Binder No. 1 of 1

GEOTECHNICAL SUBSURFACE INVESTIGATION DATA REPORT ADDENDUM NO. 3 (RCTS TEST RESULTS) – REV. 02

CGG Combined Operating License Application (COLA) Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

December 13, 2007

Prepared By:

SCHNABEL ENGINEERING NORTH, LLC Gaithersburg, Maryland (Schnabel Project No. 06120048)

Submitted To:

BECHTEL POWER CORPORATION Frederick, Maryland (Bechtel Subcontract No. 25237-103-HC4-CY00-00001)

Binder No. 1 of 1

Schnabel Engineering North, LLC

656 Quince Orchard Road, Suite 700 Gaithersburg, MD 20878

Phone: (301) 417-2400 Fax: (301) 417-2730 www.schnabel-eng.com

December 13, 2007

Mr. Scott Close, P.E. **Bechtel Power Corporation** 5275 Westview Drive Frederick, MD 21703-8306

Subject:

Geotechnical Subsurface Investigation Data Report Addendum No. 3 (RCTS Test Results) – Rev. 02 CGG Combined Operating License Application (COLA) Project, Calvert Cliffs Nuclear Power Plant (CCNPP), **Calvert County, Maryland** Subcontract No. 25237-103-HC4-CY00-00001 (Schnabel Project No. 06120048)

Dear Mr. Close:

Schnabel Engineering North, LLC (Schnabel) is pleased to submit this Addendum No. 3 (Rev. 02) to the Geotechnical Subsurface Investigation Data Report dated April 13, 2007 for the above referenced project. This data report addendum was prepared in accordance with the Technical Services Subcontract agreement between Bechtel Power Corporation (Bechtel) and Schnabel, dated March 23, 2006. Revisions to this Addendum are based on Bechtel review comments.

Our scope of work addressed in this report addendum includes resonant column and torsional shear (RCTS), moisture content, soil classification, unit weight and specific gravity geotechnical laboratory testing as prescribed in the Bechtel Geotechnical Laboratory Test Assignment Schedule dated August 11, 2006 (revised January 26, 2007) with associated cover letter dated January 29, 2007 (document number 25237-103-T7S-CY00-00003). RCTS, moisture content and unit weight testing were conducted by Fugro Consultants, Inc. in their Houston, Texas laboratory. The soil classification and specific gravity testing were performed by Schnabel's Baltimore, Maryland laboratory. A total of 13 of the 20 assigned soil samples were tested, the results of which are provided herein. A fourteenth sample (B765-UD25) did not yield a testable specimen due to a high (B310-UD19, B340-UD17, B401-UD45, B409-UD8, B429-UD13, B437-UD23) are being held at the Fugro laboratory for possible future testing. These samples will be held at the Houston laboratory until written direction is received from you for their disposition.

This addendum provides the RCTS and associated soil index test results, including the following attachments:

- 1. Summary of RCTS Test Procedures
- 2. "Final RCTS Report for the Calvert Cliffs (CC) Project," dated December 12, 2007, prepared by Fugro Consultants, Inc.
- 3. Updated "Summary of Soil Laboratory Test Results" spreadsheet, dated November 2, 2007.
- 4. Replacement test boring log pages for Appendix C of the final report.

Sampling and testing activities for this project were performed under Bechtel's quality assurance program meeting NQA-1 requirements, and according to the project technical specification (25237-103-HC4-CY00-00001, Rev. 3, Oct 06), and the approved project procedures and work plans.

We appreciate the opportunity to be of service to you for this project. Please contact Mr. Brian Banks at (301) 417-2400 if you have any questions regarding this addendum.

Very truly yours,

SCHNABEL ENGINEERING NORTH, LLC

Ja

Brian K. Banks, P.G. Senior Associate

MHD:BBbb:oa

G:\2006\06120048 Calvert Cliffs\WP\FINAL\Addendum 3\06120048 Calvert Cliffs Data Report - Addendum No 3 (07_12-13) - RCTS Results - REV 02.doc

Attachments:

- 1. Summary of RCTS Test Procedures
- 2. Final RCTS Report for the Calvert Cliffs (CC) Project, dated December 12, 2007 (343 Sheets)
- 3. Summary of Soil Laboratory Test Results (24 Sheets)
- 4. Replacement Boring Log Sheets (26 Sheets)

Schnabel Project No. 06120048

SUMMARY OF RCTS TEST PROCEDURES

Summary of RCTS Test Procedures Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Fugro laboratory personnel used resonant column and torsional shear (RCTS) equipment to measure the material properties (shear modulus and material damping in shear) of soil specimens. The RCTS equipment used is of the fixed-free type, with the bottom of the specimen fixed and shear stress applied to the top.

Both the resonant column (RC) and torsional shear (TS) tests were performed in a sequential series on the same specimen over a shearing strain range from about 10^{-4} % to about 1%, depending upon specimen stiffness.

The basic operational principle is to vibrate the cylindrical specimen in first-mode torsional motion. Harmonic torsional excitation is applied to the top of the specimen over a range in frequencies, and the variation of the acceleration amplitude of the specimen with frequency is obtained. Once first-mode resonance is established, measurements of the resonant frequency and amplitude of vibration are made. These measurements are then combined with equipment characteristics and specimen size to calculate shear wave velocity and shear modulus based on elastic wave propagation.

The RC test is based on the one-dimensional wave equation derived from the theory of elasticity. The shear modulus is obtained by measuring the first-mode resonant frequency while material damping is evaluated from either the free-vibration decay curve or from the width of the frequency response curve at the so-called half power points. In the TS test, the actual stress-strain hysteresis loop is determined by means of measuring the torque-twist curve. Shear modulus is calculated from the slope of the hysteresis loop, and the hysteric damping ratio is calculated using the area of the hysteresis loop compared to the triangle made by the slope of the hysteresis loop and a line passing horizontally through the origin. The primary difference between the two types of tests is the excitation frequency. In the RC test, frequencies above 20 Hz are generally required and inertia of the specimen and drive system is considered when analyzing the measurements. The TS test is associated with slow cyclic loading frequencies generally below 10 Hz and inertia is not considered in the data analysis.

Equipment wise, the RCTS apparatus consists of four basic subsystems which are: 1) a confinement system, 2) a drive system, 3) a height-change measurement system, and 4) a motion monitoring system. The test apparatus is automated so that a microcomputer controls the test and collects the data. Compressed air is used to confine isotropically the specimen in the stainless steel confining chamber. The drive system consists of a drive plate, magnets, drive coils, a power amplifier and a signal generating source. The magnets are fixed to the drive plate and the drive coils encircle the ends of the magnets such that the drive plate excites the soil specimen in torsional motion when a current is passed through the coils. The height change of the specimen is measured by a linear variable differential transformer to determine the changes in the length and mass of the

specimen during consolidation or swell, and to calculate change in the mass moment of inertia, mass density, and void ratio during testing.

RCTS testing was performed on each soil specimen at confining pressures of 0.25, 0.5, 1, 2, and 4 times the estimated effective stress. Testing at each successive stage (i.e., confining pressure condition) occurred after the specimens were allowed to consolidate at each pressure step. The soil specimen is sealed in a membrane and pore pressure in the specimen is vented to atmospheric pressure. The samples were not backpressure saturated. In general, the rate of consolidation decreased with increasing confining pressure for each specimen, and cohesive soil specimens take longer to consolidate than granular soils. Consolidation times range from about 1 day up to about 21 days or longer. Fugro laboratory personnel analyzed the resulting stress/strain curve to determine when the sample was sufficiently consolidated for testing.

At each level of shear strain amplitude, the shear modulus (G) and material damping ratio (λ) were determined. For each consolidation stage, the maximum shear modulus (G_{max}) and minimum material damping ratio (λ_{min}) were determined, along with some values of G and λ versus strain amplitude. Typically, in the 0.25-, 0.5-, and 2-times consolidation stages, shear strain amplitude less than 0.001% is applied throughout each testing sequence. In the 1- and 4-times consolidation stages, additional levels of shear strain amplitude are applied, up to that obtainable by the equipment. In each consolidation stage, after testing at the maximum strain amplitude, additional values of G were determined to monitor specimen recovery.

Because different frequencies are applied in the RC and TS tests, different motion monitoring systems are used. The motion monitoring system in the RC test consists of an accelerometer, a charge amplifier, and a data acquisition system (DAQ). The motion monitoring system in the RS test consists of two proximitor probes, an operational amplifier, a DC power supply, a U-shaped target and a digital data acquisition system to monitor torque-twist hysteresis loops of the specimen.

Each critical component of the RCTS apparatus was calibrated prior to testing for the project. Metal specimens were used to evaluate the RCTS equipment for system compliance, and the system was also checked using a standard graded Ottawa Sand specimen.

Schnabel Project No. 06120048

FINAL RCTS REPORT FOR THE CALVERT CLIFFS (CC) PROJECT December 12, 2007 Fugro Consultants, Inc.

FUGRO CONSULTANTS, INC.

6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518

December 12, 2007

Mr. Brian K. Banks, P.G. Schnabel Engineering 656 Quince Orchard Road, Suite 700 Gaithersburg, MD 20878

RE: Final RCTS Report for the Calvert Cliffs (CC) Project

Dear Mr. Banks:

Fugro has performed RCTS testing for the referenced project. Dr. Stokoe has reviewed the data and the associated results and found them to be reasonable. Fugro has incorporated all applicable comments from Dr. Kenneth Stokoe.

This report includes the following items (in hardcopy and CD-ROM):

- Index test summary table (supplied by Schnabel Engineering, Inc.),
- Applicability of Report, and
- Appendices A through M with test results for each test.

Each appendix includes the following items:

- Summary sheet,
- Figures,
- Tables, and
- Gradation curve (supplied by Schnabel Engineering, Inc.).

Please let us know if you have questions.

Very truly yours,

Fugro Consultants, Inc.

Magen

Jiewu Meng, PhD, P.E. Project Engineer

Enclosures

Wellard De Sroff

Bill DeGroff, P.E. Laboratory Department Manager

Index Testing Summary for RCTS Samples

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

						Index Testing					
			Sample	Sample							
Appendix		Sample	Тор	Bottom	Sample		UW	MC			
No.	Sample	No.	Depth (ft)	Depth (ft)	Туре	Lab Class	(lb/ft ³)	(%)	SG	LL	PI
Α	B-437	6	13.5	15.5	UD	SP-SM	124.1	7.2	2.66	NP	NP
В	B-301	10	33.5	35.5	UD	СН	117.5	31.1	2.74	59	42
С	B-305	17	39.5	41.5	UD	SC	117.2	34.7	2.71	72	50
D	B-404	14	52	53.6	UD	SP-SM	117.6	27.7	2.68	NP	NP
E	B-401	31	138.5	140.5	UD	СН	104.1	44.1	2.63	80	49
F	B-401	67	348.5	350.5	UD	SM	116.4	35.6	2.78	52	13
G	B-401	48	228.5	229.6	UD	MH	98.2	58.6	2.48	139	51
	B-301	76	368.5	370	jar						
	B-301	77	378.5	379.5	jar						
	B-301	78	383.5	384.4	jar						
Н	B-301	79	388.5	390	jar	SM	116.4	34.4	2.86	40	4
	B-301	81	398.5	400	jar						
	B-401	68	358.5	359.4	jar						
	B-401	70	378.5	380	jar						
I	B-306	17	68	70	UD	СН	115.8	30.7	2.73	62	38
J	B-409	15	35	36.1	UD	SP-SM	124.8	23.3	2.66	NP	NP
K	B-404	22	83.5	85.1	UD	SM	115.4	32.2	2.63	53	25
L	B-401	42	198.5	200.3	UD	SM	101.2	48.8	2.52	82	27
М	B-409	39	95	96.6	UD	SM	109.3	33.1	2.64	61	19

Note: Fugro performed UW and MC testing in Houston, TX; Schnabel performed Lab Class, SG, LL, PI testing in Baltimore, MD.

Applicability of Report

The laboratory testing results, as well as the conclusions and recommendations, if any, contained in this report, were completed based on our scope of services and on our established technical practice. We have prepared this report exclusively for Schnabel Engineering, Inc. to assist in their Calvert Cliffs (CC) project. We conducted our services using the standard level of care and diligence normally practiced by recognized engineering laboratories now performing similar services under similar circumstances. We intend for this report, including all illustrations, to be used in its entirety. Data as presented in this report should be used along with other available information and questions should be asked when inconsistency, if any, is observed.

APPENDIX A

CC B437-UD6 POORLY GRADED SAND (SP-SM), with silt, brown* (Non-Plastic; Gs=2.66)*

Borehole B-437 Sample UD6 Sample Depth = 13.5 to 15.5 ft RCTS Test Depth = 14.9 ft Total Unit Weight = 124.1 lb/ft³ Water Content = 7.2 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 0.5*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure A.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure A.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure A.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure A.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure A.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure A.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure A.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure A.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure A.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure A.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 8.6 psi from the Combined RCTS Tests

Figure A.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 8.6 psi from the Combined RCTS Tests

Figure A.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 8.6 psi from the Combined RCTS Tests

Figure A.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 8.6 psi from the Combined RCTS Tests

Figure A.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 34.4 psi from the Combined RCTS Tests

Figure A.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 34.4 psi from the Combined RCTS Tests

Table A.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B437-UD6

Isotropic Confining Pressure, σ_{o}			Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
2.2	317	15	930	45	485	1.76	0.394
4.3	619	30	1202	58	557	1.66	0.393
8.6	1238	59	1637	79	644	1.28	0.392
17.2	2477	119	2517	121	797	1.02	0.382
34.4	4954	237	3474	167	933	0.53	0.379

Table A.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B437-UD6; Isoptropic Confining Pressure, σ_0 =8.6 psi (1.2 ksf = 59 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
6.00E-05	1637	1.00	6.00E-05	1.28
1.42E-04	1637	1.00	1.42E-04	1.36
3.49E-04	1608	0.98	3.49E-04	1.72
8.14E-04	1567	0.96	8.14E-04	2.13
1.91E-03	1474	0.90	1.63E-03	2.55
4.48E-03	1310	0.80	3.64E-03	3.05
1.05E-02	1103	0.67	8.13E-03	4.07
2.56E-02	875	0.53	1.79E-02	5.74
6.21E-02	681	0.42	3.96E-02	7.65
1.47E-01	538	0.33	8.26E-02	10.43

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table A.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B437-UD6; Isotropic Confining Pressure, σ_0 = 8.6 psi (1.2 ksf
= 59 kPa)

	Fir	st Cycle		Tenth Cycle				
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material	
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping	
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %	
3.38E-04	1623	1.00	1.59	3.26E-04	1659	1.00	1.27	
8.87E-04	1623	1.00	1.50	8.83E-04	1653	1.00	1.49	
1.81E-03	1616	1.00	1.67	1.82E-03	1601	0.97	1.66	
3.54E-03	1530	0.94	2.18	3.57E-03	1516	0.91	1.96	
4.76E-03	1478	0.91	2.51	4.78E-03	1472	0.89	2.53	
1.07E-02	1316	0.81	3.45	1.07E-02	1310	0.79	3.32	
2.69E-02	1049	0.65	7.89	2.60E-02	1086	0.65	6.41	

Table A.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen CC B437-UD6; Isoptropic Confining Pressure, σ_0 = 34.4 psi (5.0 ksf = 237 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
2.30E-05	3463	1.00	2.30E-05	1.04
5.60E-05	3474	1.00	5.60E-05	1.03
1.39E-04	3451	0.99	1.39E-04	1.21
3.27E-04	3417	0.98	3.27E-04	1.38
8.17E-04	3337	0.96	8.17E-04	1.78
1.94E-03	3181	0.92	1.72E-03	1.99
4.68E-03	2913	0.84	4.02E-03	2.33
1.13E-02	2526	0.73	9.28E-03	3.05
2.62E-02	2110	0.61	2.06E-02	3.87
4.20E-02	1848	0.53	3.20E-02	4.35

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve
Table A.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B437-UD6; Isotropic Confining
Pressure, σ_0 =34.4 psi (5.0 ksf = 237 kPa)

First Cycle				Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear	Damping	Shearing	Modulus,	Shear	Damping
Strain, %	G, ksf	Modulus,	Ratio, D,	Strain, %	G, ksf	Modulus,	Ratio, D, %
8.41E-04	3356	0.97	1.20	8.53E-04	3312	0.95	0.87
1.67E-03	3257	0.94	1.13	1.67E-03	3256	0.94	1.00
3.47E-03	3132	0.90	1.16	3.48E-03	3119	0.90	1.22
7.34E-03	2962	0.85	2.00	7.33E-03	2969	0.85	1.86

APPENDIX B

CC B301-UD10 FAT CLAY (CH), with sand, gray* (LL=59, PL=17, PI=42; Gs=2.74)*

Borehole B-301 Sample UD10 Sample Depth = 33.5 to 35.5 ft RCTS Test Depth = 35.4 ft Total Unit Weight = 117.5 lb/ft³ Water Content = 31.1 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 12.0 psi*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure B.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure B.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure B.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure B.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure B.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure B.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure B.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure B.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure B.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure B.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 12.0 psi from the Combined RCTS Tests

Figure B.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 12.0 psi from the Combined RCTS Tests

Figure B.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 12.0 psi from the Combined RCTS Tests

Figure B.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 12.0 psi from the Combined RCTS Tests

Figure B.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 12.0 psi from the Combined RCTS Tests

Figure B.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 48.1 psi from the Combined RCTS Tests

Figure B.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 48.1 psi from the Combined RCTS Tests

Figure B.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 48.1 psi from the Combined RCTS Tests

Figure B.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 48.1 psi from the Combined RCTS Tests

Figure B.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 48.1 psi from the Combined RCTS Tests

Table B.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B301-UD10

Isotropic Confining Pressure, σ_{o}		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
3.0	432	21	825	40	475	2.53	0.895
6.0	864	41	972	47	514	2.41	0.888
12.0	1728	83	1212	58	572	2.18	0.874
24.1	3470	166	1643	79	661	1.88	0.846
48.1	6926	331	2303	111	775	1.32	0.814

Table B.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B301-UD10; Isoptropic Confining Pressure, σ_0 =12 psi (1.7 ksf = 83 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
9.80E-05	1213	1.00	9.80E-05	1.87
2.01E-04	1213	1.00	2.01E-04	1.86
4.96E-04	1213	1.00	4.96E-04	1.98
1.33E-03	1205	0.99	1.33E-03	2.17
3.18E-03	1198	0.99	2.73E-03	2.48
7.88E-03	1146	0.95	6.92E-03	3.11
1.85E-02	1039	0.86	1.43E-02	3.90
4.53E-02	860	0.71	3.27E-02	5.86
1.20E-01	646	0.53	7.64E-02	8.96

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table B.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B301-UD10; Isotropic Confining Pressure, σ_0 = 12 psi (1.7
ksf = 83 kPa)

	Fir	st Cycle		Tenth Cycle				
Peak	Shear	Normalized	Material	Peak Shear Normalized Ma			Material	
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping	
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %	
3.09E-04	1109	1.00	1.90	3.13E-04	1095	1.00	1.69	
6.03E-04	1109	1.00	1.94	6.05E-04	1095	1.00	2.14	
9.31E-04	1109	1.00	2.09	9.60E-04	1095	1.00	2.23	
1.89E-03	1109	1.00	2.46	1.89E-03	1095	1.00	2.34	
3.88E-03	1092	0.99	2.93	3.92E-03	1082	0.99	2.75	
9.62E-03	965	0.87	3.61	9.60E-03	967	0.88	3.48	
2.18E-02	851	0.77	4.92	2.23E-02	833	0.76	5.07	
6.48E-02	614	0.55	8.05	6.67E-02	597	0.55	8.00	

Table B.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen CC B301-UD10; Isoptropic Confining Pressure, σ_0 = 48.1 psi (6.9 ksf = 331 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
1.30E-04	2359	1.00	1.30E-04	1.24
2.19E-04	2359	1.00	2.19E-04	1.24
3.95E-04	2359	1.00	3.95E-04	1.24
7.64E-04	2359	1.00	7.64E-04	1.24
1.50E-03	2359	1.00	1.36E-03	1.41
2.91E-03	2340	0.99	2.52E-03	1.56
5.67E-03	2304	0.98	4.86E-03	2.05
2.14E-02	2197	0.93	1.84E-02	2.87
3.97E-02	2007	0.85	3.29E-02	3.49
7.56E-02	1746	0.74	5.79E-02	4.18
1.58E-01	1418	0.60	1.09E-01	5.65
3.79E-01	1079	0.46	2.41E-01	7.73
8.81E-01	773	0.33	5.04E-01	10.75

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table B.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B301-UD10; Isotropic Confining
Pressure, σ_0 =48.1 psi (6.9 ksf = 331 kPa)

	First	t Cycle		Tenth Cycle				
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material	
Shearing	Modulus,	Shear	Damping	Shearing	Modulus,	Shear	Damping	
Strain, %	G, ksf	Modulus,	Ratio, D,	Strain, %	G, ksf	Modulus,	Ratio, D, %	
3.03E-04	2320	1.00	1.58	3.16E-04	2290	1.00	1.70	
8.75E-04	2320	1.00	1.13	8.78E-04	2290	1.00	1.47	
1.74E-03	2320	1.00	1.48	1.75E-03	2290	1.00	1.18	
3.54E-03	2320	1.00	1.69	3.54E-03	2290	1.00	1.91	
9.67E-03	2125	0.92	2.69	9.65E-03	2130	0.93	2.61	
2.14E-02	1923	0.83	3.63	2.17E-02	1893	0.83	3.67	
5.55E-02	1482	0.64	6.04	5.72E-02	1438	0.63	6.16	

APPENDIX C

CC B305-UD17 Clayey SAND (SC), contains shells, gray* (LL=72, PL=29, PI=50; Gs=2.71)*

Borehole B-305 Sample UD17 Sample Depth = 39.5 to 41.5 ft RCTS Test Depth = 41.0 ft Total Unit Weight = 117.2 lb/ft³ Water Content = 34.7 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 0.5*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure C.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure C.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure C.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure C.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure C.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure C.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure C.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure C.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure C.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure C.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 20.7 psi from the Combined RCTS Tests

Figure C.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 20.7 psi from the Combined RCTS Tests

Figure C.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 20.7 psi from the Combined RCTS Tests

Figure C.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 12.0 psi from the Combined RCTS Tests

NOTE: Figures C.16 through C.20 are NOT available¹.

¹ The noise experienced in performing the torsional shear test diminished the usefulness of the presentation of the combined resonant column and torsional shear data. Therefore, those figures (i.e., the data) are not presented.

Table C.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B305-UD17

Isotropic Confining Pressure, σ_{o}			Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
5.2	749	36	1425	68	624	1.59	0.944
10.3	1483	71	1574	76	656	1.48	0.941
20.7	2981	143	1931	93	725	1.43	0.932
41.4	5962	285	2580	124	833	1.19	0.913
82.8	11923	570	3178	153	918	0.72	0.883

Table C.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B305-UD17; Isoptropic Confining Pressure, σ_0 =20.7 psi (3.0 ksf = 143 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
2.73E-04	1945	1.00	2.73E-04	1.59
5.73E-04	1945	1.00	5.73E-04	1.59
1.15E-03	1945	1.00	1.15E-03	1.59
2.31E-03	1938	1.00	1.98E-03	1.64
8.85E-03	1896	0.98	7.44E-03	1.74
1.67E-02	1835	0.94	1.41E-02	1.86
3.07E-02	1715	0.88	2.65E-02	2.01
5.65E-02	1562	0.80	4.73E-02	2.41
1.10E-01	1346	0.69	8.51E-02	3.35
2.41E-01	1052	0.54	1.75E-01	4.95
6.32E-01	740	0.38	3.83E-01	8.54

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table C.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B305-UD17; Isotropic Confining Pressure, σ_0 = 20.7 psi (3.0
ksf = 143 kPa)

First Cycle				Tenth Cycle				
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material	
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping	
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %	
5.00E-04	1912	1.00	1.51	4.98E-04	1894	1.00	1.35	
9.81E-04	1912	1.00	1.34	1.00E-03	1894	1.00	1.29	
1.99E-03	1912	1.00	1.61	2.00E-03	1894	1.00	1.41	
4.09E-03	1851	0.97	1.53	4.08E-03	1857	0.98	1.55	
9.66E-03	1681	0.88	2.26	9.63E-03	1687	0.89	2.26	
2.14E-02	1515	0.79	3.60	2.18E-02	1492	0.79	3.72	
5.52E-02	1178	0.62	5.65	5.68E-02	1145	0.60	5.67	

Table C.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B305-UD17; Isoptropic Confining Pressure, σ_0 = 82.8 psi (11.9 ksf = 570
kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
6.65E-04	3290	1.00	6.65E-04	0.78
1.29E-03	3290	1.00	1.29E-03	0.77
2.44E-03	3290	1.00	2.15E-03	0.88
4.90E-03	3262	0.99	4.47E-03	0.89
9.52E-03	3214	0.98	8.50E-03	0.93
1.78E-02	3120	0.95	1.64E-02	1.15
3.19E-02	2958	0.90	2.86E-02	1.44
5.75E-02	2682	0.82	4.96E-02	1.91
1.05E-01	2355	0.72	8.84E-02	2.68
2.17E-01	1863	0.57	1.74E-01	3.93
5.90E-01	1256	0.38	4.24E-01	6.15

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table C.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen CC B305-UD17; Isotropic Confining Pressure, σ_0 =82.8 psi (11.9 ksf = 570 kPa)

	First	t Cycle		Tenth Cycle				
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material	
Shearing	Modulus,	Shear	Damping	Shearing	Modulus,	Shear	Damping	
Strain, %	G, ksf	Modulus,	Ratio, D,	Strain, %	G, ksf	Modulus,	Ratio, D, %	
*	*	*	*	*	*	*	*	
* Results are not available to establish well defined patterns.								

Results are not available to establish well defined patterns.

APPENDIX D

CC B404-UD14 POORLY GRADED SAND (SP-SM), with silt* with shells, gray* (Non-Plastic; Gs=2.68)*

Borehole B-404 Sample UD14 Sample Depth = 52.0 to 53.6 ft RCTS Test Depth = 53.2 ft Total Unit Weight = 117.6 lb/ft³ Water Content = 27.7 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 0.5*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure D.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure D.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure D.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure D.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure D.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure D.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure D.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure D.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure D.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 21.9 psi from the Combined RCTS Tests

Figure D.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 21.9 psi from the Combined RCTS Tests

Figure D.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 21.9 psi from the Combined RCTS Tests

Figure D.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 21.9 psi from the Combined RCTS Tests

Figure D.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 21.9 psi from the Combined RCTS Tests

Figure D.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 87.6 psi from the Combined RCTS Tests

Figure D.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 87.6 psi from the Combined RCTS Tests

Figure D.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 87.6 psi from the Combined RCTS Tests

Table D.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B404-UD14

Isotropic Confining Pressure, σ_o		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
5.5	792	38	1081	52	533	1.53	0.725
10.9	1570	75	1505	72	628	1.24	0.723
21.9	3154	151	2126	102	746	0.99	0.719
43.8	6307	302	3781	181	991	0.81	0.707
87.6	12614	604	4999	240	1137	0.57	0.697

Table D.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B404-UD14; Isoptropic Confining Pressure, σ_0 =21.9 psi (3.2 ksf = 151 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
3.41E-04	2137	1.00	3.41E-04	0.93
6.94E-04	2137	1.00	6.94E-04	0.94
1.37E-03	2137	1.00	1.37E-03	0.96
2.63E-03	2137	1.00	2.63E-03	0.93
4.94E-03	2070	0.97	4.41E-03	1.04
9.13E-03	1999	0.94	8.01E-03	1.26
1.67E-02	1896	0.89	1.43E-02	1.72
3.06E-02	1779	0.83	2.51E-02	2.39
5.61E-02	1618	0.76	4.48E-02	3.09
9.74E-02	1435	0.67	7.22E-02	4.35
1.73E-01	1198	0.56	1.22E-01	5.28
3.48E-01	945	0.44	2.35E-01	6.48
5.34E-01	815	0.38	3.43E-01	7.68

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

Table D.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B404-UD14; Isotropic Confining Pressure, σ_0 = 21.9 psi (3.2
ksf = 151 kPa)

	Fir	st Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
3.32E-04	2286	1.00	1.05	2.94E-04	2270	1.00	0.97
5.81E-04	2286	1.00	1.28	6.02E-04	2270	1.00	0.79
1.01E-03	2286	1.00	0.77	1.04E-03	2270	1.00	0.67
1.98E-03	2286	1.00	1.07	2.05E-03	2270	1.00	1.15
4.10E-03	2286	1.00	1.59	4.10E-03	2270	1.00	1.48
9.55E-03	2111	0.92	2.23	9.58E-03	2104	0.93	2.28
2.04E-02	1973	0.86	3.52	2.05E-02	1962	0.86	3.53
5.09E-02	1584	0.69	6.25	5.10E-02	1580	0.70	6.06

Table D.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B404-UD14; Isoptropic Confining Pressure, σ_0 = 87.6 psi (12.6 ksf = 604
kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
2.57E-04	5044	1.00	2.57E-04	0.74
5.10E-04	5044	1.00	5.10E-04	0.66
1.05E-03	5024	1.00	1.05E-03	0.78
3.91E-03	4954	0.98	3.64E-03	0.71
7.29E-03	4849	0.96	6.85E-03	0.81
1.33E-02	4712	0.93	1.22E-02	0.89
2.35E-02	4543	0.90	2.12E-02	1.17
4.13E-02	4251	0.84	3.59E-02	1.72
7.11E-02	3846	0.76	6.00E-02	2.32
1.21E-01	3381	0.67	1.00E-01	2.90
2.11E-01	2861	0.57	1.70E-01	3.65
3.67E-01	2425	0.48	2.84E-01	4.84

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

Table D.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B404-UD14; Isotropic Confining
Pressure, σ_0 =87.6 psi (12.6 ksf = 604 kPa)

	First	Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear	Damping	Shearing	Modulus,	Shear	Damping
Strain, %	G, ksf	Modulus,	Ratio, D,	Strain, %	G, ksf	Modulus,	Ratio, D, %
9.36E-04	5051	1.00	0.79	9.44E-04	5078	1.01	0.57
1.93E-03	5051	1.00	0.90	1.89E-03	5078	1.01	0.89
3.80E-03	5051	1.00	0.77	3.84E-03	5004	0.99	0.69
9.97E-03	4811	0.95	1.25	9.92E-03	4835	0.96	1.39
2.08E-02	4619	0.92	1.95	2.08E-02	4614	0.91	1.89
3.88E-02	4332	0.86	3.10	3.88E-02	4339	0.86	2.95

APPENDIX E

CC B401-UD31 SANDY FAT CLAY (CH), gray* (LL=80, PL=31, PI=49; Gs=2.63)*

Borehole B-401 Sample UD31 Sample Depth = 138.5 to 140.5 ft RCTS Test Depth = 140.0 ft Total Unit Weight = 104.1 lb/ft³ Water Content = 44.1 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 0.5*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure E.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure E.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure E.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure E.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure E.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure E.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure E.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure E.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure E.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 46.6 psi from the Combined RCTS Tests

Figure E.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 46.6 psi from the Combined RCTS Tests

Figure E.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 46.6 psi from the Combined RCTS Tests

Figure E.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 46.6 psi from the Combined RCTS Tests

Figure E.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 186.3 psi from the Combined RCTS Tests

Figure E.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 186.3 psi from the Combined RCTS Tests

Figure E.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 186.3 psi from the Combined RCTS Tests

Table E.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B401-UD31

Isotropic Confining Pressure, σ_o		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
11.6	1670	80	2018	97	785	1.36	1.302
23.3	3355	161	2302	110	836	1.16	1.294
46.6	6710	321	2738	131	910	1.07	1.280
93.1	13406	641	3478	167	1020	0.83	1.257
186.3	26827	1284	4208	202	1115	0.73	1.228

Table E.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B401-UD31; Isoptropic Confining Pressure, σ_0 =46.6 psi (6.7 ksf = 321 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
3.93E-04	2722	1.00	3.93E-04	1.24
6.95E-04	2722	1.00	6.95E-04	1.21
1.23E-03	2722	1.00	1.23E-03	1.27
2.15E-03	2722	1.00	2.15E-03	1.31
4.16E-03	2722	1.00	3.66E-03	1.35
9.87E-03	2722	1.00	8.68E-03	1.64
2.04E-02	2662	0.98	1.78E-02	1.91
3.91E-02	2486	0.91	3.24E-02	2.31
7.42E-02	2245	0.82	6.01E-02	2.99
1.54E-01	1907	0.70	1.14E-01	4.32
3.07E-01	1578	0.58	2.15E-01	5.67
4.91E-01	1365	0.50	3.19E-01	7.02

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

Table E.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B401-UD31; Isotropic Confining Pressure, σ_0 = 46.6 psi (6.7
ksf =321 kPa)

	Fir	rst Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
5.40E-04	2687	0.98	0.71	5.77E-04	2633	1.00	0.80
1.09E-03	2692	0.99	1.05	1.12E-03	2633	1.00	0.97
2.14E-03	2733	1.00	1.01	2.14E-03	2633	1.00	0.89
4.33E-03	2701	0.99	1.04	4.37E-03	2633	1.00	0.88

Table E.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B401-UD31; Isoptropic Confining Pressure, σ_0 = 186.3 psi (26.8 ksf = 1284 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
5.11E-04	4244	1.00	5.11E-04	1.17
1.06E-03	4244	1.00	1.06E-03	1.18
2.12E-03	4244	1.00	2.12E-03	1.16
4.21E-03	4244	1.00	4.21E-03	1.16
8.30E-03	4211	0.99	7.30E-03	1.36
1.59E-02	4146	0.97	1.41E-02	1.55
2.90E-02	4018	0.94	2.55E-02	1.82
5.14E-02	3799	0.89	4.42E-02	2.25
9.11E-02	3497	0.82	7.38E-02	2.79
1.69E-01	3094	0.73	1.32E-01	3.43
3.45E-01	2563	0.60	2.48E-01	5.02
6.57E-01	2073	0.49	4.47E-01	6.25

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

Table E.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B401-UD31; Isotropic Confining
Pressure, σ_0 =186.3 psi (26.8 ksf = 1284 kPa)

	First	Cycle			Ten	th Cycle	
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear	Damping	Shearing	Modulus,	Shear	Damping
Strain, %	G, ksf	Modulus,	Ratio, D,	Strain, %	G, ksf	Modulus,	Ratio, D, %
3.38E-03	3989	0.99	1.23	3.35E-03	4021	1.00	1.30
6.72E-03	4014	1.00	1.26	6.74E-03	3999	0.99	1.58
1.01E-02	4007	1.00	1.55	1.01E-02	4007	1.00	1.62
2.16E-02	3825	0.95	1.89	2.17E-02	3807	0.95	1.83

APPENDIX F

CC B401-UD67 Silty SAND (SM), brown* (LL=52, PL=39, PI=13; Gs=2.78)*

Borehole B-401 Sample UD67 Sample Depth = 348.5 to 350.5 ft RCTS Test Depth = 349.0 ft Total Unit Weight = 116.4 lb/ft³ Water Content = 35.6 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 113.9 psi*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure F.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure F.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure F.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure F.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure F.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure F.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure F.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure F.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure F.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 113.9 psi from the Combined RCTS Tests

Figure F.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 113.9 psi from the Combined RCTS Tests

Figure F.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 113.9 psi from the Combined RCTS Tests

Figure F.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 113.9 psi from the Combined RCTS Tests

NOTE: Figures F.16 through F.20 are NOT available¹.

¹ Figures F.16 through F.20 are not provided because testing at higher pressure(s) was adversely affected by high straining at 113.9 psi.

Table F.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B401-UD67

Isotropic Confining Pressure, σ_{o}		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
28.5	4104	196	2793	134	874	3.34	0.942
56.9	8194	392	3798	182	1014	3.25	0.921
113.9	16402	785	5447	261	1202	3.15	0.885

Table F.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B401-UD67; Isoptropic Confining Pressure, σ_0 =113.9 psi (16.4 ksf = 785 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
4.00E-05	5584	1.00	4.00E-05	2.98
8.00E-05	5584	1.00	8.00E-05	3.01
1.58E-04	5584	1.00	1.58E-04	3.07
3.15E-04	5584	1.00	3.15E-04	3.11
6.52E-04	5584	1.00	6.52E-04	3.27
1.31E-03	5556	0.99	1.05E-03	3.38
2.59E-03	5520	0.99	2.07E-03	3.60
5.09E-03	5414	0.97	4.12E-03	3.81
9.84E-03	5240	0.94	7.48E-03	4.03
1.87E-02	4967	0.89	1.39E-02	4.55
3.59E-02	4508	0.81	2.66E-02	5.01
7.02E-02	3972	0.71	4.91E-02	5.99
1.42E-01	3365	0.60	9.24E-02	7.70

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table F.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B401-UD67; Isotropic Confining Pressure, σ_0 = 113.9 psi
(16.4 ksf = 785 kPa)

First Cycle				Tenth Cycle				
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material	
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping	
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %	
6.31E-04	5606	1.00	0.79	6.36E-04	5621	1.00	0.98	
1.07E-03	5606	1.00	0.52	1.06E-03	5621	1.00	1.00	
2.15E-03	5592	1.00	0.82	2.13E-03	5621	1.00	0.72	
4.34E-03	5545	0.99	1.20	4.34E-03	5535	0.98	0.75	
1.05E-02	5232	0.93	1.83	1.04E-02	5257	0.94	1.80	
2.22E-02	4936	0.88	2.49	2.24E-02	4901	0.87	2.50	
3.92E-02	4523	0.81	3.31	3.91E-02	4532	0.81	3.24	

Table F.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B401-UD67; Isoptropic Confining Pressure, σ_0 = 455.6 psi (65.6 ksf = 3139 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table F.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B401-UD67; Isotropic Confining
Pressure, σ_0 =455.6 psi (65.6 ksf = 3139 kPa)

First Cycle				Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear	Damping	Shearing	Modulus,	Shear	Damping
Strain, %	G, ksf	Modulus,	Ratio, D,	Strain, %	G, ksf	Modulus,	Ratio, D, %

APPENDIX G

CC B401-UD48 ELASTIC SILT (MH), with sand, green* (LL=139, PL=88, PI=51; Gs=2.48)*

Borehole B-401 Sample UD48 Sample Depth = 228.5 to 229.6 ft RCTS Test Depth = 229.0 ft Total Unit Weight = 98.2 lb/ft³ Water Content = 58.6 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 0.5*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure G.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure G.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure G.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure G.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure G.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure G.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure G.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure G.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure G.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure G.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 70.3 psi from the Combined RCTS Tests

Figure G.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 70.3 psi from the Combined RCTS Tests

Figure G.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 70.3 psi from the Combined RCTS Tests

Figure G.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 70.3 psi from the Combined RCTS Tests

Figure G.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 281.3 psi from the Combined RCTS Tests

Figure G.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 281.3 psi from the Combined RCTS Tests

Figure G.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 281.3 psi from the Combined RCTS Tests

Figure G.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 281.3 psi from the Combined RCTS Tests

Table G.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B401-UD48

Isotropic Confining Pressure, σ_{o}		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
17.6	2534	121	2471	119	897	1.02	1.706
35.2	5069	243	2936	141	976	0.83	1.697
70.3	10123	484	3615	174	1080	0.75	1.682
140.6	20246	969	4239	203	1165	0.69	1.659
281.3	40507	1938	4906	235	1234	0.59	1.599

Table G.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B401-UD48; Isoptropic Confining Pressure, σ_0 =70.3 psi (10.1 ksf = 484 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
1.88E-04	3628	1.00	1.88E-04	0.98
3.83E-04	3628	1.00	3.83E-04	0.98
8.18E-04	3628	1.00	8.18E-04	0.95
1.62E-03	3628	1.00	1.44E-03	0.92
3.22E-03	3628	1.00	2.96E-03	0.92
6.24E-03	3628	1.00	5.68E-03	0.94
1.20E-02	3570	0.98	1.08E-02	0.96
2.19E-02	3483	0.96	1.95E-02	1.12
3.86E-02	3342	0.92	3.39E-02	1.31
6.82E-02	3122	0.86	5.87E-02	1.73
1.24E-01	2807	0.77	1.04E-01	2.32
2.34E-01	2437	0.67	1.87E-01	3.22
4.69E-01	1981	0.55	3.38E-01	5.08

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table G.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B401-UD48; Isotropic Confining Pressure, σ_0 =70.3 psi (10.1
ksf = 484 kPa)

	Fir	st Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
1.03E-03	3434	1.00	0.74	1.00E-03	3458	1.00	0.66
2.02E-03	3434	1.00	0.67	2.04E-03	3458	1.00	0.65
4.11E-03	3434	1.00	0.66	4.09E-03	3458	1.00	0.65
1.06E-02	3300	0.96	1.04	1.07E-02	3292	0.95	1.02
2.25E-02	3117	0.91	1.73	2.27E-02	3097	0.90	1.52
5.01E-02	2805	0.82	2.70	5.05E-02	2787	0.81	2.66

Table G.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen CC B401-UD48; Isoptropic Confining Pressure, σ_0 = 281.3 psi (40.5 ksf = 1938 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
1.31E-04	4908	1.00	1.31E-04	0.83
2.63E-04	4908	1.00	2.63E-04	0.83
5.21E-04	4908	1.00	5.21E-04	0.83
1.08E-03	4908	1.00	1.08E-03	0.83
2.15E-03	4908	1.00	1.98E-03	0.80
4.26E-03	4908	1.00	3.88E-03	0.81
8.33E-03	4874	0.99	7.50E-03	0.82
1.59E-02	4840	0.99	1.44E-02	0.82
2.94E-02	4738	0.97	2.70E-02	0.96
5.27E-02	4537	0.92	4.75E-02	1.10
9.31E-02	4244	0.86	8.19E-02	1.41
1.67E-01	3838	0.78	1.44E-01	2.03
3.15E-01	3328	0.68	2.55E-01	3.09
6.23E-01	2685	0.55	5.23E-01	4.70

^{*} Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table G.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B401-UD48; Isotropic Confining
Pressure, σ_0 =281.3 psi (40.5 ksf = 1938 kPa)

	First	Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear	Damping	Shearing	Modulus,	Shear	Damping
Strain, %	G, ksf	Modulus,	Ratio, D,	Strain, %	G, ksf	Modulus,	Ratio, D, %
				9.41E-04	4644	1.00	0.62
				1.85E-03	4644	1.00	0.79
3.72E-03	4670	1.00	0.66	3.76E-03	4644	1.00	0.71
1.02E-02	4619	0.99	0.97	1.02E-02	4609	0.99	1.03
2.09E-02	4506	0.96	1.22	2.10E-02	4490	0.97	1.20
4.14E-02	4292	0.92	1.77	4.14E-02	4299	0.93	1.76

APPENDIX H

CC B301& 401Mixture Silty SAND (SM), dark gray* (LL=40, PL=36, PI=4; Gs=2.86)*

Borehole B-301&-401 Reconstituted Specimen Sample Depth = 359 to 385 ft RCTS Test Depth = 359 to 385 ft Total Unit Weight = 116.4 lb/ft³ Water Content = 34.4 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 0.5*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure H.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure H.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure H.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure H.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure H.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure H.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure H.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure H.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure H.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure H.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure H.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 120.4 psi from the Combined RCTS Tests

Figure H.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 120.4 psi from the Combined RCTS Tests

Figure H.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 120.4 psi from the Combined RCTS Tests

Figure H.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 120.4 psi from the Combined RCTS Tests

Figure H.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 120.4 psi from the Combined RCTS Tests

NOTE: Figures H.16 through H.20 are NOT available.

Table H.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B301& 401Mixture

Isotropic Confining Pressure, σ_{o}		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
30.1	4334	207	2820	135	917	3.21	1.098
60.2	8669	415	4386	211	1133	2.83	1.059
120.4	17338	830	6846	329	1396	2.48	1.005
240.7	34661	1658	11012	529	1739		0.934
455.0	65520	3135	17374	834	2135		0.847

Table H.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B301& 401Mixture; Isoptropic Confining Pressure, σ_0 =120.4 psi (17.3 ksf = 830 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
1.08E-04	6943	1.00	1.08E-04	2.78
2.15E-04	6943	1.00	2.15E-04	2.78
4.28E-04	6943	1.00	4.28E-04	2.88
8.78E-04	6943	1.00	8.78E-04	2.94
1.75E-03	6867	0.99	1.47E-03	2.96
3.45E-03	6753	0.97	2.72E-03	3.33
6.70E-03	6528	0.94	5.23E-03	3.96
1.17E-02	6194	0.89	8.44E-03	4.47
2.51E-02	5447	0.78	1.84E-02	5.74
5.10E-02	4510	0.65	3.36E-02	6.86
1.04E-01	3844	0.55	6.55E-02	8.19

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table H.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B301& 401Mixture; Isotropic Confining Pressure, σ_0 =120.4
psi (17.3 ksf = 830 kPa)

	Fir	st Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
4.95E-04	6530	1.00	1.42	4.97E-04	6587	0.99	1.16
9.93E-04	6530	1.00	1.37	9.72E-04	6667	1.00	0.94
1.98E-03	6529	1.00	1.11	1.95E-03	6623	0.99	1.05
3.99E-03	6483	0.99	1.59	4.03E-03	6424	0.96	1.69
1.01E-02	6066	0.93	2.16	1.01E-02	6079	0.91	2.04
2.17E-02	5665	0.87	3.03	2.19E-02	5625	0.84	2.99

Table H.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B301& 401Mixture; Isoptropic Confining Pressure, σ_0 = 455 psi (65.5 ksf =
3135 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table H.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B301& 401Mixture; Isotropic
Confining Pressure, σ_0 =455 psi (65.5 ksf = 3135 kPa)

	First	Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear	Damping	Shearing	Modulus,	Shear	Damping
Strain, %	G, ksf	Modulus,	Ratio, D,	Strain, %	G, ksf	Modulus,	Ratio, D, %

APPENDIX I

CC B306-UD17 FAT CLAY (CH), trace sand, gray* (LL=62, PL=24, PI=38; Gs=2.73)*

Borehole B-306 Sample UD17 Sample Depth = 68.0 to 70.0 ft RCTS Test Depth = 69.3 ft Total Unit Weight = 115.8 lb/ft³ Water Content = 30.7 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 23.6 psi*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure I.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure I.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure I.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure I.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure I.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure I.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure I.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure I.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure I.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure I.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 23.6 psi from the Combined RCTS Tests

Figure I.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 23.6 psi from the Combined RCTS Tests

Figure I.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 23.6 psi from the Combined RCTS Tests

Figure I.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 94.3 psi from the Combined RCTS Tests

Figure I.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 94.3 psi from the Combined RCTS Tests

Figure I.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 94.3 psi from the Combined RCTS Tests

Figure I.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 94.3 psi from the Combined RCTS Tests

Table I.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B306-UD17

Isotropic Confining Pressure, σ_{o}		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
5.9	850	41	2078	100	759	1.92	0.933
11.8	1699	81	2314	111	800	1.74	0.931
23.6	3398	163	2629	126	852	1.43	0.924
47.1	6782	325	3212	154	938	1.01	0.910
94.3	13579	650	3986	191	1038	0.48	0.887

Table I.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B306-UD17; Isoptropic Confining Pressure, σ_0 =23.6 psi (3.4 ksf = 163 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
2.35E-04	2622	1.00	2.35E-04	1.63
4.26E-04	2622	1.00	4.26E-04	1.61
8.80E-04	2622	1.00	8.80E-04	1.62
1.79E-03	2622	1.00	1.79E-03	1.62
3.53E-03	2622	1.00	3.53E-03	1.63
6.81E-03	2581	0.98	5.72E-03	1.68
1.27E-02	2513	0.96	1.07E-02	1.80
2.31E-02	2381	0.91	1.96E-02	1.95
4.19E-02	2168	0.83	3.48E-02	2.06
7.93E-02	1863	0.71	6.50E-02	2.66
1.69E-01	1463	0.56	1.32E-01	4.01
2.78E-01	1275	0.49	1.87E-01	6.48

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table I.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B306-UD17; Isotropic Confining Pressure, σ_0 = 23.6 psi (3.4
ksf =163 kPa)

First Cycle				Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
5.75E-04	2612	1.00	1.03	5.73E-04	2601	1.00	1.11
9.77E-04	2612	1.00	1.03	9.91E-04	2601	1.00	1.11
1.98E-03	2612	1.00	1.17	1.97E-03	2601	1.00	1.29
4.02E-03	2612	1.00	1.63	4.05E-03	2601	1.00	1.60

Table I.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B306-UD17; Isoptropic Confining Pressure, σ_0 = 94.3 psi (13.6 ksf = 650
kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
1.40E-04	4184	1.00	1.40E-04	1.28
2.73E-04	4184	1.00	2.73E-04	1.27
5.56E-04	4184	1.00	5.56E-04	1.29
1.11E-03	4184	1.00	1.11E-03	1.29
2.21E-03	4176	1.00	2.04E-03	1.29
4.40E-03	4176	1.00	4.05E-03	1.29
8.58E-03	4176	1.00	7.72E-03	1.33
1.63E-02	4080	0.98	1.43E-02	1.41
2.91E-02	3920	0.94	2.53E-02	1.53
5.04E-02	3676	0.88	4.44E-02	1.80
9.03E-02	3257	0.78	7.94E-02	2.59
1.75E-01	2719	0.65	1.45E-01	3.40
3.87E-01	2083	0.50	2.94E-01	5.18

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table I.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B306-UD17; Isotropic Confining
Pressure, σ_0 =94.3 psi (13.6 ksf = 650 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.00E-03	4179	1.00	1.25	1.00E-03	4170	1.00	1.00
1.98E-03	4179	1.00	1.08	2.01E-03	4170	1.00	1.14
4.02E-03	4179	1.00	1.16	4.01E-03	4170	1.00	1.13
1.00E-02	3989	0.95	1.66	9.98E-03	4001	0.96	1.70

APPENDIX J

CC B409-UD15 POORLY GRADED SAND (SP-SM), with silt, gray* (Non-Plastic; Gs=2.66)*

Borehole B-409 Sample UD15 Sample Depth = 35 to 36.1 ft RCTS Test Depth = 36.1 ft Total Unit Weight = 124.8 lb/ft³ Water Content = 23.3 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 11.8 psi*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure J.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure J.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure J.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure J.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure J.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure J.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure J.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure I.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure J.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 11.8 psi from the Combined RCTS Tests

Figure J.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 11.8 psi from the Combined RCTS Tests

Figure J.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 11.8 psi from the Combined RCTS Tests

Figure J.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 11.8 psi from the Combined RCTS Tests

Figure J.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 47.2 psi from the Combined RCTS Tests

Figure J.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 47.2 psi from the Combined RCTS Tests

Figure J.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 47.2 psi from the Combined RCTS Tests

Table J.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B409-UD15

Isotropic Confining Pressure, σ_{o}			Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
3.0	432	21	1213	58	559	0.73	0.633
5.9	850	41	1527	73	627	0.54	0.633
11.8	1699	81	2039	98	724	0.47	0.631
23.6	3398	163	2972	143	874	0.38	0.629
47.2	6797	325	3962	190	1008	0.31	0.626

Table J.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B409-UD15; Isoptropic Confining Pressure, σ_0 =11.8 psi (1.7 ksf = 81 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
1.33E-04	2044	1.00	1.33E-04	0.40
2.67E-04	2036	1.00	2.67E-04	0.40
5.23E-04	2036	1.00	5.23E-04	0.46
1.05E-03	2036	1.00	1.05E-03	0.56
1.93E-03	2006	0.98	1.79E-03	0.63
3.50E-03	1962	0.96	3.26E-03	0.90
6.25E-03	1893	0.93	5.50E-03	1.19
1.06E-02	1810	0.89	9.58E-03	1.67
1.75E-02	1703	0.83	1.49E-02	2.16
2.86E-02	1563	0.76	2.38E-02	2.76
4.77E-02	1388	0.68	3.72E-02	3.60
8.01E-02	1223	0.60	5.69E-02	5.22

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table J.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B409-UD15; Isotropic Confining Pressure, σ_0 = 11.8 psi (1.7
ksf =81 kPa)

First Cycle				Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
5.89E-04	2101	1.00	0.41	5.81E-04	2104	1.00	0.55
1.01E-03	2101	1.00	0.42	1.01E-03	2104	1.00	0.28
2.05E-03	2094	1.00	0.68	2.07E-03	2075	0.99	0.74
4.27E-03	2015	0.96	1.01	4.31E-03	1995	0.95	0.95
1.02E-02	1809	0.86	1.97	1.02E-02	1807	0.86	2.09
2.20E-02	1673	0.80	3.08	2.21E-02	1671	0.79	3.07
3.52E-02	1572	0.75	4.21	3.51E-02	1576	0.75	4.26

Table J.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B409-UD15; Isoptropic Confining Pressure, σ_0 = 47.2 psi (6.8 ksf = 325 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
6.40E-05	3977	1.00	6.40E-05	0.37
1.28E-04	3977	1.00	1.28E-04	0.40
2.53E-04	3977	1.00	2.53E-04	0.40
4.97E-04	3977	1.00	4.97E-04	0.47
1.01E-03	3977	1.00	1.01E-03	0.49
1.92E-03	3926	0.99	1.81E-03	0.57
3.50E-03	3872	0.97	3.29E-03	0.71
6.17E-03	3782	0.95	5.68E-03	1.01
1.10E-02	3663	0.92	9.98E-03	1.32
1.76E-02	3550	0.89	1.60E-02	1.69
2.86E-02	3351	0.84	2.46E-02	1.99
4.54E-02	3093	0.78	3.85E-02	2.44
7.25E-02	2755	0.69	5.87E-02	3.28
9.65E-02	2551	0.64	7.24E-02	4.46
1.17E-01	2435	0.61	8.40E-02	5.28

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table J.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B409-UD15; Isotropic Confining
Pressure, σ_0 =47.2 psi (6.8 ksf = 325 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
5.76E-04	4266	1.00	0.33	5.80E-04	4222	1.00	0.40
1.01E-03	4266	1.00	0.27	1.03E-03	4222	1.00	0.28
2.07E-03	4166	0.98	0.26	2.07E-03	4171	0.99	0.51
4.23E-03	4080	0.96	0.89	4.26E-03	4054	0.96	0.93
1.01E-02	3919	0.92	1.29	1.01E-02	3922	0.93	1.30
1.55E-02	3828	0.90	1.61	1.55E-02	3832	0.91	1.64

APPENDIX K

CC B404-UD22 SILTY SAND (SM), greenish gray* (LL=53, PL=28, PI=25; Gs=2.63)*

Borehole B-404 Sample UD22 Sample Depth = 83.5 to 85.1 ft RCTS Test Depth = 84.0 ft Total Unit Weight = 115.4 lb/ft³ Water Content = 32.2 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 0.5*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure K.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure K.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure K.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure K.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure K.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure K.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure K.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure K.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure K.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure K.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 30.3 psi from the Combined RCTS Tests

Figure K.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 30.3 psi from the Combined RCTS Tests

Figure K.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 30.3 psi from the Combined RCTS Tests

Figure K.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 30.3 psi from the Combined RCTS Tests

Figure K.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 30.3 psi from the Combined RCTS Tests

Figure K.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 121.1 psi from the Combined RCTS Tests

Figure K.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 121.1 psi from the Combined RCTS Tests

Figure K.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 121.1 psi from the Combined RCTS Tests

Table K.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B404-UD22

Isotropic Confining Pressure, σ_{o}		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
7.6	1094	52	1234	59	589	1.65	0.948
15.1	2174	104	1658	80	681	1.53	0.938
30.3	4363	209	2308	111	802	1.33	0.930
60.6	8726	418	3493	168	979	1.17	0.901
121.1	17438	834	4597	221	1119	0.99	0.855

Table K.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B404-UD22; Isoptropic Confining Pressure, σ_0 =30.3 psi (4.4 ksf = 209 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
2.78E-04	2339	1.00	2.78E-04	1.27
5.04E-04	2335	1.00	5.04E-04	1.29
9.88E-04	2335	1.00	9.88E-04	1.28
1.94E-03	2335	1.00	1.71E-03	1.31
3.71E-03	2316	0.99	3.23E-03	1.41
7.17E-03	2256	0.96	6.24E-03	1.61
1.36E-02	2137	0.91	1.15E-02	1.94
2.51E-02	1992	0.85	2.06E-02	2.43
4.66E-02	1807	0.77	3.64E-02	3.20
9.07E-02	1574	0.67	6.71E-02	4.47
1.82E-01	1345	0.57	1.27E-01	5.38

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table K.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B404-UD22; Isotropic Confining Pressure, σ_0 = 30.3 psi (4.4
ksf =209 kPa)

	Fir	st Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
3.37E-04	2410	1.00	0.63	3.27E-04	2433	1.00	0.79
6.51E-04	2410	1.00	0.72	6.49E-04	2433	1.00	0.74
1.03E-03	2410	1.00	0.85	1.02E-03	2433	1.00	0.80
2.07E-03	2410	1.00	1.00	2.07E-03	2433	1.00	0.93
4.29E-03	2327	0.97	1.34	4.31E-03	2320	0.95	1.45
1.03E-02	2098	0.87	2.28	1.03E-02	2093	0.86	2.26
2.29E-02	1888	0.78	3.30	2.32E-02	1865	0.77	3.35
5.38E-02	1610	0.67	4.56	5.43E-02	1596	0.66	4.55

Table K.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B404-UD22; Isoptropic Confining Pressure, σ_0 = 121.1 psi (17.4 ksf = 834 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
1.14E-04	4623	1.00	1.14E-04	0.99
2.28E-04	4623	1.00	2.28E-04	0.99
4.52E-04	4623	1.00	4.52E-04	0.99
9.31E-04	4623	1.00	9.31E-04	0.99
1.86E-03	4623	1.00	1.71E-03	0.98
3.64E-03	4565	0.99	3.28E-03	1.03
6.95E-03	4502	0.97	6.26E-03	1.22
1.28E-02	4376	0.95	1.14E-02	1.32
2.32E-02	4169	0.90	2.04E-02	1.62
4.14E-02	3904	0.84	3.56E-02	1.92
7.51E-02	3542	0.77	6.23E-02	2.64
1.39E-01	3083	0.67	1.10E-01	3.56
2.61E-01	2630	0.57	1.88E-01	5.24

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table K.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B404-UD22; Isotropic Confining
Pressure, σ_0 =121.1 psi (17.4 ksf = 834 kPa)

	First	Cycle		Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
3.60E-04	4698	1.00	0.52	3.67E-04	4681	1.00	0.67
7.24E-04	4698	1.00	0.62	7.19E-04	4681	1.00	0.60
1.02E-03	4698	1.00	0.63	1.02E-03	4681	1.00	0.69
2.00E-03	4698	1.00	0.74	2.02E-03	4681	1.00	0.68
4.06E-03	4688	1.00	1.06	4.05E-03	4681	1.00	1.06
1.03E-02	4434	0.94	1.65	1.03E-02	4440	0.95	1.65
2.19E-02	4184	0.89	1.94	2.21E-02	4159	0.89	2.14
4.25E-02	3844	0.82	3.18	4.26E-02	3831	0.82	3.11

APPENDIX L

CC B401-UD42 SILTY SAND (SM), greenish gray* (LL=82, PL=55, PI=27; Gs=2.52)*

Borehole B-401 Sample UD42 Sample Depth = 198.5 to 200.3 ft RCTS Test Depth = 200.3 ft Total Unit Weight = 101.2 lb/ft³ Water Content = 48.8 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 0.5*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure L.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure L.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure L.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure L.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure L.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure L.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure L.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure L.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure L.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure L.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 62.5 psi from the Combined RCTS Tests

Figure L.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 62.5 psi from the Combined RCTS Tests

Figure L.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 62.5 psi from the Combined RCTS Tests

Figure L.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 250.0 psi from the Combined RCTS Tests

Figure L.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 250.0 psi from the Combined RCTS Tests

Figure L.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 250.0 psi from the Combined RCTS Tests

Figure L.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 250.0 psi from the Combined RCTS Tests

Table L.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B401-UD42

Isotropic Confining Pressure, σ_o		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
15.6	2246	107	1576	76	705	1.21	1.455
31.3	4507	216	2072	99	806	1.13	1.443
62.5	9000	431	2736	131	923	1.08	1.425
125.0	18000	861	3461	166	1033	0.99	1.401
250.0	36000	1723	4674	224	1176	0.91	1.307

Table L.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B401-UD42; Isoptropic Confining Pressure, σ_0 =62.5 psi (9.0 ksf = 431 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
2.56E-04	2714	1.00	2.56E-04	0.89
5.08E-04	2714	1.00	5.08E-04	0.89
1.09E-03	2714	1.00	1.09E-03	0.89
2.13E-03	2714	1.00	1.96E-03	0.89
4.16E-03	2714	1.00	3.75E-03	0.91
8.12E-03	2699	0.99	7.30E-03	0.93
1.53E-02	2650	0.98	1.36E-02	1.08
2.79E-02	2553	0.94	2.49E-02	1.15
5.01E-02	2413	0.89	4.41E-02	1.35
9.01E-02	2206	0.81	7.75E-02	1.86
1.66E-01	1955	0.72	1.34E-01	2.80
3.22E-01	1658	0.61	2.45E-01	3.97

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table L.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B401-UD42; Isotropic Confining Pressure, σ_0 = 62.5 psi (9.0
ksf =431 kPa)

	Fir	st Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
7.34E-04	2730	1.00	0.77	7.31E-04	2727	1.00	0.69
1.03E-03	2730	1.00	0.84	1.04E-03	2727	1.00	0.80
2.08E-03	2730	1.00	0.84	2.08E-03	2727	1.00	0.80
4.19E-03	2730	1.00	0.81	4.19E-03	2727	1.00	0.85
1.04E-02	2730	1.00	1.09	1.03E-02	2727	1.00	1.27

Table L.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B401-UD42; Isoptropic Confining Pressure, σ_0 = 250.0 psi (36.0 ksf = 1723 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
1.11E-04	4917	1.00	1.11E-04	0.78
2.25E-04	4917	1.00	2.25E-04	0.75
4.48E-04	4917	1.00	4.48E-04	0.76
9.23E-04	4917	1.00	9.23E-04	0.75
1.84E-03	4917	1.00	1.67E-03	0.74
3.63E-03	4917	1.00	3.30E-03	0.74
7.11E-03	4883	0.99	6.47E-03	0.79
1.36E-02	4814	0.98	1.25E-02	0.83
2.50E-02	4714	0.96	2.30E-02	0.91
4.82E-02	4461	0.91	4.34E-02	1.17
8.54E-02	4167	0.85	7.52E-02	1.54
1.52E-01	3792	0.77	1.29E-01	2.22
2.90E-01	3241	0.66	2.29E-01	3.50
4.21E-01	2923	0.59	3.16E-01	4.44

^{*} Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table L.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B401-UD42; Isotropic Confining
Pressure, σ_0 =250.0 psi (36.0 ksf = 1723 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
3.67E-04	4680	1.00	0.61	3.70E-04	4671	1.00	0.54
7.19E-04	4680	1.00	0.64	7.20E-04	4671	1.00	0.75
1.03E-03	4680	1.00	0.80	1.04E-03	4671	1.00	0.78
2.06E-03	4680	1.00	0.77	2.06E-03	4671	1.00	0.75
4.16E-03	4680	1.00	0.77	4.13E-03	4671	1.00	0.68

APPENDIX M

CC B409-UD39 Silty SAND (SM), contains shells, greenish gray* (LL=61, PL=42, PI=19; Gs=2.64)*

Borehole B-409 Sample UD39 Sample Depth =95.0 to 96.6 ft RCTS Test Depth = 96.1 ft Total Unit Weight = 109.3 lb/ft³ Water Content = 33.1 % Estimated In-Situ Ko = 0.5* Estimated In-Situ Ko = 28.0 psi*

*Data supplied by Schnabel Engineering, Inc.

FUGRO JOB #: 0401-1661 Testing Station: RC7

Figure M.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure M.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure M.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure M.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure M.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure M.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure M.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure M.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure M.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure M.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 28.0 psi from the Combined RCTS Tests

Figure M.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 28.0 psi from the Combined RCTS Tests

Figure M.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 28.0 psi from the Combined RCTS Tests

Figure M.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 28.0 psi from the Combined RCTS Tests

Figure M.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 111.9 psi from the Combined RCTS Tests

Figure M.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 111.9 psi from the Combined RCTS Tests

Figure M.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 111.9 psi from the Combined RCTS Tests

Figure M.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 111.9 psi from the Combined RCTS Tests

Table M.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen CC B409-UD39

Isotropic C	onfining Pre	essure, σ_o	Low-Ampli Modulu	tude Shear ıs, G _{max}	Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
7.0	1008	48	1335	64	624	1.56	1.033
14.0	2016	96	1670	80	696	1.40	1.025
28.0	4032	193	2285	110	812	1.26	1.011
55.9	8050	385	3165	152	951	1.16	0.992
111.9	16114	771	4231	203	1092	1.00	0.966

Table M.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen CC B409-UD39; Isoptropic Confining Pressure, σ_0 =28.0 psi (4.0 ksf = 193 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
3.20E-04	2266	1.00	3.20E-04	1.19
6.58E-04	2266	1.00	6.58E-04	1.19
1.30E-03	2266	1.00	1.30E-03	1.19
2.55E-03	2266	1.00	2.27E-03	1.18
4.90E-03	2266	1.00	4.36E-03	1.23
9.32E-03	2180	0.96	8.11E-03	1.31
1.72E-02	2110	0.93	1.48E-02	1.53
3.15E-02	1973	0.87	2.65E-02	2.11
5.79E-02	1793	0.79	4.75E-02	2.68
1.09E-01	1566	0.69	8.30E-02	3.78

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table M.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen CC B409-UD39; Isotropic Confining Pressure, σ_0 =28.0 psi (4.0
ksf =193 kPa)

	Fir	rst Cycle			Те	nth Cycle	
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
				1.77E-04	2163	1.00	0.65
				3.39E-04	2163	1.00	0.38
				6.40E-04	2163	1.00	0.48
				1.02E-03	2163	1.00	0.79
				2.06E-03	2163	1.00	0.97
				4.24E-03	2163	1.00	1.13
				1.02E-02	2064	0.95	2.01

Table M.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen CC B409-UD39; Isoptropic Confining Pressure, σ_0 = 111.9 psi (16.1 ksf = 771 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
1.59E-04	4251	1.00	1.59E-04	1.00
3.09E-04	4251	1.00	3.09E-04	1.04
6.30E-04	4251	1.00	6.30E-04	1.04
1.25E-03	4251	1.00	1.25E-03	1.08
2.47E-03	4251	1.00	2.22E-03	1.09
4.81E-03	4198	0.99	4.23E-03	1.09
9.15E-03	4132	0.97	8.23E-03	1.14
1.69E-02	4033	0.95	1.50E-02	1.19
3.06E-02	3821	0.90	2.72E-02	1.34
5.48E-02	3580	0.84	4.71E-02	1.85
9.97E-02	3246	0.76	8.28E-02	2.57
1.85E-01	2840	0.67	1.45E-01	3.72
3.50E-01	2406	0.57	2.45E-01	5.61
4.95E-01	2215	0.52	3.32E-01	6.55

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table M.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen CC B409-UD39; Isotropic Confining
Pressure, σ_0 =111.9 psi (16.1 ksf = 771 kPa)

	First	Cycle			Ten	th Cycle	
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
3.56E-04	4247	1.00	0.53	3.69E-04	4209	1.00	0.48
7.33E-04	4247	1.00	0.62	7.19E-04	4209	1.00	0.68
1.01E-03	4247	1.00	0.60	1.02E-03	4209	1.00	0.66
2.02E-03	4246	1.00	0.66	2.03E-03	4209	1.00	0.66
4.11E-03	4171	0.98	0.85	4.10E-03	4174	0.99	0.88
8.42E-03	4067	0.96	1.15	8.44E-03	4060	0.96	1.12

Schnabel Project No. 06120048

SUMMARY OF SOIL LABORATORY TEST RESULTS

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

			110.00	Sieve	Results	А	Atterber	rg Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	eimen		1	Shear S	trength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	883)		ted)e ⁵	То	otal	Effec	ctive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npac	Tyr	f	C	e	C	uil ur teric				Dn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried	. ,	(D 2216)		. ,	Wt.	Moisture	D	Soak	-	Con	Test	deg.	psi	deg.	psi	F ₈ Crie	Cer	Сєс	eo	tsf
B-301	2.5	SPT	SP-SM	8.1	0.7				LL		6.6			(FCF)	(70)														
B-301	10.5	SPT	SP-SM	6.2	0.1						14.3			1	1														
B-301	18.5	SPT	SP-SM	10.9	0.8						19.0																		
B-301	28.5	SPT	CL	58.5	0.0	48	17	31			28.9																		
B-301	33.5	UD	СН	80.5	0.0	59	17	42			31.1	117.5	2.74																
B-301	48.5	SPT	CL								29.6				1														
B-301	63.5	SPT	SP	2.1	0.0						20.4																		
B-301	83.5	SPT	SM	21.0	2.4						26.5																		
B-301	93.5	SPT	SM								25.8																		
B-301	103.5	SPT	CL								17.8																		
B-301	108.5	SPT	SM	34.7	1.5						23.2																		
B-301	118.5	SPT	SM	19.6	0.3						33.1																		
B-301	128.5	SPT	SC	32.3	0.0						42.3																		
B-301	143.5	SPT	CL	55.5	0.0						45.0																		
B-301	148.5	SPT	MH			114	55	59			62.2																		
B-301	153.5	SPT	SM	45.4	0.0						34.0																		
B-301	158.5	UD	CH	99.5	0.0	76	30	46			38.7	112.2	2.68					Х	-	UU	NA	61.2	NA	NA	Dev	0.005	0.243	1.01	20
B-301	168.5	UD	CH	66.2	0.0	112	39	73			65.4	97.3	2.62													0.012	0.453	1.82	16
B-301	178.5	SPT	MH	60.0	0.0	111	47	64			60.4																		
B-301	193.5	SPT	MH			98	45	53			53.2																		
B-301	198.5	SPT	MH	79.0	0.0	157	71	86			82.6																		
B-301	203.5	SPT	SC								27.5																		
B-301	208.5	SPT	SM								32.4																		
B-301	218.5	SPT	CL	50.7	0.0						47.9																		
B-301	228.5	SPT	SC	46.9	0.0						54.0																		
B-301	238.5	SPT	CL	72.9	0.0						56.8																		
B-301	253.5	SPT	MH	64.6	0.0	137	87	50			72.7																		
B-301	263.5	SPT	CL	85.2	0.0						100.9																		
B-301	273.5	SPT	MH			199	119	80			102.0																		
B-301	283.5	SPT	CL	73.5	0.0						91.3																		
B-301	293.5	SPT	MH	73.1	0.0	117	73	44			64.4																		
B-301	303.5	SPT	SC	44.6	0.0						24.8																		
B-301	313.5	SPT	SC	26.6	1.7						20.0																		
B-301	323.5	SPT	SC	22.1	11.4						27.8																		
B-301	333.5	SPT	SC								31.8																		
B-301	343.5	SPT	SC	17.9	14.0	47	24	23			22.9																		
B-301	353.5	SPT	SC	18.0	0.2	58	22	36			36.1																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

				Sieve	Results	А	Atterher	o Limit	s ⁴			Moist		Moistur	e-Density	Bearin	ng Ratio	Spec	imen			Shear S	trength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	rific (D 1557) rity Dry Unit Optium			1883)		ted	e ⁵	Тс	otal	Effe	ctive	e né		(D 24)	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium		ed	ntact	npaci	t Typ	f	C	f	C'	ailure				Pn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried	. /	(D 2216)	. ,	. ,	Wt.	Moisture	D	Soak	Ţ	Con	Test	deg.	psi	deg.	psi	F ₂ Crie	Cer	Сєс	eo	tsf
B-301	363.5	SPT	SM	28.6	1.4	54	36	18	LL		37.2			(101)	(70)														
B-301	373.5	SPT	SC	16.0	0.0	61	26	35			30.3																		
B-301	388.5	SPT	SC	15.7	0.0						32.7																		
B-301	398.5	SPT	SC								33.7																		
B-304	0.0	SPT	SM								17.1		1																
B-304	2.5	SPT	SM								25.9																		
B-304	5.0	SPT	ML								29.4																		
B-304	7.5	SPT	СН	71.8	0.0	57	23	34			34.1																		
B-304	10.5	SPT	CH	57.4	0.0	59	19	40			31.4																		
B-304	13.5	SPT	CH			63	23	40			31.7																		
B-304	18.5	SPT	СН	96.9	0.0	62	21	41			32.1																		
B-304	23.5	SPT	CL			38	20	18			25.6																		
B-304	28.5	SPT	SM								32.3																		
B-304	33.5	SPT	SP								20.1																		
B-304	38.5	SPT	SP-SM	8.5	1.3						19.3																		
B-304	43.5	SPT	SP-SM								21.9																		
B-304	48.5	SPT	GM-GC			25	18	7			14.5																		
B-304	53.5	SPT	SM								13.5																		
B-304	58.5	SPT	SM	12.4	5.4	NP	NP	NP			29.1																		
B-304	63.5	SPT	SM	14.6	3.8	30	23	7			29.4																		
B-304	68.5	SPT	SM								29.5																		
B-304	78.5	SPT	SC			32	19	13			16.3																		
B-304	83.5	SPT	SM								21.8																		
B-304	88.5	SPT	SM	35.9	0.0	49	28	21			38.7																		
B-304	93.5	SPT	SM								33.0																		
B-304	98.5	UD	SC	47.3	0.0	79	28	51			42.1	113.2	2.65					Х	-	Qu	NA	26.0	NA	NA	Dev	0.003	0.251	1.03	20
B-304	103.5	SPT	SC	35.4	0.0						44.0																		
B-304	108.5	SPT	SM	28.2	2.4						33.8																		
B-304	113.5	SPT	SC	36.3	0.4						43.9																		
B-304	118.5	SPT	SC								47.9																		
B-304	123.5	SPT	ML								60.2																		
B-304	128.5	SPT	SC	42.7	0.3						34.9																		
B-304	133.5	SPT	ML								45.0																		
B-304	138.5	UD	SC	45.7	0.0	43	26	17			36.5	113.4	2.65					Х	-	Qu	NA	36.4	NA	NA	Dev	0.003	0.143	0.95	16
B-304	143.5	SPT	СН	91.3	0.0	134	49	85			70.0																		
B-304	148.5	SPT	MH								72.1																		
B-304	153.5	SPT	MH								70.9																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	a 1		LIGOS	Sieve	Results	A	Atterber	rg Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	ng Ratio	Spec	eimen		:	Shear S	Strength				Consolid	ation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit Woight	Specific	(D	ionship 1557)	(D 1	1883)		ted	Je ⁵	То	otal	Effec	ctive	e on ⁶		(D 243	\$5)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npac	t Tyj	f	C	f	C'	ailur eterio				Pn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried		(D 2216)			Wt.	Moisture	D.	Soak	-	Con	Tes	deg.	psi	deg.	psi	Fa Crie	Cer	Сес	eo	tsf
B-304	158.5	SPT	MH	59.1	0.0	92	53	39			55.1				(70)														
B-304	163.5	SPT	MH								47.2		1	1															
B-304	168.5	SPT	MH								62.9																		
B-304	173.5	SPT	MH	94.0	0.0	158	84	74			84.0																		
B-304	178.5	SPT	SC								27.5																		
B-304	183.5	SPT	SC	43.6	0.0						39.2																		
B-304	188.5	SPT	SC								42.8																		
B-304	193.5	SPT	CL								51.1																		
B-304	198.5	SPT	CL	55.9	0.0						55.8		1	1															
B-305	39.5	UD	SC	49.5	0.0	72	22	50			34.7	117.2	2.71																
B-306	68.0	UD	СН	98.6	0.0	62	24	38			30.7	115.8	2.73																
B-307	5.0	SPT	SC	38.4	0.6						11.6																		
B-307	13.5	SPT	SM			NP	NP	NP			7.9		1	1															
B-307	23.5	SPT	SP-SM	11.2	3.3						13.0		1	1															
B-307	33.5	SPT	SM			NP	NP	NP			14.5		1	1															
B-307	43.5	SPT	SM								24.8																		
B-307	48.5	SPT	CL								25.1																		
B-307	53.5	SPT	CH								28.1																		
B-307	58.5	SPT	CH	60.5	0.3	62	20	42			33.1																		
B-307	63.5	SPT	СН			52	18	34			35.5																		
B-307	68.5	SPT	СН	98.5	0.0	66	23	43			34.0																		
B-307	73.5	SPT	SC								24.9																		
B-307	83.5	SPT	SM	13.0	0.6						20.6																		
B-307	88.5	SPT	ML			NP	NP	NP			21.5																		
B-307	93.5	SPT	SM	17.9	4.6						27.7																		
B-307	108.5	SPT	SP-SM	9.8	2.7	NP	NP	NP			29.2																		
B-307	118.5	SPT	SM	17.9	0.0	32	25	7			28.9																		
B-307	123.5	UD	SC	30.0	6.4	35	19	16			29.8	123	2.70					Х	-	CIU-bar	Test N	ot Perf	ormed						
B-307	133.5	SPT	SM	21.8	0.3						26.0																		
B-307	143.5	SPT	MH			59	33	26			36.8																		
B-307	148.5	SPT	MH								50.6																		
B-307	153.5	SPT	SM	24.4	0.0	58	37	21			38.8																		
B-307	178.5	UD	SC	37.7	0.0	41	25	16			33.5	117	2.67					Х	-	DS	NA	NA	35	0	NA				
B-307	188.5	SPT	SM	45.6	0.0	61	39	21			43.0																		
B-307	200.0	SPT	MH	66.2	0.0	137	61	76			68.7																		
B-310	78.5	UD	Reserve Sa	imple - Tes	sts Not Perf	formed																							
B-313	0.0	SPT	SM								9.9																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	a 1		LIGOS	Sieve	Results	А	Atterber	e Limit	s ⁴		N. 1	Moist		Moistur	e-Density	Bearin	g Ratio	Spec	imen			Shear S	Strength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D -	422)		(D 4	4318)		Organic	Natural Moisture	Unit Waight	Specific	(D	ionship 1557)	(D 1	883)		ted	Se ⁵	To	otal	Effe	ctive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%) (D 2216)	(PCF)	(D 854)	Dry Unit	Optium	y	ted	ntact	npac	t Ty	f	С	f	C'	ailur eterio	~	~		Pp'
	(11.)		(D 2487)	Passing No. 200	Retained No. 4	LL	PL	PI	Dried LL		(D 2210)			Wt. (PCF)	Moisture (%)	D	Soal	Ι	Col	Tes	deg.	psi	deg.	psi	Cri F	Cer	Сес	eo	tsf
B-313	2.5	SPT	CL-ML			19	14	5			11.8																		
B-313	5.0	SPT	СН			67	21	46			27.6																		
B-313	7.5	SPT	CL			30	17	13			15.1																		
B-313	10.5	SPT	ML								27.0																		
B-313	13.5	SPT	ML								31.5																		
B-313	18.5	SPT	SP-SM								23.1																		
B-313	23.5	SPT	SM			NP	NP	NP			21.1																		
B-313	28.5	SPT	SM			NP	NP	NP			18.2																		
B-313	33.5	SPT	CL			38	21	17			28.1																		
B-313	38.5	SPT	SM								17.1																		
B-313	43.5	SPT	ML			34	27	7			29.3																		
B-313	48.5	SPT	SM								27.9																		
B-313	53.5	SPT	SM			NP	NP	NP			31.5																		
B-313	63.5	SPT	CL			33	17	16			26.2																		
B-313	73.5	SPT	ML								28.4																		
B-313	83.5	SPT	MH								37.3																		
B-313	88.5	SPT	MH			98	47	51			55.0																		
D 212	02.5	UD	CI			40	25	24			25.6	116	2 (0					Х	-	UU	NA	38.8	NA	NA	Dev	0.005	0.177	1.07	16
B-313	93.5	UD	CL			49	25	24			35.0	110	2.69					Х	-	DS	NA	NA	29	11	NA	0.005	0.166	1.07	16
B-313	98.5	SPT	ML			42	28	14			32.4																		
B-313	103.5	SPT	MH			70	45	25			43.4																		
B-313	108.5	SPT	MH			106	55	51			57.7																		
B-313	113.5	SPT	MH			72	46	26			44.3																		
B-313	118.5	SPT	MH			81	42	39			43.5																		
P 212	122.5	UD	80			44	26	19			22.1	116	2.67					Х	-	UU	NA	41.3	NA	NA	Dev	0.002	0.205	0.08	22
B-313	125.5	0D	sc			44	20	18			55.1	110	2.07					Х	-	DS	Test N	lot Perf	ormed			0.002	0.203	0.98	23
B-313	128.5	SPT	MH			132	60	72			66.0																		
B-313	133.5	SPT	MH								69.1																		
B-313	138.5	SPT	MH			106	51	55			62.9																		
B-313	143.5	SPT	СН								49.1																		
B-313	148.5	SPT	CH			103	30	73			49.4																		
B-314	0.4	SPT	SM								9.7																		
B-314	2.5	SPT	SM			NP	NP	NP			14.1																		
B-314	5.0	SPT	СН			73	25	48			35.0																		
B-314	7.5	SPT	СН			59	21	38			41.2																		
B-314	10.5	SPT	СН			73	25	48			26.2																		
B-314	13.5	UD	SC	35.0	0.0	54	11	43			25.9	119	2.74					Х	-	UU	Test N	lot Perf	ormed			0.010	0.110	0.86	10.5

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

	~ .		LIGGO	Sieve	Results	A	Atterber	g Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	cimen		:	Shear S	Strength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	.883)		ted)e ⁵	Тс	otal	Effe	ctive	e m6		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	y	pe	ntact	npac	t Tyj	f	С	f	C'	ailur eterio	_			Pp'
	(11.)		(D 2487)	Passing No. 200	Retained No. 4	LL	PL	PI	Dried LL		(D 2216)			Wt. (PCF)	Moisture (%)	D	Soak	П	Cor	Tes	deg.	psi	deg.	psi	Cri F	Cer	Сес	eo	tsf
B-314	18.5	SPT	SM								24.2																		
B-314	23.5	SPT	SM			NP	NP	NP			22.6																		
B-314	28.5	SPT	SM								20.3																		
B-314	33.5	SPT	CL			42	22	20			25.4																		
B-314	38.5	SPT	SM			NP	NP	NP			26.8																		
B-314	43.5	SPT	SM								31.9																		
B-314	48.5	SPT	SM								25.4																		
B-314	53.5	SPT	SM			NP	NP	NP			32.8																		
B-314	58.5	SPT	SP			NP	NP	NP			33.0																		
B-314	63.5	SPT	СН			59	24	35			40.3																		
B-314	68.5	SPT	ML			NP	NP	NP			19.5																		
B-314	73.5	SPT	ML			NP	NP	NP			27.9																		
B-314	78.5	SPT	ML			NP	NP	NP			36.5																		
B-314	83.5	SPT	MH			57	36	21			41.2																		
B-314	88.5	SPT	СН			68	20	48			34.3																		
B-314	93.5	SPT	SM								36.4																		
B-314	98.5	SPT	SM								31.0																		
B-315	7.5	SPT	SP-SM	8.3	3.2						5.6																		
B-315	13.5	SPT	SM	14.0	0.0						28.3																		
B-315	18.5	SPT	SC								28.3																		
B-315	23.5	UD	SC	35.0	0.0	41	11	30			23.3	126	2.73					Х	-	UU	NA	17	NA	NA	Dev	0.020	0.170	0.92	10.2
B-315	28.5	SPT	SM								27.6																		
B-315	38.5	SPT	SM	13.2	6.9	NP	NP	NP			22.2																		
B-315	53.5	SPT	ML			NP	NP	NP			25.6																		
B-315	63.5	SPT	SP-SM	11.9	0.3	NP	NP	NP			29.4																		
B-315	73.5	SPT	СН			58	18	40			36.3																		
B-315	83.5	SPT	SM	28.6	0.1	NP	NP	NP			29.6																		
B-315	93.5	SPT	SM								35.6																		
B-316	2.5	SPT	CL			35	16	19			19.1																		
B-316	7.5	SPT	CL	55.5	0.0						14.5																		
B-316	23.5	SPT	SP-SM	8.8	0.0	NP	NP	NP			20.0																		
B-316	33.5	SPT	SP-SM	11.3	1.6	43	17	26			20.1																		
B-316	38.5	SPT	CL								28.5																		
B-316	43.5	UD	CI	71.0	0.0	44	16	28			28.6	121	2 70					Х	-	Qu	NA	7.9	NA	NA	Dev	0.017	0.266	0.94	03
D-310	45.5	00	CL	/1.0	0.0	44	10	20			20.0	121	2.13					Х	-	UU	NA	9.9	NA	NA	Dev	0.017	0.200	0.94	9.5
B-316	48.5	SPT	MH	69.5	0.0						38.0																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

	Sampla		USCS	Sieve	Results	A	Atterber	rg Limit	ts ⁴		Notural	Moist		Moistur	e-Density	Bearin	g Ratio	Spec	imen			Shear S	Strength				Consolic	lation	
Boring / Test Pit	Top	Sample	Sample	(D	422)		(D 4	4318)		Organic Content	Moisture	Unit Weight	Specific Gravity	(D	1557)	(D 1	.883)	t .	icted	ype5	То	otal	Effe	ctive	ire ion ⁶		(D 24	35)	
No.	(ft.)	Type-	$(D 2487)^3$	Percent	Percent Retained	LL	PL	ы	Oven Dried	(%)	(%) (D 2216)	(PCF)	(D 854)	Dry Unit Wt	Optium Moisture	ry	ıked	Inta	mpa	st T	f	С	f	C'	Failu ieter	Cer	Cec	60	Pp'
				No. 200	No. 4	LL	12		LL					(PCF)	(%)	Д	Soe		ŭ	Τ¢	deg.	psi	deg.	psi	CI	Cui	000		tsf
B-316	53.5	UD	CL	50.0	1.0	33	11	22			26.2	103	2.77					Х	-	DS	NA	NA	30.1	4.5	NA				
																		Х	-	CIU-bar	12.5	14.3	32.1	6.84	PSR				
B-316	58.5	SPT	SC								24.4																		
B-316	63.5	SPT	SC								31.3																	<u> </u>	
B-316	68.5	SPT	SM	16.5	0.1						19.8																	<u> </u>	
B-316	/3.5	SPI	SP	17.7	0.5						21.2																	<u> </u>	
B-310	93.5	SPI	SC	17.7	0.5						32.0																	<u> </u>	
B-310 B-317	96.J	SPT	MI								27.7																		
B-317	23.5	UD	CL	97.8	2.2	27	19	8			31.7	122.3	2 75					x		CIII-bar	17	5	31	3.1	PSR			<u> </u>	
B-317	33.5	SPT	СН	77.0	2.2	27	17	0			30.2	122.5	2.75					A		CIO Dui	17	5	51	5.1	TOR				-
B-317	48.5	UD	CL	69.8	0.0	35	17	18			22.8	125.5	2.7					х		CIU-bar	19.5	8.2	33.5	4.2	PSR				
B-317	58.5	SPT	SP-SM								26.0																		
B-317	73.5	SPT	SC								22.3		1																
B-319	2.5	SPT	SP-SM	8.1	0.2						5.7																		
B-319	7.5	SPT	SP			NP	NP	NP			4.7														-				
B-319	13.5	SPT	SP-SM	8.6	1.3						7.6																		
B-319	23.5	SPT	SC	20.0	1.4						19.8																		
B-319	28.5	SPT	SC								24.5																		
B-319	33.5	UD	CI	72.0	0.0	49	12	37			29.2	120	2.67					Х	-	UU	NA	10.1	NA	NA	Dev	0.010	0.190	0.85	5.4
D-517	55.5	0D	CL	72.0	0.0	77	12	57			27.2	120	2.07					Х	-	DS	NA	NA	24.9	6.2	NA	0.010	0.170	0.05	5.4
B-319	38.5	SPT	СН								27.9																		
B-319	43.5	UD	СН	87.0	0.0	58	13	45			32.1	121	2.73					Х	-	UU	NA	12	NA	NA	Dev	0.040	0.280	0.82	12
		_																Х	-	DS	NA	NA	20.8	9.1	NA				
B-319	48.5	SPT	СН			79	27	52			38.6																		
B-319	58.5	SPT	ML			40	32	8			26.7																	<u> </u>	
B-319	73.5	SPT	SM	13.6	4.6						17.5		-															<u> </u>	
B-319	83.5	SPT	SM	25.7	14.0						18.2		-															<u> </u>	
B-319	88.5	SPT	SM	18.9	1.4	ND	ND	ND			29.8																	<u> </u>	
B-319	98.5	SPI	SIM	12.9	0.6	NP	NP	NP			30.0																	<u> </u>	
B-320	2.5	SPT	SP-SIVI								6.2		-		-													<u> </u>	
B-320 B-320	18.5	SPT	SP								0.5																		
B-320	33.5	SPT	SC	42.5	0.0	33	18	15			26.1								-										
D-520	55.5	511	50	72.3	0.0		10	15			20.1							x	-	CIU-bar	13.3	8.03	27.9	3.79	PSR				
B-320	38.5	UD	SC	49.0	0.0	36	16	20			29.4	124	2.63					x	-	DS	NA	NA	26.0	2.9	NA				
B-320	43.5	SPT	СН	60.7	0.0	56	19	37			30.0																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

	Sample		USCS	Sieve	Results	A	Atterber	g Limi	ts ⁴	. ·	Natural	Moist	a :a	Moistur Relat	e-Density onship	Bearin	ng Ratio	Spec	cimen		1	Shear S	trength				Consolid	ation	
Boring / Test Pit	Тор	Sample	Sample	(D	422)		(D 4	4318)		Content	Moisture	Weight	Gravity	cific (D 1557) vity (D 1557) 254) Dry Unit Optium		(D I	1883)	5	cted	/pe ⁵	То	otal	Effe	etive	ion ⁶		(D 24)	(5)	
No.	(ft.)	Type	$(D 2487)^3$	Percent Passing	Percent Retained	LL	PL.	Ы	Oven Dried	(%)	(%) (D 2216)	(PCF)	(D 854)	Dry Unit Wt	Optium Moisture	Iry	aked	Intae	ompa	sst Ty	f	С	f	C'	Failu rieter	Cer	Cac	eo	Pp'
			` ´	No. 200	No. 4				LL					(PCF)	(%)	Ц	Soi		Ŭ	Ľ	deg.	psi	deg.	psi	Ū				tsf
B-320	48.5	UD	СН	81.5	0.0	59	19	40			34.4	114	2.74					Х	-	UU	NA	12.7	NA	NA	Dev				
D 220	52.5	CDT	CU			(0)	24	45			24.0						-	X	-	DS	NA	NA	21.9	9.6	NA			 	
B-320	55.5 73.5	SP1 SPT	CH SM	15.3	5.0	69	24	45			34.9 18.8																	<u> </u>	
B-320	93.5	SPT	SM	15.5	1.8						25.4																		
B-320	103.5	SPT	SM	16.8	0.0						29.7																		
B-320	113.5	SPT	CL	10.0	0.0	44	16	28			28.5																		-
B-320	128.5	SPT	MH			50	30	20			34.1																		
B-320	148.5	SPT	SM	47.7	1.4						37.0																		
B-321	2.5	SPT	SC	31.0	0.9						9.7																		
B-321	5.0	SPT	SP-SM								7.4																		
B-321	7.5	SPT	CL								25.2																		
B-321	10.5	SPT	СН	65.9	0.0	55	20	35			36.2																		
B-321	13.5	SPT	SC								30.0																		
B-321	18.5	SPT	SC	35.3	0.0						29.7																		
B-321	23.5	UD	CL	99.7	0.0	45	18	27			26.2	117.8	2.79					Х	-	UU	NA	32	NA	NA	Dev	0.009	0.306	1.03	19
B-321	28.5	SPT	SM	43.6	0.0	47	29	18			27.0																		
B-321	33.5	SPT	SP-SM								30.9																		
B-321	38.5	SPT	SP-SM	9.0	1.5						27.1																		
B-321	43.5	SPT	SP-SM								26.0																		
B-321	48.5	SPT	MH	73.0	0.0						35.1																		
B-321	53.5	SPT	SM	14.3	8.6	NP	NP	NP			25.0																		
B-321	58.5	SPT	SM	18.6	5.1						27.4																		
B-321	63.5	SPT	SM								27.6																		
B-321	68.5	SPT	SM	16.0	0.2						28.4																		
B-321	73.5	UD	SM	15.3	0.0	NP	NP	NP			28.5	120.5	2.67					Х	-	CIU-bar	20	13.5	30	7	PSR	0.003	0.064	0.72	14.2
B-321	78.5	SPT	SM								34.9																		
B-321	83.5	SPT	SM								20.6																		
B-321	88.5	SPT	SM	30.0	0.2						31.0																		
B-321	93.5	SPT	SC	32.2	1.0	59	26	33			36.9																		
B-321	98.5	SPT	SM	29.8	0.0						36.1																		
B-321	103.5	SPT	SM								58.2																		
B-321	108.5	SPT	SM								42.6																		
B-321	113.5	SPT	SM	36.3	0.9						34.6																		
B-321	118.5	SPT	SM								39.8																		
B-321	123.5	SPT	SM								43.1																		
B-321	128.5	SPT	MH	60.8	0.0						49.5																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

Boring / Test Pit No.	0 1	Sample Type ²	USCS Sample Class.	Sieve	A	Atterberg Limits ⁴					Moist		Moisture-Density		Bearing Rati		Spec	imen			Shear S	Strength				Consolid	lation		
	Sample Top			(D	(D 4318)				Organic	Natural Moisture	Unit	Specific	(D 1557)		(D 1883)			ted	Je ⁵	Тс	otal	Effe	ctive	e on ⁶	(D 24		35)		
	Depth (ft.)			Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	y	ted	ntaci	npac	t Tyj	f	С	f	C'	ailur eterio				Pp'
			(D 2487)	Passing No. 200	Retained No. 4	LL	PL	PI	Dried LL		(D 2210)			Wt. (PCF)	Moisture (%)	Dr	Soal	-	Coi	Tes	deg.	psi	deg.	psi	Cri	Cer	Сес	eo	tsf
B-321	133.5	SPT	MH								42.3																		
B-321	138.5	SPT	MH								39.7																		
B-321	143.5	SPT	MH	84.6	0.0						60.2																		
B-321	148.5	SPT	MH								66.0																		
B-323	2.5	SPT	SP								5.0																		
B-323	7.5	SPT	SP-SM	8.2	1.1						13.0																		
B-323	13.5	SPT	SP-SM	8.4	0.0						16.2																		
B-323	18.5	SPT	SM			NP	NP	NP			11.9																		
B-323	28.5	SPT	SP								17.6																		
B-323	38.5	SPT	SP-SM	11.4	0.9						20.7																		
B-323	48.5	SPT	CH	51.0	0.0	50	17	33			28.1																		
B-323	58.5	SPT	CH	89.1	0.0	65	22	43			35.1																		
B-323	68.5	SPT	SC	32.8	0.0	46	24	22			29.0																		
B-323	83.5	UD	CL	72.7	0.0	42	20	22			36.2	117	2.76					Х	-	UU	NA	40	NA	NA	Dev				
B-323	93.5	SPT	SM	27.9	6.8	NP	NP	NP			26.3																		
B-323	103.5	SPT	SP-SM	10.6	0.8	NP	NP	NP			28.6																		
B-323	113.5	SPT	SM	18.1	0.0						30.2																		
B-323	123.5	SPT	SM								19.4																		
B-323	133.5	SPT	SM	30.2	0.1						33.1																		
B-323	143.5	SPT	MH	52.1	0.0	73	38	35			48.3																		
B-323	153.5	SPT	ML			39	30	9			31.3																		
B-323	163.5	SPT	MH	63.3	0.0						54.2																		
B-323	173.5	SPT	СН	56.9	0.0	97	31	66			44.0																		
B-323	183.5	SPT	CH	94.0	0.0	124	33	91			68.3																		
B-323	193.5	SPT	CH	70.3	0.0	116	36	80			58.1																		
B-323	198.5	SPT	MH			97	62	35			52.9																		
B-326	5.0	SPT	SP-SM								8.2																		
B-326	13.5	SPT	SP-SM	10.5	0.0						12.2																		
B-326	23.5	SPT	SM	23.7	1.0						22.7																		
D 226	22.5	UD	CI	62.0	0.0	41	16	25			27.6	120	2.76					Х	-	Qu	NA	11.9	NA	NA	Dev				
B-320	33.3	UD	CL	62.0	0.0	41	10	23			27.0	120	2.70					Х	-	UU	NA	8.4	NA	NA	Dev				
P 226	13.5	UD	OH	80.2	0.0	63	22	41	45	0.4	22.0	111	2 70					Х	-	Qu	NA	19.7	NA	NA	Dev				
D-320	43.3	UD	Оп	69.5	0.0	05	22	41	43	0.4	33.9	111	2.70					Х	-	DS	NA	NA	19.0	4.9	NA				
B-327	113.5	UD	СН	51.9	0.0	60	24	36			44.3	107	2.70													0.003	0.374	1.34	20.6
B-328	2.5	SPT	SP-SM	8.7	0.0	NP	NP	44			4.5																		
B-328	7.5	SPT	СН								30.0																		
B-328	10.5	SPT	CH			59	17	42			28.8																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

Boring / Test Pit No.	Sample Top Depth (ft.)	Sample Type ²	USCS Sample Class.	Sieve	A	Atterberg Limits ⁴				N . 1	Moist		Moisture-Density		Bearin	g Ratio	Spec	imen			Shear Strength					Consolid	ation		
				(D	(D 4318)				Organic	Natural Moisture	Unit	Specific	(D 1557)		(D 1	(D 1883)		ted)e ⁵	Тс	otal	Effe	ctive	e on ⁶		(D 243	5)		
				Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npac	t Tyj	f	С	f	C'	ailur eterio				Pn'
			(D 2487)*	Passing No. 200	Retained No. 4	LL	PL	PI	Dried LL		(D 2216)			Wt. (PCF)	Moisture (%)	D	Soak	1	Cor	Tes	deg.	psi	deg.	psi	Cric F.	Cer	Сес	eo	tsf
B-328	18.5	SPT	MH			64	36	28			35.1																		
B-328	23.5	SPT	СН			77	28	49			33.0																		
B-328	28.5	SPT	SC	42.6	0.1	40	21	-19			30.5																		
B-328	33.5	SPT	SP-SM								18.2																		
B-328	38.5	SPT	SP-SM	7.8	0.0						22.6																		
B-328	43.5	SPT	SP-SM	10.8	4.2	NP	NP	NP			24.2																		
B-328	48.5	SPT	ML								25.8																		
B-328	53.5	SPT	SM	21.9	9.6						24.0																		
D 229	220 (2.5 UE	UD	OH	87.0	0.0	72	41	21	50		44.2	121	2.66					х	-	UU	Test Not Per		òrmed			<0.01	0.060	0.00	2.2
B-326	05.5	UD	On	87.0	0.0	12	41	51										Х	-	CIU-bar	13.4	23.3	34.6	0.236	PSR	<0.01	0.000	0.90	2.5
B-328	68.5	SPT	SM			NP	NP	NP			29.4																		
B-328	73.5	SPT	SM			NP	NP	NP			32.2																		
B-328	83.5	SPT	SM	18.6	15.7	NP	NP	NP			21.2																		
B-328	88.5	SPT	MH			47	31	16			34.0																		
B-328	98.5	SPT	MH			53	34	- 19			38.2																		
B-328	103.5	SPT	SM	36.6	0.0						62.7																		
B-328	113.5	SPT	MH								30.5																		
B-328	118.5	SPT	MH								44.7																		
B-328	123.5	UD	MH	82.6	0.0	72	45	27			45.6	102	2.76					Х	-	CIU-bar	Test Not Performed				0.020	0.380	1.74	10.0	
B-328	133.5	SPT	MH	52.8	0.0	70	51	-19			48.2																		
B-328	143.5	SPT	MH								59.3																		
B-328	148.5	SPT	MH		1	134	100	34			74.8																		
B-331	5.0	SPT	CL	66.9	0.0	43	15	28			20.2																		
D 221	10.5	UD	CH	07.1	0.0	57	22	24			20.0	111	0.71					Х	-	Qu	NA	28.2	NA	NA	Dev				
B-331	18.5	UD	Сн	97.1	0.0	57	23	54			50.8	111	2.71					Х	-	UU	NA	22.7	NA	NA	Dev				
B-331	33.5	SPT	SP-SM	8.3	0.8						21.9																		
B-331	43.5	SPT	SM	50.6	0.0						31.6																		
B-331	58.5	SPT	SM								26.6																		
B-331	73.5	SPT	SM								35.8																		
B-331	88.5	SPT	SM								32.7																		
B-333	2.5	SPT	SP-SM	6.9	0.4						6.2																		
B-333	7.5	SPT	SP-SM	5.3	0.1						4.8																		
B-333	23.5	SPT	СН	74.2	0.0	57	33	24			32.0																		
B-333	28.5	UD	СН	85.3	0.0	52	19	33			38.9	114	2.82					Х	-	Qu	NA	10.4	NA	NA	Dev	0.021	0.316	1.15	9.3
B-333	38.5	UD	СН	98.8	0.0	61	23	38			39.7	115	2.85					Х	-	Qu	NA	20.7	NA	NA	Dev	0.009	0.240	1.10	15.2
B-333	43.5	SPT	SM	38.8	0.0						26.1												1						

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	~ .		LIGOS	Sieve	Results	A	Atterber	rg Limi	ts ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	eimen			Shear S	Strength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)	-	(D 4	4318)		Organic	Natural Moisture	Unit Weight	Specific	Relat (D	ionship 1557)	(D 1	883)		ted	Je ⁵	Тс	otal	Effe	ctive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%) (D 2216)	(PCF)	(D 854)	Dry Unit	Optium	y	ted	ntaci	npac	t Ty	f	С	f	C'	ailur eteri	~	~		Pp'
	(11.)		(D 2487)	Passing No. 200	No. 4	LL	PL	PI	LL		(D 2210)			Wt. (PCF)	Moisture (%)	Dr	Soal		Col	Tes	deg.	psi	deg.	psi	Cri F	Cer	Сес	eo	tsf
В-333	48.5	UD	SC	20.0	2.0	34	13	21			25.2	Test Not Performed	2.73					x	-	Qu	Test N	ot Perf	ormed						
B-333	53.5	SPT	SM	13.4	1.6						20.9																		
B-333	58.5	SPT	SM								34.5																		
B-333	68.5	SPT	SM	23.2	20.4						19.3																		
B-333	78.5	SPT	SP-SM	10.8	5.7	NP	NP	NP			28.7																		
B-333	93.5	SPT	SM	23.7	23.3						16.1																		
B-334	0.0	SPT	SP-SM	11.2	0.0						9.6				1														
B-334	5.0	SPT	SM	21.3	0.0						15.9				1														
B-334	10.5	SPT	SM			NP	NP	NP			15.6				1														
B-334	18.5	SPT	CL								31.3				1														
B-334	23.0	UD	СН	79.0	0.0	51	16	35			35.3	119	2.7		1			Х	-	UU	NA	10.1	NA	NA	Dev	0.020	0.220	1.12	5.3
B-334	28.5	SPT	СН								42.5																		
B-334	33.0	UD	CL	95.0	0.0	47	13	34			32.6	115	2.71					Х	-	UU	Test N	ot Perf	ormed			0.020	0.210	1.06	5.4
B-334	43.5	SPT	SM								27.0																		
B-334	48.5	SPT	SM	26.2	0.0						27.2				1														
B-334	53.5	SPT	SP-SM								21.4				1														
B-334	63.5	SPT	GM	29.8	36.1	NP	NP	NP			19.0				1														
B-334	73.5	SPT	SM	12.6	9.9						27.3				1														
B-334	83.5	SPT	SM	13.8	0.1						28.0																		
B-334	98.5	SPT	SM	16.6	1.0						28.9				1														
B-336	13.5	SPT	SC								11.4				1														
B-336	28.5	SPT	CH								26.9																		
B-336	48.5	SPT	CL								25.9																		
B-336	68.5	SPT	SM								19.6																		
B-336	83.5	SPT	SM								27.3																		
B-336	98.5	SPT	SC								32.1																		
B-337	33.5	SPT	ML								29.0																		
B-337	48.5	SPT	SC								39.9																		
B-337	53.5	UD	SC	39.0	2.0	38	19	19			25.7	126	2.75					Х	-	UU	NA	6.2	NA	NA	Dev				
B-337	73.5	SPT	SM								30.9																		
B-337	88.5	SPT	SM								21.0																		
B-339	5.0	SPT	SP	4.6	0.1						6.9																		
B-339	13.5	SPT	SM	12.1	10.8						19.9																		
B-339	28.5	SPT	СН			55	19	36			31.5																		
B-339	33.5	SPT	СН	62.7	0.0	62	21	41			27.0																		
B-339	38.5	SPT	СН			71	17	54			28.6																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	~ .		USCO	Sieve	Results	А	Atterber	g Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	3 Ratio Specimen				1	Shear S	Strength				Consolid	ation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	1883)		ted	Je ⁵	То	tal	Effe	ctive	e on ⁶		(D 243	5)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	x	ted	ntaci	npac	t Tyj	f	С	f	C'	ailur eterie				Pp'
	(11.)		(D 2487)	Passing No. 200	Retained No. 4	LL	PL	PI	Dried LL		(D 2210)			Wt. (PCF)	Moisture (%)	D	Soak	-	Cor	Tes	deg.	psi	deg.	psi	Cri F	Cer	Сєс	eo	tsf
B-339	43.5	SPT	СН	86.9	0.0	60	22	38			31.0			(101)	(, .)														
B-339	48.5	SPT	CL			40	20	20			27.8																		
B-339	53.5	SPT	SM	33.7	0.0	48	30	18			30.8																		
B-339	58.5	SPT	SP-SM			NP	NP	NP			28.1																		
B-339	63.5	SPT	SC	15.5	9.9	49	21	28			25.0																		
B-339	68.5	SPT	MH			53	38	15			38.8																		
B-339	78.5	SPT	SM	23.6	18.6						16.6																		
B-339	83.5	SPT	SM								31.5																		
B-339	88.5	SPT	SP-SM	11.0	0.4						29.0																		
B-339	93.5	SPT	SP-SM								31.7																		
B-339	98.5	SPT	SP-SM								32.7																		
B-340	66.0	UD	Reserve Sa	ample - Tes	sts Not Perf	formed																							
B-401	2.5	SPT	SM								3.6																		
B-401	10.5	SPT	СН	85.3	0.0	66	20	46			26.6																		
B-401	13.5	SPT	СН			62	20	42			34.2																		
B-401	18.5	SPT	MH			70	37	33			36.9																		
B-401	23.5	SPT	CL	52.1	0.0	47	28	19			27.9																		
B-401	33.5	SPT	SP								20.8																		
B-401	43.5	SPT	SM	21.2	13.1						21.4																		
B-401	53.5	SPT	SM								31.6																		
B-401	58.5	SPT	SM	13.1	4.3						25.0																		
B-401	78.5	SPT	SM								17.5																		
B-401	88.5	SPT	SM	38.3	0.5						35.3																		
D 401	00.5	UD		(1.0	0.0	70	40	20			50.5	117	2.70					Х	-	UU	NA	19.6	NA	NA	Dev	T . N			
B-401	98.5	UD	MH	64.8	0.0	/8	48	30			50.5	11/	2.70					Х	-	DS	Test N	ot Perf	ormed			Test Not	Performed	i	
B-401	108.5	SPT	SM	34.2	1.9						35.6																		
B-401	113.5	SPT	CL								46.1																		
D 404	102.5											102						Х	-	Qu	Test N	ot Perf	ormed			0.020	0.420		
B-401	123.5	UD	MH	82.4	0.0	85	54	31			57.4	103	2.65					Х	-	UU	NA	72.3	NA	NA	Dev	0.030	0.430	1./4	13
B-401	128.5	SPT	ML	56.6	0.0						43.8																		
B-401	138.5	UD	СН	67.5	0.0	80	31	49			44.1	104.1	2.63																
B-401	143.5	SPT	MH			142	104	38			77.1																		
B-401	148.5	SPT	MH	86.6	0.0	150	89	61			72.7																		
B-401	153.5	SPT	MH			142	93	49			68.8																		
D 401	150.5	UD) (II	50.0		01	5.4	07			10.0	105	2.05					Х	-	Qu	Test N	ot Perf	ormed			0.020	0.250	1.01	14
в-401	158.5		MH	59.2	0.0	81	54	27			49.9	105	2.65					Х	-	UU	Test Not Performed (0.030	0.350	1.56	14		
B-401	168.5	SPT	MH	71.8	0.0	103	52	51			53.9																		

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

			LISCS	Sieve	Results	A	Atterber	g Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	cimen			Shear S	Strength				Consolid	lation	
Boring / Test Pit	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic Content	Natural Moisture	Unit Weight	Specific Gravity	(D	ionship 1557)	(D 1	883)	t.	sted	pes	Тс	otal	Effe	ctive	ce on ⁶		(D 243	35)	
No.	Depth (ft.)	Type ²	Class. (D 2487) ³	Percent Passing No. 200	Percent Retained No. 4	LL	PL	PI	Oven Dried LL	(%)	(%) (D 2216)	(PCF)	(D 854)	Dry Unit Wt. (PCF)	Optium Moisture	Dry	Soaked	Intac	Compae	Test Ty	f deg.	C psi	f deg.	C' psi	Failu Crieteri	Cer	Сес	eo	Pp' tsf
P 401	172.5	UD	СЦ	08.2	0.0	57	17	40			22.7	05	2.76	(101)	(, ,			Х	-	UU	Test N	lot Perf	ormed			0.040	0.540	2 80	11
B-401	175.5	0D	СП	96.2	0.0	37	17	40			33.7	93	2.70					Х	-	DS	NA	NA	18.9	32.5	NA	0.040	0.340	2.80	11
B-401	183.5	SPT	SM	32.2	0.0						31.2																		
B-401	193.5	SPT	ML								49.2																		
B-401	198.5	UD	SM	45.3	0.0	82	55	27			48.8	101.2	2.52																
B-401	203.5	SPT	MH			94	69	25			58.4																		
B-401	208.5	SPT	MH	64.5	0.0	113	74	39			62.7																		
B-401	213.5	UD	Reserve Sa	mple - Tes	sts Not Perf	formed																							
B-401	218.5	SPT	MH	64.6	0.0						77.4																		
B-401	228.5	UD	MH	80.4	0.0	139	88	51		1.7	58.6	98.2	2.48																
B-401	238.5	SPT	MH								122.5																		
B-401	243.5	UD	MH	98.7	0.0	140	65	75			96.2	86.0	2.36													0.006	0.519	2.41	18.3
B-401	248.5	SPT	MH			218	100	118			122.8																		
B-401	258.5	SPT	MH								130.2																		
B-401	268.5	SPT	SM	43.0	0.0						63.5																		
B-401	284.5	SPT	MH			76	42	34			30.2																		
B-401	293.5	SPT	SC								20.7																		
B-401	307.5	SPT	SM	16.3	0	57	42	15			27.4																		
B-401	318.5	SPT	СН			58	28	30			28.9																		
B-401	338.5	SPT	ML								25.3																		
B-401	348.5	UD	SM	23.0	0.0	52	39	13			35.6	116.4	2.78																
B-401	368.5	SPT	SP-SM	11.7	0.0						36.9																		
B-401	400.0	SPT	SM	18.2	0.0						33.1																		
B-404	52.0	UD	SP-SM	10.8	2.0	NP	NP	NP			27.7	117.6	2.66																
B-404	83.5	UD	SM	33.9	0.0	53	28	25			32.2	115.4	2.63																
D 107	0.5					(2)	10					100.0						Х	-	Qu	NA	20	NA	NA	Dev				1.0.5
B-406	63.5	UD	ОН	90.1	0.0	63	19	44	41	1.6	36.1	122.0	2.74					Х	-	UU	NA	8.2	NA	NA	Dev	0.04	0.3	1.17	10.5
B-407	2.5	SPT	ML			NP	NP	NP			4.8																		
B-407	10.5	SPT	SP-SM								12.3																		
B-407	18.5	SPT	SM	30.4	0.0						24.9																		
B-407	28.5	SPT	MH								35.1																		
B-407	33.5	SPT	MH	96.0	0.0	77	43	34			39.4																		
B-407	43.5	SPT	SM	17.4	1.6						23.3																		
B-407	63.5	SPT	SM								28.1																		
B-407	68.5	SPT	SM	11.4	6.0						30.0																		
B-407	73.5	SPT	SM		1						27.3		1																
B-407	83.5	SPT	SM	14.8	12.5						38.3																		

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

			110.00	Sieve	Results	Δ	Atterber	o Limit	s ⁴			Moist		Moistur	e-Density	Bearin	ng Ratio	Spec	eimen			Shear S	Strength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	1883)		ted)e ⁵	Тс	otal	Effer	ctive	e m ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npaci	Typ	f	C	f	C	ullure				Dn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried	()	(D 2216)	(-)	()	Wt.	Moisture	Dry	Soak	1	Con	Test	deg.	psi	deg.	psi	Fa Crie	Cɛr	Сєс	eo	tsf
B-407	88.5	SPT	SM	NO. 200	NO. 4				LL		12.4			(FCF)	(70)		01												
B-407	98.5	SPT	SP-SM								30.8		1																
B-407	108.5	SPT	ML	56.2	0.0						47.8																		
B-407	118.5	SPT	SM								34.2																		
B-407	123.0	SPT	MH								42.2																		
B-407	138.5	SPT	SM	43.3	0.0						49.2																		
B-407	143.5	SPT	MH			92	63	29			56.4																		
B-407	148.5	SPT	СН			81	45	45			43.1		1																
B-407	158.5	SPT	MH								78.4		1																
B-407	163.5	SPT	MH			120	50	70			62.7																		
B-407	168.5	SPT	MH			104	69	35			55.2		1																
B-407	173.5	SPT	СН			102	37	65			53.7		1																
B-407	178.5	SPT	СН			102	40	62			50.9																		
B-407	183.5	SPT	MH	59.1	0.0	154	97	57			82.2		1																
B-407	188.5	SPT	SM								32.6																		
B-407	193.5	SPT	SM								31.6		1																
B-407	198.5	SPT	SM	22.4	0.0						32.7																		
B-409	17.5	UD	Reserve Sa	ample - Tes	sts Not Per	formed																							
B-409	35.0	UD	SP-SM	6.0	0.0	NP	NP	NP			23.3	124.8	2.66																
B-409	95.0	UD	SM	37.6	0.0	61	42	19			33.1	109.3	2.64																
B-411	2.5	SPT	SP-SM								6.8																		
B-411	7.5	SPT	CL								27.4																		
B-411	13.5	SPT	СН								31.0																		
B-411	23.5	UD	OH	95.0	0.0	61	19	42	44	1.0	37.9	118	2.67					Х	-	Qu	Test N	ot Perf	ormed			0.050	0.260	1.51	4.9
B-411	33.5	SPT	ML			34	29	5			24.4																		
B-411	43.5	SPT	SM	15.0	0.0						24.0																		
B-411	53.5	SPT	CL			44	17	27			25.2																		
B-411	63.5	SPT	SP-SM	11.4	6.5						34.4																		
B-411	73.5	SPT	SP-SM								32.0																		
B-411	83.5	SPT	SP-SM								36.4																		
B-411	93.5	SPT	CL								31.6																		
B-411	103.5	SPT	ML			43	30	13			38.2																		
B-411	113.5	SPT	ML								40.4																		
B-411	123.5	SPT	MH			63	43	20			42.7																		
B-413	7.5	SPT	SP-SM	10.2	0.0						9.7																		
B-413	18.5	SPT	SP-SM	10.1	1.2						12.9																		
B-413	33.5	SPT	SP-SM	8.2	0.0						8.6																		

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	~ .		LIGOG	Sieve	Results	A	Atterbe	rg Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	ng Ratio	Spec	imen			Shear S	Strength				Consolic	lation	
Boring /	Sample Top	Sample	Sample	(D	422)	-	(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	1883)		ted)e ⁵	Тс	otal	Effe	ctive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npac	t Tyı	f	С	f	C'	ailur eterio				Pn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried		(D 2216)	. ,		Wt. (PCF)	Moisture	Ū.	Soak	П	Con	Tes	deg.	psi	deg.	psi	Fa Crie	Cer	Сес	eo	tsf
B-413	48.5	SPT	SM	31.5	0.0	NP	NP	NP	LL		26.9			(101)	(70)														
B-413	53.5	SPT	MH			56	27	26			25.7																		
B-413	58.5	SPT	MH	70.5	0.0	58	29	29			27.5																		
																		Х	-	UU	NA	10.6	NA	NA	Dev				
B-413	73.0	UD	СН	97.5	0.0	51	15	36			35.5	103	2.73					Х	-	DS	NA	NA	31.4	6.4	NA	0.030	0.240	1.13	10.5
																		Х	-	CIU-bar	Test N	lot Perf	ormed						
B-413	78.5	SPT	SM	34.6	0.0						26.1																		
B-413	83.5	SPT	SP-SM								21.0				1														
B-413	98.5	SPT	SM	15.9	17.2						34.9				1														
B-413	108.5	SPT	SP-SM	9.6	7.4						24.8				1														
B-413	113.5	SPT	SM								26.3																		
B-413	118.5	SPT	SM	16.2	4.8						32.5																		
B-413	123.5	SPT	SM								35.1				1														
B-413	128.5	SPT	SM								18.7				1														
B-413	133.5	SPT	SM	28.8	3.8						24.8				1														
B-413	138.5	SPT	SM								27.5																		
B-413	143.5	SPT	SM								32.1																		
B-413	148.5	SPT	SM	28.7	0.0						39.8																		
B-414	7.5	SPT	SP-SM								4.2																		
B-414	18.5	SPT	SP-SM								9.2																		
B-414	33.5	SPT	SP-SM								9.7																		
B-414	43.5	SPT	SM	22.1	2.4	NP	NP	NP			20.6																		
B-414	48.5	SPT	SM	33.5	0.0	NP	NP	NP			27.7																		
B-414	53.5	SPT	CL	60.4	0.0	42	23	19			28.0																		
B-414	58.0	UD	СН	84.9	0.0	58	19	39			33.2	117.1	2.71																
B-414	63.5	SPT	СН								38.3																		
P 414	68.0	UD	СЦ	06.8	0.1	51	15	26			267	102	2 78					Х	-	Qu	NA	4.7	NA	NA	Dev	0.040	0.280	1 42	4
D-414	08.0	00	СП	90.8	0.1	51	15	30			50.7	105	2.70					Х	-	CIU-bar	10.4	13.2	20	10.2	PSR	0.040	0.280	1.45	4
B-414	73.5	SPT	CL	52.8	0.0	39	20	19			22.9																		
B-414	78.5	SPT	ML								29.8																		
B-414	83.5	SPT	SM	16.6	0.0						19.0																		
B-414	93.5	SPT	SM	39.7	10.0						20.1																		
B-414	98.5	SPT	GM	19.6	40.9						13.5																		
B-415	5.0	SPT	SP-SM	5.8	0.3						3.6																		
B-415	13.5	SPT	SP	3.4	0.0						2.5																		
B-415	28.5	SPT	SP-SM	10.4	0.3						13.5																		
B-415	43.5	SPT	SM	31.1	0.2	26	22	4			28.2																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

			110.00	Sieve	Results	Δ	tterhei	o Limit	s ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	imen		1	Shear S	Strength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	883)		ted)e ⁵	То	otal	Effe	ctive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npac	t Tyı	f	C	f	C	ailur eterio				Pn'
	(π.)		(D 2487)*	Passing No. 200	Retained	LL	PL	PI	Dried		(D 2216)			Wt. (PCF)	Moisture	Dr	Soak	-	Cor	Tes	deg.	psi	deg.	psi	Fi Crie	Cer	Сес	eo	tsf
B-415	58.5	SPT	СН	93.3	0.0	61	21	40			36.6			(101)	(70)														
B-415	73.5	SPT	SM	47.8	0.0	40	30	10			26.3		1		1														
B-415	83.5	SPT	SM	17.8	2.4						17.0																		
B-416	5.0	SPT	SP-SM								3.8		1		1														
B-416	13.5	SPT	SM								13.0																		
B-416	28.5	SPT	CH	87.7	0.0	58	17	41			33.7																		
B-416	43.5	SPT	SC								25.6																		
B-416	58.5	SPT	SM	15.5	0.0						26.2																		
B-416	73.5	SPT	SP-SC								29.5																		
B-416	88.5	SPT	SC								33.5																		
B-418	2.5	SPT	SC								27.9																		
B-418	7.5	SPT	SM			NP	NP	NP			30.9																		
B-418	13.5	SPT	CL			49	22	27			32.7																		
B-418	23.5	SPT	SP-SM								25.2																		
B-418	33.5	SPT	SP-SM								28.4																		
B-418	43.5	SPT	SC								27.4																		
B-418	53.5	SPT	SP-SC								23.3																		
B-418	63.5	SPT	SM								32.1																		
B-418	73.5	SPT	SC								41.7																		
B-418	88.5	SPT	MH			76	49	27			49.8																		
B-418	98.5	SPT	CL			46	25	21			36.7																		
B-418	108.5	SPT	MH			55	38	17			39.8																		
B-418	123.5	SPT	СН			106	41	65			56.4																		
B-418	138.5	SPT	MH			103	63	40			64.4																		
B-418	148.5	SPT	СН			69	27	42			52.6																		
B-418	168.5	SPT	MH			76	49	27			57.3																		
B-418	183.5	SPT	MH			100	60	40			56.7																		
B-418	198.5	SPT	MH			109	71	38			66.5																		
B-420	0.0	SPT	СН			52	21	31			17.2																		
B-420	2.5	SPT	СН			68	23	45			28.6																		
B-420	5.0	SPT	СН	89.7	0.0	64	22	42			29.7																		
B-420	7.5	SPT	CH			71	19	52			38.3																		
B-420	13.5	SPT	CH	94.2	0.0	74	31	43			42.1																		
B-420	18.5	SPT	СН								28.6																		
B-420	23.5	SPT	ML			NP	NP	NP			24.4																		
B-420	33.5	SPT	SM								24.2																		
B-420	38.5	SPT	CL			30	19	11			20																		

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	~ .		LIGOG	Sieve	Results	ults Atterberg Limits ⁴					Moist		Moistur	e-Density	Bearin	g Ratio	Spec	eimen			Shear S	trength				Consolid	lation		
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	883)		ted	e ⁵	Тс	otal	Effec	ctive	e n6		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npaci	Typ	f	C	e	C	teric				Dn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried	()	(D 2216)	(-)	()	Wt.	Moisture	Dry	Soak	ų	Con	Test	deg.	psi	deg.	psi	F ₂ Crie	Cer	Сєс	eo	tsf
B-420	43.5	SPT	SM	17.1	7.8				LL		26.5			(ICI)	(70)		•1												
B-420	48.5	SPT	SM								28.4																		
B-420	53.5	SPT	SM								28.0																		
B-420	58.5	SPT	SM								34.9																		
B 420	63.5	UD	SC	10.1	67	40	11	38			28.3	117	2 75					Х	-	Qu	NA	16.0	NA	NA	Dev	0.010	0.130	1.26	1.1
B-420	03.5	UD	30	19.1	0.7	49	11	30			28.5	117	2.75					Х	-	DS	NA	NA	34.0	3.4	NA	0.010	0.130	1.20	1.1
B-420	68.5	SPT	SM	20.7	28.9						16.8																		
B-420	73.5	SPT	SM								24.4																		
B-420	78.5	SPT	SM	39.5	2.2	48	32	15			26.2																		
B-420	83.5	SPT	MH			60	39	21			47.3																		
B-420	88.5	SPT	CH			90	35	55			55.3																		
B-420	93.5	SPT	CH								39.4																		
B-420	98.5	SPT	ML			49	30	19			34.8																		
B-420	103.5	SPT	SM	38.1	0.0	57	42	15			38.5																		
B-420	108.5	SPT	MH			80	51	29			46.4																		
B-420	113.5	SPT	CH			118	38	80			64.9																		
B-420	118.5	SPT	MH			65	40	25			41.6																		
B-420	123.5	SPT	CH			83	29	54			47.5																		
B 420	128.5	UD	ОН	50.1	0.3	50	34	25	40		30.0	109	2.62					Х	-	UU	Test N	lot Perf	ormed	-		Test Not	Performe	4	-
B=420	128.5	0D	011	50.1	0.5	39	74	23	40		39.0	109	2.02					Х	-	CIU-bar	15.4	21.3	29.1	13.2	PSR	Test Not	renonnee	1	
B-420	133.5	SPT	MH	76.6	0.0	147	75	72			73.4																		
B-420	138.5	SPT	MH			145	76	69			78.8																		
B-420	143.5	SPT	MH	75.4	0.0	107	56	51			58.9																		
B-420	148.5	SPT	MH	61.3	0.0	127	100	27			74.2																		
B-421	0.0	SPT	SP-SM								11.6																		
B-421	2.5	SPT	SP-SM								14.8																		
B-421	5.0	SPT	SC								11.9																		
B-421	7.5	SPT	SM	14.0	0.0						7.6																		
B-421	10.5	SPT	SP			NP	NP	NP			11.8																		
B-421	13.5	SPT	SP								9.2																		
B-421	18.5	SPT	SW-SM	10.1	0.0						9.4																		
B-421	23.5	SPT	SM			NP	NP	NP			11.0																		
B-421	28.5	SPT	SP-SM	11.4	1.8						15.6																		
B-421	38.5	SPT	SP-SM								17.3																		
B-421	43.5	SPT	MH								31.5																		
B-421	48.5	UD	СН	69.5	0.0	50	18	32			28.8	122.68	2.69																
B-421	53.5	SPT	СН								29.6																		

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

				Sieve	Results	Δ	tterher	• Limit	s ⁴			Moist		Moistur	e-Density	Bearin	ng Ratio	Spec	eimen			Shear S	Strength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	1883)		ted)e ⁵	То	tal	Effec	ctive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npac	t Tyj	f	C	f	C'	ailur eterio				Pn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried	. ,	(D 2216)		. ,	Wt.	Moisture	D	Soak	-	Con	Test	deg.	psi	deg.	psi	F ₂ Crie	Cer	Сєс	eo	tsf
B-421	58.5	UD	СН	86.9	0.0	78	32	46	LL		34.2	119.44	2.72	(ICI)	(70)		•1												
B-421	63.5	SPT	СН				-				28.6																		
B-421	68.5	SPT	SM	33.1	0.3						22.2																		
B-421	73.5	SPT	SM								24.9																		
B-421	78.5	SPT	SM								19.7																		
B-421	83.5	SPT	SM								20.5																		
B-421	88.5	SPT	SM	14.5	11.4						26.0																		
B-421	93.5	SPT	SP-SC			NP	NP	NP			20.7																		
B-421	98.5	SPT	SP-SM								28.4		1																
B-421	103.5	SPT	SM								26.0		1																
B-421	108.5	SPT	SM	14.0	0.1	NP	NP	NP			26.1		1																
B-421	113.5	SPT	SM	18.4	0.0						31.7																		
B-421	118.5	SPT	ML			NP	NP	NP			27.8		1																
B-421	128.5	SPT	ML								22.0		1																
B-421	133.5	SPT	SM	41.7	0.0						29.0		1																
B-421	138.5	SPT	СН			53	25	28			38.5																		
B-421	143.5	SPT	SM								46.8																		
B-421	148.5	SPT	SM								47.4																		
B-423	2.5	SPT	SM	12.5	0.1						4.9																		
B-423	13.5	SPT	SM			NP	NP	NP			12.3																		
B-423	18.5	SPT	SM								10.4																		
B-423	23.5	SPT	SP-SM	11.8	0.0						16.6																		
B-423	28.5	SPT	SM								17.4																		
B-423	33.5	SPT	SM			NP	NP	NP			13.6																		
B-423	38.5	SPT	SC	36.9	0.0	43	15	28			43.9																		
B-423	43.5	SPT	СН	73.0	0.0	55	20	35			30.9																		
B-423	48.5	SPT	СН			61	16	45			36.6																		
B-423	53.5	SPT	СН	81.2	0.0	80	34	46			38.1																		
B-423	58.5	SPT	MH			78	45	33			33.8																		
B-423	63.5	SPT	ML			37	27	10			21.9																		
B-423	68.5	SPT	SM			NP	NP	NP			25.4																		
B-423	73.5	SPT	SM								22.8																		
B-423	78.5	SPT	ML	11.3	9.3						21.9																		
B-423	83.5	SPT	SM								25.6																		
B-423	88.5	SPT	SM								23.1																		
B-423	93.5	SPT	SM	13.0	1.1						29.8																		
B-423	98.5	SPT	SM								27.4																		

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	G 1		LICCE	Sieve	Results	A	Atterbei	rg Limit	ts ⁴		N 1	Moist		Moistur	e-Density	Bearin	ng Ratio	Spec	eimen			Shear S	trength				Consolid	lation	
Boring /	Top	Sample	Sample	(D	422)		(D 4	4318)		Organic Content	Moisture	Unit Weight	Specific Gravity	(D 1	onship 557)	(D 1	1883)	t	ted	be ⁵	То	otal	Effec	tive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%) (D.2216)	(PCF)	(D 854)	Dry Unit	Optium	x	ted	ntac	npac	t Ty	f	С	f	C'	ailur eteri				Pp'
	(11.)		(D 2487)	Passing No. 200	Retained No. 4	LL	PL	PI	Dried LL		(D 2210)			Wt. (PCF)	Moisture (%)	Dr	Soal	Γ	Coi	Tes	deg.	psi	deg.	psi	F Cri	Cer	Сес	eo	tsf
B-423	103.5	UD	SP-SC	9.7	14.4	24	18	6			23.1	120	2.74					X	-	CIU-bar	14.1	32.5	27	11.4	PSR				
	100 5	apt	an aa								20.0							X	-	DS	Test N	ot Perfe	ormed					<u> </u>	
B-423	108.5	SPT	SP-SC	10.6	12.0	ND	ND	NID			30.8	-		-														<u> </u>	
B-423	118.5	SPI	SM	19.6	13.9	NP	NP	NP			26.2																<u> </u>	 	
B-423	123.5	SPI	SM	21.4	0.0						21.0																<u> </u>	<u> </u>	
D-423	128.5	SPI	SIM	21.4	0.0						27.1																<u> </u>	<u> </u>	
D-423	133.3	SPI	SM	42.2	0.0						57.1																<u> </u>	<u> </u>	
D-423	130.3	SPT	SM	43.2	0.0						43.1																<u> </u>	<u> </u>	-
B-423	145.5	SPT	SM	32.9	4.6						32.8																	<u> </u>	
B-423	153.5	SPT	CL	52.7	4.0						44.9																		-
B-423	158.5	UD	OH	87.6	0.0	74	18	56	49	13	44.9	108	2 70					x		III	NA	16.6	NA	NA	Dev	0.010	0.310	1.46	11.5
B-423	163.5	SPT	MH	07.0	0.0	,.	10	50		1.5	59.7	100	2.70					A		00	141	10.0	1011	1111	Dev	0.010	0.510	1.10	11.5
B-423	168.5	SPT	ML								41.0																		-
B-423	173.5	SPT	SM								49.7																		-
B-423	178.5	UD	SM	46.4	0.0	64	34	30			41.5	112	2.36					x	-	Ш	NA	2.63	NA	NA	Dev	0.030	0.310	1 71	7
B-423	183.5	SPT	SM	10.1	0.0	0.	5.	50			73.3		2.50							00		2.05				0.020	0.510		<u> </u>
B-423	188.5	UD	MH	90.6	0.0	111	70	41			72.4	96	2.50					х	-	DS	NA	NA	18.5	23.0	NA				
B-423	193.5	SPT	MH								71.0																		
B-423	200.0	SPT	CL								45.3																		
B-425	0.0	SPT	SP-SM								13.7																		
B-425	3.5	SPT	SP-SM	7.9	0.0						7.3																		
B-425	5.0	SPT	SP-SM								2.5																		
B-425	8.5	SPT	SP-SM								10.8																		
B-425	10.0	SPT	SP-SM								14.2			1															
B-425	13.5	SPT	SP-SM	6.5	0.4						16.4																		
B-425	20.0	SPT	SP-SM								11.1																		
B-425	25.0	SPT	SP-SM								11.6																		
B-425	30.0	SPT	SP-SM	11.3	0.2						15.2																		
B-425	35.0	SPT	SP-SM								12.0																		
B-425	40.0	SPT	SP-SM	7.4	0.9						14.9																		
B-425	45.0	SPT	SW-SM								13.7																		
B-425	50.0	SPT	SW-SM	10.1	10.9	28	17	11			12.1																		
B-425	55.0	SPT	CL			46	19	27			28.2																		
B-425	57.0	UD	СН	81.8	0.0	55	25	30			31.2	119.69	2.71																
B-425	60.0	SPT	СН			63	21	42			35.1																		
B-425	65.0	UD	СН	89.6	0.0	69	28	41			39.5	114.52	2.72																

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

			LIG GG	Sieve	Results	Δ	Atterber	o Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	eimen			Shear S	Strength				Consolid	ation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	.883)		ted	oe ⁵	Тс	otal	Effe	ctive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npac	t Tyr	f	C	f	C	ailur steric				Pn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried		(D 2216)		. ,	Wt.	Moisture	Dry	Soak	-1	Con	Test	deg.	psi	deg.	psi	F ₂ Crie	Cer	Сєс	eo	tsf
B-425	70.0	SPT	MH	140. 200	110. 4	77	42	35	LL		38.4				(70)														
B-425	75.0	UD	SC	45.1	0.1	41	20	21			21.8	125.36	2.69																
B-425	80.0	SPT	SC							1	31.7				1														
B-425	85.0	SPT	SP							1	19.0			1	1														
B-425	90.0	SPT	SP								20.5																		
B-425	95.0	SPT	SP								17.9																		
B-427	2.5	SPT	SM	30.6	0.0						9.4																		
B-427	7.5	SPT	SP-SM								7.9																		
B-427	18.5	SPT	SM	12.5	1.1						8.2																		
B-427	28.5	SPT	SP-SM	8.4	0.2						12.2																		
B-427	38.5	SPT	SP								13.6																		
B-427	48.5	SPT	SP-SM	6.3	0.1						18.6																		
																		Х	-	Qu	NA	25	NA	NA	Dev				
B-427	63.5	UD	OH	61.3	38.7	56	18	38	36		32.8	116	2.74					Х	-	UU	NA	10.6	NA	NA	Dev	0.030	0.260	1.02	8.7
																		Х	-	DS	NA	NA	29.2	6.1	NA				
B-427	78.5	SPT	SM								23.1																		
B-427	93.5	SPT	SM	34.8	24.7						12.0																		
B-427	103.5	SPT	SP-SM	11.2	4.1						24.8																		
B-427	118.5	SPT	SM	24.2	0.0						29.2																		
B-427	128.5	SPT	SM								31.4																		
B-427	138.5	SPT	SM	29.8	0.0						38.5																		
B-427	148.5	SPT	SM	33.1	0.0						44.3																		
B 428	60.0	UD	СН	02.6	0.0	61	17	44	46		37	120	2.78					Х	-	Qu	NA	33.9	NA	NA	Dev				
D=420	00.0	OD	CII	92.0	0.0	01	17	44	40		57	120	2.78					Х	-	UU	NA	10.3	NA	NA	Dev				
B-428	63.0	UD	CH							0.1																			
B-429	45.0	UD	Reserve Sa	ample - Tes	sts Not Perf	formed																							
B-433	5.0	SPT	ML								27.0																		
B-433	10.5	SPT	SW-SM	10.2	0.1						5.8																		
B-433	23.5	SPT	SW-SM								14.4																		
B-433	33.5	SPT	MH								23.3																		
																		Х	-	Qu	NA	26.4	NA	NA	Dev				
В-433	38.5	UD	CH	91.0	0.0	61	14	47			33.5	113	2.77					Х	-	UU	NA	22.5	NA	NA	Dev	0.040	0.280	1.00	8.3
																		Х	-	DS	NA	NA	20.2	9.4	NA				
B-433	43.5	SPT	СН			59	22	37			33.50																		
B-433	48.5	UD	СН	94 5	0.0	64	23	41			33.6	121	2.66					Х	-	Qu	NA	6.6	NA	NA	Dev	0.030	0.310	1 16	10
	10.5	00			0.0		25				55.0	121	2.00					Х	-	CIU-bar	8.3	6.14	19.3	4.22	PSR	0.050	0.510	1.10	10
B-433	53.5	SPT	CL			45	18	27			21.0																		

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	~ .		LIGOS	Sieve	Results	А	tterber	rg Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	ng Ratio	Spec	imen		:	Shear S	Strength				Consolic	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	1883)		ted	e ⁵	То	otal	Effe	ctive	e ní		(D 24	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	<u> </u>	ed	ntact	npac	t Tyr	f	C	f	C	ailur steric				Pn'
	(ft.)		(D 2487) ⁵	Passing No. 200	Retained	LL	PL	PI	Dried		(D 2216)		Ì	Wt. (PCF)	Moisture	Ū.	Soak	1	Con	Tes	deg.	psi	deg.	psi	Fa Crie	Cer	Сєс	eo	tsf
B-433	58.5	SPT	SM	48.2	0.0	44	35	9	LL		29.3			(101)	(70)														
B-433	73.5	SPT	SW-SM	11.6	7.8						23.7																		
B-433	93.5	SPT	ML	12.1	1.1						31.5																		
B-434	7.5	SPT	SP-SM								11.8																		
B-434	13.5	SPT	SM	13.9	0.8						7.0																		
B-434	18.5	SPT	SP-SM								10.6																		
B-434	28.5	SPT	SM	27.2	0.1						21.9																		
B-434	33.5	SPT	SM								26.6																		
B-434	38.5	SPT	SM			NP	NP	NP			27.4																		
B-434	48.5	SPT	СН			73	24	49			38.2																		
P 424	53.5	UD	СЦ	04.0	0.0	56	22	22			07.0	119	2.04					Х	-	Qu	NA	28.5	NA	NA	Dev	0.010	0.268	1.00	14
D-434	55.5	UD	СП	94.9	0.0	50	23	32			07.0	118	2.04					Х	-	UU	NA	25.4	NA	NA	Dev	0.010	0.308	1.09	14
B-434	58.5	SPT	CH	94.7	0.0	86	22	64			36.6																		
B 434	63.5	UD	SM	36.0	0.0			ND			23.7	100.5	2 72					Х	-	DS	Test N	lot Perf	ormed			0.004	0.111	0.72	11.8
D-434	05.5	0D	5101	50.9	0.0			111			23.7	100.5	2.72					Х	-	CIU-bar	Test N	lot Perf	formed			0.004	0.111	0.72	11.0
B-434	68.5	SPT	SM								25.0																		
B-434	73.5	SPT	SM								22.6																		
B-434	78.5	SPT	SM								15.6																		
B-434	83.5	SPT	CL			30	22	8			19.8																		
B-434	88.5	SPT	SM								15.6																		
B-434	93.5	SPT	SP			NP	NP	NP			31.2																		
B-434	98.5	SPT	SM								25.6																		
B-436	7.5	SPT	SP-SM	4.9	0.5						3.3																		
B-436	23.5	SPT	SP-SM	8.1	3.1						11.1																		
B-436	33.5	SPT	SM	26.3	0.0						25.2																		
B-437	13.5	UD	SP-SM	5.6	0.0	NP	NP	NP			7.2	124.1	2.66																
B-437	98.5	UD	Reserve Sa	mple - Tes	sts Not Perf	formed																							
B-440	2.5	SPT	SM	33.2	0.1						8.6																		
B-440	7.5	SPT	Test Not P	erformed																									
B-440	13.5	SPT	SM	19.7	11.8						16.1																		
B-440	23.5	SPT	SP-SM	8.4	0.0						22.1																		
B-440	33.5	SPT	SM	28.4	10.8						20.1																		
B-440	43.5	SPT	SM	17.6	5.3						27.1																		
B-440	51.0	UD	SC	18.0	0.0	30	21	9			30.0	116	2.75					X	-	Qu	NA	5.1	NA	NA	Dev				
																		Х	-	DS	NA	NA	30.3	5.5	NA				
B-440	63.5	SPT	SM	19.5	16.8						19.4																		
B-440	78.5	SPT	SM	28.7	0.0						41.0																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	~ .		LIGOG	Sieve	Results	A	Atterber	rg Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	cimen			Shear S	Strength				Consolid	ation	
Boring /	Sample Top	Sample	Sample	(D	422)	_	(D 4	4318)	~	Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	.883)		ted	e ⁵	Тс	otal	Effe	ctive	e ní		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	Content (%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	<u> </u>	ed	ntact	npact	Typ	f	C	f	C	ul ure terio				Dn'
	(ft.)		(D 2487) ³	Passing No. 200	Retained	LL	PL	PI	Dried	(0.5)	(D 2216)	(-)	()	Wt. (PCF)	Moisture	Dŋ	Soak	I	Con	Test	deg.	psi	deg.	psi	F8 Crie	Cer	Сес	eo	tsf
B-701	7.5	SPT	SM	27.9	0.9				LL		15.9			(101)	(78)														
B-701	10.5	SPT	SW-SM	6.3	45.7						12.4																		
B-701	18.5	SPT	SM	21.1	2.8						28.2																		
B-701	28.5	SPT	SM	34.3	1.7						37.3																		
B-701	43.5	UD	MH	64.1	0.0	54	33	21			37.3	116	2.64					Х	-	UU	NA	24.6	NA	NA	Dev				
B-701	48.5	SPT	SM	17.5	3.9						33.1				1														
B-701	53.5	SPT	ML								42.5				1														
B-701	58.5	SPT	MH								55.7																		
B-701	63.5	SPT	ML								40.4																		
B-701	68.5	SPT	MH		1						48.0				1														
B-703	18.5	SPT	OH	83.4	0.0	69	25	44	39	0.9	45.1	106	2.70		1			Х	-	Qu	Test N	ot Perf	ormed			0.003	0.300	1.31	9
B-707	2.5	SPT	СН								27.3				1														
B-707	7.5	SPT	CH	74.6	0.0	59	21	38			32.8				1														
B-707	13.5	SPT	CH								32.7				1														
B-707	23.5	SPT	SC								29.5																		
B-707	33.5	SPT	MH	70.8	21.0	59	45	14			45.5																		
B-707	48.5	SPT	SP-SM								27.0				1														
B-709	7.5	SPT	SC								27.3																		
B-709	13.5	SPT	SM								29.1																		
B-709	23.5	SPT	SC								30.4																		
B-709	33.5	SPT	ML								33.8																		
B-709	48.5	SPT	CL								23.0																		
B-722	5.0	SPT	SP								3.5																		
B-722	13.5	SPT	SP								12.4																		
B-722	23.5	SPT	ML								21.1																		
D 722	22.5	UD	GM	20.1	0.0	ND	ND	ND			26.9	120	2.76					Х	-	Qu	NA	4.1	NA	NA	Dev	0.010	0.040	0.79	
B-/22	33.5	UD	SIM	20.1	0.0	NP	NP	NP			20.8	120	2.76					Х	-	UU	NA	8.5	NA	NA	Dev	0.010	0.040	0.78	0
B-722	43.5	SPT	СН								37.1																		
B-722	53.5	SPT	СН								41.9																		
B-722	63.5	SPT	СН								47.5																		
B-722	73.5	SPT	SM								18.8																		
P 722	20 5	UD	СЦ	80.7	0.0	56	15	41			21.0	120	2 71					Х	-	Qu	NA	5.8	NA	NA	Dev	0.010	0.500	0.83	10.5
D-723	20.3	00	Сп	07./	0.0	50	15	41			51.7	120	2./1					Х	-	UU	NA	16.7	NA	NA	Dev	0.010	0.500	0.65	10.5
B-723	38.5	UD	СН	95.2	0.0	64	19	45			33.9	112	2.73					Х	-	UU	NA	11.7	NA	NA	Dev	0.030	0.240	1.15	6.4
B-724	73.5	UD	OL	60.1	0.1	45	24	21	32	3.2	31.9	103	2.7					Х	-	DS	NA	NA	27.5	8.2	NA				
B-726	23.5	UD	СН	96.0	0.0	69	22	47			35.7	117	2.7					Х	-	UU	NA	11.8	NA	NA	Dev	0.040	0.290	1.16	10.3
B-729	2.5	SPT	SC								16.0																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

	a 1		LIGOS	Sieve	Results	А	Atterber	e Limit	ts ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	imen			Shear S	Strength				Consolid	ation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit Woight	Specific	(D	ionship 1557)	(D 1	883)		ted	De ⁵	Тс	otal	Effec	ctive	e on ⁶		(D 243	5)	
No.	Depth (ft)	Type ²	Class.	Percent	Percent				Oven	(%)	(%) (D 2216)	(PCF)	(D 854)	Dry Unit	Optium	y	ted	ntaci	npac	t Ty	f	С	f	C'	ailur eterio	~	~		Pp'
	(11.)		(D 2487)	Passing No. 200	Retained No. 4	LL	PL	PI	Dried LL		(D 2210)			Wt. (PCF)	Moisture (%)	Dr	Soal	-	COI	Tes	deg.	psi	deg.	psi	Cri.	Cer	Сес	eo	tsf
B-729	7.5	SPT	SP-SM								13.5																		
B-729	18.5	SPT	SP-SM								14.2																		
B-729	28.5	SPT	SP-SM								12.5																		
B-729	38.5	SPT	SM								18.4																		
B-729	48.5	SPT	ML								28.2																		
B-729	58.5	SPT	SM								28.8																		
B-729	68.5	UD	OH	92.7	0.0	56	18	38	40	1.4	32.8	118	2.79					Х	I	UU	NA	19.2	NA	NA	Dev	0.040	0.290	1.05	12
B 732	15.0	UD	80	32.0	27	26	10	7			23.1	124	2 75					Х	I	Qu	NA	6.9	NA	NA	Dev	0.010	0.080	0.82	4
D-752	15.0	0D	50	52.0	2.7	20	1)	,			23.1	124	2.75					Х	-	UU	NA	3.3	NA	NA	Dev	0.010	0.000	0.02	т
P 722	22.5	UD	СЦ	78.0	22.0	51	15	26			22.2	110	2 73					Х	I	Qu	NA	6	NA	NA	Dev	0.020	0.180	1.00	57
B-733	23.3	UD	СП	78.0	22.0	51	15	30			33.2	119	2.75					Х	1	UU	NA	8.1	NA	NA	Dev	0.020	0.180	1.00	5.7
B-735	2.5	SPT	SP-SM	6.2	3.8						7.6																		
B-735	10.5	SPT	SM	27.8	0.0						13.5																		
B-735	18.5	SPT	SM	28.1	0.0	NP	NP	NP			28.7																		
B-735	28.0	UD	СН	87.1	12.9	51	16	35			32.3	119						Х	1	UU	NA	17.5	NA	NA	Dev	0.030	0.250	1.01	7.5
1,55	20.0	05	011	07.1	12.7			55			52.5	,						Х	-	DS	NA	NA	27.2	4.9	NA	0.020	0.200		,
B-735	43.5	SPT	СН	98.5	0.0	85	30	55			39.6																		
B-735	58.5	SPT	SP-SM	5.8	0.0						20.9																		
B-735	73.5	SPT	SM	14.3	14.7						24.5																		
B-737	10.5	UD	СН	92.9	0.0	75	23	52	-		37.6	113	2.63					Х	-	UU	NA	8.6	NA	NA	Dev	0.030	0.200	1.13	6.1
																		Х	-	DS	NA	NA	22.7	5.2	NA				
B-738	5.0	SPT	SM								9.0																		
B-738	10.5	SPT	SP								12.3																		
B-738	18.5	SPT	CH								24.2																		
B-738	28.5	SPT	MH								28.4																		
B-738	35.0	UD	SC-SM	25.1	0.0	26	22	4			26.4	118	2.67					Х	-	Qu	NA	5.7	NA	NA	Dev	0.010	0.040	0.78	8
																		Х	-	UU	NA	15.9	NA	NA	Dev				
B-738	48.5	SPT	CH								32.1																		
B-738	58.5	SPT	SC								28.7																		
B-738	68.5	SPT	CL								30.9																		
B-743	23.5	UD	CL	57.2	0.0	38	13	25			21.1	115	2.69					X	-	DS	NA	NA	29.2	3.7	NA				
B-746	2.5	SPT	ML								14.4																		
B-746	7.5	SPT	SM	27.3	0.0						25.1																		
B-746	13.5	UD	SC-SM	28.8	0.0	25	21	4			27.2	121	2.76					Х	-	UU	NA	7.1	NA	NA	Dev	0.010	0.060	0.83	10.8
B-746	23.5	SPT	СН	86.5	0.0	52	17	35			30.8																		
B-746	33.5	SPT	СН	93.6	0.0	64	24	40			34.8																		
B-746	43.5	SPT	ML			40	34	6			29.2																		

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

				Sieve	Results		Atterber	o Limi	ts ⁴			Moist		Moistur	e-Density	Bearin	g Ratio	Spec	imen			Shear S	Strength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	883)		ted	e ⁵	То	otal	Effe	ctive	e on ⁶		(D 243	35)	
No.	Depth	Type ²	Class.	Percent	Percent				Oven	(%)	(%)	(PCF)	(D 854)	Dry Unit	Optium	~	ed	ntact	npac	t Tyr	f	C	f	C	ailur steric				Pn'
	(ft.)		(D 2487) ³	Passing	Retained	LL	PL	PI	Dried		(D 2216)	~ /	Ì,	Wt.	Moisture	D	Soak	I	Con	Test	deg.	psi	deg.	psi	F ₂ Crie	Cer	Сєс	eo	tsf
B-746	58.5	SPT	SM	NO. 200	110.4				LL		17.9			(FCF)	(70)														
B-746	68.5	SPT	SM		1						24.8				1														
B-747	2.5	SPT	SM	36.2	0.0						7.5																		
B-747	5.0	SPT	ML	71.2	0.0						12.7																		
B-747	10.5	SPT	SP-SM	4.8	0.0						20.3																		
B-747	13.5	SPT	SM	20.4	0.0						26.6																		
B-747	18.5	SPT	SM	15.0	0.1						23.9																		
B-747	23.5	SPT	ML	66.3	0.0						28.2																		
B-747	28.5	SPT	ML								32.6																		
B-747	33.5	SPT	СН	77.5	0.0						34.2																		
B-747	38.5	SPT	СН	81.5	0.1						32.6																		
B-747	43.5	SPT	СН								27.5																		
B-747	48.5	SPT	СН								39.4																		
B-747	53.5	SPT	MH	76.1	0.0	78	47	31			48.6																		
B-747	58.0	UD	СН			53	16	37			35.0	108	2.73					Х	-	UU	NA	23.6	NA	NA	Dev	0.020	0.260	1.09	11.3
B-747	63.5	SPT	SC	38.0	18.3	43	20	23			27.6																		
B-747	68.5	SPT	SM			NP	NP	NP			30.3																		
B-747	73.5	SPT	SP-SM			NP	NP	NP			28.1																		
B-752	2.5	SPT	SP-SM	10.0	0.5						5.9																		
B-752	10.5	SPT	SW-SM	10.2	0.4						6.7																		
B-752	18.5	SPT	SW-SM	13.2	6.7						12.7																		
B-752	28.5	SPT	SM	36.9	0.0						29.0																		
B-752	33.5	SPT	СН	67.0	0.0	52	23	29			29.1																		
B-752	38.5	SPT	MH	80.4	0.0	63	31	32			33.1																		
B-752	43.5	SPT	MH			71	26	- 19			37.1																		
B-752	48.5	SPT	СН			68	24	44			40.3																		
B-752	53.5	SPT	SM	44.9	0.0	40	29	11			27.7																		
B-752	58.0	UD	OH	97.9	0.0	65	17	48	46	0.6	45.3	110	2.79					Х	-	UU	NA	21.8	NA	NA	Dev	0.050	0.400	1.73	10.3
B-752	63.5	SPT	MH			64	43	21			37.0																		
B-752	68.5	SPT	ML	60.5	0.0						34.6																		
B-752	83.5	SPT	SP-SM	10.9	8.3						28.0																		
B-752	98.5	SPT	SC	27.2	6.2						31.6																		
B-765	100.0	UD	Tests Not	Performed																									
TP-B307	4.5	Bulk	SP-SM	5.8	0.0						2.3			109.3	10.5	14.8	4.4												
TP-B314	4.0	Bulk	СН	93.1	0.0	71	24	47			37.0			114.6	15.5														
TP-B315	6.0	Bulk	SP-SM	9.7	0.2						5.4			114.9	11.4	11.6	18.9												
TP-B334	3.0	Bulk	SM	13.9	0.0						7.4			116.3	9.3														

Constellation Generation Group COLA Project Calvert Cliffs Nuclear Power Plant (CCNPP) Calvert County, Maryland

Project Number:

06120048.00

SUMMARY OF SOIL LABORATORY TEST RESULTS¹

				Sieve	Results	Δ	Atterher	o Limi	ts ⁴			Moist		Moistur	e-Density	Bearir	ng Ratio	Spec	eimen			Shear S	Strength				Consolid	lation	
Boring /	Sample Top	Sample	Sample	(D	422)		(D 4	4318)		Organic	Natural Moisture	Unit	Specific	Relat (D	ionship 1557)	(D 1	1883)		ted	e ⁵	То	otal	Effe	ctive	e on ⁶		(D 243	35)	
No.	Depth (ft)	Type ²	Class.	Percent	Percent		D.	D.	Oven	(%)	(%) (D 2216)	(PCF)	(D 854)	Dry Unit	Optium	Y	ced	ntact	npac	at Tyj	f	С	f	C'	ailur eterio		G		Pp'
	(11.)		(D 2487)	No. 200	No. 4	LL	PL	PI	LL		(D 2210)			Wt. (PCF)	(%)	D	Soal		Coi	Tes	deg.	psi	deg.	psi	Cri F	Cer	Cec	eo	tsf
TP-B334	6.0	Bulk	SM	13.2	0.0						14.5			129.8	8.0														
TP-B335	3.0	Bulk	CL	65.3	0.0	30	20	10			19.0			128.8	9.9														
TP-B335	5.0	Bulk	SM	24.6	0.0						8.9			130.5	7.6	36.2	18.0												
TP-B407	4.5	Bulk	SW-SM	9.0	2.2						7.1			118.9	8.8	14.8	17.0												
TP-B414	6.0	Bulk	SP-SM	6.4	0.0						6.0			105.4	11.9														
TP-B415	3.0	Bulk	SP	3.5	0.2						10.2			116.7	9.8	11.1	4.7												
TP-B423	5.0	Bulk	CL	51.1	0.0	24	16	8			16.0			123.4	10.8														
TP-B434	2.0	Bulk	CL	59.8	0.2	25	18	7			21.0			127.1	10.1	9.3	3.2												
TP-B435	5.0	Bulk	SM	13.2	0.0						6.0			119.1	8.9														
TP-B435	7.0	Bulk	SP-SM	8.3	0.8						4.6			123.9	8.9	26.8	33.7												
TP-B435	9.0	Bulk	SC	14.1	0.0	34	17	17			6.7			130.2	7.3	34.4	41.8												
TP-B715	5.5	Bulk	SP-SM	11.0	0.9						4.8			110.7	11.8														
TP-B716	6.0	Bulk	SP-SM	6.0	1.0						3.8			116.3	9.4														
TP-B717	7.0	Bulk	SP-SM	6.4	2.6						3.4			123.8	10.2	17.2	23.1												
TP-B719	0.5	Bulk	CL	84.5	0.0	35	22	13			23.9			118.4	13.5														
TP-B719	7.0	Bulk	SM	44.3	0.0						26.7			119.6	10.0	41.3	29.0												
TP-B727	6.0	Bulk	SM	30.1	0.0						10.3			130.5	6.8														
TP-B744	1.5	Bulk	CL	64.2	0.0	25	17	8			18.0			131.2	8.0														
TP-B758	2.0	Bulk	SP-SM	8.4	0.8						6.0			121.0	8.8														
TP-B758	7.5	Bulk	SM	31.1	2.6						11.8			127.3	8.9	11.3	4.4												
TP-C309	2.0	Bulk	SP	3.7	1.2						4.3			111.2	13.9														
TP-C309	7.0	Bulk	SP-SM	7.8	0.0						8.7			112.3	9.8														
TP-C723	2.5	Bulk	SC	39.5	0.0	30	15	15			12.0			132.8	7.3	26.8	17.2												
TP-C723	6.0	Bulk	SP-SM	7.5	1.2						4.6			113.8	6.8														
B-301	368.5																												
B-301	378.5	()																											
B-301	383.5	osit																											
B-301	388.5	duno	SM	15.0	0.0	40	36	4			34.4	116.4	2.86																
B-301	398.5	r (c																											
B-401	358.5	SP																											
B-401	378.5																												

NOTES:

1. Tests are in accordance with applicable ASTM standards.

2. Sample type: SPT = sample obtained from split spoon, UD = undisturbed sample in thin walled sampler

5. Test Type: Qu - unconfined compression; UU - Triaxial Unconsolidated, Undrained; CIU-bar - Triaxial Consolidated Undrained; CD - Triaxial Consolidated Drained; DS - Drained Direct Shear

6. Failure Criterion: Dev. - maximum deviator stress; PSR - maximum principal stress ratio; Strain - defined level of axial strain

4. Key: LL = Liquid Limit; PL = Plastic Limit; PI = Plasticity Index; NP = Nonplastic

3. Visual-manual procedures (ASTM D 2488) used as appropriate.

Schnabel Project No. 06120048

REPLACEMENT BORING LOG SHEETS

- B-301, Sheets 1 and 2 of 13
- B-305, Sheets 1 and 2 of 5
- B-306, Sheets 2 and 3 of 5
- B-401, Sheets 4 through 13 of 13
- B-404, Sheets 1 through 4 of 7
- B-409, Sheets 2 through 5 of 5
- B-437, Sheets 1 and 2 of 4

Schnal	TEST Project: C bel Engineering LOG C	alvert Cli alvert Co	iffs Nucle ounty, Ma	ar Pow ryland	ver Pla	nt	Boring Contra Sheet:	Number: Inct Number 1 of 13	er: 06120	B-301
Boring						Ground	water Obs	ervations		
	MALAGA, NEW JERSEY					Date	Time	Depth	Casing	Caved
Boring F	oreman: J. Evans		Enco	untere	d	5/25		10.5'		
Drilling I	Method: Mud Rotary Equipment: Failing-1500 (Truck)		Start	of da	у	5/26		25.0'		
Schnabe	el Representative: K. Megginson		Start	of da	у	5/30		41.0'		
Dates 3	Started: 5/25/06 Finished: 6/6/06		Start	ofda	у	6/1		10.0'		
Location	n: Northing: 217024.06 ft Easting: 960815.05 ft									
Ground	Surface Elevation: 94.5 (feet)				1					
DEPTH (FT)	STRATA DESCRIPTION	CLASS	6. ELEV. (FT)	WL	DEP	SAMPL TH I	LING DATA	TEST	s	REMARKS
-	CLAYEY SAND, fine to medium grained, contains root fragments, moist, brown. Majority of root system extends about 0.7 ft below ground surface.	SC	0.2.5			3+3+ N = 7 REC	-4 7 = 9"			
2.0 -	POORLY GRADED SAND WITH SILT, trace gravel, fine to medium grained, moist, stratified orangeish brown and brown, contains fine to coarse silty sand lense at 3.5 ft.	SP-SM	92.5			3+4+ N = 9 REC	-5) = 13"	w=6.69	%	
	fine to coarse grained, brown.				- 5 - - -	4+7+ N = 7 REC	-7 14 = 10"			
-	fine to medium grained,stratified light brown and yellowish brown				_	4+7+ N = 7 REC	-8 15 = 12"			
- -	wet, brown and light brown			Ā		6+9+ N = 2 REC	9 18 = 9"	w=14.3 *	\$%	
- - 14.5	light orangeish brown.		- 80.0		-		8 14			
	grained, moist, brown	SC			-15-		= 10			
17.0 - - -	POORLY GRADED SAND WITH SILT, trace gravel, fine to coarse grained, wet, dark orangeish brown and orangeish brown, contains fine to medium clayey sand pockets.	SP-SM	77.5		-	6+11 N = 2	+10 21	w=199	% Di to	rilling foreman sed 5.4" O.D. rag Bit from 0 18.5 ft.
- 22 0			72.5		20- - -		- 14		4- Di 18	3/4" O.D. rag bit below 3.5 ft.
	SANDY LEAN CLAY, fine to medium, trace mica, moist, gray.	CL			-		5			
	continued on next page				25-		= 18"			

	6	hnabel TES	Project: C		Boring Number:	B-301				
•	Schna	bel Engineering LOG		Calvert Cou	inty, Ma	iryland			Contract Number: Sheet: 2 of 13	06120048
	DEPTH (FT)	STRATA DESCR	IPTION	CLASS.	ELEV. (FT)	WL	S		G TESTS	REMARKS
				CL						
	- 27.0 -	SANDY LEAN CLAY with	fine to		67.5					
	-	medium sand, trace mica, to medium sandy fat clay medium clayey sand pock gray.	contains fine and fine to ets, moist,					2+4+3 N = 7 REC = 1	w=28.9% LL=48 PL=17 *	
	-									
	32.0 -	FAT CLAY, with fine to me and mica, moist, gray.	edium sand	СН	62.5					Osterberg
	-							REC = 2	22" w=31.1% LL=59 PL=17	push from 33.5 to 35.5 ft
	-								*	
	-									
	-	gray and dark gray, trace ((±1%), contains fine to me	organic matter dium silty					4+5+5 N = 10	0"	
		sand pockets.					-40	REC = 1	8	
	-									Osterberg
	-	gray and light greenish gra	ay.					REC = 2	PP=2.00 tsf	sampler tube push from 43.5 to 45.2 ft
							-45-			
10/31/07	47.0 -		to medium		47.5					
BEL.GDT	-	trace mica, contains indur pockets, moist, gray.	ated lean clay					5+6+8	w=29.6%	
U SCHNA							<u>\</u>	N = 14 REC = 1	8"	
0 & 400.GF	- 520				42.5					
20048 PLOG SPT 300	-	CLAYEY SAND, fine to me grained, trace fine to medi fragments (±5%), strong H moderate cementation, me gray, contains indurated s 54.5 to 54.7 ft (layer exhib	edium um shell ICI reaction, pist, dark It layer from its fissility).	SC				11+48+5 N = 98/9 REC = 1	50/3" " 6"	Switched to 4-3/4" Tri-cone roller bit below 53.5 ft. Moderate difficulty in
1 LOG 061	-				27 5		$\left[-\frac{1}{2} \right]$			rotary advancement from 54.5 to
TEST BORING	57.U - -	POORLY GRADED SANE fine to medium grained, w continued on next), trace silt, et, gray, weak ^{page}	SP	37.5					56.5 ft (slight rig chatter).

	Schnat	hnabel TEST BORING bel Engineering LOG	Project: Ca Ca	alvert Cl alvert Co	liffs Nuclea ounty, Ma	ar Pow ryland	er Pla	nt		Boring Contra Sheet:	Number: ct Number 1 of 5	er: 06120	B-305
Date Time Depth Casing	Boring C	Contractor: CONNELLY AND	ASSOCIATES	INC				Gro	oundv	vater Obs	ervations		
Boring Foreman: 1: Commity Drilling Equipment: CME-580 Schnabel Representative: K. Bell Encountered 7/18 37.5 Schnabel Representative: K. Bell Start of Day 7/19 36.0° Dates Start of Day 7/10 24.0° Ground Surface Elevation: T/1006 Finite Equipments 24.0° Ground Surface Elevation: T/1006 Finite Equipments 24.0° Ground Surface Elevation: T/1006 Finite Equipments 0.5 POORLY GRADED SAND WITH SLT, Property Grade most, yellowish brown, trace wood regreents. SPSM 71.5 Machine REC = 11"		FREDERICK, MAR	RYLAND	,				D	ate	Time	Depth	Casing	Caved
Diffing quadration multicity mult	Boring F	oreman: T. Connelly			Enco	untere	d	7/	/18		37.5'		
Diffing equipment: Original equipment: Original equipment: Schedul Representative: K. Bell Start of Day 7/20 24.0 Dates Started: 7/17/06 Finished: 7/20/06 Example Schedul Representative: K. Bell Image Schedul Representative: K. Bell <					Start	of Da	y	7	/19		35.0'		
Dates Stated: 7/1706 Finished: 7/2006 Location: Northing: 217166.25 ft Strata DescriptionControlContro	Schnabe	I Representative: K. Bell		_	Start	of Da	y	7	/20		24.0'		
Location: Northing: 21766 25 ft Easting: 960686.74 ft Image: Control of the second of the secon	Dates S	Started: 7/17/06 Finished: 7	7/20/06										
Ground Surface Elevation: 72.0 ((set) Image: Simple set of the set of th	Location	: Northing: 217166.25 ft Easting: 960686.74 ft											
DEFTH (FT) STRATA DESCRIPTION CLASS. ELEV (FT) WI SAMPLING DEFTH TESTS REMARKS 0.5 (0.5) (1.6) (2.0) POORLY GRADED SAND WITH SILT. Ince to medium grained, most, yellowish tragments, tace wood (ragments, tace wood) SP-SM SP-SM 71.5 (1.6) (1	Ground	Surface Elevation: 72.0 (feet)											
0.5POORLY GRADED SAND WITH SILT. brown, trace root fragments, trace wood graments.SP-SM 71.5 SP-SM71.5 SP-SM $=$ - M woh+1+2 N = 3 REC = 11"2.0POORLY GRADED SAND WITH SILT. Former, the or medium grained, moist, trace wood orangeish brown, trace root fragments.5C70.0 $=$ - M N = 4 N = 54.5CLAYEY SAND, fine to medium grained, orangeish brown, trace root fragments.SM67.5 $=$ - M N = 5 N = 7 $=$ - M N = 4 N = 54.5CLAYEY SAND, fine grained, moist, gray and orangeish brown, trace root fragments.SM67.5 $=$ - M N = 4 N = 5 $=$ - M N = 4 N = 510.0FAT CLAY, moist, gray and orangeish brown, trace sand.CH62.0 $=$ - M N = 7 N = 4 N = 7 $=$ - M N = 7 N = 4 N = 710.0FAT CLAY, moist, gray and orangeish moist, gray.CH62.0 $=$ - M N = 7 N = 4 N = 7 $=$ - M N = 7 N = 4 N = 710.0FAT CLAY, moist, gray and orangeish moist, gray.CH62.0 $=$ - M N = 7 N = 4 N = 7 $=$ - M N = 7 N = 4 N = 710.0FAT CLAY, moist, gray, trace sand.CH62.0 $=$ - M N = 7 N = 7 $=$ - M N = 7 N = 710.0FAT CLAY, moist, gray, trace sand.CH62.0 $=$ - M N = 7 N = 7 $=$ - M N = 7 N = 711.0ELASTIC SILT, moist, gray, trace sand.MH49.5 $=$ - M N = 6 N = 0 $=$ - M N = 0 N = 012.1ELASTIC SILT, moist, gray, trace sand.MH49.5	DEPTH (FT)	STRATA DESCRIPT	ION	CLASS	S. ELEV. (FT)	WL	DEP	S/ TH	AMPL C	ING DATA	TEST	S I	REMARKS
2.0 $\frac{\text{fragments.}}{\text{POORLY GRADED SAND with HILT,}}$ For the medium grained, moist, yellowish brown, trace root fragments, trace wood arguments, trace wood argument, trace wood arguments, trace wood arguments, trace wood arguments, trace wood argument, tra	0.5	POORLY GRADED SAND W fine to medium grained, moist brown, trace root fragments, t	ITH SILT, t, yellowish trace wood	SP-SM SP-SM	<u>/</u> 71.5		-	-0	woh+ N = 3	1+2			
PORLY GRADED SAND WITH SILT, Find the ornedium grained, moist, gray and orangeish brown, trace root fragments. SILTY SAND, fine to medium grained, moist, gray. 22.5 ELASTIC SILT, moist, gray, trace sand. PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, moist, gray. $PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILT, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILTY SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILTY SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILTY SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILTY SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILTY SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILTY SAND, SILTY SAND, fine to medium grained, CH PORLY GRADED SAND WITH SILTY SAND, SILTY S$	2.0 -	\fragments.	/		70.0		F	-124	REC	= 11"			
4.5 - (tragments. CLYEY SAND, fine to medium grained, moist, gray and orangeish brown, trace root fragments, SILTY SAND, fine grained, moist, gray and orangeish brown, trace sand. 10.0 FAT CLAY, moist, gray and orangeish brown, trace sand. 19.0 SILTY SAND, fine to medium grained, moist, gray. 22.5 ELASTIC SILT, moist, gray, trace sand. 22.5 ELASTIC SILT, moist, gray, trace sand. CH CH CH CH CH CH CH CH CH CH	-	POORLY GRADED SAND W fine to medium grained, moist brown, trace root fragments, f	ITH SILT, t, yellowish trace wood	30			_	-	1+1+3 N = 4 REC	3 = 7"			
$10.0 = \frac{10}{1000} = 1000000000000000000000000000000000000$	4.5	Tragments.	/		67.5		F		NLO	- 1			
SILTY SAND, fine grained, moist, gray and grangelsh brown, trace root fragments. 10.0 FAT CLAY, moist, gray and orangelsh brown, trace sand. FAT CLAY, moist, gray and orangelsh brown, trace sand. CH 62.0 FAT CLAY, moist, gray and orangelsh brown, trace sand. CH 62.0 CH CH CH CH CH CH CH CH CH CH	-	grained, moist, yellowish brow orangeish brown, trace root fr trace wood fragments.	vn and ragments,	SM			- 5 - -		2+2+3 N = 5 REC	3 = 12"			
$10.0 = \frac{114 \text{ Grindmas}}{10.0} = \frac{114 \text{ Grindmas}}{1$	-	SILTY SAND, fine grained, m and orangeish brown, trace re	oist, gray oot				_						
$10.0 = \frac{FAT CLAY, moist, gray and orangeish}{brown, trace sand.} = CH = 62.0 = 10 = 22.50 tsf$ $REC = 22^{\circ} = 15^{\circ} = 10^{\circ} = 10^{\circ}$		nagments.					-	10	N = 1 REC	= 4"			
brown, trace sand. brown, trace sand. brown to gray site trace sand. 19.0 SILTY SAND, fine to medium grained, moist, gray. continued on next page brown to gray site trace sand. MH site trace sand. MH site trace sand. MH site trace sand. brown to gray site trace sand. brown to gray brown to gray	10.0 —	FAT CLAY, moist, gray and o	rangeish	СН	62.0		-10-	M	2+2+2	2			
$19.0 \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{moist, gray.}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SAND, \text{ fine to medium grained,}}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}_{\text{continued on next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}_{\text{continued next page}} \underbrace{SILTY SILT, \text{ moist, gray, trace sand,}_{continued $	-	brown, trace sand.					-	-M	N = 4 REC	= 15"			
$19.0 \qquad SILTY SAND, fine to medium grained, moist, gray.$ $22.5 \qquad ELASTIC SILT, moist, gray, trace sand.$ $MH \qquad 49.5 \qquad -4 \qquad -$							_		REC	= 22"	PP=2.50) tsf	
$19.0 - \frac{15}{19.0} - \frac{15}{10} + \frac{15}{1$	-						-						
$19.0 - \frac{1}{22.5} - \frac{1}{22.5$	-						-15-	M	2+3+4 N = 7	4			or obongo in
$19.0 - \frac{1}{22.5} - \frac{1}{22.5$									REC	= 18"		mu	d tub from ngeish
19.0 SILTY SAND, fine to medium grained, moist, gray. 22.5 ELASTIC SILT, moist, gray, trace sand. MH continued on next page $continued on next page$	_						-	-M	3+4+	6		bro	wn to gray
$22.5 - \frac{\text{SILTY SAND, fine to medium grained, moist, gray.}}{\text{ELASTIC SILT, moist, gray, trace sand.}} \qquad MH \qquad 49.5 - \frac{20}{25 - 4} \text{REC} = 16"$	19.0 -				53 0		Ļ	10	REC	= 18"			
22.5 ELASTIC SILT, moist, gray, trace sand. MH 49.5 $- 49.5$ $- 4+4+6$ $N = 10$ $REC = 16^{\circ}$ $- 4+4+6$ $N = 10$ $REC = 18^{\circ}$		SILTY SAND, fine to medium moist, gray.	grained,	SM			-20-			- 16"			
22.5 $\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	-						_		REC	= 10			
$= \begin{bmatrix} \text{ELASTIC SILT, moist, gray, trace sand.} & \text{MH} \\ = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	22.5			N /1 1	49.5		-			^			
continued on next page		ELASTIC SILT, moist, gray, ti	race sand.	MH			-		4+4+0 N = 1 REC	o 0 = 18"			
continued on next page							[-			
		continued on next pag	e				-25-	1-					

Comments: 1. Boring backfilled with cement/bentonite grout through 2. * = See Appendix I for additional lab testing data.

	C	hnabel BORING	Project: C	alvert Cliff	s Nucle	ar Pow	er Plant		Boring Number:	B-305
Sc	hnat	pel Engineering LOG							Sheet: 2 of 5	J6120048
DEF (F	РТН Т)	STRATA DESCRIPT	ION	CLASS.	ELEV. (FT)	WL	S DEPTH	AMPLING	TESTS	REMARKS
	_			MH			X	5+7+9 N = 16 REC = 1	8"	
27	.0 –	SANDY SILT, moist, gray.		ML	45.0		 M	5+5+7		
	-							N = 12 REC = 1	8"	
	-	weak cementation						4+5+8 N = 13 REC = 1	8"	
	_							8+13+25 N = 38 REC = 1	8"	Harder drilling
35	0. -	CLAYEY SAND, fine to medii grained, wet, gray and white, fine to medium shell fragmen 30-40% HCI reaction strong	um contains ts,	SC	37.0		35	REC = 5		resumed drilling
	_					Ţ	 40	32+45+4 N = 93 REC = 1 REC = 2	8 2" 3" W=34.7% LL=72 PL=22	on 7/18/06 @7:30am Harder drilling
	-							30+50/5" N = 50/5 REC = 1	, " 0"	
31/07	-						45 X 	50/5" N = 50/5 REC = 4		
4 HNABEL.GDT 10/	.0 — - -	CLAYEY SAND, fine to medi grained, wet, white and gray, coarse shell fragments, 60-70 reaction strong.	um with fine to 0%, HCl	SC	25.0		 	40+50/5" N = 50/5 REC = 8	1 11 11	
S and	.8 _				21.2			12+8+8 N = 16		
SPT 300 & 400	_	LEAN CLAY, wet, gray, trace contains fine to medium shell fragments, 20-30%, HCI reac moderate.	sand, tion	GL				REC = 1	6" _" PP=>4.5 tsf	harder
50048 PLOC		CII TV CAND find to modium	arainad	CM4	17.0		 	50/F"		
3 LOG 061.	_	wet, greenish gray, strong ce	mentation.					N = 50/5 REC = 5	"	
TEST BORIN(_	with fine to coarse shell fragn continued on next pag	nents, re					36+50/1"		

Comments: 1. Boring backfilled with cement/bentonite grout through 2. * = See Appendix I for additional lab testing data.

	hpahol TEST	Project:	Calvert Cliff	s Nucle	ar Pow	er Plant	Boring	g Number:	B-306
Schnat	BORING	i	Calvert Cou	inty, Ma	ryland		Contr	act Number: 06	6120048
DEPTH (FT)	STRATA DESCRIPT	ΓΙΟΝ	CLASS.	ELEV. (FT)	WL	SA DEPTH		TESTS	REMARKS
-			SM						
	trace fine gravel. medium to coarse grained,da orangeish brown.	ark					8+13+17 N = 30 REC = 16"		
- - - -	orangeish brown and black.					 35	5+8+10 N = 18 REC = 13"		
41.0 -	light orangeish brown, with 3 fine gravel. CLAYEY SAND, fine to medi grained, moist, orange and g	" layer of um ray.	SC	- 77.6		 	4+9+10 N = 19 REC = 14"		
						 45	3+2+2 N = 4 REC = 18"		
- - - 51.0 -	gray, contains mica.	to medium	CL	67.6		 50-	3+3+5 N = 8 REC = 18"		
	grameu, moisi, gray.					 <u>55</u> -	3+3+5 N = 8 REC = 18"		
_	continued on next pa	ge							

Comments: 1. Boring backfilled with cement/bentonite grout through tremie pipe upon completion. 2. * = See Appendix I for additional lab testing data.

-	TEST	TEST Project: Calvert Cliffs Nuclear Power Plant							Number:	B-306
Schna	bel Engineering LOG	Ca	alvert Cou	nty, Ma	ryland			Contra Sheet:	ct Number: 06 3 of 5	6120048
DEPTH (FT)	STRATA DESCRIPT	TION	CLASS.	ELEV. (FT)	WL	S DEPTH		G T∆	TESTS	REMARKS
	greenish gray.		CL				REC = 2	24"	PP=2.00 tsf	
	_					-60-				
-	-									
-										
-	with fine to medium sand len	ses.				M	6+6+7		PP=1.50 tsf	
						-65-0	REC =	18"		
-				51 G						
- 07.0	FAT CLAY, trace fine sand, r gray.	noist, light	СН	51.0				24"	w=30.7%	
-	_						REC =	24	LL=62 PL=24 PD=2 15 tof	
				17.0		-70-			* *	
71.0 -	SILTY SAND, fine grained, m greenish gray, contains mica	noist,	SM	47.6						
-	_									
-	-						6+8+10 N = 18 REC =	18"		
-	-									
-	dark gray, with fine shell frag	ments,					38+50/4	1"		
	weak HCI reaction.					-80-	N = 50/4 REC =	4" 10"		
81.0 -	POORLY GRADED SAND, fi	ne to	SP	37.6						
-	to medium shell fragments, w reaction.	veak HCI								
-	-						50/3" N = 50/3	3"		
						-85	REC =	4"		
- 870	-			31.6						
-	SILTY SAND, fine to medium moist, light gray, with fine to shell fragments, strong HCI r	n grained, medium eaction.	SM							
-							35+29+ N = 70	41 18"		
	-					90 ^[]		10		
	continued on next page	ge								

Comments: 1. Boring backfilled with cement/bentonite grout through tremie pipe upon completion. 2. * = See Appendix I for additional lab testing data.

	hashal TE	oject: (Calvert Cliff	s Nucle	ar Pow	er Plant		Boring	Number:	B-401	
Schnal	bel Engineering	RING OG	(Calvert Cou	nty, Ma	ryland			Contra Sheet:	ct Number: 06 4 of 13	6120048
DEPTH (FT)	STRATA DES	CRIPTION	I	CLASS.	ELEV. (FT)	WL	S DEPTH	AMPLIN	G TA	TESTS	REMARKS
				SM							
92.0 -	ELASTIC SILT, moist,	gray and li	ght	МН	-19.9						
	fragments (±<5%),wea	ne to coarso ak HCI reac	e shell tion.								
							10	6+11+1 N = 27	6		
							<u> </u>	REC =	18"		
_											
_											*Osterberg
								REC =	15"	w=50.5%	sampler tube push from 98.5
							100			LL=78 PL=48	to 99.8 ft
							-100-			PP=>4.5 tsf *	
_											
103.5					-31.4						
-	SILTY SAND, fine to m light greenish gray, tra	ce fine to c	idy, oarse	SM			10	5+9+22 N = 31			
	shell fragments (±5%) matter (±<1%), contair	and organi	c and				-105-	REC = '	18"		
	layers.										
-											
							17	5+10+1	7	w=35.6%	
_							L_110-	REC = 1	13"		
_											
1120 -					-30 0						
	LEAN CLAY, moist, gr greenish gray, with fine	ay and ligh e to mediur	t n	CL	00.0						
	sand, trace and fine to fragments (±5%), stror	coarse she	ell ction.					4+8+10		w=46.1%	
		-					[<u></u>]	N = 18 RFC =	18"	*	
							-115-1		10		
б — 											
200 – 117.0 –	SILT, moist, gray and I	light greeni	sh	ML	-44.9						
	gray, with fine to mediu mica and fine to mediu	um sand, tr im shell	ace								
-	tragments (±5%), weal	к HCl react	ion.				F -11X	5+9+12 N = 21			
							-120- []	REC =	18"		
-											
3 122.0 -	FLASTIC SILT moiet	aray trace	fine to	мн	-49.9						
	medium sand, mica, al	nd fine to n	nedium								
	reaction.						╞╴╶╢┻	REC =	16"	w=57.4%	*Osterberg
	continued on r	next page									

Γ	6	TEST	Project: C	alvert Cliff	s Nucle	ar Pow	er Plant		Boring	Number:	B-401
	Schna	bel Engineering LOG	С	alvert Cou	nty, Ma	iryland		-	Contra Sheet:	ct Number: 06 5 of 13	6120048
	DEPTH (FT)	STRATA DESCRIPT	ION	CLASS.	ELEV. (FT)	WL	S		G TA	TESTS	REMARKS
				MH						LL=85 PL=54 PP=>4.5 tsf *	sampler tube push from 123.5 to 124.8 ft
	- 128.5 - - -	SANDY SILT, gray and greer with fine to medium sand, tra medium shell fragments (±<5 HCI reaction.	nish gray, ce fine to %), strong	ML	-56.4		 - 130 - 	5+6+11 N = 17 REC =	18"	w=43.8% *	
	-	fine to medium sandy, greeni very weak HCl reaction.	sh gray,				 135-	7+9+11 N = 20 REC =	18"		
	- 137.0 - - 	SANDY FAT CLAY, moist, gr gray, fine to medium sand, st reaction.	eenish rong HCl	СН	64.9		 1 140 	REC = :	23"	w=44.1% LL=80 PL=31 PP=>4.5 tsf *	*Osterberg sampler tube push from 138.5 to 140.5 ft
3DT 10/31/07	142.0 - - - - -	ELASTIC SILT, moist, greeni trace fine to medium sand, w reaction	sh gray, eak HCl	MH	- 69.9		 	7+9+11 N = 20 REC =	18"	w=77.1% LL=142 PL=104 *	
PT 300 & 400.GPJ SCHNABEL.(-	trace mica.					 150	8+10+1 N = 22 REC = 1	2 18"	w=72.7% LL=150 PL=89 *	**Resumed drilling at 6:55 AM on 6/21/06.
RING LOG 06120048 PLOG SF	- - -							6+8+11 N = 19 REC =	18"	w=68.8% LL=142 PL=93 *	
TEST BC	-	continued on next pag	e								

Schna	TEST Project: (BORING LOG	Calvert Cliff Calvert Cou	s Nucle inty, Ma	ar Pow ryland	er Plant	Boring Number: Contract Number: 0 Sheet: 6 of 13	B-401
DEPTH (FT)	STRATA DESCRIPTION	CLASS.	ELEV. (FT)	WL			REMARKS
-	dark greenish gray.	MH				10" w=49.9% LL=81 PL=54 PP=>4.5 tsf	*Osterberg sampler tube push from 158.5 to 159.3 ft
-	with fine to medium sand.				 165 		
					8+10+ 	15 w=53.9% LL=103 18" PL=52 *	
172.0 - - - - -	FAT CLAY, trace fine sand, greenish gray.	СН	99.9		 175- 	11" W=33.7% LL=57 PL=17 PP=>4.5 tsf	*Osterberg sampler tube push from 173.5 to 174.4 ft
					4+10+2 N = 31 - 180- 	21 0"	
182.0 - 182.0 - 182.0 - - - - - - - - - - - - - -	SILTY SAND, fine to medium grained, contains clayey sand pockets, wet, dark greenish gray, trace fine to medium shell fragments (±1%), moderate HCI reaction.	SM	-109.9		 	22 w=31.2% 18"	
	CLAYEY SAND, fine to medium grained, contains sandy lean clay pockets, wet, dark greenish gray and brownish gray, trace fine to medium shell fragments (±1%) <i>continued on next page</i>	SC	-114.9		 	9 11"	
<u>п</u>							

	hnabol TEST	Project:	Calvert Cliff	s Nucle	ar Pow	er Plant	Вс	oring Number:	B-401	
Schna	bel Engineering LOG		Calvert Cou	inty, Ma	aryland		Co Sh	Contract Number: 06120048 Sheet: 7 of 13		
DEPTH (FT)	STRATA DESCRIP	ΓΙΟΝ	CLASS.	ELEV. (FT)	WL	S/ DEPTH	AMPLING DATA	TESTS	REMARKS	
			SC							
192.0 - - - -	SANDY SILT, fine to medium clayey sand pockets, moist, greenish gray, very weak H0	n, contains dark Cl reaction	ML	119.9		 195-	6+9+17 N = 26 REC = 18"	w=49.2% *		
197.0 - - - -	SILTY SAND, fine grained, n greenish gray, very weak HC trace mica.	noist, L reaction,	SM	124.9		 -200-	REC = 22"	w=48.8% LL=82 PL=55 PP=>4.5 tsf *	*Osterberg sampler tube push from 198.5 to 200.3 ft	
202.0 -	ELASTIC SILT, with fine to n sand, trace mica and organic (±1%), moist, greenish gray, HCI reaction.	nedium matter very weak	MH	129.9		 - 205- 	5+8+13 N = 21 REC = 18"	w=58.4% LL=94 PL=69 *		
	trace fine to medium shell fra (±1%).	igments				 -210-	7+11+16 N = 27 REC = 18"	w=62.7% LL=113 PL=74 *	**Resumed drilling at 7:00 AM on 6/22/06.	
212.0 -	ELASTIC SILT, trace fine to sand, contains indurated silt moist, greenish gray, very we reaction.	medium pockets, eak HCl	MH	139.9		 215- 	REC = 13"	PP=>4.5 tsf	*Osterberg sampler tube push from 213.5 to 214.6 ft	
	trace mica.					 220- 	7+11+15 N = 26 REC = 18"	w=77.4%		
	continued on next pag	ge								

	TEST	Calvert Cliff	s Nucle	ar Pow	er Plant	В	Boring Number: B-401		
Schna	bel Engineering LOG		Calvert Cou	inty, Ma	ryland		C	contract Number: 0 heet: 8 of 13	6120048
DEPTH			CI 466	ELEV.	\A/I	s	AMPLING	теете	DEMARKS
(FT)	STRATA DESCRIPT		CLASS.	(FT)	VVL	DEPTH	DAT	A 12515	REMARNS
	trace organic matter (±<1%).		MH			0	9+13+18		
_	-						N = 31 REC = 18	,"	
	-								
	-								
	-								*Osterberg
	contains indurated silt pocket	S.					REC = 13	w=58.6%	push from 228 5 to 229 6
_	-					-230-		PL=88 PP=>4.5 tsf	ft
	-							*	
	-								
	-								
	-					17	10+15+2	1	
	-					<u>235</u>	N = 36 REC = 18	3"	
	-								
	-								
	-								
	weak HCl reaction.					10	8+11+21	w=122.5%	
	-					A	N = 32 REC = 18)"	
	-								
	-								
	-								*Osterberg sampler tube
	mostly indurated silt layers.						REC = 8"	w=96.2% LL=140	push from 243.5 to 244.4
	-					-245-		PL=65 PP=>4.5 tsf	ft
	-							*	
	-								
E 200 -	-								
G-19.00	-					17	7+8+17 N = 25	w=122.8% LL=218	
- 00 - 00	-					-250-	REC = 18	" PL=100	
	-								
L LOG	-								
- 20040	-								
<u> </u>	-						7+10+15 N = 25		
	-					-255-	REC = 18	5"	
	continued on next bad	<i>je</i>							

		hnabol TEST	Project: C	alvert Cliff	s Nucle	ar Pow	er Plant	Во	Boring Number: B-401		
	Schna	bel Engineering LOG	C	alvert Cou	nty, Ma	iryland		Co	Contract Number: 06120048 Sheet: 9 of 13		
	DEPTH (FT)	STRATA DESCRIPT	ION	CLASS.	ELEV. (FT)	WL	S DEPTH	AMPLING DATA	TESTS	REMARKS	
	-	trace fine to medium sand, ve HCl reaction.	ery weak	MH			 260-	8+11+19 N = 30 REC = 18"	w=130.2%		
	- - -						 265-	9+16+21 N = 37 REC = 0"		**Resumed drilling at 7:15 AM on 6/23/06.	
	267.0 - - - -	SILTY SAND, dark green, w medium sand, trace organic i (±<1%), very weak HCI react	ith fine to natter ion.	SM	194.9			7+12+18 N = 30 REC = 18"	w=63.5%		
	-	greenish gray, weak HCI read	ction.				 - <u>275</u> -	8+12+15 N = 27 REC = 18"			
J SCHNABEL.GDT 10/31/07	-	trace fine to medium sand, n HCl reaction.	noderate				□ □ 280- 	50/3" N = 50/3" REC = 4"		*Switched to 5" O.D. Tri-cone roller bit below 278.5 ft.	
120048 PLOG SPT 300 & 400.GH	- 283.0 - - -	SANDY ELASTIC SILT, mois greenish gray, trace fine to co some fine to coarse shell frag (±30%), strong HCl reaction.	t, dark barse sand, gments	MH	-210.9		 285 - 	11+13+17 N = 30 REC = 18"	w=30.2% LL=76 PL=42 *	extremely difficult rotary advancement from 278 to 280 ft (moderate rig chatter). *Switched to 5" O.D. Drag bit below 284.5 ft.	
TEST BORING LOG 00	287.0 - - -	CLAYEY SAND, fine to medi grained, wet, dark brownish g blackish gray, few fine to coa fragments (±10%), trace mica continued on next pag	um gray and rse shell a, strong ge	SC	-214.9			9+17+23		drilling at 11:00 AM on 6/26/06.	

Comments:

6	hashol TEST	Project: Ca	alvert Cliff	s Nucle	ar Pow	er Plant		Boring Number: B-401		
Schnat	bel Engineering LOG	i Ci	alvert Cou	inty, Ma	ryland			Contract Number Sheet: 10 of 13	r: 06120048	
DEPTH (FT)	STRATA DESCRIPT	ΓΙΟΝ	CLASS.	ELEV. (FT)	WL	S			B REMARKS	
	HCI reaction, glauconitic dark brownish gray and dark gray, trace fine to coarse she fragments (±5%). fine to coarse grained, moist, brownish gray and blackish g fine gravel and fine to mediu fragments (±<5%) below 294	greenish Il , dark gray, trace m shell .5 ft.	SC			-290- -	N = 40 REC = 1 8+12+50 N = 62/8 REC = 1	8")/2" w=20.79 4"	*Switched to 5" O.D. Tri-cone roller bit below 293.5 ft. *Extremely difficult rotary advancement from 294.5 to 295.5 ft (very strong rig	
306.0 -	brownish gray and light black trace fine to coarse shell frag (±5%), weak HCl reaction, cc clay layers and pockets. SILTY SAND, fine to coarse, clayey sand pockets, moist, o greenish gray and dark black very weak HCl reaction	contains dark cish brown,	SM	233.9			9+14+18 N = 32 REC = 1 10+12+2 N = 32 REC = 1	20 18" 20 18" 20 10 20 20 20 20 20 20 20 20 20 2	strong rig chatter). *Extremely difficult rotary advancememt from 297.3 to 298.3 ft (mod to strong rig chatter). **Resumed drilling at 7:20 AM on 6/27/06. *Switched to 4-3/4" O.D. Drag bit below 298.5 ft.	
317.0 -	SANDY FAT CLAY, fine to m grained, moist, dark greenish dark blackish gray, very wea reaction, glauconitic.	nedium n gray and k HCl	СН	244.9		 	18+26+3 N = 61 REC = 1	35 w=28.90 LL=58 8" PL=28 *	%	

	1	hashal	Project: C	Calvert Cliffs Nuclear Power Plant						Boring Number: B-401			
	Schna	bel Engineering	LOG	C	alvert Cou	nty, Ma	iryland			Contra Sheet	Contract Number: 06120048 Sheet: 11 of 13		
	DEPTH (FT)	STRAT	A DESCRIPT	ION	CLASS.	ELEV. (FT)	WL	DEPTH	SAMP		TESTS	REMARKS	
					СН								
	-												
	-												
								-325-					
	-												
	_												
	_								/ 11+ ⁻	11+17			
								-330-	N =	28 ; = 0"			
	-												
	-												
	-												
	-												
								-335-					
	-												
	337.0 -	SILT with fine to	o coarse sand	d, trace fine	ML	-264.9							
	-	gravel and mica clay pockets, mo	, contains san pist, dark brow	ndy lean wnish gray					7		w=25.3%		
	-	reaction, silt exh	ibits fissility.	HCI					N =	2+29 41 5 - 8"	*		
	_							-340-1		, – 0			
	-												
	_												
/31/07	_												
SDT 10	345.0					-272.9		-345-					
ABEL.0	-	SILTY SAND, fir moist, dark brow	ne to coarse (/nish gray and	grained, d blackish	SM								
SCHN	-	gay, moderate r	1CI reaction										
00.GPJ	-											*Osterberg sampler tube	
00 & 4(-								REC	; = 7"	w=35.6% LL=52	push from 348.5 to 350.5	
SPT 3	_							-350			PL=39 *	π	
PLOG	-												
3120048	-												
0G 06	-												
RING L	-												
ST BO		continu	ied on next pag	ie				-355-					
비													

ſ	6	chnabol	TEST	Project: C	alvert Cliff	s Nucle	ar Pow	er Plant		Boring Number:	B-401	
	Schn	abel Engineering	LOG	C	alvert Cou	nty, Ma	iryland			Contract Number: 06120048 Sheet: 12 of 13		
	DEPTH (FT)	STRAT	A DESCRIPT	ION	CLASS.	ELEV. (FT)	WL	ی DEPTH	SAMPLIN DA	G TESTS	REMARKS	
		 contains clayey mica, very weak - -	sand pockets HCl reaction	, trace	SM			 	30+50/5 N = 50/5 REC = 9	5" 9"		
	367.0	POORLY GRAD fine to medium g sand and lean cl moist, dark brow gray, very weak	ED SAND W grained, conta lay pockets, t nish gray an HCI reaction	TTH SILT, ains silty race mica, d blackish	SP-SM	-294.9			16+25+4 N = 69 REC = 7	44 w=36.9% *	**Resumed drilling at 7:00 AM on 6/28/06.	
G 06120048 PLOG SPT 300 & 400.GPJ SCHNABEL.GDT 10/31/07	377.0	SILTY SAND, fir moist, dark brow gray, trace mica reaction.	ne to medium nish gray an , very weak H	grained, d blackish ICI	SM	304.9		 - 375- -	16+21+: N = 57 REC = 2	36 18"		
FEST BORING LO		_ fine to coarse gr clay pockets, mo <i>continu</i>	ained, conta bist, dark brow led on next pag	ins lean wnish gray re								

School	test BORING	Project: C	alvert Cliff alvert Cou	s Nucle inty, Ma	ar Pow ryland	er Plant	B	Coring Number:	B-401
DEPTH (FT)	STRATA DESCRIP	ΓΙΟΝ	CLASS.	ELEV. (FT)	WL	S DEPTH	AMPLING	TESTS	REMARKS
Schma DEPTH (FT)	Engineering LOG STRATA DESCRIP and blackish gray, trace mic weak HCI reaction. and blackish gray, trace mic weak HCI reaction. fine to medium grained. BOTTOM OF BORING @ 4	TION a, very	CLASS. SM	ELEV. (FT)	WL	DEPTH	S AMPLING DAT 12+20+32 N = 52 REC = 18 11+15+29 N = 44 REC = 18	w=33.1% *	REMARKS **Resumed grouting at 7:00 AM on 6/29/06.

Schna	bel Engineering TEST Project: 0	Calvert Clif Calvert Co	fs Nucle unty, Ma	ar Pow Iryland	/er Pla	nt	Boring Contra Sheet	g Number: act Numbe : 1 of 7	er: 061200	B-404
Boring						Ground	water Obs	servations	;	
	MALAGA, NEW JERSEY					Date	Time	Depth	Casing	Caved
Boring F	Foreman: J. Blemings		Enco	untere	d	6/22		30.0'		
Drilling Drilling	Method: Mud Rotary		Start	t of day	y	6/23		27.5'		
Schnabe	el Representative: B. Bradfield									
Dates	Started: 6/22/06 Finished: 6/27/06									
Locatior	n: Northing: 216441.34 ft Easting: 961596.49 ft									
Ground	Surface Elevation: 67.9 (feet)			1	1					
DEPTH (FT)	STRATA DESCRIPTION	CLASS	ELEV. (FT)	WL	DEP	SAMPL TH I	LING DATA	TEST	s i	REMARKS
-	SILTY SAND, fine to coarse grained, moist, orangeish brown, trace fine rounded gravel, contains root fragments	SM			_	1+2+ N = 4 REC	2 4 = 13"		1.5 with	- Mud rotary 1 3 7/8" drag
2.0 -	SANDY SILT, fine to coarse, moist, orangeish brown and gray, contains decomposed root fragments.	ML	- 65.9		_	5+5+ N = 1 REC	5 10 = 8"		bit	
4.5	LEAN CLAY with sand, moist, orangeish brown and gray, colors layered <1/2" thick.	CL	63.4		5 -	4+4+ N = 9	5			
7.0 -	FAT CLAY with sand, moist, gray and orangeish brown, colors layered 1/4" to 3/4" thick.	CH	- 60.9		_	2+2+ N = 4 REC	2 4 = 18"			
10.0 —			- 57.9			_				
-	contains mica.				_	3+3+ N = 8 REC	5 } = 18"			
-	With darker gray pockets up to 1" thick.				- 15-	4+5+ N = 1 REC	6 1 = 18"			
-					_ _ 20-	3+6+ N = 1 REC	7 3 = 18"			
- 22.0 - -	CLAYEY SAND, fine to medium grained, moist, dark gray, contains mica.	SC	- 45.9		-		7			
	continued on next page				-25-		= 18"			

Comments:
1. Boring backfilled with cement/bentonite grout via tremie pipe upon completion.
2. Downhole geophysical logging performed on 6/27/06.
3. * = See Appendix I for additional lab testing data.

	TEST	Project: Ca	alvert Cliff	s Nucle	ar Pow	er Plant		Boring Number: B-404		
Sch	abel Engineering LOG	Ca	alvert Cou	nty, Ma	ryland			Contract Number: 06120048 Sheet: 2 of 7		
DEPT (FT)	STRATA DESCRIPT	ION	CLASS.	ELEV. (FT)	WL	DEPTH		IG TA	TESTS	REMARKS
			SC							
27.5	 POORLY GRADED SAND, fi medium grained, wet, orange yellowish brown, trace silt. 	ne to and	SP	40.4						29-30'- Harder
	_				Ţ	-30-	40+50/ N = 50/	3" /3"		unning
	-						REC =	8"		
	 None silt, with gray clay lense thick. 	es <1/4"					21+50/ N = 50/ REC =	5" /5" 10"		
	-									
	-					 [>	WOH/1	8" OH/18"		
39.9	CLAYEY SAND, fine to medi grained, moist, gray.	um	SC	28.0		40 ^L	J REC =	2		
43.0	SILTY SAND, fine to coarse	prained.	SM	24.9						
	wet, light gray and brownish 20-30% cemented sand, 30-4 coarse shell fragments.	white, 10% fine to					7 48+32+	+29		
10/31/07	-						N = 61 REC =	18"		
47.5	POORLY GRADED SAND W fine to medium grained, wet, brownish white, 20-30% fine shell fragments, moderate HC HCI reaction localized to she	/ITH SILT, gray and to medium CI reaction, I	SP-SM	20.4			4+4+5 N = 9 BEC =	18"		
400.GPJ S	fragments.									
5 SPT 300 &	20-30% fine to medium shell strong HCl reaction.	fragments,					REC =	18"	w=27.7% LL=NP PL=NP	52'- Shelby tube pushed
06120048 PLOC	 10-20% fine to medium shell HCI reaction localized to shell fragments. 	fragments, I				55	5+10+1 N = 20 REC =	10 18"	*	
<u>6 L06</u>										
57.5	SILTY SAND, fine to medium continued on next page	i grained, ge	SM	10.4						

<sup>Comments:
1. Boring backfilled with cement/bentonite grout via tremie pipe upon completion.
2. Downhole geophysical logging performed on 6/27/06.
3. * = See Appendix I for additional lab testing data.</sup>

	6	TEST	Project: Ca	alvert Cliff	s Nucle	ar Pow	er Plant	I	Boring Number: B-404		
	Schnal	bel Engineering LOG	Ci	alvert Cou	nty, Ma	iryland			Contract Number: 06120048 Sheet: 3 of 7		
	DEPTH (FT)	STRATA DESCRIPT	ION	CLASS.	ELEV. (FT)	WL	S. DEPTH		G A	TESTS	REMARKS
		wet, dark gray, 0-10% fine to shell fragments, weak HCI re	medium action.	SM			 60	4+5+7 N = 12 REC = 1	8"		
	62.5 - -	CLAYEY SAND, fine to medi grained, wet, dark gray, 0-10 medium shell fragments, wea reaction, HCl reaction localize fragments.	um % fine to ak HCl ed to shell	SC	5.4		 65	2+3+4 N = 7 REC = 1	8"		
	_	Gray and brownish white, 20 to medium shell fragments, s reaction.	-30% fine trong HCl					REC = 1	8"		66'- Shelby tube pushed
	-	Wet, dark gray and brownish 30-40% fine to medium shell strong HCI reaction.	white, fragments,					10+14+1 N = 27 REC = 1	3 8"		68.5'- Start of day 6/23/06
	- - - -	20-30% fine to medium shell 10-20% cemented sand, stro reaction, cemented sand frag <3/4" in diameter.	fragments, ng HCl jments				 	4+19+21 N = 40 REC = 1	3"		
NABEL.GDT 10/31/07		SILTY SAND, fine to medium wet, dark gray, 0-10% fine to shell fragments, weak HCI re	n grained, medium action.	SM	9.6		 	6+7+10 N = 17 REC = 1	5"		
PLOG SPT 300 & 400.GPJ SCH		greenish gray and brownish v 20-30% fine to medium shell strong HCI reaction.	white, fragments,				 85	REC = 1	7"	w=32.2% LL=53 PL=28 *	83.5'- Shelby tube pushed
NG LOG 061200481	87.5 - -	SILTY SAND, fine to medium wet, greenish gray and dark of 0-10% fine to medium shell fi weak HCI reaction.	n grained, gray, ragments,	SM	-19.6		 90	5+8+11			
TEST BORI	-	continued on next pag	ge				L IM	N = 19			

Comments:
1. Boring backfilled with cement/bentonite grout via tremie pipe upon completion.
2. Downhole geophysical logging performed on 6/27/06.
3. * = See Appendix I for additional lab testing data.

	6	hashal	Project: (Calvert Cliffs Nuclear Power Plant						Boring Number: B-404		
	Schna	bel Engineering	BORING LOG	(Calvert Cou	inty, Ma	aryland			Contra Sheet:	act Number: 06 4 of 7	6120048
C	DEPTH (FT)	STRATA	DESCRIPT	ION	CLASS.	ELEV. (FT)	WL	DEPTH			TESTS	REMARKS
					SM				REC =	18"		
	92.5 - -	SANDY ELASTIC moist, greenish gr medium shell frag weak HCl reactior	SILT, fine t ay, 0-10% f ments, cont 1.	o medium, îne to tains mica,	MH	-24.6		 95-	6+9+1 N = 19 REC =	0 : 18"		
	- 97.5 -	SILTY SAND, fine wet, greenish gray medium shell frag weak HCI reactior	to medium /, 0-10% fin ments, cont	grained, e to ains mica,	SM	29.6		 	4+9+1: N = 21	2		
1	 - 03.0					-35.1		100	REC =	: 18"		
	-	CLAYEY SAND, f grained, moist, gra brownish white, 30 shell fragments, c HCI reaction, shel decomposed and	ine to medit eenish gray D-40% fine to ontains mic I fragments fractured.	um and to medium a, strong	SC			 105- 	7+12+ N = 27 REC =	15 : 18"		
1	07.5 -	FINE TO MEDIUN SILT, moist, greer to medium shell fr mica, moderate H fragments decom	A SANDY E hish gray, 10 agments, co CI reaction, posed.	LASTIC 0-20% fine ontains shell	MH	39.6		 	4+6+1 N = 16 REC =	0 : : 18"		
400.GPJ SCHNABEL.GD1 10/31/07	- - - - 17.5	0-10% fine to mec weak HCl reactior decomposed.	lium shell fr n, shell fragi	agments, ments		-49.6		 115 	5+7+1 N = 17 REC =	0 : 18"		
3 LOG 06120048 PLOG SP1 300 &		SANDY SILT, fine greenish gray, 0-1 shell fragments, c HCI reaction, HCI shell fragments.	to medium 0% fine to ontains mic reaction loc	, moist, medium a, weak calized to	ML			 	5+8+1 N = 18 REC =	0 - 18"		
IESI BORIN	-	continued	d on next pag	e				Þ	5+5+7			

Comments:
1. Boring backfilled with cement/bentonite grout via tremie pipe upon completion.
2. Downhole geophysical logging performed on 6/27/06.
3. * = See Appendix I for additional lab testing data.
| Schnabel Engineering | | | alvert Cliff
alvert Cou | s Nucle
inty, Ma | ar Pow
Iryland | er Plant | E | Boring Number:
Contract Number: (
Sheet: 2 of 5 | B-409 |
|----------------------|---|--|----------------------------|---------------------|-------------------|------------|--------------------------------------|---|------------------------------|
| DEPTH
(FT) | STRATA DESCRIP | ΓΙΟΝ | CLASS. | ELEV.
(FT) | WL | S
DEPTH | | TESTS | REMARKS |
| _ | fine to medium grained, mois small 1/16" clay layers. | t, orange, | SP-SC | | | | 15+26+28
N = 54
REC = 18 | 8
3" | |
| 27.0 - | POORLY GRADED SAND, f
medium grained, moist, oran | ine to
ge. | SP | 34.6 | |
 X | 38+50/5"
N = 50/5" | | |
| 29.0 – | POORLY GRADED SAND w
to medium grained, moist, gr | ith silt, fine
ay | SP-SM | 32.6 | | 30 | REC = 1 | 1" | |
| - | | | | | | | 18+50/5"
N = 50/5"
REC = 11 | ,
1" | |
| _ | | | | | | | 30+40+40
N = 80
REC = 18 | 0
3" | |
| - | | | | | | 35 | | w=23.3%
LL=NP
PL=NP
* | pitcher sample
pushed |
| 37.0 - | CLAYEY SAND, fine to medi
grained, moist, gray, contains
sand, with fine to coarse she
fragments, 10% shell frag, gr | um
s cemented
II
ay colored. | SC | 24.6 | | | 3+26+6
N = 32
REC = 12 | 2" | |
| | wet, grayish green. | | | | | 40
 | WOH+W
+WOR
N = WOF
REC = 18 | OR
R
3" | |
| - | contains cemented sand. | | | 47.4 | | | 3+38+28
N = 66
REC = 18 | 3" | 43' cemented layer, grinding |
| 44.9 | SILTY SAND, fine to medium
moist, green, with fine to coa
fragments, contains cemente
strong HCI reaction, 20-30% | n grained,
rse shell
ed sand,
shell frag. | SM | 17.1 | | 45 | 5+6+6
N = 12
REC = 18 | 3" | |
| | | | | | | | 4+5+5
N = 10
REC = 18 | 3" | |
| | | | | | | 50 | REC = 24 | 4" | tube pushed |
| | | | | | | | 4+5+5
N = 10
REC = 18 | 3" | |
| 94.5 | POORLY GRADED SAND W
fine to medium grained, mois
strong HCI reaction, 10-20% | /ITH SILT,
st, green,
shell frag. | SP-SM | /.1 | | 55 | 4+5+6
N = 11
REC = 18 | 3" | |
| | weak HCl reaction.
continued on next pag | ge | | | | | 4+3+5 | | |

6	TEST Pro	Boring Number:	B-409				
Schnal	bel Engineering LOG	Calvert Cou	nty, Ma	aryland		Contract Number: 0 Sheet: 3 of 5	06120048
DEPTH (FT)	STRATA DESCRIPTION	CLASS.	ELEV. (FT)	WL	SAMPLII DEPTH D/	NG TESTS	REMARKS
		SP-SM			N = 8 REC =	: 18"	
59.5	SILTY SAND, fine to medium grai moist, green, with fine to coarse s fragments, strong HCI reaction, 10 shell frag.	ined, SM ihell 0-20%	2.1			: 18"	
-	contains fine to coarse shell fragm moderate HCI reaction.	nents,			REC =	24"	tube pushed
-	with fine to coarse shell fragments strong HCI reaction, 30-40% shell	s, I frag.			-65- 	; 18"	
67.0 -	CLAYEY SAND, fine to medium grained, moist, green and white, contains cemented sand, with fine coarse shell fragments, strong HC reaction, 70-80% shell frag.	SC Cl	-5.5		8+14+ 8+14+ N = 30 REC =	16 : 18"	
-	WELL GRADED SAND WITH CL/ fine to medium grained, wet, green white, with fine to coarse shell fragments, strong HCI reaction, 70 shell frag.	AY, n and 0-90%	-0.0			12 : 18"	
	moist, green, with silt, with fine to coarse shell fragments, strong HC reaction, 60-80% shell frag.		-13.0		7+29+ REC =	45 : 18"	
-	SILTY SAND, fine to medium grai moist, green, trace fine to coarse s fragments, moderate HCI reaction 0-10% shell frag.	ned, SM shell 1,	-10.0		75	3 : 18"	
31/07	with fine to coarse shell fragments strong HCI reaction, 20-30% shell	s, frag.				18"	79' start of day 6/23/06
NABEL.GDT 10					5+7+11 N = 17 REC =	0 : 18"	
& 400.GPJ SCH					7+8+1 N = 19 REC =	1 • 18"	
PLOG SPT 300	trace fine to medium shell fragmen moderate HCI reaction, 0-10% she frag.	nts, ell			4+5+7 REC =	18"	
06 06120048	with fine to coarse shell fragments strong HCI reaction, 10-20% shell	s, I frag.	20.0		4+5+8 REC =	18"	
	SANDY SILT, fine to medium, mo green, trace fine to medium shell fragments, moderate HCI reaction continued on next page	n, ML	-28.0		N 5+7+9 N = 16	;	

6	TEST Project: C	TEST Project: Calvert Cliffs Nuclear Power Plant					
Schnal	bel Engineering LOG	Calvert Cou	inty, Ma	aryland		Contract Number: 0 Sheet: 4 of 5	06120048
DEPTH (FT)	STRATA DESCRIPTION	CLASS.	ELEV (FT)	WL		NG TESTS	REMARKS
	0-10% shell frag.	ML			REC =	: 18"	
92.0 -	SILTY SAND, fine to medium grained, moist, green, trace fine to medium shell fragments, moderate HCI reaction, 0-10% shell frag.	SM	- 30.5		 	18"	
-	contains fine to medium shell fragments, greenish gray		25.5		95 REC =	* 19" w=33.1% LL=61 PL=42 *	95' tube pushed
97.0 -	SILTY SAND, fine to medium grained, moist, green, with fine to coarse shell fragments, strong HCI reaction, 10-20% shell frag.	SM	-30.5		4+6+5 N = 11 REC =	: 18"	
- 102.0	30-50% shell frag.		-40.5		100	: 18"	
-	CLAYEY SAND, fine to medium grained, moist, green, with fine to coarse shell fragments, strong HCI reaction, 50-60% shell frag.	SC				8 : 18"	
104.5	SANDY SILT, fine to medium, moist, green, with fine to coarse shell fragments, strong HCI reaction, 10-20% shell frag.	ML	-43.0		105- 4+5+8 N = 13 REC =	18"	105' start of day 6/26/06
-	oliveish green, trace fine to coarse shell fragments, weak HCI reaction, 0-5% shell frag.				4+6+6 N = 12 REC =	18"	
-	moderate HCl reaction, 0-10% shell frag.				110	18"	
	with sand.		-53.0			18"	
	ELASTIC SILT, moist, oliveish green, trace fine to medium shell fragments, weak HCI reaction, 0-10% shell frag.	MH			115- 	18"	
- 0.711 000 & 4000	SANDY SILT, fine to medium, moist, oliveish green, trace fine to coarse shell fragments, moderate HCI reaction, 0-10% shell frag.	ML	1-55.5			18"	
06120048 PLC	with fine to coarse shell fragments, strong HCI reaction, 10-25% shell frag.		60.5		-120- 	18"	
	ELASTIC SILT, moist, oliveish green, trace fine to medium shell fragments, with sand, weak HCI reaction, 0-5% shell frag. <i>continued on next page</i>	МН	-00.5			18"	
μ							

	Calvert Cliffs Nuclear Power Plant					Boring Number: B-409						
Schnabel Engineering LOG					alvert County, Maryland					Contract Number: 06120048		
Schna									Sneet:	5 01 5		
DEPTH (FT)	STRATA	A DESCRIPT	ION	CLASS.	ELEV. (FT)	WL			TESTS		REMARKS	
				мн	. ,		DEPTH	DA	IA			
							-125-	7				
	no snells.						L JX	N = 12				
								REC = 1	18"			
								1				
	with clay.						N	4+5+6 N = 11				
								REC =	18"			
							120				130' start of day	
								5+5+7 N = 12			6/27/06	
							F 70	REC = 12	18"			
							$\vdash \neg \nabla$	6+7+9				
							L JA	N = 16 REC = 1	18"			
							-135-	5+6+9				
							F - Ň	N = 15 REC = 1	18"			
									-			
								REC = ²	18"	PP=4.00 tsf	137.5' tube pushed	
-							-140-	5+6+8				
							X	N = 14	10"			
_								KEC =	10			
								5+6+8				
-							F 1 X	N = 14	1.0"			
							\vdash \dashv	REC = 1	18"			
							-145-	1.6.7				
0/15/							L JX	N = 13				
7								REC = 1	18"			
· 					-86.0							
- INABI	silt.	oist, oliveish (green, with	CL								
							N	7+8+10 N = 18				
150.0 —					-88.5		-150-1	REC = 1	18"			
8400 8	BOTTOM OF BO	DRING @ 15	0.0 FT.									
Т Т												
0048												
7190												
2												
DND												

Schna	TEST Project: C BORING C C Ibel Engineering LOG	alvert Cli alvert Co	iffs Nuclea ounty, Mai	ar Pow ryland	ver Pla	nt	Boring Contra Sheet:	Boring Number: B-4 Contract Number: 06120048 Sheet: 1 of 4			
Boring	Contractor: UNI-TECH DRILLING					Grou	undwater Obs	ervations			
	MALAGA, NEW JERSEY					Dat	te Time	Depth	Casing	Caved	
Boring I	Foreman: J. Evans		Encountered		7/1	0	18.5'				
Drilling	Method: Mud Rotary		Start	of da	v	7/1	1	20.0'			
Drilling	Equipment: Failing-1500 (Truck)	-			, 						
Schnab	el Representative: K. Megginson										
Dates	Started: 7/10/06 Finished: 7/11/06										
Locatio	n: Northing: 216521.76 ft Easting: 960968.8 ft										
Ground	Surface Elevation: 110.6 (feet)	_			1						
DEPTH (FT)	STRATA DESCRIPTION	CLASS	6. ELEV. (FT)	WL	DEP	SAI TH	MPLING DATA	TEST	S F	REMARKS	
0.2	Rootmat and topsoil	FILI	110.4		<u> </u>]∭з	+3+6				
-	Silty Sand PROBABLE FILL fine to				F		N = 9 REC = 10"				
20 -	coarse grained, moist, brown, trace		108.6		L						
2.0	and fine to coarse sandy fat clay layer	SC	100.0				+2+1				
-					F		1 = 3				
· · ·	moist, brown.		100.1		F	⊢∟	REC = 18"				
4.5	LEAN CLAY, moist, brown, trace fine to	CL	106.1		- 5 -						
	medium sand.						VOH+1+1 ↓= 2				
-					Γ	7Ш ғ	REC = 14"				
-	-				F	-					
	trace organic matter (±1%).				F	<u> </u>]]3	+5+7				
					L		REC = 18"				
9.5			- 101.1		[
-	grained, moist, brown and light brown,	30			-10-						
	trace organic matter (±1%), contains				+	-M 4	+7+8 I - 15				
120 -	brown and grayish brown below 11 ft.		98.6		L		REC = 18"				
12.0	POORLY GRADED SAND, with silt, fine	SP-SN	1 00.0						*0	torbora	
-	to coarse grained, moist, brown, trace				F			w-7.00	, san	npler tube	
	pockets.				F	┥┫┡	REC = 23"	LL=NF	b pus	h from 13.5 5.5.ft	
	_							PL=NF	o tof	0.0 11	
								*			
	1				Γ	1					
	-				+	-			*5.4	" O.D. Drag	
.	-				F	-			bit 1	rom 0 to 5 ft.	
	fine to medium grained, wet. brown.			<u> </u>	L		+17+12		*Sv	/tiched to	
	fine to coarse grained, moist, yellowish				Γ		I = 29		4-3 Dra	g bit below	
-	brown and dark reddish brown, contains strongly cemented sand pockets and				-20-	┥╩║┡	12 - 12		18.	5 ft.	
.	lenses below 19 ft .				F	-					
_					L						
-	1				F						
.	wet, contains clayey sand lenses.				\vdash	- 5	+5+8 I = 13				
_					-25-	_ ∐ F	REC = 13"				
	continued on next page										
L											

	6	TEST Project: C	alvert Cliff	s Nucle	ar Pow	er Plant	Boring Number:	B-437	
	Schnal	BORING C	alvert Cou	nty, Ma	iryland		Contract Number: 06120048		
ł	DEPTH			EI EV		SAMPLIN			
	(FT)	STRATA DESCRIPTION		(FT)	WL		TESTS	REMARKS	
			SP-SM						
	-								
	-								
	-								
	-	fine to medium grained, mottled light				2+1+1			
	_	gray and yellowish brown.				-30 REC =	18"		
	_								
	_								
	-								
	-	brown, yellowish brown, and light gray.				- $ $	12		
						35 [] REC =	10"		
	-								
	37.0 -			73.6					
	_	light gray, trace fine to medium sand.							
	_					1+3+6			
	39.5	SILTY SAND, fine to medium grained.	SM	71.1		N = 9 REC =	18"		
		wet, stratified brown and orangeish							
	-	Slowin							
	42.0 -	LEAN CLAY, wet, light grayish brown	CL	68.6					
	-	and yellowish brown, trace fine to medium sand, contains cemented sand							
	44.0 -	fragments, contains silty sand layer from 43.8 to 44 ft.	СН	66.6		4+4+5 N = 9			
	_	FAT CLAY, moist, gray, trace fine to				45	18"		
~	_	medium sand and mica.							
0/31/0	_								
DT 1	_								
BEL.G		aray and dark gray, contains silty sand				₩ 2+3+4			
CHNA	_	pockets.				N = 7	18"		
PJ S(-50-1-1-1-2-0			
400.G	-								
300 &	-								
SPT ;	-								
PLOG	-	gray, contains silty sand layers from				2+3+4			
0048		54. T to 54.2 It and norm 54.0 to 55 It.				REC =	18"		
0612	_								
50G	57 O			52 6					
DRING	57.0 -	ELASTIC SILT, moist, gray, trace fine sand and mica.	MH	33.0					
ST BC	-	continued on next page				- 1			
۳L									