Westinghouse Non-Proprietary Class 3

LTR-NRC-09-43 NP-Enclosure

"NRC Containment Audit – Hydrodynamic Loads – Pool Swell STP 3&4 COLA"

August 2009

Westinghouse Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355

©2009 Westinghouse Electric Company LLC All Rights Reserved Westinghouse Non-Proprietary Class 3

NRC Containment Audit Hydrodynamic Loads – Pool Swell STP 3&4 COLA

Tom George Numerical Applications, Inc. Hirohide Oikawa Toshiba

August 18, 2009

Westinghouse Electric Company P:O. Box 355 Pittsburgh, PA 15230-0355

©2009 Westinghouse Electric Company-LLC

All Rights Reserved

Introduction

Agenda

- Introduction
- Attendees
- Desired Outcomes
- GOTHIC vs. DCD Model Comparison
- Pool Swell Test Data
- Comparison with Test Data and DCD Results

Westinghouse Non-Proprietary Cl

- ABWR Analysis and Sensitivity Studies
- Pool Swell Load Application
- Topical Report
- Response to Informal Questions

Introduction

STP Team Attendees

- Scott Head
- Jim Tomkins
- Aaron Heinrich
- Brad Maurer
- Nirmal Jain
- Rick Ofstun
- Jason Douglass
- Tom George
- Hirohide Oikawa
- Koichi Kondo

STPNOC STPNOC STPNOC Westinghouse Westinghouse Westinghouse Westinghouse NAI Toshiba

Westinghouse Non-Proprietary Cla

TANE

Introduction

Desired Outcomes

- Provide better understanding of related test (PSTF)
- Provide an update of comparisons with tests and DCD, and ABWR analysis
- Address the items raised by NRC at July 7 P/T Audit
 - Drawing showing equipment in wetwell airspace
 - Methodology for calculating equipment loads
 - Uncertainty in pool swell results
 - Table comparing Input differences for P/T and Pool Swell
- Provide information on the load application procedure and the scope content of the pool swell topical report
- Receive feedback from NRC

Analysis Approach

- Develop GOTHIC modeling approach for conservative estimates of
 - Maximum swell height
 - Maximum pool velocity
 - Peak gas space pressure during swell
 - Peak bubble pressure during swell
- Results comparison with
 - PSTF 1/3 Scale Test
 - ABWR DCD
 - NEDO-33372
- Results for ABWR design
- Application of Pool Swell Results for Structural Loads Analysis

Westinghouse Non-Proprietary Cla

W)Westinghous

	DCD	ABWR/GOTHIC
Initial water in vertical and horizontal vent pipes	Ignored	Included. Vent clearing modeled.
Vent location	Gas injected at elevation of top of top vent	Gas injected at actual elevation of top vent
Vent area	Sequential addition of vents	All vents located at the top vent
Injection Pressure	Drywell pressure transient	Drywell pressure transient

Westinghouse Non-Proprietary Clas

185

	DCD	ABWR/GOTHIC
Injection Composition	100% N ₂ – perfect gas	100% N ₂ – perfect gas
Injection Temperature	T _{Drywell} from isentropic compression	GOTHIC calculated DW temperature transient
Vent Path Pressure Loss	Friction	Ignored
Vent Choking	Unclear	Included

	DCD	ABWR/GOTHIC
Gas Temperature in Bubble	Drywell temperature	Near pool temperature
Pool swell drag	Ignored	Ignored
Gas Temperature above Pool – Maximum Swell	Polytropic compression - PV ^k =const (k=1.2)	Near isothermal compression
Gas Temperature above Pool – Maximum Pressure	Isentropic compression - PV ^k =const (k=1.4)	Near isentropic compression

	DCD	ABWR/GOTHIC	
Pool swell region	80% of wetwell	80% of wetwell (a,c)	
Rising water slug	Constant thickness		
Conservative multiplier on maximum swell velocity	1.1	1.1	

GOTHIC Pool Surface Detection

Pool Surface Velocity

TOSHIBA

Leading Innovation >>>

SSO-2009-000208-NP Rev.0

Class 1

NRC Containment Audit for STP 3&4 COLA

Pool Swell Test Data

August 18, 2009

15

Copyright © 2009 Toshiba Corporation. All rights reserved.

TOSHIBA Leading Innovation >>>

Outline

Class 1

Pressure suppression test facility (PSTF) description

Test matrix

Test case used for GOTHIC benchmark

16

TOSHIBA Leading Innovation >>>

PSTF Test

Class 1

Pressure suppression test facility (PSTF)

- Confirmatory test by GE (San Jose, CA)
- Simulates Mark-III containment with horizontal vent configuration
- LOCA related hydrodynamic loads (pool swell, CO and chugging)

■ Configuration

- 1/135 (vol.) of BWR/6 Mark-III containment
- Test section scale : Full, 1/3, 1/9 (area)

Test results

- Drywell and wetwell pressurization
- Vent clearing
- Pool swell
- Condensation oscillation
- Chugging

TOSHIBA Leading Innovation >>>

Pressure Suppression Test Facility (PSTF)

Pool Swell Test Facility

18

TOSHIBA

SSO-2009-000208-NP Rev.0

Leading Innovation >>>

TOSHIBA Leading Innovation >>>

Class 1

TOSHIBA Leading Innovation >>>

PSTF Scaling

Class 1

	Mk-III	Full Scale	1/3	1/9
		(Run 5700)	(Run 5800)	(Run 6000)
Boiler	1	1 / 132	1 / 132	1 / 132
Break Area	1	1 / 130	1 / 130	1 / 130
DW Volume	1	1 / 128	1 / 128	1 / 128
Vent Area	1	1 / 45	1 / 135	1 / 138
Pool Area	1	1 / 46	1 / 134	1 / 135
WW Volume	1	1 / 112	1 / 112	1 / 112

21

TOSHIBA Leading Innovation >>>

PSTF Test Matrix

Class 1

Scale	Test Series	Test Cases	Venturi Size (in)	Blowdown	Vent Row	Submergence (ft @CL)	Objectives
Full	5701	21	2' 1/8" ~ 3' 5/8"	Sat. Steam	1	2 ~ 15.5	Vent Clearing Demonstration Drywell Pressure
20 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5702	17	2' 1/8" ~ 3' 5/8"	Sat. Steam	2	1.93 ~ 11.97	Vent Clearing
₹ I.	5703	3	2' 1/2" ~ 3' 5/8"	Sat. Steam	3	6.77 ~ 11.05	Vent Clearing
	5705	4	1 ~ 4' 1/4"	Air	2	6 ~ 8	Pool Swell (Scoping)
	5706	7	4' 1/4"	Air	2	6 ~ 10	Pool Swell Impact Load
	5707	22	2' 1/8" ~ 3	Sat. Steam	3	7.5	Chugging
1/3	5801	19	2' 1/8" ~ 3	Sat. Steam	3	5 ~ 10	Demonstration Pool Swell Roof dP
	5802	3	2' 1/8" ~ 3	Sat. Steam	3	6	Pool Swell
	5803	2	2' 1/8" ~ 3	Sat. Liquid	3	5 ~ 7.5	Demonstration Liquid Blowdown
	5804	5	2' 1/8" ~ 3	Sat. Steam	3	5	Roof dP (repeat)
	5805	52	1 ~ 3	Sat. Steam	3	5 ~ 10	Pool Swell (Impact)
e e	5806	12	2' 1/2" ~ 4' 1/4"	Air	3	5~7.5	Pool Swell
	5807	20	1~3	Sat. Steam and Liquid	3	7.5	Steam Condensation
1/9	6002	14	2' 1/8" ~ 3	Steam	9	5 ~ 10	Pool Swell (Multi Vent)
	6003	12	2' 1/2"	Steam	9	7.5	Steam Condensation (Multi Vent)

22

Class 1

Series 5800 (1/3 area scale) is "best balanced"

- Consistent scale (RPV / DW / vent / WW)
- Smaller configuration (1/9 scale) behaves more 1D like
- Runs 5806 provide representative pool swell data
 - Large steam line break
 - (Pool width / submergence) ratio is close to ABWR
- Data availability
 - Various measurements (swell velocity, slug thickness etc.)
 - 3D information (bubble and pool surface shape)
- NRC adopted 5800 series for pool swell evaluation basis

23

/ Bubble and Pool Surface Shape

Class 1

Leading Innovation >>>

Pool Swell Level and Velocity

Class 1

Leading innovation >>>

Summary

Class 1

PSTF test outline

- The only test of pool swell in horizontal vent configuration
- Test facility configuration and test matrix were summarized

Test case selected for GOTHIC benchmark

- 1/3 scale series (pool swell runs)
- Scaling balance (vol.-area scale, pool aspect ratio)
- Data availability

TOSHIBA Leading Innovation >>>

Comparison with Test Data and DCD Results

- PSTF (Pressure Suppression Test Facility)
 1/3 Scale Test
- DCD

PSTF Comparison

- Test Run 5806
 - 1/3 Scale
 - 3 Vents
 - Compressed Air Injection
 - Primary Objective Pool Swell
 - 5.0 7.5 feet top vent submergence
 - Selected Case 5.0 feet submergence
- 1/3 Scale tests have closest overall scaling to prototypic conditions
 - Pool and vent aspect ratios better matched in full scale tests.

GOTHIC Results for PSTF 5806-1 Pool Swell

GOTHIC Results for PSTF 5806-1 Pool Surface Velocity

GOTHIC Results for PSTF 5806-1 Slug Thickness

GOTHIC Results for PSTF 5806-1

- GOTHIC modeling approach bounds surface elevation transient and surface velocity transient.
- Model allows some thinning of rising slug but less than indicated by test.

Westinghouse Non-Proprietary Class

- Due to open gas space, 80% pool area has minimal impact on results.
- Vent Clearing Time
 - Measured 0.8 seconds
 - Simulation 0.7 seconds

DCD Comparison

- Specified drywell pressure transient from FWLB in DCD.
- GOTHIC modeling approach is same as for PSTF comparison except that gas space is a closed volume.

Westinghouse Non-Proprietary Class

DCD Comparison GOTHIC Results for DCD Conditions

DCD Comparison GOTHIC Results for DCD Conditions

Comparison of Results

August 18, 20

	DCD	ABWR/ GOTHIC 80% Pool
Max Swell Height (m)	7.0	7.4
Max Slug Velocity (m/s) with 1.1 multiplier	6.0	7.0
Max Gas Space Pressure (kPag)	108	106
Max Bubble Pressure (kPag)	133	141

Westinghouse Non-Proprietary Class

Westing

GOTHIC Results for DCD Comparison

- GOTHIC modeling approach bounds DCD results for peak swell elevation, peak surface velocity and peak bubble pressure.
- Gas space peak pressure is slightly lower.
 - Uncertainty in DCD peak pressure definition.
 - Small heat and mass transfer at pool surface.

ABWR Design Case

- Applied drywell pressure transient is the upper envelope curve for all MSLB and FWLB transients considered for peak short term containment pressure and temperature.
- MSLB gives faster pressure rise in the drywell and is therefore bounding for pool swell analysis.
- Drywell pressure response includes vent inertia
 - Increases very short term drywell pressure rise rate and peak for MSLB cases.

Horizontal Vent Inertia

 Horizontal vent inertia is ignored in short term PT analysis (maximized peak pressure value).

 Based on numerical experiments

Design Case Drywell Pressure

Design Case Pool Swell

Design Case Pool Surface Velocity

Design Case Froth Level

- Assumed maximum froth level extends to 3.3 m above the maximum pool swell height.
- Consistent with NUREG-0978 for Mark III
- ABWR froth height is expected to be less.
 - Back pressure on the pool slug results in lower water inertia when the bubble breaks through the surface.
 - Reduced water momentum will result in lower froth height.
 - Higher gas space pressure results in reduced gas expansion and reduced water carry-up.

Design Case Bubble and Gas Space Pressure

Peaks registered just before or at breakthrough

August 18, 2009

Westinghouse Non-Proprietary Class 3

Design Case Results

	DCD	NEDO 33372	Westinghouse ABWR
Max Swell Height (m)	7.0	8.3	8.8
Max Slug Velocity (m/s) with 1.1 multiplier	6.0	6.0	10.9
Max Gas Space Pressure (kPag)	108	154	146
Max Bubble Pressure (kPag)	133	185	195

GOTHIC Results for ABWR Design

- GOTHIC modeling approach bounds NEDO-33372 results for peak swell elevation, peak surface velocity and peak bubble pressure.
- Gas space peak pressure is slightly lower.
 - Uncertainty in DCD peak pressure definition.
 - Small heat and mass transfer at pool surface.

Westinghouse Non-Proprietary Class

Sensitivity Studies

- Variations on Design Case
 - Vent loss factor
 - Pool area factor
 - Vent inertia length
 - Gas space thermal behavior

Westinghouse Non-Proprietary Class &

Sensitivity to Vent Loss Factor

Sensitivity to Pool Area Factor

Sensitivity to Vent Inertia Length

Sensitivity to Gas Space Thermal Behavior

Sensitivity Conclusions

- Relative response to selected sensitivity parameters is as expected.
- Results are most sensitivity to pool area factor.
- Small sensitvity to inertia length.
- Overall modeling approach is considered conservative.

Conservatisms in Modeling Approach

- High estimate of drywell pressure transient
 - High vent losses
 - Vent inertia effects included
 - Maximum pool level
- Vent losses ignored in pool swell calculations
- Isothermal gas space minimizes back pressure on rising slug
- Minimum initial slug thickness
- Nitrogen injection
 - 20-30% higher peak swell velocity compared to tests with steam blowdown in the drywell

August 18, 2009 Westinghouse Non-Proprietary Class 3

Summary

- GOTHIC modeling approach bounds peak swell height, peak surface velocity and peak bubble pressure from
 - PSTF Test 5806-1
 - DCD
 - NEDO 33372
- GOTHIC results for peak gas space pressure are close to DCD and NEDO 33372 values

Westinghouse Non-Proprietary Class

• Significant conservatisms are built into the GOTHIC modeling approach.

TOSHIBA Leading Innovation >>>

SSO-2009-000209-NP Rev.0

Class 1

NRC Containment Audit for STP 3&4 COLA

Pool Swell Load Application

August 18, 2009

55

Copyright © 2009 Toshiba Corporation. All rights reserved.

TOSHIBA Leading Innovation >>> Pool swell load application methodology

- Wetwell (WW) boundary
- Structures in WW airspace (NUREG-0487 / 0978)
- Submerged structures

Information of relevant equipment location (typ.)

56

Class 1

Pool Boundary Load

Methodology

The pressure loads calculated by GOTHIC are applied to pressure boundary.

- Wetwell air space boundary
- Suppression pool boundary Bubble pressure + Hydrostatic head

57

TOSHIBA Leading Innovation >>>

Structures in WW

Class 1

Structures in WW (SRVDL)

Class 1

Leading Innovation >>>

Methodology

The methodology is the same as that used for DCD.

• Impact load (for small structure): NUREG-0487

 $P(t) = P_{max} (1 - \cos(2\pi t / T)) / 2$

$$P_{max} = 2I_P / T, I_P = (M_H / A) V / g_C$$

60

TOSHIBA

SSO-2009-000209-NP Rev.0

Class 1

• Drag load: the sum of standard and acceleration drags

 $P_{d} = 1/2 C_{D} \rho (V^{2}/g_{c}) + V_{A} \rho (V/g_{c})$

• Treatment of froth region: NUREG-0978

TOSHIBA Leading Innovation >>>

61

Methodology

The methodology is based on the analytical model for LOCA charging bubble-induced load (Dr. Moody, NEDE-21471, 1977).

• Spherical, adiabatic ideal gas bubble dynamics equations with the flow field being described by a point source

 $R R + 3/2 R^2 = g_c (P_{bubble} - P_{\infty}) / \rho$

- The total drag is the sum of standard and acceleration drags
- The boundaries (including the free surface) are incorporated by using the method of images.

62

TOSHIBA Leading Innovation >>>

Submerged Structures

Class 1

Summary

Class 1

- Pool swell load application adopts existing and accepted methodology
 - Described in NUREGs and their references
 - GOTHIC results (P, V, H) are used in formulation

Specific design calculation will be performed in detail design stage

TOSHIBA Leading Innovation >>>

Contents of Topical Report (Preliminary)

1.Introduction and Background

2.Purpose

3. Pool Swell Phenomena and Related Hydrodynamic Loads

4.GOTHIC Capabilities for Pool Swell Phenomena

5.GOTHIC Model Description for ABWR Pool Swell

6.Comparison of GOTHIC Methodology with the ABWR DCD Methodology

7.Comparison of GOTHIC Results with the ABWR DCD Results

8.PSTF Comparison

9.Results for ABWR

10.Sensitivity Studies

11.Application of Pool Swell Results for Structural Loads Analysis

12.Conclusions

13.References

August 18. 2

Appendix A – Key GOTHIC ABWR Suppression Pool Model Input Parameters

Appendix B – Comparison of GOTHIC Pool Swell Methodology with PSTF Test Data

Appendix C – Drywell Pressure Transient for DCD Benchmark

Appendix D – Drywell Pressure and Temperature Transients for Design Analysis

Appendix E – Sensitivity Studies

Westinghouse Non-Proprietary Class

Westinghous

Response to Questions

- Scale drawings of equipment in wetwell air space
 Discussed in presentation on design analysis
- Discussion of approach for calculating pool swell induced loads on equipment
 - Discussed in presentation on design analysis
- Effects of uncertainties in calculation of pool swell level surge
 - Discussed in presentation on design analysis
- Comparison of input differences for Short Term P/T, Long Term P/T, and Pool Swell Analyses
- Vent clearing times

Model Input Comparison

Modeling Element	Short Term PT	Short Term for PS Input	Long Term PT (<u>a,c)</u>
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	Modeling Element	Modeling Element Short Term Image: Constraint of the second state	Modeling Element Short Term PT Short Term for PS Input Image: Image of the state of

Vent Clearing Times

Test or Analysis _	Time (seconds)
·	

Questions?

oprietary.

Class