8	20		15	232	253	15	10	<u> </u>	154	193	10 7
G4	IC Topkick Knucide Boom Truck w6-Ion													~			~					~			-	17	~ II	18		445	11		1 34	135	445	11 10
	Capacity	Desel			0	0		30	1.55		<u>n</u>			400	900			- 20	100	264				120	254		-11-	ñ l		169		1 7	13		169	6 6
Grov	CLC: LE Elether/Stokahod Trovice	Diesel	1 12	288	109	1 2	- <u></u>	14	584	1.676	75	70	154	AM6	2 516	170	105	232	885	2.518	120	100	232	805	2.518	120	106	115	435	1,256	54	53	177	288	837	34 35
	CHECK IN FRAMEWORK (FOCK)	0.000	↓ "	408	63/		**	- <u></u>		1,3/6	~	<u> </u>			*,510										-,510					1.000	<u> </u>					
			t			-	· · · · ·	h		<u>}</u>																										
EQU	APMENT MAINTENANCE	Diani		640	1 857			150	540	1.857		(150	6/55	1.857	60		159	569	1 857	50	NO.	100	377	1237	32	<u>a</u>	63	187	618	15	27			+	0 0
040	A free a second remembers, successing an entering of the	- Design	- 199	964	1,001		~~	1- ⁰⁷ -1	UON	1,007					1,001	<u> </u>	<u> </u>			- 1,000	~ +						<u> </u>				1					
Ca	ont/Waste Oil Tank: 2000 gal Diesal Fuel	Dissel	100	377	1.237	32	53	105	377	1,237	22	6 H	108	377	1,237	32	53	108	377	1,237	. 32	53	100	377	1,237	32	53	53	187	618	15	27	8	187	618	15 27
GMC 5	3500 HD Mechanics Truck, w/Tools, Welder,																																			
	Air Comp;	Desei	78	271	891	23	38	70	271	891	Z3	34	78	271	891	23	38	78	271	691	23	38	76	271	891	23	3	38	135	445	11	10	<u> </u>	•	•	
1	GMC Wrecker & Tire Service Truck	Diesel	63	224	742	18	32	63	224	742	18	32	83	224	742	18	32	63	224	742	18	32	32	112	371	9	18	•	9	0	0	0	1 0	0	0	
01	Ety, Gasoline-powered Pick-up Trucks &									Ι	Г		T				17	I				1	1				11	_	I				I			~ !
	Automobiles	Gesolene	851	11,782	811	29	10	1,702	23,525	1.621	58	20	3,404	47,049	3,242	116	20	3,404	47,049	3,242	116	39	3,494	47,049	3,242	116	<u>~ -</u>	. 102	23.929	1,621	28	- 70	1.101	11,762	611	20 10
			t																				1													
			6 914	4 111	121 647	7 874	100	12 734	77.241	164 043	(15)	4407	14 340	40.115	145 277	1 609	1.04	112065	79.434	114.072	2 891	4,831	1 8 894	69,110	78,054	1.958	042	.564	3 538	27,846	753	1.080	1.721	15,290	11,836	341 463

.

÷.-

ENSR

UN#09-396

Enclosure 3

Regulatory Commitment

/

The regulatory commitment in this correspondence is summarized below:

•

Regulatory Commitment No.	Regulatory Commitment Description	Regulatory Commitment Due Date
CC-09-0002	UNE will prepare an updated construction emissions analysis for CCNPP Unit 3 in order to determine if emissions are still within threshold values. UNE will provide the NRC with the schedule for completion of this emissions analysis by October 2, 2009.	October 2, 2009 schedule for completion of analysis.