2.3 METEOROLOGY

This section of the U.S. EPR FSAR is incorporated by reference with the following departures and supplements.

The U.S. EPR FSAR includes the following COL Item in Section 2.3.1:
If a COL applicant that references the U.S. EPR design certification identifies site-specific meteorology values outside the range of the design parameters in Table 2.1-1, then the COL applicant will demonstrate the acceptability of the site-specific values in the appropriate sections of the Combined License application.

This COL Item is addressed as follows:
\{The CCNPP Unit 3 site-specific meteorology values have been reviewed and compared to determine if they are within the bounds of the assumed meteorology values for a U.S. EPR. This comparison is provided in Table 2.0-1. The CCNPP Unit 3 site-specific meteorology parameters are within the bounds of the conservative limiting meteorology values presented in Table 2.0-1.\}

2.3.1 REGIONAL CLIMATOLOGY

No departures or supplements.

2.3.1.1 Basis for Meteorological Parameters

The U.S. EPR FSAR includes the following COL Item in Section 2.3.1.1:
A COL applicant that references the U.S. EPR design certification will provide site-specific characteristics for regional climatology.

This COL Item is addressed as follows:
\{Calvert Cliffs Nuclear Power Plant (CCNPP) is located in Calvert County, Maryland. According to information from the Office of the Maryland State Climatologist (OMSC, 2007), Calvert County is in that portion of Maryland commonly referred to as Southern Maryland, and is located on the Coastal Plain. The weather data periods used to create this narrative is identified in each subsection. The CCNPP site is located in the 18-03 state climatic division where 18 stands for the State of Maryland and 03 indicates the third division in the state.

Seasons are well defined. Winter is the dormant season for plant growth due to low temperatures rather than drought. Spring and fall are characterized by a rapid succession of warm and cold fronts associated with storm systems that generally move from a westerly direction. Summers are warm to hot. The higher humidity along the Atlantic coast causes the summer heat to feel more oppressive and the winter cold to feel more penetrating than for drier climates.

At times the Appalachian Mountains provide some protection from arctic air outbreaks in the winter. The mountain barrier may cause warming of the air descending the eastern slopes by as much as $10^{\circ} \mathrm{F}\left(5.6^{\circ} \mathrm{C}\right)$. In situations when high pressure is located over New England and a low pressure system is over the Ohio Valley, cold low-level winds may travel southwestward and be held east of the mountains.

Winds

The prevailing winds at the surface are determined by the frequency and intensity of anticyclones and cyclones that persist or move over the area. The majority of anticyclonic circulation over the northern portion of North America in winter brings a high percentage of cold northwesterly winds to Maryland. Therefore, the prevailing winds are from the northwesterly quadrant from October through June. In the summer this pattern changes as the semi-permanent Atlantic High moves northwestward and dominates the circulation of air over the eastern U.S. A flow of warm, moist air spreads over the area with winds from the southwesterly quadrant most of the time. During the summer the northern portion of North America is dominated by low pressure and the mean storm track is displaced north of Maryland.

Surface mean wind speeds range from 9 to $10 \mathrm{mph}(4.1$ to $4.5 \mathrm{~m} / \mathrm{sec}$) in summer to 10 to 12 $\mathrm{mph}(4.5$ to $5.4 \mathrm{~m} / \mathrm{sec}$) in winter and early spring. The highest mean wind speeds are associated with the frequent passages of well-developed cyclones and anticyclones in the early spring.

Storm Tracks

Almost all migrating cyclones and anticyclones cross the U.S. from west to east. The greater numbers of cyclones travel in a northeastward direction in a path about 300 to 500 mi (483 to 805 km) north of Maryland. Storms that originate in the Gulf of Mexico, the southeastern U.S. or adjacent Atlantic coastal regions, frequently move northeastward or northward along the Atlantic Coast and can bring violent, destructive weather to the Maryland region. As these storms, commonly referred to as Nor'easters, approach from the south, strong easterly to northeasterly winds bring widespread rains and cause higher than normal tides along the Atlantic Coast and on the west side of the Chesapeake Bay. Tropical cyclones or hurricanes that develop in the West Indies, the Caribbean, or the Gulf of Mexico sometimes move into, but rarely pass entirely over the State. These systems also cause cloudy weather, heavy rains, and high tides.

Temperatures

Mean annual temperatures range from $48^{\circ} \mathrm{F}\left(8.9^{\circ} \mathrm{C}\right)$ in Northern Maryland to $58^{\circ} \mathrm{F}\left(14.4^{\circ} \mathrm{C}\right)$ in the lower Chesapeake Bay area. The winter climate on the Coastal Plain of Maryland is intermediate between the cold of the northeast and the mild weather of the South. The average frost penetration is about 5 in (13 mm) in extreme Southern Maryland; in extremely cold winters, maximum frost penetration may be double the average depth. Summer is characterized by considerable warm weather with at least several hot, humid periods. Nights are usually comfortable.

On average, temperatures of $90^{\circ} \mathrm{F}\left(32.2^{\circ} \mathrm{C}\right)$ or higher occur 15 to 25 days per year along the shores of the Chesapeake Bay. The average number of days per year with minimum temperature of $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ or lower is about 80 along the shores of the southern Chesapeake Bay area. Average relative humidity is lower in the winter and early spring, from February through April, and highest in the late summer and early fall, from August to October.

Precipitation

The most favorable situation for rain is when there is a well-developed high pressure system over New England or the St. Lawrence Valley and a well-developed low pressure system over Georgia, Tennessee or the Ohio Valley. The reverse of this situation usually produces clear, dry weather.

Annual average precipitation is about 40 to 46 in (1,016 to $1,168 \mathrm{~mm}$). Distribution is generally uniform throughout the year. Although, for example, the heaviest precipitation occurs in the summer, this is the season when severe droughts are most frequent. Summer precipitation is less dependable and more variable than in winter. Annual precipitation deficits of over 16 inches (406 mm) occurred during extreme droughts of the 1930s, 1960s, and in the 1998 to 2002 period.

Annual average snowfall along the coast ranges from 8 to 10 in (203 to 254 mm). Annual snowfall totals vary considerably from one year to another. Ice and hail are infrequent; five ice storms were reported between January 14, 1999, and December 31, 2006 and twenty hail events were reported in Calvert County, Maryland, between October 9, 1962, and December 31, 2006 (NOAA, 2007a). $\}$

2.3.1.2 Meteorological Data for Evaluating the Ultimate Heat Sink

The U.S. EPR FSAR includes the following COL Item in Section 2.3.1.2:
A COL applicant that references the U.S. EPR design certification will describe the means for providing UHS makeup sufficient to meet the maximum evaporative and drift water loss after 72 hours through the remainder of the 30 day period consistent with RG 1.27.

This COL Item is addressed as follows:
\{This COL item is addressed in Section 2.3.1.2.2.13.
Sections 2.3.1.2.1 and 2.3.1.2.2 are added as a supplement to the U.S. EPR FSAR.

2.3.1.2.1 Regional Air Quality

Background

The Clean Air Act (PL, 1977) which was last amended in 1990, requires the U.S. Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (CFR , 2007a) for pollutants considered harmful to public health and the environment. The Clean Air Act established two types of national air quality standards. Primary standards set limits to protect public health, including the health of "sensitive" populations such as asthmatics, children, and the elderly. Secondary standards set limits to protect public welfare, including protection against decreased visibility, damage to animals, crops, vegetation, and buildings.

The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called "criteria" pollutants. Units of measure for the standards are parts per million (ppm) by volume, milligrams per cubic meter of air $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$, and micrograms per cubic meter of air $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$. Areas are either in attainment of the air quality standards or in nonattainment. Attainment means that the air quality is better than the standard.

Calvert County

Based on EPA data, Calvert County, Maryland, is in attainment for all the National Ambient Air Quality Standards (NAAQS) except for the 8 hour ozone standard (EPA, 2007a) as of December 5,2006 . The 8 hour ozone standard is 0.08 ppm and attainment is determined by whether the 3 year average of the fourth-highest daily maximum 8 hour average ozone concentrations measured at each monitor within an area over each year exceeds the standard. From Figure 2.3-13, it can be seen that the fourth-highest 8 hour average ozone concentration for

Calvert County during 2006 is greater than 0.08 ppm and less than or equal to 1.0 ppm . Nonattainment of the 8 hour ozone standard is due to its proximity to Washington, D.C. A nonattainment designation requires a state plan to be sent to the EPA describing how the area will implement air quality improvements. The NAAQS are presented in Table 2.3-1 (EPA, 2007b). Note that the Maryland Department of the Environment reported that ground-level ozone levels have continued to show significant improvements since the early 1990's (MDE, 2007).

Calvert County is part of the Southern Maryland Intrastate Air Quality Control Region (AQCR), as designated in 40 CFR 81.156, Southern Maryland Intrastate Air Quality Control Region, (CFR, 2007b). The attainment status of the Southern Maryland Intrastate AQCR with regard to national ambient air quality standards is listed as being better than national standards for total suspended particulates, sulphur dioxide, and nitrogen dioxide, and unclassifiable/attainment for carbon monoxide, PM-2.5 (particulate matter with diameter less than 2.5 microns), and for the 8 hour ozone standard (CFR, 2007c).

Class 1 Federal Lands

Class 1 federal lands include areas such as national parks, national wilderness areas, and national monuments. These areas are granted special air quality protections under Section 162 (a) of the federal Clean Air Act. 40 CFR Section 51.307 requires the operator of any new major stationary source or major modification located within $62 \mathrm{mi}(100 \mathrm{~km})$ of a Class I area to contact the Federal Land Managers for that area.

The closest Class 1 Federal Lands to the CCNPP site are Shenandoah National Park and the Fish and Wildlife Service Brigantine site in New Jersey. The distance from the CCNPP site to Shenandoah National Park, Virginia, is approximately $87 \mathrm{mi}(140 \mathrm{~km})$. The distance from the CCNPP site to the Fish and Wildlife Service Brigantine site in New Jersey is approximately 112 mi (180 km).

2.3.1.2.2 Severe Weather Phenomena

2.3.1.2.2.1 Tornadoes and Waterspouts

Tornadoes occur infrequently in Maryland compared with areas such as the Great Plains. Of the ones that do occur, most are small and result in nominal losses. However, two strong tornadoes hit Central and Southern Maryland within an 8 month period in 2001 to 2002. About 25% of the total number of tornadoes in Maryland occur in Southern Maryland. Approximately 70\% of the tornadoes occur between 2:00 PM and 9:00 PM with most occurring from 3:00 PM to 6:00 PM. As can be seen in Figure 2.3-8 and Figure 2.3-10 (NOAA, 2000), the annual average number of tornadoes and strong-violent tornadoes (F2 to F5) during the period 1950 to 1995 are four and one, respectively. No waterspouts were reported in Calvert County between January 1, 1950, and October 31, 2006.

In the period from January 1, 1950 through December 31, 2006, 12 tornados were reported in Calvert County (NOAA, 2007a). This corresponds to an annual average of 0.2 tornados per year. The magnitude of the tornados ranged from F0 to F2, as designated by the National Weather Service. An F0 tornado has estimated wind speeds less than $73 \mathrm{mph}(33 \mathrm{~m} / \mathrm{sec}$). An F1 tornado has estimated wind speeds between 73 and 112 mph (33 and $50 \mathrm{~m} / \mathrm{sec}$). An F2 tornado has estimated wind speeds between 113 and 157 mph (50 and $70 \mathrm{~m} / \mathrm{sec}$). The widths of the paths of the 12 tornados in Calvert Count were estimated to range from 17 to 200 yards (16 to 183 m).

In a study reported in the Journal of Weather and Forecasting of the American Meteorological Society (AMS, 2003), an estimate was made of the probability of an occurrence of a tornado day near any location in the contiguous U.S. for any time during the year. The study applied

Gaussian smoothers in space and time to the observed tornado days from 1980 to 1999 to produce daily maps and annual cycles at any point on a 50 mi by $50 \mathrm{mi}(80 \mathrm{~km}$ by 80 km$)$ grid. Figure 2.3-11 shows the date of maximum tornado threat for locations meeting the minimum data requirements of the study (the gray shaded areas). Areas with a white background signify that there was not enough information to predict the maximum tornado threat date, not that a tornado would not or could not occur. Late July is indicated as the date of maximum tornado threat for the part of Maryland that includes CCNPP Unit 3.

2.3.1.2.2.2 Hurricanes

Hurricanes sometimes move into but rarely pass entirely over the CCNPP Unit 3 area. National Hurricane Center statistics (NOAA, 2005) list only two direct hits on Maryland during the period from 1851 to 2004; neither of these was a major (greater than Category 2) hurricane. Note that the Saffir-Simpson Hurricane Scale ranks hurricanes on a scale of 1 to 5 based on the intensity of the storm (NOAA, 2007b). In the eastern U.S., hurricane season begins June $1^{\text {st }}$ and ends November $30^{\text {th }}$.

Table 2.3-2 shows the total and average number of tropical storms and hurricanes, by month, in the U.S., for the period 1851 to 2004 (NOAA, 2005). Note that most tropical storms and hurricanes occur in September.

The National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center reports that there were 9642 tropical storms and hurricanes that passed within 100 nautical miles (185161 km) of Calvert County, Maryland, during the period from 1851 through 20056. Of these 9642 events, eightthree were Category 1 hurricanes, 2 hurricanes, and one was a Category 3 hurricane (NOAA, 2007c). The hurricanes occurred in the months of August, September, and October. The tropical storms occurred in the months of July, August, September, and October. -n addition to the hurricanes and tropical storms, therewere 41 extratropical storms, 33 tropicaldepressions, and four subtropical depressions that passed within 100 nautical miles (185 km) of Calvert County, Maryland, during the period from 1851 through 2005.

Precipitation estimates from the remnants of Tropical Storm Ernesto, Bill, and Allison were presented in FSAR Section 2.3.1.2.2.2. These data were obtained from the National Climatic Data Center Storm Events database (NOAA, 2007a), under precipitation events in Calvert County for dates June 15, 2001 (Allison), July 3, 2003 (Bill), and September 1, 2006 (Ernesto).

Rainfall amounts for Calvert County, Maryland, were not included in the National Climatic Data Center Storm Events database for the remnants of Hurricane Floyd and were therefore unavailable for inclusion in the FSAR.

On September 1, 2006, the remnants of Tropical Storm Ernesto dropped between 7 to 10 in (178 to 254 mm) of rain in Calvert County. On July 3, 2003, the remnants of Tropical Storm Bill dropped over 2 in (51 mm) of rain in parts of Calvert County. On June 15, 2001, the remnants of Tropical Storm Allison dropped between one and one-half and three and one-half inches (38 to 89 mm) of rain on Calvert County (NOAA, 2007a).

2.3.1.2.2.3 Thunderstorms

Thunderstorms are reported at any given station in the vicinity of Calvert County on an average of 30 to 40 days per year. They occur in all months of the year, but the majority (75% to 80%) occurs in May through August. They occur less than once per month from November to

February. Thunderstorms are most likely to occur during the afternoon and evening hours. (NOAA, 2007e).

Table 2.3-3 presents the monthly mean number of days on which thunderstorms occurred in the region during the period from 1971 to 2002. The information is from certified data from the National Climatic Data Center (NOAA, 2002a) (NOAA, 2002b) (NOAA, 2002c).

2.3.1.2.2.4 Lightning

J. L. Marshall (Marshall, 1973) presented a methodology for estimating lightning strike frequencies which includes consideration of the attractive area of structures. His method consists of determining the number of lightning flashes to earth per year per square kilometer and then defining an area over which the structure can be expected to attract a lightning strike. There are 4 flashes to earth per year per square kilometer in the vicinity of the proposed CCNPP Unit 3 (conservatively estimated using Figure 2.3-12 (NOAA, 2007d). Marshall (Marshall, 1973) defines the total attractive area, A, of a structure with length L, width W, and height H, for lightning flashes with a current magnitude of 50% of all lightning flashes as:

$$
\mathrm{A}=\mathrm{LW}+4 \mathrm{H}(\mathrm{~L}+\mathrm{W})+12 \cdot 57 \mathrm{H}^{2} \quad \text { Eq. 2.3.1-1 }
$$

The following building dimensions were used to estimate conservatively the attractive area of CCNPP Unit 3 (these values are larger than the approximate dimensions of the combined containment, the four safeguards buildings, the access building, the fuel building, and the nuclear auxiliary building):

$$
L=215 \mathrm{~m}, \mathrm{~W}=140 \mathrm{~m}, \mathrm{H}=40 \mathrm{~m}
$$

The total attractive area is therefore equal to 0.11 square kilometers. Consequently, the lightning strike frequency computed using Marshall's (Marshall, 1973) methodology for CCNPP Unit 3 is 0.44 flashes per year.

2.3.1.2.2.5 Droughts

Droughts in Calvert County occur most frequently during the summer season based on data from the National Climatic Data Center. Annual precipitation deficits of over 16 in (406.4 mm) occurred during extreme droughts of the 1930s, 1960s, and in the 1998 to 2002 period (NOAA, 2007ae).

2.3.1.2.2.6 High Winds

Table 2.3-4 presents occurrences of winds greater than 50 knots (58 mph or $26 \mathrm{~m} / \mathrm{sec}$) by storm type for Calvert County. These data were retrieved from the National Climatic Data Center (NOAA, 2007a). There were 17 events that occurred during the period from June 2, 1980, through December 31, 2006, with the wind speed ranging from 50 to 90 knots (58 to 104 mph ; 26 to $46 \mathrm{~m} / \mathrm{sec}$). The highest value occurred on April 21, 2000.

2.3.1.2.2.7 Hail

Table 2.3-5 presents twenty hail events which occurred in Calvert County, Maryland, between October 9, 1962, and December 31, 2006. These data were retrieved from the National Climatic Data Center (NOAA, 2007a). Hail stone diameters ranged from 0.75 to 2 in (19.1 to 50.8 mm). The largest value occurred on July 15, 1996.

2.3.1.2.2.8 Dust/Sand Storms

There were no dust/sand storms reported in Calvert County, Maryland, between January 1, 1993, and December 31, 2006. These data were retrieved from the National Climatic Data Center (NOAA, 2007a).

2.3.1.2.2.9 Ice Storms

Table 2.3-6 presents five ice storm events which occurred in Calvert County, Maryland, between January 14, 1999, and December 31, 2006. These data were retrieved from the National Climatic Data Center (NOAA, 2007a). Ice thickness ranged from 0.2 to 1 in (5.1 to 25.4 mm). The largest value occurred on January 30, 2000.

2.3.1.2.2.10 Snow Storms

Table 2.3-7 presents snow storm events which occurred in Calvert County, Maryland, between December 28, 1993, and December 31, 2006. These data were retrieved from the National Climatic Data Center (NOAA, 2007a). Snow amounts ranged from 1.0 to 16.5 in (25.4 to 419.1 mm).

2.3.1.2.2.11 High Air Pollution Potential

It has been observed that major air pollution episodes are usually related to the presence of stagnating anticyclones. Such anticyclones may linger over an area four days or more. During such a period, surface wind speeds can fall to very low values. The near surface circulation is therefore insufficient to disperse accumulated pollutants. These air stagnation events were analyzed in "Air Stagnation Climatology for the U.S. (1948-1998)," (NOAA, 1999). It was determined that 12 air stagnation days occur per year, on average for the period 1948 to 1998, in the vicinity of CCNPP Unit 3 site. The maximum number of air stagnation days (averaged over the same period), around 80 per year, occurs near the border of California, Arizona, and Mexico. Most air stagnation events happen in an extended summer season from May to October as a result of weaker pressure and temperature gradients and the concomitant weaker wind circulations. The study found that the eastern U.S. has a prolonged but weaker air stagnation season than the rest of the country.

Air flow from over warm waters tends to inhibit temperature inversion formation at night along the immediate coast (Hosler, 1961). During the warmer months of the year, the pressure gradient reinforces the sea breeze circulation, which results in the production of relatively strong winds during nights along the coast. This helps to delay or even inhibit nocturnal radiation inversion formation.

A study (EPA, 1972) which derived climatological statistics on morning and afternoon mixing heights and associated vertically averaged wind speeds, indicates that the mean annual morning mixing height depth over CCNPP Unit 3 will be approximately $1,968 \mathrm{ft}(600 \mathrm{~m}$) and that the mean annual afternoon mixing height depth over CCNPP Unit 3 will be approximately $4,592 \mathrm{ft}(1,400 \mathrm{~m})$. The mean annual wind speed through the morning mixing layer was found to be approximately $12 \mathrm{mi} / \mathrm{hr}(5.5 \mathrm{~m} / \mathrm{sec})$ and the mean annual wind speed through the afternoon mixing layer was found to be approximately $15.7 \mathrm{mi} / \mathrm{hr}(7.0 \mathrm{~m} / \mathrm{sec})$.

2.3.1.2.2.12 Snow/Ice Load on Roofs of Safety Related Structures

The NRC Branch Position for Winter Precipitation Loads (NRC, 1975) establishes an acceptable method to develop a winter precipitation load for the design of nuclear power plants. The prescribed loads to be included in the combination of normal live loads are based on the weight of the 100 year snow pack or snowfall, whichever is greater, recorded at ground level.

Winter precipitation loads to be included in the combination of extreme live loads is based on the addition of the weight of the 100 year snow pack at ground level plus the weight of the 48 hour Probable Maximum Winter Precipitation (PMWP) at ground level for the month corresponding to the selected snow pack. Snow pack and snowfall are adjusted for density differences and ground level values are adjusted to represent appropriate weights on roofs. Values are expressed in the units used in the methodology.

As indicated in the NRC Branch Position for Winter Precipitation Loads (NRC, 1975), it is acceptable to determine the 100 year snow pack and snowfall utilizing information in American National Standards Institute (ANSI) A58.1,"Minimum Design Loads for Buildings and Other Structures" (ANSI, 1972) with an adjustment of 30 years or more of regional data and maximization of water content for snow depth. Based on more recent information (ASCE, 19982006) issued 2633 years since ANSI A58.1, the 50 year mean recurrence ground snow load in the CCNPP Unit 3 region is $25 \mathrm{lb} / \mathrm{ft}^{2}\left(122 \mathrm{~kg} / \mathrm{m}^{2}\right)$. The ANSI importance factor described in ASCE-7-98/SEI 7-05, "Minimum Design Loads for Buildings and Other Structures," (ASCE, 19982006) can be used to adjust the 50 year recurrence ground snow load to a 100 year recurrence. Using an importance factor of 1.2, the 100 year mean recurrence ground snow load is $30 \mathrm{lb} / \mathrm{ft}^{2}\left(146 \mathrm{~kg} / \mathrm{m}^{2}\right)$.

The 48 hour PMWP can be determined from Hydrometeorological Report (HMR) Number 3353 (USWB, 195680) by taking the probable maximum 48 hour precipitation during the winter months of December through February. The $10 \mathrm{mi}^{2}\left(26 \mathrm{~km}^{2}\right)$, 48 hour PMWP is conservatively selected for the site. The $200 \mathrm{mi}^{2}\left(518 \mathrm{~km}^{2}\right)$, 24 hour PMAWP is obtained directly from HMR Number 33 (USWB, 1956). The factors to adjust the $200 \mathrm{mi}^{2}\left(518 \mathrm{~km}^{2}\right), 24$ hour PMWP to a $10 \mathrm{mi}^{2}\left(26 \mathrm{~km}^{2}\right), 48$ hour PMWP are also provided in HMAR Number 33 (USWB, 1956). The PMWP is summarized in Table 2.3-8 (USWB, 1956)plotting (using a smooth curve) the probable maximum 6-hour, 24-hour, and 72-hour precipitation during the winter months of December through February. The 6-hour, 24-hour, and 72-hour PMWP values are provided in Table 2.3-8.

The plot of the probable maximum 6-hour, 24 -hour, and 72-hour precipitation is presented in Figure 2.3-222. The 10 -square mile (mi^{2}), 48 -hour PMWP is selected for the site from the plot using the December data since it is more conservative; the value of the 48 -hour PMWP is 22.5 inches (571.5 mm).

The month of December provides the most conservative PMWP of 17.7 in (450 mm). Note that the average total precipitation for December is 2.61 in (66.3 mm) in the CCNPP site area. Considering that hourly temperature values measured in the CCNPP site area during the six-year period from 2000 to 2005 were below $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ about 10% of the time, most of this PMWP would occur as rain. In order to define the overall ground snow load, it was assumed that 25% of the PMWP combines with the 100 year mean recurrence ground snow load of $30 \mathrm{lb} / \mathrm{ft}^{2}\left(146 \mathrm{~kg} / \mathrm{m}^{2}\right)$. Therefore, the PMWP component is (where $62.4 \mathrm{lb} / \mathrm{ft}^{2}\left(305 \mathrm{~kg} / \mathrm{m}^{2}\right)$ is the density of water):

PMWP Load $=\left[(17.722 .5\right.$ inches $)\left(62.4 \mathrm{lb} / \mathrm{ft}^{2}\right) /(12$ inches $\left.)\right](0.25)=2329 \mathrm{lb} / \mathrm{ft}^{2}$
Eq. 2.3.1-3
($112141 \mathrm{~kg} / \mathrm{m}^{2}$)
Combining the 100 year mean recurrence ground snow load of $30 \mathrm{lb} / \mathrm{ft}^{2}\left(146 \mathrm{~kg} / \mathrm{m}^{2}\right)$ with the PMWP load of $2329 \mathrm{lb} / \mathrm{ft}^{2}\left(112141 \mathrm{~kg} / \mathrm{m}^{2}\right)$ yields an overall design ground snow load of 5359 $\mathrm{lb} / \mathrm{ft}^{2}\left(258288 \mathrm{~kg} / \mathrm{m}^{2}\right)$ for use in the design of roofs. This site-specific overall design ground snow load is bounded by the U.S. EPR design value.

2.3.1.2.2.13 Conditions for Maximum Evaporation and Potential Water Freezing in the Ultimate Heat Sink

In accordance with NRC Regulatory Guide 1.27, "Ulimate Heat Sink for Nuclear Power Plants," (NRC, 1976), the meteorological conditions resulting in maximum evaporation and drift lossshould be the worst 30 day average combination of controlling parameters (wet bulb and dry bulb temperatures). Monthly design wet bulb and meancoincident dry bulb temperatures were determined by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) using 20 years (1982 to 2001) of meteorological data from Patuxent River Naval Air Station (NAS), Maryland, a nearby representative site (ASHRAE, 2005). These 20 years of data were used instead of 30 years of data from another site because Patuxent River NAS is the closest source of atmospheric moisture data to the CCNPP site and is logated on the shores of the Chesapeake Bay, as is CCNPP Unit 3. The highest monthly design wet bulb and mean eoincident dry bulb temperatures reported were for the month of July. The 2% design values (the values that would be exceeded 2% of the time in the month of July or roughly 15 hours out of 744) are $79.6^{\circ} \mathrm{F}\left(26.4^{\circ} \mathrm{C}\right)$ and $89.2^{\circ} \mathrm{F}\left(31.8^{\circ} \mathrm{C}\right)$ for the wet and coincident dry bulbtemperatures, respectively. The 1.0% design values for the month of July are $80.3^{\circ} \mathrm{F}\left(26.8^{\circ} \mathrm{C}\right)$ and $89.9^{\circ} \mathrm{F}\left(32.2^{\circ} \mathrm{C}\right)$ for the wet and coincident dry bulb temperatures, respectively. The 0.4% design values for the month of July are $81.3^{\circ} \mathrm{F}\left(27.4^{\circ} \mathrm{C}\right)$ and $90.8^{\circ} \mathrm{F}\left(32.7^{\circ} \mathrm{C}\right)$ for the wet and coincident dry bulb temperatures, respectively.

Since a closed loop hybrid mechanical draft cooling tower will act as the heat sink for CCNPP Unit 3, another meteorological condition to consider is the maximum 1 hour dry bulbtemperatures. The maximum 1 hour dry bulb temperature determined for Baltimore, Aaryland, in Local Climatological Data, 2002 Annual Summary with Comparative Data, (NOAA, 2002a) is $105^{\circ} \mathrm{F}\left(10.6^{\circ} \mathrm{C}\right)$. This value was determine d over a 52 year period of record (1951 to z002).

The meteorologicalconditions resulting in minimum cooling due to evaporation of water should be periods of high wet bulb temperature values. Using 20 years (1982-2001) of meteorological data from Patuxent River NAS, Maryland, the wet bulb temperatures that areexceeded only $2 \%, 1 \%$, and 0.4% of the time per year are $76.5^{\circ} \mathrm{F}\left(24.7^{\circ} \mathrm{C}\right), 77.8^{\circ} \mathrm{F}\left(25.4^{\circ} \mathrm{C}\right)$, and $79.2^{\circ} \mathrm{F}\left(26.2^{\circ} \mathrm{C}\right)$, respectively (ASHRAE, 2005).

The meteorological conditions resulting in the potential for water freezing in the ultimate heat sink water storage facility should be low dry bulb temperature values and associated wind speeds. Using 20 years of meteorological data from Patuxent River NAS, Maryland, the coldest month wind speed and coincident dry bulb temperature that are exceeded only 1% of the timeper year are $24.2 \mathrm{mi} / \mathrm{hr}(10.8 \mathrm{~m} / \mathrm{sec})$ and $31.8^{\circ} \mathrm{F}\left(-0.1^{\circ} \mathrm{C}\right)$.

According to information from ASHRAE (ASHRAE, 2005), the 100-year return period values of maximum and minimum dry bulb temperature are $104.6^{\circ} \mathrm{F}\left(40.33^{\circ} \mathrm{C}\right)$ and $-9.1^{\circ} \mathrm{F}\left(-22.8^{\circ} \mathrm{C}\right)$, respectively. The 100 year return period value of maximum wet bulb temperature coincident with the 100 year return period value of maximum dry bulb temperature is $86.1^{\circ} \mathrm{F}\left(30.06^{\circ} \mathrm{C}\right)$.The 100 year return period value of maximum wet bulb temperature (non-coincident) is $94.8^{\circ} \mathrm{F}$ (34.9 ${ }^{\circ} \mathrm{C}$).

In accordance with Regulatory Guide 1.27, "Ultimate Heat Sink for Nuclear Power Plants," (NRC, 1976), the meteorological conditions resulting in maximum evaporation and drift loss should be the worst 30-day average combination of controlling parameters (wet bulb and dry bulb temperatures). The design of the UHS, as stated in the U.S. EPR FSAR Section 2.3.1.2, is based on meteorological conditions that exist for 72 hours, consistent with the sizing of the UHS cooling
tower basin. For CCNPP3, the worst meteorological conditions resulting in maximum evaporation and drift loss of water for the UHS over a 72 hour period are shown in Table 2.0-3.

A software routine used in the Ultimate Heat Sink analysis calculation evaluated 30 years of meteorological data (Reference 1) for Patuxent River Naval Air Station (11 miles away from the CCNPP site) and determined the worst 72 hour period from the perspective of maximum evaporation (highest evaporation potential, based on the combined effect of the dry bulb temperature and its coincident wet bulb temperature). These ambient temperature conditions are imposed on the cooling tower model for the first 72 hours of the design basis accident (DBA).

The table below provides a comparison of the Table 2.1-3 values in the U.S. EPR FSAR and the CCNPP site-specific values used for maximum evaporation from the UHS.

	US EPR FSAR Table 2.1-3 Value		Calvert Cliffs Site-Specific Value	
Time (hr)	$\begin{gathered} \text { Wet Bulb Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \text { Dry Bulb Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \text { Wet Bulb Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \text { Dry Bulb Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$
1	69.87	84	69.87	84
$\underline{2}$	68.69	82	68.69	82
3	66.82	78	66.82	78
4	$\underline{67.02}$	$\underline{77}$	$\underline{67.02}$	$\underline{77}$
5	$\underline{69.04}$	78	$\underline{69.04}$	78
$\underline{6}$	68.48	78	68.48	78
7	68.14	77	68.14	77
8	67.10	74	67.10	$\underline{74}$
9	67.10	74	67.10	74
10	$\underline{67.80}$	$\underline{76}$	$\underline{67.80}$	$\underline{76}$
11	$\underline{67.23}$	$\underline{76}$	$\underline{67.23}$	$\underline{76}$
12	$\underline{69.79}$	82	$\underline{69.79}$	82
13	70.98	84	70.98	84
14	72.71	86	72.71	86
15	74.15	89	74.15	89
16	74.71	93	74.71	93
17	74.98	94	74.98	94
18	75.92	$\underline{93}$	75.92	$\underline{93}$
19	74.98	$\underline{98}$	74.98	$\underline{98}$
$\underline{20}$	74.20	$\underline{97}$	$\underline{74.20}$	$\underline{97}$
$\underline{21}$	74.19	97	74.19	$\underline{97}$
$\underline{22}$	74.16	95	$\underline{74.16}$	95
$\underline{23}$	74.15	93	74.15	93
$\underline{24}$	72.22	$\underline{90}$	$\underline{72.22}$	$\underline{90}$
$\underline{25}$	$\underline{70.49}$	86	$\underline{70.49}$	86
$\underline{26}$	$\underline{71.03}$	$\underline{86}$	$\underline{71.03}$	86
$\underline{27}$	$\underline{71.03}$	86	$\underline{71.03}$	86
$\underline{28}$	$\underline{71.03}$	86	$\underline{71.03}$	86
$\underline{29}$	71.03	86	71.03	86
30	70.02	81	70.02	81
31	$\underline{68.24}$	$\underline{79}$	$\underline{68.24}$	79
32	$\underline{68.25}$	$\underline{79}$	$\underline{68.25}$	$\underline{79}$
33	$\underline{68.13}$	77	$\underline{68.13}$	77
34	68.13	77	68.13	77
35	69.70	80	$\underline{69.70}$	80

	US EPR FSAR Table 2.1-3 Value		Calvert Cliffs Site-Specific Value	
Time (hr)	Wet Bulb Temp (${ }^{\circ} \mathrm{F}$)	Dry Bulb Temp (${ }^{\circ}$ F)	Wet Bulb Temp (${ }^{\circ} \mathrm{F}$)	Dry Bulb Temp (${ }^{\circ} \mathrm{F}$)
36	71.79	83	71.79	83
37	72.98	85	72.98	85
38	$\underline{75.02}$	88	$\underline{75.02}$	88
$\underline{39}$	$\underline{76.71}$	$\underline{92}$	$\underline{76.71}$	$\underline{92}$
40	$\underline{77.49}$	$\underline{95}$	$\underline{77.49}$	$\underline{95}$
41	$\underline{78.24}$	98	$\underline{78.24}$	98
42	78.72	100	78.72	100
43	78.48	99	78.48	99
44	$\underline{77.91}$	99	77.91	99
$\underline{45}$	$\underline{77.91}$	$\underline{99}$	$\underline{77.91}$	$\underline{99}$
46	$\underline{77.10}$	$\underline{98}$	$\underline{77.10}$	$\underline{98}$
$\underline{47}$	$\underline{76.85}$	$\underline{97}$	$\underline{76.85}$	$\underline{97}$
48	75.24	93	75.24	93
$\underline{49}$	74.14	91	74.14	91
50	72.99	87	$\underline{72.99}$	87
$\underline{51}$	$\underline{70.96}$	$\underline{84}$	$\underline{70.96}$	84
$\underline{52}$	$\underline{69.33}$	$\underline{84}$	$\underline{69.33}$	$\underline{84}$
$\underline{53}$	68.90	81	68.90	81
$\underline{54}$	$\underline{69.46}$	81	$\underline{69.46}$	81
55	$\underline{69.13}$	80	$\underline{69.13}$	80
56	69.69	80	$\underline{69.69}$	80
57	67.70	79	67.70	79
58	$\underline{67.70}$	$\underline{79}$	$\underline{67.70}$	$\underline{79}$
$\underline{59}$	$\underline{68.58}$	$\underline{80}$	$\underline{68.58}$	80
60	71.53	84	71.53	84
61	$\underline{72.40}$	$\underline{85}$	$\underline{72.40}$	85
62	73	$\underline{87}$	73	$\underline{87}$
63	73.29	88	73.29	88
64	73.58	89	73.58	89
65	73.58	89	73.58	89
66	$\underline{73.33}$	$\underline{92}$	$\underline{73.33}$	$\underline{92}$
$\underline{67}$	$\underline{73.08}$	$\underline{93}$	$\underline{73.08}$	$\underline{93}$
$\underline{68}$	$\underline{73.36}$	$\underline{94}$	$\underline{73.36}$	$\underline{94}$
69	$\underline{74.42}$	94	$\underline{74.42}$	94
70	74.14	$\underline{93}$	74.14	$\underline{93}$
71	74.68	93	74.68	93
72	73.28	88	73.28	88

The Ultimate Heat Sink analysis calculation uses 3-day meteorological data that maximizes inventory loss. The temperatures used in this evaluation are provided in the response to Sub question 2 b above.

Review of the Ultimate Heat Sink sizing criteria calculation indicates the design basis accident heat load decreases during the period $t=72$ hours through $t=720$ hours with no anticipated increases during that period. As heat load decreases, the cooling tower range decreases. Lower range values yield lower evaporation rates for a given ambient wet bulb temperature. The 72nd hour of the DBA scenario represents the peak anticipated evaporation loss during the last 27 days of the DBA.

Drift loss is a fixed percentage of the cooling water flowrate and is provided by the cooling tower vendor based on the drift eliminator configuration used. Seepage loss is an estimated value that is assumed to remain constant throughout the 30-day DBA scenario. Blowdown is secured during the DBA.

Makeup flow to the UHS towers under DBA conditions is the sum of the evaporation loss, drift loss, and seepage loss. The makeup flowrate to the cooling tower, when based on the inventory loss at the end of the initial 72 -hour period, is sufficient to replenish losses through the end of the 30-day DBA scenario.

Drift loss is a percentage of the cooling water flowrate and is provided by the cooling tower vendor based on the drift eliminator configuration used. This drift loss value is independent of ambient environmental conditions.

The U.S. EPR FSAR also states that the design of the UHS is based on a consideration of air temperature data listed in U.S. EPR FSAR Table 2.1-1. Site-specific values for these parameters were determined using 30 years (1978-2007) of meteorological data from Patuxent River Naval Air Station (NAS), Maryland, a nearby representative site (NCDC, 2008). The 0\% exceedance maximum dry bulb and coincident wet bulb temperature values are $102^{\circ} \mathrm{F}\left(39^{\circ} \mathrm{C}\right)$ and $80^{\circ} \mathrm{F}$ $\left(27^{\circ} \mathrm{C}\right)$, respectively. The 0% exceedance non-coincident maximum wet bulb temperature value is $85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right)$. The highest monthly (July) 1% design values are $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$ and $89.5^{\circ} \mathrm{F}\left(31.9^{\circ} \mathrm{C}\right)$ for the wet and mean coincident dry bulb temperatures, respectively. The U.S. EPR FSAR design values listed In Table 2.1-1 bound the calculated values for CCNPP3 listed above except for the 0% exceedance non-coincident wet bulb temperature value. This comparison is shown in Table 2.0-1. The acceptability of the 0% exceedance non-coincident wet bulb temperature design value is described in FSAR Section 9.2.1.1.

Since a closed loop hybrid cooling tower will act as the normal heat sink for CCNPP Unit 3, another meteorological condition to consider is the maximum one-hour dry bulb temperatures. The maximum one-hour dry bulb temperature determined for Baltimore, Maryland, in Local Climatological Data, 2002 Annual Summary with Comparative Data, (NOAA, 2002a) is $105^{\circ} \mathrm{F}\left(40.6^{\circ} \mathrm{C}\right)$. This value was determined over a 52 -year period of record (1951-2002). The maximum one-hour dry bulb temperature determined for Patuxent River NAS, Maryland, is $103^{\circ} \mathrm{F}\left(39.4^{\circ} \mathrm{C}\right)$ over the period 1978 through 2007.

The meteorological conditions resulting in minimum cooling due to evaporation of water are presented in Table 2.0-4.

A software routine used in the Ultimate Heat Sink analysis calculation evaluated 30 years of meteorological data (Reference 1) for Patuxent River Naval Air Station (11 miles away from the CCNPP site) and determined the worst 24 hour period from the perspective of minimum cooling. These ambient temperature conditions are imposed on the cooling tower model for the first 24 hours of the DBA.

The table below provides a comparison of the Table 2.1-4 values In the U.S. EPR FSAR and the CCNPP site-specific values used for minimum cooling from the UHS.

	US EPR FSAR Table 2.1-4 Value		Calvert Cliffs Site-Specific Value	
$\frac{\text { Time }}{\text { (hr) }}$	$\begin{gathered} \text { Wet Bulb Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \text { Dry Bulb Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \text { Wet Bulb Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \text { Dry Bulb Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$
1	75.8	82	75.8	82
$\underline{2}$	76.1	$\underline{83}$	76.1	$\underline{83}$
$\underline{3}$	$\underline{76.1}$	$\underline{83}$	$\underline{76.1}$	$\underline{83}$
4	77.3	$\underline{85}$	77.3	85
5	79.7	$\underline{89}$	79.7	$\underline{89}$
$\underline{6}$	80.8	$\underline{91}$	80.8	$\underline{91}$
$\underline{7}$	82	93	82	93
8	84.6	99	84.6	99
9	85.3	99	85.3	99
10	85.3	$\underline{99}$	85.3	$\underline{99}$
11	84.2	100	84.2	100
12	84.2	100	84.2	100
13	84.6	99	84.6	99
14	83.9	$\underline{99}$	83.9	99
15	83.9	99	83.9	99
16	82.6	$\underline{96}$	82.6	96
17	82.6	$\underline{93}$	82.6	$\underline{93}$
18	82.1	$\underline{91}$	82.1	$\underline{91}$
19	82.1	$\underline{91}$	82.1	$\underline{91}$
$\underline{20}$	81.9	$\underline{90}$	81.9	90
$\underline{21}$	80.7	88	80.7	88
$\underline{22}$	80.7	88	80.7	88
$\underline{23}$	79.5	86	79.5	86
$\underline{24}$	79.5	86	79.5	86

The meteorological conditions resulting in the potential for water freezing in the ultimate heat sink water storage facility should be below dry bulb temperature values and associated wind speeds. Using 30 years of meteorological data from Patuxent River NAS, Maryland, the coldest month (December) wind speed and mean coincident dry bulb temperature that are exceeded only 1% of the time are $24 \mathrm{mph}(10.7 \mathrm{mps})$ and $32.3^{\circ} \mathrm{F}\left(0.2^{\circ} \mathrm{C}\right)$. The 0% exceedance minimum dry bulb temperature value is $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$.

The UHS makeup water system consists of four independent safety-related trains which provide makeup water from the Chesapeake Bay to the ESW System to meet the maximum evaporative and drift water losses for the period from 72 hours post-accident up to 30 days post-accident. The maximum drift loss (percent of water flow) for a single cooling tower will not exceed 0.005% as described in U.S. EPR FSAR Table 9.2.5-2. Figure 9.2-3 provides the interface between the ESW and the UHS makeup water system. U.S. EPR FSAR Section 9.2 provides a detailed discussion of the ESW system, including a simplified flow arrangement for the ESW system.

Section 9.2.5.1 provides the design bases for the UHS Makeup Water System; Sections 9.2.5.2 and 9.2.5.3 provide a general description of the system and its components; and Section 9.2.5.1 provides the safety evaluation for the system.

A marine weather dataset from the International Comprehensive Ocean Atmosphere Data Set (ICOADS) maintained by the National Center for Atmospheric Research (NCAR) Computational \& Information Systems Laboratory (CISL) for the period 1940 through 2005 was reviewed for a region extending from 33° latitude to 41° latitude and from 277° longitude to 288° longitude to determine the historical maximum sea surface temperature experienced in the region nearest
the plant (NCAR, 2006). This area encompasses a rectangle of approximately 480 miles by 600 miles, centered on the CCNPP Unit 3 site. This review indicates a maximum surface temperature of the water in Chesapeake Bay of $93^{\circ} \mathrm{F}$ which is less than the maximum allowable ESW inlet temperature of $95^{\circ} \mathrm{F}$ as described in U.S. EPR FSAR Section 9.2.1. Therefore, UHS makeup water flow to the cooling tower will not increase the cooling tower basin water temperature beyond $95^{\circ} \mathrm{F}$, and therefore, will not adversely impact ESW system safety function.

Additional information on the UHS is provided in Section 9.2.5.

2.3.1.2.2.14 Tornado Parameters

Using the methodology from NRC Regulatory Guide 1.76, "Design-Basis Tornado and Tornado Missiles for Nuclear Power Plants," (NRC, 2007), the design-basis tornado characteristics for CCNPP Unit 3 are presented in Table 2.3-9. The maximum tornado wind speed is $200 \mathrm{mi} / \mathrm{hr}$ (89 $\mathrm{m} / \mathrm{sec}$) and the pressure drop is $0.9 \mathrm{psi}(63 \mathrm{mbar}$).

2.3.1.2.2.15 100 Year Return Period 3 Second Wind Gust

In accordance with ASCE 7-05, "Minimum Design Loads for Buildings and Other Structures," (ASCE, 2006), the basic wind speed to be used in the determination of design wind loads on buildings and other structures is given in Figure 6-1 of that document. This value for the CCNPP site is $95 \mathrm{mph}(42 \mathrm{mps}$). Note that this value is the 3 second wind gust for a 50 year return period. Using the appropriate conversion factor from Table C6-7 of ASCE 7-05 (ASCE, 2006), the 100 year return period 3 second wind gust value is $95 \mathrm{mph} \times 1.07=101.65 \mathrm{mph}(45.4 \mathrm{mps})$.

2.3.1.2.2.16 Temperature and Humidity for Heating, Ventilation and Air Conditioning

Fable 2.3-10 through Table 2.3-15 (ASHRAE, 2005) present data for Patuxent River NAS, Maryland, from Weather Data Viewer. Patuxent River NAS is located about $11 \mathrm{mi}(17.7 \mathrm{~km})$ south of the CCNPP site.

The annual 1% exceedance dry bulb temperature and coincident wet bulb temperature are$89.9^{\circ} \mathrm{F}\left(32.2^{\circ} \mathrm{C}\right)$ and $75.5^{\circ} \mathrm{F}\left(24.2^{\circ} \mathrm{C}\right)$ respectively. The annual 2% exceedance dry bulb temperature and coincident wet bulb temperature are $87.6^{\circ} \mathrm{F}\left(30.9^{\circ} \mathrm{C}\right)$ and $74.6^{\circ} \mathrm{F}\left(23.7^{\circ} \mathrm{C}\right)$ respectively.

The annual 1% excee dance wet bulb temperature and coincident dry bulb temperature are$77.8^{\circ} \mathrm{F}\left(25.4^{\circ} \mathrm{C}\right)$ and $86.4^{\circ} \mathrm{F}\left(30.2^{\circ} \mathrm{C}\right)$ respectively. The annual 2% exceedance wet bulbtemperature and coincident dry bulb temperature are $76.5^{\circ} \mathrm{F}\left(24.7^{\circ} \mathrm{C}\right)$ and $84.5^{\circ} \mathrm{F}\left(29.2^{\circ} \mathrm{C}\right)$ respectively. The annual 99.6% and 99% exceedance dry bulb termperatures are $16.6^{\circ} \mathrm{F}\left(-8.6^{\circ}\right.$ $\mathrm{C})$ and $20.9^{\circ} \mathrm{F}\left(-6.2^{\circ} \mathrm{C}\right)$, respectively.

According to information from ASHRAE (ASHRAE, 2005), the 100 year return period values of maximum and minimum dry bulb temperature are $104.6^{\circ} \mathrm{F}\left(40.33^{\circ} \mathrm{C}\right)$ and $-9.1^{\circ} \mathrm{F}\left(-22.8^{\circ} \mathrm{C}\right.$, respectively. The 100 year return period value of maximum wet bulb temperature coincident with the 100 year return period value of maximum dry bulb temperature is $86.1^{\circ} \mathrm{F}\left(30.06^{\circ} \mathrm{C}\right)$. The 100 year return period value of maximum wet bulb temperature (non-coincident) is $94.8^{\circ} \mathrm{F}$ ($34.9^{\circ} \mathrm{C}$).U.S. EPR FSAR Section 2.3.1.1 indicates that the U.S. EPR design is based on the 0% and 1% exceedance dry-bulb and coincident wet-bulb temperatures listed in U.S. EPR FSAR Table 2.1-1. Site-specific values for these parameters were determined using 30 years (1978-2007) of meteorological data from Patuxent River Naval Air Station (NAS), Maryland, a nearby representative site (NCDC, 2008).

The 1% exceedance maximum dry bulb and coincident wet bulb temperature values are $95^{\circ} \mathrm{F}$ $\left(35^{\circ} \mathrm{C}\right)$ and $77.5^{\circ} \mathrm{F}\left(25.3^{\circ} \mathrm{C}\right)$ for the hottest month (July). The 1% exceedance minimum dry bulb temperature value is $32.3^{\circ} \mathrm{F}\left(0.2^{\circ} \mathrm{C}\right)$ for the coldest month (December). The 0% exceedance maximum dry bulb and coincident wet bulb temperature values are $102^{\circ} \mathrm{F}\left(39^{\circ} \mathrm{C}\right)$ and $80^{\circ} \mathrm{F}$ $\left(27^{\circ} \mathrm{C}\right)$, respectively. The U.S. EPR FSAR design values listed in Table 2.1-1 bound the calculated values for CCNPP3 listed above.

The 100 year return temperature values have been calculated based on SRP 2.3.1 requesting the information. The calculated 100-year return period values of maximum and minimum dry bulb temperature are $104.6^{\circ} \mathrm{F}\left(40.33^{\circ} \mathrm{C}\right)$ and $-9.1^{\circ} \mathrm{F}\left(-22.8^{\circ} \mathrm{C}\right)$, respectively. The 100 -year return period value of maximum wet bulb temperature coincident with the 100 -year return period value of maximum dry bulb temperature is $86.1^{\circ} \mathrm{F}\left(30.36^{\circ} \mathrm{C}\right)$. The 100 -year return period value of maximum wet bulb temperature (non-coincident) is $94.8^{\circ} \mathrm{F}\left(34.9^{\circ} \mathrm{C}\right)$. These values were determined using the 20 years of meteorological data provided by ASHRAE and the following equation (ASHRAE,2005):
$\mathrm{Tn}=\mathrm{M}+\mathrm{I}^{*} \mathrm{~F}^{*} \mathrm{~s}$
where Tn is the n -year return period value of extreme dry bulb temperature (in this case the 50 -year values of $103.4^{\circ} \mathrm{F}$ and $-5.9^{\circ} \mathrm{F}$), M is the mean of the annual extreme maximum or minimum dry bulb temperatures, s is the standard deviation of the annual extreme maximum or minimum dry bulb, l is 1 if maximum dry bulb temperatures are being considered or -1 if minimum dry bulb temperatures are being considered, and F is given by:
$F=-\sqrt{6} / \Pi(0.5772+\ln (\ln (100 / 99)))$
Although these calculated 100-year return temperature values are higher than the 0\% exceedance values described above, the 100-year return values are not used in the design of HVAC systems at CCNPP3. Reliable, sequential hourly meteorological data does not exist for the duration of 100 years. As a result, the use of extrapolated maximum/minimum 100 year return period temperature values would be overly conservative and exceed any recorded values in the available 30-year Pax River NAS data set. In contrast, the site-specific maximum and minimum 0% exceedance dry-bulb and wet-bulb temperature values are conservatively calculated using the maximum and minimum observed temperatures at each $1^{\circ} \mathrm{F}$ temperature increments. recorded at Pax River NAS for the most recent 30 years.

2.3.1.2.3 References

AMS, 2003. Climatological Estimates of Local Daily Tornado Probability for the United States, Journal of Weather and Forecasting, Volume 18, American Meteorological Society, H. Brooks, C. Doswell III, M. Kay, August 2003.

ANSI, 1972. Minimum Design Loads for Buildings and Other Structures, A58.1, American National Standards Institute, 1972.

ASCE, 1998. Minimum Design Loads for Buildings and Other Structures, ASCE 7-98, Revision of ANSI/ASC 7-95, Figure 7-1, American Society of Civil Engineers, 1998.

ASCE, 2006. Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-05, American Society of Civil Engineers, 2006.

ASHRAE, 2005. Weather Data Viewer version 3.0, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2005.

CFR, 2007a. National Primary and Secondary Ambient Air Quality Standards, Title 40, Code of Federal Regulations, Part 50, 2007.

CFR, 2007b. Southern Maryland Intrastate Air Quality Control Region, Title 40, Code of Federal Regulations, Part 81.156, 2007.

CFR, 2007c. Maryland, Title 40, Code of Federal Regulations, Part 81.321, 2007.
EPA, 1972. Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States, U.S. Environmental Protection Agency, Office of Air Programs, G. Holzworth, January 1972.

EPA, 2007a. Nonattainment Map for Maryland, U.S. Environmental Protection Agency, Website: http://www.epa.gov/air/data/nonat.html?st~MD~Maryland, Date accessed: March 30, 2007.

EPA, 2007b. National Ambient Air Quality Standards (NAAQS), U.S. Environmental Protection Agency, Website: http://epa.gov/air/criteria.html, Date accessed: May 2007.

Hosler, 1961. Monthly Weather Review, Low-Level Inversion Frequency in the Contiguous United States, C. Hosler, September 1961.

Marshall, 1973. Lightning Protection, J. Marshall, 1973.
MDE, 2007. Summer 2006 Air Quality Summary, Maryland Department of the Environment, Website: http://www.mde.state.md.us/assets/document/Summary2006.pdf, Date accessed: April 13, 2007.

NCAR, 2006. National Center for Atmopspheric Research, Computational \& Information Systems Laboratory, Dataset ds540.0 International Comprehensive Ocean Atmosphere Data Set (ICOADS), Global Marine Surface Observations, Release 2.42. Date accessed October 4, 2006.

NCDC, 2008. U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Climatic Data Center, Integrated Surface Hourly Observations Dataset, Patuxent River Naval Air Station, Maryland, 1978-2007, purchased 2008

NOAA, 1999. Air Stagnation Climatology for the United States (1948-1998), Air Resources Laboratory, National Oceanic and Atmospheric Administration, April 1999.

NOAA, 2000. 1998-1999 Tornadoes and a Long-Term U.S. Tornado Climatology, Technical Report 99-02, National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, National Climatic Data Center, August 2000.

NOAA, 2002a. Local Climatological Data, 2002 Annual Summary with Comparative Data, Baltimore, Maryland (BWI), National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, National Climatic Data Center, 2002.

NOAA, 2002b. Local Climatological Data, 2002 Annual Summary with Comparative Data, Norfolk, Virginia (ORF), National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, National Climatic Data Center, 2002.

NOAA, 2002c. Local Climatological Data, 2002 Annual Summary with Comparative Data, Richmond, Virginia (RIC), National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, National Climatic Data Center, 2002.

NOAA, 2005. The Deadliest, Costliest, and Most Intense United States Tropical Cyclones From 1851-2004 (And Other Frequently Requested Hurricane Facts), Technical Memorandum NWS TPC-4, National Oceanic and Atmospheric Administration, August 2005.

NOAA, 2007a. Storm Events for Maryland, National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, National Climatic Data Center, Website:
http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms, Date accessed: April 2007.
NOAA, 2007b. The Saffir-Simpson Hurricane Scale, National Oceanic and Atmospheric Administration, National Weather Service, National Hurricane Center, Website: http://www.nhc.noaa.gov/aboutsshs.shtml, Date accessed: April 16, 2007.

NOAA, 2007c. Historical Hurricane Tracks, National Oceanic and Atmospheric Administration, Coastal Services Center, Website:
http://maps.csc.noaa.gov/hurricanes/viewer.html?QE=USPLACE\&STATE=maryland, Date accessed: April 16, 2007.

NOAA, 2007d. Lightning Flash Density Map of the United States, National Oceanic and Atmospheric Administration, Website:
http://www.crh.noaa.gov/Image/pub/ltg2/usa_ltg_fdm.gif, Date accessed: March 13, 2007.
NOAA, 2007e. Climates of the States, Climatography of the United States No. 60, Climate of Maryland, National Climatic Data Center, website: http://cdo.ncdc.noaa.gov/climatenormals/clim60/states/Clim MD 01.pdf, Date accessed January 2007.

NRC, 1975. NRC Site Analysis Branch Position - Winter Precipitation Loads, Memorandum from H. R. Denton to R. R. Maccary, Adams Accession \#ML050630277, U.S. Nuclear Regulatory Commission, March 1975.

NRC, 1976. Ultimate Heat Sink for Nuclear Power Plants, Regulatory Guide 1.27, Revision 2, U.S. Nuclear Regulatory Commission, January 1976.

NRC, 2007. Design-Basis Tornado and Tornado Missiles for Nuclear Power Plants, Regulatory Guide 1.76, Revision 1, U.S. Nuclear Regulatory Commission, March 2007.

OMSC, 2007. Narrative Description of Maryland's Climate, Office of Maryland State Climatologist, Website: http://www.atmos.umd.edu/~climate, Date accessed: May 30, 2007.

PAXNAS Hourly Surface Observations, 1976-2005, obtained from the National Climatic Data Center.

PL, 1977. Clean Air Act (CAA), Public law 95-95, 42 USC Section 7622, August 7, 1977.
USWB, 1956. Seasonal Variations of the Probable Maximum Precipitation East of the $105^{\text {th }}$ Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24 and 48 Hours, Hydrometeorological Report No. 33, U.S. Weather Bureau, 1956.\}

USWB, 1980. Hydrometeorological Report No. 53, "Seasonal Variation of 10-Square-Mile Probable Maximum Precipitation Estimates, United States East of the $105^{\text {th }}$ Meridian," April 1980.$\}$

2.3.2 LOCAL METEOROLOGY

The U.S. EPR FSAR includes the following COL Item in Section 2.3.2:
A COL applicant that references the U.S. EPR design certification will provide site-specific characteristics for local meteorology.

This COL Item is addressed as follows:
\{Sections 2.3.2.1 through Section 2.3.2.4 are added as a supplement to the U.S. EPR FSAR.
Sections 2.3.2.1 and 2.3.2.2 present local summaries of meteorological data based on onsite measurements made in accordance with Nuclear Regulatory Commission (NRC) Regulatory Guide 1.23, "Meteorological Monitoring Programs for Nuclear Power Plants," Revision 1, (NRC, 2007a) and National Weather Service station summaries from appropriate nearby locations.

Onsite meteorological data compiled for Calvert Cliffs Nuclear Power Plant (CCNPP) Units 1 and 2 were used in this analysis for CCNPP Unit 3. CCNPP Unit 3 is located approximately 2,000 ft (610 m) south of CCNPP Units 1 and 2.

These data are from the existing units' onsite meteorological monitoring program which was designed, and has been operated, according to Safety Guide 23 (Regulatory Guide 1.23, Revision 0), Onsite Meteorological Programs, (NRC, 1972).

The data recovery goal of 90% was met for each of the 6 years of data (2000 to 2005). The pre-operational meteorological monitoring program also meets the requirements of Regulatory Guide 1.23, Revision 1 (NRC, 2007a), with the following deviations: no atmospheric moisture measurements (required for plants utilizing cooling towers), tower not sited at approximately the same elevation as finished plant grade, and tower, guyed wire, and anchor inspection performance of once every 5 years instead of an annual inspection for tower and guyed wire and an anchor inspection of once every 3 years. These deviations are discussed further in Section 2.3.3.1.7.

Local meteorological values used for design and operating bases are bounded by those in the U.S. EPR FSAR.

2.3.2.1 Normal and Extreme Values of Meteorological Parameters

Monthly and annual summaries of meteorological data are provided in Sections 2.3.2.1.1 through 2.3.2.1.6.

2.3.2.1.1 Wind Speed and Direction

Table 2.3-16 and Table 2.3-17 present annual joint frequency distributions (JFD) of wind speed and direction as a function of atmospheric stability derived from the CCNPP onsite meteorological monitoring program. Table 2.3-18 through Table 2.3-41 present monthly joint frequency distributions of wind speed and direction as a function of atmospheric stability. These tables were developed using 6 years of onsite meteorological data (2000 to 2005) following the guidance in Regulatory Guide 1.23 (NRC, 2007a). Note that additional wind speed classes were added to provide greater coverage of the lower wind speeds that are most important for atmospheric dispersion.

Table 2.3-134 and Table 2.3-135 present annual joint frequency distributions (JFD's) of wind speed and direction as a function of atmospheric stability derived from the 2000-2006 data from the CCNPP on-site meteorological monitoring program. The hourly data used to calculate these tables were used to determine the atmospheric dispersion and deposition factors presented in Sections 2.3.4 and 2.3.5.

Figure 2.3-14 and Figure 2.3-15 present annual wind rose plots of the 2000 to 2005 meteorological data for the $33 \mathrm{ft}(10 \mathrm{~m})$ and $197 \mathrm{ft}(60 \mathrm{~m})$ elevations using the wind speed classes utilized for the JFD tables. Figure 2.3-16 through Figure 2.3-39 present monthly wind rose plots of the 2000 to 2005 meteorological data for the $33 \mathrm{ft}(10 \mathrm{~m})$ and $197 \mathrm{ft}(60 \mathrm{~m})$ elevations using the wind speed classes provided in Regulatory Guide 1.23 (NRC, 2007a).

Figure 2.3-223 and Figure 2.3-40 through Figure 2.3-42 present multi-year average annual wind rose plots for National Weather Service (NWS) stations around the CCNPP site (Patuxent River NAS, Maryland, Baltimore/Washington International (BWI) Airport, Norfolk International Airport, Virginia, and Richmond International Airport, Virginia). Meteorological data used to create the plots were received from the National Climatic Data Center for Patuxent River NAS (NCDC 2008), and from the U.S. Environmental Protection Agency Support Center for Regulatory Air Models (EPA, 2007a) and were measured at approximately $33 \mathrm{ft}(10 \mathrm{~m})$ above ground level. For Patuxent River NAS, the meteorological data were from 2000 through 2005. For Norfolk and Richmond International Airports, the meteorological data were from 1984 through 1992. For BWI, the meteorological data were from 1984 through 1992, with the exception of 1989.

The annual prevailing wind direction (the direction from which the wind blows most often) at the CCNPP site at the $33 \mathrm{ft}(10 \mathrm{~m})$ level is from the southwest, approximately 14% of the time. Winds from the southwest through west sectors occur approximately 26% of the time. Conversely, winds from the northeast through east sectors occur approximately 14% of the time. The annual prevailing wind direction at the CCNPP site at the $197 \mathrm{ft}(60 \mathrm{~m})$ level is from the southwest, approximately 10% of the time. Winds from the southwest through west sectors occur approximately 20% of the time. Conversely, winds from the northeast through east sectors occur approximately 13% of the time. As is normally the case, there are more observations of calm winds at the lower level than at the upper level (0.33% versus 0.03%). At both the $33 \mathrm{ft}(10 \mathrm{~m})$ and $197 \mathrm{ft}(60 \mathrm{~m})$ levels, winds occur most infrequently from the east-southeast.

A comparison of the CCNPP $33 \mathrm{ft}(10 \mathrm{~m})$ annual wind rose with the Patuxent River NAS annual wind rose was made over the period 2000 through 2005. The annual prevailing wind direction (the direction from which the wind blows most often) at the CCNPP site at the $33 \mathrm{ft}(10 \mathrm{~m})$ level is from the southwest approximately 14% of the time. The annual prevailing wind direction at Patuxent River NAS is from the north, approximately 10% of the time. Winds from the southwest through west sectors occur approximately 26% of the time at CCNPP. Conversely, winds from the northeast through east sectors occur approximately 14% of the time at CCNPP. Winds from the southwest through west sectors occur approximately 23% of the time at Patuxent River NAS. Conversely, winds from the northeast through east sectors occur approximately 17% of the time at Patuxent River NAS. At both sites, winds occur most infrequently from the east-southeast (approximately 2.5% at CCNPP and approximately 1.5% at Patuxent River NAS). The mismatch in prevailing wind direction may be due to the differences in the location of the sites with respect to the Chesapeake Bay (CCNPP has the Bay to the east, Patuxent River NAS has the Bay to the north).

The annual prevailing wind direction at Baltimore/Washington International (BWI) Airport is from the west, approximately 13% of the time. At Norfolk, Virginia, the annual prevailing wind direction is from the southwest, approximately 11% of the time. At Richmond, Virginia, the annual prevailing wind direction is from the south-southwest, approximately 10% of the time. Note that there are more observations of calm winds at these three NWS sites than at the CCNPP site. This may be due to:

1. The CCNPP site is located directly on the Chesapeake Bay. Of the three NWS stations, Richmond International Airport is approximately $50 \mathrm{mi}(80 \mathrm{~km})$ inland, BWI is approximately $4 \mathrm{mi}(6.4 \mathrm{~km})$ from the Chesapeake Bay, and Norfolk International Airport is approximately $2 \mathrm{mi}(3.2 \mathrm{~km})$ from the Chesapeake Bay. The sea/land breeze phenomenon is stronger at the coast line than further inland.
2. The use of different wind measurement instruments due to the different needs at the sites. The NWS sites are at airports, where high wind speeds are more important than low wind speeds since they have a greater impact on aviation. At the CCNPP site, wind measurements are made to determine atmospheric dispersion to aid in dose assessment; therefore, low wind speeds are more important since they will lead to less dispersion and higher dose.

During the winter months (December through February), the prevailing wind direction at both levels is from the northwest, approximately 13%. Winds from the southwest are the next most dominant, occurring approximately 11% of the time at the $33 \mathrm{ft}(10 \mathrm{~m}$) level and approximately 9% of the time at the $197 \mathrm{ft}(60 \mathrm{~m}$) level. During the spring months (March through May), the prevailing wind direction at both levels is from the southwest, approximately 12% of the time at the lower level and 11% of the time at the upper level.

During the summer months (June through August), the prevailing wind direction at both levels is from the southwest, approximately 18% of the time at the lower level and 14% of the time at the upper level. During the autumn months (September through November), the prevailing wind direction at the $33 \mathrm{ft}(10 \mathrm{~m}$) level is from the southwest, approximately 12% of the time. At the $197 \mathrm{ft}(60 \mathrm{~m}$) level, the prevailing wind directions are from the north-northeast and from the south-southwest, approximately 9% of the time. The north-northeast flow dominates in September and October and the south-southwest flow dominates in November.

The most prevalent wind speed class at the CCNPP site on an annual basis for the 33 ft (10 m) level is the 4.7 to $6.7 \mathrm{mph}(2.1$ to 3.0 mps) class, which occurs approximately 28% of the time. The most prevalent wind speed class on an annual basis for the $197 \mathrm{ft}(60 \mathrm{~m})$ level is the 13.6 to 17.9 mph (6.1 to 8.0 mps) class, which occurs approximately 21% of the time.

Figure 2.3-224 presents the wind speed class frequency distribution for Patuxent River Naval Air Station (NAS), Maryland, for the years 2000 through 2005. The most prevalent wind speed class at Patuxent River NAS is $6.7-8.9 \mathrm{mph}(3.0-4.0 \mathrm{mps})$. The average wind speed at BWI is 8.8 mph (3.92 mps) and there have been observations of wind speeds greater than $25 \mathrm{mph}(11 \mathrm{mps}$). At Norfolk International Airport, Virginia, the average wind speed is $11.0 \mathrm{mph}(4.92 \mathrm{mps})$ and there have been observations of wind speeds greater than $25 \mathrm{mph}(11 \mathrm{mps})$. At Richmond International Airport, Virginia, the average wind speed is $8.3 \mathrm{mph}(3.70 \mathrm{mps})$ and there have been observations of wind speeds up to 25 mph (11 mps).

Note that the most prevalent wind speed class on an annual basis for the $33 \mathrm{ft}(10 \mathrm{~m})$ level at CCNPP (4-7 mph (1.8-3.1 mps)) is lower than the most prevalent wind speed class at Patuxent River NAS ($6.7-8.9 \mathrm{mph}(3.0-4.0 \mathrm{mps})$). That value is lower than the average annual wind speeds
at the same measurement height presented for BWI, Norfolk and Richmond, this would lead to more conservative atmospheric dispersion estimates using the CCNPP meteorological data.

On a seasonal basis, the most prevalent wind speed class for the $33 \mathrm{ft}(10 \mathrm{~m})$ level is the 4.7 to 6.7 mph (2.1 to 3.0 mps) class, which occurs approximately 25% of the time during the winter months (December through February), 27\% of the time during the spring months (March through May), 32% during the summer months (June through August), and 27% during the autumn months (September through November). At the $197 \mathrm{ft}(60 \mathrm{~m})$ level, the most prevalent wind speed class is the 13.6 to 17.9 mph (6.1 to 8.0 mps) class, which occurs approximately 25% during the winter months (December through February), 24\% during the spring months (March through May), and 21\% during the autumn months (September through November). During the summer months (June through August), the most prevalent wind speed class is the 9.2 to 11.2 mph (4.1 to 5.0 mps) class which occurs approximately 21% of the time.

The maximum hourly wind speed measured at the $33 \mathrm{ft}(10 \mathrm{~m})$ level is $30.1 \mathrm{mph}(13.5 \mathrm{mps}$); the maximum hourly wind speed measured at the $197 \mathrm{ft}(60 \mathrm{~m})$ level is $45.4 \mathrm{mph}(20.3 \mathrm{mps})$.

Table 2.3-42 through Table 2.3-55 present annual and overall wind direction persistence summaries for the $33 \mathrm{ft}(10 \mathrm{~m})$ and $197 \mathrm{ft}(60 \mathrm{~m})$ measurement levels at the CCNPP site. These tables were developed using 6 years of onsite meteorological data (2000 to 2005). Table 2.3-48 and Table 2.3-55 present an average of the six individual year summaries for the 33 ft (10 m) and $197 \mathrm{ft}(60 \mathrm{~m})$ measurement levels respectively.

The majority of the time, approximately 86%, wind direction persistence events last for less than 4 hours at both measurement levels. Wind direction persistence events lasting 12 hours occur six and eight times per year on the average for the lower and upper measurement levels, respectively. Wind direction persistence events lasting greater than 24 hours occur once per year on the average for the lower and upper measurement levels.

2.3.2.1.2 Temperature and Humidity

Monthly and annual temperature summaries from the CCNPP onsite meteorological monitoring program are presented in Table 2.3-56 through Table 2.3-63 for the period from January 2000 through December 2005. Table 2.3-131 presents monthly and annual temperature summaries from the CCNPP on-site meteorological monitoring program for the period from January 1987 through December 2006. The monthly mean extreme maximum temperature is defined as the highest of the monthly average values for each month over the data period. The monthly mean extreme minimum temperature is defined as the lowest of the monthly average values for each month over the data period. These values are determined by calculating the monthly average temperature for each month of each year and then identifying the maximum and minimum monthly average temperature value for each month over the data period.

The monthly mean temperature at the CCNPP site ranges from $34.3^{\circ} \mathrm{F}\left(1.3^{\circ} \mathrm{C}\right)$ in January to $75.1^{\circ} \mathrm{F}\left(23.9^{\circ} \mathrm{C}\right)$ in July. The monthly mean extreme maximum temperature at the CCNPP site was $78.3^{\circ} \mathrm{F}\left(25.7^{\circ} \mathrm{C}\right)$ in July and the monthly mean extreme minimum temperature was $29.5^{\circ} \mathrm{F}$ $\left(-1.4^{\circ} \mathrm{C}\right)$ in January. The monthly mean daily maximum temperature at the CCNPP site was $81.8^{\circ} \mathrm{F}\left(27.7^{\circ} \mathrm{C}\right)$ in July and the monthly mean daily minimum temperature was $28.5^{\circ} \mathrm{F}\left(-1.9^{\circ} \mathrm{C}\right)$ in January. The maximum hourly temperature at the CCNPP site was $96.3^{\circ} \mathrm{F}\left(35.7^{\circ} \mathrm{C}\right)$ in July and the minimum hourly temperature was $8.5^{\circ} \mathrm{F}\left(-13.1^{\circ} \mathrm{C}\right)$ in December. The frequency of occurrence of hourly temperature values falling below the freezing point $\left(32^{\circ} \mathrm{F}\right.$ or $0^{\circ} \mathrm{C}$) is less than 10\%.

Temperature and humidity statistics from sites around the CCNPP site are presented in Table 2.3-64 through Table 2.3-73. Dry bulb temperature values are from the 30 year period from 1971 to 2000. Wet bulb temperature values are from the 18 year period from 1983 to 2000. The monthly mean temperatures measured at the CCNPP site show good correspondence with the values presented in these tables, for example, almost all of the mean monthly temperatures measured at the CCNPP site fall within the range of values reported by the surrounding stations.

A comparison of the monthly average temperature values at CCNPP (Table 2.3-131) and the Patuxent River Naval Air Station (Table 2.3-64) was performed by determining the percent difference between the corresponding monthly values. The percent difference was defined as the absolute value of the difference between the monthly values times 100 and divided by the average of the monthly values. The comparison showed that the percent differences between the monthly average temperatures are within 3% of each other for all months, within 1.74% on average, and range from 0.26% to 2.65%. This shows good agreement between the two sites.

Table 2.3-74 through Table 2.3-76 present the monthly design wet bulb temperature and the mean coincident dry bulb temperature for locations in the vicinity of the CCNPP site. These wet bulb temperature values correspond to $0.4 \%, 1.0 \%$, and 2.0% cumulative frequency of occurrence for the indicated month. The data were determined from the American Society of Heating, Refrigeration, and Air-Conditioning Engineers Weather Data Viewer (ASHRAE, 2005). Data for the Patuxent River Naval Air Station, Maryland, are from the period 1982 to 2001. Data from Salisbury Wicomico County Airport, Maryland, are from the period 1982 to 2001. Data from Baltimore, Maryland, are from 1972 to 2001.

2.3.2.1.3 Precipitation and Fog

The monthly and annual precipitation summary from the CCNPP onsite meteorological monitoring program is presented in Table 2.3-77 through Table 2.3-80 for the period from 2000 tothrough 2005. Table 2.3-132 presents the monthly and annual precipitation summary from the CCNPP on-site meteorological monitoring program for the period from January 1992 through December 2006. The rainfall rate distribution is provided in Table 2.3-79. Precipitation statistics from NWS sites around the CCNPP site are presented in Table 2.3-81 for the period from 1971 to 2000 and in Table 2.3-82 and Table 2.3-83 for the period from 1961 to 1990. Monthly and annual summaries of heavy fog (visibility less than one-quarter mile) are presented in Table 2.3-84 for sites around the CCNPP site.

Monthly average precipitation at the CCNPP site ranges from 1.53 in (38.86 mm) in February to 4.53 in (115.06 mm) in July. Monthly percent frequency of occurrence of precipitation at the CCNPP site ranges from 4.26% in September to 7.87% in April. The rainfall rate distribution presented in Table 2.3.2-642.3-83 indicates that heavy rainfalls occur infrequently at the CCNPP site. The maximum monthly precipitation measured at the CCNPP site corresponds well with the values from the NWS sites around the plant. The minimum monthly precipitation measured at CCNPP, however, does not correspond well with the values from the NWS sites around the plant; this may be due to the difference in the period of records (6 years for the CCNPP site versus 30 for the NWS sites).

A comparison of the monthly average precipitation values at CCNPP (Table 2.3-132) and the Patuxent River Naval Air Station (Table 2.3-81) was performed by determining the percent difference between the corresponding monthly values. The percent difference was defined as the absolute value of the difference between the monthly values times 100 and divided by the average of the monthly values. The comparison showed that the percent differences between the monthly average temperatures are within 33% on average and range from 8.73% to
68.91%. This shows poor agreement between the two sites. This may be due to the localized nature of convective precipitation events which are characterized by limited areal distribution, the suddenness with which they start and stop, and by rapid changes in intensity. Another potential factor to consider in light of the fact that the CCNPP monthly average values are all lower than the Patuxent River NAS values, is that CCNPP does not employ a wind screen. Wind screens are used in open, exposed areas, which are subject to strong gusty winds to minimize the wind-caused loss of precipitation falling into the rain gauge.

Figure 2.3-43 and Figure 2.3-44 present annual precipitation wind roses at the CCNPP site for the $33 \mathrm{ft}(10 \mathrm{~m})$ and $197 \mathrm{ft}(60 \mathrm{~m})$ elevations. These precipitation wind roses portray joint frequency distributions of wind speed and direction as a function of atmospheric stability for only the hours in which precipitation was recorded. These annual precipitation wind roses show that the most frequent wind direction has either a northerly or easterly component.

Figure 2.3-45 through Figure 2.3-212 present monthly precipitation wind roses of wind speed and direction as a function of precipitation rate class at the CCNPP for the $33 \mathrm{ft}(10 \mathrm{~m})$ and 197 ft $(60 \mathrm{~m})$ elevations. These precipitation wind roses portray joint frequency distributions of wind speed and direction as a function of precipitation rate class for only the hours in which precipitation was recorded. These figures show that for the larger precipitation rate classes (0.5 $\mathrm{in} / \mathrm{hr}(12.7 \mathrm{~mm} / \mathrm{hr})$ and greater) in the spring and summer where there is more than a single observation, the most frequent wind direction may have a southerly or westerly component. This could indicate high rainfall rates due to thunderstorms rather than offshore storms and their associated northeasterly winds.

Fog observations are not made as part of the onsite meteorological monitoring program. Fog observations were made at the NWS stations at Baltimore/Washington International Airport Maryland, Richmond International Airport, Virginia, and Norfolk International Airport, Virginia. The average number of days per year with heavy fog (visibility less than one-quarter mile) are 24.4, 27.1, and 19.7 for Baltimore, Richmond, and Norfolk, respectively. No information was provided on the duration of heavy fog events in the reference material reviewed (NOAA, 2002a) (NOAA, 2002b) (NOAA, 2002c).

2.3.2.1.4 Atmospheric Stability

Depending on the amount of incoming solar radiation and other factors, the atmosphere may be more or less turbulent at any given time. Meteorologists have defined atmospheric stability classes, each representing a different degree of turbulence in the atmosphere. When moderate to strong incoming solar radiation heats air near the ground, causing it to rise and generate large eddies, the atmosphere is considered unstable, or relatively turbulent. Unstable conditions are associated with atmospheric stability classes A and B. When solar radiation is relatively weak or absent, air near the surface has a reduced tendency to rise, and less turbulence develops. In this case, the atmosphere is considered stable, or less turbulent, and the stability class would be E or F. Stability classes D and C represent conditions of more neutral stability, or moderate turbulence. Neutral conditions are associated with relatively strong wind speeds and moderate solar radiation.

Atmospheric stability is determined by the delta temperature method as defined in Regulatory Guide 1.23 (NRC, 2007a). This methodology classifies atmospheric stability based on the temperature change with height (${ }^{\circ} \mathrm{C}$ per 100 m). At the CCNPP site, atmospheric stability is classified according to the difference between the temperature measurements at the 197 ft (60 m) and 33 ft (10 m) levels.

Table 2.3-85 through Table 2.3-98 present annual and overall atmospheric stability persistence summaries at the CCNPP site for the $33 \mathrm{ft}(10 \mathrm{~m})$ and $197 \mathrm{ft}(60 \mathrm{~m})$ measurement levels. The annual tables were developed using 6 years of onsite meteorological data (2000 to 2005). Note that there are slight differences between the $33 \mathrm{ft}(10 \mathrm{~m}$) and $197 \mathrm{ft}(60 \mathrm{~m})$ tables even though they use the same delta-temperature measurements to determine atmospheric stability. This is because the computer code used to develop the tables checks the validity of the wind speed and direction values as well as the delta-temperature values.

The majority of the time (approximately 78\%), stability persistence events last for less than 4 hours. Stability persistence events lasting 12 hours occur 19 times per year on the average and events lasting for greater than 24 hours occur nine times per year on the average.

Table 2.3-133 presents the monthly atmospheric stability summary. It was generated using six years of on-site meteorological data (2000-2005).

2.3.2.1.5 Monthly Mixing Height Data and Inversion Summary

Monthly average mixing height values for the period from 1996 through 2005 were calculated from the daily average values for each month of each year (as data were available) based on twice daily mixing height data from the National Climatic Data Center. These data were taken from the upper air and surface National Weather Service stations closest to the CCNPP site (Wallops Island and Patuxent River, respectively). Overall monthly average mixing height values were calculated from the individual monthly average values; for example, the January overall monthly average mixing height value of $1978 \mathrm{ft}(603 \mathrm{~m})$ is the average of all of the individual January mixing height values from 1996 through 2005. On average, the number of valid days of data per month ranged from 23 to 30 (that is, days that had both a morning and afternoon mixing height value); there were some months with no valid data. Data were unavailable for 17 out of 120 months with the majority of these months (15 of 17) being in 1996 and 1997. Since there are 6 years with 12 months of valid data and 2 years with 11 months of valid data, the missing data do not adversely impact the determination of the monthly and annual average mixing height values.

Figure 2.3-213 presents the monthly average mixing height values. Table 2.3-99 shows the monthly average mixing height values in tabular form. As shown, the monthly average mixing heights ranged from $1,881 \mathrm{ft}(573 \mathrm{~m}$) in December to $2,959 \mathrm{ft}(902 \mathrm{~m})$ in July. The annual average mixing height was $2,452 \mathrm{ft}$ (748 m).

Frequency and persistence of temperature inversion conditions at the CCNPP site are shown in Table 2.3-1001 through Table 2.3-105106. These tables were developed using 6 years of onsite meteorological data (2000 through 2005). The maximum temperature inversion duration was 31 hours. Approximately two-thirds of the inversions lasted less than 9 hours.

2.3.2.1.6 Air Quality

Based on EPA data, Calvert County, Maryland, is in attainment for all the National Ambient Air Quality Standards (NAAQS) except for the 8 hour ozone standard (EPA, 2007b) as of December 5,2006 . Attainment means that the air quality is better than the standard. The 8 hour ozone standard is 0.08 ppm and attainment is determined by whether the 3 year average of the fourth-highest daily maximum 8 hour average ozone concentrations measured at each monitor within an area over each year exceeds the standard. From Figure 2.3-206 it can be seen that the fourth-highest, 8 hour average ozone concentration for Calvert County during 2006 is greater than 0.08 ppm and less than or equal to 1.0 ppm . Nonattainment of the 8 hour ozone standard is due to its proximity to Washington, D.C. A nonattainment designation requires a state plan to
be sent to the EPA describing how the area will implement air quality improvements. The NAAQS (EPA, 2007c) are presented in Table 2.3.2-912.3-107. Note that the Maryland Department of the Environment reported that ground-level ozone levels have continued to show significant improvements since the early 1990's (MDE, 2006).

Calvert County is part of the Southern Maryland Intrastate Air Quality Control Region (AQCR), as designated in 40 CFR 81.156 (CFR, 2007a). The attainment status of the Southern Maryland Intrastate AQCR with regard to national ambient air quality standards is listed as being better than national standards for total suspended particulates, sulphur dioxide, and nitrogen dioxide, and unclassifiable/attainment for carbon monoxide, $\mathrm{PM}_{2.5}$ (particulate matter with diameter less than 2.5 microns), and for the 8 hour ozone standard (CFR, 2007b).

2.3.2.2 Potential Influence of the Plant and its Facilities on Local Meteorology

The CCNPP site consists of low rolling hills. Elevations across the site range from 0 ft (0.6 ft NGVD29) above mean sea level (MSL) (at the shoreline of the Chesapeake Bay) to 150 ft MSL (150.6 ft NGVD29). There is a hill approximately 110 ft MSL (110.6 ft NGVD29) to the southeast of CCNPP Units 1 and 2. Another hill south-southeast of CCNPP Units 1 and 2 will be graded for CCNPP Unit 3; the CCNPP Unit 3 site grade will be approximately 84.1 ft MSL (84.7 ft NGVD29). The terrain falls off steeply to the shore of the Chesapeake Bay. The highest terrain in the vicinity of the site is in the west through north-northwest sectors. The Chesapeake Bay lies in the north through southwest sectors.

Figure 2.3-215 presents a map which shows the topography within a $1 \mathrm{mi}(1.6 \mathrm{~km})$ radius of the CCNPP site, the location of the meteorological tower, and CCNPP Units 1 and 2. Figure 2.3-216 presents a map which shows the topography within a $5 \mathrm{mi}(8 \mathrm{~km})$ radius of the CCNPP site. Figure 2.3-217 presents a map which shows the topography within a $50 \mathrm{mi}(80 \mathrm{~km})$ radius of the CCNPP site. Figure 2.3-218 presents a plot of maximum elevation versus distance from the center of the plant in each of the sixteen 22.5 degree compass point sectors (centered on true north, north-northeast, northeast, etc.) radiating from the plant to a distance of $50 \mathrm{mi}(80 \mathrm{~km})$.

CCNPP Unit 3 will be southeast of the existing Units 1 and 2 . Some portions of the CCNPP site will be cleared of existing vegetation and graded to accommodate CCNPP Unit 3 and its ancillary structures. These terrain modifications would be limited to the CCNPP Unit 3 area and the immediately surrounding area and, therefore, will not represent a significant alteration to the topographic character of the region around the CCNPP site.

Construction activity will meet all pertinent Federal and State air quality regulations.
Waste heat produced by CCNPP Unit 3 will be dissipated by a closed-cycle, wet-cooling system, consisting of a single hybrid mechanical draft cooling tower. The hybrid mechanical draft cooling tower has a lower profile than the CCNPP Unit 3 containment.

For CCNPP Unit 3, the impacts from fogging, icing, shadowing, and drift deposition from the cooling tower were modeled using the Electric Power Research Institute's Seasonal/Annual Cooling Tower Impact (SACTI) prediction code. This code incorporates the modeling concepts (Policastro, 1993), which were endorsed by the NRC in NUREG-1555 (NRC, 1999). The model provides predictions of seasonal, monthly, and annual cooling tower impacts from mechanical or natural draft cooling towers. It predicts average plume length, rise, drift deposition, fogging, icing, and shadowing, providing results that have been validated with experimental data (Policastro, 1993).

The modeling determined the following:

- Due to the varying directions that the plume travels and short average and median plume height and length, impacts from elevated plumes would be SMALL and not warrant mitigation.
- Impacts from the cooling tower from fogging and icing would be SMALL and would not require mitigation. Fogging and icing would occur for only a small percentage of the time and would occur most frequently onsite.
- Impacts from salt deposition from the cooling tower would be SMALL.
- Salt deposition was predicted at rates below the NUREG-1555 significance level where visible vegetation damage may occur for both onsite and offsite locations.
- Impacts from cloud shadowing and additional precipitation would be SMALL and would not require mitigation.
- Impacts from increases in absolute and relative humidity would be SMALL and mitigation would not be warranted.

As such, CCNPP Unit 3 is not expected to cause any significant influence on local meteorology.

2.3.2.3 Local Meteorological Conditions for Design and Operating Bases

Meteorological conditions for design and operating bases are discussed in Section 2.3.1.2.

2.3.2.4 References

ASHRAE, 2005. Weather Data Viewer, version 3.0, American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE), Inc., 2005.

CFR, 2007a. Southern Maryland Intrastate Air Quality Control Region, Title 40, Code of Federal Regulations, Part 81.156, 2007.

CFR, 2007b. Maryland, Title 40, Code of Federal Regulations, Part 81.321, 2007.
EPA, 2007a. Support Center for Regulatory Air Models, U.S. Environmental Protection Agency, Website: http://www.epa.gov/scram001/, Date accessed: June 2007.

EPA, 2007b. Nonattainment Map for Maryland, U.S. Environmental Protection Agency, Website: http://www.epa.gov/air/data/nonat.html?st~MD~Maryland, Date accessed: March 30, 2007.

EPA, 2007c. National Ambient Air Quality Standards (NAAQS), U.S. Environmental Protection Agency, Website: http://epa.gov/air/criteria.html, Date accessed: May 2007.

MDE, 2006. Summer 2006 Air Quality Summary, Maryland Department of the Environment, Website: http://www.mde.state.md.us/assets/document/Summary2006.pdf, Date accessed: April 13, 2007.

NCDC, 2008. U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Climatic Data Center, Integrated Surface Hourly Observations Dataset, Patuxent River Naval Air Station, Maryland, 1978-2007, purchased 2008.

NOAA, 2002a. Local Climatological Data, 2002 Annual Summary with Comparative Data, Baltimore, Maryland (BWI), National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, National Climatic Data Center, 2002.

NOAA, 2002b. Local Climatological Data, 2002 Annual Summary with Comparative Data, Norfolk, Virginia (ORF), National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, National Climatic Data Center, 2002.

NOAA, 2002c. Local Climatological Data, 2002 Annual Summary with Comparative Data, Richmond, Virginia (RIC), National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, National Climatic Data Center, 2002.

NRC, 1972. Onsite Meteorological Programs, Safety Guide 23 (Regulatory Guide 1.23 Revision 0), U.S. Nuclear Regulatory Commission, February 1972.

NRC, 1999. Standard Review Plans for Environmental Reviews of Nuclear Power Plants. NUREG-1555, U.S. Nuclear Regulatory Commission, October 1999.

NRC, 2007a. Meteorological Monitoring Programs for Nuclear Power Plants, Regulatory Guide 1.23, Revision 1, U.S. Nuclear Regulatory Commission, March 2007.

Policastro, 1993. A Model for Seasonal and Annual Cooling Tower Impacts, Atmospheric Environment Volume. 28, Number. 3. pp 379-395, Elsevier Science Ltd, Great Britain, A. Policastro, W. Dunn, and R. Carhart, 1993.\}

2.3.3 ONSITE METEOROLOGICAL MEASUREMENT PROGRAM

The U.S. EPR FSAR includes the following COL Item in Section 2.3.3:
A COL applicant that references the U.S. EPR design certification will provide the site-specific, onsite meteorological measurement program.

This COL Item is addressed as follows:
\{Sections 2.3.3.1 through 2.3.3.3 are added as a supplement to the U.S. EPR FSAR.

2.3.3.1 Preoperational Meteorological Measurement Program

The pre-operational meteorological measurement program for Calvert Cliffs Nuclear Power Plant (CCNPP) Unit 3 utilizes the existing operational meteorological measurement program and equipment established for CCNPP Units 1 and 2. Data from the CCNPP Units 1 and 2 operational meteorological measurement program were used in this analysis for CCNPP Unit 3. CCNPP Unit 3 is to be located approximately $2,000 \mathrm{ft}(610 \mathrm{~m})$ south of CCNPP Units 1 and 2.

> The pre-operational meteorological measurement program for Calvert Cliffs Nuclear Power Plant (CCNPP) Unit 3 utilizes the existing operational meteorological measurement program and equipment established for CCNPP Units 1 and 2. Data from the CCNPP Units 1 and 2 operational meteorological measurement program were used in this analysis for CCNPP Unit 3. CCNPP Unit 3 is to be located approximately $2,000 \mathrm{ft}(610 \mathrm{~m})$ south of CCNPP Units 1 and 2.

> The monthly mean temperatures measured at the CCNPP site show good correspondence with the monthly mean temperature values measured at surrounding National Weather Service
(NWS) sites as provided in Section 2.3.2.1.2. As a result, no additional measurement points are considered necessary for Unit 3.

This program was designed and maintained in accordance with the guidance provided in Safety Guide 23, "Onsite Meteorological Programs" (NRC, 1972). The pre-operational meteorological measurement program also meets the requirements of Regulatory Guide 1.23, Revision 1, "Meteorological Monitoring Programs for Nuclear Power Plants" (NRC, 2007), with the following deviations: no atmospheric moisture measurements (required for plants utilizing cooling towers), tower not sited at approximately the same elevation as finished plant grade, and tower, guyed wire, and anchor inspection performance of once every 5 years instead of an annual inspection for tower and guyed wire and an anchor inspection of once every 3 years. These deviations are discussed further in Section 2.3.3.1.7.

2.3.3.1.1 Tower Location

The meteorological tower for the CCNPP site is located in an open field off Calvert Cliffs Parkway north of the CCNPP Unit 1 and 2 Independent Spent Fuel Storage Installation (ISFSI). The elevation at the base of the tower is approximately $125 \mathrm{ft}(38 \mathrm{~m})$ above mean sea level.

Figure 2.3-219 shows the location of the meteorological tower as well as the topography of the CCNPP site. The meteorological tower has been sited for CCNPP Unit 1 and 2 according to the guidance provided in Safety Guide 23 (NRC, 1972). Figure 2.3-220 shows the detailed topography of the region.

The meteorological tower is located on level, open terrain at a distance at least 10 times the height of any nearby obstruction that exceeds one-half the height of the wind measurement with the exception of some trees that are located south of the tower. Even though there are no obstructions in any other sector and south is not the most prevalent wind direction, the tree heights and distances shall be calculated and an evaluation performed to determine whether the trees should be removed. The tower is located far enough away from proposed CCNPP Unit 3 structures and topographical features to avoid airflow modifications. The terrain height difference between the meteorological tower and the CCNPP Unit 3 reactor area is approximately $40 \mathrm{ft}(12 \mathrm{~m})$. The distance between the meteorological tower and the CCNPP Unit 3 reactor is approximately $2,900 \mathrm{ft}(880 \mathrm{~m})$. Therefore, the terrain profile has a very gentle slope and has an insignificant impact on site dispersion conditions.

2.3.3.1.2 Tower Design

The meteorological tower is $197 \mathrm{ft}(60 \mathrm{~m})$ tall with a lattice frame. Data from instruments on the tower are sent to the Met Building which is located near the tower.

The meteorological tower is designed to be capable of withstanding wind speeds of up to 100 $\mathrm{mph}(44.7 \mathrm{~m} / \mathrm{sec})$.

2.3.3.1.3 Instrumentation

The tower instrumentation consists of wind speed, wind direction, and duplicate sets of aspirated temperature sensors located at $197 \mathrm{ft}(60 \mathrm{~m})$ and $33 \mathrm{ft}(10 \mathrm{~m})$ above ground level. A tipping bucket rain gauge is located approximately $30 \mathrm{ft}(9.1 \mathrm{~m})$ from the meteorological tower in an open field and a barometric pressure device is located in the Met Building. No moisture measurements (dew point or wet bulb temperature, relative humidity) are currently taken. Consequently, meteorological data needed in the analysis of the Ultimate Heat Sink and potential plumes from cooling tower operation will be taken from other sources as described in Section 2.3.1.

CCNPP replaced their meteorological monitoring instrumentation in December 2005. The specifications of the previous instrumentation met or exceeded the accuracy and resolution requirements of Regulatory Guide 1.23 Revision 1 (NRC, 2007).

The instruments are positioned on the meteorological tower in accordance with the guidance in Regulatory Guide 1.23, Revision 1 (NRC, 2007).

Table 2.3-108 provides the current meteorological instrument accuracy and resolution and compares them with regulatory guidance provided in Regulatory Guide 1.23, Revision 1, (NRC, 2007).

Signals from the sensors are collected and processed by two data loggers. Each data logger collects the data from the meteorological tower, and performs calculations of average values, wind direction sigma theta, and temperature difference between the $197 \mathrm{ft}(60 \mathrm{~m})$ and $33 \mathrm{ft}(10$ m) levels of the meteorological tower. The primary data logger sends the averaged data values to a personal computer (PC) that is dedicated to the meteorological measurement system. This PC is located in the Met Building and includes a printer for data output. The backup data logger is connected to a dial-up modem, which provides the capability for remote retrieval of meteorological data. The primary data logger and plant equipment are isolated from the telephone connection to the backup data logger.

2.3.3.1.4 Instrument Maintenance and Surveillance Schedules

The meteorological instruments are inspected and serviced at a frequency that assures at least a 90% data recovery rate for all parameters, including the combination of wind speed, wind direction, and delta temperature. The instrumentation specified in Regulatory Guide 1.23, Revision 1 are channel checked on a daily basis and instrument calibrations are performed semi-annually.

System calibrations encompass the entire data channel for each instrument, including recording devices and displays (those located at the tower, in emergency response facilities, and those used to compile the historical data set). The system calibrations are performed by either a series of sequential, overlapping, or total channel steps.

2.3.3.1.5 Data Reduction and Compilation

Wind and temperature data are averaged over 15 minute periods. The data loggers employ a validation mode that monitors the various sensors and activates alarms as necessary. The validation mode compares the data values from the $33 \mathrm{ft}(10 \mathrm{~m})$ and $197 \mathrm{ft}(60 \mathrm{~m})$ levels of the tower. The data loggers perform a daily check of the processor cards and will alarm if values are outside of specified limits.

Averaged data values from the data loggers are collected by the meteorological software, along with maximum and minimum values of ambient temperature and wind direction variance (sigma-theta). Hourly data values are determined from the 15 minute averaged values. Output options include various functions and averages as well as graphical displays.

The 15 minute averaged data are available for use in the determination of magnitude and continuous assessment of the impact of releases of radioactive materials to the environment during a radiological emergency (as required in 10 CFR 50.47 (CFR, 2007a) and 10 CFR 50 Appendix E (CFR, 2007b)). The hourly averaged data are available for use in:

1. Determining radiological effluent release limits associated with normal operations to ensure these limits are met for any individual located offsite.
2. Determining radiological dose consequences of postulated accidents meet prescribed dose limits at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ).
3. Evaluating personnel exposures in the control room during radiological and airborne hazardous material accident conditions.
4. Determining compliance with numerical guides for design objectives and limiting conditions for operation to meet the requirement that radioactive material in effluents released to unrestricted areas be kept as low as is reasonably achievable.
5. Determining compliance with dose limits for individual members of the public.

Annual summaries of meteorological data in the form of joint frequency distributions of wind speed and wind direction by atmospheric stability class are maintained onsite and are available upon request.

A summary of the 2000 through 2005 onsite meteorological data in the form of joint frequency distributions of wind speed and wind direction by atmospheric stability class are presented in Section 2.3.2. Wind roses (graphical depictions of joint frequency distribution tables) summarizing data from 1984 to 1992 for three National Weather Service (NWS) sites are also presented in Section 2.3.2.

A comparison of the CCNPP site and the Norfolk, Virginia data (of the three NWS sites, the Norfolk, Virginia site is closest to the Chesapeake Bay) reveals that both sites have the same prevailing wind direction - wind from the south-southwest. For the south-southwest wind direction, the wind speed is between 6.9 and 17.9 mph ($3.1 \mathrm{and} 8.0 \mathrm{~m} / \mathrm{sec}$) approximately 5% of the time at the CCNPP site and the wind speed is between 7.6 and 24.6 mph (3.4 and 11.0 $\mathrm{m} / \mathrm{sec}$) approximately 9% of the time at the Norfolk, Virginia site. The most prevalent wind speed class at the CCNPP site, 4.7 to 6.7 mph (2.1 to 3.0 mps), occurs approximately 28% of the time. The most prevalent wind speed class at the Norfolk, Virginia site, 7.6 to 12.5 mph (3.4 to 5.6 mps), occurs approximately 36% of the time. These results indicate that the CCNPP onsite data also represent long-term conditions at the site.

A summary of the 2000 through 2005 onsite meteorological data in the form of joint frequency distributions of wind speed and wind direction by atmospheric stability class are presented in Section 2.3.2. Wind roses (graphical depictions of joint frequency distribution tables) summarizing data from 1984 to 1992 for three National Weather Service (NWS) sites are also presented in Section 2.3.2. A discussion of onsite temperature measurements compared to surrounding offsite data sources is provided in Section 2.3.2.1.2.

2.3.3.1.6 Nearby Obstructions to Air Flow

Downwind distances from the meteorological tower to nearby (within $0.5 \mathrm{mi}(0.8 \mathrm{~km})$) obstructions to air flow were determined using U.S. Geological Survey topographical maps. Highest terrain is to the north and north-northwest. Lowest terrain is to the northeast, east-northeast, and east (Chesapeake Bay). Table 2.3.3-22.3-109 presents the distances to nearby obstructions to air flow in each downwind sector.

The two tallest U.S. EPR structures are the Reactor Building and the Turbine Building. The Turbine Building is also the closest major building to the meteorological tower. Both buildings
will be at a finished grade of approximately 83 feet (25 m) above mean seal level (MSL). Grade at the meteorological tower is approximately 125 feet $(38 \mathrm{~m}) \mathrm{MSL}$.
U.S. EPR buildings are greater than a factor of ten times their respective heights away from the meteorological tower, and as such are not expected to impact the meteorological measurements.

Specific information regarding existing nearby structures and CCNPP Unit 3 buildings.

Building	Height	Distance to Meteorological Tower
CCNPP Unit 3 Reactor Building	$62 \mathrm{~m}(203 \mathrm{ft})$ above grade	$850 \mathrm{~m}(2789 \mathrm{ft})$
CCNPP Unit 3 Turbine Building	$55 \mathrm{~m}(180 \mathrm{ft})$ estimated	$773 \mathrm{~m}(2535 \mathrm{ft})$
ISFSI for CCNPP Units 1 and 2	$7 \mathrm{~mm}(23 \mathrm{ft})$ estimated	$206 \mathrm{~m}(676 \mathrm{ft})$

Routine checks of the meteorological data have indicated that the ISFSI for CCNPP Units 1 and 2 has had no impact on meteorological measurements.

From the information provided above and in Table 2.3-109 and Figures 2.3-215 and 2.3-216, it is concluded there are no significant nearby obstructions to airflow.

2.3.3.1.7 Deviations to Guidance from Regulatory Guide 1.23

The pre-operational meteorological monitoring program for CCNPP Unit 3 complies with Regulatory Guide 1.23, Revision 1 (NRC, 2007), except as follows. No atmospheric moisture measurements are taken. Atmospheric moisture data needed in the analysis of the CCNPP Unit 3 Ultimate Heat Sink and potential plumes from CCNPP Unit 3 cooling tower operation will be taken from other sources as described in Section 2.3.1. In addition, the meteorological tower is not sited at approximately the same elevation as finished CCNPP Unit 3 grade. This was done in order to assure that the meteorological tower is located on level, open terrain at a distance at least 10 times the height of any nearby obstruction that exceeds one-half the height of the wind measurement (i.e., the tower is located far enough away from CCNPP Unit 3 structures and topographical features to avoid airflow modifications). Further discussion is provided in Section 2.3.3.1.1.

The tower, guyed wire, and anchor inspections are performed once every 5 years instead of an annual inspection for tower and guyed wire and an anchor inspection of once every 3 years as provided in Regulatory Guide 1.23, Revision 1 (NRC, 2007). Note that this was not a requirement stipulated in Safety Guide 23 (NRC, 1972).

2.3.3.2 Operational Meteorological Measurement Program

The operational meteorological measurement program for CCNPP Unit 3 is based on the operational meteorological measurement program for CCNPP Units 1 and 2 with the addition of revised operational procedures. This program was designed according to the guidance provided in Safety Guide 23 (NRC, 1972) and has been upgraded for CCNPP Unit 3 to comply with Regulatory Guide 1.23, Revision 1 (NRC, 2007).

2.3.3.2.1 Tower Location

The meteorological tower for the CCNPP site is located in an open field off Calvert Cliffs Parkway north of the CCNPP Units 1 and 2 ISFSI. The elevation at the base of the tower is approximately $125 \mathrm{ft}(38 \mathrm{~m})$ above mean sea level. Figure 2.3-219 shows the location of the meteorological tower as well as the topography of the CCNPP site. The tower is sited according
to the guidance provided in Regulatory Guide 1.23, Revision 1 (NRC, 2007). Figure 2.3-220 shows the general topographic features of the region.

The meteorological tower is located on level, open terrain at a distance at least 10 times the height of any nearby obstruction that exceeds one-half the height of the wind measurement; i.e., the tower is located far enough away from CCNPP Unit 3 structures and topographical features to avoid airflow modifications. The terrain height difference between the meteorological tower and the CCNPP Unit 3 reactor area is approximately 40 ft (12 m). The distance between the meteorological tower and the CCNPP Unit 3 reactor is approximately 2,789 feet (850 m). Therefore, the terrain profile has a very gentle slope and has an insignificant impact on site dispersion conditions.

2.3.3.2.2 Tower Design

The meteorological tower is $197 \mathrm{ft}(60 \mathrm{~m})$ tall with a lattice frame. Data from instruments on the tower are sent to the Met Building which is located near the tower. The primary meteorological tower is designed to be capable of withstanding wind speeds of up to $100 \mathrm{mph}(44.7 \mathrm{~m} / \mathrm{sec})$.

2.3.3.2.3 Instrumentation

The tower instrumentation consists of wind speed, wind direction, and duplicate sets of aspirated temperature sensors located at $197 \mathrm{ft}(60 \mathrm{~m})$ and $33 \mathrm{ft}(10 \mathrm{~m})$ above ground level. A tipping bucket rain gauge is located approximately $30 \mathrm{ft}(9.1 \mathrm{~m})$ from the meteorological tower in an open field and a barometric pressure device is located in the Met Building.

The instruments are positioned on the meteorological tower in accordance with the guidance in Regulatory Guide 1.23, Revision 1 (NRC, 2007).

Table 2.3-108 presents meteorological instrument specifications and compares them with regulatory guidance provided in Regulatory Guide 1.23, Revision 1 (NRC, 2007).

Signals from the sensors are collected and processed by two data loggers. Each data logger collects the data from the meteorological tower, and performs calculations of average values, wind direction sigma theta, and temperature difference between the $197 \mathrm{ft}(60 \mathrm{~m})$ and 33 ft (10 m) levels of the meteorological tower. The primary data logger sends the averaged data values to a personal computer (PC) that is dedicated to the meteorological measurement system. This PC is located in the Met Building and includes a printer for data output. The backup data logger is connected to a dial-up modem, which provides the capability for remote retrieval of meteorological data. The primary data logger and plant equipment are isolated from the telephone connection to the backup data logger. In addition, the averaged data values are transmitted to the appropriate locations for operational and emergency response purposes (CCNPP Unit 3 Control Room, Technical Support Center, Emergency Operations Facility) and shall be submitted to the NRC's Emergency Response Data System as provided for in Section VI of Appendix E to 10 CFR Part 50 (CFR, 2007b).

2.3.3.2.4 Instrument Maintenance and Surveillance Schedules

The meteorological instruments are inspected and serviced at a frequency that assures at least a 90% data recovery rate for all parameters, including the combination of wind speed, wind direction, and delta temperature. The instrumentation specified in Regulatory Guide 1.23, Revision 1 (NRC, 2007) are channel checked on a daily basis and instrument calibrations are performed semi-annually.

System calibrations encompass the entire data channel for each instrument, including recording devices and displays (those located at the tower, in emergency response facilities, and those used to compile the historical data set). The system calibrations are performed by either a series of sequential, overlapping, or total channel steps.

2.3.3.2.5 Data Reduction and Compilation

Wind and temperature data are averaged over 15 minute periods. The data loggers employ a validation mode that monitors the various sensors and activates alarms as necessary. The validation mode compares the data values from the $33 \mathrm{ft}(10 \mathrm{~m})$ and $197 \mathrm{ft}(60 \mathrm{~m}$) levels of the tower. The data loggers perform a daily check of the processor cards and will alarm if values are outside of specified limits.

Averaged data values from the data loggers are collected by the meteorological software, along with maximum and minimum values of ambient temperature and wind direction variance (sigma-theta). Hourly data values are determined from the 15 minute averaged values. Output options include various functions and averages as well as graphical displays.

The 15 minute averaged data are available for use in the determination of magnitude and continuous assessment of the impact of releases of radioactive materials to the environment during a radiological emergency (as required in 10 CFR 50.47 (CFR, 2007a) and 10 CFR 50 Appendix E (CFR, 2007b)). The hourly averaged data are available for use in:

1. Determining radiological effluent release limits associated with normal operations to ensure these limits are met for any individual located offsite.
2. Determining radiological dose consequences of postulated accidents meet prescribed dose limits at the EAB and LPZ.
3. Evaluating personnel exposures in the control room during radiological and airborne hazardous material accident conditions.
4. Determining compliance with numerical guides for design objectives and limiting conditions for operation to meet the requirement that radioactive material in effluents released to unrestricted areas be kept as low as is reasonably achievable.
5. Determining compliance with dose limits for individual members of the public.

Annual summaries of meteorological data in the form of joint frequency distributions of wind speed and wind direction by atmospheric stability class are maintained onsite and are available upon request.

A summary of the 2000 through 2005 onsite meteorological data in the form of joint frequency distributions of wind speed and wind direction by atmospheric stability class is presented in Section 2.3.2.

Wind roses (graphical depictions of joint frequency distribution tables) summarizing data from 1984 to 1992 for three NWS sites are also presented in Section 2.3.2.

A comparison of the CCNPP site and the Norfolk, Virginia data (of the three NWS sites, the Norfolk, Virginia site is closest to the Chesapeake Bay) reveals that both sites have the same prevailing wind direction - wind from the south-southwest. For the south-southwest wind direction, the wind speed is 6.9 to $17.9 \mathrm{mph}(3.1$ to 8.0 mps) approximately 5% of the time at
the CCNPP site and the wind speed is 7.6 to 24.6 mph (3.4 to 11.0 mps) approximately 9% of the time at the Norfolk, Virginia site. The most prevalent wind speed class at the CCNPP site, 4.7 to 6.7 mph (2.1 to 3.0 mps), occurs approximately 28% of the time. The most prevalent wind speed class at the Norfolk, Virginia site, 7.6 to 12.5 mph (3.4 to 5.6 mps), occurs approximately 36% of the time. These results indicate that the CCNPP onsite data also represent long-term conditions at the site.

2.3.3.2.6 Nearby Obstructions to Air Flow

Downwind distances from the meteorological tower to nearby (within $0.5 \mathrm{mi}(0.8 \mathrm{~km})$) obstructions to air flow were determined using U.S. Geological Survey topographical maps. Highest terrain is to the north and north-northwest. Lowest terrain is to the northeast, east-northeast, and east (Chesapeake Bay). Table 2.3-109 presents the distances to nearby obstructions to air flow in each downwind sector.

From the information provided in Section 2.3.3.1.6, Section 2.3.3.2.1, Table 2.3-109, Figure 2.3-219, and Figure 2.3-220 and with the knowledge that the base of the tower is at an elevation of approximately $125 \mathrm{ft}(38 \mathrm{~m})$, it can be seen that there are no significant nearby obstructions to airflow.

2.3.3.2.7 Deviations to Guidance from Regulatory Guide 1.23

The meteorological tower is not sited at approximately the same elevation as finished plant grade. This was done in order to assure that the meteorological tower is located on level, open terrain at a distance at least 10 times the height of any nearby obstruction that exceeds one-half the height of the wind measurement; i.e., the tower is located far enough away from CCNPP Unit 3 structures and topographical features to avoid airflow modifications. Further discussion is provided in Sections 2.3.3.1.6 and 2.3.3.2.1.

2.3.3.3 References

CFR, 2007a. Emergency Plans, Title 10, Code of Federal Regulations, Part 50.47, 2007.
CFR, 2007b. Emergency Planning and Preparedness for Production and Utilization Facilities, Title 10, Code of Federal Regulations, Part 50, Appendix E, 2007.

NRC, 1972. Onsite Meteorological Programs, Safety Guide 23 (Regulatory Guide 1.23, Revision 0), U.S. Nuclear Regulatory Commission, February 1972.

NRC, 2007. Meteorological Monitoring Programs for Nuclear Power Plants, Regulatory Guide 1.23, Revision 1, U.S. Nuclear Regulatory Commission, March 2007.\}

2.3.4 SHORT TERM ATMOSPHERIC DISPERSION ESTIMATES FOR ACCIDENT RELEASES

The U.S. EPR FSAR includes the following COL Items in Section 2.3.4:
A COL applicant that references the U.S. EPR design certification will confirm that site-specific χ / Q values, based on site-specific meteorological data, are bounded by those specified in Table 2.1-1 at the EAB and LPZ and by Table 2.3-1 at the control room.

For site-specific χ / Q values that exceed the bounding χ / Q values, a COL applicant that references the U.S. EPR design certification will demonstrate that the radiological consequences associated with the controlling design basis accident continue to meet the
dose reference values given in 10 CFR Part 50.34 and the control room operator dose limits given in GDC 19 using site-specific χ / Q values.

A COL applicant that references the U.S. EPR design certification will provide a description of the atmospheric dispersion modeling used in evaluating potential design basis events to calculate concentrations of hazardous materials (e.g., flammable or toxic clouds) outside building structures resulting from the onsite and/or offsite airborne releases of such materials.

A COL applicant that references the U.S. EPR design certification will provide χ / Q values for each cumulative frequency distribution which exceeds the median value (50 percent of the time) as part of the assessment of the postulated impact of an accident on the environment.

These COL Items are addressed as follows:
\{These COL Items are addressed in Section 2.3.4.2.1 through 2.3.4.3.
Sections 2.3.4.1 through 2.3.4.4 are added as a supplement to the U.S. EPR FSAR.

2.3.4.1 Objective

This section provides, for appropriate time periods up to 30 days after an accident, conservative estimates of atmospheric dispersion factors (χ / Q) values at the exclusion area boundary (EAB), at the outer boundary of the low population zone (LPZ), and at the control room for postulated accidental radioactive airborne releases. This section also addresses atmospheric dispersion modeling used in Section 2.2.3 to evaluate potential design basis events resulting from the onsite and/or offsite airborne releases of hazardous materials (e.g., flammable vapor clouds, toxic chemicals, and smoke from fires). A discussion of the anticipated effects of the Chesapeake Bay on atmospheric dispersion is provided in Section 2.3.5.4.

2.3.4.2 Calculations

2.3.4.2.1 Conservative Short-Term (Accident Release) Atmospheric Dispersion Estimates for EAB and LPZ

Short-term atmospheric dispersion estimate (χ / Q) values at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) are provided in Table 2.1-1 of the U.S. EPR FSAR. Conservative estimates of site-specific atmospheric dispersion for the CCNPP Unit 3 EAB and the outer boundary of the site-specific LPZ were determined using computer code AEOLUS3 version 1 and seven years of meteorological data (2000 through 2006) from the onsite monitoring program at the existing CCNPP Units 1 and 2.

Site-specific local meteorological data are described in Section 2.3.2.
AEOLUS3 was developed and validated by Entech Engineering. It implements the guidance in Regulatory Guide 1.145, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants," (NRC, 1982) for accidental releases. The code has been used in past licensing submittals and its results have been found to be acceptable (NRC, 2005).

AEOLUS3 operates in a batch-input mode with various options that are user selectable. The program is based on a straight-line trajectory Gaussian plume model. The plume can be depleted by wet deposition, dry deposition, and radioactive decay. The computed
ground-level concentration can be modified to account for plume recirculation or stagnation. The program computes an effective plume height which accounts for physical release height, aerodynamic downwash, plume rise, and terrain heights. Other options include plume-meander effects and wind speed extrapolation.

Input details for AEOLUS3 version 1 are provided in Section 2.3.4.3
The determination of the site-specific atmospheric dispersion for the EAB and at the outer boundary of the LPZ complies with the guidance provided in Regulatory Guide 1.145, Revision 1, (NRC,1982) were made.

Conservative estimates of atmospheric dispersion for the EAB and the outer boundary of the LPZ for CCNPP Unit 3 are presented in Table 2.3-109110.

The values for the EAB and LPZ presented in Table 2.3-109110 are bounded by those in U.S. EPR FSAR Table 2.1-1 except for the 0-2 hr value for the LPZ. This represents a departure from the U.S. EPR FSAR. This departure and its associated justification are discussed in Section 15.0.3.

2.3.4.2.2 Realistic Short-Term (Accident Release) Atmospheric Dispersion Estimates for EAB and LPZ

Realistic estimates of the site-specific atmospheric dispersion for the CCNPP Unit 3 EAB and the outer boundary of the site-specific LPZ were determined using computer code AEOLUS3 and seven years of meteorological data (2000 through 2006) from the onsite monitoring program at the existing CCNPP Units 1 and 2 . Site-specific local meteorological data are described in Section 2.3.2.

In determining the $50^{\text {th }}$ Percentile χ / Q^{\prime} 's for Section 7.1 of the Environmental Report, use was made of the methodology in Sections 1.4 and 2.2 of Regulatory Guide 1.145 (NRC, 1982). In addition, the 0 to 2 hour $50^{\text {th }}$ percentile value, and the five percentile values for all accident time periods (determined using computer code AEOLUS3) and 7 years of onsite meteorological data from CCNPP Units 1 and 2 (2000 through 2006 were used), to determine the $50^{\text {th }}$ percentile 2 to 8 hour, 8 to 24 hour, 1 to 4 days, and 4 to 30 days time periods.

Regulatory Guide 1.145 (NRC, 1982) requires the following steps to be performed for computation of the accident atmospheric dispersion factors (χ / Q) at the LPZ:

1. The 2 hour accident χ / Q and the annual average χ / Q are determined for each sector at the outer LPZ boundary distances.
2. The two values for any given sector (the 2 hour accident χ / Q and the annual average $\chi / Q)$ are plotted on a log-log graph, and values at other time intervals of interest are determined through logarithmic interpolation between these two points.
3. The time periods should be selected to represent appropriate meteorological time regimes (an 8 hour interval for releases during the first 8 hours of the postulated accident, a 16 hour interval for releases between 8 and 24 hours, a 3 day interval for releases between 1 and 4 days, and a 26 day interval for releases between 4 and 30 days).

Since the annual average χ / Q is an integral part of the model for determination of accident χ / Q values, it is possible to use the Regulatory Guide 1.145 (NRC, 1982) methodology in reverse order to determine the annual average χ / Q which was used in the computation of the accident
χ / Q values. The accident χ / Q values and the annual average χ / Q value should be on a straight line when plotted on a log-log graph. This was done and the $50^{\text {th }}$ percentile atmospheric dispersion factors were determined. These factors are presented in Table 2.3-115.

2.3.4.2.3 Short-Term (Accident Release) Atmospheric Dispersion Estimates for the Control Room

Short-term atmospheric dispersion estimates (χ / Q) values estimated for the control room are provided in Table 2.3-1 of the U.S. EPR FSAR. Short-term atmospheric dispersion χ /Q estimates for unfiltered inleakage into the control room are provided in Table 2.3-2 of the U.S. EPR FSAR. Conservative estimates of the site-specific atmospheric dispersion for the control room were determined using computer code ARCON96 and seven years of meteorological data (2000 through 2006) from the onsite monitoring program at the existing CCNPP Units 1 and 2. The version of the ARCON96 code, i.e., version 1.0 which was used is the May 9, 1997 version which is endorsed in Regulatory Guide 1.194 (NRC, 2003). Site-specific local meteorological data are described in Section 2.3.2.

ARCON96 implements the guidance in Regulatory Guide 1.194, Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants," (NRC, 2003). ARCON96 was specifically developed for the Nuclear Regulatory Commission (NRC, 1997). The determination of the site-specific atmospheric dispersion for the control room were made in compliance with the guidance provided in Regulatory Guide 1.194, Revision 0, (NRC, 2003) were made.

Input details for ARCON96 are provided in Table 2.3-117.
Conservative site-specific estimates of atmospheric dispersion for the CCNPP Unit 3 control room are presented in Table 2.3-110 through Table 2.3-114. The values for the control room presented in Table 2.3-110 through Table 2.3-114 are bounded by those in Table 2.3-1 within the U.S. EPR FSAR. The same meteorological data are used to calculate unfiltered χ / Q values. Since the site-specific control room χ / Q values were demonstrated to be bounded by the U.S. EPR χ / Q values, the calculation of site-specific atmospheric dispersion factors for unfiltered inleakage was not necessary. CCNPP Unit 3 incorporates by reference the doses for the main control room presented in the U.S. EPR FSAR.
U.S. EPR FSAR Table 2.3-1 provides the locations of potential accident release pathways and their relationship to the control room, and Figures 2.1-1 and 2.3-221 provide the CCNPP site plan and control room location.

2.3.4.2.4 Atmospheric Dispersion Modeling for Hazardous Materials

The description of the atmospheric modeling used in the evaluation of potential design basis events to calculate concentration of hazardous material is provided in Section 2.2.3.1.

2.3.4.3 Input Details for Computer Codes AEOLUS3 (Version 1)

Assumptions made for AEOLUS3 modeling:

- Ground level release was assumed.
- Since a ground level release was assumed, the release point and receptor elevations were assumed to be the same.
- For EAB/LPZ atmospheric dispersion factors for DBAs, all post-accident release points were based on the ground level release model with no dispersion credit for building wake effects. However, plume meander, which predominates building wake effects during short time intervals, is accounted for.
- For the offsite receptors, accident atmospheric dispersion factors were calculated for a set of distances ranging from 0.25 mile to 5 miles. Bounding distances were selected based on actual site characteristics.
- For normal effluent analysis, receptor locations between distances at which terrain heights were determined using USGS topographical maps were assigned the maximum of the two values.

Specific input parameters and values are provided in Table 2.3-116.

2.3.4.4 References

NRC, 1977. Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors, Regulatory Guide 1.111, Revision 1, U.S. Nuclear Regulatory Commission, July 1977.

NRC, 1982. Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants, Regulatory Guide 1.145, Revision 1, U.S. Nuclear Regulatory Commission, November 1982.

NRC, 1997. Atmospheric Relative Concentrations in Building Wakes, NUREG/CR-6331, U.S. Nuclear Regulatory Commission, May 1997.

NRC, 2003. Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants, Regulatory Guide 1.194, Revision 0, U.S. Nuclear Regulatory Commission, June 2003.

NRC, 2005. Letter NRC (Boska) to Entergy (Kansler), Pilgrim Nuclear Power Station, Issuance of Amendment (215), NRC Adams Accession Number ML 051040065, Dated April 28, 2005.\}

2.3.5 LONG-TERM ATMOSPHERIC DISPERSION ESTIMATES FOR ROUTINE RELEASES

The U.S. EPR FSAR includes the following COL Items in Section 2.3.5:
A COL applicant that references the U.S. EPR design certification will provide the site-specific, long-term diffusion estimates for routine releases. In developing this information, the COL applicant should consider the guidance provided in Regulatory Guides $1.23,1.109,1.111$, and 1.112 . The maximum annual average χ / Q value at the site boundary, provided in Table 2.1-1, is used to calculate radionuclide concentrations associated with routine gaseous effluent releases, addressed in Section 11.3, for comparison with environmental release limits and dose limits given in 10 CFR Part 20. If a reactor site has an annual average χ / Q value that exceeds the reference value, then a site-specific evaluation will be performed.

A COL applicant that references the U.S. EPR design certification will also provide estimates of annual average atmospheric dispersion (χ / Q values) and deposition (D / Q values) for 16 radial sectors to a distance of $50 \mathrm{mi}(80 \mathrm{~km})$ from the plant as part of its environmental assessment.

These COL Items are addressed as follows:
\{Sections 2.3.5.1 through 2.3.5.5 are added as a supplement to U.S. EPR FSAR.

2.3.5.1 Objective

This section provides realistic estimates of annual average atmospheric dispersion (χ / Q values) and deposition (D/Q values) to a distance of $50 \mathrm{mi}(80 \mathrm{~km})$ for annual average release limit calculations and person-rem estimates.

2.3.5.2 Calculations

Realistic estimates of site-specific annual average atmospheric transport and diffusion characteristics were determined using computer code AEOLUS3 version 1 and seven years of meteorological data (2000 through 2006) from the onsite monitoring program at the existing Calvert Cliffs Nuclear Power Plant (CCNPP) Units 1 and 2. Site-specific local meteorological data are described in Section 2.3.2.

AEOLUS3 was developed and validated by Entech Engineering. It implements the methodology of Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Revision 1, (NRC, 1977a) for routine releases. The code has been used in past licensing submittals and its results have been found to be acceptable (NRC, 2005).

AEOLUS3 operates in a batch-input mode with various options that are user selectable. The program is based on a straight-line trajectory Gaussian plume model. The plume can be depleted by wet deposition, dry deposition, and radioactive decay. The computed ground-level concentration can be modified to account for plume recirculation or stagnation. The program computes an effective plume height which accounts for physical release height, aerodynamic downwash, plume rise, and terrain heights. Other options include plume-meander effects and wind speed extrapolation.

AEOLUS3 produces the following dispersion parameters: the concentration χ / Q, which is used for the determination of airborne concentrations and inhalation doses at offsite receptors of interest as well as gamma air doses; the gamma χ / Q, which may be employed in the computation of external gamma radiation from the ensuing finite clouds of radioactive material; and the deposition factor D / Q, which is used as a measure of the relative deposition of released radioactivity. Doses calculated due to postulated normal effluents from CCNPP Unit 3 made use of the concentration χ / Q and deposition factor D / Q values. The gamma χ / Q values, while not used to determine normal effluent doses for CCNPP Unit 3, represent an alternative methodology to determine gamma air doses.

AEOLUS3 computes plume standard deviations in the horizontal and vertical dimensions σ_{y} and σ_{z} respectively) using the analytical expressions from the Nuclear Regulatory Commission-sponsored computer program XOQDOQ. The onsite meteorological data used in the dispersion analysis has been shown to be representative of the region as discussed in Section 2.3.2. Thus, the atmospheric dispersion and deposition factors determined by AEOLUS3 from the site boundary to a radius of $50 \mathrm{mi}(80 \mathrm{~km})$ from the plant are appropriate for use in estimating the consequences of routine releases for CCNPP Unit 3.

Meteorological data summaries used as input to AEOLUS3 are provided in Section 2.3.2. The regulatory guidance described in Regulatory Guide 1.23, Revision 1 (NRC, 2007), was followed in the determination of appropriate onsite meteorological data. The regulatory guidance
described in Regulatory Guide 1.112 (NRC, 1977c) was followed in the determination of points of routine release of radioactive materials to the atmosphere and their characteristics. The regulatory guidance described in Regulatory Guide 1.109, Revision 1 (NRC, 1977b), was followed in the determination of potential receptors of interest.

AEOLUS3 implements the guidance in Regulatory Guide 1.145, Revision 1 (NRC, 1982) and Regulatory Guide 1.111, Revision 1 (NRC, 1977a).

The atmospheric transport and diffusion models used to determine the long-term atmospheric dispersion estimates for routine releases for CCNPP Unit 3 comply with the guidance provided in Regulatory Guide 1.111, Revision 1, (NRC, 1977a).

A mixed mode release from the CCNPP Unit 3 stack was modeled to determine routine release normal effluent atmospheric dispersion and deposition factors. Table 2.3-1 of the U.S. EPR FSAR indicates the location of the stack. As previously stated, seven years of meteorological data (2000 through 2006) from the onsite monitoring program at CCNPP Units 1 and 2 were used in the analysis. In Section 2.3.2, joint frequency distributions of wind speed and wind direction as a function of atmospheric stability class were determined using two sets of meteorological data from the on-site monitoring program: 2001-2005 and 2001-2006 (which included the most recent year of meteorological data). Since the differences in annual average atmospheric dispersion factor values seen when the 2006 meteorological data were included ranged from -3.4% to 6.8% over downwind distances from 0.5 to 50 miles, the impact of the difference in data sets is not significant.

Credit for building wake effect was taken. The release point was $203 \mathrm{ft}(62 \mathrm{~m}$) above grade (6.6 $\mathrm{ft}(2 \mathrm{~m})$ above the Reactor Building). The gamma energy spectrum and relative intensity were set to 0.3 MeV and $1.0 \mathrm{MeV} / \mathrm{sec}$, respectively. The 0.3 MeV value was determined to provide the maximum gamma χ / Q values by running test cases using other gamma energy spectrum values. Terrain height values for downwind receptor locations were determined using topographic maps from the U.S. Geological Survey. The annual average height of the inversion layer and the maximum allowable plume centerline height were set to $2,454 \mathrm{ft}(748 \mathrm{~m})$. This value was determined from mixing height data from the National Climatic Data Center. A stack flow rate of $242,458 \mathrm{ft}^{3} / \mathrm{min}(6,865,646 \mathrm{I} / \mathrm{min})$ was used; this is a conservative value, since the actual flow rate for normal operations will be higher.

Specific input parameters and values are provided in Tables 2.3-116 and 2.3-117.
Table 2.3-118119 through Table 2.3-125129 present the site-specific normal effluent annual average atmospheric dispersion and deposition factors for a mixed mode release from the CCNPP Unit 3 stack. Locations of interest (i.e., site boundary, nearest resident, nearest garden) were derived from the annual CCNPP site land use census, and from regulatory guidance.

The specific locations of the potential receptors of interest are provided in Table 2.3-126130. At the time of the analysis, there were no meat cow or milk animal receptors reported within 5 mi $(8 \mathrm{~km})$ of the plant.

The maximum site-specific annual average χ / Q and D / Q values at the EAB boundary are $5.039 \mathrm{E}-06 \mathrm{sec} / \mathrm{m}^{3}$ and $3.7921 \mathrm{E}-081 / \mathrm{m}^{2}$, respectively. This represents a departure from the U.S. EPR FSAR. The maximum annual average x / Q at the EAB boundary exceeds the value $4.973 \mathrm{E}-6 \mathrm{sec} / \mathrm{m}^{3}$ presented in Table 2.1-1 within the U.S. EPR FSAR. The site-specific evaluation of this departure is provided in Section 2.3.5.3.

2.3.5.3 Site-Specific Evaluation of Maximum Annual Average χ / Q

A review of CCNPP Unit 3 Environmental Report, Table 5.4-6, "Distance to Nearest Gaseous Dose Receptors," indicates that the NE sector of the Exclusion Area Boundary (EAB) (0.5 mi radius centered on Reactor Building) intersects with the Site Area Boundary (0.28 mi) at the shoreline of Chesapeake Bay. The Maximum Annual Average χ / Q value is computed at 0.5 miles which is located approximately 0.22 miles offshore in the Chesapeake Bay. As presented in Table 2.3-118, all other Sectors annual average χ / Q value at 0.5 miles are bounded by the maximum annual average χ / Q value provided in U.S. EPR FSAR Table 2.1-1.

The justification for exceeding the Maximum Annual Average for Atmospheric Dispersion Factor χ / Q value of $\leq 4.973 \mathrm{E}-6 \mathrm{sec} / \mathrm{m}^{3}$ is as follows:

- There are no persons currently living within the EAB or on its boundary in the NE sector.
- The boundary of the EAB in the NE sector lies on Chesapeake Bay, therefore, the probability of anyone living on a watercraft 0.22 mi offshore for an extended period of time is extremely low.
- The plant licensee will have control over the point in the NE sector at which EAB and the Site Boundary intersect.

In summary, although the Maximum Annual Average χ /Q value for CCNPP Unit 3 exceeds the χ / Q limiting value specified in Table 2.1-1 of the U.S. EPR FSAR, operation of CCNPP Unit 3 is justified for the following reasons:

- Persons will not be living within the sector of the Maximum Annual Average χ / Q value.
- CCNPP Unit 3 will have control over persons living within the EAB and site boundary.
- All other Sectors' Maximum Annual Average χ /Q value is within the limiting value specified in Table 2.1-1 of the U.S. EPR FSAR.

As such, dose limits of 10 CFR 50 Appendix I for the maximally exposed individual will not be exceeded.

2.3.5.4 Anticipated Influence of Chesapeake Bay on Atmospheric Dispersion

Previous meteorological data have been obtained and studied to estimate diffusion over Chesapeake Bay relative to that over land during conditions of off-shore air flow (Slade, 1962). The study measured wind and air temperatures on both the west and east sides of the Chesapeake Bay as well as Bay water temperatures.

The study indicated that dispersion is generally poorer over the water than over the land due to the reduction of wind fluctuations over the comparatively smooth surface of Chesapeake Bay. The study also showed that the magnitude of the overwater dispersion is greatly influenced by the water-air temperature difference.

The actual concentration ratios derived varied widely and, as noted in the study, may be open to considerable argument because of the numerous simplifications made. Nonetheless, the study further noted that "it is likely that diffusion over rather small inland water bodies is different enough from that over the adjoining land to indicate that this difference should be
considered in environmental evaluations of the effects of shoreline and over water pollution sources."

As a result, it is expected that effluent plumes originating at CCNPP Unit 3 and moving over the Chesapeake Bay will experience less efficient atmospheric dispersion than plumes that stay over land. Although less, there still will be important dispersion before the plume reaches receptors at the closest point in Eastern Maryland across Chesapeake Bay, a distance of approximately 7 miles (11 km). For example, the distance to the maximum concentration for a release from the CCNPP Unit 3 stack (62 meters above grade), under the most stable atmospheric conditions, is between 4 and 5 miles (6 and 8 km), which is considerably less than the distance to the Eastern shoreline (Turner, 1970, Figure 3-9).

Since potential recirculation of normal effluent was accounted for in Section 2.3.5.2, it is concluded that the atmospheric dispersion information provided for CCNPP Unit 3 is deemed acceptable.

2.3.5.5 References

NRC, 1977a. Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases From Light-Water-Cooled Reactors, Regulatory Guide 1.111, Revision 1, U.S. Nuclear Regulatory Commission, July 1977.

NRC, 1977b. Calculation of Annual Dose to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Regulatory Guide 1.109, Revision 1, U.S. Nuclear Regulatory Commission, October 1977.

NRC, 1977c. Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Light-Water-Cooled Power Reactors, Regulatory Guide 1.112, Revision 0-R, U.S. Nuclear Regulatory Commission, May 1977.

NRC, 1982. Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants, Regulatory Guide 1.145, Revision 1, U.S. Nuclear Regulatory Commission, November 1982.

NRC, 2005. Letter NRC (Boska) to Entergy (Kansler), Pilgrim Nuclear Power Station, Issuance of Amendment (215), U.S. ML 051040065, U.S. Nuclear Regulatory Commission, April 28, 2005.

NRC, 2007. Meteorological Monitoring Programs for Nuclear Power Plants, Regulatory Guide 1.23, Revision 1, U.S. Nuclear Regulatory Commission, October 2007.

Slade, 1962. Atmospheric Dispersion Over Chesapeake Bay, Monthly Weather Review, David Slade, pp. 217-224, June 1962.

Turner, 1970. Workbook of Atmospheric Dispersion Estimates, Bruce Turner, U.S. Environmental Protection Agency, 1970.\}

2.3.6 REFERENCES

No departures or supplements.

Table 2.3-1—\{National Ambient Air Quality Standards\}

Pollutant	Primary Standards	Averaging Times	Secondary Standards
Carbon Monoxide	9 ppm $\left(10 \mathrm{mg} / \mathrm{m}^{3}\right)$	8 hour $^{(1)}$	None
	$\begin{gathered} 35 \mathrm{ppm} \\ \left(40 \mathrm{mg} / \mathrm{m}^{3}\right) \end{gathered}$	1 hour $^{(1)}$	None
Lead	$1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$	Quarterly Average	Same as Primary
Nitrogen Dioxide	$\begin{gathered} 0.053 \mathrm{ppm} \\ \left(100 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	Annual (Arithmetic Mean)	Same as Primary
Particulate Matter (PM_{10})	Revoked ${ }^{(2)}$	Annual ${ }^{(2)}$ (Arithmetic Mean)	
	$150 \mu \mathrm{~g} / \mathrm{m}^{3}$	24 hour ${ }^{(3)}$	
Particulate Matter ($\mathrm{PM}_{2.5}$)	$15.0 \mu \mathrm{~g} / \mathrm{m}^{3}$	Annual ${ }^{(4)}$ (Arithmetic Mean)	Same as Primary
	$35 \mu \mathrm{~g} / \mathrm{m}^{3}$	24 hour ${ }^{(5)}$	
Ozone	0.08 ppm	8 hour $^{(6)}$	Same as Primary
	0.12 ppm	1 hour $^{(7)}$ (Applies only in limited areas)	Same as Primary
Sulfur Oxides	0.03 ppm	Annual (Arithmetic Mean)	-------
	0.14 ppm	24 hour ${ }^{(1)}$	-------
	-------	3 hour ${ }^{(1)}$	$\begin{gathered} 0.5 \mathrm{ppm} \\ \left(1,300 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$

Notes:

(1) Not to be exceeded more than once per year.
(2) Due to a lack of evidence linking health problems to long-term exposure to coarse particle pollution, the agency revoked the annual PM ${ }_{10}$ Standard in 2006 (effective December 17, 2006).
(3) Not to be exceeded more than once per year on average over three years.
(4) To attain this standard, the three year average of the weighted annual mean $\mathrm{PM}_{2.5}$ concentrations from single or multiple community-oriented monitors must not exceed $15.0 \mu \mathrm{~g} / \mathrm{m}^{3}$.
(5) To attain this standard, the three year average of the 98 th percentile of 24 hour concentrations at each population-oriented monitor within an area must not exceed $35 \mu \mathrm{~g} / \mathrm{m}^{3}$ (effective December 17, 2006).
(6) To attain this standard, the three year average of the fourth-highest daily maximum 8 hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.08 ppm .
(7) (a)The standard is attained when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is <1, as determined by Appendix H .
(b)As of June 15, 2005 EPA revoked the 1 hour ozone standard in all areas except the fourteen 8 hour ozone nonattainment Early Action Compact Areas.

Table 2.3-2—\{Total and Average Numbers of Tropical Storms and Hurricanes\}

Month	Tropical Storms ${ }^{(1)}$		Hurricanes		U.S. Hurricanes	
	Total	Average	Total	Average	Total	Average
January-April	5	*	1	*	0	0.00
May	18	0.1	4	*	0	0.00
June	76	0.5	28	0.2	19	0.12
July	94	0.6	47	0.3	23	0.15
August	336	2.2	214	1.4	74	0.48
September	448	2.9	309	2.0	102	0.67
October	273	1.8	154	1.0	50	0.33
November	58	0.4	38	0.2	5	0.03
December	8	0.1	4	*	0	0.00
Year	1,316	8.5	799	5.2	273	1.78
Notes: (1) Includes subtropical storms after 1967. * Less than 0.05 .						

Table 2.3-3—\{Monthly Mean Number of Days with Thunderstorms\}

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore/Washington International Airport	0.3	0.2	0.8	2.4	4.0	5.4	5.8	4.9	2.0	1.0	0.4	0.1	27.3
Norfolk, VA	0.4	0.6	1.9	2.7	5.0	5.6	8.0	6.5	2.7	1.3	0.5	0.4	35.6
Richmond, VA	0.2	0.4	1.6	2.5	5.3	6.5	8.1	6.2	2.9	1.0	0.6	0.2	35.5

Table 2.3-4—\{High Winds by Storm Type for Calvert County\}

Date	Time	Wind Speed Knots (m/sec)	Storm Type
6/3/1980	4:20 PM	52 (27)	Thunderstorm
7/1/1990	2:15 PM	52 (27)	Thunderstorm
5/4/1996	9:08 PM	60 (31)	Thunderstorm
10/8/1996	2:30 PM	67 (34)	High Wind
1/13/2000	12:00 PM	56 (29)	High Wind
4/21/2000	3:00 PM	90 (46)	Thunderstorm
3/13/2001	10:20 PM	52 (27)	Thunderstorm
6/11/2003	9:35 PM	50 (26)	Thunderstorm
6/27/2003	2:38 PM	50 (26)	Thunderstorm
7/18/2003	3:55 PM	50 (26)	Thunderstorm
8/5/2003	9:00 PM	50 (26)	Thunderstorm
8/16/2003	4:11 PM	50 (26)	Thunderstorm
8/26/2003	4:15 PM	55 (28)	Thunderstorm
5/25/2004	9:05 PM	50 (26)	Thunderstorm
7/5/2005	6:45 PM	50 (26)	Thunderstorm
1/14/2006	5:15 PM	52 (27)	High Wind
9/1/2006	11:00 AM	55 (28)	High Wind

Table 2.3-5—\{Hail Events in Calvert County\}

Date	Time	Type	Diameter
10/9/1962	6:00 AM	Hail	0.75 in (19.05 mm)
4/1/1993	5:45 PM	Hail	0.88 in (22.35 mm)
9/26/1994	4:25 PM	Hail	0.75 in (19.05 mm)
7/15/1996	3:07 PM	Hail	2.00 in (50.80 mm)
3/29/1997	1:30 PM	Hail	1.75 in (44.45 mm)
6/15/1998	5:45 PM	Hail	1.75 in (44.45 mm)
6/15/1998	6:55 PM	Hail	0.75 in (19.05 mm)
4/9/1999	5:30 PM	Hail	1.50 in (38.10 mm)
4/9/1999	5:30 PM	Hail	1.25 in (31.75 mm)
4/9/1999	5:30 PM	Hail	1.00 in (25.40 mm)
4/23/1999	3:40 PM	Hail	1.00 in (25.40 mm)
4/23/1999	3:45 PM	Hail	1.50 in (38.10 mm)
4/23/1999	4:42 PM	Hail	0.75 in (19.05 mm)
4/23/1999	4:42 PM	Hail	1.50 in (38.10 mm)
4/21/2000	5:15 PM	Hail	1.00 in (25.40 mm)
7/16/2000	1:30 PM	Hail	0.88 in (22.35 mm)
4/28/2002	6:25 PM	Hail	1.75 in (44.45 mm)
4/28/2002	6:35 PM	Hail	1.75 in (44.45 mm)
5/5/2004	5:35 PM	Hail	0.88 in (22.35 mm)
4/23/2005	4:23 PM	Hail	0.75 in (19.05 mm)

Table 2.3-6—\{Ice Storm Events in Calvert County\}

Start Date and Time	End Date and Time	Ice Thickness
$01 / 14 / 1999$ 1:00 AM	$01 / 15 / 199911: 00 \mathrm{AM}$	Trace to 0.25 in (Trace to 6.35 mm)
$01 / 30 / 2000$ 3:00 AM	$01 / 30 / 20008: 00 \mathrm{PM}$	0.25 to 1.0 inches $(6.35$ to 25.4 mm)
$12 / 14 / 2003$ 3:00 AM	$12 / 14 / 20037: 00 \mathrm{PM}$	Light accumulations
$01 / 17 / 20046: 00 \mathrm{PM}$	$01 / 18 / 20044: 00 \mathrm{PM}$	Up to 0.20 in (Up to 5.08 mm)
$12 / 09 / 20053: 00 \mathrm{AM}$	$12 / 09 / 20058: 00 \mathrm{AM}$	Up to 0.20 in (Up to 5.08 mm)

Table 2.3-7—\{Snow Storm Events in Calvert County\}

Date	Snow Amount
$12 / 28 / 1993$	No amounts provided
$01 / 06 / 1996$	Approximately 15 in $(381 \mathrm{~mm})$ in Calvert County Approximately 23 in $(584 \mathrm{~mm})$ at BWI Airport
$01 / 12 / 1996$	4 to 6 in $(102$ to 152 mm$)$
$02 / 02 / 1996$	8 to 13 in $(203$ to 330 mm$)$
$02 / 02 / 1996$	4 to 6 in $(102$ to 152 mm$)$ during the afternoon followed by 9 in $(230 \mathrm{~mm})$ overnight
$02 / 16 / 1996$	10 to 13 in (254 to 330 mm$)$
$02 / 08 / 1997$	4 to 8 in $(102$ to 203 mm$)$
$03 / 09 / 1999$	4 to 8 in $(102$ to 203 mm$)$
$01 / 20 / 2000$	3 to 8 in $(76$ to 203 mm$)$
$01 / 25 / 2000$	16.5 in $(419 \mathrm{~mm})$ in Hollywood, St. Mary's County
$02 / 22 / 2001$	3 to 7 in $(76$ to 178 mm$)$
$01 / 03 / 2002$	1 to 4 in $(25$ to 102 mm$)$
$01 / 19 / 2002$	1 to 2 in $(25$ to 51 mm$)$
$12 / 05 / 2002$	3 to 5 in $(76$ to 127 mm$)$
$02 / 06 / 2003$	5 to 8 in $(127$ to 203 mm$)$
$02 / 14 / 2003$	7.5 in $(191 \mathrm{~mm})$ of mainly sleet in Hollywood, St. Mary's County
$02 / 26 / 2003$	5 to 8 in $(127$ to 203 mm$)$
$12 / 04 / 2003$	1 to 2 in $(25$ to 51 mm$)$
$12 / 14 / 2003$	1 to 3 in $(25$ to 76 mm$)$
$01 / 17 / 2004$	$1 / 4$ to 2 in $(6$ to 51 mm$)$
$01 / 25 / 2004$	3 to 4 in $(76$ to 102 mm$)$
$02 / 24 / 2005$	4 to 8 in $(102$ to 203 mm$)$
$12 / 06 / 2005$	4 to 6.5 in $(102$ to 165 mm$)$
$12 / 09 / 2005$	1 to 4 in $(25$ to 102 mm$)$
$02 / 11 / 2006$	8 to 14 in $(203$ to 356 mm$)$

Table 2.3-8-\{Probable Maximum Winter Precipitation (PMWP) Values\}

Winter Months	$\begin{gathered} 200 \mathrm{mi}^{2} \\ \text { 24-Hour } \\ \text { PMWP in (mm) } \end{gathered}$	$10 \mathrm{mi}^{2}$ 48-Hour Adjustment for Zone 6	$\begin{gathered} 10 \mathrm{mi}^{2} \\ \text { 48-Hour } \\ \text { PMWP in (mm) } \end{gathered}$
December	13.0 (330.2)	1.36	17.7 (449.6)
tanuary	11.0 (279.4)	1.38	15.2 (386.1)
February	11.5 (292.1)	1.38	15.9 (403.9)

$\underline{\text { Duration (hours) }}$	$\underline{\text { Jan-Feb PMP Depth }}$ (inches)	$\underline{\text { Dec PMP Depth }}$ (inches)
$\underline{6}$	$\underline{10.5}$	$\underline{12.25}$
$\underline{24}$	$\underline{16.5}$	$\underline{18.5}$
$\underline{72}$	$\underline{20.5}$	$\underline{23.5}$

Table 2.3-9—\{Design Basis Tornado Characteristics for CCNPP Unit 3\}

	Maximum Wind Speed $\mathbf{m} / \mathbf{s}(\mathbf{m p h})$	Translational Speed $\mathbf{m} / \mathbf{s}(\mathbf{m p h})$	Maximum Rotational Speed $\mathbf{m} / \mathbf{s}(\mathbf{m p h})$	Maximum Rotational Speed $\mathbf{m}(\mathbf{f t})$	Pressure Drop $\mathbf{m b}(\mathbf{p s i})$
Region	Rate of Pressure Drop $\mathbf{m b / s}(\mathbf{p s i} / \mathbf{s})$				
II	$89(200)$	$18(40)$	$72(160)$	$45.7(150)$	$63(0.9)$

Table 2.3-10—\{AnnualHeating and Humidification Design Conditions for Patuxent River Naval Air Station, Maryland (1982-2001)\}

Coldest month	Annual Heating and Humidification Design Conditions													
	Heating DB		Humidification DP/MCDB-and HR						Coldest month WS/MCDB				MCWS/PCWD$\text { to } 99.6 \% \text { DB }$	
			99.6\%			99\%			0.4\%		1\%			
	99.6\%	99\%	DP	HR	ACDB	DP	HR	ACDB	WS	ACDB	WS	MCDB	MCWS	$\begin{gathered} \hline \text { PCW } \\ \text { D } \end{gathered}$
z	3 a	3b	4 a	4b	4 E	4d	4 e	$4 f$	53	$5 b$	56	5d	$6 a$	6 b
7	$16.6^{\circ} \mathrm{F}$	$20.9^{\circ} \mathrm{F}$	$0.3^{\circ} \mathrm{F}$	5.6	$20.5^{\circ} \mathrm{F}$	$5.0^{\circ} \mathrm{F}$	7.7	$23.4{ }^{\circ} \mathrm{F}$	$\begin{aligned} & 26.9 \\ & \mathrm{mph} \end{aligned}$	$36.5^{\circ} \mathrm{F}$	$\begin{aligned} & 24.2 \\ & \mathrm{mph} \end{aligned}$	$31.8^{\circ} \mathrm{F}$	$\begin{gathered} 8.1 \\ \mathrm{mph} \end{gathered}$	340
7	$-8.6{ }^{\circ} \mathrm{C}$	$-6.2^{\circ} \mathrm{C}$	$\begin{gathered} -17.6^{\circ} \\ \epsilon \end{gathered}$	5.6	$-6.4^{\circ} \mathrm{C}$	$\begin{gathered} -15.0^{\circ} \\ \epsilon \end{gathered}$	7.4	$-4.8{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 12.0 \\ & \mathrm{mps} \end{aligned}$	$2.5^{\circ} \mathrm{C}$	$\begin{aligned} & 10.8 \\ & \text { mps } \end{aligned}$	${ }^{-0.10} \mathrm{C}$	$\begin{aligned} & 3.6 \\ & \mathrm{mps} \end{aligned}$	340

Notes:
$D B=$ dry bulb
$D P=$ dew point
$H R=$ humidity ratio
$\mathrm{MCDB}=$ mean coincident dry bulb
WS $=$ wind speed
ACWS = mean coincident wind speed
PCWD = prevailing coincident wind direction, degrees with respect to True North
Table 2.3-11—\{Annual Cooling, Dehumidification, and Enthalpy Design Conditions for Patuxent River Naval Air Station, Maryland (1982-2001) \}

Annual-Cooling, Dehumidification, and Enthalpy-Design-Conditions															
Hottest month	Hottest month DB range	Cooling DB/MCWB						Evaporation WB/MCDB						MCWSIPCWD to 0.4\% DB	
		0.4\%		1\%		2\%		0.4\%		1\%		2\%			
		DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
7	8	93	96	96	9 d	9 e	$9 f$	10a	10 b	10ϵ	10d	10e	$10 f$	11a	11b
7	$15.5^{\circ} \mathrm{F}$	92.5 ${ }^{\circ} \mathrm{F}$	$76.2^{\circ} \mathrm{F}$	$89.9{ }^{\circ} \mathrm{F}$	$75.5^{\circ} \mathrm{F}$	$87.6^{\circ} \mathrm{F}$	$74.6{ }^{\circ} \mathrm{F}$	$79.2^{\circ} \mathrm{F}$	$88.3^{\circ} \mathrm{F}$	$77.8{ }^{\circ} \mathrm{F}$	$86.4{ }^{\circ} \mathrm{F} \quad 7$	$76.5{ }^{\circ} \mathrm{F} \quad 8$	$84.5^{\circ} \mathrm{F}$	8.8 mph	240
7	$27.9^{\circ} \mathrm{C}$	$33.6{ }^{\circ} \mathrm{C}$	$24.6^{\circ} \mathrm{C}$	$32.2{ }^{\circ} \mathrm{C}$	$24.2{ }^{\circ} \mathrm{C}$	$30.9{ }^{\circ} \mathrm{C}$	$23.7^{\circ} \mathrm{C}$	$26.2^{\circ} \mathrm{C}$	$31.3^{\circ} \mathrm{C}$	$25.4^{\circ} \mathrm{C}$	$30.2{ }^{\circ} \mathrm{C} \quad 2$	$24.7^{\circ} \mathrm{C}$	$29.2{ }^{\circ} \mathrm{C}$	3.9 mps	240
Dehumidification-DP/MCDB-andHR									Enthalpy/MCDB						
	0.4\%		1\%			2\%			0.4\%		\%		2\%		
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth		MCDB
12 a	12b	12 C	12d	12e	12 f	12 g	12h	12i	13a	13b	136	13d	13e		13f
$76.6^{\circ} \mathrm{F}$	139.0	$84.0^{\circ} \mathrm{F}$	$75.1^{\circ} \mathrm{F}$	132.0	$82.7^{\circ} \mathrm{F}$	$73.8^{\circ} \mathrm{F}$	126.1	$81.3^{\circ} \mathrm{F}$	$34.8 \mathrm{~kJ} / \mathrm{kg}$	$88.3^{\circ} \mathrm{F}$	$33.4 \mathrm{~kJ} / \mathrm{kg}$	$86.4{ }^{\circ} \mathrm{F}$	[$32.1 \mathrm{~kJ} / \mathrm{kg}$		$84.8^{\circ} \mathrm{F}$
$24.8{ }^{\circ} \mathrm{C}$	139.0	$28.9{ }^{\circ} \mathrm{C}$	$23.9{ }^{\circ} \mathrm{C}$	132.0	$28.2^{\circ} \mathrm{C}$	$23.2{ }^{\circ} \mathrm{C}$	126.4	$27.4^{\circ} \mathrm{C}$	$34.8 \mathrm{~kJ} / \mathrm{kg}$	$31.3^{\circ} \mathrm{C}$	$33.4 \mathrm{~kJ} / \mathrm{kg}$	$30.2^{\circ} \mathrm{C}$	$32.1 \mathrm{~kJ} / \mathrm{kg}$		$29.3{ }^{\circ} \mathrm{C}$

Notes:
$\mathrm{DB}=$ dry bulb
$\mathrm{MCDB}=$ mean coincident dry bulb
MCWB = mean coincident wet bulb
ACWS = mean coincident wind speed
PCWD = prevailing coincident wind direction, degrees with respect to True North
$\mathrm{HR}=$ humidity ratio
Enth = Enthalpy
WS = wind speed
$W B=$ wet bulb
$D B=$ dry bulb

Table 2.3-13-\{Monthly Design Dry Bulb and Mean Coincident Wet Bulb TemperatureValues for Patuxent River Naval Air Station, Maryland (1982-2001) \}

Menthly Design Dry Bulb and Mean Coincident Wet Bulb Temperatures												
	Jan		Feb		Mar		Apr		May		Jth	
	DB	MCWB	DB	MCWB	DB	ACWB	DB	MCWB	DB	MCWB	DB	MCWB
	18a	18b	18¢	18d	18e	18f	189	18h	18i	18j	18k	181
0.4\%	$64.4{ }^{\circ} \mathrm{F}$	$58.0^{\circ} \mathrm{F}$	$69.9^{\circ} \mathrm{F}$	$57.7{ }^{\circ} \mathrm{F}$	$80.3^{\circ} \mathrm{F}$	$63.7^{\circ} \mathrm{F}$	$85.2^{\circ} \mathrm{F}$	$65.7^{\circ} \mathrm{F}$	$89.8{ }^{\circ} \mathrm{F}$	$72.3{ }^{\circ} \mathrm{F}$	$93.2{ }^{\circ} \mathrm{F}$	$76.0^{\circ} \mathrm{F}$
	$18.0^{\circ} \mathrm{C}$	$14.4{ }^{\circ} \mathrm{C}$	$21.1^{\circ} \mathrm{C}$	$14.3{ }^{\circ} \mathrm{C}$	$26.8^{\circ} \mathrm{C}$	$17.6^{\circ} \mathrm{C}$	$29.6{ }^{\circ} \mathrm{C}$	$18.7^{\circ} \mathrm{C}$	$32.1{ }^{\circ} \mathrm{C}$	$22.4{ }^{\circ} \mathrm{C}$	$34.0{ }^{\circ} \mathrm{C}$	$24.4{ }^{\circ} \mathrm{C}$
1\%	$62.7{ }^{\circ} \mathrm{F}$	$56.9{ }^{\circ} \mathrm{F}$	$66.2^{\circ} \mathrm{F}$	$56.8{ }^{\circ} \mathrm{F}$	$74.9{ }^{\circ} \mathrm{F}$	$60.6^{\circ} \mathrm{F}$	$81.2^{\circ} \mathrm{F}$	$64.0^{\circ} \mathrm{F}$	$87.7^{\circ} \mathrm{F}$	$72.0{ }^{\circ} \mathrm{F}$	$91.5^{\circ} \mathrm{F}$	$75.5^{\circ} \mathrm{F}$
	$17.1^{\circ} \mathrm{C}$	$13.8{ }^{\circ} \mathrm{C}$	$19.0^{\circ} \mathrm{C}$	$13.8{ }^{\circ} \mathrm{C}$	$23.8^{\circ} \mathrm{C}$	$15.9{ }^{\circ} \mathrm{C}$	$27.3^{\circ} \mathrm{C}$	$17.8{ }^{\circ} \mathrm{C}$	$30.9{ }^{\circ} \mathrm{C}$	$22.2{ }^{\circ} \mathrm{C}$	$33.1{ }^{\circ} \mathrm{C}$	$24.2{ }^{\circ} \mathrm{C}$
2\%	$59.6{ }^{\circ} \mathrm{F}$	$53.1^{\circ} \mathrm{F}$	$62.9^{\circ} \mathrm{F}$	$55.5^{\circ} \mathrm{F}$	$70.8^{\circ} \mathrm{F}$	$58.9^{\circ} \mathrm{F}$	$77.3^{\circ} \mathrm{F}$	$62.5^{\circ} \mathrm{F}$	$85.4{ }^{\circ} \mathrm{F}$	$70.4^{\circ} \mathrm{F}$	$90.0^{\circ} \mathrm{F}$	$74.8{ }^{\circ} \mathrm{F}$
	$15.3{ }^{\circ} \mathrm{C}$	$11.7^{\circ} \mathrm{C}$	$17.2{ }^{\circ} \mathrm{C}$	$13.1{ }^{\circ} \mathrm{C}$	$21.6^{\circ} \mathrm{C}$	$14.9{ }^{\circ} \mathrm{C}$	$25.2{ }^{\circ} \mathrm{C}$	$16.9{ }^{\circ} \mathrm{C}$	$29.7{ }^{\circ} \mathrm{C}$	$21.3{ }^{\circ} \mathrm{C}$	$32.2{ }^{\circ} \mathrm{C}$	$23.8{ }^{\circ} \mathrm{C}$
	Jul		Aug		Sep		Oct		Nov		Def	
	DB	ACWB	DB	MCWB	DB	ACWB	DB	ACWB	DB	MCWB	DB	ACWB
	18m	18n	180	18p	18q	18r	18s	18 t	18u	18v	18w	18x
0.4\%	$96.9^{\circ} \mathrm{F}$	$76.8{ }^{\circ} \mathrm{F}$	$94.7^{\circ} \mathrm{F}$	$76.7^{\circ} \mathrm{F}$	$92.0^{\circ} \mathrm{F}$	$74.7^{\circ} \mathrm{F}$	$83.3^{\circ} \mathrm{F}$	$71.2^{\circ} \mathrm{F}$	$75.1^{\circ} \mathrm{F}$	$64.5^{\circ} \mathrm{F}$	$70.2^{\circ} \mathrm{F}$	$61.7^{\circ} \mathrm{F}$
	$36.1{ }^{\circ} \mathrm{C}$	$24.9{ }^{\circ} \mathrm{C}$	$34.8{ }^{\circ} \mathrm{C}$	$24.8{ }^{\circ} \mathrm{C}$	$33.3^{\circ} \mathrm{C}$	$23.7{ }^{\circ} \mathrm{C}$	$28.5{ }^{\circ} \mathrm{C}$	$21.8^{\circ} \mathrm{C}$	$23.9{ }^{\circ} \mathrm{C}$	$18.1^{\circ} \mathrm{C}$	$21.2^{\circ} \mathrm{C}$	$16.5^{\circ} \mathrm{C}$
1\%	$95.2^{\circ} \mathrm{F}$	$77.1^{\circ} \mathrm{F}$	$92.4{ }^{\circ} \mathrm{F}$	$77.3^{\circ} \mathrm{F}$	$89.4{ }^{\circ} \mathrm{F}$	$74.9{ }^{\circ} \mathrm{F}$	$81.0^{\circ} \mathrm{F}$	$69.7^{\circ} \mathrm{F}$	$72.5{ }^{\circ} \mathrm{F}$	$62.8{ }^{\circ} \mathrm{F}$	$67.6^{\circ} \mathrm{F}$	$60.4{ }^{\circ} \mathrm{F}$
	$35.1{ }^{\circ} \mathrm{C}$	$35.1^{\circ} \mathrm{C}$	$33.6{ }^{\circ} \mathrm{C}$	$25.2{ }^{\circ} \mathrm{C}$	$31.9{ }^{\circ} \mathrm{C}$	$23.8{ }^{\circ} \mathrm{C}$	$27.2{ }^{\circ} \mathrm{C}$	$20.9{ }^{\circ} \mathrm{C}$	$22.5{ }^{\circ} \mathrm{C}$	$17.1^{\circ} \mathrm{C}$	$19.8{ }^{\circ} \mathrm{C}$	$15.8{ }^{\circ} \mathrm{C}$
2\%	$93.3{ }^{\circ} \mathrm{F}$	$76.3^{\circ} \mathrm{F}$	$90.4^{\circ} \mathrm{F}$	$76.7{ }^{\circ} \mathrm{F}$	$86.7^{\circ} \mathrm{F}$	$73.9^{\circ} \mathrm{F}$	$78.7{ }^{\circ} \mathrm{F}$	$68.7^{\circ} \mathrm{F}$	$70.2^{\circ} \mathrm{F}$	$62.0{ }^{\circ} \mathrm{F}$	$64.9{ }^{\circ} \mathrm{F}$	$57.9^{\circ} \mathrm{F}$
	$34.1^{\circ} \mathrm{C}$	$24.6{ }^{\circ} \mathrm{C}$	$32.4{ }^{\circ} \mathrm{C}$	$24.8{ }^{\circ} \mathrm{C}$	$30.4{ }^{\circ} \mathrm{C}$	$23.3{ }^{\circ} \mathrm{C}$	$25.9{ }^{\circ} \mathrm{C}$	$20.4{ }^{\circ} \mathrm{C}$	$21.2^{\circ} \mathrm{C}$	$16.7^{\circ} \mathrm{C}$	$18.3{ }^{\circ} \mathrm{C}$	$14.4{ }^{\circ} \mathrm{C}$

Notes:
$D B=$ dry bulb
ACWB = mean coincident wet bulb

Table 2.3-14—\{Monthly Design Wet Bulb-and Mean Coincident Dry Bulb TemperatureValues for Patuxent River Naval Air Station, Maryland (1982-2001) \}

	Jan		Feb		Mar		Apr		May		Jun	
	WB	MCDB	WB	MCDB	WB	ACDB	WB	MCDB	WB	MCDB	WB	ACDB
	19a	19b	19e	49d	19e	199	19 g	19h	19i	19ز	19*	191
0.4\%	$60.2^{\circ} \mathrm{F}$	$63.7^{\circ} \mathrm{F}$	$61.3^{\circ} \mathrm{F}$	$67.1^{\circ} \mathrm{F}$	$65.1^{\circ} \mathrm{F}$	$77.6^{\circ} \mathrm{F}$	$68.8^{\circ} \mathrm{F}$	$79.7{ }^{\circ} \mathrm{F}$	$76.0^{\circ} \mathrm{F}$	$86.3^{\circ} \mathrm{F}$	$79.5{ }^{\circ} \mathrm{F}$	$88.4{ }^{\circ} \mathrm{F}$
	$15.7{ }^{\circ} \mathrm{C}$	$17.6^{\circ} \mathrm{C}$	$16.3{ }^{\circ} \mathrm{C}$	$19.5{ }^{\circ} \mathrm{C}$	$18.4{ }^{\circ} \mathrm{C}$	$25.3{ }^{\circ} \mathrm{C}$	$20.4{ }^{\circ} \mathrm{C}$	$26.5{ }^{\circ} \mathrm{C}$	$24.4{ }^{\circ} \mathrm{C}$	$30.2{ }^{\circ} \mathrm{C}$	$26.4{ }^{\circ} \mathrm{C}$	$31.3{ }^{\circ} \mathrm{C}$
1\%	$57.5^{\circ} \mathrm{F}$	$61.8^{\circ} \mathrm{F}$	$58.8{ }^{\circ} \mathrm{F}$	$64.4{ }^{\circ} \mathrm{F}$	$63.0^{\circ} \mathrm{F}$	$72.3^{\circ} \mathrm{F}$	$67.1^{\circ} \mathrm{F}$	$76.9{ }^{\circ} \mathrm{F}$	$74.6{ }^{\circ} \mathrm{F}$	$83.9^{\circ} \mathrm{F}$	$78.2^{\circ} \mathrm{F}$	$86.9{ }^{\circ} \mathrm{F}$
	$14.2{ }^{\circ} \mathrm{C}$	$16.6{ }^{\circ} \mathrm{C}$	$14.9{ }^{\circ} \mathrm{C}$	$18.0^{\circ} \mathrm{C}$	$17.2{ }^{\circ} \mathrm{C}$	$22.4{ }^{\circ} \mathrm{C}$	$19.5{ }^{\circ} \mathrm{C}$	$24.9{ }^{\circ} \mathrm{C}$	$23.7{ }^{\circ} \mathrm{C}$	$28.8{ }^{\circ} \mathrm{C}$	$25.7^{\circ} \mathrm{C}$	$30.5^{\circ} \mathrm{C}$
2\%	$55.0^{\circ} \mathrm{F}$	$58.5^{\circ} \mathrm{F}$	$56.0^{\circ} \mathrm{F}$	$61.9^{\circ} \mathrm{F}$	$60.8^{\circ} \mathrm{F}$	$68.7^{\circ} \mathrm{F}$	$65.5^{\circ} \mathrm{F}$	$74.3{ }^{\circ} \mathrm{F}$	$73.0^{\circ} \mathrm{F}$	$81.8^{\circ} \mathrm{F}$	$77.4{ }^{\circ} \mathrm{F}$	$85.9{ }^{\circ} \mathrm{F}$
	$12.8{ }^{\circ} \mathrm{C}$	$14.7{ }^{\circ} \mathrm{C}$	$13.3{ }^{\circ} \mathrm{C}$	$16.6^{\circ} \mathrm{C}$	$16.0^{\circ} \mathrm{C}$	$20.4{ }^{\circ} \mathrm{C}$	$18.6{ }^{\circ} \mathrm{C}$	$23.5{ }^{\circ} \mathrm{C}$	$22.8{ }^{\circ} \mathrm{C}$	$27.7{ }^{\circ} \mathrm{C}$	$25.2{ }^{\circ} \mathrm{C}$	$29.9{ }^{\circ} \mathrm{C}$
	Jul		Aug		Sep		Oct		Nov		Dee	
	$\begin{aligned} & \text { WB } \\ & \text { 19m } \end{aligned}$	MCDB 19n	$\begin{aligned} & \text { WB } \\ & 190 \end{aligned}$	$\begin{aligned} & \text { MCDB } \\ & 19 p \end{aligned}$	$\begin{aligned} & \text { WB } \\ & 19 \mathrm{q} \end{aligned}$	$\begin{aligned} & \text { MCDB } \\ & \text { 19\% } \end{aligned}$	$\begin{aligned} & \text { WB } \\ & \text { 19s } \end{aligned}$	$\begin{aligned} & \text { ACDB } \\ & \text { 19t } \end{aligned}$	$\begin{aligned} & \text { WB } \\ & 19 u \end{aligned}$	MCDB 19v	$\begin{aligned} & \text { WB } \\ & \text { 19w } \end{aligned}$	$\begin{aligned} & \text { ACDB } \\ & \text { 19* } \end{aligned}$
0.4\%	$81.3^{\circ} \mathrm{F}$	$90.8^{\circ} \mathrm{F}$	$80.9^{\circ} \mathrm{F}$	$88.2^{\circ} \mathrm{F}$	$78.4^{\circ} \mathrm{F}$	$85.5^{\circ} \mathrm{F}$	$72.8{ }^{\circ} \mathrm{F}$	$80.0^{\circ} \mathrm{F}$	$67.1^{\circ} \mathrm{F}$	$72.0^{\circ} \mathrm{F}$	$63.5^{\circ} \mathrm{F}$	$68.9{ }^{\circ} \mathrm{F}$
	$27.4{ }^{\circ} \mathrm{C}$	$32.7{ }^{\circ} \mathrm{C}$	$27.2{ }^{\circ} \mathrm{C}$	$31.2^{\circ} \mathrm{C}$	$25.8^{\circ} \mathrm{C}$	$29.7{ }^{\circ} \mathrm{C}$	$22.7^{\circ} \mathrm{C}$	$26.7^{\circ} \mathrm{C}$	$19.5{ }^{\circ} \mathrm{C}$	$22.2{ }^{\circ} \mathrm{C}$	$17.5^{\circ} \mathrm{C}$	$20.5^{\circ} \mathrm{C}$
1\%	$80.3^{\circ} \mathrm{F}$	$89.9{ }^{\circ} \mathrm{F}$	$79.7{ }^{\circ} \mathrm{F}$	$88.4{ }^{\circ} \mathrm{F}$	$77.4{ }^{\circ} \mathrm{F}$	$84.6{ }^{\circ} \mathrm{F}$	$71.3^{\circ} \mathrm{F}$	$78.6^{\circ} \mathrm{F}$	$65.5^{\circ} \mathrm{F}$	$69.9{ }^{\circ} \mathrm{F}$	$61.3{ }^{\circ} \mathrm{F}$	$65.9{ }^{\circ} \mathrm{F}$
	$26.8^{\circ} \mathrm{C}$	$32.2{ }^{\circ} \mathrm{C}$	$26.5{ }^{\circ} \mathrm{C}$	$31.3{ }^{\circ} \mathrm{C}$	$25.2{ }^{\circ} \mathrm{C}$	$29.2{ }^{\circ} \mathrm{C}$	$21.8{ }^{\circ} \mathrm{C}$	$25.9^{\circ} \mathrm{C}$	$18.6{ }^{\circ} \mathrm{C}$	$21.1^{\circ} \mathrm{C}$	$16.3^{\circ} \mathrm{C}$	$18.8{ }^{\circ} \mathrm{C}$
2\%	$79.6{ }^{\circ} \mathrm{F}$	$89.2^{\circ} \mathrm{F}$	$78.6{ }^{\circ} \mathrm{F}$	$87.0^{\circ} \mathrm{F}$	$76.4^{\circ} \mathrm{F}$	$83.3^{\circ} \mathrm{F}$	$70.2^{\circ} \mathrm{F}$	$76.6^{\circ} \mathrm{F}$	$64.0^{\circ} \mathrm{F}$	$68.2^{\circ} \mathrm{F}$	$59.4{ }^{\circ} \mathrm{F}$	$64.2^{\circ} \mathrm{F}$
	$26.4{ }^{\circ} \mathrm{C}$	$31.8^{\circ} \mathrm{C}$	$25.9{ }^{\circ} \mathrm{C}$	$30.6{ }^{\circ} \mathrm{C}$	$24.7{ }^{\circ} \mathrm{C}$	$28.5{ }^{\circ} \mathrm{C}$	$21.2^{\circ} \mathrm{C}$	$24.8^{\circ} \mathrm{C}$	$17.8{ }^{\circ} \mathrm{C}$	$20.1^{\circ} \mathrm{C}$	$15.2{ }^{\circ} \mathrm{C}$	$17.9^{\circ} \mathrm{C}$

Notes:
WB = wet bulb
$A C D B=$ mean coincident dry bulb

Table 2.3-15—\{Monthly Mean Daily Temperature Range for Patuxent River Naval Air Station, Maryland (1982-2001)

Monthly Mean Daily Temperature Range											
Jan	Feb	Mar	Apf	May	Jun	Jul	Aug	Sep	Oct	Nov	Det
20a	206	20¢	20d	20e	209	20 g	20h	$20 i$	$20{ }^{\text {j }}$	20k	201
$14.4{ }^{\circ} \mathrm{F}$	$15.0^{\circ} \mathrm{F}$	$16.1^{\circ} \mathrm{F}$	$17.4{ }^{\circ} \mathrm{F}$	$16.9^{\circ} \mathrm{F}$	$16.2^{\circ} \mathrm{F}$	$15.5^{\circ} \mathrm{F}$	$14.8{ }^{\circ} \mathrm{F}$	$15.1^{\circ} \mathrm{F}$	$16.3^{\circ} \mathrm{F}$	$16.2^{\circ} \mathrm{F}$	$14.5^{\circ} \mathrm{F}$
$8.0^{\circ} \mathrm{C}$	$8.3{ }^{\circ} \mathrm{C}$	$9.0{ }^{\circ} \mathrm{C}$	$9.7{ }^{\circ} \mathrm{C}$	$9.4{ }^{\circ} \mathrm{C}$	$9.0^{\circ} \mathrm{C}$	$8.6{ }^{\circ} \mathrm{C}$	$8.2{ }^{\circ} \mathrm{C}$	$8.4{ }^{\circ} \mathrm{C}$	$9.0{ }^{\circ} \mathrm{C}$	$9.0^{\circ} \mathrm{C}$	$8.1{ }^{\circ} \mathrm{C}$

CC JANOO-DEC05 MET DATA JOINT FREQUENCY DISTR
33.0 FT WIND DATA
STABILITY CLASS A
Table 2.3-16-\{CCNPP 33 ft (10 m) Annual JFD $\}$

(Page 1 of 8)

(60-METER TOWER)

Table 2.3-16—\{CCNPP 33 ft (10 m) Annual JFD\}

Page 2 of 8)

CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 4.58

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 04
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	1	0	6
(1)	. 04	. 00	. 04	. 00	. 04	. 00	. 04	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 25
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01
1.1-1.5	3	4	3	2	8	1	4	2	3	4	7	3	4	3	0	0	0	51
(1)	. 13	. 17	. 13	. 08	. 34	. 04	. 17	. 08	. 13	. 17	. 30	. 13	. 17	. 13	. 00	. 00	. 00	2.16
(2)	. 01	. 01	. 01	. 00	. 02	. 00	. 01	. 00	. 01	. 01	. 01	. 01	. 01	. 01	. 00	. 00	. 00	. 10
1.6-2.0	11	11	25	21	13	18	11	3	11	10	20	19	10	5	4	5	0	197
(1)	. 47	. 47	1.06	. 89	. 55	. 76	. 47	. 13	. 47	. 42	. 85	. 81	. 42	. 21	. 17	. 21	. 00	8.35
(2)	. 02	. 02	. 05	. 04	. 03	. 03	. 02	. 01	. 02	. 02	. 04	. 04	. 02	. 01	. 01	. 01	. 00	. 38
2.1-3.0	87	122	64	64	45	33	44	41	36	42	61	67	42	28	16	13	0	805
(1)	3.69	5.17	2.71	2.71	1.91	1.40	1.87	1.74	1.53	1.78	2.59	2.84	1.78	1.19	. 68	. 55	. 00	34.14
(2)	. 17	. 24	. 12	. 12	. 09	. 06	. 09	. 08	. 07	. 08	. 12	. 13	. 08	. 05	. 03	. 03	. 00	1.56
3.1-4.0	94	76	43	12	8	12	45	80	14	34	69	50	27	28	30	17	0	639
(1)	3.99	3.22	1.82	. 51	. 34	. 51	1.91	3.39	. 59	1.44	2.93	2.12	1.15	1.19	1.27	. 72	. 00	27.10
(2)	. 18	. 15	. 08	. 02	. 02	. 02	. 09	. 16	. 03	. 07	. 13	. 10	. 05	. 05	. 06	. 03	. 00	1.24
4.1-5.0	47	16	28	3	1	3	11	31	9	19	35	22	19	23	43	25	0	335
(1)	1.99	. 68	1.19	. 13	. 04	. 13	. 47	1.31	. 38	. 81	1.48	. 93	. 81	. 98	1.82	1.06	. 00	14.21
(2)	. 09	. 03	. 05	. 01	. 00	. 01	. 02	. 06	. 02	. 04	. 07	. 04	. 04	. 04	. 08	. 05	. 00	. 65
5.1-6.0	38	8	15	4	0	1	4	18	3	5	15	1	11	21	40	14	0	198
(1)	1.61	. 34	. 64	. 17	. 00	. 04	. 17	. 76	. 13	. 21	. 64	. 04	. 47	. 89	1.70	. 59	. 00	8.40
(2)	. 07	. 02	. 03	. 01	. 00	. 00	. 01	. 03	. 01	. 01	. 03	. 00	. 02	. 04	. 08	. 03	. 00	. 38
6.1-8.0	9	2	4	4	0	0	1	9	1	4	3	3	3	32	32	9	0	116
(1)	. 38	. 08	. 17	. 17	. 00	. 00	. 04	. 38	. 04	. 17	. 13	. 13	. 13	1.36	1.36	. 38	. 00	4.92
(2)	. 02	. 00	. 01	. 01	. 00	. 00	. 00	. 02	. 00	. 01	. 01	. 01	. 01	. 06	. 06	. 02	. 00	. 23
8.1-10.0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	7	0	0	9
(1)	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 30	. 00	. 00	. 38
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 02
10.1-89.5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	292	239	183	110	76	68	121	185	78	118	210	166	116	140	172	84	0	2358
(1)	12.38	10.14	7.76	4.66	3.22	2.88	5.13	7.85	3.31	5.00	8.91	7.04	4.92	5.94	7.29	3.56	. 00	100.00
(2)	. 57	. 46	. 36	. 21	. 15	. 13	. 23	. 36	. 15	. 23	. 41	. 32	. 23	. 27	. 33	. 16	. 00	4.58

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-16—\{CCNPP 33 ft (10 m) Annual JFD\}

Page 3 of 8)

CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

(H)

Table 2.3-16—\{CCNPP 33 ft (10 m) Annual JFD\}

Page 4 of 8)

CC JANOO-DEC05 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 34.33

WIND DIRECTION FROM																		
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	2	3	0	0	1	2	1	0	9
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 02	. 00	. 00	. 01	. 01	. 01	. 00	. 05
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 02
.2- . 4	1	0	0	0	0	0	1	0	1	2	1	2	4	4	0	1	0	17
(1)	. 01	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 01	. 01	. 01	. 01	. 02	. 02	. 00	. 01	. 00	. 10
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 00	. 00	. 00	. 03
.5-1.0	30	35	39	20	38	44	31	31	33	48	55	33	25	35	22	35	0	554
(1)	. 17	. 20	. 22	. 11	. 21	. 25	. 18	. 18	. 19	. 27	. 31	. 19	. 14	. 20	. 12	. 20	. 00	3.13
(2)	. 06	. 07	. 08	. 04	. 07	. 09	. 06	. 06	. 06	. 09	. 11	. 06	. 05	. 07	. 04	. 07	. 00	1.08
1.1-1.5	74	81	76	86	141	90	72	75	66	76	95	57	54	40	43	43	0	1169
(1)	. 42	. 46	. 43	. 49	. 80	. 51	. 41	. 42	. 37	. 43	. 54	. 32	. 31	. 23	. 24	. 24	. 00	6.61
(2)	. 14	. 16	. 15	. 17	. 27	. 17	. 14	. 15	. 13	. 15	. 18	. 11	. 10	. 08	. 08	. 08	. 00	2.27
1.6-2.0	153	215	152	198	209	145	126	120	126	119	126	93	70	50	80	69	0	2051
(1)	. 86	1.22	. 86	1.12	1.18	. 82	. 71	. 68	. 71	. 67	. 71	. 53	. 40	. 28	. 45	. 39	. 00	11.60
(2)	. 30	. 42	. 30	. 38	. 41	. 28	. 24	. 23	. 24	. 23	. 24	. 18	. 14	. 10	. 16	. 13	. 00	3.98
2.1-3.0	418	501	394	506	390	241	265	404	249	194	311	230	149	146	257	263	0	4918
(1)	2.36	2.83	2.23	2.86	2.20	1.36	1.50	2.28	1.41	1.10	1.76	1.30	. 84	. 83	1.45	1.49	. 00	27.80
(2)	. 81	. 97	. 76	. 98	. 76	. 47	. 51	. 78	. 48	. 38	. 60	. 45	. 29	. 28	. 50	. 51	. 00	9.54
3.1-4.0	403	316	427	398	166	99	127	354	163	139	247	166	94	110	320	391	0	3920
(1)	2.28	1.79	2.41	2.25	. 94	. 56	. 72	2.00	. 92	. 79	1.40	. 94	. 53	. 62	1.81	2.21	. 00	22.16
(2)	. 78	. 61	. 83	. 77	. 32	. 19	. 25	. 69	. 32	. 27	. 48	. 32	. 18	. 21	. 62	. 76	. 00	7.61
4.1-5.0	340	264	359	226	45	16	45	187	71	62	164	60	57	123	287	287	0	2593
(1)	1.92	1.49	2.03	1.28	. 25	. 09	. 25	1.06	. 40	. 35	. 93	. 34	. 32	. 70	1.62	1.62	. 00	14.66
(2)	. 66	. 51	. 70	. 44	. 09	. 03	. 09	. 36	. 14	. 12	. 32	. 12	. 11	. 24	. 56	. 56	. 00	5.03
5.1-6.0	244	172	237	110	1	4	13	94	22	25	66	18	25	103	218	112	0	1464
(1)	1.38	. 97	1.34	. 62	. 01	. 02	. 07	. 53	. 12	. 14	. 37	. 10	. 14	. 58	1.23	. 63	. 00	8.28
(2)	. 47	. 33	. 46	. 21	. 00	. 01	. 03	. 18	. 04	. 05	. 13	. 03	. 05	. 20	. 42	. 22	. 00	2.84
6.1-8.0	167	78	174	50	3	2	5	52	16	17	13	8	13	103	133	36	0	870
(1)	. 94	. 44	. 98	. 28	. 02	. 01	. 03	. 29	. 09	. 10	. 07	. 05	. 07	. 58	. 75	. 20	. 00	4.92
(2)	. 32	. 15	. 34	. 10	. 01	. 00	. 01	. 10	. 03	. 03	. 03	. 02	. 03	. 20	. 26	. 07	. 00	1.69
8.1-10.0	23	6	25	8	1	0	2	2	1	0	1	0	4	21	13	2	0	109
(1)	. 13	. 03	. 14	. 05	. 01	. 00	. 01	. 01	. 01	. 00	. 01	. 00	. 02	. 12	. 07	. 01	. 00	. 62
(2)	. 04	. 01	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 04	. 03	. 00	. 00	. 21
10.1-89.5	4	2	2	1	1	0	1	1	0	0	0	0	0	1	1	0	0	14
(1)	. 02	. 01	. 01	. 01	. 01	. 00	. 01	. 01	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 00	. 00	. 08
(2)	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 03
ALL SPEEDS	1857	1670	1885	1603	995	641	688	1320	748	684	1082	667	495	737	1376	1240	0	17688
(1)	10.50	9.44	10.66	9.06	5.63	3.62	3.89	7.46	4.23	3.87	6.12	3.77	2.80	4.17	7.78	7.01	. 00	100.00
(2)	3.60	3.24	3.66	3.11	1.93	1.24	1.34	2.56	1.45	1.33	2.10	1.29	. 96	1.43	2.67	2.41	. 00	34.33
(1) = PERCENT	OF ALI	GOOD	OBSERV	TIONS	FOR	HIS PA												
(2) =PERCENT	F ALL G	OD OB	SERVATIO	NS FOR	THIS	ERIOD												

ग्0
$\stackrel{0}{2}$
i

Table 2.3-16—\{CCNPP 33 ft (10 m) Annual JFD $\}$
(Page 5 of 8)
CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 26.80

Table 2.3-16—\{CCNPP 33 ft (10 m) Annual JFD\}

Page 6 of 8)

CC JANOO-DEC05 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

33.0 FT WIND DATA			STABILITY CLASS F						CLASS FREQUENCY			$($ PERCENT $)=10.37$			NW	NNW	VRBL	TOTAL
								ND DI	RECTI	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW				
mps																		
LT . 2	0	3	2	2	2	1	3	1	6	8	9	8	3	4	4	0	0	56
	. 00	. 06	. 04	. 04	. 04	. 02	. 06	. 02	. 11	. 15	. 17	. 15	. 06	. 07	. 07	. 00	. 00	1.05
	. 00	. 01	. 00	. 00	. 00	. 00	. 01	. 00	. 01	. 02	. 02	. 02	. 01	. 01	. 01	. 00	. 00	. 11
. $2-$	0	2	6	1	9	7	7	11	8	15	9	5	7	6	1	5	0	99
	. 00	. 04	. 11	. 02	. 17	. 13	. 13	. 21	. 15	. 28	. 17	. 09	. 13	. 11	. 02	. 09	. 00	1.85
	. 00	. 00	. 01	. 00	. 02	. 01	. 01	. 02	. 02	. 03	. 02	. 01	. 01	. 01	. 00	. 01	. 00	. 19
5-1.0	26	25	34	22	16	34	24	40	86	133	150	95	71	61	24	27	0	868
(1)	. 49	. 47	. 64	. 41	. 30	. 64	. 45	. 75	1.61	2.49	2.81	1.78	1.33	1.14	. 45	. 51	. 00	16.24
$\begin{array}{r} \text { (2) } \\ 1.1-1.5 \end{array}$. 05	. 05	. 07	. 04	. 03	. 07	. 05	. 08	. 17	. 26	. 29	. 18	. 14	. 12	. 05	. 05	. 00	1.68
	19	22	19	13	12	16	21	62	177	304	283	155	92	109	62	22	0	1388
$\begin{array}{r} 1.1-1.5 \\ (1) \end{array}$. 36	. 41	. 36	. 24	. 22	. 30	. 39	1.16	3.31	5.69	5.30	2.90	1.72	2.04	1.16	. 41	. 00	25.97
(2)	. 04	. 04	. 04	. 03	. 02	. 03	. 04	. 12	. 34	. 59	. 55	. 30	. 18	. 21	. 12	. 04	. 00	2.69
	18	21	11	12	6	6	21	71	153	282	308	164	118	131	95	22	0	1439
$\begin{array}{r} 1.6-2.0 \\ (1) \end{array}$. 34	. 39	. 21	. 22	. 11	. 11	. 39	1.33	2.86	5.28	5.76	3.07	2.21	2.45	1.78	. 41	. 00	26.93
(2)	. 03	. 04	. 02	. 02	. 01	. 01	. 04	. 14	. 30	. 55	. 60	. 32	. 23	. 25	. 18	. 04	. 00	2.79
	18	29	11	8	4	1	14	32	92	186	397	165	86	106	118	10	0	1277
$2.1-3.0$ (1)	. 34	. 54	. 21	. 15	. 07	. 02	. 26	. 60	1.72	3.48	7.43	3.09	1.61	1.98	2.21	. 19	. 00	23.90
(2)	. 03	. 06	. 02	. 02	. 01	. 00	. 03	. 06	. 18	. 36	. 77	. 32	. 17	. 21	. 23	. 02	. 00	2.48
	2	6	2	2	0	0	0	1	11	25	71	15	6	5	11	0	0	157
$\begin{array}{r} 3.1-4.0 \\ (1) \end{array}$. 04	. 11	. 04	. 04	. 00	. 00	. 00	. 02	. 21	. 47	1.33	. 28	. 11	. 09	. 21	. 00	. 00	2.94
(2)	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 14	. 03	. 01	. 01	. 02	. 00	. 00	. 30
	3	4	3	8	2	0	0	0	1	1	11	0	1	0	2	0	0	36
$\begin{array}{r} 4.1-5.0 \\ (1) \end{array}$. 06	. 07	. 06	. 15	. 04	. 00	. 00	. 00	. 02	. 02	. 21	. 00	. 02	. 00	. 04	. 00	. 00	. 67
(2)	. 01	. 01	. 01	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 07
5.1-6.0	5	1	2	6	2	0	0	0	0	0	2	0	1	0	0	2	0	21
(1)	. 09	. 02	. 04	. 11	. 04	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 02	. 00	. 00	. 04	. 00	. 39
$6.1-8.0$. 01	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04
	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
$\begin{array}{r} 6.1-8.0 \\ (1) \end{array}$. 02	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 06
8.1-10.0	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	92	113	92	74	53	65	90	218	534	954	1240	607	385	422	317	88	0	5344
(1)	1.72	2.11	1.72	1.38	. 99	1.22	1.68	4.08	9.99	17.85	23.20	11.36	7.20	7.90	5.93	1.65	. 00	100.00
(2)	. 18	. 22	. 18	. 14	. 10	. 13	. 17	. 42	1.04	1.85	2.41	1.18	. 75	. 82	. 62	. 17	. 00	10.37

Table 2.3-16—\{CCNPP 33 ft (10 m) Annual JFD $\}$
(Page 7 of 8)
CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 7.17

OヨロכヨノOYd $\perp H פ \mid y \wedge d O כ$

Table 2．3－16—\｛CCNPP 33 ft（ 10 m）Annual JFD\}
（Page 8 of 8 ）
CC JANOO－DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
33．0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY（PERCENT）$=100.00$

								IND DI	EECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT	3	7	2	4	5	3	8	10	21	18	32	30	9	6	10	4	0	172
	． 01	． 01	． 00	． 01	． 01	． 01	． 02	． 02	． 04	． 03	． 06	． 06	． 02	． 01	． 02	． 01	． 00	． 33
	． 01	． 01	． 00	． 01	． 01	． 01	． 02	． 02	． 04	． 03	． 06	． 06	． 02	． 01	． 02	． 01	． 00	． 33
$\xrightarrow{.2-} \begin{array}{r}\text {（1）} \\ \text {（1）} \\ \text {（2）}\end{array}$	4	4	12	5	12	19	19	25	36	51	35	36	40	21	14	9	0	342
	． 01	． 01	． 02	． 01	． 02	． 04	． 04	． 05	． 07	． 10	． 07	． 07	． 08	． 04	． 03	． 02	． 00	． 66
	． 01	． 01	． 02	． 01	． 02	． 04	． 04	． 05	． 07	． 10	． 07	． 07	． 08	． 04	． 03	． 02	． 00	． 66
．5－1．0	115	101	112	83	118	139	127	172	276	385	474	380	285	236	120	129	0	3252
（1）	． 22	． 20	． 22	． 16	． 23	． 27	． 25	． 33	． 54	． 75	． 92	． 74	． 55	． 46	． 23	． 25	． 00	6.31
1．1－ $\begin{array}{r}\text {（2）} \\ \hline 1.5\end{array}$	． 22	． 20	． 22	． 16	． 23	． 27	． 25	． 33	． 54	． 75	． 92	． 74	． 55	． 46	． 23	． 25	． 00	6.31
	201	214	182	182	238	190	201	284	546	975	1031	591	417	361	249	140	0	6002
1．1－1．5	． 39	． 42	． 35	． 35	． 46	． 37	． 39	． 55	1.06	1.89	2.00	1.15	． 81	． 70	． 48	． 27	． 00	11.65
（2）	． 39	． 42	． 35	． 35	． 46	． 37	． 39	． 55	1.06	1.89	2.00	1.15	． 81	． 70	． 48	． 27	． 00	11.65
1．6－2．0	320	433	281	349	360	269	282	391	629	950	1127	614	475	475	410	265	0	7630
（1）	． 62	． 84	． 55	． 68	． 70	． 52	． 55	． 76	1.22	1.84	2.19	1.19	． 92	． 92	． 80	． 51	． 00	14.81
（2）	． 62	． 84	． 55	． 68	． 70	． 52	． 55	． 76	1.22	1.84	2.19	1.19	． 92	． 92	． 80	． 51	． 00	14.81
2．1－3．0	972	1151	795	800	646	438	514	836	980	1205	1969	1084	624	676	1008	630	0	14328
（1）	1.89	2.23	1.54	1.55	1.25	． 85	1.00	1.62	1.90	2.34	3.82	2.10	1.21	1.31	1.96	1.22	． 00	27.81
（2）	1.89	2.23	1.54	1.55	1.25	． 85	1.00	1.62	1.90	2.34	3.82	2.10	1.21	1.31	1.96	1.22	． 00	27.81
3．1－4．0	1030	791	724	477	223	167	308	803	474	659	1406	625	365	394	794	669	0	9909
（1）	2.00	1.54	1.41	． 93	． 43	． 32	． 60	1.56	． 92	1.28	2.73	1.21	． 71	． 76	1.54	1.30	． 00	19.23
（2）	2.00	1.54	1.41	． 93	． 43	． 32	． 60	1.56	． 92	1.28	2.73	1.21	． 71	． 76	1.54	1.30	． 00	19.23
4．1－5．0	675	422	488	261	64	35	116	420	182	311	671	212	196	375	597	435	0	5460
（1）	1.31	． 82	． 95	． 51	． 12	． 07	． 23	． 82	． 35	． 60	1.30	． 41	． 38	． 73	1.16	． 84	． 00	10.60
（2）	1.31	． 82	． 95	． 51	． 12	． 07	． 23	． 82	． 35	． 60	1.30	． 41	． 38	． 73	1.16	． 84	． 00	10.60
5．1－6．0	397	226	306	130	5	7	34	192	52	97	245	57	93	281	428	182	0	2732
（1）	． 77	． 44	． 59	． 25	． 01	． 01	． 07	． 37	． 10	． 19	． 48	． 11	． 18	． 55	． 83	． 35	． 00	5.30
（2）	． 77	． 44	． 59	． 25	． 01	． 01	． 07	． 37	． 10	． 19	． 48	． 11	． 18	． 55	． 83	． 35	． 00	5.30
6．1－8．0	216	85	211	65	3	3	10	107	24	41	49	23	41	249	309	68	0	1504
（1）	． 42	． 16	． 41	． 13	． 01	． 01	． 02	． 21	． 05	． 08	． 10	． 04	． 08	． 48	． 60	． 13	． 00	2.92
（2）	． 42	． 16	． 41	． 13	． 01	． 01	． 02	． 21	． 05	． 08	． 10	． 04	． 08	． 48	． 60	． 13	． 00	2.92
8．1－10．0	27	7	30	10	1	0	3	6	1	2	1	1	5	40	32	3	0	169
（1）	． 05	． 01	． 06	． 02	． 00	． 00	． 01	． 01	． 00	． 00	． 00	． 00	． 01	． 08	． 06	． 01	． 00	． 33
（2）	． 05	． 01	． 06	． 02	． 00	． 00	． 01	． 01	． 00	． 00	． 00	． 00	． 01	． 08	． 06	． 01	． 00	． 33
10．1－89．5	5	2	4	3		2	3		0	0	0	0	1	2	1	0	0	25
（1）	． 01	． 00	． 01	． 01	． 00	． 00	． 01	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 05
（2）	． 01	． 00	． 01	． 01	． 00	． 00	． 01	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 05
ALL SPEEDS	3965	3443	3147	2369	1676	1272	1625	3247	3221	4694	7040	3653	2551	3116	3972	2534	0	51525
（1）(2)	7.70	6.68	6.11	4.60	3.25	2.47	3.15	6.30	6.25	9.11	13.66	7.09	4.95	6.05	7.71	4.92	． 00	100.00
	7.70	6.68	6.11	4.60	3.25	2.47	3.15	6.30	6.25	9.11	13.66	7.09	4.95	6.05	7.71	4.92	． 00	100.00
（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

P
$\stackrel{0}{2}$
i

Table 2.3-17—\{CCNPP 197 ft (60 m) Annual JFD $\}$
(Page 1 of 8)
CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA

STABILITY CLASS A
CLASS FREQUE
RECTION FROM

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

킥키아d IHפוy

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 4.58

								IND DI	RECTIO	V FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	2	0	0	7
(1)	. 00	. 04	. 04	. 00	. 04	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 04	. 00	. 08	. 00	. 00	. 30
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01
1.1-1.5	2	4	2	5	3	3	3	1	0	0	4	2	1	0	0	0	0	30
(1)	. 08	. 17	. 08	. 21	. 13	. 13	. 13	. 04	. 00	. 00	. 17	. 08	. 04	. 00	. 00	. 00	. 00	1.27
(2)	. 00	. 01	. 00	. 01	. 01	. 01	. 01	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 06
1.6-2.0	6	10	12	17	10	10	3	1	4	2	7	5	0	1	3	1	0	92
(1)	. 25	. 42	. 51	. 72	. 42	. 42	. 13	. 04	. 17	. 08	. 30	. 21	. 00	. 04	. 13	. 04	. 00	3.89
(2)	. 01	. 02	. 02	. 03	. 02	. 02	. 01	. 00	. 01	. 00	. 01	. 01	. 00	. 00	. 01	. 00	. 00	. 18
2.1-3.0	56	75	43	33	58	28	22	15	12	22	21	31	14	9	4	13	0	456
(1)	2.37	3.17	1.82	1.40	2.45	1.18	. 93	. 63	. 51	. 93	. 89	1.31	. 59	. 38	. 17	. 55	. 00	19.28
(2)	. 11	. 15	. 08	. 06	. 11	. 05	. 04	. 03	. 02	. 04	. 04	. 06	. 03	. 02	. 01	. 03	. 00	. 88
3.1-4.0	79	78	14	9	13	18	35	40	17	22	43	34	27	24	12	15	0	480
(1)	3.34	3.30	. 59	. 38	. 55	. 76	1.48	1.69	. 72	. 93	1.82	1.44	1.14	1.01	. 51	. 63	. 00	20.30
(2)	. 15	. 15	. 03	. 02	. 03	. 03	. 07	. 08	. 03	. 04	. 08	. 07	. 05	. 05	. 02	. 03	. 00	. 93
4.1-5.0	66	35	8	4	5	10	26	53	13	26	44	32	17	17	19	16	0	391
(1)	2.79	1.48	. 34	. 17	. 21	. 42	1.10	2.24	. 55	1.10	1.86	1.35	. 72	. 72	. 80	. 68	. 00	16.53
(2)	. 13	. 07	. 02	. 01	. 01	. 02	. 05	. 10	. 03	. 05	. 09	. 06	. 03	. 03	. 04	. 03	. 00	. 76
5.1-6.0	41	22	8	1	3	1	21	39	6	32	46	21	15	19	25	17	0	317
(1)	1.73	. 93	. 34	. 04	. 13	. 04	. 89	1.65	. 25	1.35	1.95	. 89	. 63	. 80	1.06	. 72	. 00	13.40
(2)	. 08	. 04	. 02	. 00	. 01	. 00	. 04	. 08	. 01	. 06	. 09	. 04	. 03	. 04	. 05	. 03	. 00	. 61
6.1-8.0	41	18	16	3	2	3	6	26	6	31	46	17	22	34	52	32	0	355
(1)	1.73	. 76	. 68	. 13	. 08	. 13	. 25	1.10	. 25	1.31	1.95	. 72	. 93	1.44	2.20	1.35	. 00	15.01
(2)	. 08	. 03	. 03	. 01	. 00	. 01	. 01	. 05	. 01	. 06	. 09	. 03	. 04	. 07	. 10	. 06	. 00	. 69
8.1-10.0	24	9	9	3	0	0	1	15	3	16	10	1	6	32	36	14	0	179
(1)	1.01	. 38	. 38	. 13	. 00	. 00	. 04	. 63	. 13	. 68	. 42	. 04	. 25	1.35	1.52	. 59	. 00	7.57
(2)	. 05	. 02	. 02	. 01	. 00	. 00	. 00	. 03	. 01	. 03	. 02	. 00	. 01	. 06	. 07	. 03	. 00	. 35
10.1-89.5	5	7	2	1	0	0	0	3	3	0	2	2	1	11	16	5	0	58
(1)	. 21	. 30	. 08	. 04	. 00	. 00	. 00	. 13	. 13	. 00	. 08	. 08	. 04	. 47	. 68	. 21	. 00	2.45
(2)	. 01	. 01	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 00	. 00	. 00	. 00	. 02	. 03	. 01	. 00	. 11
ALL SPEEDS	320	259	115	76	95	73	117	194	64	151	223	145	104	147	169	113	0	2365
(1)	13.53	10.95	4.86	3.21	4.02	3.09	4.95	8.20	2.71	6.38	9.43	6.13	4.40	6.22	7.15	4.78	. 00	100.00
(2)	. 62	. 50	. 22	. 15	. 18	. 14	. 23	. 38	. 12	. 29	. 43	. 28	. 20	. 28	. 33	. 22	. 00	4.58

P
$\stackrel{0}{2}$
i

פᄏIכヨIOपd IHפוy

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 5.03

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	1	1	1	0	0	2	1	1	1	1	0	3	0	1	0	0	0	13
(1)	. 04	. 04	. 04	. 00	. 00	. 08	. 04	. 04	. 04	. 04	. 00	. 12	. 00	. 04	. 00	. 00	. 00	. 50
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 03
1.1-1.5	3	7	8	8	7	1	2	1	2	1	4	4	2	1	3	3	0	57
(1)	. 12	. 27	. 31	. 31	. 27	. 04	. 08	. 04	. 08	. 04	. 15	. 15	. 08	. 04	. 12	. 12	. 00	2.19
(2)	. 01	. 01	. 02	. 02	. 01	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 00	. 00	. 01	. 01	. 00	. 11
1.6-2.0	14	30	21	26	26	10	6	6	2	3	15	10	7	5	4	3	0	188
(1)	. 54	1.15	. 81	1.00	1.00	. 38	. 23	. 23	. 08	. 12	. 58	. 38	. 27	. 19	. 15	. 12	. 00	7.24
(2)	. 03	. 06	. 04	. 05	. 05	. 02	. 01	. 01	. 00	. 01	. 03	. 02	. 01	. 01	. 01	. 01	. 00	. 36
2.1-3.0	60	91	46	54	48	37	31	25	18	13	35	22	17	17	4	10	0	528
(1)	2.31	3.50	1.77	2.08	1.85	1.42	1.19	. 96	. 69	. 50	1.35	. 85	. 65	. 65	. 15	. 38	. 00	20.32
(2)	. 12	. 18	. 09	. 10	. 09	. 07	. 06	. 05	. 03	. 03	. 07	. 04	. 03	. 03	. 01	. 02	. 00	1.02
3.1-4.0	94	84	24	13	15	23	26	37	21	20	46	44	22	17	26	28	0	540
(1)	3.62	3.23	. 92	. 50	. 58	. 89	1.00	1.42	. 81	. 77	1.77	1.69	. 85	. 65	1.00	1.08	. 00	20.79
(2)	. 18	. 16	. 05	. 03	. 03	. 04	. 05	. 07	. 04	. 04	. 09	. 09	. 04	. 03	. 05	. 05	. 00	1.05
4.1-5.0	55	41	10	3	9	7	16	64	14	32	42	33	20	18	30	29	0	423
(1)	2.12	1.58	. 38	. 12	. 35	. 27	. 62	2.46	. 54	1.23	1.62	1.27	. 77	. 69	1.15	1.12	. 00	16.28
(2)	. 11	. 08	. 02	. 01	. 02	. 01	. 03	. 12	. 03	. 06	. 08	. 06	. 04	. 03	. 06	. 06	. 00	. 82
5.1-6.0	41	23	7	6	1	2	4	38	9	22	36	23	15	18	21	21	0	287
(1)	1.58	. 89	. 27	. 23	. 04	. 08	. 15	1.46	. 35	. 85	1.39	. 89	. 58	. 69	. 81	. 81	. 00	11.05
(2)	. 08	. 04	. 01	. 01	. 00	. 00	. 01	. 07	. 02	. 04	. 07	. 04	. 03	. 03	. 04	. 04	. 00	. 56
6.1-8.0	34	26	18	5	1	2	8	32	9	31	34	18	19	29	50	26	0	342
(1)	1.31	1.00	. 69	. 19	. 04	. 08	. 31	1.23	. 35	1.19	1.31	. 69	. 73	1.12	1.92	1.00	. 00	13.16
(2)	. 07	. 05	. 03	. 01	. 00	. 00	. 02	. 06	. 02	. 06	. 07	. 03	. 04	. 06	. 10	. 05	. 00	. 66
8.1-10.0	13	23	9	3	1	0	1	9	2	8	15	2	5	28	29	7	0	155
(1)	. 50	. 89	. 35	. 12	. 04	. 00	. 04	. 35	. 08	. 31	. 58	. 08	. 19	1.08	1.12	. 27	. 00	5.97
(2)	. 03	. 04	. 02	. 01	. 00	. 00	. 00	. 02	. 00	. 02	. 03	. 00	. 01	. 05	. 06	. 01	. 00	. 30
10.1-89.5	10	7	6	2	0	0	0	0	0	2	3	0	2	10	22	1	0	65
(1)	. 38	. 27	. 23	. 08	. 00	. 00	. 00	. 00	. 00	. 08	. 12	. 00	. 08	. 38	. 85	. 04	. 00	2.50
(2)	. 02	. 01	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 02	. 04	. 00	. 00	. 13
ALL SPEEDS	325	333	150	120	108	84	95	213	78	133	230	159	109	144	189	128	0	2598
(1)	12.51	12.82	5.77	4.62	4.16	3.23	3.66	8.20	3.00	5.12	8.85	6.12	4.20	5.54	7.27	4.93	. 00	100.00
(2)	. 63	. 64	. 29	. 23	. 21	. 16	. 18	. 41	. 15	. 26	. 45	. 31	. 21	. 28	. 37	. 25	. 00	5.03

-^əу

IقIכヨ

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

Table 2.3-17—\{CCNPP 197 ft (60 m) Annual JFD\}

(Page 4 of 8)

CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 34.33

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2
	. 00	. 01	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-$	0	2	0	0	1	0	0	1	0	0	0	0	1	2	1	1	0	9
	. 00	. 01	. 00	. 00	. 01	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 01	. 01	. 01	. 01	. 00	. 05
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
. $5-1.0$	18	18	25	20	25	12	10	12	10	12	10	9	8	10	6	16	0	221
(1)	. 10	. 10	. 14	. 11	. 14	. 07	. 06	. 07	. 06	. 07	. 06	. 05	. 05	. 06	. 03	. 09	. 00	1.25
	. 03	. 03	. 05	. 04	. 05	. 02	. 02	. 02	. 02	. 02	. 02	. 02	. 02	. 02	. 01	. 03	. 00	. 43
	40	42	42	49	54	33	23	14	15	16	18	21	21	15	18	20	0	441
$\begin{array}{r} 1.1-1.5 \\ (1) \end{array}$. 23	. 24	. 24	. 28	. 30	. 19	. 13	. 08	. 08	. 09	. 10	. 12	. 12	. 08	. 10	. 11	. 00	2.49
(2)	. 08	. 08	. 08	. 09	. 10	. 06	. 04	. 03	. 03	. 03	. 03	. 04	. 04	. 03	. 03	. 04	. 00	. 85
	63	96	66	84	109	57	35	20	28	17	48	32	28	24	27	46	0	780
(1)	. 36	. 54	. 37	. 47	. 61	. 32	. 20	. 11	. 16	. 10	. 27	. 18	. 16	. 14	. 15	. 26	. 00	4.40
2.1- 3.0	. 12	. 19	. 13	. 16	. 21	. 11	. 07	. 04	. 05	. 03	. 09	. 06	. 05	. 05	. 05	. 09	. 00	1.51
	261	294	165	226	232	132	142	147	98	98	91	95	71	52	82	86	0	2272
(1)	1.47	1.66	. 93	1.28	1.31	. 74	. 80	. 83	. 55	. 55	. 51	. 54	. 40	. 29	. 46	. 49	. 00	12.82
3.1-4.0	. 51	. 57	. 32	. 44	. 45	. 26	. 28	. 28	. 19	. 19	. 18	. 18	. 14	. 10	. 16	. 17	. 00	4.40
	247	242	158	261	209	175	175	210	152	109	146	123	82	94	125	176	0	2684
(1)	1.39	1.37	. 89	1.47	1.18	. 99	. 99	1.18	. 86	. 61	. 82	. 69	. 46	. 53	. 71	. 99	. 00	15.14
$\begin{array}{r} (2) \\ 4.1-5.0 \end{array}$. 48	. 47	. 31	. 51	. 40	. 34	. 34	. 41	. 29	. 21	. 28	. 24	. 16	. 18	. 24	. 34	. 00	5.20
	248	201	224	259	193	115	154	284	135	138	135	114	66	84	160	223	0	2733
(1)	1.40	1.13	1.26	1.46	1.09	. 65	. 87	1.60	. 76	. 78	. 76	. 64	. 37	. 47	. 90	1.26	. 00	15.42
5.1- 6.0	. 48	. 39	. 43	. 50	. 37	. 22	. 30	. 55	. 26	. 27	. 26	. 22	. 13	. 16	. 31	. 43	. 00	5.29
	224	215	241	200	83	69	101	264	87	114	141	107	57	93	239	286	0	2521
(1)	1.26	1.21	1.36	1.13	. 47	. 39	. 57	1.49	. 49	. 64	. 80	. 60	. 32	. 52	1.35	1.61	. 00	14.22
6.1- $\begin{array}{r}(2) \\ 8.0\end{array}$. 43	. 42	. 47	. 39	. 16	. 13	. 20	. 51	. 17	. 22	. 27	. 21	. 11	. 18	. 46	. 55	. 00	4.88
	406	430	377	194	62	41	82	283	105	151	264	106	68	189	439	434	0	3631
6.1- 8.0	2.29	2.43	2.13	1.09	. 35	. 23	. 46	1.60	. 59	. 85	1.49	. 60	. 38	1.07	2.48	2.45	. 00	20.49
$\begin{array}{r} (2) \\ 8.1-10.0 \end{array}$. 79	. 83	. 73	. 38	. 12	. 08	. 16	. 55	. 20	. 29	. 51	. 21	. 13	. 37	. 85	. 84	. 00	7.03
	278	302	215	46	3	3	21	97	36	71	103	12	23	139	217	148	0	1714
(1)	1.57	1.70	1.21	. 26	. 02	. 02	. 12	. 55	. 20	. 40	. 58	. 07	. 13	. 78	1.22	. 84	. 00	9.67
$10.1-89.5$. 54	. 58	. 42	. 09	. 01	. 01	. 04	. 19	. 07	. 14	. 20	. 02	. 04	. 27	. 42	. 29	. 00	3.32
	148	186	94	17	2	2	7	25	10	20	11	7	11	70	68	38	0	716
$10.1-89.5$ (1)	. 84	1.05	. 53	. 10	. 01	. 01	. 04	. 14	. 06	. 11	. 06	. 04	. 06	. 39	. 38	. 21	. 00	4.04
(2)	. 29	. 36	. 18	. 03	. 00	. 00	. 01	. 05	. 02	. 04	. 02	. 01	. 02	. 14	. 13	. 07	. 00	1.39
	1933	2029	1607	1356	973	640	750	1357	676	746	967	626	436	772	1382	1474	0	17724
ALL SPEEDS ${ }^{\text {(1) }}$	10.91	11.45	9.07	7.65	5.49	3.61	4.23	7.66	3.81	4.21	5.46	3.53	2.46	4.36	7.80	8.32	. 00	100.00
	3.74	3.93	3.11	2.63	1.88	1.24	1.45	2.63	1.31	1.44	1.87	1.21	. 84	1.50	2.68	2.85	. 00	34.33
(1) = PERCENT	OF ALL	GOOD	OBSERV	TIONS	FOR	IS PA												

P
$\stackrel{0}{2}$
i

OIכוכוּ

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

Table 2.3-17—\{CCNPP 197 ft (60 m) Annual JFD\}
(Page 5 of 8)
CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 26.79

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) = 10.32

								IND DI	IRECTIO	ON FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 06
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01
. $2-.4$	2	1	0	0	0	1	1	1	1	0	1	1	0	0	0	0	0	9
(1)	. 04	. 02	. 00	. 00	. 00	. 02	. 02	. 02	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 17
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
.5-1.0	6	5	6	10	10	12	7	8	6	10	10	5	6	5	7	5	0	118
(1)	. 11	. 09	. 11	. 19	. 19	. 23	. 13	. 15	. 11	. 19	. 19	. 09	. 11	. 09	. 13	. 09	. 00	2.21
(2)	. 01	. 01	. 01	. 02	. 02	. 02	. 01	. 02	. 01	. 02	. 02	. 01	. 01	. 01	. 01	. 01	. 00	. 23
1.1-1.5	6	9	8	7	15	5	8	12	11	7	6	2	9	9	9	8	0	131
(1)	. 11	. 17	. 15	. 13	. 28	. 09	. 15	. 23	. 21	. 13	. 11	. 04	. 17	. 17	. 17	. 15	. 00	2.46
(2)	. 01	. 02	. 02	. 01	. 03	. 01	. 02	. 02	. 02	. 01	. 01	. 00	. 02	. 02	. 02	. 02	. 00	. 25
1.6-2.0	7	6	11	14	16	13	17	10	12	14	12	11	9	10	10	11	0	183
(1)	. 13	. 11	. 21	. 26	. 30	. 24	. 32	. 19	. 23	. 26	. 23	. 21	. 17	. 19	. 19	. 21	. 00	3.43
(2)	. 01	. 01	. 02	. 03	. 03	. 03	. 03	. 02	. 02	. 03	. 02	. 02	. 02	. 02	. 02	. 02	. 00	. 35
2.1-3.0	44	36	27	22	28	23	25	31	40	40	37	31	30	44	20	35	0	513
(1)	. 83	. 68	. 51	. 41	. 53	. 43	. 47	. 58	. 75	. 75	. 69	. 58	. 56	. 83	. 38	. 66	. 00	9.63
(2)	. 09	. 07	. 05	. 04	. 05	. 04	. 05	. 06	. 08	. 08	. 07	. 06	. 06	. 09	. 04	. 07	. 00	. 99
3.1-4.0	40	20	25	16	16	25	46	50	90	80	81	65	53	49	48	49	0	753
(1)	. 75	. 38	. 47	. 30	. 30	. 47	. 86	. 94	1.69	1.50	1.52	1.22	. 99	. 92	. 90	. 92	. 00	14.13
(2)	. 08	. 04	. 05	. 03	. 03	. 05	. 09	. 10	. 17	. 15	. 16	. 13	. 10	. 09	. 09	. 09	. 00	1.46
4.1-5.0	38	20	9	5	4	9	34	83	135	139	125	96	90	86	80	90	0	1043
(1)	. 71	. 38	. 17	. 09	. 08	. 17	. 64	1.56	2.53	2.61	2.35	1.80	1.69	1.61	1.50	1.69	. 00	19.57
(2)	. 07	. 04	. 02	. 01	. 01	. 02	. 07	. 16	. 26	. 27	. 24	. 19	. 17	. 17	. 15	. 17	. 00	2.02
5.1-6.0	15	9	4	3	0	3	23	92	243	226	147	105	101	95	111	69	0	1246
(1)	. 28	. 17	. 08	. 06	. 00	. 06	. 43	1.73	4.56	4.24	2.76	1.97	1.90	1.78	2.08	1.29	. 00	23.38
(2)	. 03	. 02	. 01	. 01	. 00	. 01	. 04	. 18	. 47	. 44	. 28	. 20	. 20	. 18	. 21	. 13	. 00	2.41
6.1-8.0	10	12	10	8	3	1	8	61	203	317	252	115	49	54	125	18	0	1246
(1)	. 19	. 23	. 19	. 15	. 06	. 02	. 15	1.14	3.81	5.95	4.73	2.16	. 92	1.01	2.35	. 34	. 00	23.38
(2)	. 02	. 02	. 02	. 02	. 01	. 00	. 02	. 12	. 39	. 61	. 49	. 22	. 09	. 10	. 24	. 03	. 00	2.41
8.1-10.0	5	2	1	3	0	0	0	0	5	24	30	2	1	1	1	0	0	75
(1)	. 09	. 04	. 02	. 06	. 00	. 00	. 00	. 00	. 09	. 45	. 56	. 04	. 02	. 02	. 02	. 00	. 00	1.41
(2)	. 01	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 01	. 05	. 06	. 00	. 00	. 00	. 00	. 00	. 00	. 15
10.1-89.5	4	3	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	9
(1)	. 08	. 06	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 17
(2)	. 01	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
ALL SPEEDS	177	123	101	89	92	93	169	348	746	858	702	434	348	353	411	285	0	5329
(1)	3.32	2.31	1.90	1.67	1.73	1.75	3.17	6.53	14.00	16.10	13.17	8.14	6.53	6.62	7.71	5.35	. 00	100.00
(2)	. 34	. 24	. 20	. 17	. 18	. 18	. 33	. 67	1.44	1.66	1.36	. 84	. 67	. 68	. 80	. 55	. 00	10.32

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
ग्0
$\stackrel{N}{i}$
i

Table 2.3-17—\{CCNPP 197 ft (60 m) Annual JFD\}

(Page 7 of 8)

CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 7.20

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
ग्0
$\stackrel{0}{2}$
i

Table 2.3-17—\{CCNPP 197 ft (60 m) Annual JFD $\}$
(Page 8 of 8)
CC JANOO-DECO5 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

ग्0
$\stackrel{0}{2}$
i
CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = Percent of all good observations for this period

CC JANUARY MET DATA JOINT	FREQUENCY DISTRIBUTION	(60-METER TOWER)	
33.0 FT WIND DATA	STABILITY CLASS B	CLASS FREQUENCY	(PERCENT) $=3.36$

33.0 FT WIND DATA STABILITY CLASS B WIND DIRECTION FROM

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

| CC JANUARY MET DATA JOINT | FREQUENCY DISTRIBUTION | (60 -METER TOWER) |
| :--- | :---: | ---: | :---: |
| 33.0 FT WIND DATA | STABILITY CLASS C | CLASS FREQUENCY (PERCENT) $=4.20$ |

P
$\stackrel{0}{2}$
i

Table 2.3-18—\{CCNPP 33 ft (10 m) January JFD (2000-2005)\} (Page 4 of 8)

CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION	（60－METER TOWER）	
33．0 FT WIND DATA	STABILITY CLASS E	CLASS FREQUENCY（PERCENT）$=31.35$

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT ． 2	1	0	0	0	0	0	1	2	0	1	0	0	0	1	1	0	0	7
（1）	． 07	． 00	． 00	． 00	． 00	． 00	． 07	． 15	． 00	． 07	． 00	． 00	． 00	． 07	． 07	． 00	． 00	． 52
（2）	． 02	． 00	． 00	． 00	． 00	． 00	． 02	． 05	． 00	． 02	． 00	． 00	． 00	． 02	． 02	． 00	． 00	． 16
． $2-.4$	0	1	1	0	0	0	1	1	0	0	0	1	1	0	1	0	0	7
（1）	． 00	． 07	． 07	． 00	． 00	． 00	． 07	． 07	． 00	． 00	． 00	． 07	． 07	． 00	． 07	． 00	． 00	． 52
（2）	． 00	． 02	． 02	． 00	． 00	． 00	． 02	． 02	． 00	． 00	． 00	． 02	． 02	． 00	． 02	． 00	． 00	． 16
． $5-1.0$	7	2	5	6	6	6	7	6	9	6	5	6	2	1	4	6	0	84
（1）	． 52	． 15	． 37	． 45	． 45	． 45	． 52	． 45	． 67	． 45	． 37	． 45	． 15	． 07	． 30	． 45	． 00	6.25
（2）	． 16	． 05	． 12	． 14	． 14	． 14	． 16	． 14	． 21	． 14	． 12	． 14	． 05	． 02	． 09	． 14	． 00	1.96
1．1－1．5	8	11	7	6	3	5	5	6	6	11	9	11	8	11	17	8	0	132
（1）	． 59	． 82	． 52	． 45	． 22	． 37	． 37	． 45	． 45	． 82	． 67	． 82	． 59	． 82	1.26	． 59	． 00	9.81
（2）	． 19	． 26	． 16	． 14	． 07	． 12	． 12	． 14	． 14	． 26	． 21	． 26	． 19	． 26	． 40	． 19	． 00	3.08
1．6－2．0	13	17	0	6	2	1	5	12	14	11	10	12	21	21	26	13	0	184
（1）	． 97	1.26	． 00	． 45	． 15	． 07	． 37	． 89	1.04	． 82	． 74	． 89	1.56	1.56	1.93	． 97	． 00	13.68
（2）	． 30	． 40	． 00	． 14	． 05	． 02	． 12	． 28	． 33	． 26	． 23	． 28	． 49	． 49	． 61	． 30	． 00	4.29
2．1－3．0	24	23	5	7	2	7	7	12	34	34	38	19	38	35	63	32	0	380
（1）	1.78	1.71	． 37	． 52	． 15	． 52	． 52	． 89	2.53	2.53	2.83	1.41	2.83	2.60	4.68	2.38	． 00	28.25
（2）	． 56	． 54	． 12	． 16	． 05	． 16	． 16	． 28	． 79	． 79	． 89	． 44	． 89	． 82	1.47	． 75	． 00	8.86
3．1－4．0	14	11	6	4	0	2	1	10	9	40	97	15	6	22	65	20	0	322
（1）	1.04	． 82	． 45	． 30	． 00	． 15	． 07	． 74	． 67	2.97	7.21	1.12	． 45	1.64	4.83	1.49	． 00	23.94
（2）	． 33	． 26	． 14	． 09	． 00	． 05	． 02	． 23	． 21	． 93	2.26	． 35	． 14	． 51	1.52	． 47	． 00	7.51
4．1－5．0	4	3	0	1	0	0	0	7	6	8	47	8	4	24	24	6	0	142
(1)	． 30	． 22	． 00	． 07	． 00	． 00	． 00	． 52	． 45	． 59	3.49	． 59	． 30	1.78	1.78	． 45	． 00	10.56
（2）	． 09	． 07	． 00	． 02	． 00	． 00	． 00	． 16	． 14	． 19	1.10	． 19	． 09	． 56	． 56	． 14	． 00	3.31
5．1－6．0	2	0	0	0	0	0	1	2	2	11	25	3	0	3	9	1	0	59
（1）	． 15	． 00	． 00	． 00	． 00	． 00	． 07	． 15	． 15	． 82	1.86	． 22	． 00	． 22	． 67	． 07	． 00	4.39
（2）	． 05	． 00	． 00	． 00	． 00	． 00	． 02	． 05	． 05	． 26	． 58	． 07	． 00	． 07	． 21	． 02	． 00	1.38
6．1－8．0	1	0	0	0	0	0	0	2	2	4	2	1	0	8	5	0	0	25
（1）	． 07	． 00	． 00	． 00	． 00	． 00	． 00	． 15	． 15	． 30	． 15	． 07	． 00	． 59	． 37	． 00	． 00	1.86
（2）	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 05	． 05	． 09	． 05	． 02	． 00	． 19	． 12	． 00	． 00	． 58
8．1－10．0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07	． 07	． 00	． 00	． 15
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 02	． 00	． 00	． 05
10．1－89．5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07	． 00	． 00	． 00	． 07
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 02
ALL SPEEDS	74	68	24	30	13	21	28	60	82	126	233	76	80	128	216	86	0	1345
（1）	5.50	5.06	1.78	2.23	． 97	1.56	2.08	4.46	6.10	9.37	17.32	5.65	5.95	9.52	16.06	6.39	.00	100.00
（2）	1.72	1.59	． 56	． 70	． 30	． 49	． 65	1.40	1.91	2.94	5.43	1.77	1.86	2.98	5.03	2.00	． 00	31.35

CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION	$(60-M E T E R ~ T O W E R)$		
33.0 FT WIND DATA	STABILITY CLASS F	CLASS FREQUENCY	(PERCENT) $=8$

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	0	0	0	1	0	0	0	0	1	2	1	0	0	1	0	0	6
(1)	. 00	. 00	. 00	. 00	. 26	. 00	. 00	. 00	. 00	. 26	. 52	. 26	. 00	. 00	. 26	. 00	. 00	1.57
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 05	. 02	. 00	. 00	. 02	. 00	. 00	. 14
. $2-.4$	0	0	0	0	1	0	1	0	0	2	1	0	0	0	0	0	0	5
(1)	. 00	. 00	. 00	. 00	. 26	. 00	. 26	. 00	. 00	. 52	. 26	. 00	. 00	. 00	. 00	. 00	. 00	1.31
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 12
.5-1.0	1	2	6	3	3	2	1	1	4	5	7	13	4	5	3	1	0	61
(1)	. 26	. 52	1.57	. 79	. 79	. 52	. 26	. 26	1.05	1.31	1.84	3.41	1.05	1.31	. 79	. 26	. 00	16.01
(2)	. 02	. 05	. 14	. 07	. 07	. 05	. 02	. 02	. 09	. 12	. 16	. 30	. 09	. 12	. 07	. 02	. 00	1.42
1.1-1.5	2	2	3	4	2	0	1	2	9	8	9	11	11	5	3	1	0	73
(1)	. 52	. 52	. 79	1.05	. 52	. 00	. 26	. 52	2.36	2.10	2.36	2.89	2.89	1.31	. 79	. 26	. 00	19.16
(2)	. 05	. 05	. 07	. 09	. 05	. 00	. 02	. 05	. 21	. 19	. 21	. 26	. 26	. 12	. 07	. 02	. 00	1.70
1.6-2.0	1	1	1	1	0	0	4	3	12	22	12	10	6	5	1	1	0	80
(1)	. 26	. 26	. 26	. 26	. 00	. 00	1.05	. 79	3.15	5.77	3.15	2.62	1.57	1.31	. 26	. 26	. 00	21.00
(2)	. 02	. 02	. 02	. 02	. 00	. 00	. 09	. 07	. 28	. 51	. 28	. 23	. 14	. 12	. 02	. 02	. 00	1.86
2.1-3.0	0	4	0	2	0	0	1	4	7	32	34	13	10	6	6	0	0	119
(1)	. 00	1.05	. 00	. 52	. 00	. 00	. 26	1.05	1.84	8.40	8.92	3.41	2.62	1.57	1.57	. 00	. 00	31.23
(2)	. 00	. 09	. 00	. 05	. 00	. 00	. 02	. 09	. 16	. 75	. 79	. 30	. 23	. 14	. 14	. 00	. 00	2.77
$3.1-4.0$	0	2	0	1	0	0	0	0	0	6	12	2	1	0	1	0	0	25
(1)	. 00	. 52	. 00	. 26	. 00	. 00	. 00	. 00	. 00	1.57	3.15	. 52	. 26	. 00	. 26	. 00	. 00	6.56
(2)	. 00	. 05	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 14	. 28	. 05	. 02	. 00	. 02	. 00	. 00	. 58
4.1-5.0	1	3	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	6
(1)	. 26	. 79	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 26	. 26	. 00	. 00	. 00	. 00	. 00	. 00	1.57
(2)	. 02	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 14
5.1-6.0	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
(1)	1.05	. 26	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.31
(2)	. 09	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 12
$6.1-8.0$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 26	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 26
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	10	15	10	11	7	2	8	10	32	77	78	50	32	21	15	3	0	381
(1)	2.62	3.94	2.62	2.89	1.84	. 52	2.10	2.62	8.40	20.21	20.47	13.12	8.40	5.51	3.94	. 79	. 00	100.00
(2)	. 23	. 35	. 23	. 26	. 16	. 05	. 19	. 23	. 75	1.79	1.82	1.17	. 75	. 49	. 35	. 07	. 00	8.88

CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION	$(60-M E T E R ~ T O W E R)$		
33.0 FT WIND DATA	STABILITY CLASS G	CLASS FREQUENCY	(PERCENT) $=3.50$

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE			E					SSW					NW			TOTAL
LT . 2	0	0	0	0	0	0	0	0	1	0	2	0	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 67	. 00	1.33	. 00	. 00	. 00	. 00	. 00	. 00	2.00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 07
. $2-.4$	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 67	. 00	. 67	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.33
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
. $5-1.0$	1	0	1	1	0	0	0	4	4	4	1	2	2	2	1	0	0	23
(1)	. 67	. 00	. 67	. 67	. 00	. 00	. 00	2.67	2.67	2.67	. 67	1.33	1.33	1.33	. 67	. 00	. 00	15.33
(2)	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 09	. 09	. 09	. 02	. 05	. 05	. 05	. 02	. 00	. 00	. 54
1.1-1.5	1	1	0	5	0	1	0	1	4	4	5	3	2	2	1	0	0	30
(1)	. 67	. 67	. 00	3.33	. 00	. 67	. 00	. 67	2.67	2.67	3.33	2.00	1.33	1.33	. 67	. 00	. 00	20.00
(2)	. 02	. 02	. 00	. 12	. 00	. 02	. 00	. 02	. 09	. 09	. 12	. 07	. 05	. 05	. 02	. 00	. 00	. 70
1.6-2.0	0	1	0	2	0	4	1	4	6	16	10	4	1	3	0	1	0	53
(1)	. 00	. 67	. 00	1.33	. 00	2.67	. 67	2.67	4.00	10.67	6.67	2.67	. 67	2.00	. 00	. 67	. 00	35.33
(2)	. 00	. 02	. 00	. 05	. 00	. 09	. 02	. 09	. 14	. 37	. 23	. 09	. 02	. 07	. 00	. 02	. 00	1.24
2.1-3.0	0	0	2	0	0	1	0	1	3	10	17	2	0	0	1	0	0	37
(1)	. 00	. 00	1.33	. 00	. 00	. 67	. 00	. 67	2.00	6.67	11.33	1.33	. 00	. 00	. 67	. 00	. 00	24.67
(2)	. 00	. 00	. 05	. 00	. 00	. 02	. 00	. 02	. 07	. 23	. 40	. 05	. 00	. 00	. 02	. 00	. 00	. 86
3.1-4.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 67	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 67
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
4.1-5.0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 67	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 67
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
5.1-6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
6.1-8.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	2	3	3	8	0	7	1	12	18	34	35	11	5	7	3	1	0	150
(1)	1.33	2.00	2.00	5.33	. 00	4.67	. 67	8.00	12.00	22.67	23.33	7.33	3.33	4.67	2.00	. 67	. 00	100.00
(2)	. 05	. 07	. 07	. 19	. 00	. 16	. 02	. 28	. 42	. 79	. 82	. 26	. 12	. 16	. 07	. 02	. 00	3.50

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-18—\{CCNPP 33 ft (10 m) January JFD (2000-2005)\} (Page 8 of 8)

Abstract

CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER) 33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	EnE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	1	0	0	0	1	0	1	2	1	3	4	1	0	1	2	0	0	17
(1)	. 02	. 00	. 00	. 00	. 02	. 00	. 02	. 05	. 02	. 07	. 09	. 02	. 00	. 02	. 05	. 00	. 00	. 40
(2)	. 02	. 00	. 00	. 00	. 02	. 00	. 02	. 05	. 02	. 07	. 09	. 02	. 00	. 02	. 05	. 00	. 00	. 40
. $2-.4$	0	1	1	0	1	1	2	2	0	2	1	1	1	0	1	0	0	14
(1)	. 00	. 02	. 02	. 00	. 02	. 02	. 05	. 05	. 00	. 05	. 02	. 02	. 02	. 00	. 02	. 00	. 00	. 33
(2)	. 00	. 02	. 02	. 00	. 02	. 02	. 05	. 05	. 00	. 05	. 02	. 02	. 02	. 00	. 02	. 00	. 00	. 33
.5-1.0	9	7	16	11	11	10	14	13	19	21	18	25	10	13	12	9	0	218
(1)	. 21	. 16	. 37	. 26	. 26	. 23	. 33	. 30	. 44	. 49	. 42	. 58	. 23	. 30	. 28	. 21	. 00	5.08
(2)	. 21	. 16	. 37	. 26	. 26	. 23	. 33	. 30	. 44	. 49	. 42	. 58	. 23	. 30	. 28	. 21	. 00	5.08
1.1-1.5	14	24	19	26	13	10	12	14	24	29	32	29	26	19	28	13	0	332
(1)	. 33	. 56	. 44	. 61	. 30	. 23	. 28	. 33	. 56	. 68	. 75	. 68	. 61	. 44	. 65	. 30	. 00	7.74
(2)	. 33	. 56	. 44	. 61	. 30	. 23	. 28	. 33	. 56	. 68	. 75	. 68	. 61	. 44	. 65	. 30	. 00	7.74
1.6-2.0	31	35	15	27	12	13	22	30	42	66	39	36	42	34	36	18	0	498
(1)	. 72	. 82	. 35	. 63	. 28	. 30	. 51	. 70	. 98	1.54	. 91	. 84	. 98	. 79	. 84	. 42	. 00	11.61
(2)	. 72	. 82	. 35	. 63	. 28	. 30	. 51	. 70	. 98	1.54	. 91	. 84	. 98	. 79	. 84	. 42	. 00	11.61
2.1-3.0	74	79	36	39	21	17	25	34	59	98	126	79	76	69	121	67	0	1020
(1)	1.72	1.84	. 84	. 91	. 49	. 40	. 58	. 79	1.38	2.28	2.94	1.84	1.77	1.61	2.82	1.56	. 00	23.78
(2)	1.72	1.84	. 84	. 91	. 49	. 40	. 58	. 79	1.38	2.28	2.94	1.84	1.77	1.61	2.82	1.56	. 00	23.78
3.1-4.0	81	60	20	16	2	4	13	43	17	81	167	73	38	62	159	116	0	952
(1)	1.89	1.40	. 47	. 37	. 05	. 09	. 30	1.00	. 40	1.89	3.89	1.70	. 89	1.45	3.71	2.70	. 00	22.19
(2)	1.89	1.40	. 47	. 37	. 05	. 09	. 30	1.00	. 40	1.89	3.89	1.70	. 89	1.45	3.71	2.70	. 00	22.19
4.1-5.0	82	65	18	5	0	1	2	17	15	35	94	19	32	83	118	80	0	666
(1)	1.91	1.52	. 42	. 12	. 00	. 02	. 05	. 40	. 35	. 82	2.19	. 44	. 75	1.93	2.75	1.86	. 00	15.52
(2)	1.91	1.52	. 42	. 12	. 00	. 02	. 05	. 40	. 35	. 82	2.19	. 44	. 75	1.93	2.75	1.86	. 00	15.52
5.1-6.0	52	23	9	0	0	0	2	4	5	16	42	6	8	45	105	41	0	358
(1)	1.21	. 54	. 21	. 00	. 00	. 00	. 05	. 09	. 12	. 37	. 98	. 14	. 19	1.05	2.45	. 96	. 00	8.34
(2)	1.21	. 54	. 21	. 00	. 00	. 00	. 05	. 09	. 12	. 37	. 98	. 14	. 19	1.05	2.45	. 96	. 00	8.34
6.1-8.0	32	3	0	0	0	0	0	2	2	13	6	3	3	46	68	12	0	190
(1)	. 75	. 07	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 30	. 14	. 07	. 07	1.07	1.59	. 28	. 00	4.43
(2)	. 75	. 07	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 30	. 14	. 07	. 07	1.07	1.59	. 28	. 00	4.43
8.1-10.0	5	1	0	0	0	0	0	0	0	0	0	0	2	5	4	0	0	17
(1)	. 12	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 12	. 09	. 00	. 00	. 40
(2)	. 12	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 12	. 09	. 00	. 00	. 40
10.1-89.5	4	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	8
(1)	. 09	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 19
(2)	. 09	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 19
ALL SPEEDS	385	300	134	124	61	56	93	161	184	364	529	272	238	379	654	356	0	4290
(1)	8.97	6.99	3.12	2.89	1.42	1.31	2.17	3.75	4.29	8.48	12.33	6.34	5.55	8.83	15.24	8.30	. 00	100.00
(2)	8.97	6.99	3.12	2.89	1.42	1.31	2.17	3.75	4.29	8.48	12.33	6.34	5.55	8.83	15.24	8.30	. 00	100.00

Table 2.3-19—\{CCNPP 33 ft (10 m) February JFD (2000-2005) \}

(Page 1 of 8)

CC FEBRUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 10.15

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC FEBRUARY MET DATA	JOINT	FREQUENCY DISTRIBUTION	（60－METER TOWER）
33．0 FT WIND DATA	STABILITY CLASS B	CLASS FREQUENCY	（PERCENT）$=$

								D	CT	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT ． 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
． $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
．5－1．0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
（1）	． 00	． 00	． 57	． 00	． 00	． 00	． 00	． 00	． 57	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	1.15
（2）	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 05
1．1－1．5	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2
（1）	． 57	． 00	． 00	． 00	． 57	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	1.15
（2）	． 02	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 05
1．6－2．0	1	1	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	6
（1）	． 57	． 57	． 00	． 00	． 00	． 57	． 00	． 00	． 57	． 00	． 57	． 57	． 00	． 00	． 00	． 00	． 00	3.45
（2）	． 02	． 02	． 00	． 00	． 00	． 02	． 00	． 00	． 02	． 00	． 02	． 02	． 00	． 00	． 00	． 00	． 00	． 15
2．1－3．0	5	5	4	7	3	0	0	2	2	1	3	4	3	1	1	2	0	43
（1）	2.87	2.87	2.30	4.02	1.72	． 00	． 00	1.15	1.15	． 57	1.72	2.30	1.72	． 57	． 57	1.15	． 00	24.71
（2）	． 12	． 12	． 10	． 17	． 07	． 00	． 00	． 05	． 05	． 02	． 07	． 10	． 07	． 02	． 02	． 05	． 00	1.06
$3.1-4.0$	10	3	4	0	2	0	1	5	1	2	5	3	2	1	2	0	0	41
（1）	5.75	1.72	2.30	． 00	1.15	． 00	． 57	2.87	． 57	1.15	2.87	1.72	1.15	． 57	1.15	． 00	． 00	23.56
（2）	． 25	． 07	． 10	． 00	． 05	． 00	． 02	． 12	． 02	． 05	． 12	． 07	． 05	． 02	． 05	． 00	． 00	1.01
4．1－5．0	8	0	2	0	0	0	0	0	2	6	4	7	2	1	5	3	0	40
（1）	4.60	． 00	1.15	． 00	． 00	． 00	． 00	． 00	1.15	3.45	2.30	4.02	1.15	． 57	2.87	1.72	． 00	22.99
（2）	． 20	． 00	． 05	． 00	． 00	． 00	． 00	． 00	． 05	． 15	． 10	． 17	． 05	． 02	． 12	． 07	． 00	． 99
5．1－6．0	9	1	1	0	0	0	0	1	0	1	2	0	3	1	11	2	0	32
（1）	5.17	． 57	． 57	． 00	． 00	． 00	． 00	． 57	． 00	． 57	1.15	． 00	1.72	． 57	6.32	1.15	． 00	18.39
（2）	． 22	． 02	． 02	． 00	． 00	． 00	． 00	． 02	． 00	． 02	． 05	． 00	． 07	． 02	． 27	． 05	． 00	． 79
$6.1-8.0$	0	0	0	0	0	0	0	0	0	0	1	1	0	3	2	1	0	8
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 57	． 57	． 00	1.72	1.15	． 57	． 00	4.60
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 02	． 00	． 07	． 05	． 02	． 00	． 20
8．1－10．0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
10．1－89．5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
ALL SPEEDS	34	10	12	7	6	1	1	8	7	10	16	16	10	7	21	8	0	174
（1）	19.54	5.75	6.90	4.02	3.45	． 57	． 57	4.60	4.02	5.75	9.20	9.20	5.75	4.02	12.07	4.60	． 00	100.00
（2）	． 84	． 25	． 30	． 17	． 15	． 02	． 02	． 20	． 17	． 25	． 40	． 40	． 25	． 17	． 52	． 20	． 00	4.31

ग्0
$\stackrel{0}{2}$
i
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

| CC FEBRUARY MET DATA JOINT | FREQUENCY DISTRIBUTION | $(60$-METER TOWER) |
| :--- | :--- | :--- | :--- | :--- |
| 33.0 FT WIND DATA | STABILITY CLASS C | CLASS FREQUENCY (PERCENT) $=3.94$ |

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 00	. 00	. 00	. 00	. 63
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02
1.1-1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 63	. 00	1.26
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 05
1.6-2.0	1	1	0	2	1	0	0	0	0	0	2	1	1	0	0	0	0	9
(1)	. 63	. 63	. 00	1.26	. 63	. 00	. 00	. 00	. 00	. 00	1.26	. 63	. 63	. 00	. 00	. 00	. 00	5.66
(2)	. 02	. 02	. 00	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 05	. 02	. 02	. 00	. 00	. 00	. 00	. 22
2.1-3.0	6	8	6	6	1	0	1	3	2	3	5	5	3	1	1	1	0	52
(1)	3.77	5.03	3.77	3.77	. 63	. 00	. 63	1.89	1.26	1.89	3.14	3.14	1.89	. 63	. 63	. 63	. 00	32.70
(2)	. 15	. 20	. 15	. 15	. 02	. 00	. 02	. 07	. 05	. 07	. 12	. 12	. 07	. 02	. 02	. 02	. 00	1.29
3.1-4.0	6	7	11	0	0	0	2	5	2	3	3	5	1	2	1	1	0	49
(1)	3.77	4.40	6.92	. 00	. 00	. 00	1.26	3.14	1.26	1.89	1.89	3.14	. 63	1.26	. 63	. 63	. 00	30.82
(2)	. 15	. 17	. 27	. 00	. 00	. 00	. 05	. 12	. 05	. 07	. 07	. 12	. 02	. 05	. 02	. 02	. 00	1.21
4.1-5.0	6	0	2	0	0	0	0	0	1	2	5	3	0	1	4	5	0	29
(1)	3.77	. 00	1.26	. 00	. 00	. 00	. 00	. 00	. 63	1.26	3.14	1.89	. 00	. 63	2.52	3.14	. 00	18.24
(2)	. 15	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 12	. 07	. 00	. 02	. 10	. 12	. 00	. 72
5.1-6.0	1	0	1	0	0	0	0	0	0	0	1	1	0	2	2	1	0	9
(1)	. 63	. 00	. 63	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 63	. 00	1.26	1.26	. 63	. 00	5.66
(2)	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 05	. 05	. 02	. 00	. 22
$6.1-8.0$	0	0	0	0	0	0	0	0	0	0	1	0	0	2	5	0	0	8
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 00	1.26	3.14	. 00	. 00	5.03
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 05	. 12	. 00	. 00	. 20
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	20	16	20	8	2	0	3	8	5	8	17	16	5	9	13	9	0	159
(1)	12.58	10.06	12.58	5.03	1.26	. 00	1.89	5.03	3.14	5.03	10.69	10.06	3.14	5.66	8.18	5.66	. 00	100.00
(2)	. 50	. 40	. 50	. 20	. 05	. 00	. 07	. 20	. 12	. 20	. 42	. 40	. 12	. 22	. 32	. 22	. 00	3.94
(1) = PERCENT	OF ALI	G GOOD	OBSERV	TIONS	FOR	IS PA												

P
$\stackrel{0}{2}$
i

Table 2.3-19—\{CCNPP 33 ft (10 m) February JFD (2000-2005)\}
(Page 4 of 8)
CC FEBRUARY MET DA
33.0 FT WIND DATA

CLASS FREQ

T
$\stackrel{0}{0}$
i
i

Table 2.3-19—\{CCNPP 33 ft (10 m) February JFD (2000-2005)\}
(Page 5 of 8)
CC FEBRUARY MET DA
33.0 FT WIND DATA

CLASS FREQ

CC FEBRUARY MET DATA JOINT	FREQUENCY DISTRIBUTION	$(60$-METER TOWER)	
33.0 FT WIND DATA	STABILITY CLASS F	CLASS FREQUENCY	(PERCENT) $=10.57$

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	1	0	1	0	0	1	0	0	0	1	1	0	0	0	0	0	5
(1)	. 00	. 23	. 00	. 23	. 00	. 00	. 23	. 00	. 00	. 00	. 23	. 23	. 00	. 00	. 00	. 00	. 00	1.17
(2)	. 00	. 02	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 12
. $2-.4$	0	0	0	0	2	1	1	1	0	2	1	0	1	0	0	2	0	11
(1)	. 00	. 00	. 00	. 00	. 47	. 23	. 23	. 23	. 00	. 47	. 23	. 00	. 23	. 00	. 00	. 47	. 00	2.58
(2)	. 00	. 00	. 00	. 00	. 05	. 02	. 02	. 02	. 00	. 05	. 02	. 00	. 02	. 00	. 00	. 05	. 00	. 27
. 5- 1.0	1	2	1	2	2	3	2	2	9	3	6	4	3	2	3	3	0	48
(1)	. 23	. 47	. 23	. 47	. 47	. 70	. 47	. 47	2.11	. 70	1.41	. 94	. 70	. 47	. 70	. 70	. 00	11.24
(2)	. 02	. 05	. 02	. 05	. 05	. 07	. 05	. 05	. 22	. 07	. 15	. 10	. 07	. 05	. 07	. 07	. 00	1.19
1.1-1.5	4	6	4	0	4	3	2	3	15	15	9	8	3	4	7	2	0	89
(1)	. 94	1.41	. 94	. 00	. 94	. 70	. 47	. 70	3.51	3.51	2.11	1.87	. 70	. 94	1.64	. 47	. 00	20.84
(2)	. 10	. 15	. 10	. 00	. 10	. 07	. 05	. 07	. 37	. 37	. 22	. 20	. 07	. 10	. 17	. 05	. 00	2.20
1.6-2.0	5	7	5	2	2	0	2	9	16	27	31	20	12	4	4	1	0	147
(1)	1.17	1.64	1.17	. 47	. 47	. 00	. 47	2.11	3.75	6.32	7.26	4.68	2.81	. 94	. 94	. 23	. 00	34.43
(2)	. 12	. 17	. 12	. 05	. 05	. 00	. 05	. 22	. 40	. 67	. 77	. 50	. 30	. 10	. 10	. 02	. 00	3.64
2.1-3.0	3	6	4	2	0	0	1	7	10	21	20	20	12	6	4	0	0	116
(1)	. 70	1.41	. 94	. 47	. 00	. 00	. 23	1.64	2.34	4.92	4.68	4.68	2.81	1.41	. 94	. 00	. 00	27.17
(2)	. 07	. 15	. 10	. 05	. 00	. 00	. 02	. 17	. 25	. 52	. 50	. 50	. 30	. 15	. 10	. 00	. 00	2.87
3.1-4.0	1	1	0	0	0	0	0	0	2	3	1	0	1	0	0	0	0	9
(1)	. 23	. 23	. 00	. 00	. 00	. 00	. 00	. 00	. 47	. 70	. 23	. 00	. 23	. 00	. 00	. 00	. 00	2.11
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 07	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 22
4.1-5.0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
(1)	. 23	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 23	. 00	. 00	. 00	. 00	. 00	. 00	. 47
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 05
5.1-6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
6.1-8.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	15	23	14	7	10	7	9	22	52	71	70	53	32	16	18	8	0	427
(1)	3.51	5.39	3.28	1.64	2.34	1.64	2.11	5.15	12.18	16.63	16.39	12.41	7.49	3.75	4.22	1.87	. 00	100.00
(2)	. 37	. 57	. 35	. 17	. 25	. 17	. 22	. 54	1.29	1.76	1.73	1.31	. 79	. 40	. 45	. 20	. 00	10.57

| CC FEBRUARY MET DATA JOINT | FREQUENCY DISTRIBUTION | (60 -METER TOWER) | |
| :--- | :--- | :--- | :--- | :--- |
| 33.0 FT WIND DATA | STABILITY CLASS G | CLASS FREQUENCY | (PERCENT) $=\quad 3.84$ |

	WIND DIRECTION F																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2
(1)	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65	. 00	. 00	1.29
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 05
. $2-.4$	0	0	0	1	0	1	0	0	1	1	0	0	0	0	0	0	0	4
(1)	. 00	. 00	. 00	. 65	. 00	. 65	. 00	. 00	. 65	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.58
(2)	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10
.5-1.0	0	0	3	1	2	0	1	3	2	3	1	4	2	0	0	1	0	23
(1)	. 00	. 00	1.94	. 65	1.29	. 00	. 65	1.94	1.29	1.94	. 65	2.58	1.29	. 00	. 00	. 65	. 00	14.84
(2)	. 00	. 00	. 07	. 02	. 05	. 00	. 02	. 07	. 05	. 07	. 02	. 10	. 05	. 00	. 00	. 02	. 00	. 57
1.1-1.5	0	3	2	1	1	1	0	2	6	5	10	8	3	1	0	0	0	43
(1)	. 00	1.94	1.29	. 65	. 65	. 65	. 00	1.29	3.87	3.23	6.45	5.16	1.94	. 65	. 00	. 00	. 00	27.74
(2)	. 00	. 07	. 05	. 02	. 02	. 02	. 00	. 05	. 15	. 12	. 25	. 20	. 07	. 02	. 00	. 00	. 00	1.06
1.6-2.0	0	3	0	4	0	0	0	0	5	11	13	11	1	1	0	0	0	49
(1)	. 00	1.94	. 00	2.58	. 00	. 00	. 00	. 00	3.23	7.10	8.39	7.10	. 65	. 65	. 00	. 00	. 00	31.61
(2)	. 00	. 07	. 00	. 10	. 00	. 00	. 00	. 00	. 12	. 27	. 32	. 27	. 02	. 02	. 00	. 00	. 00	1.21
2.1-3.0	0	1	0	0	0	0	1	1	2	4	10	9	2	2	0	0	0	32
(1)	. 00	. 65	. 00	. 00	. 00	. 00	. 65	. 65	1.29	2.58	6.45	5.81	1.29	1.29	. 00	. 00	. 00	20.65
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 05	. 10	. 25	. 22	. 05	. 05	. 00	. 00	. 00	. 79
3.1-4.0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
(1)	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 00	1.29
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 05
4.1-5.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
5.1-6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
6.1-8.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	0	9	5	7	3	2	2	6	16	24	35	32	8	4	1	1	0	155
(1)	. 00	5.81	3.23	4.52	1.94	1.29	1.29	3.87	10.32	15.48	22.58	20.65	5.16	2.58	. 65	. 65	. 00	100.00
(2)	. 00	. 22	. 12	. 17	. 07	. 05	. 05	. 15	. 40	. 59	. 87	. 79	. 20	. 10	. 02	. 02	. 00	3.84

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
Table 2.3-19—\{CCNPP 33 ft (10 m) February JFD (2000-2005)\} (Page 8 of 8)
CC FEBRUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

$\stackrel{70}{\stackrel{7}{i}}$

Table 2.3-20—\{CCNPP 33 ft (10 m) March JFD (2000-2005) \}
(Page 1 of 8)
CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 12.30

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR this PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
 CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 4.18

SPEED	N	NNE	NE	ENE	E	ESE	SE ${ }^{\text {W }}$	WIND DIRECTION FROM			SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL							
mps																									
LT $\begin{array}{r}\text {. } 2 \\ \\ \\ \\ \\ \\ (1)\end{array}$								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00							
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00							
. $2-\quad \begin{array}{r}\text { (1) } \\ (1) \\ \\ \\ \text { (2) }\end{array}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00							
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00							
.5-1.0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1							
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55	. 00	. 00	. 00	. 00	. 00	. 00	. 55							
1.1- 1.5	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02							
	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1							
(1)	. 00	. 00	. 00	. 00	. 00	. 55	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55							
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02							
1.6-2.0	1	1	2	0	0	1	0	0	1	0	3	0	1	0	0	0	0	10							
(1)	. 55	. 55	1.10	. 00	. 00	. 55	. 00	. 00	. 55	. 00	1.66	. 00	. 55	. 00	. 00	. 00	. 00	5.52							
$\begin{array}{r} (2) \\ 2.1-3.0 \end{array}$. 02	. 02	. 05	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 07	. 00	. 02	. 00	. 00	. 00	. 00	. 23							
	7	9	4	5	3	4	1	1	1	2	4	5	2	2	1	1	0	52							
$\begin{array}{r} 2.1-3.0 \\ (1) \end{array}$	3.87	4.97	2.21	2.76	1.66	2.21	. 55	. 55	. 55	1.10	2.21	2.76	1.10	1.10	. 55	. 55	. 00	28.73							
$3.1-4.0$. 16	. 21	. 09	. 12	. 07	. 09	. 02	. 02	. 02	. 05	. 09	. 12	. 05	. 05	. 02	. 02	. 00	1.20							
	8	3	5	4	1	3	0	7	3	2	2	3	1	2	3	2	0	49							
$\begin{array}{r} 3.1-4.0 \\ (1) \end{array}$	4.42	1.66	2.76	2.21	. 55	1.66	. 00	3.87	1.66	1.10	1.10	1.66	. 55	1.10	1.66	1.10	. 00	27.07							
$4.1-5.0$. 18	. 07	. 12	. 09	. 02	. 07	. 00	. 16	. 07	. 05	. 05	. 07	. 02	. 05	. 07	. 05	. 00	1.13							
	4	2	1	1	0	0	2	6	1	1	2	2	2	2	5	3	0	34							
$\begin{array}{r} 4.1-5.0 \\ (1) \end{array}$	2.21	1.10	. 55	. 55	. 00	. 00	1.10	3.31	. 55	. 55	1.10	1.10	1.10	1.10	2.76	1.66	. 00	18.78							
$5.1-6.0$. 09	. 05	. 02	. 02	. 00	. 00	. 05	. 14	. 02	. 02	. 05	. 05	. 05	. 05	. 12	. 07	. 00	. 78							
	0	0	1	0	0	0	0	4	1	0	1	0	1	3	3	0	0	14							
(1)	. 00	. 00	. 55	. 00	. 00	. 00	. 00	2.21	. 55	. 00	. 55	. 00	. 55	1.66	1.66	. 00	. 00	7.73							
$6.1-8.0$. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 09	. 02	. 00	. 02	. 00	. 02	. 07	. 07	. 00	. 00	. 32							
	2	2	1	0	0	0	0	1	0	0	0	0	0	3	7	3	0	19							
$\begin{array}{r} 6.1-8.0 \\ (1) \end{array}$	1.10	1.10	. 55	. 00	. 00	. 00	. 00	. 55	. 00	. 00	. 00	. 00	. 00	1.66	3.87	1.66	. 00	10.50							
8.1-10.0	. 05	. 05	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07	. 16	. 07	. 00	. 44							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1							
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55	. 00	. 55							
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							
10.1-89.5	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00							
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00							
	22	17	14	10	4	9	3	19	7	5	13	10	7	12	19	10	0	181							
ALL SPEEDS (1)	12.15	9.39	7.73	5.52	2.21	4.97	1.66	10.50	3.87	2.76	7.18	5.52	3.87	6.63	10.50	5.52	. 00	100.00							
(2)	. 51	. 39	. 32	. 23	. 09	. 21	. 07	. 44	. 16	. 12	. 30	. 23	. 16	. 28	. 44	. 23	. 00	4.18							
(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE																									

ग्0
$\stackrel{N}{i}$
i

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
33．0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY（PERCENT）＝ 37.34

								D	T	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT ． 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
． $2-.4$	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	3
（1）	． 06	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 06	． 06	． 00	． 00	． 00	． 19
（2）	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 02	． 00	． 00	． 00	． 07
．5－1．0	3	3	3	1	2	4	1	2	2	3	6	1	1	2	2	1	0	37
（1）	． 19	． 19	． 19	． 06	． 12	． 25	． 06	． 12	． 12	． 19	． 37	． 06	． 06	． 12	． 12	． 06	． 00	2.29
（2）	． 07	． 07	． 07	． 02	． 05	． 09	． 02	． 05	． 05	． 07	． 14	． 02	． 02	． 05	． 05	． 02	． 00	． 85
1．1－1．5	7	10	2	6	9	6	7	5	6	2	6	6	2	2	4	3	0	83
（1）	． 43	． 62	． 12	． 37	． 56	． 37	． 43	． 31	． 37	． 12	． 37	． 37	． 12	． 12	． 25	． 19	． 00	5.13
（2）	． 16	． 23	． 05	． 14	． 21	． 14	． 16	． 12	． 14	． 05	． 14	． 14	． 05	． 05	． 09	． 07	． 00	1.92
1．6－2．0	13	18	14	19	11	13	7	6	13	7	5	2	2	1	6	4	0	141
（1）	． 80	1.11	． 87	1.17	． 68	． 80	． 43	． 37	． 80	． 43	． 31	． 12	． 12	． 06	． 37	． 25	． 00	8.71
（2）	． 30	． 42	． 32	． 44	． 25	． 30	． 16	． 14	． 30	． 16	． 12	． 05	． 05	． 02	． 14	． 09	． 00	3.25
2．1－3．0	36	37	40	44	29	22	21	35	20	14	12	13	7	6	10	20	0	366
（1）	2.22	2.29	2.47	2.72	1.79	1.36	1.30	2.16	1.24	． 87	． 74	． 80	． 43	． 37	． 62	1.24	． 00	22.62
（2）	． 83	． 85	． 92	1.02	． 67	． 51	． 48	． 81	． 46	． 32	． 28	． 30	． 16	． 14	． 23	． 46	． 00	8.45
3．1－4．0	36	15	26	42	20	7	15	36	18	11	11	8	10	12	24	33	0	324
（1）	2.22	． 93	1.61	2.60	1.24	． 43	． 93	2.22	1.11	． 68	． 68	． 49	． 62	． 74	1.48	2.04	． 00	20.02
（2）	． 83	． 35	． 60	． 97	． 46	． 16	． 35	． 83	． 42	． 25	． 25	． 18	． 23	． 28	． 55	． 76	． 00	7.48
4．1－5．0	35	34	17	23	7	1	9	27	6	7	17	8	7	13	39	38	0	288
（1）	2.16	2.10	1.05	1.42	． 43	． 06	． 56	1.67	． 37	． 43	1.05	． 49	． 43	． 80	2.41	2.35	． 00	17.80
（2）	． 81	． 78	． 39	． 53	． 16	． 02	． 21	． 62	． 14	． 16	． 39	． 18	． 16	． 30	． 90	． 88	． 00	6.65
5．1－6．0	40	18	25	15	0	2	0	17	1	3	7	3	3	17	37	13	0	201
（1）	2.47	1.11	1.55	． 93	． 00	． 12	． 00	1.05	． 06	． 19	． 43	． 19	． 19	1.05	2.29	． 80	． 00	12.42
（2）	． 92	． 42	． 58	． 35	． 00	． 05	． 00	． 39	． 02	． 07	． 16	． 07	． 07	． 39	． 85	． 30	． 00	4.64
6．1－8．0	35	15	16	15	0	1	0	10	2	0	1	0	3	10	31	12	0	151
（1）	2.16	． 93	． 99	． 93	． 00	． 06	． 00	． 62	． 12	． 00	． 06	． 00	． 19	． 62	1.92	． 74	． 00	9.33
（2）	． 81	． 35	． 37	． 35	． 00	． 02	． 00	． 23	． 05	． 00	． 02	． 00	． 07	． 23	． 72	． 28	． 00	3.48
8．1－10．0	3	1	0	6	0	0	0	1	1	0	0	0	0	4	5	2	0	23
（1）	． 19	． 06	． 00	． 37	． 00	． 00	． 00	． 06	． 06	． 00	． 00	． 00	． 00	． 25	． 31	． 12	． 00	1.42
（2）	． 07	． 02	． 00	． 14	． 00	． 00	． 00	． 02	． 02	． 00	． 00	． 00	． 00	． 09	． 12	． 05	． 00	． 53
10．1－89．5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
（1）	． 00	． 00	． 00	． 06	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 06
（2）	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02
ALL SPEEDS	209	151	143	172	78	56	60	139	69	47	65	41	36	68	158	126	0	1618
（1）	12.92	9.33	8.84	10.63	4.82	3.46	3.71	8.59	4.26	2.90	4.02	2.53	2.22	4.20	9.77	7.79	． 00	100.00
（2）	4.82	3.48	3.30	3.97	1.80	1.29	1.38	3.21	1.59	1.08	1.50	． 95	． 83	1.57	3.65	2.91	． 00	37.34

Abstract

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER) 33.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 29.22

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	1	0	0	0	1	1	0	0	0	2	1	0	0	0	1	0	7
(1)	. 00	. 08	. 00	. 00	. 00	. 08	. 08	. 00	. 00	. 00	. 16	. 08	. 00	. 00	. 00	. 08	. 00	. 55
(2)	. 00	. 02	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 05	. 02	. 00	. 00	. 00	. 02	. 00	. 16
. $2-.4$	1	0	0	0	0	1	1	0	2	2	0	0	1	1	1	1	0	11
(1)	. 08	. 00	. 00	. 00	. 00	. 08	. 08	. 00	. 16	. 16	. 00	. 00	. 08	. 08	. 08	. 08	. 00	. 87
(2)	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 05	. 05	. 00	. 00	. 02	. 02	. 02	. 02	. 00	. 25
.5-1.0	7	8	1	4	1	4	5	3	3	6	6	8	4	5	6	8	0	79
(1)	. 55	. 63	. 08	. 32	. 08	. 32	. 39	. 24	. 24	. 47	. 47	. 63	. 32	. 39	. 47	. 63	. 00	6.24
(2)	. 16	. 18	. 02	. 09	. 02	. 09	. 12	. 07	. 07	. 14	. 14	. 18	. 09	. 12	. 14	. 18	. 00	1.82
1.1-1.5	11	3	8	6	10	9	3	3	9	8	18	8	2	6	9	9	0	122
(1)	. 87	. 24	. 63	. 47	. 79	. 71	. 24	. 24	. 71	. 63	1.42	. 63	. 16	. 47	. 71	. 71	. 00	9.64
(2)	. 25	. 07	. 18	. 14	. 23	. 21	. 07	. 07	. 21	. 18	. 42	. 18	. 05	. 14	. 21	. 21	. 00	2.82
1.6-2.0	15	9	10	7	10	7	12	6	11	11	10	6	11	20	6	21	0	172
(1)	1.18	. 71	. 79	. 55	. 79	. 55	. 95	. 47	. 87	. 87	. 79	. 47	. 87	1.58	. 47	1.66	. 00	13.59
(2)	. 35	. 21	. 23	. 16	. 23	. 16	. 28	. 14	. 25	. 25	. 23	. 14	. 25	. 46	. 14	. 48	. 00	3.97
2.1-3.0	30	23	13	7	6	2	3	21	49	36	17	12	13	28	51	31	0	342
(1)	2.37	1.82	1.03	. 55	. 47	. 16	. 24	1.66	3.87	2.84	1.34	. 95	1.03	2.21	4.03	2.45	. 00	27.01
(2)	. 69	. 53	. 30	. 16	. 14	. 05	. 07	. 48	1.13	. 83	. 39	. 28	. 30	. 65	1.18	. 72	. 00	7.89
3.1-4.0	32	7	9	10	1	3	2	17	40	35	44	16	7	17	25	27	0	292
(1)	2.53	. 55	. 71	. 79	. 08	. 24	. 16	1.34	3.16	2.76	3.48	1.26	. 55	1.34	1.97	2.13	. 00	23.06
(2)	. 74	. 16	. 21	. 23	. 02	. 07	. 05	. 39	. 92	. 81	1.02	. 37	. 16	. 39	. 58	. 62	. 00	6.74
4.1-5.0	16	8	2	1	1	1	2	13	12	26	40	2	6	11	18	6	0	165
(1)	1.26	. 63	. 16	. 08	. 08	. 08	. 16	1.03	. 95	2.05	3.16	. 16	. 47	. 87	1.42	. 47	. 00	13.03
(2)	. 37	. 18	. 05	. 02	. 02	. 02	. 05	. 30	. 28	. 60	. 92	. 05	. 14	. 25	. 42	. 14	. 00	3.81
5.1-6.0	12	2	0	0	0	1	1	2	11	6	8	0	1	2	6	4	0	56
(1)	. 95	. 16	. 00	. 00	. 00	. 08	. 08	. 16	. 87	. 47	. 63	. 00	. 08	. 16	. 47	. 32	. 00	4.42
(2)	. 28	. 05	. 00	. 00	. 00	. 02	. 02	. 05	. 25	. 14	. 18	. 00	. 02	. 05	. 14	. 09	. 00	1.29
6.1-8.0	4	0	0	0	0	1	2	3	2	1	1	0	0	1	2	0	0	17
(1)	. 32	. 00	. 00	. 00	. 00	. 08	. 16	. 24	. 16	. 08	. 08	. 00	. 00	. 08	. 16	. 00	. 00	1.34
(2)	. 09	. 00	. 00	. 00	. 00	. 02	. 05	. 07	. 05	. 02	. 02	. 00	. 00	. 02	. 05	. 00	. 00	. 39
8.1-10.0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 16	. 00	. 00	. 00	. 24
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 07
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	128	61	43	35	29	30	32	69	139	131	146	53	45	93	124	108	0	1266
(1)	10.11	4.82	3.40	2.76	2.29	2.37	2.53	5.45	10.98	10.35	11.53	4.19	3.55	7.35	9.79	8.53	. 00	100.00
(2)	2.95	1.41	. 99	. 81	. 67	. 69	. 74	1.59	3.21	3.02	3.37	1.22	1.04	2.15	2.86	2.49	. 00	29.22

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED
$\begin{array}{lcccc}\text { CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION } & \text { (60-METER TOWER) } & \\ \text { 33.0 FT WIND DATA } & \text { STABILITY CLASS F } & \text { CLASS FREQUENCY (PERCENT) }=\mathbf{9 . 7 9 ~}\end{array}$

WIND DIRECTION FROM																		
$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	1	1	0	1	0	0	0	0	0	1	1	0	1	0	0	0	6
(1)	. 00	. 24	. 24	. 00	. 24	. 00	. 00	. 00	. 00	. 00	. 24	. 24	. 00	. 24	. 00	. 00	. 00	1.42
(2)	. 00	. 02	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 00	. 00	. 14
. $2-.4$	0	1	0	0	1	1	1	1	0	0	1	0	1	1	0	0	0	8
(1)	. 00	. 24	. 00	. 00	. 24	. 24	. 24	. 24	. 00	. 00	. 24	. 00	. 24	. 24	. 00	. 00	. 00	1.89
(2)	. 00	. 02	. 00	. 00	. 02	. 02	. 02	. 02	. 00	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 18
. $5-1.0$	3	5	6	0	1	3	1	0	3	2	7	4	6	3	2	1	0	47
(1)	. 71	1.18	1.42	. 00	. 24	. 71	. 24	. 00	. 71	. 47	1.65	. 94	1.42	. 71	. 47	. 24	. 00	11.08
(2)	. 07	. 12	. 14	. 00	. 02	. 07	. 02	. 00	. 07	. 05	. 16	. 09	. 14	. 07	. 05	. 02	. 00	1.08
1.1-1.5	2	5	6	0	1	2	3	0	9	12	15	6	8	4	1	1	0	75
(1)	. 47	1.18	1.42	. 00	. 24	. 47	. 71	. 00	2.12	2.83	3.54	1.42	1.89	. 94	. 24	. 24	. 00	17.69
(2)	. 05	. 12	. 14	. 00	. 02	. 05	. 07	. 00	. 21	. 28	. 35	. 14	. 18	. 09	. 02	. 02	. 00	1.73
1.6-2.0	5	4	2	6	3	2	0	3	13	17	12	9	13	11	6	3	0	109
(1)	1.18	. 94	. 47	1.42	. 71	. 47	. 00	. 71	3.07	4.01	2.83	2.12	3.07	2.59	1.42	. 71	. 00	25.71
(2)	. 12	. 09	. 05	. 14	. 07	. 05	. 00	. 07	. 30	. 39	. 28	. 21	. 30	. 25	. 14	. 07	. 00	2.52
2.1-3.0	7	14	4	3	2	0	2	6	9	19	25	9	5	7	5	2	0	119
(1)	1.65	3.30	. 94	. 71	. 47	. 00	. 47	1.42	2.12	4.48	5.90	2.12	1.18	1.65	1.18	. 47	. 00	28.07
(2)	. 16	. 32	. 09	. 07	. 05	. 00	. 05	. 14	. 21	. 44	. 58	. 21	. 12	. 16	. 12	. 05	. 00	2.75
3.1-4.0	1	2	0	0	0	0	0	1	6	9	9	3	2	1	0	0	0	34
(1)	. 24	. 47	. 00	. 00	. 00	. 00	. 00	. 24	1.42	2.12	2.12	. 71	. 47	. 24	. 00	. 00	. 00	8.02
(2)	. 02	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 14	. 21	. 21	. 07	. 05	. 02	. 00	. 00	. 00	. 78
4.1-5.0	0	0	2	6	2	0	0	0	0	0	2	0	1	0	2	0	0	15
(1)	. 00	. 00	. 47	1.42	. 47	. 00	. 00	. 00	. 00	. 00	. 47	. 00	. 24	. 00	. 47	. 00	. 00	3.54
(2)	. 00	. 00	. 05	. 14	. 05	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 02	. 00	. 05	. 00	. 00	. 35
5.1-6.0	1	0	2	4	2	0	0	0	0	0	0	0	0	0	0	2	0	11
(1)	. 24	. 00	. 47	. 94	. 47	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 47	. 00	2.59
(2)	. 02	. 00	. 05	. 09	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 25
6.1-8.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	19	32	23	19	13	8	7	11	40	59	72	32	36	28	16	9	0	424
(1)	4.48	7.55	5.42	4.48	3.07	1.89	1.65	2.59	9.43	13.92	16.98	7.55	8.49	6.60	3.77	2.12	. 00	100.00
(2)	. 44	. 74	. 53	. 44	. 30	. 18	. 16	. 25	. 92	1.36	1.66	. 74	. 83	. 65	. 37	. 21	. 00	9.79
(1) = PERCENT (2) =PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR T	HIS PA ERIOD												

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED
CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)
33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) $=100.00$

ग्0 $\stackrel{0}{2}$ i
 -^әу 60て-乙

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)
33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 12.22

	WIND DIRECTION																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.2- . 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 20	. 00	. 00	. 00	. 00	. 20
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 02
1.6-2.0	0	1	1	1	0	1	0	0	0	2	0	0	0	1	0	0	0	7
(1)	. 00	. 20	. 20	. 20	. 00	. 20	. 00	. 00	. 00	. 40	. 00	. 00	. 00	. 20	. 00	. 00	. 00	1.41
(2)	. 00	. 02	. 02	. 02	. 00	. 02	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 17
2.1-3.0	1	7	7	0	3	0	1	4	0	5	8	13	2	2	0	0	0	53
(1)	. 20	1.41	1.41	. 00	. 60	. 00	. 20	. 80	. 00	1.01	1.61	2.62	. 40	. 40	. 00	. 00	. 00	10.66
(2)	. 02	. 17	. 17	. 00	. 07	. 00	. 02	. 10	. 00	. 12	. 20	. 32	. 05	. 05	. 00	. 00	. 00	1.30
3.1-4.0	14	27	15	6	3	6	3	12	2	9	24	24	7	4	5	3	0	164
(1)	2.82	5.43	3.02	1.21	. 60	1.21	. 60	2.41	. 40	1.81	4.83	4.83	1.41	. 80	1.01	. 60	. 00	33.00
(2)	. 34	. 66	. 37	. 15	. 07	. 15	. 07	. 29	. 05	. 22	. 59	. 59	. 17	. 10	. 12	. 07	. 00	4.03
4.1-5.0	18	15	6	1	1	4	9	8	1	10	31	11	6	7	11	3	0	142
(1)	3.62	3.02	1.21	. 20	. 20	. 80	1.81	1.61	. 20	2.01	6.24	2.21	1.21	1.41	2.21	. 60	. 00	28.57
(2)	. 44	. 37	. 15	. 02	. 02	. 10	. 22	. 20	. 02	. 25	. 76	. 27	. 15	. 17	. 27	. 07	. 00	3.49
5.1-6.0	10	4	1	1	0	0	4	9	0	2	8	4	3	11	11	2	0	70
(1)	2.01	. 80	. 20	. 20	. 00	. 00	. 80	1.81	. 00	. 40	1.61	. 80	. 60	2.21	2.21	. 40	. 00	14.08
(2)	. 25	. 10	. 02	. 02	. 00	. 00	. 10	. 22	. 00	. 05	. 20	. 10	. 07	. 27	. 27	. 05	. 00	1.72
6.1-8.0	2	0	6	0	0	0	0	6	0	5	4	2	6	9	8	2	0	50
(1)	. 40	. 00	1.21	. 00	. 00	. 00	. 00	1.21	. 00	1.01	. 80	. 40	1.21	1.81	1.61	. 40	. 00	10.06
(2)	. 05	. 00	. 15	. 00	. 00	. 00	. 00	. 15	. 00	. 12	. 10	. 05	. 15	. 22	. 20	. 05	. 00	1.23
8.1-10.0	0	0	0	0	0	0	0	0	0	2	0	0	0	6	2	0	0	10
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 40	. 00	. 00	. 00	1.21	. 40	. 00	. 00	2.01
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 15	. 05	. 00	. 00	. 25
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	45	54	36	9	7	11	17	39	3	35	75	54	25	40	37	10	0	497
(1)	9.05	10.87	7.24	1.81	1.41	2.21	3.42	7.85	. 60	7.04	15.09	10.87	5.03	8.05	7.44	2.01	. 00	100.00
(2)	1.11	1.33	. 88	. 22	. 17	. 27	. 42	. 96	. 07	. 86	1.84	1.33	. 61	. 98	. 91	. 25	. 00	12.22

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAG
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-21—\{CCNPP 33 ft (10 m) April JFD (2000-2005)\} (Page 2 of 8)
CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-21—\{CCNPP 33 ft (10 m) April JFD (2000-2005)\} (Page 4 of 8)
CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

33.0 FT	WIND D	DATA		STABI	LITY	LASS D		IND DI	$\begin{gathered} \text { CLASS } \\ \text { RECTIOI } \end{gathered}$	FREQU N FROM	ENCY	PERCEN	T) $=$	39.95				
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 12	. 00	. 00	. 00	. 00	. 00	. 00	. 12
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 05
. $2-.4$	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 06	. 00	. 00	. 06	. 00	. 06	. 00	. 00	. 00	. 00	. 00	. 18
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07
. $5-1.0$	4	2	0	3	3	7	5	2	2	3	6	0	1	0	2	1	0	41
(1)	. 25	. 12	. 00	. 18	. 18	. 43	. 31	. 12	. 12	. 18	. 37	. 00	. 06	. 00	. 12	. 06	. 00	2.52
(2)	. 10	. 05	. 00	. 07	. 07	. 17	. 12	. 05	. 05	. 07	. 15	. 00	. 02	. 00	. 05	. 02	. 00	1.01
1.1-1.5	6	3	11	9	9	7	8	7	4	1	4	3	2	5	1	4	0	84
(1)	. 37	. 18	. 68	. 55	. 55	. 43	. 49	. 43	. 25	. 06	. 25	. 18	. 12	. 31	. 06	. 25	. 00	5.17
(2)	. 15	. 07	. 27	. 22	. 22	. 17	. 20	. 17	. 10	. 02	. 10	. 07	. 05	. 12	. 02	. 10	. 00	2.06
1.6-2.0	9	16	9	21	24	11	3	10	7	5	6	5	5	7	3	8	0	149
(1)	. 55	. 98	. 55	1.29	1.48	. 68	. 18	. 62	. 43	. 31	. 37	. 31	. 31	. 43	. 18	. 49	. 00	9.17
(2)	. 22	. 39	. 22	. 52	. 59	. 27	. 07	. 25	. 17	. 12	. 15	. 12	. 12	. 17	. 07	. 20	. 00	3.66
2.1-3.0	38	67	41	47	37	26	29	31	20	15	16	13	14	13	19	18	0	444
(1)	2.34	4.12	2.52	2.89	2.28	1.60	1.78	1.91	1.23	. 92	. 98	. 80	. 86	. 80	1.17	1.11	. 00	27.32
(2)	. 93	1.65	1.01	1.16	. 91	. 64	. 71	. 76	. 49	. 37	. 39	. 32	. 34	. 32	. 47	. 44	. 00	10.91
3.1-4.0	43	24	49	23	12	14	18	42	28	13	23	18	7	13	27	33	0	387
(1)	2.65	1.48	3.02	1.42	. 74	. 86	1.11	2.58	1.72	. 80	1.42	1.11	. 43	. 80	1.66	2.03	. 00	23.82
(2)	1.06	. 59	1.20	. 57	. 29	. 34	. 44	1.03	. 69	. 32	. 57	. 44	. 17	. 32	. 66	. 81	. 00	9.51
4.1-5.0	26	28	37	32	3	1	8	23	3	6	17	7	3	6	25	29	0	254
(1)	1.60	1.72	2.28	1.97	. 18	. 06	. 49	1.42	. 18	. 37	1.05	. 43	. 18	. 37	1.54	1.78	. 00	15.63
(2)	. 64	. 69	. 91	. 79	. 07	. 02	. 20	. 57	. 07	. 15	. 42	. 17	. 07	. 15	. 61	. 71	. 00	6.24
5.1-6.0	12	16	13	15	0	0	5	15	2	5	7	2	0	10	9	9	0	120
(1)	. 74	. 98	. 80	. 92	. 00	. 00	. 31	. 92	. 12	. 31	. 43	. 12	. 00	. 62	. 55	. 55	. 00	7.38
(2)	. 29	. 39	. 32	. 37	. 00	. 00	. 12	. 37	. 05	. 12	. 17	. 05	. 00	. 25	. 22	. 22	. 00	2.95
6.1-8.0	13	10	27	15	0	0	0	19	4	6	0	1	2	14	14	3	0	128
(1)	. 80	. 62	1.66	. 92	. 00	. 00	. 00	1.17	. 25	. 37	. 00	. 06	. 12	. 86	. 86	. 18	. 00	7.88
(2)	. 32	. 25	. 66	. 37	. 00	. 00	. 00	. 47	. 10	. 15	. 00	. 02	. 05	. 34	. 34	. 07	. 00	3.15
8.1-10.0	0	0	9	0	0	0	0	0	0	0	0	0	0	4	0	0	0	13
(1)	. 00	. 00	. 55	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 25	. 00	. 00	. 00	. 80
(2)	. 00	. 00	. 22	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 00	. 00	. 00	. 32
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	151	166	196	165	88	66	77	149	70	55	81	50	34	72	100	105	0	1625
(1)	9.29	10.22	12.06	10.15	5.42	4.06	4.74	9.17	4.31	3.38	4.98	3.08	2.09	4.43	6.15	6.46	. 00	100.00
(2)	3.71	4.08	4.82	4.06	2.16	1.62	1.89	3.66	1.72	1.35	1.99	1.23	. 84	1.77	2.46	2.58	. 00	39.95
(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE																		

OヨノכヨノOYd $\perp H$ Iy

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION（ 60 －METER TOWER）

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

Table 2.3-21—\{CCNPP 33 ft (10 m) April JFD (2000-2005)\}

(Page 8 of 8)

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

Table 2.3-22-\{CCNPP 33 ft (10 m) May JFD (2000-2005) \} (Page 1 of 8)

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 13.37

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
OヨノכヨノOYd $\perp H$ Iy

Table 2．3－22—\｛CCNPP 33 ft（10 m）May JFD（2000－2005）\} （Page 3 of 8）
CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）

33．0 FT WIND DATA			STABILITY CLASS C				CLASS FREQUENCY WIND DIRECTION FROM					（PERCENT）		5.50	NW	NNW	VRBL	TOTAL
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW				
mps																		
LT ． 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
． $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
．5－1．0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 41	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 41
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02
1．1－1．5	1	0	1	2	0	3	0	0	1	1	0	0	0	0	1	0	0	10
（1）	． 41	． 00	． 41	． 82	． 00	1.22	． 00	． 00	． 41	． 41	． 00	． 00	． 00	． 00	． 41	． 00	． 00	4.08
（2）	． 02	． 00	． 02	． 04	． 00	． 07	． 00	． 00	． 02	． 02	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 22
1．6－2．0	1	0	1	1	4	1	2	3	1	2	1	1	2	0	1	0	0	21
（1）	． 41	． 00	． 41	． 41	1.63	． 41	． 82	1.22	． 41	． 82	． 41	． 41	． 82	． 00	． 41	． 00	． 00	8.57
（2）	． 02	． 00	． 02	． 02	． 09	． 02	． 04	． 07	． 02	． 04	． 02	． 02	． 04	． 00	． 02	． 00	． 00	． 47
2．1－3．0	8	12	5	8	7	7	2	10	2	7	4	6	4	3	1	1	0	87
（1）	3.27	4.90	2.04	3.27	2.86	2.86	． 82	4.08	． 82	2.86	1.63	2.45	1.63	1.22	． 41	． 41	． 00	35.51
（2）	． 18	． 27	． 11	． 18	． 16	． 16	． 04	． 22	． 04	． 16	． 09	． 13	． 09	． 07	． 02	． 02	． 00	1.95
3．1－4．0	7	7	10	3	1	1	2	13	3	0	8	9	3	1	5	1	0	74
（1）	2.86	2.86	4.08	1.22	． 41	． 41	． 82	5.31	1.22	． 00	3.27	3.67	1.22	． 41	2.04	． 41	． 00	30.20
（2）	． 16	． 16	． 22	． 07	． 02	． 02	． 04	． 29	． 07	． 00	． 18	． 20	． 07	． 02	． 11	． 02	． 00	1.66
4．1－5．0	6	0	2	1	2	1	2	8	1	0	3	0	2	1	2	2	0	33
（1）	2.45	． 00	． 82	． 41	． 82	． 41	． 82	3.27	． 41	． 00	1.22	． 00	． 82	． 41	． 82	． 82	． 00	13.47
（2）	． 13	． 00	． 04	． 02	． 04	． 02	． 04	． 18	． 02	． 00	． 07	． 00	． 04	． 02	． 04	． 04	． 00	． 74
5．1－6．0	0	0	2	1	0	0	1	0	0	0	5	1	1	1	0	0	0	12
（1）	． 00	． 00	． 82	． 41	． 00	． 00	． 41	． 00	． 00	． 00	2.04	． 41	． 41	． 41	． 00	． 00	． 00	4.90
（2）	． 00	． 00	． 04	． 02	． 00	． 00	． 02	． 00	． 00	． 00	． 11	． 02	． 02	． 02	． 00	． 00	． 00	． 27
6．1－8．0	0	0	1	1	0	0	0	0	0	0	0	0	1	2	0	0	0	5
（1）	． 00	． 00	． 41	． 41	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 41	． 82	． 00	． 00	． 00	2.04
（2）	． 00	． 00	． 02	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 04	． 00	． 00	． 00	． 11
8．1－10．0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
（1）	． 00	． 00	． 82	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 82
（2）	． 00	． 00	． 04	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 04
10．1－89．5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
ALL SPEEDS	23	19	24	17	14	13	10	34	8	10	21	17	13	8	10	4	0	245
（1）	9.39	7.76	9.80	6.94	5.71	5.31	4.08	13.88	3.27	4.08	8.57	6.94	5.31	3.27	4.08	1.63	． 00	100.00
（2）	． 52	． 43	． 54	． 38	． 31	． 29	． 22	． 76	． 18	． 22	． 47	． 38	． 29	． 18	． 22	． 09	． 00	5.50

（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-22—\{CCNPP 33 ft (10 m) May JFD (2000-2005)\} (Page 4 of 8)
CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) $=35.50$

								WIND DI	RECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
$\xrightarrow{.2-} \begin{array}{r}\text { (1) } \\ \text { (1) } \\ \text { (2) }\end{array}$	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 06	. 00	. 06	. 00	. 13
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 04
. 5-1.0	1	3	3	5	8	6	7	4	8	4	4	1	2	1	2	5	0	64
(1)	. 06	. 19	. 19	. 32	. 51	. 38	. 44	. 25	. 51	. 25	. 25	. 06	. 13	. 06	. 13	. 32	. 00	4.05
1.1- 1.5	. 02	. 07	. 07	. 11	. 18	. 13	. 16	. 09	. 18	. 09	. 09	. 02	. 04	. 02	. 04	. 11	. 00	1.44
	7	6	4	8	15	7	11	10	7	12	6	2	2	5	4	3	0	109
(1)	. 44	. 38	. 25	. 51	. 95	. 44	. 70	. 63	. 44	. 76	. 38	. 13	. 13	. 32	. 25	. 19	. 00	6.90
(2)	. 16	. 13	. 09	. 18	. 34	. 16	. 25	. 22	. 16	. 27	. 13	. 04	. 04	. 11	. 09	. 07	. 00	2.45
1.6-2.0	13	17	24	17	22	17	18	14	18	11	11	7	9	3	3	2	0	206
(1)	. 82	1.08	1.52	1.08	1.39	1.08	1.14	. 89	1.14	. 70	. 70	. 44	. 57	. 19	. 19	. 13	. 00	13.04
(2)	. 29	. 38	. 54	. 38	. 49	. 38	. 40	. 31	. 40	. 25	. 25	. 16	. 20	. 07	. 07	. 04	. 00	4.63
2.1-3.0	33	49	54	69	56	33	35	57	39	14	23	25	13	13	14	25	0	552
(1)	2.09	3.10	3.42	4.37	3.54	2.09	2.22	3.61	2.47	. 89	1.46	1.58	. 82	. 82	. 89	1.58	. 00	34.94
(2)	. 74	1.10	1.21	1.55	1.26	. 74	. 79	1.28	. 88	. 31	. 52	. 56	. 29	. 29	. 31	. 56	. 00	12.40
3.1-4.0	25	21	42	49	24	23	28	58	19	6	27	12	8	2	22	32	0	398
(1)	1.58	1.33	2.66	3.10	1.52	1.46	1.77	3.67	1.20	. 38	1.71	. 76	. 51	. 13	1.39	2.03	. 00	25.19
(2)	. 56	. 47	. 94	1.10	. 54	. 52	. 63	1.30	. 43	. 13	. 61	. 27	. 18	. 04	. 49	. 72	. 00	8.94
4.1- 5.0	18	8	14	17	8	3	9	21	3	3	15	2	6	1	1	12	0	141
	1.14	. 51	. 89	1.08	. 51	. 19	. 57	1.33	. 19	. 19	. 95	. 13	. 38	. 06	. 06	. 76	. 00	8.92
(2)	. 40	. 18	. 31	. 38	. 18	. 07	. 20	. 47	. 07	. 07	. 34	. 04	. 13	. 02	. 02	. 27	. 00	3.17
5.1-6.0	8	20	16	16	0	1	0	2	1	2	6	1	1	5	1	3	0	83
(1)	. 51	1.27	1.01	1.01	. 00	. 06	. 00	. 13	. 06	. 13	. 38	. 06	. 06	. 32	. 06	. 19	. 00	5.25
(2)	. 18	. 45	. 36	. 36	. 00	. 02	. 00	. 04	. 02	. 04	. 13	. 02	. 02	. 11	. 02	. 07	. 00	1.86
6.1-8.0	1	2		4	0	1	0	1	0	0	0	0	1	1	0	1	0	21
(1)	. 06	. 13	. 57	. 25	. 00	. 06	. 00	. 06	. 00	. 00	. 00	. 00	. 06	. 06	. 00	. 06	. 00	1.33
(2)	. 02	. 04	. 20	. 09	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 47
8.1-10.0	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4
(1)	. 00	. 00	. 19	. 06	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 25
(2)	. 00	. 00	. 07	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09
10.1-89.5	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	106	126	169	186	133	91	108	167	95	52	92	50	42	32	47	84	0	1580
(1)	6.71	7.97	10.70	11.77	8.42	5.76	6.84	10.57	6.01	3.29	5.82	3.16	2.66	2.03	2.97	5.32	. 00	100.00
(2)	2.38	2.83	3.80	4.18	2.99	2.04	2.43	3.75	2.13	1.17	2.07	1.12	. 94	. 72	1.06	1.89	. 00	35.50
(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

Table 2.3-22—\{CCNPP 33 ft (10 m) May JFD (2000-2005)\} (Page 5 of 8)
CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

Table 2.3-22—\{CCNPP 33 ft (10 m) May JFD (2000-2005)\} (Page 7 of 8)
CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-22—\{CCNPP 33 ft (10 m) May JFD (2000-2005)\} (Page 8 of 8)

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

ग्0
$\stackrel{0}{2}$
i

Table 2.3-23—\{CCNPP 33 ft (10 m) June JFD (2000-2005)\}
(Page 1 of 8)
CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 13.90

								IND D	RECTI	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	1	0	0	1	0	0	3	0	1	0	1	0	0	0	7
(1)	. 00	. 00	. 00	. 17	. 00	. 00	. 17	. 00	. 00	. 50	. 00	. 17	. 00	. 17	. 00	. 00	. 00	1.17
(2)	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 07	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 16
1.6-2.0	0	3	1	2	1	4	0	3	2	5	12	4	2	0	0	1	0	40
(1)	. 00	. 50	. 17	. 33	. 17	. 67	. 00	. 50	. 33	. 83	2.00	. 67	. 33	. 00	. 00	. 17	. 00	6.67
(2)	. 00	. 07	. 02	. 05	. 02	. 09	. 00	. 07	. 05	. 12	. 28	. 09	. 05	. 00	. 00	. 02	. 00	. 93
2.1-3.0	9	25	15	16	20	11	9	11	11	22	30	23	9	5	4	0	0	220
(1)	1.50	4.17	2.50	2.67	3.33	1.83	1.50	1.83	1.83	3.67	5.00	3.83	1.50	. 83	. 67	. 00	. 00	36.67
(2)	. 21	. 58	. 35	. 37	. 46	. 25	. 21	. 25	. 25	. 51	. 69	. 53	. 21	. 12	. 09	. 00	. 00	5.10
3.1-4.0	29	17	5	2	0	3	19	24	8	18	47	31	13	2	6	4	0	228
(1)	4.83	2.83	. 83	. 33	. 00	. 50	3.17	4.00	1.33	3.00	7.83	5.17	2.17	. 33	1.00	. 67	. 00	38.00
(2)	. 67	. 39	. 12	. 05	. 00	. 07	. 44	. 56	. 19	. 42	1.09	. 72	. 30	. 05	. 14	. 09	. 00	5.28
4.1-5.0	8	2	0	0	0	0	7	17	6	7	12	7	3	3	4	3	0	79
(1)	1.33	. 33	. 00	. 00	. 00	. 00	1.17	2.83	1.00	1.17	2.00	1.17	. 50	. 50	. 67	. 50	. 00	13.17
(2)	. 19	. 05	. 00	. 00	. 00	. 00	. 16	. 39	. 14	. 16	. 28	. 16	. 07	. 07	. 09	. 07	. 00	1.83
5.1-6.0	0	0	3	0	0	0	2	8	0	0	3	0	2	0	1	1	0	20
(1)	. 00	. 00	. 50	. 00	. 00	. 00	. 33	1.33	. 00	. 00	. 50	. 00	. 33	. 00	. 17	. 17	. 00	3.33
(2)	. 00	. 00	. 07	. 00	. 00	. 00	. 05	. 19	. 00	. 00	. 07	. 00	. 05	. 00	. 02	. 02	. 00	. 46
6.1-8.0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	2	0	0	6
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 67	. 00	. 00	. 00	. 00	. 00	. 00	. 33	. 00	. 00	1.00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 14
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	46	47	24	21	21	18	38	67	27	55	104	66	29	11	17	9	0	600
(1)	7.67	7.83	4.00	3.50	3.50	3.00	6.33	11.17	4.50	9.17	17.33	11.00	4.83	1.83	2.83	1.50	. 00	100.00
(2)	1.07	1.09	. 56	. 49	. 49	. 42	. 88	1.55	. 63	1.27	2.41	1.53	. 67	. 25	. 39	. 21	. 00	13.90

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-23—\{CCNPP 33 ft (10 m) June JFD (2000-2005)\}
(Page 4 of 8)
CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) $=30.58$

WIND DIRECTION FROM																		
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 00	. 08
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 02
.5-1.0	3	4	5	2	2	1	5	3	2	3	10	9	5	3	2	5	0	64
(1)	. 23	. 30	. 38	. 15	. 15	. 08	. 38	. 23	. 15	. 23	. 76	. 68	. 38	. 23	. 15	. 38	. 00	4.85
(2)	. 07	. 09	. 12	. 05	. 05	. 02	. 12	. 07	. 05	. 07	. 23	. 21	. 12	. 07	. 05	. 12	. 00	1.48
1.1-1.5	8	9	6	10	11	8	7	6	5	11	12	7	8	6	3	4	0	121
(1)	. 61	. 68	. 45	. 76	. 83	. 61	. 53	. 45	. 38	. 83	. 91	. 53	. 61	. 45	. 23	. 30	. 00	9.17
(2)	. 19	. 21	. 14	. 23	. 25	. 19	. 16	. 14	. 12	. 25	. 28	. 16	. 19	. 14	. 07	. 09	. 00	2.80
1.6-2.0	11	20	15	18	20	15	7	11	9	18	18	13	7	13	7	7	0	209
(1)	. 83	1.52	1.14	1.36	1.52	1.14	. 53	. 83	. 68	1.36	1.36	. 98	. 53	. 98	. 53	. 53	. 00	15.83
(2)	. 25	. 46	. 35	. 42	. 46	. 35	. 16	. 25	. 21	. 42	. 42	. 30	. 16	. 30	. 16	. 16	. 00	4.84
2.1-3.0	40	41	34	37	40	20	9	47	24	30	48	25	27	19	24	19	0	484
(1)	3.03	3.11	2.58	2.80	3.03	1.52	. 68	3.56	1.82	2.27	3.64	1.89	2.05	1.44	1.82	1.44	. 00	36.67
(2)	. 93	. 95	. 79	. 86	. 93	. 46	. 21	1.09	. 56	. 69	1.11	. 58	. 63	. 44	. 56	. 44	. 00	11.21
3.1-4.0	24	20	25	50	30	5	1	34	3	8	23	10	7	4	19	11	0	274
(1)	1.82	1.52	1.89	3.79	2.27	. 38	. 08	2.58	. 23	. 61	1.74	. 76	. 53	. 30	1.44	. 83	. 00	20.76
(2)	. 56	. 46	. 58	1.16	. 69	. 12	. 02	. 79	. 07	. 19	. 53	. 23	. 16	. 09	. 44	. 25	. 00	6.35
4.1-5.0	18	4	16	20	4	2	1	16	2	1	8	4	0	2	11	12	0	121
(1)	1.36	. 30	1.21	1.52	. 30	. 15	. 08	1.21	. 15	. 08	. 61	. 30	. 00	. 15	. 83	. 91	. 00	9.17
(2)	. 42	. 09	. 37	. 46	. 09	. 05	. 02	. 37	. 05	. 02	. 19	. 09	. 00	. 05	. 25	. 28	. 00	2.80
5.1-6.0	7	4	4	5	1	1	0	7	0	0	1	0	0	2	3	4	0	39
(1)	. 53	. 30	. 30	. 38	. 08	. 08	. 00	. 53	. 00	. 00	. 08	. 00	. 00	. 15	. 23	. 30	. 00	2.95
(2)	. 16	. 09	. 09	. 12	. 02	. 02	. 00	. 16	. 00	. 00	. 02	. 00	. 00	. 05	. 07	. 09	. 00	. 90
6.1-8.0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	3	0	0	7
(1)	. 08	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 23	. 23	. 00	. 00	. 53
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 07	. 00	. 00	. 16
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	112	102	105	142	108	52	30	124	45	71	120	68	54	53	72	62	0	1320
(1)	8.48	7.73	7.95	10.76	8.18	3.94	2.27	9.39	3.41	5.38	9.09	5.15	4.09	4.02	5.45	4.70	. 00	100.00
(2)	2.59	2.36	2.43	3.29	2.50	1.20	. 69	2.87	1.04	1.64	2.78	1.58	1.25	1.23	1.67	1.44	. 00	30.58
(1) = PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR	HIS PA												
(2) =PERCENT	ALL G	OD OBS	ERVATI	ONS FOR	THIS	ERIOD												

OヨノכヨノOYd $\perp H$ Iy

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
33．0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY（PERCENT）＝ 12.74

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-23—\{CCNPP 33 ft (10 m) June JFD (2000-2005) \} (Page 8 of 8)

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

33.0 FT WIND DATA				STABILITY CLASS ALL					CLASS			PERCENT) $=100.00$			NW	NNW	VRBL	TOTAL
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW				
mps																		
LT	0	0	0	0	0	1	1	0	3	4	5	3	1	0	0	0	0	18
	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 07	. 09	. 12	. 07	. 02	. 00	. 00	. 00	. 00	. 42
	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 07	. 09	. 12	. 07	. 02	. 00	. 00	. 00	. 00	. 42
. $2-$	0	0	1	0	0	1	0	4	1	4	3	7	3	1	0	0	0	25
	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 09	. 02	. 09	. 07	. 16	. 07	. 02	. 00	. 00	. 00	. 58
	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 09	. 02	. 09	. 07	. 16	. 07	. 02	. 00	. 00	. 00	. 58
. $5-1.0$	9	7	8	3	5	6	12	14	19	44	50	44	27	19	8	14	0	289
(1)	. 21	. 16	. 19	. 07	. 12	. 14	. 28	. 32	. 44	1.02	1.16	1.02	. 63	. 44	. 19	. 32	. 00	6.69
	. 21	. 16	. 19	. 07	. 12	. 14	. 28	. 32	. 44	1.02	1.16	1.02	. 63	. 44	. 19	. 32	. 00	6.69
	15	14	9	15	15	13	15	22	60	141	150	76	45	38	7	10	0	645
$\begin{array}{r} 1.1-1.5 \\ (1) \end{array}$. 35	. 32	. 21	. 35	. 35	. 30	. 35	. 51	1.39	3.27	3.47	1.76	1.04	. 88	. 16	. 23	. 00	14.94
(2)	. 35	. 32	. 21	. 35	. 35	. 30	. 35	. 51	1.39	3.27	3.47	1.76	1.04	. 88	. 16	. 23	. 00	14.94
$1.6-2.0$	21	29	24	29	30	29	17	36	63	117	175	105	50	36	30	16	0	807
$\begin{array}{r} 1.6-2.0 \\ (1) \end{array}$. 49	. 67	. 56	. 67	. 69	. 67	. 39	. 83	1.46	2.71	4.05	2.43	1.16	. 83	. 69	. 37	. 00	18.69
$\begin{array}{r} (2) \\ 2.1-3.0 \end{array}$. 49	. 67	. 56	. 67	. 69	. 67	. 39	. 83	1.46	2.71	4.05	2.43	1.16	. 83	. 69	. 37	. 00	18.69
	90	100	81	72	76	43	35	93	88	119	239	124	73	70	69	44	0	1416
$\begin{array}{r} 2.1-3.0 \\ (1) \end{array}$	2.08	2.32	1.88	1.67	1.76	1.00	. 81	2.15	2.04	2.76	5.54	2.87	1.69	1.62	1.60	1.02	. 00	32.80
$3.1-4.0$	2.08	2.32	1.88	1.67	1.76	1.00	. 81	2.15	2.04	2.76	5.54	2.87	1.69	1.62	1.60	1.02	. 00	32.80
	68	41	37	55	36	11	28	97	18	55	148	56	32	20	36	27	0	765
$\begin{array}{r} 3.1-4.0 \\ (1) \end{array}$	1.58	. 95	. 86	1.27	. 83	. 25	. 65	2.25	. 42	1.27	3.43	1.30	. 74	. 46	. 83	. 63	. 00	17.72
$\begin{array}{r} (2) \\ 4.1-5.0 \end{array}$	1.58	. 95	. 86	1.27	. 83	. 25	. 65	2.25	. 42	1.27	3.43	1.30	. 74	. 46	. 83	. 63	. 00	17.72
	31	6	19	22	5	5	8	41	10	14	36	16	5	6	20	19	0	263
$\begin{array}{r} 4.1-5.0 \\ (1) \end{array}$. 72	. 14	. 44	. 51	. 12	. 12	. 19	. 95	. 23	. 32	. 83	. 37	. 12	. 14	. 46	. 44	. 00	6.09
(2)	. 72	. 14	. 44	. 51	. 12	. 12	. 19	. 95	. 23	. 32	. 83	. 37	. 12	. 14	. 46	. 44	. 00	6.09
5.1-6.0	9	5	7	5	1	1	2	18	0	0	4	0	4	4	4	7	0	71
(1)	. 21	. 12	. 16	. 12	. 02	. 02	. 05	. 42	. 00	. 00	. 09	. 00	. 09	. 09	. 09	. 16	. 00	1.64
	. 21	. 12	. 16	. 12	. 02	. 02	. 05	. 42	. 00	. 00	. 09	. 00	. 09	. 09	. 09	. 16	. 00	1.64
	1	0	1	0	0	0	0	5	0	0	0	0	1	3	7	0	0	18
$\begin{array}{r} 6.1-8.0 \\ (1) \end{array}$. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 12	. 00	. 00	. 00	. 00	. 02	. 07	. 16	. 00	. 00	. 42
8.1-10.0	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 12	. 00	. 00	. 00	. 00	. 02	. 07	. 16	. 00	. 00	. 42
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1) (2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	244	202	187	201	168	110	118	330	262	498	810	431	241	197	181	137	0	4317
ALL SPEEDS (1)	5.65	4.68	4.33	4.66	3.89	2.55	2.73	7.64	6.07	11.54	18.76	9.98	5.58	4.56	4.19	3.17	. 00	100.00
(2)	5.65	4.68	4.33	4.66	3.89	2.55	2.73	7.64	6.07	11.54	18.76	9.98	5.58	4.56	4.19	3.17	. 00	100.00
(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

T
$\stackrel{0}{0}$
i
i

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION（ 60 －METER TOWER）
33．0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY（PERCENT）＝ 12.47

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT ． 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
． $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
．5－1．0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
1．1－1．5	0	0	0	0	0	0	0	0	0	3	0	1	0	0	0	0	0	4
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 56	． 00	． 19	． 00	． 00	． 00	． 00	． 00	． 74
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 09
1．6－2．0	0	2	2	1	0	1	1	0	1	1	6	2	1	0	0	0	0	18
（1）	． 00	． 37	． 37	． 19	． 00	． 19	． 19	． 00	． 19	． 19	1.11	． 37	． 19	． 00	． 00	． 00	． 00	3.33
（2）	． 00	． 05	． 05	． 02	． 00	． 02	． 02	． 00	． 02	． 02	． 14	． 05	． 02	． 00	． 00	． 00	． 00	． 42
2．1－3．0	21	20	16	7	10	12	19	10	11	26	44	20	3	0	4	4	0	227
（1）	3.89	3.70	2.96	1.30	1.85	2.22	3.52	1.85	2.04	4.81	8.15	3.70	． 56	． 00	． 74	． 74	． 00	42.04
（2）	． 48	． 46	． 37	． 16	． 23	． 28	． 44	． 23	． 25	． 60	1.02	． 46	． 07	． 00	． 09	． 09	． 00	5.24
3．1－4．0	31	30	11	1	0	3	16	27	9	14	18	19	11	3	1	3	0	197
（1）	5.74	5.56	2.04	． 19	． 00	． 56	2.96	5.00	1.67	2.59	3.33	3.52	2.04	． 56	． 19	． 56	． 00	36.48
（2）	． 72	． 69	． 25	． 02	． 00	． 07	． 37	． 62	． 21	． 32	． 42	． 44	． 25	． 07	． 02	． 07	． 00	4.55
4．1－5．0	13	4	12	2	0	2	8	13	1	3	6	2	2	3	9	2	0	82
（1）	2.41	． 74	2.22	． 37	． 00	． 37	1.48	2.41	． 19	． 56	1.11	． 37	． 37	． 56	1.67	． 37	． 00	15.19
(2)	． 30	． 09	． 28	． 05	． 00	． 05	． 18	． 30	． 02	． 07	． 14	． 05	． 05	． 07	． 21	． 05	． 00	1.89
5．1－6．0	0	1	2	0	0	0	0	2	1	0	1	0	0	0	2	1	0	10
（1）	． 00	． 19	． 37	． 00	． 00	． 00	． 00	． 37	． 19	． 00	． 19	． 00	． 00	． 00	． 37	． 19	． 00	1.85
（2）	． 00	． 02	． 05	． 00	． 00	． 00	． 00	． 05	． 02	． 00	． 02	． 00	． 00	． 00	． 05	． 02	． 00	． 23
6．1－8．0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
（1）	． 00	． 00	． 19	． 19	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 37
（2）	． 00	． 00	． 02	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 05
8．1－10．0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
10．1－89．5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	，
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
ALL SPEEDS	65	57	44	12	10	18	44	52	23	47	75	44	17	6	16	10	0	540
（1）	12.04	10.56	8.15	2.22	1.85	3.33	8.15	9.63	4.26	8.70	13.89	8.15	3.15	1.11	2.96	1.85	． 00	100.00
（2）	1.50	1.32	1.02	． 28	． 23	． 42	1.02	1.20	． 53	1.09	1.73	1.02	． 39	． 14	． 37	． 23	． 00	12.47

（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-24—\{CCNPP 33 ft (10 m) July JFD (2000-2005) \} (Page 4 of 8)
CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 30.65

Table 2.3-24—\{CCNPP 33 ft (10 m) July JFD (2000-2005)\} (Page 5 of 8)
CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 23.30

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER

33．0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY（PERCENT）＝ 11.20

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

Table 2.3-24—_\{CNPP 33 ft (10 m) July JFD (2000-2005)\} (Page 8 of 8)
CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

33.0 FT WIND DATA				STABILITY CLASS ALL					CLASS FREQUENCY ($($ PERCENT $)=100.00$			NW	NNW	VRBL	TOTAL
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW				
mps																		
LT	0	0	0	0	0	0	0	2	2	1	4	4	0	0	0	1	0	14
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 02	. 09	. 09	. 00	. 00	. 00	. 02	. 00	. 32
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 02	. 09	. 09	. 00	. 00	. 00	. 02	. 00	. 32
. $2-$	0	0	1	0	1	0	1	3	2	3	2	5	7	2	2	1	0	30
	. 00	. 00	. 02	. 00	. 02	. 00	. 02	. 07	. 05	. 07	. 05	. 12	. 16	. 05	. 05	. 02	. 00	. 69
	. 00	. 00	. 02	. 00	. 02	. 00	. 02	. 07	. 05	. 07	. 05	. 12	. 16	. 05	. 05	. 02	. 00	. 69
. $5-1.0$	10	5	6	3	7	8	8	22	40	64	64	47	36	21	13	9	0	363
(1)	. 23	. 12	. 14	. 07	. 16	. 18	. 18	. 51	. 92	1.48	1.48	1.09	. 83	. 48	. 30	. 21	. 00	8.38
	. 23	. 12	. 14	. 07	. 16	. 18	. 18	. 51	. 92	1.48	1.48	1.09	. 83	. 48	. 30	. 21	. 00	8.38
	16	12	11	12	21	17	17	33	69	141	171	107	65	33	23	7	0	755
$\begin{array}{r} 1.1-1.5 \\ (1) \end{array}$. 37	. 28	. 25	. 28	. 48	. 39	. 39	. 76	1.59	3.26	3.95	2.47	1.50	. 76	. 53	. 16	. 00	17.44
(2)	. 37	. 28	. 25	. 28	. 48	. 39	. 39	. 76	1.59	3.26	3.95	2.47	1.50	. 76	. 53	. 16	. 00	17.44
$1.6-2.0$	25	47	31	29	45	35	28	38	49	92	174	98	51	45	34	19	0	840
$\begin{array}{r} 1.6-2.0 \\ (1) \end{array}$. 58	1.09	. 72	. 67	1.04	. 81	. 65	. 88	1.13	2.12	4.02	2.26	1.18	1.04	. 79	. 44	. 00	19.40
$\begin{array}{r} (2) \\ 2.1-3.0 \end{array}$. 58	1.09	. 72	. 67	1.04	. 81	. 65	. 88	1.13	2.12	4.02	2.26	1.18	1.04	. 79	. 44	. 00	19.40
	105	114	77	77	66	47	67	80	72	92	226	154	46	24	39	35	0	1321
$\begin{array}{r} 2.1-3.0 \\ (1) \end{array}$	2.42	2.63	1.78	1.78	1.52	1.09	1.55	1.85	1.66	2.12	5.22	3.56	1.06	. 55	. 90	. 81	. 00	30.51
$3.1-4.0$	2.42	2.63	1.78	1.78	1.52	1.09	1.55	1.85	1.66	2.12	5.22	3.56	1.06	. 55	. 90	. 81	. 00	30.51
	89	61	54	54	26	15	30	76	33	39	88	45	22	8	10	14	0	664
$\begin{array}{r} 3.1-4.0 \\ (1) \end{array}$	2.06	1.41	1.25	1.25	. 60	. 35	. 69	1.76	. 76	. 90	2.03	1.04	. 51	. 18	. 23	. 32	. 00	15.33
$\begin{array}{r} (2) \\ 4.1-5.0 \end{array}$	2.06	1.41	1.25	1.25	. 60	. 35	. 69	1.76	. 76	. 90	2.03	1.04	. 51	. 18	. 23	. 32	. 00	15.33
	19	12	55	39	14	5	8	25	6	5	22	7	2	6	13	7	0	245
(1)	. 44	. 28	1.27	. 90	. 32	. 12	. 18	. 58	. 14	. 12	. 51	. 16	. 05	. 14	. 30	. 16	. 00	5.66
$\begin{array}{r} \text { (2) } \\ 5.1-6.0 \end{array}$. 44	. 28	1.27	. 90	. 32	. 12	. 18	. 58	. 14	. 12	. 51	. 16	. 05	. 14	. 30	. 16	. 00	5.66
	5	8	24	16	1	0	1	3	2	0	9	0	0	0	4	2	0	75
$5.1-6.0$ (1)	. 12	. 18	. 55	. 37	. 02	. 00	. 02	. 07	. 05	. 00	. 21	. 00	. 00	. 00	. 09	. 05	. 00	1.73
(2)	. 12	. 18	. 55	. 37	. 02	. 00	. 02	. 07	. 05	. 00	. 21	. 00	. 00	. 00	. 09	. 05	. 00	1.73
6.1-8.0	2	3	10	5	1	0	0	0	0	0	0	0	0	1	1	0	0	23
(1)	. 05	. 07	. 23	. 12	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 53
$\begin{array}{r} (2) \\ 8.1-10.0 \end{array}$. 05	. 07	. 23	. 12	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 53
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1) (2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	271	262	269	235	182	127	160	282	275	437	760	467	229	140	139	95	0	4330
(1)	6.26	6.05	6.21	5.43	4.20	2.93	3.70	6.51	6.35	10.09	17.55	10.79	5.29	3.23	3.21	2.19	. 00	100.00
(2)	6.26	6.05	6.21	5.43	4.20	2.93	3.70	6.51	6.35	10.09	17.55	10.79	5.29	3.23	3.21	2.19	. 00	100.00
(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION ($60-$ METER TOWER)

[^0](2) =PERCENT OF ALL GOod ObSERVAtions for this period

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION	$(60$-METER TOWER)		
33.0 FT WIND DATA	STABILITY CLASS B	CLASS FREQUENCY	(PERCENT) $=\quad 5.84$

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION	$(60-M E T E R ~ T O W E R) ~$		
33.0 FT WIND DATA	STABILITY CLASS C	CLASS FREQUENCY	(PERCENT) $=6.13$

Table 2.3-25—\{CCNPP 33 ft (10 m) August JFD (2000-2005)\} (Page 4 of 8)
CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 28.67

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION	$(60-M E T E R ~ T O W E R)$		
$33.0 ~ F T ~ W I N D ~ D A T A ~$	STABILITY CLASS E	CLASS FREQUENCY	(PERCENT) $=27.43$

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION	$(60$-METER TOWER)		
33.0 FT WIND DATA	STABILITY CLASS F	CLASS FREQUENCY	(PERCENT) $=11.97$

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION	$(60$-METER TOWER)		
33.0 FT WIND DATA	STABILITY CLASS G	CLASS FREQUENCY	(PERCENT) $=\mathbf{7 . 9 7}$

Table 2.3-25—\{CCNPP 33 ft (10 m) August JFD (2000-2005) \} (Page 8 of 8)
CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	1	0	0	1	1	3	1	4	0	0	3	0	0	14
(1)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 02	. 07	. 02	. 09	. 00	. 00	. 07	. 00	. 00	. 32
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 02	. 07	. 02	. 09	. 00	. 00	. 07	. 00	. 00	. 32
. $2-.4$	0	0	2	0	1	2	0	1	6	6	7	2	5	3	2	1	0	38
(1)	. 00	. 00	. 05	. 00	. 02	. 05	. 00	. 02	. 14	. 14	. 16	. 05	. 11	. 07	. 05	. 02	. 00	. 86
(2)	. 00	. 00	. 05	. 00	. 02	. 05	. 00	. 02	. 14	. 14	. 16	. 05	. 11	. 07	. 05	. 02	. 00	. 86
.5-1.0	7	1	5	2	10	12	10	21	39	74	84	58	47	24	12	17	0	423
(1)	. 16	. 02	. 11	. 05	. 23	. 27	. 23	. 48	. 88	1.67	1.90	1.31	1.06	. 54	. 27	. 38	. 00	9.57
(2)	. 16	. 02	. 11	. 05	. 23	. 27	. 23	. 48	. 88	1.67	1.90	1.31	1.06	. 54	. 27	. 38	. 00	9.57
1.1-1.5	16	13	15	7	35	22	19	39	59	163	179	92	38	26	15	12	0	750
(1)	. 36	. 29	. 34	. 16	. 79	. 50	. 43	. 88	1.34	3.69	4.05	2.08	. 86	. 59	. 34	. 27	. 00	16.97
(2)	. 36	. 29	. 34	. 16	. 79	. 50	. 43	. 88	1.34	3.69	4.05	2.08	. 86	. 59	. 34	. 27	. 00	16.97
1.6-2.0	27	27	26	37	39	27	28	53	71	134	174	67	35	38	35	22	0	840
(1)	. 61	. 61	. 59	. 84	. 88	. 61	. 63	1.20	1.61	3.03	3.94	1.52	. 79	. 86	. 79	. 50	. 00	19.01
(2)	. 61	. 61	. 59	. 84	. 88	. 61	. 63	1.20	1.61	3.03	3.94	1.52	. 79	. 86	. 79	. 50	. 00	19.01
2.1-3.0	92	114	66	63	50	41	59	123	107	120	310	106	33	31	43	41	0	1399
(1)	2.08	2.58	1.49	1.43	1.13	. 93	1.34	2.78	2.42	2.72	7.02	2.40	. 75	. 70	. 97	. 93	. 00	31.66
(2)	2.08	2.58	1.49	1.43	1.13	. 93	1.34	2.78	2.42	2.72	7.02	2.40	. 75	. 70	. 97	. 93	. 00	31.66
3.1-4.0	77	69	69	26	14	17	21	63	21	32	141	38	13	8	12	26	0	647
(1)	1.74	1.56	1.56	. 59	. 32	. 38	. 48	1.43	. 48	. 72	3.19	. 86	. 29	. 18	. 27	. 59	. 00	14.64
(2)	1.74	1.56	1.56	. 59	. 32	. 38	. 48	1.43	. 48	. 72	3.19	. 86	. 29	. 18	. 27	. 59	. 00	14.64
4.1-5.0	43	43	22	16	4	4	14	23	7	10	13	4	1	4	2	6	0	216
(1)	. 97	. 97	. 50	. 36	. 09	. 09	. 32	. 52	. 16	. 23	. 29	. 09	. 02	. 09	. 05	. 14	. 00	4.89
(2)	. 97	. 97	. 50	. 36	. 09	. 09	. 32	. 52	. 16	. 23	. 29	. 09	. 02	. 09	. 05	. 14	. 00	4.89
5.1-6.0	13	18	16	4	1	1	2	6	0	0	2	1	1	0	1	1	0	67
(1)	. 29	. 41	. 36	. 09	. 02	. 02	. 05	. 14	. 00	. 00	. 05	. 02	. 02	. 00	. 02	. 02	. 00	1.52
(2)	. 29	. 41	. 36	. 09	. 02	. 02	. 05	. 14	. 00	. 00	. 05	. 02	. 02	. 00	. 02	. 02	. 00	1.52
6.1-8.0	5	3	6	4	2	0	0	1	0	0	0	0	0	0	0	1	0	22
(1)	. 11	. 07	. 14	. 09	. 05	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 50
(2)	. 11	. 07	. 14	. 09	. 05	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 50
8.1-10.0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	3
(1)	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 07
(2)	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 07
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	280	288	228	160	157	126	153	331	311	542	911	372	173	134	126	127	0	4419
(1)	6.34	6.52	5.16	3.62	3.55	2.85	3.46	7.49	7.04	12.27	20.62	8.42	3.91	3.03	2.85	2.87	. 00	100.00
(2)	6.34	6.52	5.16	3.62	3.55	2.85	3.46	7.49	7.04	12.27	20.62	8.42	3.91	3.03	2.85	2.87	. 00	100.00
(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE																		
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

P
$\stackrel{0}{2}$
i

Table 2．3－26—\｛CCNPP 33 ft（ 10 m ）September JFD（2000－2005）\}

（Page 1 of 8）

CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）

33．0 FT WIND DATA			STABILITY CLASS A				CLASS FREQUENCY（PERCENT）$=11.82$EECTION FROM								NW	NNW	VRBL	TOTAL
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW				
mps																		
LT ． 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
． $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
． $5-1.0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
1．1－1．5	0	1	2	1	1	0	2	0	0	0	3	0	0	0	0	1	0	11
（1）	． 00	． 20	． 40	． 20	． 20	． 00	． 40	． 00	． 00	． 00	． 60	． 00	． 00	． 00	． 00	． 20	． 00	2.20
（2）	． 00	． 02	． 05	． 02	． 02	． 00	． 05	． 00	． 00	． 00	． 07	． 00	． 00	． 00	． 00	． 02	． 00	． 26
1．6－2．0	3	4	4	0	2	2	1	4	1	2	5	1	2	2	1	0	0	34
（1）	． 60	． 80	． 80	． 00	． 40	． 40	． 20	． 80	． 20	． 40	1.00	． 20	． 40	． 40	． 20	． 00	． 00	6.81
（2）	． 07	． 09	． 09	． 00	． 05	． 05	． 02	． 09	． 02	． 05	． 12	． 02	． 05	． 05	． 02	． 00	． 00	． 81
2．1－3．0	30	29	16	5	7	7	6	7	7	17	26	14	3	2	2	1	0	179
（1）	6.01	5.81	3.21	1.00	1.40	1.40	1.20	1.40	1.40	3.41	5.21	2.81	． 60	． 40	． 40	． 20	． 00	35.87
（2）	． 71	． 69	． 38	． 12	． 17	． 17	． 14	． 17	． 17	． 40	． 62	． 33	． 07	． 05	． 05	． 02	． 00	4.24
3．1－4．0	45	38	18	0	0	5	25	18	4	13	14	10	0	3	0	4	0	197
（1）	9.02	7.62	3.61	． 00	． 00	1.00	5.01	3.61	． 80	2.61	2.81	2.00	． 00	． 60	． 00	． 80	． 00	39.48
（2）	1.07	． 90	． 43	． 00	． 00	． 12	． 59	． 43	． 09	． 31	． 33	． 24	． 00	． 07	． 00	． 09	． 00	4.66
4．1－5．0	11	9	7	1	0	0	4	6	2	5	2	1	0	2	0	0	0	50
（1）	2.20	1.80	1.40	． 20	． 00	． 00	． 80	1.20	． 40	1.00	． 40	． 20	． 00	． 40	． 00	． 00	． 00	10.02
（2）	． 26	． 21	． 17	． 02	． 00	． 00	． 09	． 14	． 05	． 12	． 05	． 02	． 00	． 05	． 00	． 00	． 00	1.18
5．1－6．0	4	6	11	0	0	0	0	2	0	1	0	0	0	0	0	1	0	25
（1）	． 80	1.20	2.20	． 00	． 00	． 00	． 00	． 40	． 00	． 20	． 00	． 00	． 00	． 00	． 00	． 20	． 00	5.01
（2）	． 09	． 14	． 26	． 00	． 00	． 00	． 00	． 05	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 59
6．1－8．0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	3
（1）	． 00	． 00	． 20	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 40	． 00	． 00	． 60
（2）	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 05	． 00	． 00	． 07
8．1－10．0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
10．1－89．5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
ALL SPEEDS	93	87	59	7	10	14	38	37	14	38	50	26	5	9	5	7	0	499
（1）	18.64	17.43	11.82	1.40	2.00	2.81	7.62	7.41	2.81	7.62	10.02	5.21	1.00	1.80	1.00	1.40	． 00	100.00
（2）	2.20	2.06	1.40	． 17	． 24	． 33	． 90	． 88	． 33	． 90	1.18	． 62	． 12	． 21	． 12	． 17	． 00	11.82
（1）＝PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR T	HIS PA												

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

Table 2.3-26—\{CCNPP 33 ft (10 m) September JFD (2000-2005)\} (Page 2 of 8)
CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 5.49

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 43	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 43
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.1-1.5	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3
(1)	. 00	. 43	. 00	. 43	. 43	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.29
(2)	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07
1.6-2.0	2	1	4	3	1	2	1	0	2	1	1	1	0	0	0	0	0	19
(1)	. 86	. 43	1.72	1.29	. 43	. 86	. 43	. 00	. 86	. 43	. 43	. 43	. 00	. 00	. 00	. 00	. 00	8.19
(2)	. 05	. 02	. 09	. 07	. 02	. 05	. 02	. 00	. 05	. 02	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 45
2.1-3.0	11	15	6	7	4	4	5	7	3	2	6	2	2	4	1	2	0	81
(1)	4.74	6.47	2.59	3.02	1.72	1.72	2.16	3.02	1.29	. 86	2.59	. 86	. 86	1.72	. 43	. 86	. 00	34.91
(2)	. 26	. 36	. 14	. 17	. 09	. 09	. 12	. 17	. 07	. 05	. 14	. 05	. 05	. 09	. 02	. 05	. 00	1.92
3.1-4.0	17	13	10	1	0	1	4	8	0	3	3	3	0	2	3	0	0	68
(1)	7.33	5.60	4.31	. 43	. 00	. 43	1.72	3.45	. 00	1.29	1.29	1.29	. 00	. 86	1.29	. 00	. 00	29.31
(2)	. 40	. 31	. 24	. 02	. 00	. 02	. 09	. 19	. 00	. 07	. 07	. 07	. 00	. 05	. 07	. 00	. 00	1.61
4.1-5.0	7	2	8	1	0	0	2	5	2	0	1	0	0	2	3	0	0	33
(1)	3.02	. 86	3.45	. 43	. 00	. 00	. 86	2.16	. 86	. 00	. 43	. 00	. 00	. 86	1.29	. 00	. 00	14.22
(2)	. 17	. 05	. 19	. 02	. 00	. 00	. 05	. 12	. 05	. 00	. 02	. 00	. 00	. 05	. 07	. 00	. 00	. 78
5.1-6.0	4	3	7	0	0	0	2	2	1	0	0	0	0	0	2	0	0	21
(1)	1.72	1.29	3.02	. 00	. 00	. 00	. 86	. 86	. 43	. 00	. 00	. 00	. 00	. 00	. 86	. 00	. 00	9.05
(2)	. 09	. 07	. 17	. 00	. 00	. 00	. 05	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 50
6.1-8.0	1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	0	0	6
(1)	. 43	. 43	. 43	. 43	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 43	. 43	. 00	. 00	2.59
(2)	. 02	. 02	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 14
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	42	36	36	14	6	7	15	22	8	6	11	6	2	9	10	2	0	232
(1)	18.10	15.52	15.52	6.03	2.59	3.02	6.47	9.48	3.45	2.59	4.74	2.59	. 86	3.88	4.31	. 86	. 00	100.00
(2)	. 99	. 85	. 85	. 33	. 14	. 17	. 36	. 52	. 19	. 14	. 26	. 14	. 05	. 21	. 24	. 05	. 00	5.49

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Abstract

CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER 33.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 5.78

								NIND D	ET	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 41	. 00	. 00	. 00	. 00	. 41	. 00	. 82
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 05
1.1-1.5	0	1	1	1	3	0	1	2	0	0	1	2	3	0	0	0	0	15
(1)	. 00	. 41	. 41	. 41	1.23	. 00	. 41	. 82	. 00	. 00	. 41	. 82	1.23	. 00	. 00	. 00	. 00	6.15
(2)	. 00	. 02	. 02	. 02	. 07	. 00	. 02	. 05	. 00	. 00	. 02	. 05	. 07	. 00	. 00	. 00	. 00	. 36
1.6-2.0	2	14	3	3	4	4	4	4	4	1	0	0	1	0	2	1	0	47
(1)	. 82	5.74	1.23	1.23	1.64	1.64	1.64	1.64	1.64	. 41	. 00	. 00	. 41	. 00	. 82	. 41	. 00	19.26
(2)	. 05	. 33	. 07	. 07	. 09	. 09	. 09	. 09	. 09	. 02	. 00	. 00	. 02	. 00	. 05	. 02	. 00	1.11
2.1-3.0	12	19	7	8	6	5	8	6	3	1	5	3	1	6	1	2	0	93
(1)	4.92	7.79	2.87	3.28	2.46	2.05	3.28	2.46	1.23	. 41	2.05	1.23	. 41	2.46	. 41	. 82	. 00	38.11
(2)	. 28	. 45	. 17	. 19	. 14	. 12	. 19	. 14	. 07	. 02	. 12	. 07	. 02	. 14	. 02	. 05	. 00	2.20
3.1-4.0	13	4	11	2	1	0	1	10	1	1	2	0	1	2	5	2	0	56
(1)	5.33	1.64	4.51	. 82	. 41	. 00	. 41	4.10	. 41	. 41	. 82	. 00	. 41	. 82	2.05	. 82	. 00	22.95
(2)	. 31	. 09	. 26	. 05	. 02	. 00	. 02	. 24	. 02	. 02	. 05	. 00	. 02	. 05	. 12	. 05	. 00	1.33
4.1-5.0	4	1	4	1	0	0	1	4	0	0	0	0	0	1	0	0	0	16
(1)	1.64	. 41	1.64	. 41	. 00	. 00	. 41	1.64	. 00	. 00	. 00	. 00	. 00	. 41	. 00	. 00	. 00	6.56
(2)	. 09	. 02	. 09	. 02	. 00	. 00	. 02	. 09	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 38
5.1-6.0	1	1	7	2	0	0	0	1	0	0	0	0	0	0	1	0	0	13
(1)	. 41	. 41	2.87	. 82	. 00	. 00	. 00	. 41	. 00	. 00	. 00	. 00	. 00	. 00	. 41	. 00	. 00	5.33
(2)	. 02	. 02	. 17	. 05	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 31
6.1-8.0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
(1)	. 82	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 82
(2)	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	34	40	33	17	14	9	15	27	8	3	9	5	6	9	9	6	0	244
(1)	13.93	16.39	13.52	6.97	5.74	3.69	6.15	11.07	3.28	1.23	3.69	2.05	2.46	3.69	3.69	2.46	. 00	100.00
(2)	. 81	. 95	. 78	. 40	. 33	. 21	. 36	. 64	. 19	. 07	. 21	. 12	. 14	. 21	. 21	. 14	. 00	5.78

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
T
$\stackrel{0}{0}$
i
i
$\begin{array}{lll}\text { CC SEPTEMBER MET DATA } & \text { JOINT FREQUENCY DISTRIBUTION } & \text { (} 60 \text {-METER TOWER) } \\ \text { 33.0 FT WIND DATA } & \text { STABILITY CLASS D } & \text { CLASS FREQUENCY } \\ \text { (PERCENT) })=34.31\end{array}$

WIND DIRECTION FROM																		
$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 07
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02
. 5- 1.0	1	2	5	1	5	5	1	4	1	4	3	1	1	4	1	3	0	42
(1)	. 07	. 14	. 35	. 07	. 35	. 35	. 07	. 28	. 07	. 28	. 21	. 07	. 07	. 28	. 07	. 21	. 00	2.90
(2)	. 02	. 05	. 12	. 02	. 12	. 12	. 02	. 09	. 02	. 09	. 07	. 02	. 02	. 09	. 02	. 07	. 00	. 99
1.1-1.5	14	16	8	11	13	6	6	4	8	7	9	6	4	2	2	4	0	120
(1)	. 97	1.10	. 55	. 76	. 90	. 41	. 41	. 28	. 55	. 48	. 62	. 41	. 28	. 14	. 14	. 28	. 00	8.28
(2)	. 33	. 38	. 19	. 26	. 31	. 14	. 14	. 09	. 19	. 17	. 21	. 14	. 09	. 05	. 05	. 09	. 00	2.84
1.6-2.0	14	27	13	17	25	14	15	9	7	8	13	4	4	8	6	7	0	191
(1)	. 97	1.86	. 90	1.17	1.73	. 97	1.04	. 62	. 48	. 55	. 90	. 28	. 28	. 55	. 41	. 48	. 00	13.18
(2)	. 33	. 64	. 31	. 40	. 59	. 33	. 36	. 21	. 17	. 19	. 31	. 09	. 09	. 19	. 14	. 17	. 00	4.52
2.1-3.0	39	40	26	52	63	33	23	28	14	4	21	6	7	13	14	19	0	402
(1)	2.69	2.76	1.79	3.59	4.35	2.28	1.59	1.93	. 97	. 28	1.45	. 41	. 48	. 90	. 97	1.31	. 00	27.74
(2)	. 92	. 95	. 62	1.23	1.49	. 78	. 54	. 66	. 33	. 09	. 50	. 14	. 17	. 31	. 33	. 45	. 00	9.52
3.1-4.0	25	15	34	44	19	12	4	25	8	4	15	8	5	3	11	20	0	252
(1)	1.73	1.04	2.35	3.04	1.31	. 83	. 28	1.73	. 55	. 28	1.04	. 55	. 35	. 21	. 76	1.38	. 00	17.39
(2)	. 59	. 36	. 81	1.04	. 45	. 28	. 09	. 59	. 19	. 09	. 36	. 19	. 12	. 07	. 26	. 47	. 00	5.97
4.1-5.0	22	16	55	39	4	1	5	11	8	1	0	0	0	1	6	7	0	176
(1)	1.52	1.10	3.80	2.69	. 28	. 07	. 35	. 76	. 55	. 07	. 00	. 00	. 00	. 07	. 41	. 48	. 00	12.15
(2)	. 52	. 38	1.30	. 92	. 09	. 02	. 12	. 26	. 19	. 02	. 00	. 00	. 00	. 02	. 14	. 17	. 00	4.17
5.1-6.0	17	19	49	26	0	0	5	10	1	0	0	0	3	0	3	5	0	138
(1)	1.17	1.31	3.38	1.79	. 00	. 00	. 35	. 69	. 07	. 00	. 00	. 00	. 21	. 00	. 21	. 35	. 00	9.52
(2)	. 40	. 45	1.16	. 62	. 00	. 00	. 12	. 24	. 02	. 00	. 00	. 00	. 07	. 00	. 07	. 12	. 00	3.27
6.1-8.0	22	20	50	6	0	0	2	5	4	0	0	0	0	0	0	0	0	109
(1)	1.52	1.38	3.45	. 41	. 00	. 00	. 14	. 35	. 28	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	7.52
(2)	. 52	. 47	1.18	. 14	. 00	. 00	. 05	. 12	. 09	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.58
8.1-10.0	2	2	8	0	1	0	0	0	0	0	0	0	0	0	0	0	0	13
(1)	. 14	. 14	. 55	. 00	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 90
(2)	. 05	. 05	. 19	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 31
10.1-89.5	0	0	2	0	1	0	1	1	0	0	0	0	0	0	0	0	0	5
(1)	. 00	. 00	. 14	. 00	. 07	. 00	. 07	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 35
(2)	. 00	. 00	. 05	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 12
ALL SPEEDS	156	157	250	196	131	71	62	97	51	28	62	25	24	31	43	65	0	1449
(1)	10.77	10.84	17.25	13.53	9.04	4.90	4.28	6.69	3.52	1.93	4.28	1.73	1.66	2.14	2.97	4.49	. 00	100.00
(2)	3.69	3.72	5.92	4.64	3.10	1.68	1.47	2.30	1.21	. 66	1.47	. 59	. 57	. 73	1.02	1.54	. 00	34.31
$\begin{aligned} & (1)=\text { PERCENT } \\ & (2)=\text { PERCENT } \end{aligned}$	OF ALI	GOOD OBS	OBSERV	VATIONS ONS FOR	$\begin{gathered} \text { FOR I } \\ \text { THIS } \end{gathered}$	HIS PF ERIOD												

Table 2.3-26—\{CCNPP 33 ft (10 m) September JFD (2000-2005)\} (Page 5 of 8)
CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 22.42

R
$\stackrel{0}{2}$
i

$$
\begin{array}{lccc}
\text { CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION } & (60-M E T E R ~ T O W E R) \\
33.0 ~ F T ~ W I N D ~ D A T A ~ & \text { STABILITY CLASS F } & \text { CLASS FREQUENCY } & \text { (PERCENT) }=10.02
\end{array}
$$

CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER
 33.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 10.16

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	1	0	2	1	1	2	0	0	0	0	0	7
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 23	. 00	. 47	. 23	. 23	. 47	. 00	. 00	. 00	. 00	. 00	1.63
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 05	. 02	. 02	. 05	. 00	. 00	. 00	. 00	. 00	. 17
. $2-.4$	0	0	0	0	0	1	1	1	1	0	6	1	4	2	3	1	0	21
(1)	. 00	. 00	. 00	. 00	. 00	. 23	. 23	. 23	. 23	. 00	1.40	. 23	. 93	. 47	. 70	. 23	. 00	4.90
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 02	. 02	. 00	. 14	. 02	. 09	. 05	. 07	. 02	. 00	. 50
.5-1.0	1	1	0	0	0	0	0	6	5	10	27	27	35	29	3	3	0	147
(1)	. 23	. 23	. 00	. 00	. 00	. 00	. 00	1.40	1.17	2.33	6.29	6.29	8.16	6.76	. 70	. 70	. 00	34.27
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 14	. 12	. 24	. 64	. 64	. 83	. 69	. 07	. 07	. 00	3.48
1.1-1.5	1	1	0	0	0	0	0	2	15	37	33	19	28	24	3	0	0	163
(1)	. 23	. 23	. 00	. 00	. 00	. 00	. 00	. 47	3.50	8.62	7.69	4.43	6.53	5.59	. 70	. 00	. 00	38.00
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 05	. 36	. 88	. 78	. 45	. 66	. 57	. 07	. 00	. 00	3.86
1.6-2.0	0	0	0	0	0	0	0	0	3	13	30	9	8	10	2	0	0	75
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 70	3.03	6.99	2.10	1.86	2.33	. 47	. 00	. 00	17.48
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 31	. 71	. 21	. 19	. 24	. 05	. 00	. 00	1.78
2.1-3.0	0	0	0	0	0	0	0	0	0	0	6	3	3	3	1	0	0	16
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.40	. 70	. 70	. 70	. 23	. 00	. 00	3.73
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 14	. 07	. 07	. 07	. 02	. 00	. 00	. 38
3.1-4.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
4.1-5.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
5.1-6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
6.1-8.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	2	2	0	0	0	1	2	9	26	61	103	61	78	68	12	4	0	429
(1)	. 47	. 47	. 00	. 00	. 00	. 23	. 47	2.10	6.06	14.22	24.01	14.22	18.18	15.85	2.80	. 93	. 00	100.00
(2)	. 05	. 05	. 00	. 00	. 00	. 02	. 05	. 21	. 62	1.44	2.44	1.44	1.85	1.61	. 28	. 09	. 00	10.16

Table 2.3-26—\{CCNPP 33 ft (10 m) September JFD (2000-2005)\} (Page 8 of 8)
CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) $=100.00$

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	1	0	0	0	0	2	1	4	2	4	3	3	1	1	0	0	22
(1)	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 02	. 09	. 05	. 09	. 07	. 07	. 02	. 02	. 00	. 00	. 52
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 02	. 09	. 05	. 09	. 07	. 07	. 02	. 02	. 00	. 00	. 52
.2- . 4	0	0	2	0	0	1	3	6	1	2	8	3	5	4	4	1	0	40
(1)	. 00	. 00	. 05	. 00	. 00	. 02	. 07	. 14	. 02	. 05	. 19	. 07	. 12	. 09	. 09	. 02	. 00	. 95
(2)	. 00	. 00	. 05	. 00	. 00	. 02	. 07	. 14	. 02	. 05	. 19	. 07	. 12	. 09	. 09	. 02	. 00	. 95
.5-1.0	11	5	7	4	14	17	17	18	30	33	54	42	44	44	8	16	0	364
(1)	. 26	. 12	. 17	. 09	. 33	. 40	. 40	. 43	. 71	. 78	1.28	. 99	1.04	1.04	. 19	. 38	. 00	8.62
(2)	. 26	. 12	. 17	. 09	. 33	. 40	. 40	. 43	. 71	. 78	1.28	. 99	1.04	1.04	. 19	. 38	. 00	8.62
1.1-1.5	28	24	14	18	27	19	26	37	60	97	93	47	55	43	27	19	0	634
(1)	. 66	. 57	. 33	. 43	. 64	. 45	. 62	. 88	1.42	2.30	2.20	1.11	1.30	1.02	. 64	. 45	. 00	15.01
(2)	. 66	. 57	. 33	. 43	. 64	. 45	. 62	. 88	1.42	2.30	2.20	1.11	1.30	1.02	. 64	. 45	. 00	15.01
1.6-2.0	28	59	30	27	36	34	30	44	64	43	75	23	28	42	38	18	0	619
(1)	. 66	1.40	. 71	. 64	. 85	. 81	. 71	1.04	1.52	1.02	1.78	. 54	. 66	. 99	. 90	. 43	. 00	14.66
(2)	. 66	1.40	. 71	. 64	. 85	. 81	. 71	1.04	1.52	1.02	1.78	. 54	. 66	. 99	. 90	. 43	. 00	14.66
2.1-3.0	104	120	64	86	91	56	54	70	78	61	118	45	32	59	81	48	0	1167
(1)	2.46	2.84	1.52	2.04	2.15	1.33	1.28	1.66	1.85	1.44	2.79	1.07	. 76	1.40	1.92	1.14	. 00	27.63
(2)	2.46	2.84	1.52	2.04	2.15	1.33	1.28	1.66	1.85	1.44	2.79	1.07	. 76	1.40	1.92	1.14	. 00	27.63
3.1-4.0	106	78	94	50	21	18	35	68	27	28	68	27	7	13	40	39	0	719
(1)	2.51	1.85	2.23	1.18	. 50	. 43	. 83	1.61	. 64	. 66	1.61	. 64	. 17	. 31	. 95	. 92	. 00	17.03
(2)	2.51	1.85	2.23	1.18	. 50	. 43	. 83	1.61	. 64	. 66	1.61	. 64	. 17	. 31	. 95	. 92	. 00	17.03
4.1-5.0	45	28	82	42	4	1	12	27	17	8	10	2	0	9	9	9	0	305
(1)	1.07	. 66	1.94	. 99	. 09	. 02	. 28	. 64	. 40	. 19	. 24	. 05	. 00	. 21	. 21	. 21	. 00	7.22
(2)	1.07	. 66	1.94	. 99	. 09	. 02	. 28	. 64	. 40	. 19	. 24	. 05	. 00	. 21	. 21	. 21	. 00	7.22
5.1-6.0	28	31	75	28	0	0	7	15	2	1	0	0	4	0	6	6	0	203
(1)	. 66	. 73	1.78	. 66	. 00	. 00	. 17	. 36	. 05	. 02	. 00	. 00	. 09	. 00	. 14	. 14	. 00	4.81
(2)	. 66	. 73	1.78	. 66	. 00	. 00	. 17	. 36	. 05	. 02	. 00	. 00	. 09	. 00	. 14	. 14	. 00	4.81
$6.1-8.0$	25	21	52	8	0	0	2	7	4	0	1	0	0	1	3	0	0	124
(1)	. 59	. 50	1.23	. 19	. 00	. 00	. 05	. 17	. 09	. 00	. 02	.00	. 00	. 02	. 07	. 00	. 00	2.94
(2)	. 59	. 50	1.23	. 19	. 00	. 00	. 05	. 17	. 09	. 00	. 02	. 00	. 00	. 02	. 07	. 00	. 00	2.94
8.1-10.0	3	2	8	0	1	0	0	0	0	0	0	0	0	0	0	0	0	14
(1)	. 07	. 05	. 19	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 33
(2)	. 07	. 05	. 19	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 33
10.1-89.5	0	0	3	2	1	2	3	1	0	0	0	0	0	0	0	0	0	12
(1)	. 00	. 00	. 07	. 05	. 02	. 05	. 07	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 28
(2)	. 00	. 00	. 07	. 05	. 02	. 05	. 07	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 28
ALL SPEEDS	378	369	431	265	195	148	191	294	287	275	431	192	178	216	217	156	0	4223
(1)	8.95	8.74	10.21	6.28	4.62	3.50	4.52	6.96	6.80	6.51	10.21	4.55	4.22	5.11	5.14	3.69	. 00	100.00
(2)	8.95	8.74	10.21	6.28	4.62	3.50	4.52	6.96	6.80	6.51	10.21	4.55	4.22	5.11	5.14	3.69	. 00	100.00

T
$\stackrel{0}{0}$
i
i
CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER
33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 12.81

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION	$(60-M E T E R ~ T O W E R)$		
33.0 FT WIND DATA	STABILITY CLASS B	CLASS FREQUENCY	(PERCENT) $=3.98$

								ND DIR	ReCIION	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	1	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	4
(1)	. 00	. 57	. 00	. 00	. 57	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.14	. 00	. 00	. 00	2.27
(2)	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 09
1.6-2.0	0	1	1	1	0	2	2	0	0	1	3	1	0	1	0	4	0	17
(1)	. 00	. 57	. 57	. 57	. 00	1.14	1.14	. 00	. 00	. 57	1.70	. 57	. 00	. 57	. 00	2.27	. 00	9.66
(2)	. 00	. 02	. 02	. 02	. 00	. 05	. 05	. 00	. 00	. 02	. 07	. 02	. 00	. 02	. 00	. 09	. 00	. 38
2.1-3.0	7	8	4	5	1	3	4	1	2	4	5	5	1	2	7	3	0	62
(1)	3.98	4.55	2.27	2.84	. 57	1.70	2.27	. 57	1.14	2.27	2.84	2.84	. 57	1.14	3.98	1.70	. 00	35.23
(2)	. 16	. 18	. 09	. 11	. 02	. 07	. 09	. 02	. 05	. 09	. 11	. 11	. 02	. 05	. 16	. 07	. 00	1.40
3.1-4.0	11	10	1	1	0	0	1	6	1	1	4	1	1	4	6	5	0	53
(1)	6.25	5.68	. 57	. 57	. 00	. 00	. 57	3.41	. 57	. 57	2.27	. 57	. 57	2.27	3.41	2.84	. 00	30.11
(2)	. 25	. 23	. 02	. 02	. 00	. 00	. 02	. 14	. 02	. 02	. 09	. 02	. 02	. 09	. 14	. 11	. 00	1.20
4.1-5.0	2	0	1	0	0	0	2	5	0	0	1	1	1	2	7	2	0	24
(1)	1.14	. 00	. 57	. 00	. 00	. 00	1.14	2.84	. 00	. 00	. 57	. 57	. 57	1.14	3.98	1.14	. 00	13.64
(2)	. 05	. 00	. 02	. 00	. 00	. 00	. 05	. 11	. 00	. 00	. 02	. 02	. 02	. 05	. 16	. 05	. 00	. 54
5.1-6.0	1	0	2	0	0	0	0	4	0	0	0	0	1	2	2	0	0	12
(1)	. 57	. 00	1.14	. 00	. 00	. 00	. 00	2.27	. 00	. 00	. 00	. 00	. 57	1.14	1.14	. 00	. 00	6.82
(2)	. 02	. 00	. 05	. 00	. 00	. 00	. 00	. 09	. 00	. 00	. 00	. 00	. 02	. 05	. 05	. 00	. 00	. 27
6.1-8.0	0	0	0	0	0	0	0	1	0	0	0	0	2	0	1	0	0	4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 57	. 00	. 00	. 00	. 00	1.14	. 00	. 57	. 00	. 00	2.27
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 00	. 02	. 00	. 00	. 09
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	21	20	9	7	2	5	9	17	3	6	13	8	6	13	23	14	0	176
(1)	11.93	11.36	5.11	3.98	1.14	2.84	5.11	9.66	1.70	3.41	7.39	4.55	3.41	7.39	13.07	7.95	. 00	100.00
(2)	. 47	. 45	. 20	. 16	. 05	. 11	. 20	. 38	. 07	. 14	. 29	. 18	. 14	. 29	. 52	. 32	. 00	3.98

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-27—\{CCNPP 33 ft (10 m) October JFD (2000-2005) \} (Page 3 of 8)

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
OヨノכヨノOyd $\perp H$ Iy

Table 2．3－27—\｛CCNPP 33 ft（10 m）October JFD（2000－2005）\}

CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER

| CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION | $(60-M E T E R ~ T O W E R)$ | |
| :--- | :---: | :---: | :---: |
| 33.0 FT WIND DATA | STABILITY CLASS E | CLASS FREQUENCY (PERCENT) $=20.20$ |

								IND DI	RECTI	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	5
(1)	. 11	. 11	. 00	. 00	. 11	. 00	. 00	. 00	. 11	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 00	. 56
(2)	. 02	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 11
.2- . 4	0	1	0	0	0	0	0	0	1	1	0	1	0	0	1	0	0	5
(1)	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 00	. 11	. 11	. 00	. 11	. 00	. 00	. 11	. 00	. 00	. 56
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 11
.5-1.0	3	1	7	0	7	5	3	0	3	1	6	6	4	2	3	2	0	53
(1)	. 34	. 11	. 78	. 00	. 78	. 56	. 34	. 00	. 34	. 11	. 67	. 67	. 45	. 22	. 34	. 22	. 00	5.93
(2)	. 07	. 02	. 16	. 00	. 16	. 11	. 07	. 00	. 07	. 02	. 14	. 14	. 09	. 05	. 07	. 05	. 00	1.20
1.1-1.5	6	3	4	6	3	6	3	6	10	11	8	1	5	9	12	3	0	96
(1)	. 67	. 34	. 45	. 67	. 34	. 67	. 34	. 67	1.12	1.23	. 89	. 11	. 56	1.01	1.34	. 34	. 00	10.74
(2)	. 14	. 07	. 09	. 14	. 07	. 14	. 07	. 14	. 23	. 25	. 18	. 02	. 11	. 20	. 27	. 07	. 00	2.17
1.6-2.0	7	5	2	7	17	11	8	9	15	11	13	6	9	16	19	13	0	168
(1)	. 78	. 56	. 22	. 78	1.90	1.23	. 89	1.01	1.68	1.23	1.45	. 67	1.01	1.79	2.13	1.45	. 00	18.79
(2)	. 16	. 11	. 05	. 16	. 38	. 25	. 18	. 20	. 34	. 25	. 29	. 14	. 20	. 36	. 43	. 29	. 00	3.80
2.1-3.0	11	12	11	13	16	9	3	22	35	30	58	15	23	24	41	13	0	336
(1)	1.23	1.34	1.23	1.45	1.79	1.01	. 34	2.46	3.91	3.36	6.49	1.68	2.57	2.68	4.59	1.45	. 00	37.58
(2)	. 25	. 27	. 25	. 29	. 36	. 20	. 07	. 50	. 79	. 68	1.31	. 34	. 52	. 54	. 93	. 29	. 00	7.59
$3.1-4.0$	8	11	4	3	0	0	0	6	13	17	25	15	11	21	41	13	0	188
(1)	. 89	1.23	. 45	. 34	. 00	. 00	. 00	. 67	1.45	1.90	2.80	1.68	1.23	2.35	4.59	1.45	. 00	21.03
(2)	. 18	. 25	. 09	. 07	. 00	. 00	. 00	. 14	. 29	. 38	. 56	. 34	. 25	. 47	. 93	. 29	. 00	4.25
4.1-5.0	5	1	2	0	0	0	0	1	1	10	4	1	0	3	3	4	0	35
(1)	. 56	. 11	. 22	. 00	. 00	. 00	. 00	. 11	. 11	1.12	. 45	. 11	. 00	. 34	. 34	. 45	. 00	3.91
(2)	. 11	. 02	. 05	. 00	. 00	. 00	. 00	. 02	. 02	. 23	. 09	. 02	. 00	. 07	. 07	. 09	. 00	. 79
5.1-6.0	2	0	1	0	0	0	0	0	0	1	2	0	0	0	0	1	0	7
(1)	. 22	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 00	. 11	. 22	. 00	. 00	. 00	. 00	. 11	. 00	. 78
(2)	. 05	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 00	. 00	. 00	. 02	. 00	. 16
6.1-8.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 11
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	43	35	31	29	44	31	17	45	79	82	117	45	52	75	120	49	0	894
(1)	4.81	3.91	3.47	3.24	4.92	3.47	1.90	5.03	8.84	9.17	13.09	5.03	5.82	8.39	13.42	5.48	. 00	100.00
(2)	. 97	. 79	. 70	. 66	. 99	. 70	. 38	1.02	1.78	1.85	2.64	1.02	1.17	1.69	2.71	1.11	. 00	20.20

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-27—\{CCNPP 33 ft (10 m) October JFD (2000-2005)\} (Page 6 of 8)

CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION	$(60-M E T E R ~ T O W E R)$		
$33.0 ~ F T ~ W I N D ~ D A T A ~$	STABILITY CLASS G	CLASS FREQUENCY	(PERCENT) $=14.26$

								D	+CIIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	1	0	0	1	1	0	2	0	0	0	0	0	5
(1)	. 00	. 00	. 00	. 00	. 00	. 16	. 00	. 00	. 16	. 16	. 00	. 32	. 00	. 00	. 00	. 00	. 00	. 79
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 02	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 11
. $2-.4$	0	0	0	0	1	1	0	0	6	4	2	1	3	0	0	0	0	18
(1)	. 00	. 00	. 00	. 00	. 16	. 16	. 00	. 00	. 95	. 63	. 32	. 16	. 48	. 00	. 00	. 00	. 00	2.85
(2)	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 14	. 09	. 05	. 02	. 07	. 00	. 00	. 00	. 00	. 41
.5-1.0	4	0	1	0	1	2	2	2	9	15	25	32	19	14	2	0	0	128
(1)	. 63	. 00	. 16	. 00	. 16	. 32	. 32	. 32	1.43	2.38	3.96	5.07	3.01	2.22	. 32	. 00	. 00	20.29
(2)	. 09	. 00	. 02	. 00	. 02	. 05	. 05	. 05	. 20	. 34	. 56	. 72	. 43	. 32	. 05	. 00	. 00	2.89
1.1-1.5	0	0	0	0	0	3	0	1	19	59	72	33	23	21	2	0	0	233
(1)	. 00	. 00	. 00	. 00	. 00	. 48	. 00	. 16	3.01	9.35	11.41	5.23	3.65	3.33	. 32	. 00	. 00	36.93
(2)	. 00	. 00	. 00	. 00	. 00	. 07	. 00	. 02	. 43	1.33	1.63	. 75	. 52	. 47	. 05	. 00	. 00	5.26
1.6-2.0	0	0	0	0	0	0	0	1	23	25	55	25	13	28	4	2	0	176
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 16	3.65	3.96	8.72	3.96	2.06	4.44	. 63	. 32	. 00	27.89
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 52	. 56	1.24	. 56	. 29	. 63	. 09	. 05	. 00	3.98
2.1-3.0	0	0	0	0	0	0	0	1	1	4	20	11	9	18	6	1	0	71
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 16	. 16	. 63	3.17	1.74	1.43	2.85	. 95	. 16	. 00	11.25
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 09	. 45	. 25	. 20	. 41	. 14	. 02	. 00	1.60
$3.1-4.0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
4.1-5.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
5.1-6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
6.1-8.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	4	0	1	0	2	7	2	5	59	108	174	104	67	81	14	3	0	631
(1)	. 63	. 00	. 16	. 00	. 32	1.11	. 32	. 79	9.35	17.12	27.58	16.48	10.62	12.84	2.22	. 48	. 00	100.00
(2)	. 09	. 00	. 02	. 00	. 05	. 16	. 05	. 11	1.33	2.44	3.93	2.35	1.51	1.83	. 32	. 07	. 00	14.26

Table 2.3-27—\{CCNPP 33 ft (10 m) October JFD (2000-2005)\} (Page 8 of 8)
CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

ग्0
$\stackrel{0}{2}$
i

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 13.17

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

| CC NOVEMBER MET DATA JOINT | FREQUENCY DISTRIBUTION | (60-METER TOWER) | |
| :--- | :--- | :--- | :--- | :--- |
| 33.0 FT WIND DATA | STABILITY CLASS B | CLASS FREQUENCY | (PERCENT) $=3.59$ |

								ND	CT	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 65
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 65	. 65	. 00	. 00	. 00	. 65	. 00	. 00	. 00	. 00	. 00	1.94
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07
1.6-2.0	1	0	2	0	1	1	0	0	0	0	2	2	0	0	0	0	0	9
(1)	. 65	. 00	1.29	. 00	. 65	. 65	. 00	. 00	. 00	. 00	1.29	1.29	. 00	. 00	. 00	. 00	. 00	5.81
(2)	. 02	. 00	. 05	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 21
2.1-3.0	2	4	2	1	2	4	1	3	0	3	5	6	2	3	2	0	0	40
(1)	1.29	2.58	1.29	. 65	1.29	2.58	. 65	1.94	. 00	1.94	3.23	3.87	1.29	1.94	1.29	. 00	. 00	25.81
(2)	. 05	. 09	. 05	. 02	. 05	. 09	. 02	. 07	. 00	. 07	. 12	. 14	. 05	. 07	. 05	. 00	. 00	. 93
3.1-4.0	4	5	0	0	1	0	1	5	1	4	6	3	1	2	2	1	0	36
(1)	2.58	3.23	. 00	. 00	. 65	. 00	. 65	3.23	. 65	2.58	3.87	1.94	. 65	1.29	1.29	. 65	. 00	23.23
(2)	. 09	. 12	. 00	. 00	. 02	. 00	. 02	. 12	. 02	. 09	. 14	. 07	. 02	. 05	. 05	. 02	. 00	. 83
4.1-5.0	3	4	1	0	0	0	0	0	0	4	1	3	5	5	3	4	0	33
(1)	1.94	2.58	. 65	. 00	. 00	. 00	. 00	. 00	. 00	2.58	. 65	1.94	3.23	3.23	1.94	2.58	. 00	21.29
(2)	. 07	. 09	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 09	. 02	. 07	. 12	. 12	. 07	. 09	. 00	. 76
5.1-6.0	3	1	0	0	0	0	0	0	0	0	2	0	1	4	5	4	0	20
(1)	1.94	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.29	. 00	. 65	2.58	3.23	2.58	. 00	12.90
(2)	. 07	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 02	. 09	. 12	. 09	. 00	. 46
6.1-8.0	2	1	0	0	0	0	0	1	0	0	0	0	0	3	4	0	0	11
(1)	1.29	. 65	. 00	. 00	. 00	. 00	. 00	. 65	. 00	. 00	. 00	. 00	. 00	1.94	2.58	. 00	. 00	7.10
(2)	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07	. 09	. 00	. 00	. 25
8.1-10.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
10.1-89.5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
ALL SPEEDS	16	15	5	1	4	5	3	11	1	11	16	16	9	17	16	9	0	155
(1)	10.32	9.68	3.23	. 65	2.58	3.23	1.94	7.10	. 65	7.10	10.32	10.32	5.81	10.97	10.32	5.81	. 00	100.00
(2)	. 37	. 35	. 12	. 02	. 09	. 12	. 07	. 25	. 02	. 25	. 37	. 37	. 21	. 39	. 37	. 21	. 00	3.59

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

33.0 FT	WIND	DATA		STABILITY CLASS C				WIND D	CLASS	FREQU N FROM	ENCY	(PERCENT)		3.68	NW	NNW	VRBL	TOTAL
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW				
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	1	0	0	1	2	0	0	0	1	0	1	0	0	6
(1)	. 00	. 00	. 00	. 00	. 63	. 00	. 00	. 63	1.26	. 00	. 00	. 00	. 63	. 00	. 63	. 00	. 00	3.77
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 05	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 14
1.1-1.5	0	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	4
(1)	. 00	. 63	. 00	. 00	. 63	. 00	. 00	. 63	. 00	. 63	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.52
(2)	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09
1.6-2.0	0	1	1	1	1	2	2	0	0	2	1	2	0	0	1	0	0	14
(1)	. 00	. 63	. 63	. 63	. 63	1.26	1.26	. 00	. 00	1.26	. 63	1.26	. 00	. 00	. 63	. 00	. 00	8.81
(2)	. 00	. 02	. 02	. 02	. 02	. 05	. 05	. 00	. 00	. 05	. 02	. 05	. 00	. 00	. 02	. 00	. 00	. 32
2.1-3.0	3	4	5	4	2	4	2	6	1	5	8	4	1	0	3	1	0	53
(1)	1.89	2.52	3.14	2.52	1.26	2.52	1.26	3.77	. 63	3.14	5.03	2.52	. 63	. 00	1.89	. 63	. 00	33.33
(2)	. 07	. 09	. 12	. 09	. 05	. 09	. 05	. 14	. 02	. 12	. 19	. 09	. 02	. 00	. 07	. 02	. 00	1.23
3.1-4.0	2	2	0	0	0	0	1	6	1	0	3	4	2	4	1	1	0	27
(1)	1.26	1.26	. 00	. 00	. 00	. 00	. 63	3.77	. 63	. 00	1.89	2.52	1.26	2.52	. 63	. 63	. 00	16.98
(2)	. 05	. 05	. 00	. 00	. 00	. 00	. 02	. 14	. 02	. 00	. 07	. 09	. 05	. 09	. 02	. 02	. 00	. 62
4.1-5.0	3	4	0	0	0	0	2	1	2	2	0	1	1	2	1	0	0	19
(1)	1.89	2.52	. 00	. 00	. 00	. 00	1.26	. 63	1.26	1.26	. 00	. 63	. 63	1.26	. 63	. 00	. 00	11.95
(2)	. 07	. 09	. 00	. 00	. 00	. 00	. 05	. 02	. 05	. 05	. 00	. 02	. 02	. 05	. 02	. 00	. 00	. 44
5.1-6.0		3	0	0	0	0	0	0	1	2	0	0	1	2	1	4	0	15
(1)	. 63	1.89	. 00	. 00	. 00	. 00	. 00	. 00	. 63	1.26	. 00	. 00	. 63	1.26	. 63	2.52	. 00	9.43
(2)	. 02	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 00	. 02	. 05	. 02	. 09	. 00	. 35
6.1-8.0	5	2	0	0	0	0	0	1	0	0	0	0	2	5	3	1	0	19
(1)	3.14	1.26	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 00	. 00	. 00	1.26	3.14	1.89	. 63	. 00	11.95
(2)	. 12	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 12	. 07	. 02	. 00	. 44
8.1-10.0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2
(1)	. 63	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 00	. 00	1.26
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 05
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	15	17	6	5	5	6	7	16	7	12	12	11	8	14	11	7	0	159
(1)	9.43	10.69	3.77	3.14	3.14	3.77	4.40	10.06	4.40	7.55	7.55	6.92	5.03	8.81	6.92	4.40	. 00	100.00
(2)	. 35	. 39	. 14	. 12	. 12	. 14	. 16	. 37	. 16	. 28	. 28	. 25	. 19	. 32	. 25	. 16	. 00	3.68

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

OヨIכヨIOपd IHפוyגdO)

Table 2.3-28—\{CCNPP 33 ft (10 m) November JFD (2000-2005)\} (Page 5 of 8)
CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

33.0 FT	WIND D			STABI	LITY C	CLASS E		vIND D	CLAS RECTI	S FREQU ON FROM	$\begin{aligned} & \text { UENCY } \\ & M \end{aligned}$	PERCEN		28.56				
$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
. $2-.4$	0	0	0	0	0	0	0	1	1	2	0	1	1	2	1	0	0	9
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08	. 08	. 16	. 00	. 08	. 08	. 16	. 08	. 00	. 00	. 73
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 05	. 00	. 02	. 02	. 05	. 02	. 00	. 00	. 21
. $5-1.0$	5	4	0	6	7	7	5	10	7	6	10	10	3	3	4	5	0	92
(1)	. 41	. 32	. 00	. 49	. 57	. 57	. 41	. 81	. 57	. 49	. 81	. 81	. 24	. 24	. 32	. 41	. 00	7.46
(2)	. 12	. 09	. 00	. 14	. 16	. 16	. 12	. 23	. 16	. 14	. 23	. 23	. 07	. 07	. 09	. 12	. 00	2.13
1.1-1.5	5	8	13	12	8	10	2	10	18	20	17	9	9	11	5	8	0	165
(1)	. 41	. 65	1.05	. 97	. 65	. 81	. 16	. 81	1.46	1.62	1.38	. 73	. 73	. 89	. 41	. 65	. 00	13.37
(2)	. 12	. 19	. 30	. 28	. 19	. 23	. 05	. 23	. 42	. 46	. 39	. 21	. 21	. 25	. 12	. 19	. 00	3.82
1.6-2.0	8	6	6	6	13	2	11	11	13	22	19	13	11	12	26	11	0	190
(1)	. 65	. 49	. 49	. 49	1.05	. 16	. 89	. 89	1.05	1.78	1.54	1.05	. 89	. 97	2.11	. 89	. 00	15.40
(2)	. 19	. 14	. 14	. 14	. 30	. 05	. 25	. 25	. 30	. 51	. 44	. 30	. 25	. 28	. 60	. 25	. 00	4.40
2.1-3.0	9	8	6	5	6	7	3	7	36	69	59	34	17	22	70	34	0	392
(1)	. 73	. 65	. 49	. 41	. 49	. 57	. 24	. 57	2.92	5.59	4.78	2.76	1.38	1.78	5.67	2.76	. 00	31.77
(2)	. 21	. 19	. 14	. 12	. 14	. 16	. 07	. 16	. 83	1.60	1.37	. 79	. 39	. 51	1.62	. 79	. 00	9.07
3.1-4.0	8	4	1	1	3	0	1	12	28	30	68	13	15	15	42	17	0	258
(1)	. 65	. 32	. 08	. 08	. 24	. 00	. 08	. 97	2.27	2.43	5.51	1.05	1.22	1.22	3.40	1.38	. 00	20.91
(2)	. 19	. 09	. 02	. 02	. 07	. 00	. 02	. 28	. 65	. 69	1.57	. 30	. 35	. 35	. 97	. 39	. 00	5.97
4.1-5.0	2	0	0	0	1	0	0	4	12	10	30	1	3	6	13	10	0	92
(1)	. 16	. 00	. 00	. 00	. 08	. 00	. 00	. 32	. 97	. 81	2.43	. 08	. 24	. 49	1.05	. 81	. 00	7.46
(2)	. 05	. 00	. 00	. 00	. 02	. 00	. 00	. 09	. 28	. 23	. 69	. 02	. 07	. 14	. 30	. 23	. 00	2.13
5.1-6.0	1	1	0	0	0	0	0	4	0	1	6	3	4	4	5	1	0	30
(1)	. 08	. 08	. 00	. 00	. 00	. 00	. 00	. 32	. 00	. 08	. 49	. 24	. 32	. 32	. 41	. 08	. 00	2.43
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 09	. 00	. 02	. 14	. 07	. 09	. 09	. 12	. 02	. 00	. 69
6.1-8.0	0	0	0	0	0	0	0	1	0	0	1	0	0	3	0	0	0	5
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 08	. 00	. 00	. 24	. 00	. 00	. 00	. 41
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 07	. 00	. 00	. 00	. 12
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	38	31	26	30	38	26	22	61	115	160	210	84	63	78	166	86	0	1234
(1)	3.08	2.51	2.11	2.43	3.08	2.11	1.78	4.94	9.32	12.97	17.02	6.81	5.11	6.32	13.45	6.97	. 00	100.00
(2)	. 88	. 72	. 60	. 69	. 88	. 60	. 51	1.41	2.66	3.70	4.86	1.94	1.46	1.81	3.84	1.99	. 00	28.56

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

Table 2.3-28—\{CCNPP 33 ft (10 m) November JFD (2000-2005)\}

 (Page 6 of 8)CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

CC NOVEMBER MET DATA JOINT	FREQUENCY DISTRIBUTION	$(60$-METER TOWER)	
33.0 FT WIND DATA	STABILITY CLASS G	CLASS FREQUENCY	(PERCENT) $=9.03$

OヨノכヨユOYd $\perp H פ I y \wedge d O כ$

Table 2．3－28—\｛CCNPP 33 ft（ 10 m）November JFD（2000－2005）\} （Page 8 of 8）
CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）

33．0 FT WIND DATA			StAbILITY CLASS ALL						CLASS FREQUENCY（PERCENT）$=100.00$						NW	NNW	VRBL	TOTAL
			WIND DIRECTION FROM															
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW				
mps																		
LT ． 2	0	0	1	2	0	0	1	2	4	0	1	5	1	1	1	1	0	20
（1）	． 00	． 00	． 02	． 05	． 00	． 00	． 02	． 05	． 09	． 00	． 02	． 12	． 02	． 02	． 02	． 02	． 00	． 46
（2）	． 00	． 00	． 02	． 05	． 00	． 00	． 02	． 05	． 09	． 00	． 02	． 12	． 02	． 02	． 02	． 02	． 00	． 46
． $2-.4$	0	0	0	1	0	5	0	2	3	10	3	3	2	3	1	0	0	33
（1）	． 00	． 00	． 00	． 02	． 00	． 12	． 00	． 05	． 07	． 23	． 07	． 07	． 05	． 07	． 02	． 00	． 00	． 76
（2）	． 00	． 00	． 00	． 02	． 00	． 12	． 00	． 05	． 07	． 23	． 07	． 07	． 05	． 07	． 02	． 00	． 00	． 76
．5－1．0	13	10	8	10	9	13	6	20	24	31	48	33	20	23	8	5	0	281
（1）	． 30	． 23	． 19	． 23	． 21	． 30	． 14	． 46	． 56	． 72	1.11	． 76	． 46	． 53	． 19	． 12	． 00	6.50
（2）	． 30	． 23	． 19	． 23	． 21	． 30	． 14	． 46	． 56	． 72	1.11	． 76	． 46	． 53	． 19	． 12	． 00	6.50
1．1－1．5	11	15	23	20	24	18	15	30	55	79	70	49	25	24	14	16	0	488
（1）	． 25	． 35	． 53	． 46	． 56	． 42	． 35	． 69	1.27	1.83	1.62	1.13	． 58	． 56	． 32	． 37	． 00	11.30
（2）	． 25	． 35	． 53	． 46	． 56	． 42	． 35	． 69	1.27	1.83	1.62	1.13	． 58	． 56	． 32	． 37	． 00	11.30
1．6－2．0	18	28	18	23	24	19	32	33	63	104	84	43	37	44	48	17	0	635
（1）	． 42	． 65	． 42	． 53	． 56	． 44	． 74	． 76	1.46	2.41	1.94	1.00	． 86	1.02	1.11	． 39	． 00	14.70
（2）	． 42	． 65	． 42	． 53	． 56	． 44	． 74	． 76	1.46	2.41	1.94	1.00	． 86	1.02	1.11	． 39	． 00	14.70
2．1－3．0	37	46	31	38	44	42	47	55	81	143	173	86	45	60	130	51	0	1109
（1）	． 86	1.06	． 72	． 88	1.02	． 97	1.09	1.27	1.88	3.31	4.00	1.99	1.04	1.39	3.01	1.18	． 00	25.67
（2）	． 86	1.06	． 72	． 88	1.02	． 97	1.09	1.27	1.88	3.31	4.00	1.99	1.04	1.39	3.01	1.18	． 00	25.67
3．1－4．0	58	41	16	13	15	9	22	73	58	70	151	47	33	41	76	65	0	788
（1）	1.34	． 95	． 37	． 30	． 35	． 21	． 51	1.69	1.34	1.62	3.50	1.09	． 76	． 95	1.76	1.50	． 00	18.24
（2）	1.34	． 95	． 37	． 30	． 35	． 21	． 51	1.69	1.34	1.62	3.50	1.09	． 76	． 95	1.76	1.50	． 00	18.24
4．1－5．0	55	26	18	3	2	4	7	41	36	40	86	18	22	44	63	63	0	528
（1）	1.27	． 60	． 42	． 07	． 05	． 09	． 16	． 95	． 83	． 93	1.99	． 42	． 51	1.02	1.46	1.46	． 00	12.22
（2）	1.27	． 60	． 42	． 07	． 05	． 09	． 16	． 95	． 83	． 93	1.99	． 42	． 51	1.02	1.46	1.46	． 00	12.22
5．1－6．0	27	20	12	1	0	0	0	29	7	14	20	7	16	51	37	32	0	273
（1）	． 63	． 46	． 28	． 02	． 00	． 00	． 00	． 67	． 16	． 32	． 46	． 16	． 37	1.18	． 86	． 74	． 00	6.32
（2）	． 63	． 46	． 28	． 02	． 00	． 00	． 00	． 67	． 16	． 32	． 46	． 16	． 37	1.18	． 86	． 74	． 00	6.32
6．1－8．0	25	11	2	0	0	0	0	12	4	0	1	2	4	44	29	10	0	144
（1）	． 58	． 25	． 05	． 00	． 00	． 00	． 00	． 28	． 09	． 00	． 02	． 05	． 09	1.02	． 67	． 23	． 00	3.33
（2）	． 58	． 25	． 05	． 00	． 00	． 00	． 00	． 28	． 09	． 00	． 02	． 05	． 09	1.02	． 67	． 23	． 00	3.33
8．1－10．0	6	1	0	0	0	0	0	2	0	0	0	0	2	7	1	0	0	19
（1）	． 14	． 02	． 00	． 00	． 00	． 00	． 00	． 05	． 00	． 00	． 00	． 00	． 05	． 16	． 02	． 00	． 00	． 44
（2）	． 14	． 02	． 00	． 00	． 00	． 00	． 00	． 05	． 00	． 00	． 00	． 00	． 05	． 16	． 02	． 00	． 00	． 44
10．1－89．5	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
（1）	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 05
（2）	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 05
LL SPEEDS	251	198	129	111	118	110	130	299	335	491	637	293	208	342	408	260	0	4320
（1）	5.81	4.58	2.99	2.57	2.73	2.55	3.01	6.92	7.75	11.37	14.75	6.78	4.81	7.92	9.44	6.02	． 00	100.00
（2）	5.81	4.58	2.99	2.57	2.73	2.55	3.01	6.92	7.75	11.37	14.75	6.78	4.81	7.92	9.44	6.02	． 00	100.00

ग्0
$\stackrel{0}{2}$
i

Table 2.3-29—\{CCNPP $33 \mathrm{ft}(10 \mathrm{~m})$ December JFD (2000-2005)\}

(Page 1 of 8)

CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTIO
33.0 FT WIND DATA
STABILITY CLASS A

CLASS FREQUENCY (PERCENT) $=8.36$

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

| CC DECEMBER MET DATA JOINT | FREQUENCY DISTRIBUTION | $(60$-METER TOWER) |
| :--- | :--- | :---: | :---: | :---: |
| 33.0 FT WIND DATA | STABILITY CLASS B | CLASS FREQUENCY (PERCENT) $=4.22$ |

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 55	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.6-2.0	0	0	1	1	0	0	0	0	0	1	0	1	1	0	2	0	0	7
(1)	. 00	. 00	. 55	. 55	. 00	. 00	. 00	. 00	. 00	. 55	. 00	. 55	. 55	. 00	1.10	. 00	. 00	3.85
(2)	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 02	. 00	. 05	. 00	. 00	. 16
2.1-3.0	3	8	3	1	2	0	1	1	1	2	2	3	4	2	1	3	0	37
(1)	1.65	4.40	1.65	. 55	1.10	. 00	. 55	. 55	. 55	1.10	1.10	1.65	2.20	1.10	. 55	1.65	. 00	20.33
(2)	. 07	. 19	. 07	. 02	. 05	. 00	. 02	. 02	. 02	. 05	. 05	. 07	. 09	. 05	. 02	. 07	. 00	. 86
3.1-4.0	5	6	2	0	0	0	0	1	1	6	10	4	3	5	6	3	0	52
(1)	2.75	3.30	1.10	. 00	. 00	. 00	. 00	. 55	. 55	3.30	5.49	2.20	1.65	2.75	3.30	1.65	. 00	28.57
(2)	. 12	. 14	. 05	. 00	. 00	. 00	. 00	. 02	. 02	. 14	. 23	. 09	. 07	. 12	. 14	. 07	. 00	1.21
4.1-5.0	9	4	1	0	0	0	0	0	1	1	4	3	4	3	11	1	0	42
(1)	4.95	2.20	. 55	. 00	. 00	. 00	. 00	. 00	. 55	. 55	2.20	1.65	2.20	1.65	6.04	. 55	. 00	23.08
(2)	. 21	. 09	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 09	. 07	. 09	. 07	. 26	. 02	. 00	. 97
5.1-6.0	2	0	1	0	0	0	0	0	0	1	2	0	1	8	5	3	0	23
(1)	1.10	. 00	. 55	. 00	. 00	. 00	. 00	. 00	. 00	. 55	1.10	. 00	. 55	4.40	2.75	1.65	. 00	12.64
(2)	. 05	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 02	. 19	. 12	. 07	. 00	. 53
6.1-8.0	1	0	0	0	0	0	0	0	1	0	0	1	1	3	9	1	0	17
(1)	. 55	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55	. 00	. 00	. 55	. 55	1.65	4.95	. 55	. 00	9.34
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 02	. 07	. 21	. 02	. 00	. 39
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.65	. 00	. 00	1.65
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 00	. 00	. 07
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	20	19	8	2	2	0	1	2	4	11	18	12	14	21	37	11	0	182
(1)	10.99	10.44	4.40	1.10	1.10	. 00	. 55	1.10	2.20	6.04	9.89	6.59	7.69	11.54	20.33	6.04	. 00	100.00
(2)	. 46	. 44	. 19	. 05	. 05	. 00	. 02	. 05	. 09	. 26	. 42	. 28	. 32	. 49	. 86	. 26	. 00	4.22
(1) = PERCENT	OF ALL	GOOD	OBSERV	TIONS	FOR	S PA												

| CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION | $(60$-METER TOWER) | | |
| :--- | :--- | :---: | :---: | :---: |
| 33.0 FT WIND DATA | STABILITY CLASS C | CLASS FREQUENCY | (PERCENT) $=4.36$ |

								D	ECTI	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 53
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.1-1.5	0	2	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	5
(1)	. 00	1.06	. 53	. 00	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 53	. 00	. 00	. 00	. 00	. 00	2.66
(2)	. 00	. 05	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 12
1.6-2.0	0	1	0	1	2	1	1	0	1	0	1	1	2	3	1	1	0	16
(1)	. 00	. 53	. 00	. 53	1.06	. 53	. 53	. 00	. 53	. 00	. 53	. 53	1.06	1.60	. 53	. 53	. 00	8.51
(2)	. 00	. 02	. 00	. 02	. 05	. 02	. 02	. 00	. 02	. 00	. 02	. 02	. 05	. 07	. 02	. 02	. 00	. 37
2.1-3.0	5	3	4	1	2	2	0	0	2	3	2	2	5	3	2	2	0	38
(1)	2.66	1.60	2.13	. 53	1.06	1.06	. 00	. 00	1.06	1.60	1.06	1.06	2.66	1.60	1.06	1.06	. 00	20.21
(2)	. 12	. 07	. 09	. 02	. 05	. 05	. 00	. 00	. 05	. 07	. 05	. 05	. 12	. 07	. 05	. 05	. 00	. 88
3.1-4.0	8	4	1	1	0	0	1	3	6	4	10	5	4	5	6	4	0	62
(1)	4.26	2.13	. 53	. 53	. 00	. 00	. 53	1.60	3.19	2.13	5.32	2.66	2.13	2.66	3.19	2.13	. 00	32.98
(2)	. 19	. 09	. 02	. 02	. 00	. 00	. 02	. 07	. 14	. 09	. 23	. 12	. 09	. 12	. 14	. 09	. 00	1.44
4.1-5.0	2	2	2	1	0	0	0	0	0	0	4	3	4	5	7	2	0	32
(1)	1.06	1.06	1.06	. 53	. 00	. 00	. 00	. 00	. 00	. 00	2.13	1.60	2.13	2.66	3.72	1.06	. 00	17.02
(2)	. 05	. 05	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 09	. 07	. 09	. 12	. 16	. 05	. 00	. 74
5.1-6.0	1	1	0	0	0	0	0	0	0	0	2	1	1	4	6	2	0	18
(1)	. 53	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.06	. 53	. 53	2.13	3.19	1.06	. 00	9.57
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 02	. 02	. 09	. 14	. 05	. 00	. 42
6.1-8.0	1	0	0	0	0	0	0	0	0	0	1	0	0	5	4	2	0	13
(1)	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 53	. 00	. 00	2.66	2.13	1.06	. 00	6.91
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 12	. 09	. 05	. 00	. 30
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0	0	3
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 53	1.06	. 00	. 00	1.60
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 00	. 07
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	17	13	8	4	5	3	3	3	9	7	20	13	16	26	28	13	0	188
(1)	9.04	6.91	4.26	2.13	2.66	1.60	1.60	1.60	4.79	3.72	10.64	6.91	8.51	13.83	14.89	6.91	.00	100.00
(2)	. 39	. 30	. 19	. 09	. 12	. 07	. 07	. 07	. 21	. 16	. 46	. 30	. 37	. 60	. 65	. 30	. 00	4.36

Oヨ८כヨノOYd \perp HפוyגdOכ

CC DECEMBER MET DA
33．0 FT WIND DATA
Table 2．3－29—\｛CCNPP 33 ft（10 m）December JFD（2000－2005）\} （Page 4 of 8）

33．0 FT WIND DATA				STABILITY CLASS D			CLASS FREQU					PERCENT）		35.54		NNW	VRBL	TOTAL
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW			
mps																		
LT	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	3
	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07	． 07	． 00	． 00	． 07	． 00	． 00	． 00	． 20
	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 02	． 00	． 00	． 02	． 00	． 00	． 00	． 07
$\begin{array}{rr}.2- & .4 \\ (1) \\ & (2)\end{array}$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07
	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02
．5－1．0	2	7	3	1	2	0	0	1	2	0	2	2	3	0	1	2	0	28
（1）	． 13	． 46	． 20	． 07	． 13	． 00	． 00	． 07	． 13	． 00	． 13	． 13	． 20	． 00	． 07	． 13	． 00	1.83
1．1－ 1.5	． 05	． 16	． 07	． 02	． 05	． 00	． 00	． 02	． 05	． 00	． 05	． 05	． 07	． 00	． 02	． 05	． 00	． 65
	5	3	5	3	4	6	2	2	2	1	5	7	10	4	7	1	0	67
（1）	． 33	． 20	． 33	． 20	． 26	． 39	． 13	． 13	． 13	． 07	． 33	． 46	． 65	． 26	． 46	． 07	． 00	4.38
1．6－ 2.0	． 12	． 07	． 12	． 07	． 09	． 14	． 05	． 05	． 05	． 02	． 12	． 16	． 23	． 09	． 16	． 02	． 00	1.56
	17	12	4	8	9	7	5	5	9	8	3	8	11	5	10	9	0	130
（1）	1.11	． 78	． 26	． 52	． 59	． 46	． 33	． 33	． 59	． 52	． 20	． 52	． 72	． 33	． 65	． 59	． 00	8.49
2．1－3．0	． 39	． 28	． 09	． 19	． 21	． 16	． 12	． 12	． 21	． 19	． 07	． 19	． 26	． 12	． 23	． 21	． 00	3.02
	25	29	24	32	15	10	11	19	17	20	19	19	15	26	35	37	0	353
（1）	1.63	1.89	1.57	2.09	． 98	． 65	． 72	1.24	1.11	1.31	1.24	1.24	． 98	1.70	2.29	2.42	． 00	23.06
（2）	． 58	． 67	． 56	． 74	． 35	． 23	． 26	． 44	． 39	． 46	． 44	． 44	． 35	． 60	． 81	． 86	． 00	8.19
3．1－4．0	38	42	30	29	7	1	7	12	17	23	26	19	17	21	48	40	0	377
（1）	2.48	2.74	1.96	1.89	． 46	． 07	． 46	． 78	1.11	1.50	1.70	1.24	1.11	1.37	3.14	2.61	． 00	24.62
（2）	． 88	． 97	． 70	． 67	． 16	． 02	． 16	． 28	． 39	． 53	． 60	． 44	． 39	． 49	1.11	． 93	． 00	8.75
4．1－5．0	43	29	36	9	1	0	1	8	8	2	16	15	13	29	52	26	0	288
（1）	2.81	1.89	2.35	． 59	． 07	． 00	． 07	． 52	． 52	． 13	1.05	． 98	． 85	1.89	3.40	1.70	． 00	18.81
（2）	1.00	． 67	． 84	． 21	． 02	． 00	． 02	． 19	． 19	． 05	． 37	． 35	． 30	． 67	1.21	． 60	． 00	6.69
5．1－ 6.0	28	16	17	6	0	0	1	5	8	1	11	1	11	15	35	11	0	166
	1.83	1.05	1.11	． 39	． 00	． 00	． 07	． 33	． 52	． 07	． 72	． 07	． 72	． 98	2.29	． 72	． 00	10.84
（2）	． 65	． 37	． 39	． 14	． 00	． 00	． 02	． 12	． 19	． 02	． 26	． 02	． 26	． 35	． 81	． 26	． 00	3.85
6．1－8．0	14	1	11	2	0	0	3	5	2	0	0	4	5	28	23	3	0	101
（1）	． 91	． 07	． 72	． 13	． 00	． 00	． 20	． 33	． 13	． 00	． 00	． 26	． 33	1.83	1.50	． 20	． 00	6.60
（2）	． 32	． 02	． 26	． 05	． 00	． 00	． 07	． 12	． 05	． 00	． 00	． 09	． 12	． 65	． 53	． 07	． 00	2.34
8．1－10．0	3	1	1	0	0	0	2	0	0	0	0	0	1	5	3	0	0	16
（1）	． 20	． 07	． 07	． 00	． 00	． 00	． 13	． 00	． 00	． 00	． 00	． 00	． 07	． 33	． 20	． 00	． 00	1.05
（2）	． 07	． 02	． 02	． 00	． 00	． 00	． 05	． 00	． 00	． 00	． 00	． 00	． 02	． 12	． 07	． 00	． 00	． 37
10．1－89．5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07	． 00	． 00	． 07
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 02
ALL SPEEDS	175	140	131	90	38	24	32	57	66	56	83	75	86	134	215	129	0	1531
（1）	11.43	9.14	8.56	5.88	2.48	1.57	2.09	3.72	4.31	3.66	5.42	4.90	5.62	8.75	14.04	8.43	． 00	100.00
（2）	4.06	3.25	3.04	2.09	． 88	． 56	． 74	1.32	1.53	1.30	1.93	1.74	2.00	3.11	4.99	2.99	． 00	35.54
（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE																		
（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

Abstract

CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION	$(60$-METER TOWER)		
33.0 FT WIND DATA	STABILITY CLASS F	CLASS FREQUENCY	(PERCENT) $=8.73$

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	1	2	1	1	0	1	0	0	0	6
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 27	. 53	. 27	. 27	. 00	. 27	. 00	. 00	. 00	1.60
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 02	. 02	. 00	. 02	. 00	. 00	. 00	. 14
. $2-.4$	0	0	1	1	2	0	0	1	0	1	2	0	1	1	0	0	0	10
(1)	. 00	. 00	. 27	. 27	. 53	. 00	. 00	. 27	. 00	. 27	. 53	. 00	. 27	. 27	. 00	. 00	. 00	2.66
(2)	. 00	. 00	. 02	. 02	. 05	. 00	. 00	. 02	. 00	. 02	. 05	. 00	. 02	. 02	. 00	. 00	. 00	. 23
.5-1.0	4	1	3	1	4	3	2	2	2	5	12	8	4	7	1	1	0	60
(1)	1.06	. 27	. 80	. 27	1.06	. 80	. 53	. 53	. 53	1.33	3.19	2.13	1.06	1.86	. 27	. 27	. 00	15.96
(2)	. 09	. 02	. 07	. 02	. 09	. 07	. 05	. 05	. 05	. 12	. 28	. 19	. 09	. 16	. 02	. 02	. 00	1.39
1.1-1.5	1	0	0	3	0	3	0	5	4	17	17	9	13	17	7	0	0	96
(1)	. 27	. 00	. 00	. 80	. 00	. 80	. 00	1.33	1.06	4.52	4.52	2.39	3.46	4.52	1.86	. 00	. 00	25.53
(2)	. 02	. 00	. 00	. 07	. 00	. 07	. 00	. 12	. 09	. 39	. 39	. 21	. 30	. 39	. 16	. 00	. 00	2.23
1.6-2.0	1	2	0	1	0	0	2	3	13	23	13	9	14	14	9	1	0	105
(1)	. 27	. 53	. 00	. 27	. 00	. 00	. 53	. 80	3.46	6.12	3.46	2.39	3.72	3.72	2.39	. 27	. 00	27.93
(2)	. 02	. 05	. 00	. 02	. 00	. 00	. 05	. 07	. 30	. 53	. 30	. 21	. 32	. 32	. 21	. 02	. 00	2.44
2.1-3.0	1	2	0	0	0	0	0	0	10	27	28	9	1	2	7	0	0	87
(1)	. 27	. 53	. 00	. 00	. 00	. 00	. 00	. 00	2.66	7.18	7.45	2.39	. 27	. 53	1.86	. 00	. 00	23.14
(2)	. 02	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 23	. 63	. 65	. 21	. 02	. 05	. 16	. 00	. 00	2.02
3.1-4.0	0	0	0	0	0	0	0	0	0	2	9	0	0	0	0	0	0	11
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 53	2.39	. 00	. 00	. 00	. 00	. 00	. 00	2.93
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 21	. 00	. 00	. 00	. 00	. 00	. 00	. 26
4.1-5.0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 27	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 27
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
5.1-6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
6.1-8.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	7	5	4	6	6	6	4	11	31	77	82	36	33	42	24	2	0	376
(1)	1.86	1.33	1.06	1.60	1.60	1.60	1.06	2.93	8.24	20.48	21.81	9.57	8.78	11.17	6.38	. 53	. 00	100.00
(2)	. 16	. 12	. 09	. 14	. 14	. 14	. 09	. 26	. 72	1.79	1.90	. 84	. 77	. 97	. 56	. 05	. 00	8.73
)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PA																		
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

| CC DECEMBER MET DATA JOINT | FREQUENCY DISTRIBUTION | (60 -METER TOWER) |
| :--- | :---: | :---: | :---: | :---: |
| 33.0 FT WIND DATA | STABILITY CLASS G | CLASS FREQUENCY (PERCENT) $=\quad 2.74$ |

								D DI	RECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 85	. 00	. 00	. 00	. 85	. 00	. 85	. 00	. 00	. 00	. 00	. 00	. 00	2.54
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 07
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.69	. 00	. 00	. 00	. 00	. 00	1.69
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 05
.5-1.0	0	0	0	0	1	1	0	0	0	2	4	5	3	1	1	0	0	18
(1)	. 00	. 00	. 00	. 00	. 85	. 85	. 00	. 00	. 00	1.69	3.39	4.24	2.54	. 85	. 85	. 00	. 00	15.25
(2)	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 05	. 09	. 12	. 07	. 02	. 02	. 00	. 00	. 42
1.1-1.5	1	0	0	1	0	0	1	0	9	12	11	6	2	1	0	1	0	45
(1)	. 85	. 00	. 00	. 85	. 00	. 00	. 85	. 00	7.63	10.17	9.32	5.08	1.69	. 85	. 00	. 85	. 00	38.14
(2)	. 02	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 21	. 28	. 26	. 14	. 05	. 02	. 00	. 02	. 00	1.04
1.6-2.0	0	0	0	0	0	0	0	1	6	11	12	0	2	0	0	0	0	32
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 85	5.08	9.32	10.17	. 00	1.69	. 00	. 00	. 00	. 00	27.12
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 14	. 26	. 28	. 00	. 05	. 00	. 00	. 00	. 00	. 74
2.1-3.0	1	0	0	0	0	0	0	0	4	5	3	0	3	1	0	0	0	17
(1)	. 85	. 00	. 00	. 00	. 00	. 00	. 00	. 00	3.39	4.24	2.54	. 00	2.54	. 85	. 00	. 00	. 00	14.41
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09	. 12	. 07	. 00	. 07	. 02	. 00	. 00	. 00	. 39
3.1-4.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 85	. 00	. 00	. 85
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02
4.1-5.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
5.1-6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
6.1-8.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	2	0	0	1	2	1	1	1	20	30	31	13	10	3	2	1	0	118
(1)	1.69	. 00	. 00	. 85	1.69	. 85	. 85	. 85	16.95	25.42	26.27	11.02	8.47	2.54	1.69	. 85	. 00	100.00
(2)	. 05	. 00	. 00	. 02	. 05	. 02	. 02	. 02	. 46	. 70	. 72	. 30	. 23	. 07	. 05	. 02	. 00	2.74

פヨוכヨIOपd IHפוyגdO)

Table 2.3-29—\{CCNPP 33 ft (10 m) December JFD (2000-2005)\} (Page 8 of 8)
CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

ग्0
$\stackrel{0}{2}$
i

CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION ($60-$ METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 7.94

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION	$(60$-METER TOWER)		
$197.0 ~ F T ~ W I N D ~ D A T A ~$	STABILITY CLASS B	CLASS FREQUENCY	(PERCENT) $=3.36$

197.0 FT WIND DATA			STABILITY CLASS B					CLASS FREQUENCY (PERCENT) =						3.36				
SPEED	N	NNE	NE	EnE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 69	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 69
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.6-2.0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	3
(1)	. 00	1.38	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 69	. 00	. 00	. 00	. 00	. 00	. 00	2.07
(2)	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 07
2.1-3.0	0	0	0	0	0	1	0	1	0	0	0	2	2	2	0	1	0	9
(1)	. 00	. 00	. 00	. 00	. 00	. 69	. 00	. 69	. 00	. 00	. 00	1.38	1.38	1.38	. 00	. 69	. 00	6.21
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 05	. 05	. 05	. 00	. 02	. 00	. 21
3.1-4.0	3	0	0	0	0	0	0	1	0	3	2	2	1	0	1	1	0	14
(1)	2.07	. 00	. 00	. 00	. 00	. 00	. 00	. 69	. 00	2.07	1.38	1.38	. 69	. 00	. 69	. 69	. 00	9.66
(2)	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 07	. 05	. 05	. 02	. 00	. 02	. 02	. 00	. 32
4.1-5.0	5	1	0	0	0	0	1	1	0	1	3	3	0	5	0	1	0	21
(1)	3.45	. 69	. 00	. 00	. 00	. 00	. 69	. 69	. 00	. 69	2.07	2.07	. 00	3.45	. 00	. 69	. 00	14.48
(2)	. 12	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 07	. 07	. 00	. 12	. 00	. 02	. 00	. 49
5.1-6.0	3	0	0	0	0	0	1	2	0	2	2	2	5	0	3	2	0	22
(1)	2.07	. 00	. 00	. 00	. 00	. 00	. 69	1.38	. 00	1.38	1.38	1.38	3.45	. 00	2.07	1.38	. 00	15.17
(2)	. 07	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 05	. 05	. 05	. 12	. 00	. 07	. 05	. 00	. 51
6.1-8.0	4	1	0	0	0	0	0	0	0	0	9	2	3	9	12	6	0	46
(1)	2.76	. 69	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	6.21	1.38	2.07	6.21	8.28	4.14	. 00	31.72
(2)	. 09	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 21	. 05	. 07	. 21	. 28	. 14	. 00	1.06
8.1-10.0	3	0	0	0	0	0	0	0	0	1	1	0	1	4	11	3	0	24
(1)	2.07	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 69	. 69	. 00	. 69	2.76	7.59	2.07	. 00	16.55
(2)	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 09	. 25	. 07	. 00	. 56
10.1-89.5	1	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	5
(1)	. 69	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 69	. 69	. 00	. 69	. 00	. 69	. 00	3.45
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 02	. 00	. 12
ALL SPEEDS	19	4	0	0	1	1	2	5	0	7	19	12	12	21	27	15	0	145
(1)	13.10	2.76	. 00	. 00	. 69	. 69	1.38	3.45	. 00	4.83	13.10	8.28	8.28	14.48	18.62	10.34	. 00	100.00
(2)	. 44	. 09	. 00	. 00	. 02	. 02	. 05	. 12	. 00	. 16	. 44	. 28	. 28	. 49	. 63	. 35	. 00	3.36

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JANUARY MET DATA JOINT	FREQUENCY DISTRIBUTION	（60－METER TOWER）	
$197.0 ~ F T ~ W I N D ~ D A T A ~$	STABILITY CLASS C	CLASS FREQUENCY	（PERCENT）$=4.79$

										Frn								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT ． 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
． $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
．5－1．0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00
1．1－1．5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
（1）	． 00	． 00	． 00	． 48	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 48
（2）	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02
1．6－2．0	0	2	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	6
（1）	． 00	． 97	． 48	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 48	． 00	． 48	． 00	． 48	． 00	． 00	2.90
（2）	． 00	． 05	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 02	． 00	． 02	． 00	． 00	． 14
2．1－3．0	2	5	4	3	1	1	1	0	0	1	2	4	3	1	2	1	0	31
（1）	． 97	2.42	1.93	1.45	． 48	． 48	． 48	． 00	． 00	． 48	． 97	1.93	1.45	． 48	． 97	． 48	． 00	14.98
（2）	． 05	． 12	． 09	． 07	． 02	． 02	． 02	． 00	． 00	． 02	． 05	． 09	． 07	． 02	． 05	． 02	． 00	． 72
3．1－4．0	1	2	0	0	1	0	1	3	1	3	5	2	2	2	0	3	0	26
（1）	． 48	． 97	． 00	． 00	． 48	． 00	． 48	1.45	． 48	1.45	2.42	． 97	． 97	． 97	． 00	1.45	． 00	12.56
（2）	． 02	． 05	． 00	． 00	． 02	． 00	． 02	． 07	． 02	． 07	． 12	． 05	． 05	． 05	． 00	． 07	． 00	． 60
4．1－5．0	3	1	0	0	0	0	1	1	0	2	3	4	3	4	9	2	0	33
（1）	1.45	． 48	． 00	． 00	． 00	． 00	． 48	． 48	． 00	． 97	1.45	1.93	1.45	1.93	4.35	． 97	． 00	15.94
（2）	． 07	． 02	． 00	． 00	． 00	． 00	． 02	． 02	． 00	． 05	． 07	． 09	． 07	． 09	． 21	． 05	． 00	． 76
5．1－6．0	7	3	0	0	0	0	0	2	0	1	0	2	0	3	5	1	0	24
（1）	3.38	1.45	． 00	． 00	． 00	． 00	． 00	． 97	． 00	． 48	． 00	． 97	． 00	1.45	2.42	． 48	． 00	11.59
（2）	． 16	． 07	． 00	． 00	． 00	． 00	． 00	． 05	． 00	． 02	． 00	． 05	． 00	． 07	． 12	． 02	． 00	． 56
6．1－8．0	6	5	0	0	0	0	0	0	1	3	5	1	3	7	12	7	0	50
（1）	2.90	2.42	． 00	． 00	． 00	． 00	． 00	． 00	． 48	1.45	2.42	． 48	1.45	3.38	5.80	3.38	． 00	24.15
（2）	． 14	． 12	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 07	． 12	． 02	． 07	． 16	． 28	． 16	． 00	1.16
8．1－10．0	2	2	0	0	0	0	0	0	0	0	3	0	0	3	10	0	0	20
（1）	． 97	． 97	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	1.45	． 00	． 00	1.45	4.83	． 00	． 00	9.66
（2）	． 05	． 05	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07	． 00	． 00	． 07	． 23	． 00	． 00	． 46
10．1－89．5	1	0	0	0	0	0	0	0	0	3	0	0	2	3	7	0	0	16
（1）	． 48	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	1.45	． 00	． 00	． 97	1.45	3.38	． 00	． 00	7.73
（2）	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07	． 00	． 00	． 05	． 07	． 16	． 00	． 00	． 37
ALL SPEEDS	22	20	5	4	2	1	3	6	2	13	19	13	14	23	46	14	0	207
（1）	10.63	9.66	2.42	1.93	． 97	． 48	1.45	2.90	． 97	6.28	9.18	6.28	6.76	11.11	22.22	6.76	． 00	100.00
（2）	． 51	． 46	． 12	． 09	． 05	． 02	． 07	． 14	． 05	． 30	． 44	． 30	． 32	． 53	1.06	． 32	． 00	4.79

（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
T
$\stackrel{0}{0}$
i
i

Table 2.3-30—\{CCNPP 33 ft (10 m) January JFD (2000-2005)\} (Page 4 of 8)
CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 42.11

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. 5- 1.0	1	1	6	0	3	1	1	1	1	1	1	1	1	1	0	0	0	20
(1)	. 05	. 05	. 33	. 00	. 16	. 05	. 05	. 05	. 05	. 05	. 05	. 05	. 05	. 05	. 00	. 00	. 00	1.10
(2)	. 02	. 02	. 14	. 00	. 07	. 02	. 02	. 02	. 02	. 02	. 02	. 02	. 02	. 02	. 00	. 00	. 00	. 46
1.1-1.5	1	2	6	6	5	1	3	0	1	4	0	0	1	1	3	1	0	35
(1)	. 05	. 11	. 33	. 33	. 27	. 05	. 16	. 00	. 05	. 22	. 00	. 00	. 05	. 05	. 16	. 05	. 00	1.92
(2)	. 02	. 05	. 14	. 14	. 12	. 02	. 07	. 00	. 02	. 09	. 00	. 00	. 02	. 02	. 07	. 02	. 00	. 81
1.6-2.0	2	5	4	6	6	3	1	2	2	3	5	3	4	3	1	5	0	55
(1)	. 11	. 27	. 22	. 33	. 33	. 16	. 05	. 11	. 11	. 16	. 27	. 16	. 22	. 16	. 05	. 27	. 00	3.02
(2)	. 05	. 12	. 09	. 14	. 14	. 07	. 02	. 05	. 05	. 07	. 12	. 07	. 09	. 07	. 02	. 12	. 00	1.27
2.1-3.0	17	13	11	10	14	11	16	10	9	10	8	14	12	3	9	13	0	180
(1)	. 93	. 71	. 60	. 55	. 77	. 60	. 88	. 55	. 49	. 55	. 44	. 77	. 66	. 16	. 49	. 71	. 00	9.90
(2)	. 39	. 30	. 25	. 23	. 32	. 25	. 37	. 23	. 21	. 23	. 19	. 32	. 28	. 07	. 21	. 30	. 00	4.17
3.1-4.0	27	18	12	15	10	7	14	16	13	13	12	12	5	6	13	19	0	212
(1)	1.48	. 99	. 66	. 82	. 55	. 38	. 77	. 88	. 71	. 71	. 66	. 66	. 27	. 33	. 71	1.04	. 00	11.65
(2)	. 63	. 42	. 28	. 35	. 23	. 16	. 32	. 37	. 30	. 30	. 28	. 28	. 12	. 14	. 30	. 44	. 00	4.91
4.1-5.0	36	17	8	7	4	8	10	18	7	8	14	9	11	13	39	26	0	235
(1)	1.98	. 93	. 44	. 38	. 22	. 44	. 55	. 99	. 38	. 44	. 77	. 49	. 60	. 71	2.14	1.43	. 00	12.92
(2)	. 83	. 39	. 19	. 16	. 09	. 19	. 23	. 42	. 16	. 19	. 32	. 21	. 25	. 30	. 90	. 60	. 00	5.44
5.1-6.0	21	19	8	5	0	3	3	16	8	16	14	18	10	23	60	60	0	284
(1)	1.15	1.04	. 44	. 27	. 00	. 16	. 16	. 88	. 44	. 88	. 77	. 99	. 55	1.26	3.30	3.30	. 00	15.61
(2)	. 49	. 44	. 19	. 12	. 00	. 07	. 07	. 37	. 19	. 37	. 32	. 42	. 23	. 53	1.39	1.39	. 00	6.57
6.1-8.0	66	51	8	2	0	1	5	14	14	25	36	15	8	47	124	79	0	495
(1)	3.63	2.80	. 44	. 11	. 00	. 05	. 27	. 77	. 77	1.37	1.98	. 82	. 44	2.58	6.82	4.34	. 00	27.21
(2)	1.53	1.18	. 19	. 05	. 00	. 02	. 12	. 32	. 32	. 58	. 83	. 35	. 19	1.09	2.87	1.83	. 00	11.46
8.1-10.0	48	34	1	0	0	0	3	2	5	18	15	0	0	19	62	28	0	235
(1)	2.64	1.87	. 05	. 00	. 00	. 00	. 16	. 11	. 27	. 99	. 82	. 00	. 00	1.04	3.41	1.54	. 00	12.92
(2)	1.11	. 79	. 02	. 00	. 00	. 00	. 07	. 05	. 12	. 42	. 35	. 00	. 00	. 44	1.44	. 65	. 00	5.44
10.1-89.5	21	1	0	0	0	0	0	0	1	5	3	2	1	10	15	9	0	68
(1)	1.15	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 27	. 16	. 11	. 05	. 55	. 82	. 49	. 00	3.74
(2)	. 49	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 12	. 07	. 05	. 02	. 23	. 35	. 21	. 00	1.57
ALL SPEEDS	240	161	64	51	42	35	56	79	61	103	108	74	53	126	326	240	0	1819
(1)	13.19	8.85	3.52	2.80	2.31	1.92	3.08	4.34	3.35	5.66	5.94	4.07	2.91	6.93	17.92	13.19	. 00	100.00
(2)	5.56	3.73	1.48	1.18	. 97	. 81	1.30	1.83	1.41	2.38	2.50	1.71	1.23	2.92	7.55	5.56	. 00	42.11
(1) = PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR	HIS PA												

CC JANUARY MET DATA
197.0 FT WIND DATA

Table 2.3-30—\{CCNPP 33 ft (10 m) January JFD (2000-2005)\} (Page 5 of 8)
CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

SPEED	N	NNE	NE	ENE	E	ESE	WIND DIRECTION FROM					WSW	W	WNW	NW	NNW	VRBL	TOTAL
							SE	SSE	S	SSW	SW							
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.2- . 4	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 16
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
.5-1.0	1	1	1	1	4	1	1	3	0	0	0	1	0	1	0	2	0	17
(1)	. 08	. 08	. 08	. 08	. 32	. 08	. 08	. 24	. 00	. 00	. 00	. 08	. 00	. 08	. 00	. 16	. 00	1.35
(2)	. 02	. 02	. 02	. 02	. 09	. 02	. 02	. 07	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 05	. 00	. 39
1.1-1.5	2	3	1	2	3	1	5	0	0	0	2	0	0	0	1	2	0	22
(1)	. 16	. 24	. 08	. 16	. 24	. 08	. 40	. 00	. 00	. 00	. 16	. 00	. 00	. 00	. 08	. 16	. 00	1.74
(2)	. 05	. 07	. 02	. 05	. 07	. 02	. 12	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 02	. 05	. 00	. 51
1.6-2.0	1	6	3	2	2	3	2	2	0	1	2	2	0	2	1	0	0	29
(1)	. 08	. 48	. 24	. 16	. 16	. 24	. 16	. 16	. 00	. 08	. 16	. 16	. 00	. 16	. 08	. 00	. 00	2.30
(2)	. 02	. 14	. 07	. 05	. 05	. 07	. 05	. 05	. 00	. 02	. 05	. 05	. 00	. 05	. 02	. 00	. 00	. 67
2.1-3.0	8	5	5	7	6	3	6	3	3	2	5	3	5	7	4	6	0	78
(1)	. 63	. 40	. 40	. 56	. 48	. 24	. 48	. 24	. 24	. 16	. 40	. 24	. 40	. 56	. 32	. 48	. 00	6.19
(2)	. 19	. 12	. 12	. 16	. 14	. 07	. 14	. 07	. 07	. 05	. 12	. 07	. 12	. 16	. 09	. 14	. 00	1.81
$3.1-4.0$	21	11	7	3	3	3	2	11	7	4	8	7	10	24	22	35	0	178
(1)	1.67	. 87	. 56	. 24	. 24	. 24	. 16	. 87	. 56	. 32	. 63	. 56	. 79	1.90	1.74	2.78	. 00	14.12
(2)	. 49	. 25	. 16	. 07	. 07	. 07	. 05	. 25	. 16	. 09	. 19	. 16	. 23	. 56	. 51	. 81	. 00	4.12
4.1-5.0	17	10	8	4	1	1	5	17	7	7	8	9	15	38	58	38	0	243
(1)	1.35	. 79	. 63	. 32	. 08	. 08	. 40	1.35	. 56	. 56	. 63	. 71	1.19	3.01	4.60	3.01	. 00	19.27
(2)	. 39	. 23	. 19	. 09	. 02	. 02	. 12	. 39	. 16	. 16	. 19	. 21	. 35	. 88	1.34	. 88	. 00	5.63
5.1-6.0	16	12	2	3	1	1	3	10	26	18	18	8	13	35	66	23	0	255
(1)	1.27	. 95	. 16	. 24	. 08	. 08	. 24	. 79	2.06	1.43	1.43	. 63	1.03	2.78	5.23	1.82	. 00	20.22
(2)	. 37	. 28	. 05	. 07	. 02	. 02	. 07	. 23	. 60	. 42	. 42	. 19	. 30	. 81	1.53	. 53	. 00	5.90
6.1-8.0	10	4	4	0	0	2	1	18	13	73	96	22	7	27	34	22	0	333
(1)	. 79	. 32	. 32	. 00	. 00	. 16	. 08	1.43	1.03	5.79	7.61	1.74	. 56	2.14	2.70	1.74	. 00	26.41
(2)	. 23	. 09	. 09	. 00	. 00	. 05	. 02	. 42	. 30	1.69	2.22	. 51	. 16	. 63	. 79	. 51	. 00	7.71
8.1-10.0	4	0	0	0	0	0	0	5	8	25	46	2	0	5	6	1	0	102
(1)	. 32	. 00	. 00	. 00	. 00	. 00	. 00	. 40	. 63	1.98	3.65	. 16	. 00	. 40	. 48	. 08	. 00	8.09
(2)	. 09	. 00	. 00	. 00	. 00	. 00	. 00	. 12	. 19	. 58	1.06	. 05	. 00	. 12	. 14	. 02	. 00	2.36
10.1-89.5	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 00	. 16
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 05
ALL SPEEDS	80	52	31	22	21	15	25	70	65	130	186	54	50	139	192	129	0	1261
(1)	6.34	4.12	2.46	1.74	1.67	1.19	1.98	5.55	5.15	10.31	14.75	4.28	3.97	11.02	15.23	10.23	. 00	100.00
(2)	1.85	1.20	. 72	. 51	. 49	. 35	. 58	1.62	1.50	3.01	4.31	1.25	1.16	3.22	4.44	2.99	. 00	29.19

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION	(60 -METER TOWER)	
$197.0 ~ F T ~ W I N D ~ D A T A ~$	STABILITY CLASS F	CLASS FREQUENCY (PERCENT) $=\mathbf{9 . 0 7}$

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

| CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION | $(60-M E T E R ~ T O W E R) ~$ | |
| :---: | :---: | :---: | :---: |
| 197.0 FT WIND DATA | STABILITY CLASS G | CLASS FREQUENCY (PERCENT) $=\mathbf{3 . 5 4}$ |

								IND D	RECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	2	1	0	0	0	1	1	0	1	0	0	6
(1)	. 00	. 00	. 00	. 00	. 00	. 00	1.31	. 65	. 00	. 00	. 00	. 65	. 65	. 00	. 65	. 00	. 00	3.92
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 02	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 00	. 14
1.1-1.5	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0	0	7
(1)	. 00	. 65	. 00	. 65	. 65	. 00	. 00	. 65	. 00	. 00	. 00	. 65	. 65	. 65	. 00	. 00	. 00	4.58
(2)	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 02	. 02	. 00	. 00	. 00	. 16
1.6-2.0	0	0	0	2	0	1	0	0	0	0	2	0	1	0	0	0	0	6
(1)	. 00	. 00	. 00	1.31	. 00	. 65	. 00	. 00	. 00	. 00	1.31	. 00	. 65	. 00	. 00	. 00	. 00	3.92
(2)	. 00	. 00	. 00	. 05	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 00	. 02	. 00	. 00	. 00	. 00	. 14
2.1-3.0	1	0	0	1	0	1	1	0	3	2	1	3	1	0	0	0	0	14
(1)	. 65	. 00	. 00	. 65	. 00	. 65	. 65	. 00	1.96	1.31	. 65	1.96	. 65	. 00	. 00	. 00	. 00	9.15
(2)	. 02	. 00	. 00	. 02	. 00	. 02	. 02	. 00	. 07	. 05	. 02	. 07	. 02	. 00	. 00	. 00	. 00	. 32
3.1-4.0	1	0	1	1	0	0	1	5	4	1	5	4	1	2	0	0	0	26
(1)	. 65	. 00	. 65	. 65	. 00	. 00	. 65	3.27	2.61	. 65	3.27	2.61	. 65	1.31	. 00	. 00	. 00	16.99
(2)	. 02	. 00	. 02	. 02	. 00	. 00	. 02	. 12	. 09	. 02	. 12	. 09	. 02	. 05	. 00	. 00	. 00	. 60
4.1-5.0	0	0	0	0	0	3	1	7	2	5	2	2	1	4	1	1	0	29
(1)	. 00	. 00	. 00	. 00	. 00	1.96	. 65	4.58	1.31	3.27	1.31	1.31	. 65	2.61	. 65	. 65	. 00	18.95
(2)	. 00	. 00	. 00	. 00	. 00	. 07	. 02	. 16	. 05	. 12	. 05	. 05	. 02	. 09	. 02	. 02	. 00	. 67
5.1-6.0	0	0	0	0	0	1	0	3	6	3	8	2	2	1	0	2	0	28
(1)	. 00	. 00	. 00	. 00	. 00	. 65	. 00	1.96	3.92	1.96	5.23	1.31	1.31	. 65	. 00	1.31	. 00	18.30
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 07	. 14	. 07	. 19	. 05	. 05	. 02	. 00	. 05	. 00	. 65
6.1-8.0	0	1	0	0	0	0	1	1	7	9	4	3	3	0	2	0	0	31
(1)	. 00	. 65	. 00	. 00	. 00	. 00	. 65	. 65	4.58	5.88	2.61	1.96	1.96	. 00	1.31	. 00	. 00	20.26
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 16	. 21	. 09	. 07	. 07	. 00	. 05	. 00	. 00	. 72
8.1-10.0	0	0	0	0	0	0	0	1	0	1	0	2	0	0	1	0	0	5
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65	. 00	. 65	. 00	1.31	. 00	. 00	. 65	. 00	. 00	3.27
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 05	. 00	. 00	. 02	. 00	. 00	. 12
10.1-89.5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 65	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 65
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
ALL SPEEDS	2	3	1	5	1	6	6	19	22	21	22	18	11	8	5	3	0	153
(1)	1.31	1.96	. 65	3.27	. 65	3.92	3.92	12.42	14.38	13.73	14.38	11.76	7.19	5.23	3.27	1.96	. 00	100.00
(2)	. 05	. 07	. 02	. 12	. 02	. 14	. 14	. 44	. 51	. 49	. 51	. 42	. 25	. 19	. 12	. 07	. 00	3.54

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-30—\{CCNPP 33 ft (10 m) January JFD (2000-2005)\} (Page 8 of 8)
CC JANUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
(2)	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
. $2-.4$	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
. $5-1.0$	3	3	7	2	7	3	4	5	1	2	2	6	4	2	1	2	0	54
(1)	. 07	. 07	. 16	. 05	. 16	. 07	. 09	. 12	. 02	. 05	. 05	. 14	. 09	. 05	. 02	. 05	. 00	1.25
(2)	. 07	. 07	. 16	. 05	. 16	. 07	. 09	. 12	. 02	. 05	. 05	. 14	. 09	. 05	. 02	. 05	. 00	1.25
1.1-1.5	3	7	7	11	13	3	9	1	1	4	3	1	2	3	6	5	0	79
(1)	. 07	. 16	. 16	. 25	. 30	. 07	. 21	. 02	. 02	. 09	. 07	. 02	. 05	. 07	. 14	. 12	. 00	1.83
(2)	. 07	. 16	. 16	. 25	. 30	. 07	. 21	. 02	. 02	. 09	. 07	. 02	. 05	. 07	. 14	. 12	. 00	1.83
1.6-2.0	4	16	11	11	11	8	4	6	2	5	12	7	7	8	3	7	0	122
(1)	. 09	. 37	. 25	. 25	. 25	. 19	. 09	. 14	. 05	. 12	. 28	. 16	. 16	. 19	. 07	. 16	. 00	2.82
(2)	. 09	. 37	. 25	. 25	. 25	. 19	. 09	. 14	. 05	. 12	. 28	. 16	. 16	. 19	. 07	. 16	. 00	2.82
2.1-3.0	31	28	23	21	22	19	24	15	18	17	24	30	28	22	16	25	0	363
(1)	. 72	. 65	. 53	. 49	. 51	. 44	. 56	. 35	. 42	. 39	. 56	. 69	. 65	. 51	. 37	. 58	. 00	8.40
(2)	. 72	. 65	. 53	. 49	. 51	. 44	. 56	. 35	. 42	. 39	. 56	. 69	. 65	. 51	. 37	. 58	. 00	8.40
3.1-4.0	62	32	22	24	16	11	19	41	30	26	43	39	35	49	43	62	0	554
(1)	1.44	. 74	. 51	. 56	. 37	. 25	. 44	. 95	. 69	. 60	1.00	. 90	. 81	1.13	1.00	1.44	. 00	12.82
(2)	1.44	. 74	. 51	. 56	. 37	. 25	. 44	. 95	. 69	. 60	1.00	. 90	. 81	1.13	1.00	1.44	. 00	12.82
4.1-5.0	65	30	17	11	6	14	23	52	22	33	47	42	48	75	126	76	0	687
(1)	1.50	. 69	. 39	. 25	. 14	. 32	. 53	1.20	. 51	. 76	1.09	. 97	1.11	1.74	2.92	1.76	. 00	15.90
(2)	1.50	. 69	. 39	. 25	. 14	. 32	. 53	1.20	. 51	. 76	1.09	. 97	1.11	1.74	2.92	1.76	. 00	15.90
5.1-6.0	54	39	12	9	1	6	8	36	45	54	61	43	44	79	146	92	0	729
(1)	1.25	. 90	. 28	. 21	. 02	. 14	. 19	. 83	1.04	1.25	1.41	1.00	1.02	1.83	3.38	2.13	. 00	16.87
(2)	1.25	. 90	. 28	. 21	. 02	. 14	. 19	. 83	1.04	1.25	1.41	1.00	1.02	1.83	3.38	2.13	. 00	16.87
6.1-8.0	95	68	14	2	0	3	8	41	51	147	186	59	38	123	219	125	0	1179
(1)	2.20	1.57	. 32	. 05	. 00	. 07	. 19	. 95	1.18	3.40	4.31	1.37	. 88	2.85	5.07	2.89	. 00	27.29
(2)	2.20	1.57	. 32	. 05	. 00	. 07	. 19	. 95	1.18	3.40	4.31	1.37	. 88	2.85	5.07	2.89	. 00	27.29
8.1-10.0	63	38	1	0	0	0	3	8	14	47	71	4	3	45	113	34	0	444
(1)	1.46	. 88	. 02	. 00	. 00	. 00	. 07	. 19	. 32	1.09	1.64	. 09	. 07	1.04	2.62	. 79	. 00	10.28
(2)	1.46	. 88	. 02	. 00	. 00	. 00	. 07	. 19	. 32	1.09	1.64	. 09	. 07	1.04	2.62	. 79	. 00	10.28
10.1-89.5	27	2	0	0	0	0	0	1	1	8	5	3	3	17	29	10	0	106
(1)	. 63	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 19	. 12	. 07	. 07	. 39	. 67	. 23	. 00	2.45
(2)	. 63	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 19	. 12	. 07	. 07	. 39	. 67	. 23	. 00	2.45
ALL SPEEDS	407	263	114	92	77	67	102	206	186	343	454	234	212	423	702	438	0	4320
(1)	9.42	6.09	2.64	2.13	1.78	1.55	2.36	4.77	4.31	7.94	10.51	5.42	4.91	9.79	16.25	10.14	. 00	100.00
(2)	9.42	6.09	2.64	2.13	1.78	1.55	2.36	4.77	4.31	7.94	10.51	5.42	4.91	9.79	16.25	10.14	. 00	100.00

Table 2.3-31—\{CCNPP 197 ft (60 m) February JFD (2000-2005)\}

(Page 1 of 8)

CC FEBRUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 10.15

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.6-2.0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 24	. 00	. 00	. 00	. 00	. 24	. 00	. 49
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 05
2.1-3.0	3	4	0	1	4	0	0	0	0	1	3	3	0	0	1	0	0	20
(1)	. 73	. 98	. 00	. 24	. 98	. 00	. 00	. 00	. 00	. 24	. 73	. 73	. 00	. 00	. 24	. 00	. 00	4.88
(2)	. 07	. 10	. 00	. 02	. 10	. 00	. 00	. 00	. 00	. 02	. 07	. 07	. 00	. 00	. 02	. 00	. 00	. 50
3.1-4.0	8	6	1	0	0	1	1	3	3	5	8	10	5	3	2	1	0	57
(1)	1.95	1.46	. 24	. 00	. 00	. 24	. 24	. 73	. 73	1.22	1.95	2.44	1.22	. 73	. 49	. 24	. 00	13.90
(2)	. 20	. 15	. 02	. 00	. 00	. 02	. 02	. 07	. 07	. 12	. 20	. 25	. 12	. 07	. 05	. 02	. 00	1.41
4.1-5.0	14	13	0	0	0	0	3	3	4	8	8	11	9	5	4	3	0	85
(1)	3.41	3.17	. 00	. 00	. 00	. 00	. 73	. 73	. 98	1.95	1.95	2.68	2.20	1.22	. 98	. 73	. 00	20.73
(2)	. 35	. 32	. 00	. 00	. 00	. 00	. 07	. 07	. 10	. 20	. 20	. 27	. 22	. 12	. 10	. 07	. 00	2.10
5.1-6.0	8	8	1	0	0	0	0	6	1	6	12	6	4	6	13	5	0	76
(1)	1.95	1.95	. 24	. 00	. 00	. 00	. 00	1.46	. 24	1.46	2.93	1.46	. 98	1.46	3.17	1.22	. 00	18.54
(2)	. 20	. 20	. 02	. 00	. 00	. 00	. 00	. 15	. 02	. 15	. 30	. 15	. 10	. 15	. 32	. 12	. 00	1.88
6.1-8.0	18	5	1	0	0	0	2	3	1	12	11	4	5	20	20	5	0	107
(1)	4.39	1.22	. 24	. 00	. 00	. 00	. 49	. 73	. 24	2.93	2.68	. 98	1.22	4.88	4.88	1.22	. 00	26.10
(2)	. 45	. 12	. 02	. 00	. 00	. 00	. 05	. 07	. 02	. 30	. 27	. 10	. 12	. 50	. 50	. 12	. 00	2.65
8.1-10.0	5	1	0	0	0	0	0	0	0	7	7	0	1	10	14	1	0	46
(1)	1.22	. 24	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.71	1.71	. 00	. 24	2.44	3.41	. 24	. 00	11.22
(2)	. 12	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 17	. 17	. 00	. 02	. 25	. 35	. 02	. 00	1.14
10.1-89.5	1	0	0	0	0	0	0	0	0	2	0	0	0	4	8	2	0	17
(1)	. 24	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 49	. 00	. 00	. 00	. 98	1.95	. 49	. 00	4.15
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 10	. 20	. 05	. 00	. 42
ALL SPEEDS	57	37	3	1	4	1	6	15	9	41	50	34	24	48	62	18	0	410
(1)	13.90	9.02	. 73	. 24	. 98	. 24	1.46	3.66	2.20	10.00	12.20	8.29	5.85	11.71	15.12	4.39	. 00	100.00
(2)	1.41	. 92	. 07	. 02	. 10	. 02	. 15	. 37	. 22	1.02	1.24	. 84	. 59	1.19	1.54	. 45	. 00	10.15

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-31—\{CCNPP 197 ft (60 m) February JFD (2000-2005)\}

Page 2 of 8)

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC FEBRUARY MET DATA JOINT	FREQUENCY DISTRIBUTION	(60-METER TOWER)	
197.0 FT WIND DATA	STABILITY CLASS C	CLASS FREQUENCY	(PERCENT) $=3.94$

								IND DI	RECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 00	. 00	. 00	. 00	. 63
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02
1.1-1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.6-2.0	1	0	0	2	1	0	0	0	0	0	0	1	0	1	0	0	0	6
(1)	. 63	. 00	. 00	1.26	. 63	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 63	. 00	. 00	. 00	3.77
(2)	. 02	. 00	. 00	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 15
2.1-3.0	6	3	2	3	0	0	1	2	0	1	2	2	1	1	0	1	0	25
(1)	3.77	1.89	1.26	1.89	. 00	. 00	. 63	1.26	. 00	. 63	1.26	1.26	. 63	. 63	. 00	. 63	. 00	15.72
(2)	. 15	. 07	. 05	. 07	. 00	. 00	. 02	. 05	. 00	. 02	. 05	. 05	. 02	. 02	. 00	. 02	. 00	. 62
3.1-4.0	3	9	4	1	1	0	0	3	1	1	2	3	1	2	0	3	0	34
(1)	1.89	5.66	2.52	. 63	. 63	. 00	. 00	1.89	. 63	. 63	1.26	1.89	. 63	1.26	. 00	1.89	. 00	21.38
(2)	. 07	. 22	. 10	. 02	. 02	. 00	. 00	. 07	. 02	. 02	. 05	. 07	. 02	. 05	. 00	. 07	. 00	. 84
4.1-5.0	6	5	2	0	0	0	3	3	0	5	4	3	2	1	1	1	0	36
(1)	3.77	3.14	1.26	. 00	. 00	. 00	1.89	1.89	. 00	3.14	2.52	1.89	1.26	. 63	. 63	. 63	. 00	22.64
(2)	. 15	. 12	. 05	. 00	. 00	. 00	. 07	. 07	. 00	. 12	. 10	. 07	. 05	. 02	. 02	. 02	. 00	. 89
5.1-6.0	4	4	0	0	0	0	1	0	0	1	2	2	0	1	3	0	0	18
(1)	2.52	2.52	. 00	. 00	. 00	. 00	. 63	. 00	. 00	. 63	1.26	1.26	. 00	. 63	1.89	. 00	. 00	11.32
(2)	. 10	. 10	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 05	. 05	. 00	. 02	. 07	. 00	. 00	. 45
6.1-8.0	4	0	0	0	0	0	0	0	1	5	2	2	0	2	3	7	0	26
(1)	2.52	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	3.14	1.26	1.26	. 00	1.26	1.89	4.40	. 00	16.35
(2)	. 10	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 12	. 05	. 05	. 00	. 05	. 07	. 17	. 00	. 64
8.1-10.0	1	1	0	0	0	0	0	0	0	1	1	0	1	4	2	0	0	11
(1)	. 63	. 63	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 63	. 00	. 63	2.52	1.26	. 00	. 00	6.92
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 10	. 05	. 00	. 00	. 27
10.1-89.5	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 63	. 00	. 00	. 00	. 00	. 63	. 00	. 00	1.26
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 05
ALL SPEEDS	25	22	8	6	2	0	5	8	2	15	13	14	5	12	10	12	0	159
(1)	15.72	13.84	5.03	3.77	1.26	. 00	3.14	5.03	1.26	9.43	8.18	8.81	3.14	7.55	6.29	7.55	. 00	100.00
(2)	. 62	. 54	. 20	. 15	. 05	. 00	. 12	. 20	. 05	. 37	. 32	. 35	. 12	. 30	. 25	. 30	. 00	3.94

T
$\stackrel{0}{0}$
i
i

© 2007 UniStar Nuclear Services，LLC．All rights reserved．

CC FEBRUARY MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY（PERCENT）＝ 34.93

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC FEBRUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 32.19

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	1	0	0	1	1	0	0	2	0	0	0	1	0	1	0	7
(1)	. 00	. 00	. 08	. 00	. 00	. 08	. 08	. 00	. 00	. 15	. 00	. 00	. 00	. 08	. 00	. 08	. 00	. 54
(2)	. 00	. 00	. 02	. 00	. 00	. 02	. 02	. 00	. 00	. 05	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 17
1.1-1.5	1	3	1	0	3	0	1	0	1	0	0	0	0	3	0	1	0	14
(1)	. 08	. 23	. 08	. 00	. 23	. 00	. 08	. 00	. 08	. 00	. 00	. 00	. 00	. 23	. 00	. 08	. 00	1.08
(2)	. 02	. 07	. 02	. 00	. 07	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 07	. 00	. 02	. 00	. 35
1.6-2.0	1	3	6	9	6	2	2	2	1	0	1	2	4	0	0	0	0	39
(1)	. 08	. 23	. 46	. 69	. 46	. 15	. 15	. 15	. 08	. 00	. 08	. 15	. 31	. 00	. 00	. 00	. 00	3.00
(2)	. 02	. 07	. 15	. 22	. 15	. 05	. 05	. 05	. 02	. 00	. 02	. 05	. 10	. 00	. 00	. 00	. 00	. 97
2.1-3.0	8	8	10	13	14	6	5	8	5	2	3	4	5	6	9	9	0	115
(1)	. 62	. 62	. 77	1.00	1.08	. 46	. 38	. 62	. 38	. 15	. 23	. 31	. 38	. 46	. 69	. 69	. 00	8.85
(2)	. 20	. 20	. 25	. 32	. 35	. 15	. 12	. 20	. 12	. 05	. 07	. 10	. 12	. 15	. 22	. 22	. 00	2.85
3.1-4.0	20	20	8	11	13	7	10	16	14	10	10	11	5	13	11	28	0	207
(1)	1.54	1.54	. 62	. 85	1.00	. 54	. 77	1.23	1.08	. 77	. 77	. 85	. 38	1.00	. 85	2.15	. 00	15.92
(2)	. 50	. 50	. 20	. 27	. 32	. 17	. 25	. 40	. 35	. 25	. 25	. 27	. 12	. 32	. 27	. 69	. 00	5.13
4.1-5.0	35	11	11	6	2	8	6	15	24	8	8	12	9	23	40	30	0	248
(1)	2.69	. 85	. 85	. 46	. 15	. 62	. 46	1.15	1.85	. 62	. 62	. 92	. 69	1.77	3.08	2.31	. 00	19.08
(2)	. 87	. 27	. 27	. 15	. 05	. 20	. 15	. 37	. 59	. 20	. 20	. 30	. 22	. 57	. 99	. 74	. 00	6.14
5.1-6.0	22	12	3	1	1	3	5	27	28	24	20	24	7	26	49	29	0	281
(1)	1.69	. 92	. 23	. 08	. 08	. 23	. 38	2.08	2.15	1.85	1.54	1.85	. 54	2.00	3.77	2.23	. 00	21.62
(2)	. 54	. 30	. 07	. 02	. 02	. 07	. 12	. 67	. 69	. 59	. 50	. 59	. 17	. 64	1.21	. 72	. 00	6.96
6.1-8.0	22	14	2	0	0	0	1	21	39	55	37	17	14	24	22	25	0	293
(1)	1.69	1.08	. 15	. 00	. 00	. 00	. 08	1.62	3.00	4.23	2.85	1.31	1.08	1.85	1.69	1.92	. 00	22.54
(2)	. 54	. 35	. 05	. 00	. 00	. 00	. 02	. 52	. 97	1.36	. 92	. 42	. 35	. 59	. 54	. 62	. 00	7.25
8.1-10.0	12	1	0	0	0	0	1	9	6	19	15	1	2	6	2	8	0	82
(1)	. 92	. 08	. 00	. 00	. 00	. 00	. 08	. 69	. 46	1.46	1.15	. 08	. 15	. 46	. 15	. 62	. 00	6.31
(2)	. 30	. 02	. 00	. 00	. 00	. 00	. 02	. 22	. 15	. 47	. 37	. 02	. 05	. 15	. 05	. 20	. 00	2.03
10.1-89.5	1	0	1	0	0	0	0	0	2	4	5	0	0	0	0	0	0	13
(1)	. 08	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 15	. 31	. 38	. 00	. 00	. 00	. 00	. 00	. 00	1.00
(2)	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 05	. 10	. 12	. 00	. 00	. 00	. 00	. 00	. 00	. 32
ALL SPEEDS	122	72	43	40	39	27	32	98	120	125	99	71	46	102	133	131	0	1300
(1)	9.38	5.54	3.31	3.08	3.00	2.08	2.46	7.54	9.23	9.62	7.62	5.46	3.54	7.85	10.23	10.08	. 00	100.00
(2)	3.02	1.78	1.06	. 99	. 97	. 67	. 79	2.43	2.97	3.09	2.45	1.76	1.14	2.53	3.29	3.24	. 00	32.19
(1) = PERCENT	F ALI	GOOD	OBSERV	ATIONS	FOR	HIS PA												

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

$$
\begin{array}{lll}
\text { CC FEBRUARY MET DATA JOINT FREQUENCY DISTRIBUTION } & (60-M E T E R ~ T O W E R) \\
197.0 ~ F T ~ W I N D ~ D A T A ~ & \text { STABILITY CLASS F } & \text { CLASS FREQUENCY }
\end{array}
$$

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
CC FEBRUARY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 3.89

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTA
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 0
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	0
. $2-.4$	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	
(1)	. 00	. 00	. 00	. 00	. 64	. 00	. 00	. 00	. 00	. 64	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.2
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
.5-1.0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	
(1)	. 00	. 64	. 00	. 00	. 64	. 00	. 00	. 64	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.91
(2)	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.
1.1-1.5	0	0	0	1	1	0	0	0	0	0	2	0	1	0	0	0	0	
(1)	. 00	. 00	. 00	. 64	. 64	. 00	. 00	. 00	. 00	. 00	1.27	. 00	. 64	. 00	. 00	. 00	. 00	3.1
(2)	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 02	. 00	. 00	. 00	. 00	. 1
1.6-2.0	0	0	0	1	2	1	0	0	1	1	1	0	3	0	2	0	0	1
(1)	. 00	. 00	. 00	. 64	1.27	. 64	. 00	. 00	. 64	. 64	. 64	. 00	1.91	. 00	1.27	. 00	. 00	7.6
(2)	. 00	. 00	. 00	. 02	. 05	. 02	. 00	. 00	. 02	. 02	. 02	. 00	. 07	. 00	. 05	. 00	. 00	. 3
2.1-3.0	1	0	3	0	1	0	2	0	3	5	3	3	1	3	0	0	0	2
(1)	. 64	. 00	1.91	. 00	. 64	. 00	1.27	. 00	1.91	3.18	1.91	1.91	. 64	1.91	. 00	. 00	. 00	15.92
(2)	. 02	. 00	. 07	. 00	. 02	. 00	. 05	. 00	. 07	. 12	. 07	. 07	. 02	. 07	. 00	. 00	. 00	. 6
3.1-4.0	0	0	0	0	1	1	2	4	4	1	2	4	2	1	2	3	0	2
(1)	. 00	. 00	. 00	. 00	. 64	. 64	1.27	2.55	2.55	. 64	1.27	2.55	1.27	. 64	1.27	1.91	. 00	17.20
(2)	. 00	. 00	. 00	. 00	. 02	. 02	. 05	. 10	. 10	. 02	. 05	. 10	. 05	. 02	. 05	. 07	. 00	. 6
4.1-5.0	0	0	0	0	0	1	0	3	4	5	5	1	3	3	0	0	0	25
(1)	. 00	. 00	. 00	. 00	. 00	. 64	. 00	1.91	2.55	3.18	3.18	. 64	1.91	1.91	. 00	. 00	. 00	15.92
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 07	. 10	. 12	. 12	. 02	. 07	. 07	. 00	. 00	. 00	. 6
5.1-6.0	0	1	0	0	0	1	0	7	4	3	1	4	0	1	1	0	0	2
(1)	. 00	. 64	. 00	. 00	. 00	. 64	. 00	4.46	2.55	1.91	. 64	2.55	. 00	. 64	. 64	. 00	. 00	14.65
(2)	. 00	. 02	. 00	. 00	. 00	. 02	. 00	. 17	. 10	. 07	. 02	. 10	. 00	. 02	. 02	. 00	. 00	. 5
6.1-8.0	0	2	0	0	0	0	0	2	4	6	8	8	1	2	1	0	0	3
(1)	. 00	1.27	. 00	. 00	. 00	. 00	. 00	1.27	2.55	3.82	5.10	5.10	. 64	1.27	. 64	. 00	. 00	21.6
(2)	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 05	. 10	. 15	. 20	. 20	. 02	. 05	. 02	. 00	. 00	. 8
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 64	. 00	. 00	. 00	. 00	. 00	. 6
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 0
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 0
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 0
ALL SPEEDS	1	4	3	2	7	4	4	17	20	22	22	21	11	10	6	3	0	15
(1)	. 64	2.55	1.91	1.27	4.46	2.55	2.55	10.83	12.74	14.01	14.01	13.38	7.01	6.37	3.82	1.91	. 00	100.0
(2)	. 02	. 10	. 07	. 05	. 17	. 10	. 10	. 42	. 50	. 54	. 54	. 52	. 27	. 25	. 15	. 07	. 00	3.8

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
GヨレכヨıOyd $\perp H פ ו y \wedge d O כ$

CC FEBRUARY MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY（PERCENT）＝ 100.00

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT ． 2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02
． $2-.4$	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	0	3
（1）	． 00	． 00	． 00	． 00	． 05	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07
（2）	． 00	． 00	． 00	． 00	． 05	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 07
．5－1．0	1	3	3	3	2	3	4	5	1	5	1	1	0	1	0	4	0	37
（1）	． 02	． 07	． 07	． 07	． 05	． 07	． 10	． 12	． 02	． 12	． 02	． 02	． 00	． 02	． 00	． 10	． 00	． 92
（2）	． 02	． 07	． 07	． 07	． 05	． 07	． 10	． 12	． 02	． 12	． 02	． 02	． 00	． 02	． 00	． 10	． 00	． 92
1．1－1．5	3	3	3	5	8	2	1	2	4	2	3	0	2	4	2	5	0	49
（1）	． 07	． 07	． 07	． 12	． 20	． 05	． 02	． 05	． 10	． 05	． 07	． 00	． 05	． 10	． 05	． 12	． 00	1.21
（2）	． 07	． 07	． 07	． 12	． 20	． 05	． 02	． 05	． 10	． 05	． 07	． 00	． 05	． 10	． 05	． 12	． 00	1.21
1．6－2．0	8	14	11	18	19	5	5	5	8	2	7	4	8	3	4	5	0	126
（1）	． 20	． 35	． 27	． 45	． 47	． 12	． 12	． 12	． 20	． 05	． 17	． 10	． 20	． 07	． 10	． 12	． 00	3.12
（2）	． 20	． 35	． 27	． 45	． 47	． 12	． 12	． 12	． 20	． 05	． 17	． 10	． 20	． 07	． 10	． 12	． 00	3.12
2．1－3．0	47	37	37	41	35	16	28	31	19	15	15	22	11	16	20	27	0	417
（1）	1.16	． 92	． 92	1.02	． 87	． 40	． 69	． 77	． 47	． 37	． 37	． 54	． 27	． 40	． 50	． 67	． 00	10.32
（2）	1.16	． 92	． 92	1.02	． 87	． 40	． 69	． 77	． 47	． 37	． 37	． 54	． 27	． 40	． 50	． 67	． 00	10.32
3．1－4．0	57	67	26	34	27	17	30	57	40	24	42	45	25	27	31	52	0	601
（1）	1.41	1.66	． 64	． 84	． 67	． 42	． 74	1.41	． 99	． 59	1.04	1.11	． 62	． 67	． 77	1.29	． 00	14.88
（2）	1.41	1.66	． 64	． 84	． 67	． 42	． 74	1.41	． 99	． 59	1.04	1.11	． 62	． 67	． 77	1.29	． 00	14.88
4．1－5．0	86	52	40	17	7	14	29	53	53	45	39	55	34	47	64	69	0	704
（1）	2.13	1.29	． 99	． 42	． 17	． 35	． 72	1.31	1.31	1.11	． 97	1.36	． 84	1.16	1.58	1.71	． 00	17.43
（2）	2.13	1.29	． 99	． 42	． 17	． 35	． 72	1.31	1.31	1.11	． 97	1.36	． 84	1.16	1.58	1.71	． 00	17.43
5．1－6．0	72	55	19	10	1	7	16	63	52	59	56	56	27	53	95	69	0	710
（1）	1.78	1.36	． 47	． 25	． 02	． 17	． 40	1.56	1.29	1.46	1.39	1.39	． 67	1.31	2.35	1.71	． 00	17.58
（2）	1.78	1.36	． 47	． 25	． 02	． 17	． 40	1.56	1.29	1.46	1.39	1.39	． 67	1.31	2.35	1.71	． 00	17.58
6．1－8．0	110	78	31	5	3	2	6	49	65	109	91	55	39	77	121	88	0	929
（1）	2.72	1.93	． 77	． 12	． 07	． 05	． 15	1.21	1.61	2.70	2.25	1.36	． 97	1.91	3.00	2.18	． 00	23.00
（2）	2.72	1.93	． 77	． 12	． 07	． 05	． 15	1.21	1.61	2.70	2.25	1.36	． 97	1.91	3.00	2.18	． 00	23.00
8．1－10．0	63	34	11	0	0	1	3	11	7	39	41	6	5	38	58	30	0	347
（1）	1.56	． 84	． 27	． 00	． 00	． 02	． 07	． 27	． 17	． 97	1.02	． 15	． 12	． 94	1.44	． 74	． 00	8.59
（2）	1.56	． 84	． 27	． 00	． 00	． 02	． 07	． 27	． 17	． 97	1.02	． 15	． 12	． 94	1.44	． 74	． 00	8.59
10．1－89．5	8	31	8	0	0	0	0	0	2	14	12	0	0	11	24	5	0	115
（1）	． 20	． 77	． 20	． 00	． 00	． 00	． 00	． 00	． 05	． 35	． 30	． 00	． 00	． 27	． 59	． 12	． 00	2.85
（2）	． 20	． 77	． 20	． 00	． 00	． 00	． 00	． 00	． 05	． 35	． 30	． 00	． 00	． 27	． 59	． 12	． 00	2.85
ALL SPEEDS	455	374	189	133	104	67	122	276	251	316	307	244	151	277	419	354	0	4039
（1）	11.27	9.26	4.68	3.29	2.57	1.66	3.02	6.83	6.21	7.82	7.60	6.04	3.74	6.86	10.37	8.76	． 00	100.00
（2）	11.27	9.26	4.68	3.29	2.57	1.66	3.02	6.83	6.21	7.82	7.60	6.04	3.74	6.86	10.37	8.76	． 00	100.00

Table 2.3-32—\{CCNPP 197 ft (60 m) March JFD (2000-2005)\}
(Page 1 of 8)
CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 12.40

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 19
(2)	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.6-2.0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 38	. 00	. 00	. 00	. 00	. 00	. 00	. 19	. 00	. 00	. 00	. 00	. 00	. 56
(2)	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07
2.1-3.0	2	3	3	0	1	1	0	2	1	1	0	0	0	0	0	0	0	14
(1)	. 38	. 56	. 56	. 00	. 19	. 19	. 00	. 38	. 19	. 19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.63
(2)	. 05	. 07	. 07	. 00	. 02	. 02	. 00	. 05	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 33
3.1-4.0	5	15	6	2	5	2	4	4	2	3	5	5	2	0	1	1	0	62
(1)	. 94	2.81	1.13	. 38	. 94	. 38	. 75	. 75	. 38	. 56	. 94	. 94	. 38	. 00	. 19	. 19	. 00	11.63
(2)	. 12	. 35	. 14	. 05	. 12	. 05	. 09	. 09	. 05	. 07	. 12	. 12	. 05	. 00	. 02	. 02	. 00	1.44
4.1-5.0	21	9	1	0	4	5	1	10	2	8	12	5	4	2	5	2	0	91
(1)	3.94	1.69	. 19	. 00	. 75	. 94	. 19	1.88	. 38	1.50	2.25	. 94	. 75	. 38	. 94	. 38	. 00	17.07
(2)	. 49	. 21	. 02	. 00	. 09	. 12	. 02	. 23	. 05	. 19	. 28	. 12	. 09	. 05	. 12	. 05	. 00	2.12
5.1-6.0	8	3	1	0	1	1	4	15	3	7	21	6	6	9	14	7	0	106
(1)	1.50	. 56	. 19	. 00	. 19	. 19	. 75	2.81	. 56	1.31	3.94	1.13	1.13	1.69	2.63	1.31	. 00	19.89
(2)	. 19	. 07	. 02	. 00	. 02	. 02	. 09	. 35	. 07	. 16	. 49	. 14	. 14	. 21	. 33	. 16	. 00	2.47
6.1-8.0	12	4	1	0	2	0	4	15	2	17	28	11	11	26	31	8	0	172
(1)	2.25	. 75	. 19	. 00	. 38	. 00	. 75	2.81	. 38	3.19	5.25	2.06	2.06	4.88	5.82	1.50	. 00	32.27
(2)	. 28	. 09	. 02	. 00	. 05	. 00	. 09	. 35	. 05	. 40	. 65	. 26	. 26	. 60	. 72	. 19	. 00	4.00
8.1-10.0	1	0	1	0	0	0	2	4	0	3	10	3	0	27	16	2	0	69
(1)	. 19	. 00	. 19	. 00	. 00	. 00	. 38	. 75	. 00	. 56	1.88	. 56	. 00	5.07	3.00	. 38	. 00	12.95
(2)	. 02	. 00	. 02	. 00	. 00	. 00	. 05	. 09	. 00	. 07	. 23	. 07	. 00	. 63	. 37	. 05	. 00	1.60
10.1-89.5	0	0	1	0	0	0	0	0	0	0	1	2	2	3	5	1	0	15
(1)	. 00	. 00	. 19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 19	. 38	. 38	. 56	. 94	. 19	. 00	2.81
(2)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 05	. 07	. 12	. 02	. 00	. 35
ALL SPEEDS	49	34	14	3	15	9	15	50	10	39	77	33	25	67	72	21	0	533
(1)	9.19	6.38	2.63	. 56	2.81	1.69	2.81	9.38	1.88	7.32	14.45	6.19	4.69	12.57	13.51	3.94	. 00	100.00
(2)	1.14	. 79	. 33	. 07	. 35	. 21	. 35	1.16	. 23	. 91	1.79	. 77	. 58	1.56	1.67	. 49	. 00	12.40

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOod ObSERVAtions for this period
CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY（PERCENT）＝ 3.44

（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 4.21

								IND DI	RECTI	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55	. 00	. 00	. 00	. 00	. 00	. 55
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02
1.6-2.0	0	2	0	0	0	1	0	0	0	0	2	0	0	1	0	0	0	6
(1)	. 00	1.10	. 00	. 00	. 00	. 55	. 00	. 00	. 00	. 00	1.10	. 00	. 00	. 55	. 00	. 00	. 00	3.31
(2)	. 00	. 05	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 02	. 00	. 00	. 00	. 14
2.1-3.0	5	4	7	3	3	2	1	0	1	1	1	2	1	1	0	0	0	32
(1)	2.76	2.21	3.87	1.66	1.66	1.10	. 55	. 00	. 55	. 55	. 55	1.10	. 55	. 55	. 00	. 00	. 00	17.68
(2)	. 12	. 09	. 16	. 07	. 07	. 05	. 02	. 00	. 02	. 02	. 02	. 05	. 02	. 02	. 00	. 00	. 00	. 74
$3.1-4.0$	5	3	4	1	2	2	1	2	3	2	1	2	2	0	1	3	0	34
(1)	2.76	1.66	2.21	. 55	1.10	1.10	. 55	1.10	1.66	1.10	. 55	1.10	1.10	. 00	. 55	1.66	. 00	18.78
(2)	. 12	. 07	. 09	. 02	. 05	. 05	. 02	. 05	. 07	. 05	. 02	. 05	. 05	. 00	. 02	. 07	. 00	. 79
4.1-5.0	5	1	1	0	0	2	1	6	2	3	2	1	0	1	1	4	0	30
(1)	2.76	. 55	. 55	. 00	. 00	1.10	. 55	3.31	1.10	1.66	1.10	. 55	. 00	. 55	. 55	2.21	. 00	16.57
(2)	. 12	. 02	. 02	. 00	. 00	. 05	. 02	. 14	. 05	. 07	. 05	. 02	. 00	. 02	. 02	. 09	. 00	. 70
5.1-6.0	1	3	0	1	0	0	1	3	0	1	1	5	1	2	2	1	0	22
(1)	. 55	1.66	. 00	. 55	. 00	. 00	. 55	1.66	. 00	. 55	. 55	2.76	. 55	1.10	1.10	. 55	. 00	12.15
(2)	. 02	. 07	. 00	. 02	. 00	. 00	. 02	. 07	. 00	. 02	. 02	. 12	. 02	. 05	. 05	. 02	. 00	. 51
6.1-8.0	2	1	2	0	0	0	1	6	1	1	1	0	3	1	7	4	0	30
(1)	1.10	. 55	1.10	. 00	. 00	. 00	. 55	3.31	. 55	. 55	. 55	. 00	1.66	. 55	3.87	2.21	. 00	16.57
(2)	. 05	. 02	. 05	. 00	. 00	. 00	. 02	. 14	. 02	. 02	. 02	. 00	. 07	. 02	. 16	. 09	. 00	. 70
8.1-10.0	0	1	1	0	0	0	0	1	0	1	1	0	0	4	4	2	0	15
(1)	. 00	. 55	. 55	. 00	. 00	. 00	. 00	. 55	. 00	. 55	. 55	. 00	. 00	2.21	2.21	1.10	. 00	8.29
(2)	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 09	. 09	. 05	. 00	. 35
10.1-89.5	3	0	0	0	0	0	0	0	0	0	0	0	0	1	7	0	0	11
(1)	1.66	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55	3.87	. 00	. 00	6.08
(2)	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 16	. 00	. 00	. 26
ALL SPEEDS	21	15	15	5	5	7	5	18	7	9	9	11	7	11	22	14	0	181
(1)	11.60	8.29	8.29	2.76	2.76	3.87	2.76	9.94	3.87	4.97	4.97	6.08	3.87	6.08	12.15	7.73	. 00	100.00
(2)	. 49	. 35	. 35	. 12	. 12	. 16	. 12	. 42	. 16	. 21	. 21	. 26	. 16	. 26	. 51	. 33	. 00	4.21

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

IᄏIכ

Table 2.3-32—\{CCNPP 197 ft (60 m) March JFD (2000-2005) \}

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 37.65

SPEED	N	NNE	NE	ENE	E	ESE	SE	D DIRECTION		FROMSSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
								SSE	S									
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
$\begin{array}{rr}.2- & .4 \\ (1) \\ \\ (2)\end{array}$	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2
	. 00	. 06	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 06	. 00	. 00	. 00	. 12
	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 05
. $5-1.0$	2	0	2	0	2	1	0	0	1	0	2	1	1	1	2	1	0	16
(1)	. 12	. 00	. 12	. 00	. 12	. 06	. 00	. 00	. 06	. 00	. 12	. 06	. 06	. 06	. 12	. 06	. 00	. 99
$\begin{array}{r} (2) \\ 1.1-1.5 \end{array}$. 05	. 00	. 05	. 00	. 05	. 02	. 00	. 00	. 02	. 00	. 05	. 02	. 02	. 02	. 05	. 02	. 00	. 37
	4	1	1	3	2	2	1	1	1	0	1	4	2	0	0	0	0	23
$\begin{array}{r} 1.1-1.5 \\ (1) \end{array}$. 25	. 06	. 06	. 19	. 12	. 12	. 06	. 06	. 06	. 00	. 06	. 25	. 12	. 00	. 00	. 00	. 00	1.42
1.6- 2.0	. 09	. 02	. 02	. 07	. 05	. 05	. 02	. 02	. 02	. 00	. 02	. 09	. 05	. 00	. 00	. 00	. 00	. 53
	4	6	5	8	9	5	2	0	0	0	4	2	2	1	1	2	0	51
1.6-2.0	. 25	. 37	. 31	. 49	. 56	. 31	. 12	. 00	. 00	. 00	. 25	. 12	. 12	. 06	. 06	. 12	. 00	3.15
2.1- 3.0	. 09	. 14	. 12	. 19	. 21	. 12	. 05	. 00	. 00	. 00	. 09	. 05	. 05	. 02	. 02	. 05	. 00	1.19
	18	28	18	24	19	9	15	11	9	9	6	6	2	2	9	6	0	191
2.1-3.0	1.11	1.73	1.11	1.48	1.17	. 56	. 93	. 68	. 56	. 56	. 37	. 37	. 12	. 12	. 56	. 37	. 00	11.80
$\begin{array}{r} (2) \\ 3.1-4.0 \end{array}$. 42	. 65	. 42	. 56	. 44	. 21	. 35	. 26	. 21	. 21	. 14	. 14	. 05	. 05	. 21	. 14	. 00	4.44
	26	30	19	19	14	19	15	23	11	4	9	6	3	3	3	16	0	220
$3.1-4.0$ (1)	1.61	1.85	1.17	1.17	. 86	1.17	. 93	1.42	. 68	. 25	. 56	. 37	. 19	. 19	. 19	. 99	. 00	13.59
$\begin{array}{r} (2) \\ 4.1-5.0 \end{array}$. 60	. 70	. 44	. 44	. 33	. 44	. 35	. 53	. 26	. 09	. 21	. 14	. 07	. 07	. 07	. 37	. 00	5.12
	15	15	12	25	19	11	18	31	6	9	3	9	2	5	12	18	0	210
$\begin{array}{r} 4.1-5.0 \\ (1) \end{array}$. 93	. 93	. 74	1.54	1.17	. 68	1.11	1.91	. 37	. 56	. 19	. 56	. 12	. 31	. 74	1.11	. 00	12.97
5.1-6.0	. 35	. 35	. 28	. 58	. 44	. 26	. 42	. 72	. 14	. 21	. 07	. 21	. 05	. 12	. 28	. 42	. 00	4.88
	23	5	11	23	8	4	19	20	9	6	4	6	6	14	19	18	0	195
5.1- 6.0	1.42	. 31	. 68	1.42	. 49	. 25	1.17	1.24	. 56	. 37	. 25	. 37	. 37	. 86	1.17	1.11	. 00	12.04
6.1- $\begin{array}{r}\text { (2) } \\ 8.0\end{array}$. 53	. 12	. 26	. 53	. 19	. 09	. 44	. 47	. 21	. 14	. 09	. 14	. 14	. 33	. 44	. 42	. 00	4.53
	43	24	29	28	5	1	11	35	7	12	23	10	5	22	64	52	0	371
(1)	2.66	1.48	1.79	1.73	. 31	. 06	. 68	2.16	. 43	. 74	1.42	. 62	. 31	1.36	3.95	3.21	. 00	22.92
$\begin{array}{r} (2) \\ 8.1-10.0 \end{array}$	1.00	. 56	. 67	. 65	. 12	. 02	. 26	. 81	. 16	. 28	. 53	. 23	. 12	. 51	1.49	1.21	. 00	8.63
	44	33	17	9	0	2	0	16	1	8	12	1	3	20	44	16	0	226
(1)	2.72	2.04	1.05	. 56	. 00	. 12	. 00	. 99	. 06	. 49	. 74	. 06	. 19	1.24	2.72	. 99	. 00	13.96
(2)	1.02	. 77	. 40	. 21	. 00	. 05	. 00	. 37	. 02	. 19	. 28	. 02	. 07	. 47	1.02	. 37	. 00	5.26
10.1-89.5	36	13	10	11	0		0	6	0	0	1	0	2	11	13	10	0	114
(1)	2.22	. 80	. 62	. 68	. 00	. 06	. 00	. 37	. 00	. 00	. 06	. 00	. 12	. 68	. 80	. 62	. 00	7.04
(2)	. 84	. 30	. 23	. 26	. 00	. 02	. 00	. 14	. 00	. 00	. 02	. 00	. 05	. 26	. 30	. 23	. 00	2.65
	215	156	124	150	78	55	81	143	45	48	65	45	28	80	167	139	0	1619
ALL SPEEDS	13.28	9.64	7.66	9.26	4.82	3.40	5.00	8.83	2.78	2.96	4.01	2.78	1.73	4.94	10.32	8.59	. 00	100.00
(2)	5.00	3.63	2.88	3.49	1.81	1.28	1.88	3.33	1.05	1.12	1.51	1.05	. 65	1.86	3.88	3.23	. 00	37.65
(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE (2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

OヨノכヨノOyd $\perp H פ ו y \wedge d O כ$

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY（PERCENT）＝ 28.91

Table 2.3-32—\{CCNPP 197 ft (60 m) March JFD (2000-2005)\}
(Page 6 of 8)
CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) = 9.63

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 24	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 24
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
.5-1.0	0	0	0	0	1	1	1	0	0	1	0	0	1	0	2	0	0	7
(1)	. 00	. 00	. 00	. 00	. 24	. 24	. 24	. 00	. 00	. 24	. 00	. 00	. 24	. 00	. 48	. 00	. 00	1.69
(2)	. 00	. 00	. 00	. 00	. 02	. 02	. 02	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 05	. 00	. 00	. 16
1.1-1.5	1	0	1	0	0	1	0	2	0	1	0	0	1	1	0	0	0	8
(1)	. 24	. 00	. 24	. 00	. 00	. 24	. 00	. 48	. 00	. 24	. 00	. 00	. 24	. 24	. 00	. 00	. 00	1.93
(2)	. 02	. 00	. 02	. 00	. 00	. 02	. 00	. 05	. 00	. 02	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 19
1.6-2.0	0	0	2	3	1	1	2	1	2	0	1	1	0	2	1	1	0	18
(1)	. 00	. 00	. 48	. 72	. 24	. 24	. 48	. 24	. 48	. 00	. 24	. 24	. 00	. 48	. 24	. 24	. 00	4.35
(2)	. 00	. 00	. 05	. 07	. 02	. 02	. 05	. 02	. 05	. 00	. 02	. 02	. 00	. 05	. 02	. 02	. 00	. 42
2.1-3.0	7	7	1	3	7	3	3	2	1	2	2	1	3	3	3	2	0	50
(1)	1.69	1.69	. 24	. 72	1.69	. 72	. 72	. 48	. 24	. 48	. 48	. 24	. 72	. 72	. 72	. 48	. 00	12.08
(2)	. 16	. 16	. 02	. 07	. 16	. 07	. 07	. 05	. 02	. 05	. 05	. 02	. 07	. 07	. 07	. 05	. 00	1.16
3.1-4.0	3	3	11	1	1	4	2	2	5	4	4	7	5	3	3	4	0	62
(1)	. 72	. 72	2.66	. 24	. 24	. 97	. 48	. 48	1.21	. 97	. 97	1.69	1.21	. 72	. 72	. 97	. 00	14.98
(2)	. 07	. 07	. 26	. 02	. 02	. 09	. 05	. 05	. 12	. 09	. 09	. 16	. 12	. 07	. 07	. 09	. 00	1.44
4.1-5.0	5	4	3	3	1	0	1	2	3	6	10	2	7	5	3	7	0	62
(1)	1.21	. 97	. 72	. 72	. 24	. 00	. 24	. 48	. 72	1.45	2.42	. 48	1.69	1.21	. 72	1.69	. 00	14.98
(2)	. 12	. 09	. 07	. 07	. 02	. 00	. 02	. 05	. 07	. 14	. 23	. 05	. 16	. 12	. 07	. 16	. 00	1.44
5.1-6.0	2	2	3	2	0	1	0	3	18	11	2	4	5	6	11	6	0	76
(1)	. 48	. 48	. 72	. 48	. 00	. 24	. 00	. 72	4.35	2.66	. 48	. 97	1.21	1.45	2.66	1.45	. 00	18.36
(2)	. 05	. 05	. 07	. 05	. 00	. 02	. 00	. 07	. 42	. 26	. 05	. 09	. 12	. 14	. 26	. 14	. 00	1.77
6.1-8.0	3	2	5	7	3	0	3	8	24	18	21	10	7	1	10	0	0	122
(1)	. 72	. 48	1.21	1.69	. 72	. 00	. 72	1.93	5.80	4.35	5.07	2.42	1.69	. 24	2.42	. 00	. 00	29.47
(2)	. 07	. 05	. 12	. 16	. 07	. 00	. 07	. 19	. 56	. 42	. 49	. 23	. 16	. 02	. 23	. 00	. 00	2.84
8.1-10.0	2	0	1	1	0	0	0	0	0	4	0	0	0	0	0	0	0	8
(1)	. 48	. 00	. 24	. 24	. 00	. 00	. 00	. 00	. 00	. 97	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.93
(2)	. 05	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 09	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 19
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	24	18	27	20	14	11	12	20	53	47	40	25	29	21	33	20	0	414
(1)	5.80	4.35	6.52	4.83	3.38	2.66	2.90	4.83	12.80	11.35	9.66	6.04	7.00	5.07	7.97	4.83	. 00	100.00
(2)	. 56	. 42	. 63	. 47	. 33	. 26	. 28	. 47	1.23	1.09	. 93	. 58	. 67	. 49	. 77	. 47	. 00	9.63

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 3.77

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
GヨЬכヨ८Oyd \perp HפוyגdOכ

CC MARCH MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	4
(1)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 09
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 09
.5-1.0	4	2	5	0	7	2	1	2	2	3	3	1	2	1	7	1	0	43
(1)	. 09	. 05	. 12	. 00	. 16	. 05	. 02	. 05	. 05	. 07	. 07	. 02	. 05	. 02	. 16	. 02	. 00	1.00
(2)	. 09	. 05	. 12	. 00	. 16	. 05	. 02	. 05	. 05	. 07	. 07	. 02	. 05	. 02	. 16	. 02	. 00	1.00
1.1-1.5	6	4	5	8	4	4	3	4	2	1	3	6	4	2	1	1	0	58
(1)	. 14	. 09	. 12	. 19	. 09	. 09	. 07	. 09	. 05	. 02	. 07	. 14	. 09	. 05	. 02	. 02	. 00	1.35
(2)	. 14	. 09	. 12	. 19	. 09	. 09	. 07	. 09	. 05	. 02	. 07	. 14	. 09	. 05	. 02	. 02	. 00	1.35
1.6-2.0	8	13	15	13	15	9	5	4	7	1	8	5	3	6	3	4	0	119
(1)	. 19	. 30	. 35	. 30	. 35	. 21	. 12	. 09	. 16	. 02	. 19	. 12	. 07	. 14	. 07	. 09	. 00	2.77
(2)	. 19	. 30	. 35	. 30	. 35	. 21	. 12	. 09	. 16	. 02	. 19	. 12	. 07	. 14	. 07	. 09	. 00	2.77
2.1-3.0	45	57	46	41	52	28	22	19	18	18	18	15	9	16	16	17	0	437
(1)	1.05	1.33	1.07	. 95	1.21	. 65	. 51	. 44	. 42	. 42	. 42	. 35	. 21	. 37	. 37	. 40	. 00	10.16
(2)	1.05	1.33	1.07	. 95	1.21	. 65	. 51	. 44	. 42	. 42	. 42	. 35	. 21	. 37	. 37	. 40	. 00	10.16
3.1-4.0	59	63	50	29	31	33	34	44	32	21	33	29	17	12	19	46	0	552
(1)	1.37	1.47	1.16	. 67	. 72	. 77	. 79	1.02	. 74	. 49	. 77	. 67	. 40	. 28	. 44	1.07	. 00	12.84
(2)	1.37	1.47	1.16	. 67	. 72	. 77	. 79	1.02	. 74	. 49	. 77	. 67	. 40	. 28	. 44	1.07	. 00	12.84
4.1-5.0	69	41	27	34	29	24	33	82	33	35	40	24	22	44	59	74	0	670
(1)	1.60	. 95	. 63	. 79	. 67	. 56	. 77	1.91	. 77	. 81	. 93	. 56	. 51	1.02	1.37	1.72	. 00	15.58
(2)	1.60	. 95	. 63	. 79	. 67	. 56	. 77	1.91	. 77	. 81	. 93	. 56	. 51	1.02	1.37	1.72	. 00	15.58
5.1-6.0	59	31	21	27	15	11	31	74	71	50	35	37	34	54	87	62	0	699
(1)	1.37	. 72	. 49	. 63	. 35	. 26	. 72	1.72	1.65	1.16	. 81	. 86	. 79	1.26	2.02	1.44	. 00	16.26
(2)	1.37	. 72	. 49	. 63	. 35	. 26	. 72	1.72	1.65	1.16	. 81	. 86	. 79	1.26	2.02	1.44	. 00	16.26
6.1-8.0	84	44	41	37	11	8	23	105	85	108	130	48	43	74	157	100	0	1098
(1)	1.95	1.02	. 95	. 86	. 26	. 19	. 53	2.44	1.98	2.51	3.02	1.12	1.00	1.72	3.65	2.33	. 00	25.53
(2)	1.95	1.02	. 95	. 86	. 26	. 19	. 53	2.44	1.98	2.51	3.02	1.12	1.00	1.72	3.65	2.33	. 00	25.53
8.1-10.0	64	36	21	11	0	3	3	31	12	43	49	5	6	61	72	24	0	441
(1)	1.49	. 84	. 49	. 26	. 00	. 07	. 07	. 72	. 28	1.00	1.14	. 12	. 14	1.42	1.67	. 56	. 00	10.26
(2)	1.49	. 84	. 49	. 26	. 00	. 07	. 07	. 72	. 28	1.00	1.14	. 12	. 14	1.42	1.67	. 56	. 00	10.26
10.1-89.5	45	17	11	11	0	2	4	9	2	5	5	2	4	22	28	12	0	179
(1)	1.05	. 40	. 26	. 26	. 00	. 05	. 09	. 21	. 05	. 12	. 12	. 05	. 09	. 51	. 65	. 28	. 00	4.16
(2)	1.05	. 40	. 26	. 26	. 00	. 05	. 09	. 21	. 05	. 12	. 12	. 05	. 09	. 51	. 65	. 28	. 00	4.16
ALL SPEEDS	444	309	242	211	164	124	159	375	264	285	324	172	144	293	449	341	0	4300
(1)	10.33	7.19	5.63	4.91	3.81	2.88	3.70	8.72	6.14	6.63	7.53	4.00	3.35	6.81	10.44	7.93	. 00	100.00
(2)	10.33	7.19	5.63	4.91	3.81	2.88	3.70	8.72	6.14	6.63	7.53	4.00	3.35	6.81	10.44	7.93	. 00	100.00
1) = PERCENT	OF ALL	GOOD	SER	IONS	FOR	IS PA												

s•^əy

Table 2.3-33—\{CCNPP 197 ft (60 m) April JFD (2000-2005)\}
(Page 1 of 8)
CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 12.16

								IND DI	RECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 20
(2)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.6-2.0	0	0	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	5
(1)	. 00	. 00	. 20	. 20	. 20	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 20	. 00	. 00	. 00	. 00	1.00
(2)	. 00	. 00	. 02	. 02	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 12
2.1-3.0	2	1	5	1	1	0	0	0	1	1	1	3	1	1	0	0	0	18
(1)	. 40	. 20	1.00	. 20	. 20	. 00	. 00	. 00	. 20	. 20	. 20	. 60	. 20	. 20	. 00	. 00	. 00	3.61
(2)	. 05	. 02	. 12	. 02	. 02	. 00	. 00	. 00	. 02	. 02	. 02	. 07	. 02	. 02	. 00	. 00	. 00	. 44
3.1-4.0	2	16	3	3	2	1	2	8	1	3	5	9	0	0	1	0	0	56
(1)	. 40	3.21	. 60	. 60	. 40	. 20	. 40	1.61	. 20	. 60	1.00	1.81	. 00	. 00	. 20	. 00	. 00	11.24
(2)	. 05	. 39	. 07	. 07	. 05	. 02	. 05	. 20	. 02	. 07	. 12	. 22	. 00	. 00	. 02	. 00	. 00	1.37
4.1-5.0	11	12	2	1	2	4	3	5	2	7	10	11	5	5	3	1	0	84
(1)	2.21	2.41	. 40	. 20	. 40	. 80	. 60	1.00	. 40	1.41	2.01	2.21	1.00	1.00	. 60	. 20	. 00	16.87
(2)	. 27	. 29	. 05	. 02	. 05	. 10	. 07	. 12	. 05	. 17	. 24	. 27	. 12	. 12	. 07	. 02	. 00	2.05
5.1-6.0	14	5	2	0	2	1	7	4	1	8	18	11	6	5	6	2	0	92
(1)	2.81	1.00	. 40	. 00	. 40	. 20	1.41	. 80	. 20	1.61	3.61	2.21	1.20	1.00	1.20	. 40	. 00	18.47
(2)	. 34	. 12	. 05	. 00	. 05	. 02	. 17	. 10	. 02	. 20	. 44	. 27	. 15	. 12	. 15	. 05	. 00	2.25
6.1-8.0	17	21	1	1	1	2	5	16	3	14	32	11	5	13	14	2	0	158
(1)	3.41	4.22	. 20	. 20	. 20	. 40	1.00	3.21	. 60	2.81	6.43	2.21	1.00	2.61	2.81	. 40	. 00	31.73
(2)	. 42	. 51	. 02	. 02	. 02	. 05	. 12	. 39	. 07	. 34	. 78	. 27	. 12	. 32	. 34	. 05	. 00	3.86
8.1-10.0	6	7	0	1	0	0	0	4	0	6	3	4	4	8	8	0	0	51
(1)	1.20	1.41	. 00	. 20	. 00	. 00	. 00	. 80	. 00	1.20	. 60	. 80	. 80	1.61	1.61	. 00	. 00	10.24
(2)	. 15	. 17	. 00	. 02	. 00	. 00	. 00	. 10	. 00	. 15	. 07	. 10	. 10	. 20	. 20	. 00	. 00	1.25
10.1-89.5	2	2	1	0	0	0	0	0	0	5	3	0	3	9	8	0	0	33
(1)	. 40	. 40	. 20	. 00	. 00	. 00	. 00	. 00	. 00	1.00	. 60	. 00	. 60	1.81	1.61	. 00	. 00	6.63
(2)	. 05	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 12	. 07	. 00	. 07	. 22	. 20	. 00	. 00	. 81
ALL SPEEDS	54	64	16	8	9	9	17	37	8	44	72	49	25	41	40	5	0	498
(1)	10.84	12.85	3.21	1.61	1.81	1.81	3.41	7.43	1.61	8.84	14.46	9.84	5.02	8.23	8.03	1.00	. 00	100.00
(2)	1.32	1.56	. 39	. 20	. 22	. 22	. 42	. 90	. 20	1.07	1.76	1.20	. 61	1.00	. 98	. 12	. 00	12.16

(2) = PERCENT

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 4.10

									RECTIO	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.6-2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 60	. 00	. 00	. 60
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02
2.1-3.0	2	2	5	5	7	1	2	0	0	1	1	3	0	2	0	0	0	31
(1)	1.19	1.19	2.98	2.98	4.17	. 60	1.19	. 00	. 00	. 60	. 60	1.79	. 00	1.19	. 00	. 00	. 00	18.45
(2)	. 05	. 05	. 12	. 12	. 17	. 02	. 05	. 00	. 00	. 02	. 02	. 07	. 00	. 05	. 00	. 00	. 00	. 76
3.1-4.0	6	7	1	2	0	2	0	2	0	2	1	1	1	0	0	0	0	25
(1)	3.57	4.17	. 60	1.19	. 00	1.19	. 00	1.19	. 00	1.19	. 60	. 60	. 60	. 00	. 00	. 00	. 00	14.88
(2)	. 15	. 17	. 02	. 05	. 00	. 05	. 00	. 05	. 00	. 05	. 02	. 02	. 02	. 00	. 00	. 00	. 00	. 61
4.1-5.0	4	2	3	1	0	0	2	2	1	0	3	1	2	1	1	0	0	23
(1)	2.38	1.19	1.79	. 60	. 00	. 00	1.19	1.19	. 60	. 00	1.79	. 60	1.19	. 60	. 60	. 00	. 00	13.69
(2)	. 10	. 05	. 07	. 02	. 00	. 00	. 05	. 05	. 02	. 00	. 07	. 02	. 05	. 02	. 02	. 00	. 00	. 56
5.1-6.0	3	2	2	0	0	1	1	6	2	3	3	4	1	1	1	1	0	31
(1)	1.79	1.19	1.19	. 00	. 00	. 60	. 60	3.57	1.19	1.79	1.79	2.38	. 60	. 60	. 60	. 60	. 00	18.45
(2)	. 07	. 05	. 05	. 00	. 00	. 02	. 02	. 15	. 05	. 07	. 07	. 10	. 02	. 02	. 02	. 02	. 00	. 76
6.1-8.0	4	3	4	1	0	1	1	3	0	3	3	3	0	2	2	2	0	32
(1)	2.38	1.79	2.38	. 60	. 00	. 60	. 60	1.79	. 00	1.79	1.79	1.79	. 00	1.19	1.19	1.19	. 00	19.05
(2)	. 10	. 07	. 10	. 02	. 00	. 02	. 02	. 07	. 00	. 07	. 07	. 07	. 00	. 05	. 05	. 05	. 00	. 78
8.1-10.0	3	0	0	3	0	0	0	4	0	4	2	0	1	0	1	0	0	18
(1)	1.79	. 00	. 00	1.79	. 00	. 00	. 00	2.38	. 00	2.38	1.19	. 00	. 60	. 00	. 60	. 00	. 00	10.71
(2)	. 07	. 00	. 00	. 07	. 00	. 00	. 00	. 10	. 00	. 10	. 05	. 00	. 02	. 00	. 02	. 00	. 00	. 44
10.1-89.5	0	1	0	0	0	0	0	1	0	0	0	0	0	2	2	1	0	7
(1)	. 00	. 60	. 00	. 00	. 00	. 00	. 00	. 60	. 00	. 00	. 00	. 00	. 00	1.19	1.19	. 60	. 00	4.17
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 05	. 05	. 02	. 00	. 17
ALL SPEEDS	22	17	15	12	7	5	6	18	3	13	13	12	5	8	8	4	0	168
(1)	13.10	10.12	8.93	7.14	4.17	2.98	3.57	10.71	1.79	7.74	7.74	7.14	2.98	4.76	4.76	2.38	. 00	100.00
(2)	. 54	. 42	. 37	. 29	. 17	. 12	. 15	. 44	. 07	. 32	. 32	. 29	. 12	. 20	. 20	. 10	. 00	4.10

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

$\begin{array}{ccccc}\text { CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION } & (60-M E T E R ~ T O W E R) & & \\ 197.0 \text { FT WIND DATA } & \text { STABILITY CLASS C } & \text { CLASS FREQUENCY } & \text { (PERCENT) }=\quad 5.32\end{array}$

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 92	. 00	. 00	. 00	. 00	. 00	. 92
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 05
1.6-2.0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 46	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 46
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
2.1-3.0	4	4	7	5	7	0	0	1	0	0	1	1	0	0	0	0	0	30
(1)	1.83	1.83	3.21	2.29	3.21	. 00	. 00	. 46	. 00	. 00	. 46	. 46	. 00	. 00	. 00	. 00	. 00	13.76
(2)	. 10	. 10	. 17	. 12	. 17	. 00	. 00	. 02	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 73
3.1-4.0	10	4	6	2	1	2	3	0	1	2	4	4	2	0	0	0	0	41
(1)	4.59	1.83	2.75	. 92	. 46	. 92	1.38	. 00	. 46	. 92	1.83	1.83	. 92	. 00	. 00	. 00	. 00	18.81
(2)	. 24	. 10	. 15	. 05	. 02	. 05	. 07	. 00	. 02	. 05	. 10	. 10	. 05	. 00	. 00	. 00	. 00	1.00
4.1-5.0	4	8	0	0	3	1	1	7	0	2	1	0	2	1	2	0	0	32
(1)	1.83	3.67	. 00	. 00	1.38	. 46	. 46	3.21	. 00	. 92	. 46	. 00	. 92	. 46	. 92	. 00	. 00	14.68
(2)	. 10	. 20	. 00	. 00	. 07	. 02	. 02	. 17	. 00	. 05	. 02	. 00	. 05	. 02	. 05	. 00	. 00	. 78
5.1-6.0	6	1	2	2	0	1	1	4	0	4	5	3	1	1	1	2	0	34
(1)	2.75	. 46	. 92	. 92	. 00	. 46	. 46	1.83	. 00	1.83	2.29	1.38	. 46	. 46	. 46	. 92	. 00	15.60
(2)	. 15	. 02	. 05	. 05	. 00	. 02	. 02	. 10	. 00	. 10	. 12	. 07	. 02	. 02	. 02	. 05	. 00	. 83
6.1-8.0	3	3	2	2	0	0	1	4	0	6	3	4	1	5	7	2	0	43
(1)	1.38	1.38	. 92	. 92	. 00	. 00	. 46	1.83	. 00	2.75	1.38	1.83	. 46	2.29	3.21	. 92	. 00	19.72
(2)	. 07	. 07	. 05	. 05	. 00	. 00	. 02	. 10	. 00	. 15	. 07	. 10	. 02	. 12	. 17	. 05	. 00	1.05
8.1-10.0	2	5	1	2	0	0	1	2	0	2	3	0	1	1	1	1	0	22
(1)	. 92	2.29	. 46	. 92	. 00	. 00	. 46	. 92	. 00	. 92	1.38	. 00	. 46	. 46	. 46	. 46	. 00	10.09
(2)	. 05	. 12	. 02	. 05	. 00	. 00	. 02	. 05	. 00	. 05	. 07	. 00	. 02	. 02	. 02	. 02	. 00	. 54
10.1-89.5	2	1	2	2	0	0	0	0	0	1	0	0	0	2	3	0	0	13
(1)	. 92	. 46	. 92	. 92	. 00	. 00	. 00	. 00	. 00	. 46	. 00	. 00	. 00	. 92	1.38	. 00	. 00	5.96
(2)	. 05	. 02	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 05	. 07	. 00	. 00	. 32
ALL SPEEDS	31	27	20	15	11	4	7	18	1	17	17	14	7	10	14	5	0	218
(1)	14.22	12.39	9.17	6.88	5.05	1.83	3.21	8.26	. 46	7.80	7.80	6.42	3.21	4.59	6.42	2.29	. 00	100.00
(2)	. 76	. 66	. 49	. 37	. 27	. 10	. 17	. 44	. 02	. 42	. 42	. 34	. 17	. 24	. 34	. 12	. 00	5.32

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 39.77

T
$\stackrel{0}{0}$
i
i

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 26.21

								IND DI	IRECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	1	2	4	0	2	0	3	2	3	2	0	0	0	3	1	0	23
(1)	. 00	. 09	. 19	. 37	. 00	. 19	. 00	. 28	. 19	. 28	. 19	. 00	. 00	. 00	. 28	. 09	. 00	2.14
(2)	. 00	. 02	. 05	. 10	. 00	. 05	. 00	. 07	. 05	. 07	. 05	. 00	. 00	. 00	. 07	. 02	. 00	. 56
1.1-1.5	1	2	1	0	2	0	0	1	0	1	0	0	3	2	1	0	0	14
(1)	. 09	. 19	. 09	. 00	. 19	. 00	. 00	. 09	. 00	. 09	. 00	. 00	. 28	. 19	. 09	. 00	. 00	1.30
(2)	. 02	. 05	. 02	. 00	. 05	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 07	. 05	. 02	. 00	. 00	. 34
1.6-2.0	2	4	3	2	2	3	2	1	3	7	0	0	0	3	0	0	0	32
(1)	. 19	. 37	. 28	. 19	. 19	. 28	. 19	. 09	. 28	. 65	. 00	. 00	. 00	. 28	. 00	. 00	. 00	2.98
(2)	. 05	. 10	. 07	. 05	. 05	. 07	. 05	. 02	. 07	. 17	. 00	. 00	. 00	. 07	. 00	. 00	. 00	. 78
2.1-3.0	5	12	7	5	8	1	6	4	5	8	3	3	3	2	4	4	0	80
(1)	. 47	1.12	. 65	. 47	. 75	. 09	. 56	. 37	. 47	. 75	. 28	. 28	. 28	. 19	. 37	. 37	. 00	7.46
(2)	. 12	. 29	. 17	. 12	. 20	. 02	. 15	. 10	. 12	. 20	. 07	. 07	. 07	. 05	. 10	. 10	. 00	1.95
3.1-4.0	15	12	8	8	7	4	3	8	4	4	10	4	7	11	11	6	0	122
(1)	1.40	1.12	. 75	. 75	. 65	. 37	. 28	. 75	. 37	. 37	. 93	. 37	. 65	1.03	1.03	. 56	. 00	11.37
(2)	. 37	. 29	. 20	. 20	. 17	. 10	. 07	. 20	. 10	. 10	. 24	. 10	. 17	. 27	. 27	. 15	. 00	2.98
4.1-5.0	15	19	11	6	2	4	3	7	13	9	8	6	5	12	19	22	0	161
(1)	1.40	1.77	1.03	. 56	. 19	. 37	. 28	. 65	1.21	. 84	. 75	. 56	. 47	1.12	1.77	2.05	. 00	15.00
(2)	. 37	. 46	. 27	. 15	. 05	. 10	. 07	. 17	. 32	. 22	. 20	. 15	. 12	. 29	. 46	. 54	. 00	3.93
5.1-6.0	22	5	6	2	2	2	2	21	20	27	14	11	11	16	26	18	0	205
(1)	2.05	. 47	. 56	. 19	. 19	. 19	. 19	1.96	1.86	2.52	1.30	1.03	1.03	1.49	2.42	1.68	. 00	19.11
(2)	. 54	. 12	. 15	. 05	. 05	. 05	. 05	. 51	. 49	. 66	. 34	. 27	. 27	. 39	. 64	. 44	. 00	5.01
6.1-8.0	13	18	4	1	0	1	3	26	53	71	41	23	9	14	15	20	0	312
(1)	1.21	1.68	. 37	. 09	. 00	. 09	. 28	2.42	4.94	6.62	3.82	2.14	. 84	1.30	1.40	1.86	. 00	29.08
(2)	. 32	. 44	. 10	. 02	. 00	. 02	. 07	. 64	1.29	1.73	1.00	. 56	. 22	. 34	. 37	. 49	. 00	7.62
8.1-10.0	7	8	1	0	0	0	0	2	15	35	21	3	1	5	2	4	0	104
(1)	. 65	. 75	. 09	. 00	. 00	. 00	. 00	. 19	1.40	3.26	1.96	. 28	. 09	. 47	. 19	. 37	. 00	9.69
(2)	. 17	. 20	. 02	. 00	. 00	. 00	. 00	. 05	. 37	. 85	. 51	. 07	. 02	. 12	. 05	. 10	. 00	2.54
10.1-89.5	1	5	1	0	0	0	0	2	0	4	2	1	2	2	0	0	0	20
(1)	. 09	. 47	. 09	. 00	. 00	. 00	. 00	. 19	. 00	. 37	. 19	. 09	. 19	. 19	. 00	. 00	. 00	1.86
(2)	. 02	. 12	. 02	. 00	. 00	. 00	. 00	. 05	. 00	. 10	. 05	. 02	. 05	. 05	. 00	. 00	. 00	. 49
ALL SPEEDS	81	86	44	28	23	17	19	75	115	169	101	51	41	67	81	75	0	1073
(1)	7.55	8.01	4.10	2.61	2.14	1.58	1.77	6.99	10.72	15.75	9.41	4.75	3.82	6.24	7.55	6.99	. 00	100.00
(2)	1.98	2.10	1.07	. 68	. 56	. 42	. 46	1.83	2.81	4.13	2.47	1.25	1.00	1.64	1.98	1.83	. 00	26.21

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) = 7.72

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 4.71

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 52	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 52
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
.5-1.0	0	0	0	0	0	1	2	0	0	0	0	1	0	0	0	1	0	5
(1)	. 00	. 00	. 00	. 00	. 00	. 52	1.04	. 00	. 00	. 00	. 00	. 52	. 00	. 00	. 00	. 52	. 00	2.59
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 00	. 12
1.1-1.5	0	0	1	0	0	1	1	0	1	1	0	0	1	1	0	1	0	8
(1)	. 00	. 00	. 52	. 00	. 00	. 52	. 52	. 00	. 52	. 52	. 00	. 00	. 52	. 52	. 00	. 52	. 00	4.15
(2)	. 00	. 00	. 02	. 00	. 00	. 02	. 02	. 00	. 02	. 02	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 20
1.6-2.0	0	0	1	0	0	0	0	0	1	0	1	0	1	0	0	0	0	4
(1)	. 00	. 00	. 52	. 00	. 00	. 00	. 00	. 00	. 52	. 00	. 52	. 00	. 52	. 00	. 00	. 00	. 00	2.07
(2)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 10
2.1-3.0	0	2	0	0	0	2	2	1	1	2	2	2	6	2	3	1	0	26
(1)	. 00	1.04	. 00	. 00	. 00	1.04	1.04	. 52	. 52	1.04	1.04	1.04	3.11	1.04	1.55	. 52	. 00	13.47
(2)	. 00	. 05	. 00	. 00	. 00	. 05	. 05	. 02	. 02	. 05	. 05	. 05	. 15	. 05	. 07	. 02	. 00	. 64
3.1-4.0	0	1	0	0	0	0	2	1	2	4	3	3	2	2	0	0	0	20
(1)	. 00	. 52	. 00	. 00	. 00	. 00	1.04	. 52	1.04	2.07	1.55	1.55	1.04	1.04	. 00	. 00	. 00	10.36
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 02	. 05	. 10	. 07	. 07	. 05	. 05	. 00	. 00	. 00	. 49
4.1-5.0	1	0	0	0	0	0	1	3	8	7	4	3	3	5	2	1	0	38
(1)	. 52	. 00	. 00	. 00	. 00	. 00	. 52	1.55	4.15	3.63	2.07	1.55	1.55	2.59	1.04	. 52	. 00	19.69
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 07	. 20	. 17	. 10	. 07	. 07	. 12	. 05	. 02	. 00	. 93
5.1-6.0	0	0		0	0	0	0	0	3	9	2	5	6	1	0	0	0	27
(1)	. 00	. 00	. 52	. 00	. 00	. 00	. 00	. 00	1.55	4.66	1.04	2.59	3.11	. 52	. 00	. 00	. 00	13.99
(2)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07	. 22	. 05	. 12	. 15	. 02	. 00	. 00	. 00	. 66
6.1-8.0	0	0	6	2	0	0	0	0	6	13	9	4	2	1	2	0	0	45
(1)	. 00	. 00	3.11	1.04	. 00	. 00	. 00	. 00	3.11	6.74	4.66	2.07	1.04	. 52	1.04	. 00	. 00	23.32
(2)	. 00	. 00	. 15	. 05	. 00	. 00	. 00	. 00	. 15	. 32	. 22	. 10	. 05	. 02	. 05	. 00	. 00	1.10
8.1-10.0	0	0	2	1	0	0	0	0	0	1	0	1	0	0	0	0	0	5
(1)	. 00	. 00	1.04	. 52	. 00	. 00	. 00	. 00	. 00	. 52	. 00	. 52	. 00	. 00	. 00	. 00	. 00	2.59
(2)	. 00	. 00	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 12
10.1-89.5	0	2	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
(1)	. 00	1.04	6.22	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	7.25
(2)	. 00	. 05	. 29	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 34
ALL SPEEDS	1	5	23	3	0	4	9	5	22	37	21	19	21	12	7	4	0	193
(1)	. 52	2.59	11.92	1.55	. 00	2.07	4.66	2.59	11.40	19.17	10.88	9.84	10.88	6.22	3.63	2.07	. 00	100.00
(2)	. 02	. 12	. 56	. 07	. 00	. 10	. 22	. 12	. 54	. 90	. 51	. 46	. 51	. 29	. 17	. 10	. 00	4.71

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
Gヨレכヨ८Oyd $\perp H פ ו y \wedge d O כ$

CC APRIL MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER
197．0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY（PERCENT）＝ 100.00

ग्0
$\stackrel{0}{2}$
i

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 13.37

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 5.12

								ND	T	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 44	. 00	. 00	. 44
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02
1.1-1.5	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	3
(1)	. 00	. 00	. 00	. 44	. 00	. 44	. 00	. 00	. 00	. 00	. 00	. 00	. 44	. 00	. 00	. 00	. 00	1.32
(2)	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 07
1.6-2.0	0	1	1	2	0	0	0	0	0	0	0	1	0	0	0	0	0	5
(1)	. 00	. 44	. 44	. 88	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 44	. 00	. 00	. 00	. 00	. 00	2.19
(2)	. 00	. 02	. 02	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 11
2.1-3.0	4	6	4	3	6	3	2	1	0	1	0	3	3	2	0	0	0	38
(1)	1.75	2.63	1.75	1.32	2.63	1.32	. 88	. 44	. 00	. 44	. 00	1.32	1.32	. 88	. 00	. 00	. 00	16.67
(2)	. 09	. 13	. 09	. 07	. 13	. 07	. 04	. 02	. 00	. 02	. 00	. 07	. 07	. 04	. 00	. 00	. 00	. 85
3.1-4.0	7	6	4	2	2	4	6	3	3	2	4	5	1	2	0	1	0	52
(1)	3.07	2.63	1.75	. 88	. 88	1.75	2.63	1.32	1.32	. 88	1.75	2.19	. 44	. 88	. 00	. 44	. 00	22.81
(2)	. 16	. 13	. 09	. 04	. 04	. 09	. 13	. 07	. 07	. 04	. 09	. 11	. 02	. 04	. 00	. 02	. 00	1.17
4.1-5.0	6	2	1	0	1	4	8	7	2	3	5	3	4	2	0	0	0	48
(1)	2.63	. 88	. 44	. 00	. 44	1.75	3.51	3.07	. 88	1.32	2.19	1.32	1.75	. 88	. 00	. 00	. 00	21.05
(2)	. 13	. 04	. 02	. 00	. 02	. 09	. 18	. 16	. 04	. 07	. 11	. 07	. 09	. 04	. 00	. 00	. 00	1.08
5.1-6.0	5	0	0	0	2	0	2	7	0	0	7	4	1	2	1	0	0	31
(1)	2.19	. 00	. 00	. 00	. 88	. 00	. 88	3.07	. 00	. 00	3.07	1.75	. 44	. 88	. 44	. 00	. 00	13.60
(2)	. 11	. 00	. 00	. 00	. 04	. 00	. 04	. 16	. 00	. 00	. 16	. 09	. 02	. 04	. 02	. 00	. 00	. 70
6.1-8.0	2	1	1	1	0	1	2	6	0	2	6	0	5	1	3	0	0	31
(1)	. 88	. 44	. 44	. 44	. 00	. 44	. 88	2.63	. 00	. 88	2.63	. 00	2.19	. 44	1.32	. 00	. 00	13.60
(2)	. 04	. 02	. 02	. 02	. 00	. 02	. 04	. 13	. 00	. 04	. 13	. 00	. 11	. 02	. 07	. 00	. 00	. 70
8.1-10.0	1	0	2	0	0	0	0	2	2	0	2	0	0	2	0	3	0	14
(1)	. 44	. 00	. 88	. 00	. 00	. 00	. 00	. 88	. 88	. 00	. 88	. 00	. 00	. 88	. 00	1.32	. 00	6.14
(2)	. 02	. 00	. 04	. 00	. 00	. 00	. 00	. 04	. 04	. 00	. 04	. 00	. 00	. 04	. 00	. 07	. 00	. 31
10.1-89.5	0	0	2	0	0	0	0	0	0	0	0	0	1	1	0	1	0	5
(1)	. 00	. 00	. 88	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 44	. 44	. 00	. 44	. 00	2.19
(2)	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 11
ALL SPEEDS	25	16	15	9	11	13	20	26	7	8	24	16	16	12	5	5	0	228
(1)	10.96	7.02	6.58	3.95	4.82	5.70	8.77	11.40	3.07	3.51	10.53	7.02	7.02	5.26	2.19	2.19	. 00	100.00
(2)	. 56	. 36	. 34	. 20	. 25	. 29	. 45	. 58	. 16	. 18	. 54	. 36	. 36	. 27	. 11	. 11	. 00	5.12

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) $=5.53$

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
T
$\stackrel{0}{0}$
i
i

Table 2.3-34—\{CCNPP 197 ft (60 m) May JFD (2000-2005)\} (Page 4 of 8)
CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 35.60

ग्0
$\stackrel{N}{i}$
i

аэІכэІІу

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) $=23.21$

	WIND DIRECTION																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	1	1	2	0	5	1	0	1	2	1	0	0	0	0	0	0	0	14
(1)	. 10	. 10	. 19	. 00	. 48	. 10	. 00	. 10	. 19	. 10	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.36
(2)	. 02	. 02	. 04	. 00	. 11	. 02	. 00	. 02	. 04	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 31
1.1-1.5	2	1	1	2	0	3	3	3	4	1	4	0	0	0	1	0	0	25
(1)	. 19	. 10	. 10	. 19	. 00	. 29	. 29	. 29	. 39	. 10	. 39	. 00	. 00	. 00	. 10	. 00	. 00	2.42
(2)	. 04	. 02	. 02	. 04	. 00	. 07	. 07	. 07	. 09	. 02	. 09	. 00	. 00	. 00	. 02	. 00	. 00	. 56
1.6-2.0	2	0	4	0	2	3	0	3	0	3	2	1	0	1	0	1	0	22
(1)	. 19	. 00	. 39	. 00	. 19	. 29	. 00	. 29	. 00	. 29	. 19	. 10	. 00	. 10	. 00	. 10	. 00	2.13
(2)	. 04	. 00	. 09	. 00	. 04	. 07	. 00	. 07	. 00	. 07	. 04	. 02	. 00	. 02	. 00	. 02	. 00	. 49
2.1-3.0	9	6	5	4	2	3	12	10	6	4	12	6	2	8	4	5	0	98
(1)	. 87	. 58	. 48	. 39	. 19	. 29	1.16	. 97	. 58	. 39	1.16	. 58	. 19	. 77	. 39	. 48	. 00	9.49
(2)	. 20	. 13	. 11	. 09	. 04	. 07	. 27	. 22	. 13	. 09	. 27	. 13	. 04	. 18	. 09	. 11	. 00	2.20
3.1-4.0	4	4	5	4	12	9	11	13	12	6	10	11	5	4	6	8	0	124
(1)	. 39	. 39	. 48	. 39	1.16	. 87	1.06	1.26	1.16	. 58	. 97	1.06	. 48	. 39	. 58	. 77	. 00	12.00
(2)	. 09	. 09	. 11	. 09	. 27	. 20	. 25	. 29	. 27	. 13	. 22	. 25	. 11	. 09	. 13	. 18	. 00	2.79
4.1-5.0	10	5	4	0	3	8	16	25	27	12	10	15	9	13	21	16	0	194
(1)	. 97	. 48	. 39	. 00	. 29	. 77	1.55	2.42	2.61	1.16	. 97	1.45	. 87	1.26	2.03	1.55	. 00	18.78
(2)	. 22	. 11	. 09	. 00	. 07	. 18	. 36	. 56	. 61	. 27	. 22	. 34	. 20	. 29	. 47	. 36	. 00	4.36
5.1-6.0	11	3	1	2	4	0	6	29	26	21	27	18	7	15	14	31	0	215
(1)	1.06	. 29	. 10	. 19	. 39	. 00	. 58	2.81	2.52	2.03	2.61	1.74	. 68	1.45	1.36	3.00	. 00	20.81
(2)	. 25	. 07	. 02	. 04	. 09	. 00	. 13	. 65	. 58	. 47	. 61	. 40	. 16	. 34	. 31	. 70	. 00	4.83
$6.1-8.0$	12	4	0	0	0	1	4	15	24	48	86	8	9	12	22	14	0	259
(1)	1.16	. 39	. 00	. 00	. 00	. 10	. 39	1.45	2.32	4.65	8.33	. 77	. 87	1.16	2.13	1.36	. 00	25.07
(2)	. 27	. 09	. 00	. 00	. 00	. 02	. 09	. 34	. 54	1.08	1.93	. 18	. 20	. 27	. 49	. 31	. 00	5.82
8.1-10.0	3	2	0	1	0	0	0	2	4	21	24	7	4	5	0	1	0	74
(1)	. 29	. 19	. 00	. 10	. 00	. 00	. 00	. 19	. 39	2.03	2.32	. 68	. 39	. 48	. 00	. 10	. 00	7.16
(2)	. 07	. 04	. 00	. 02	. 00	. 00	. 00	. 04	. 09	. 47	. 54	. 16	. 09	. 11	. 00	. 02	. 00	1.66
10.1-89.5	0	1	0	0	0	0	0	0	0	6	1	0	0	0	0	0	0	8
(1)	. 00	. 10	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 58	. 10	. 00	. 00	. 00	. 00	. 00	. 00	. 77
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 13	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 18
ALL SPEEDS	54	27	22	13	28	28	52	101	105	123	176	66	36	58	68	76	0	1033
(1)	5.23	2.61	2.13	1.26	2.71	2.71	5.03	9.78	10.16	11.91	17.04	6.39	3.48	5.61	6.58	7.36	. 00	100.00
(2)	1.21	. 61	. 49	. 29	. 63	. 63	1.17	2.27	2.36	2.76	3.96	1.48	. 81	1.30	1.53	1.71	. 00	23.21

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAG
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) $=10.5$

	WIND DIRECTION																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	2
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 21	. 00	. 00	. 00	. 21	. 00	. 00	. 00	. 00	. 00	. 00	. 43
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 04
.5-1.0	1	0	0	1	0	2	0	2	1	1	0	0	1	0	0	0	0	9
(1)	. 21	. 00	. 00	. 21	. 00	. 43	. 00	. 43	. 21	. 21	. 00	. 00	. 21	. 00	. 00	. 00	. 00	1.92
(2)	. 02	. 00	. 00	. 02	. 00	. 04	. 00	. 04	. 02	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 20
1.1-1.5	0	1	1	1	2	1	0	0	1	0	1	0	1	0	0	0	0	9
(1)	. 00	. 21	. 21	. 21	. 43	. 21	. 00	. 00	. 21	. 00	. 21	. 00	. 21	. 00	. 00	. 00	. 00	1.92
(2)	. 00	. 02	. 02	. 02	. 04	. 02	. 00	. 00	. 02	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 20
1.6-2.0	1	0	1	2	0	1	2	1	1	0	1	1	0	1	4	0	0	16
(1)	. 21	. 00	. 21	. 43	. 00	. 21	. 43	. 21	. 21	. 00	. 21	. 21	. 00	. 21	. 85	. 00	. 00	3.41
(2)	. 02	. 00	. 02	. 04	. 00	. 02	. 04	. 02	. 02	. 00	. 02	. 02	. 00	. 02	. 09	. 00	. 00	. 36
2.1-3.0	6	1	3	2	2	3	1	2	2	3	3	2	4	4	0	2	0	40
(1)	1.28	. 21	. 64	. 43	. 43	. 64	. 21	. 43	. 43	. 64	. 64	. 43	. 85	. 85	. 00	. 43	. 00	8.53
(2)	. 13	. 02	. 07	. 04	. 04	. 07	. 02	. 04	. 04	. 07	. 07	. 04	. 09	. 09	. 00	. 04	. 00	. 90
3.1-4.0	1	1	1	1	3	1	3	3	8	7	4	3	3	2	3	2	0	46
(1)	. 21	. 21	. 21	. 21	. 64	. 21	. 64	. 64	1.71	1.49	. 85	. 64	. 64	. 43	. 64	. 43	. 00	9.81
(2)	. 02	. 02	. 02	. 02	. 07	. 02	. 07	. 07	. 18	. 16	. 09	. 07	. 07	. 04	. 07	. 04	. 00	1.03
4.1-5.0	5	2	1	0	0	0	4	10	9	7	5	6	7	5	8	11	0	80
(1)	1.07	. 43	. 21	. 00	. 00	. 00	. 85	2.13	1.92	1.49	1.07	1.28	1.49	1.07	1.71	2.35	. 00	17.06
(2)	. 11	. 04	. 02	. 00	. 00	. 00	. 09	. 22	. 20	. 16	. 11	. 13	. 16	. 11	. 18	. 25	. 00	1.80
5.1-6.0	2	2	0	0	0	0	5	6	20	14	11	7	9	4	10	10	0	100
(1)	. 43	. 43	. 00	. 00	. 00	. 00	1.07	1.28	4.26	2.99	2.35	1.49	1.92	. 85	2.13	2.13	. 00	21.32
(2)	. 04	. 04	. 00	. 00	. 00	. 00	. 11	. 13	. 45	. 31	. 25	. 16	. 20	. 09	. 22	. 22	. 00	2.25
$6.1-8.0$	0	0	0	0	0	0	0	3	20	51	52	10	6	5	15	1	0	163
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 64	4.26	10.87	11.09	2.13	1.28	1.07	3.20	. 21	. 00	34.75
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 45	1.15	1.17	. 22	. 13	. 11	. 34	. 02	. 00	3.66
8.1-10.0	0	0	0	0	0	0	0	0	1	0	1	2	0	0	0	0	0	4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 21	. 00	. 21	. 43	. 00	. 00	. 00	. 00	. 00	. 85
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 04	. 00	. 00	. 00	. 00	. 00	. 09
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	16	7	7	7	7	8	16	27	63	83	79	31	31	21	40	26	0	469
(1)	3.41	1.49	1.49	1.49	1.49	1.71	3.41	5.76	13.43	17.70	16.84	6.61	6.61	4.48	8.53	5.54	. 00	100.00
(2)	. 36	. 16	. 16	. 16	. 16	. 18	. 36	. 61	1.42	1.87	1.78	. 70	. 70	. 47	. 90	. 58	. 00	10.54

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 6.63

	WIND DIRECTION																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
(1)	. 00	. 34	. 00	. 00	. 00	. 00	. 34	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 68
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04
.5-1.0	3	1	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	7
(1)	1.02	. 34	. 00	. 00	. 00	. 00	. 34	. 00	. 00	. 34	. 00	. 00	. 34	. 00	. 00	. 00	. 00	2.37
(2)	. 07	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 16
1.1-1.5	0	0	2	0	0	0	0	2	2	0	2	1	0	0	0	0	0	9
(1)	. 00	. 00	. 68	. 00	. 00	. 00	. 00	. 68	. 68	. 00	. 68	. 34	. 00	. 00	. 00	. 00	. 00	3.05
(2)	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 04	. 04	. 00	. 04	. 02	. 00	. 00	. 00	. 00	. 00	. 20
1.6-2.0	2	2	1	1	0	1	2	0	2	2	2	1	2	1	0	0	0	19
(1)	. 68	. 68	. 34	. 34	. 00	. 34	. 68	. 00	. 68	. 68	. 68	. 34	. 68	. 34	. 00	. 00	. 00	6.44
(2)	. 04	. 04	. 02	. 02	. 00	. 02	. 04	. 00	. 04	. 04	. 04	. 02	. 04	. 02	. 00	. 00	. 00	. 43
2.1-3.0	2	2	0	3	3	2	0	2	3	2	2	3	2	0	2	2	0	30
(1)	. 68	. 68	. 00	1.02	1.02	. 68	. 00	. 68	1.02	. 68	. 68	1.02	. 68	. 00	. 68	. 68	. 00	10.17
(2)	. 04	. 04	. 00	. 07	. 07	. 04	. 00	. 04	. 07	. 04	. 04	. 07	. 04	. 00	. 04	. 04	. 00	. 67
3.1-4.0	5	1	0	1	1	0	2	3	5	4	3	4	1	2	2	2	0	36
(1)	1.69	. 34	. 00	. 34	. 34	. 00	. 68	1.02	1.69	1.36	1.02	1.36	. 34	. 68	. 68	. 68	. 00	12.20
(2)	. 11	. 02	. 00	. 02	. 02	. 00	. 04	. 07	. 11	. 09	. 07	. 09	. 02	. 04	. 04	. 04	. 00	. 81
4.1-5.0	2	0	0	0	0	0	0	7	8	8	5	4	5	4	7	3	0	53
(1)	. 68	. 00	. 00	. 00	. 00	. 00	. 00	2.37	2.71	2.71	1.69	1.36	1.69	1.36	2.37	1.02	. 00	17.97
(2)	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 16	. 18	. 18	. 11	. 09	. 11	. 09	. 16	. 07	. 00	1.19
5.1-6.0	0	0	0	0	0	0	0	3	9	15	11	4	1	8	5	2	0	58
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.02	3.05	5.08	3.73	1.36	. 34	2.71	1.69	. 68	. 00	19.66
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 20	. 34	. 25	. 09	. 02	. 18	. 11	. 04	. 00	1.30
$6.1-8.0$	0	0	0	0	0	0	0	2	15	19	14	7	9	6	8	0	0	80
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 68	5.08	6.44	4.75	2.37	3.05	2.03	2.71	. 00	. 00	27.12
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 34	. 43	. 31	. 16	. 20	. 13	. 18	. 00	. 00	1.80
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 34	. 00	. 00	. 34
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	14	7	3	5	4	3	6	19	44	51	39	24	21	21	25	9	0	295
(1)	4.75	2.37	1.02	1.69	1.36	1.02	2.03	6.44	14.92	17.29	13.22	8.14	7.12	7.12	8.47	3.05	. 00	100.00
(2)	. 31	. 16	. 07	. 11	. 09	. 07	. 13	. 43	. 99	1.15	. 88	. 54	. 47	. 47	. 56	. 20	. 00	6.63

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-34—\{CCNPP 197 ft (60 m) May JFD (2000-2005) \} (Page 8 of 8)
CC MAY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

$\stackrel{70}{\stackrel{7}{i}}$

Table 2.3-35—\{CCNPP 197 ft (60 m) June JFD (2000-2005) \}
(Page 1 of 8)
CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 13.90

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 5.54

								ND	RECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2
(1)	. 00	. 42	. 00	. 00	. 42	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 84
(2)	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
1.1-1.5	0	0	1	1	1	1	0	0	0	0	3	0	0	0	0	0	0	7
(1)	. 00	. 00	. 42	. 42	. 42	. 42	. 00	. 00	. 00	. 00	1.26	. 00	. 00	. 00	. 00	. 00	. 00	2.93
(2)	. 00	. 00	. 02	. 02	. 02	. 02	. 00	. 00	. 00	. 00	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 16
1.6-2.0	2	1	0	2	4	4	0	0	1	1	0	0	0	0	0	0	0	15
(1)	. 84	. 42	. 00	. 84	1.67	1.67	. 00	. 00	. 42	. 42	. 00	. 00	. 00	. 00	. 00	. 00	. 00	6.28
(2)	. 05	. 02	. 00	. 05	. 09	. 09	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 35
2.1-3.0	6	13	5	6	8	5	6	6	3	3	4	2	1	1	0	3	0	72
(1)	2.51	5.44	2.09	2.51	3.35	2.09	2.51	2.51	1.26	1.26	1.67	. 84	. 42	. 42	. 00	1.26	. 00	30.13
(2)	. 14	. 30	. 12	. 14	. 19	. 12	. 14	. 14	. 07	. 07	. 09	. 05	. 02	. 02	. 00	. 07	. 00	1.67
3.1-4.0	2	8	1	2	3	3	4	3	3	3	4	4	3	5	1	1	0	50
(1)	. 84	3.35	. 42	. 84	1.26	1.26	1.67	1.26	1.26	1.26	1.67	1.67	1.26	2.09	. 42	. 42	. 00	20.92
(2)	. 05	. 19	. 02	. 05	. 07	. 07	. 09	. 07	. 07	. 07	. 09	. 09	. 07	. 12	. 02	. 02	. 00	1.16
4.1-5.0	1	1	0	1	1	1	2	8	0	5	7	4	2	2	4	1	0	40
(1)	. 42	. 42	. 00	. 42	. 42	. 42	. 84	3.35	. 00	2.09	2.93	1.67	. 84	. 84	1.67	. 42	. 00	16.74
(2)	. 02	. 02	. 00	. 02	. 02	. 02	. 05	. 19	. 00	. 12	. 16	. 09	. 05	. 05	. 09	. 02	. 00	. 93
5.1-6.0	4	1	0	0	0	0	1	5	0	6	8	0	1	1	0	1	0	28
(1)	1.67	. 42	. 00	. 00	. 00	. 00	. 42	2.09	. 00	2.51	3.35	. 00	. 42	. 42	. 00	. 42	. 00	11.72
(2)	. 09	. 02	. 00	. 00	. 00	. 00	. 02	. 12	. 00	. 14	. 19	. 00	. 02	. 02	. 00	. 02	. 00	. 65
6.1-8.0	1	0	0	0	2	0	0	4	0	5	1	1	1	0	1	2	0	18
(1)	. 42	. 00	. 00	. 00	. 84	. 00	. 00	1.67	. 00	2.09	. 42	. 42	. 42	. 00	. 42	. 84	. 00	7.53
(2)	. 02	. 00	. 00	. 00	. 05	. 00	. 00	. 09	. 00	. 12	. 02	. 02	. 02	. 00	. 02	. 05	. 00	. 42
8.1-10.0	0	1	0	0	0	0	0	3	0	1	0	0	0	0	0	1	0	6
(1)	. 00	. 42	. 00	. 00	. 00	. 00	. 00	1.26	. 00	. 42	. 00	. 00	. 00	. 00	. 00	. 42	. 00	2.51
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 14
10.1-89.5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 42	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 42
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
ALL SPEEDS	16	27	7	12	20	14	13	29	7	24	27	11	8	9	6	9	0	239
(1)	6.69	11.30	2.93	5.02	8.37	5.86	5.44	12.13	2.93	10.04	11.30	4.60	3.35	3.77	2.51	3.77	.00	100.00
(2)	. 37	. 63	. 16	. 28	. 46	. 32	. 30	. 67	. 16	. 56	. 63	. 25	. 19	. 21	. 14	. 21	. 00	5.54

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 6.23

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 37	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 37
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.1-1.5	0	1	0	1	2	0	0	0	0	0	1	0	1	0	0	0	0	6
(1)	. 00	. 37	. 00	. 37	. 74	. 00	. 00	. 00	. 00	. 00	. 37	. 00	. 37	. 00	. 00	. 00	. 00	2.23
(2)	. 00	. 02	. 00	. 02	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 14
1.6-2.0	2	0	2	7	1	0	1	0	0	1	2	0	0	0	0	0	0	16
(1)	. 74	. 00	. 74	2.60	. 37	. 00	. 37	. 00	. 00	. 37	. 74	. 00	. 00	. 00	. 00	. 00	. 00	5.95
(2)	. 05	. 00	. 05	. 16	. 02	. 00	. 02	. 00	. 00	. 02	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 37
2.1-3.0	14	15	5	5	6	4	8	2	0	0	7	0	1	2	1	5	0	75
(1)	5.20	5.58	1.86	1.86	2.23	1.49	2.97	. 74	. 00	. 00	2.60	. 00	. 37	. 74	. 37	1.86	. 00	27.88
(2)	. 32	. 35	. 12	. 12	. 14	. 09	. 19	. 05	. 00	. 00	. 16	. 00	. 02	. 05	. 02	. 12	. 00	1.74
3.1-4.0	13	7	0	2	4	2	2	5	5	0	7	3	3	3	7	1	0	64
(1)	4.83	2.60	. 00	. 74	1.49	. 74	. 74	1.86	1.86	. 00	2.60	1.12	1.12	1.12	2.60	. 37	. 00	23.79
(2)	. 30	. 16	. 00	. 05	. 09	. 05	. 05	. 12	. 12	. 00	. 16	. 07	. 07	. 07	. 16	. 02	. 00	1.48
4.1-5.0	2	2	1	1	3	0	1	4	2	6	3	7	2	2	6	2	0	44
(1)	. 74	. 74	. 37	. 37	1.12	. 00	. 37	1.49	. 74	2.23	1.12	2.60	. 74	. 74	2.23	. 74	. 00	16.36
(2)	. 05	. 05	. 02	. 02	. 07	. 00	. 02	. 09	. 05	. 14	. 07	. 16	. 05	. 05	. 14	. 05	. 00	1.02
5.1-6.0	2	2	0	0	0	0	0	7	2	2	10	1	3	2	2	3	0	36
(1)	. 74	. 74	. 00	. 00	. 00	. 00	. 00	2.60	. 74	. 74	3.72	. 37	1.12	. 74	. 74	1.12	. 00	13.38
(2)	. 05	. 05	. 00	. 00	. 00	. 00	. 00	. 16	. 05	. 05	. 23	. 02	. 07	. 05	. 05	. 07	. 00	. 83
6.1-8.0	1	2	1	1	0	1	0	4	0	3	2	1	1	0	1	1	0	19
(1)	. 37	. 74	. 37	. 37	. 00	. 37	. 00	1.49	. 00	1.12	. 74	. 37	. 37	. 00	. 37	. 37	. 00	7.06
(2)	. 02	. 05	. 02	. 02	. 00	. 02	. 00	. 09	. 00	. 07	. 05	. 02	. 02	. 00	. 02	. 02	. 00	. 44
8.1-10.0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	5
(1)	. 00	. 00	. 00	. 00	. 37	. 00	. 00	. 37	. 00	. 00	. 37	. 00	. 00	. 00	. 37	. 37	. 00	1.86
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 02	. 00	. 12
10.1-89.5	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	3
(1)	. 00	. 00	. 37	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 37	. 00	. 37	. 00	. 00	1.12
(2)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 07
ALL SPEEDS	34	29	10	17	17	7	12	24	9	12	33	12	12	9	19	13	0	269
(1)	12.64	10.78	3.72	6.32	6.32	2.60	4.46	8.92	3.35	4.46	12.27	4.46	4.46	3.35	7.06	4.83	. 00	100.00
(2)	. 79	. 67	. 23	. 39	. 39	. 16	. 28	. 56	. 21	. 28	. 76	. 28	. 28	. 21	. 44	. 30	. 00	6.23

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 30.53

IND DIRECTION FROM																		
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08
(2)	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
. $2-.4$	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
.5-1.0	3	1	2	2	2	1	2	1	1	1	1	2	2	1	2	3	0	27
(1)	. 23	. 08	. 15	. 15	. 15	. 08	. 15	. 08	. 08	. 08	. 08	. 15	. 15	. 08	. 15	. 23	. 00	2.05
(2)	. 07	. 02	. 05	. 05	. 05	. 02	. 05	. 02	. 02	. 02	. 02	. 05	. 05	. 02	. 05	. 07	. 00	. 63
1.1-1.5	5	6	2	6	10	2	1	1	2	3	3	5	4	2	4	1	0	57
(1)	. 38	. 46	. 15	. 46	. 76	. 15	. 08	. 08	. 15	. 23	. 23	. 38	. 30	. 15	. 30	. 08	. 00	4.32
(2)	. 12	. 14	. 05	. 14	. 23	. 05	. 02	. 02	. 05	. 07	. 07	. 12	. 09	. 05	. 09	. 02	. 00	1.32
1.6-2.0	8	7	9	7	8	13	5	1	2	3	5	8	4	3	3	2	0	88
(1)	. 61	. 53	. 68	. 53	. 61	. 99	. 38	. 08	. 15	. 23	. 38	. 61	. 30	. 23	. 23	. 15	. 00	6.68
(2)	. 19	. 16	. 21	. 16	. 19	. 30	. 12	. 02	. 05	. 07	. 12	. 19	. 09	. 07	. 07	. 05	. 00	2.04
2.1-3.0	26	35	12	20	16	10	9	12	4	16	10	12	8	6	8	6	0	210
(1)	1.97	2.66	. 91	1.52	1.21	. 76	. 68	. 91	. 30	1.21	. 76	. 91	. 61	. 46	. 61	. 46	. 00	15.93
(2)	. 60	. 81	. 28	. 46	. 37	. 23	. 21	. 28	. 09	. 37	. 23	. 28	. 19	. 14	. 19	. 14	. 00	4.86
$3.1-4.0$	19	14	7	20	20	16	9	15	19	22	14	13	8	14	19	12	0	241
(1)	1.44	1.06	. 53	1.52	1.52	1.21	. 68	1.14	1.44	1.67	1.06	. 99	. 61	1.06	1.44	. 91	. 00	18.29
(2)	. 44	. 32	. 16	. 46	. 46	. 37	. 21	. 35	. 44	. 51	. 32	. 30	. 19	. 32	. 44	. 28	. 00	5.58
4.1-5.0	21	7	13	40	22	4	1	27	11	18	21	11	10	10	10	16	0	242
(1)	1.59	. 53	. 99	3.03	1.67	. 30	. 08	2.05	. 83	1.37	1.59	. 83	. 76	. 76	. 76	1.21	. 00	18.36
(2)	. 49	. 16	. 30	. 93	. 51	. 09	. 02	. 63	. 25	. 42	. 49	. 25	. 23	. 23	. 23	. 37	. 00	5.61
5.1-6.0	21	17	13	28	8	3	3	35	4	13	20	11	4	4	16	10	0	210
(1)	1.59	1.29	. 99	2.12	. 61	. 23	. 23	2.66	. 30	. 99	1.52	. 83	. 30	. 30	1.21	. 76	. 00	15.93
(2)	. 49	. 39	. 30	. 65	. 19	. 07	. 07	. 81	. 09	. 30	. 46	. 25	. 09	. 09	. 37	. 23	. 00	4.86
6.1-8.0	24	17	20	14	13	2	6	23	1	14	23	5	1	3	16	14	0	196
(1)	1.82	1.29	1.52	1.06	. 99	. 15	. 46	1.75	. 08	1.06	1.75	. 38	. 08	. 23	1.21	1.06	. 00	14.87
(2)	. 56	. 39	. 46	. 32	. 30	. 05	. 14	. 53	. 02	. 32	. 53	. 12	. 02	. 07	. 37	. 32	. 00	4.54
8.1-10.0	7	6	2	2	2	0	0	5	0	1	1	0	1	4	1	5	0	37
(1)	. 53	. 46	. 15	. 15	. 15	. 00	. 00	. 38	. 00	. 08	. 08	. 00	. 08	. 30	. 08	. 38	. 00	2.81
(2)	. 16	. 14	. 05	. 05	. 05	. 00	. 00	. 12	. 00	. 02	. 02	. 00	. 02	. 09	. 02	. 12	. 00	. 86
10.1-89.5	0	3	0	0	0	0	0	0	0	0	0	0	0	2	3	0	0	8
(1)	. 00	. 23	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 15	. 23	. 00	. 00	. 61
(2)	. 00	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 07	. 00	. 00	. 19
ALL SPEEDS	134	114	80	139	101	52	36	120	44	91	98	67	42	49	82	69	0	1318
(1)	10.17	8.65	6.07	10.55	7.66	3.95	2.73	9.10	3.34	6.90	7.44	5.08	3.19	3.72	6.22	5.24	. 00	100.00
(2)	3.10	2.64	1.85	3.22	2.34	1.20	. 83	2.78	1.02	2.11	2.27	1.55	. 97	1.14	1.90	1.60	. 00	30.53
(1) = PERCENT	OF ALI	GOOD	OBSERV	VATIONS	FOR T	IS PA												
(2)=PERCENT	F ALL G	OD OBS	ervatio	ONS FOR	THIS P	ERIOD												

ग्0
$\stackrel{N}{i}$
i

Table 2.3-35—\{CCNPP 197 ft (60 m) June JFD (2000-2005) \}
(Page 5 of 8)
CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 21.82

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
ग्0
$\stackrel{0}{2}$
i

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) = 12.90

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	2	0	0	6
(1)	. 00	. 00	. 18	. 00	. 18	. 00	. 00	. 18	. 00	. 00	. 18	. 00	. 00	. 00	. 36	. 00	. 00	1.08
(2)	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 05	. 00	. 00	. 14
1.1-1.5	0	1	0	0	0	0	1	2	1	1	0	0	0	0	0	1	0	7
(1)	. 00	. 18	. 00	. 00	. 00	. 00	. 18	. 36	. 18	. 18	. 00	. 00	. 00	. 00	. 00	. 18	. 00	1.26
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 05	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 16
1.6-2.0	0	2	0	2	0	1	2	1	2	1	2	1	2	1	1	2	0	20
(1)	. 00	. 36	. 00	. 36	. 00	. 18	. 36	. 18	. 36	. 18	. 36	. 18	. 36	. 18	. 18	. 36	. 00	3.59
(2)	. 00	. 05	. 00	. 05	. 00	. 02	. 05	. 02	. 05	. 02	. 05	. 02	. 05	. 02	. 02	. 05	. 00	. 46
2.1-3.0	4	2	1	1	0	2	4	1	4	2	3	7	2	2	2	3	0	40
(1)	. 72	. 36	. 18	. 18	. 00	. 36	. 72	. 18	. 72	. 36	. 54	1.26	. 36	. 36	. 36	. 54	. 00	7.18
(2)	. 09	. 05	. 02	. 02	. 00	. 05	. 09	. 02	. 09	. 05	. 07	. 16	. 05	. 05	. 05	. 07	. 00	. 93
3.1-4.0	4	0	0	0	0	1	3	2	9	12	6	6	5	8	2	2	0	60
(1)	. 72	. 00	. 00	. 00	. 00	. 18	. 54	. 36	1.62	2.15	1.08	1.08	. 90	1.44	. 36	. 36	. 00	10.77
(2)	. 09	. 00	. 00	. 00	. 00	. 02	. 07	. 05	. 21	. 28	. 14	. 14	. 12	. 19	. 05	. 05	. 00	1.39
4.1-5.0	2	0	0	0	0	0	1	6	23	24	18	13	12	6	6	3	0	114
(1)	. 36	. 00	. 00	. 00	. 00	. 00	. 18	1.08	4.13	4.31	3.23	2.33	2.15	1.08	1.08	. 54	. 00	20.47
(2)	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 14	. 53	. 56	. 42	. 30	. 28	. 14	. 14	. 07	. 00	2.64
5.1-6.0	1	0	0	0	0	0	2	10	38	38	23	19	15	12	13	3	0	174
(1)	. 18	. 00	. 00	. 00	. 00	. 00	. 36	1.80	6.82	6.82	4.13	3.41	2.69	2.15	2.33	. 54	. 00	31.24
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 05	. 23	. 88	. 88	. 53	. 44	. 35	. 28	. 30	. 07	. 00	4.03
6.1-8.0	0	0	0	0	0	0	0	5	13	39	34	15	4	4	18	1	0	133
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 90	2.33	7.00	6.10	2.69	. 72	. 72	3.23	. 18	. 00	23.88
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 12	. 30	. 90	. 79	. 35	. 09	. 09	. 42	. 02	. 00	3.08
8.1-10.0	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 18	. 36	. 00	. 00	. 00	. 00	. 00	. 00	. 54
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 07
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	11	5	2	3	1	4	13	28	90	118	89	61	40	33	44	15	0	557
(1)	1.97	. 90	. 36	. 54	. 18	. 72	2.33	5.03	16.16	21.18	15.98	10.95	7.18	5.92	7.90	2.69	. 00	100.00
(2)	. 25	. 12	. 05	. 07	. 02	. 09	. 30	. 65	2.08	2.73	2.06	1.41	. 93	. 76	1.02	. 35	. 00	12.90

ग्0
$\stackrel{N}{i}$
i

Table 2.3-35—\{CCNPP 197 ft (60 m) June JFD (2000-2005)\}
(Page 7 of 8)
CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 9.08

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2
(1)	. 00	. 00	. 26	. 00	. 26	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 51
(2)	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
.5-1.0	1	0	1	0	0	1	2	0	0	1	1	0	0	2	2	1	0	12
(1)	. 26	. 00	. 26	. 00	. 00	. 26	. 51	. 00	. 00	. 26	. 26	. 00	. 00	. 51	. 51	. 26	. 00	3.06
(2)	. 02	. 00	. 02	. 00	. 00	. 02	. 05	. 00	. 00	. 02	. 02	. 00	. 00	. 05	. 05	. 02	. 00	. 28
1.1-1.5	2	2	1	1	4	3	0	1	1	1	0	1	1	1	2	1	0	22
(1)	. 51	. 51	. 26	. 26	1.02	. 77	. 00	. 26	. 26	. 26	. 00	. 26	. 26	. 26	. 51	. 26	. 00	5.61
(2)	. 05	. 05	. 02	. 02	. 09	. 07	. 00	. 02	. 02	. 02	. 00	. 02	. 02	. 02	. 05	. 02	. 00	. 51
1.6-2.0	0	0	0	1	1	1	2	1	1	0	1	1	2	1	2	0	0	14
(1)	. 00	. 00	. 00	. 26	. 26	. 26	. 51	. 26	. 26	. 00	. 26	. 26	. 51	. 26	. 51	. 00	. 00	3.57
(2)	. 00	. 00	. 00	. 02	. 02	. 02	. 05	. 02	. 02	. 00	. 02	. 02	. 05	. 02	. 05	. 00	. 00	. 32
2.1-3.0	3	0	1	1	0	0	0	0	1	3	3	1	4	3	2	3	0	25
(1)	. 77	. 00	. 26	. 26	. 00	. 00	. 00	. 00	. 26	. 77	. 77	. 26	1.02	. 77	. 51	. 77	. 00	6.38
(2)	. 07	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 02	. 07	. 07	. 02	. 09	. 07	. 05	. 07	. 00	. 58
3.1-4.0	2	0	0	1	1	0	0	4	4	7	10	6	9	9	3	5	0	61
(1)	. 51	. 00	. 00	. 26	. 26	. 00	. 00	1.02	1.02	1.79	2.55	1.53	2.30	2.30	. 77	1.28	. 00	15.56
(2)	. 05	. 00	. 00	. 02	. 02	. 00	. 00	. 09	. 09	. 16	. 23	. 14	. 21	. 21	. 07	. 12	. 00	1.41
4.1-5.0	1	0	0	0	0	0	0	2	8	18	28	13	7	10	4	4	0	95
(1)	. 26	. 00	. 00	. 00	. 00	. 00	. 00	. 51	2.04	4.59	7.14	3.32	1.79	2.55	1.02	1.02	. 00	24.23
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 19	. 42	. 65	. 30	. 16	. 23	. 09	. 09	. 00	2.20
5.1-6.0	0	0	0	0	0	0	0	0	15	24	18	12	17	6	5	2	0	99
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	3.83	6.12	4.59	3.06	4.34	1.53	1.28	. 51	. 00	25.26
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 35	. 56	. 42	. 28	. 39	. 14	. 12	. 05	. 00	2.29
6.1-8.0	0	0	0	0	0	0	0	3	11	13	4	7	10	8	4	1	0	61
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 77	2.81	3.32	1.02	1.79	2.55	2.04	1.02	. 26	. 00	15.56
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 25	. 30	. 09	. 16	. 23	. 19	. 09	. 02	. 00	1.41
8.1-10.0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 26	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 26
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	9	2	4	4	7	5	4	11	41	68	65	41	50	40	24	17	0	392
(1)	2.30	. 51	1.02	1.02	1.79	1.28	1.02	2.81	10.46	17.35	16.58	10.46	12.76	10.20	6.12	4.34	. 00	100.00
(2)	. 21	. 05	. 09	. 09	. 16	. 12	. 09	. 25	. 95	1.58	1.51	. 95	1.16	. 93	. 56	. 39	. 00	9.08

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD ObSERVATIONS FOR THIS PERIOD
OヨノכヨノOYd $\perp H$ Iע

CC JUNE MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY（PERCENT）＝100．00

WIND DIRECTION FROM																		
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT $\begin{array}{r}\text { ．} 2 \\ \\ \\ \\ \\ \\ \text {（1）} \\ \text {（2）}\end{array}$	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02
	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02
． $2-\begin{array}{r}\text {（1）} \\ (2) \\ \text {（2）}\end{array}$	0	1	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	4
	． 00	． 02	． 05	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 09
	． 00	． 02	． 05	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 09
． $5-1.0$	4	2	5	3	4	3	5	3	2	2	4	2	3	3	8	4	0	57
（1）	． 09	． 05	． 12	． 07	． 09	． 07	． 12	． 07	． 05	． 05	． 09	． 05	． 07	． 07	． 19	． 09	． 00	1.32
（2）	． 09	． 05	． 12	． 07	． 09	． 07	． 12	． 07	． 05	． 05	． 09	． 05	． 07	． 07	． 19	． 09	． 00	1.32
1．1－1．5	8	10	8	13	17	6	3	6	4	7	8	6	7	4	6	4	0	117
（1）	． 19	． 23	． 19	． 30	． 39	． 14	． 07	． 14	． 09	． 16	． 19	． 14	． 16	． 09	． 14	． 09	． 00	2.71
（2）	． 19	． 23	． 19	． 30	． 39	． 14	． 07	． 14	． 09	． 16	． 19	． 14	． 16	． 09	． 14	． 09	． 00	2.71
1．6－2．0	14	11	12	23	22	19	13	4	8	8	14	13	9	6	7	6	0	189
（1）	． 32	． 25	． 28	． 53	． 51	． 44	． 30	． 09	． 19	． 19	． 32	． 30	． 21	． 14	． 16	． 14	． 00	4.38
（2）	． 32	． 25	． 28	． 53	． 51	． 44	． 30	． 09	． 19	． 19	． 32	． 30	． 21	． 14	． 16	． 14	． 00	4.38
2．1－3．0	65	81	36	50	45	37	38	28	27	35	53	35	22	25	19	28	0	624
（1）	1.51	1.88	． 83	1.16	1.04	． 86	． 88	． 65	． 63	． 81	1.23	． 81	． 51	． 58	． 44	． 65	． 00	14.45
（2）	1.51	1.88	． 83	1.16	1.04	． 86	． 88	． 65	． 63	． 81	1.23	． 81	． 51	． 58	． 44	． 65	． 00	14.45
3．1－4．0	64	50	12	28	38	34	32	48	69	64	70	63	48	50	48	32	0	750
（1）	1.48	1.16	． 28	． 65	． 88	． 79	． 74	1.11	1.60	1.48	1.62	1.46	1.11	1.16	1.11	． 74	． 00	17.37
（2）	1.48	1.16	． 28	． 65	． 88	． 79	． 74	1.11	1.60	1.48	1.62	1.46	1.11	1.16	1.11	． 74	． 00	17.37
4．1－5．0	54	21	15	44	27	11	27	88	80	116	145	82	49	50	49	42	0	900
（1）	1.25	． 49	． 35	1.02	． 63	． 25	． 63	2.04	1.85	2.69	3.36	1.90	1.14	1.16	1.14	． 97	． 00	20.85
（2）	1.25	． 49	． 35	1.02	． 63	． 25	． 63	2.04	1.85	2.69	3.36	1.90	1.14	1.16	1.14	． 97	． 00	20.85
5．1－6．0	43	28	13	28	9	3	18	82	102	131	134	74	52	37	49	39	0	842
（1）	1.00	． 65	． 30	． 65	． 21	． 07	． 42	1.90	2.36	3.03	3.10	1.71	1.20	． 86	1.14	． 90	． 00	19.50
（2）	1.00	． 65	． 30	． 65	． 21	． 07	． 42	1.90	2.36	3.03	3.10	1.71	1.20	． 86	1.14	． 90	． 00	19.50
6．1－8．0	27	22	22	15	16	6	15	72	45	159	157	48	22	21	53	35	0	735
（1）	． 63	． 51	． 51	． 35	． 37	． 14	． 35	1.67	1.04	3.68	3.64	1.11	． 51	． 49	1.23	． 81	． 00	17.03
（2）	． 63	． 51	． 51	． 35	． 37	． 14	． 35	1.67	1.04	3.68	3.64	1.11	． 51	． 49	1.23	． 81	． 00	17.03
8．1－10．0	8	9	2	2	3	0	1	13	0	10	14	1	1	4	5	11	0	84
（1）	． 19	． 21	． 05	． 05	． 07	． 00	． 02	． 30	． 00	． 23	． 32	． 02	． 02	． 09	． 12	． 25	． 00	1.95
（2）	． 19	． 21	． 05	． 05	． 07	． 00	． 02	． 30	． 00	． 23	． 32	． 02	． 02	． 09	． 12	． 25	． 00	1.95
10．1－89．5	0	4	1	0	0	0	0	2	0	0	0	0	1	2	4	0	0	14
（1）	． 00	． 09	． 02	． 00	． 00	． 00	． 00	． 05	． 00	． 00	． 00	． 00	． 02	． 05	． 09	． 00	． 00	． 32
ALL SPEEDS	． 00	． 09	． 02	． 00	． 00	． 00	． 00	． 05	． 00	． 00	． 00	． 00	． 02	． 05	． 09	． 00	． 00	． 32
	287	239	128	206	182	120	152	346	337	532	599	324	214	202	248	201	0	4317
（1）	6.65	5.54	2.97	4.77	4.22	2.78	3.52	8.01	7.81	12.32	13.88	7.51	4.96	4.68	5.74	4.66	． 00	100.00
（2）	6.65	5.54	2.97	4.77	4.22	2.78	3.52	8.01	7.81	12.32	13.88	7.51	4.96	4.68	5.74	4.66	． 00	100.00
（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE																		
（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

ग्0
$\stackrel{0}{2}$
i

Table 2.3-36—\{CCNPP 197 ft (60 m) July JFD (2000-2005) \}
(Page 1 of 8)
CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 12.73

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 5.92

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 6.79

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 30.62

IND DIRECTION FROM																		
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	2	3	4	5	0	2	1	1	1	1	2	0	0	1	2	0	25
(1)	. 00	. 15	. 22	. 30	. 37	. 00	. 15	. 07	. 07	. 07	. 07	. 15	. 00	. 00	. 07	. 15	. 00	1.86
(2)	. 00	. 05	. 07	. 09	. 11	. 00	. 05	. 02	. 02	. 02	. 02	. 05	. 00	. 00	. 02	. 05	. 00	. 57
1.1-1.5	5		5	4	4	5	2	3	3	2	1	1	3	1	0	1	0	44
(1)	. 37	. 30	. 37	. 30	. 30	. 37	. 15	. 22	. 22	. 15	. 07	. 07	. 22	. 07	. 00	. 07	. 00	3.27
(2)	. 11	. 09	. 11	. 09	. 09	. 11	. 05	. 07	. 07	. 05	. 02	. 02	. 07	. 02	. 00	. 02	. 00	1.00
1.6-2.0	6	17	5	9	15	3	6	1	5	3	9	3	6	3	4	6	0	101
(1)	. 45	1.26	. 37	. 67	1.12	. 22	. 45	. 07	. 37	. 22	. 67	. 22	. 45	. 22	. 30	. 45	. 00	7.51
(2)	. 14	. 39	. 11	. 20	. 34	. 07	. 14	. 02	. 11	. 07	. 20	. 07	. 14	. 07	. 09	. 14	. 00	2.30
2.1-3.0	29	38	10	20	19	14	10	14	5	15	16	12	9	13	8	7	0	239
(1)	2.16	2.83	. 74	1.49	1.41	1.04	. 74	1.04	. 37	1.12	1.19	. 89	. 67	. 97	. 59	. 52	. 00	17.77
(2)	. 66	. 87	. 23	. 46	. 43	. 32	. 23	. 32	. 11	. 34	. 36	. 27	. 20	. 30	. 18	. 16	. 00	5.44
3.1-4.0	19	28	19	27	30	18	18	12	4	14	30	26	8	10	6	11	0	280
(1)	1.41	2.08	1.41	2.01	2.23	1.34	1.34	. 89	. 30	1.04	2.23	1.93	. 59	. 74	. 45	. 82	. 00	20.82
(2)	. 43	. 64	. 43	. 61	. 68	. 41	. 41	. 27	. 09	. 32	. 68	. 59	. 18	. 23	. 14	. 25	. 00	6.38
4.1-5.0	26	13	26	24	16	5	15	24	10	16	21	13	4	1	4	6	0	224
(1)	1.93	. 97	1.93	1.78	1.19	. 37	1.12	1.78	. 74	1.19	1.56	. 97	. 30	. 07	. 30	. 45	. 00	16.65
(2)	. 59	. 30	. 59	. 55	. 36	. 11	. 34	. 55	. 23	. 36	. 48	. 30	. 09	. 02	. 09	. 14	. 00	5.10
5.1-6.0	14	11	26	28	15	11	7	21	8	7	15	7	4	0	3	5	0	182
(1)	1.04	. 82	1.93	2.08	1.12	. 82	. 52	1.56	. 59	. 52	1.12	. 52	. 30	. 00	. 22	. 37	. 00	13.53
(2)	. 32	. 25	. 59	. 64	. 34	. 25	. 16	. 48	. 18	. 16	. 34	. 16	. 09	. 00	. 07	. 11	. 00	4.14
6.1-8.0	7	29	53	24	12	2	0	15	4	6	13	4	0	1	5	4	0	179
(1)	. 52	2.16	3.94	1.78	. 89	. 15	. 00	1.12	. 30	. 45	. 97	. 30	. 00	. 07	. 37	. 30	. 00	13.31
(2)	. 16	. 66	1.21	. 55	. 27	. 05	. 00	. 34	. 09	. 14	. 30	. 09	. 00	. 02	. 11	. 09	. 00	4.08
8.1-10.0	3	16	22	4	1	0	0	0	1	0	8	0	0	1	0	0	0	56
(1)	. 22	1.19	1.64	. 30	. 07	. 00	. 00	. 00	. 07	. 00	. 59	. 00	. 00	. 07	. 00	. 00	. 00	4.16
(2)	. 07	. 36	. 50	. 09	. 02	. 00	. 00	. 00	. 02	. 00	. 18	. 00	. 00	. 02	. 00	. 00	. 00	1.28
10.1-89.5	0	12	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	15
(1)	. 00	. 89	. 15	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 00	. 00	1.12
(2)	. 00	. 27	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 34
ALL SPEEDS	109	170	171	144	117	58	60	91	41	64	114	68	34	30	32	42	0	1345
(1)	8.10	12.64	12.71	10.71	8.70	4.31	4.46	6.77	3.05	4.76	8.48	5.06	2.53	2.23	2.38	3.12	. 00	100.00
(2)	2.48	3.87	3.89	3.28	2.66	1.32	1.37	2.07	. 93	1.46	2.60	1.55	. 77	. 68	. 73	. 96	. 00	30.62
$\begin{aligned} & \text { (1) = PERCENT } \\ & (2)=\text { PERCENT } \end{aligned}$	OF ALI	GOOD	OBSERV SERVATI	VATIONS ONS FOR	$\begin{gathered} \text { FOR } \\ \text { THIS } \end{gathered}$	HIS PA ERIOD												

OヨノכヨノOYd $\perp H$ Iy

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY（PERCENT）＝ 23.11

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) $=10.82$

CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 10.02

								IND D	IRECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	1	2	2	0	1	0	1	2	1	1	0	0	1	0	0	2	0	14
(1)	. 23	. 45	. 45	. 00	. 23	. 00	. 23	. 45	. 23	. 23	. 00	. 00	. 23	. 00	. 00	. 45	. 00	3.18
(2)	. 02	. 05	. 05	. 00	. 02	. 00	. 02	. 05	. 02	. 02	. 00	. 00	. 02	. 00	. 00	. 05	. 00	. 32
1.1-1.5	1	2	3	2	4	1	1	2	2	1	2	1	2	0	1	1	0	26
(1)	. 23	. 45	. 68	. 45	. 91	. 23	. 23	. 45	. 45	. 23	. 45	. 23	. 45	. 00	. 23	. 23	. 00	5.91
(2)	. 02	. 05	. 07	. 05	. 09	. 02	. 02	. 05	. 05	. 02	. 05	. 02	. 05	. 00	. 02	. 02	. 00	. 59
1.6-2.0	3	3	3	1	2	0	2	0	6	1	2	3	3	0	0	2	0	31
(1)	. 68	. 68	. 68	. 23	. 45	. 00	. 45	. 00	1.36	. 23	. 45	. 68	. 68	. 00	. 00	. 45	. 00	7.05
(2)	. 07	. 07	. 07	. 02	. 05	. 00	. 05	. 00	. 14	. 02	. 05	. 07	. 07	. 00	. 00	. 05	. 00	. 71
2.1-3.0	4	3	3	1	3	1	1	6	4	7	6	6	9	5	2	1	0	62
(1)	. 91	. 68	. 68	. 23	. 68	. 23	. 23	1.36	. 91	1.59	1.36	1.36	2.05	1.14	. 45	. 23	. 00	14.09
(2)	. 09	. 07	. 07	. 02	. 07	. 02	. 02	. 14	. 09	. 16	. 14	. 14	. 20	. 11	. 05	. 02	. 00	1.41
3.1-4.0	2	0	1	0	0	0	3	0	5	6	18	24	16	4	5	9	0	93
(1)	. 45	. 00	. 23	. 00	. 00	. 00	. 68	. 00	1.14	1.36	4.09	5.45	3.64	. 91	1.14	2.05	. 00	21.14
(2)	. 05	. 00	. 02	. 00	. 00	. 00	. 07	. 00	. 11	. 14	. 41	. 55	. 36	. 09	. 11	. 20	. 00	2.12
4.1-5.0	0	0	0	0	0	0	1	2	13	16	28	30	19	8	8	2	0	127
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 23	. 45	2.95	3.64	6.36	6.82	4.32	1.82	1.82	. 45	. 00	28.86
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 30	. 36	. 64	. 68	. 43	. 18	. 18	. 05	. 00	2.89
5.1-6.0	0	0	0	0	0	0	0	0	12	11	12	7	8	5	7	1	0	63
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.73	2.50	2.73	1.59	1.82	1.14	1.59	. 23	. 00	14.32
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 27	. 25	. 27	. 16	. 18	. 11	. 16	. 02	. 00	1.43
6.1-8.0	0	0	0	0	0	0	0	0	7	3	1	1	3	3	6	0	0	24
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.59	. 68	. 23	. 23	. 68	. 68	1.36	. 00	. 00	5.45
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 16	. 07	. 02	. 02	. 07	. 07	. 14	. 00	. 00	. 55
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	11	10	12	4	10	2	9	12	50	46	69	72	61	25	29	18	0	440
(1)	2.50	2.27	2.73	. 91	2.27	. 45	2.05	2.73	11.36	10.45	15.68	16.36	13.86	5.68	6.59	4.09	. 00	100.00
(2)	. 25	. 23	. 27	. 09	. 23	. 05	. 20	. 27	1.14	1.05	1.57	1.64	1.39	. 57	. 66	. 41	. 00	10.02

Table 2.3-36-\{CCNPP 197 ft ($\mathbf{6 0}$ m) July JFD (2000-2005) \} (Page 8 of 8)
CC JULY MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) $=100.00$
P
$\stackrel{0}{0}$
$i=1$

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 12.05

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-37—\{CCNPP 197 ft (60 m) August JFD (2000-2005)\} (Page 2 of 8)

$$
\begin{aligned}
& \text { CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER) } \\
& \text { 197.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = } 5.81 \\
& \text { (1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE }
\end{aligned}
$$

(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 6.10
T
$\stackrel{0}{0}$
i
i

Table 2.3-37—\{CCNPP 197 ft (60 m) August JFD (2000-2005) \}
(Page 4 of 8)
CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 28.72

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 27.48

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) = 11.91
Po
$\stackrel{0}{2}$
i

OᄏIכヨIOपy IHפוy

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 7.93

Table 2.3-37—\{CCNPP 197 ft ($\mathbf{6 0} \mathbf{~ m}$) August JFD ($\mathbf{2 0 0 0 - 2 0 0 5) \}}$ (Page 8 of 8)
CC AUGUST MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	1	2	0	1	0	0	4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 02	. 00	. 00	. 09
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 02	. 00	. 00	. 09
. $2-.4$	1	0	0	0	0	1	1	0	1	0	0	0	1	1	1	1	0	8
(1)	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 00	. 00	. 02	. 02	. 02	. 02	. 00	. 18
(2)	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 00	. 00	. 02	. 02	. 02	. 02	. 00	. 18
.5-1.0	5	4	5	7	6	6	6	1	5	8	3	3	1	4	2	3	0	69
(1)	. 11	. 09	. 11	. 16	. 14	. 14	. 14	. 02	. 11	. 18	. 07	. 07	. 02	. 09	. 05	. 07	. 00	1.55
(2)	. 11	. 09	. 11	. 16	. 14	. 14	. 14	. 02	. 11	. 18	. 07	. 07	. 02	. 09	. 05	. 07	. 00	1.55
1.1-1.5	16	6	10	12	12	7	11	8	5	9	3	12	4	6	3	3	0	127
(1)	. 36	. 14	. 23	. 27	. 27	. 16	. 25	. 18	. 11	. 20	. 07	. 27	. 09	. 14	. 07	. 07	. 00	2.86
(2)	. 36	. 14	. 23	. 27	. 27	. 16	. 25	. 18	. 11	. 20	. 07	. 27	. 09	. 14	. 07	. 07	. 00	2.86
1.6-2.0	17	27	15	27	35	13	14	9	17	18	17	15	10	4	6	5	0	249
(1)	. 38	. 61	. 34	. 61	. 79	. 29	. 32	. 20	. 38	. 41	. 38	. 34	. 23	. 09	. 14	. 11	. 00	5.61
(2)	. 38	. 61	. 34	. 61	. 79	. 29	. 32	. 20	. 38	. 41	. 38	. 34	. 23	. 09	. 14	. 11	. 00	5.61
2.1-3.0	78	58	33	50	61	39	33	33	47	54	75	35	23	10	15	28	0	672
(1)	1.76	1.31	. 74	1.13	1.37	. 88	. 74	. 74	1.06	1.22	1.69	. 79	. 52	. 23	. 34	. 63	. 00	15.14
(2)	1.76	1.31	. 74	1.13	1.37	. 88	. 74	. 74	1.06	1.22	1.69	. 79	. 52	. 23	. 34	. 63	. 00	15.14
3.1-4.0	75	79	22	29	27	38	51	92	76	90	123	65	30	28	31	43	0	899
(1)	1.69	1.78	. 50	. 65	. 61	. 86	1.15	2.07	1.71	2.03	2.77	1.46	. 68	. 63	. 70	. 97	. 00	20.25
(2)	1.69	1.78	. 50	. 65	. 61	. 86	1.15	2.07	1.71	2.03	2.77	1.46	. 68	. 63	. 70	. 97	. 00	20.25
4.1-5.0	58	38	25	22	15	25	39	115	126	138	130	67	35	31	24	64	0	952
(1)	1.31	. 86	. 56	. 50	. 34	. 56	. 88	2.59	2.84	3.11	2.93	1.51	. 79	. 70	. 54	1.44	. 00	21.44
(2)	1.31	. 86	. 56	. 50	. 34	. 56	. 88	2.59	2.84	3.11	2.93	1.51	. 79	. 70	. 54	1.44	. 00	21.44
5.1-6.0	35	38	24	14	3		20	66	99	135	154	56	24	15	21	51	0	765
(1)	. 79	. 86	. 54	. 32	. 07	. 23	. 45	1.49	2.23	3.04	3.47	1.26	. 54	. 34	. 47	1.15	. 00	17.23
(2)	. 79	. 86	. 54	. 32	. 07	. 23	. 45	1.49	2.23	3.04	3.47	1.26	. 54	. 34	. 47	1.15	. 00	17.23
6.1-8.0	39	38	30	13	3	8	7	35	53	129	152	12	4	10	12	22	0	567
(1)	. 88	. 86	. 68	. 29	. 07	. 18	. 16	. 79	1.19	2.91	3.42	. 27	. 09	. 23	. 27	. 50	. 00	12.77
(2)	. 88	. 86	. 68	. 29	. 07	. 18	. 16	. 79	1.19	2.91	3.42	. 27	. 09	. 23	. 27	. 50	. 00	12.77
8.1-10.0	14	34	21	1	1	0	1	5	1	9	7	1	1	1	1	2	0	100
(1)	. 32	. 77	. 47	. 02	. 02	. 00	. 02	. 11	. 02	. 20	. 16	. 02	. 02	. 02	. 02	. 05	. 00	2.25
(2)	. 32	. 77	. 47	. 02	. 02	. 00	. 02	. 11	. 02	. 20	. 16	. 02	. 02	. 02	. 02	. 05	. 00	2.25
10.1-89.5	3	11	6	4	0	0	0	0	0	1	1	0	0	0	1	1	0	28
(1)	. 07	. 25	. 14	. 09	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 02	. 02	. 00	. 63
(2)	. 07	. 25	. 14	. 09	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 02	. 02	. 00	. 63
ALL SPEEDS	341	333	191	179	163	147	183	364	430	591	665	267	135	110	118	223	0	4440
(1)	7.68	7.50	4.30	4.03	3.67	3.31	4.12	8.20	9.68	13.31	14.98	6.01	3.04	2.48	2.66	5.02	. 00	100.00
(2)	7.68	7.50	4.30	4.03	3.67	3.31	4.12	8.20	9.68	13.31	14.98	6.01	3.04	2.48	2.66	5.02	. 00	100.00

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
P
$\stackrel{0}{0}$
$i=1$

Table 2.3-38—\{CCNPP 197 ft (60 m) Septmber JFD (2000-2005) \}

(Page 1 of 8)

CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 11.81

								IND DI	RECTI	ON FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	4
(1)	. 20	. 20	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 80
(2)	. 02	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09
1.6-2.0	1	3	1	2	4	0	1	1	0	0	0	1	1	0	0	2	0	17
(1)	. 20	. 60	. 20	. 40	. 80	. 00	. 20	. 20	. 00	. 00	. 00	. 20	. 20	. 00	. 00	. 40	. 00	3.41
(2)	. 02	. 07	. 02	. 05	. 09	. 00	. 02	. 02	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 05	. 00	. 40
2.1-3.0	11	18	6	5	5	8	4	2	4	5	8	1	2	2	1	1	0	83
(1)	2.20	3.61	1.20	1.00	1.00	1.60	. 80	. 40	. 80	1.00	1.60	. 20	. 40	. 40	. 20	. 20	. 00	16.63
(2)	. 26	. 43	. 14	. 12	. 12	. 19	. 09	. 05	. 09	. 12	. 19	. 02	. 05	. 05	. 02	. 02	. 00	1.96
3.1-4.0	33	27	3	1	0	6	7	5	4	12	13	8	1	3	1	1	0	125
(1)	6.61	5.41	. 60	. 20	. 00	1.20	1.40	1.00	. 80	2.40	2.61	1.60	. 20	. 60	. 20	. 20	. 00	25.05
(2)	. 78	. 64	. 07	. 02	. 00	. 14	. 17	. 12	. 09	. 28	. 31	. 19	. 02	. 07	. 02	. 02	. 00	2.96
4.1-5.0	33	23	1	0	0	4	15	12	3	17	16	3	1	2	0	6	0	136
(1)	6.61	4.61	. 20	. 00	. 00	. 80	3.01	2.40	. 60	3.41	3.21	. 60	. 20	. 40	. 00	1.20	. 00	27.25
(2)	. 78	. 54	. 02	. 00	. 00	. 09	. 35	. 28	. 07	. 40	. 38	. 07	. 02	. 05	. 00	. 14	. 00	3.22
5.1-6.0	19	7	3	0	0	0	6	11	0	8	4	5	0	2	0	2	0	67
(1)	3.81	1.40	. 60	. 00	. 00	. 00	1.20	2.20	. 00	1.60	. 80	1.00	. 00	. 40	. 00	. 40	. 00	13.43
(2)	. 45	. 17	. 07	. 00	. 00	. 00	. 14	. 26	. 00	. 19	. 09	. 12	. 00	. 05	. 00	. 05	. 00	1.59
6.1-8.0	9	9	6	0	0	0	2	2	2	3	4	1	0	0	0	0	0	38
(1)	1.80	1.80	1.20	. 00	. 00	. 00	. 40	. 40	. 40	. 60	. 80	. 20	. 00	. 00	. 00	. 00	. 00	7.62
(2)	. 21	. 21	. 14	. 00	. 00	. 00	. 05	. 05	. 05	. 07	. 09	. 02	. 00	. 00	. 00	. 00	. 00	. 90
8.1-10.0	5	6	5	0	0	0	0	1	0	6	0	0	0	0	3	0	0	26
(1)	1.00	1.20	1.00	. 00	. 00	. 00	. 00	. 20	. 00	1.20	. 00	. 00	. 00	. 00	. 60	. 00	. 00	5.21
(2)	. 12	. 14	. 12	. 00	. 00	. 00	. 00	. 02	. 00	. 14	. 00	. 00	. 00	. 00	. 07	. 00	. 00	. 62
10.1-89.5	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	3
(1)	. 00	. 20	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 60
(2)	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07
ALL SPEEDS	112	95	27	8	9	18	35	34	13	53	45	19	5	9	5	12	0	499
(1)	22.44	19.04	5.41	1.60	1.80	3.61	7.01	6.81	2.61	10.62	9.02	3.81	1.00	1.80	1.00	2.40	. 00	100.00
(2)	2.65	2.25	. 64	. 19	. 21	. 43	. 83	. 80	. 31	1.25	1.06	. 45	. 12	. 21	. 12	. 28	. 00	11.81

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

Table 2.3-38—\{CCNPP 197 ft (60 m) Septmber JFD (2000-2005)\}

(Page 2 of 8)

CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) $=5.51$

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

$$
\begin{aligned}
& \text { CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION } \\
& \text { 197.0 FT WIND DATA }
\end{aligned}
$$

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 41	. 00	. 00	. 00	. 00	. 00	. 41
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02
1.1-1.5	0	1	2	1	2	0	0	0	0	0	1	1	0	0	0	1	0	9
(1)	. 00	. 41	. 81	. 41	. 81	. 00	. 00	. 00	. 00	. 00	. 41	. 41	. 00	. 00	. 00	. 41	. 00	3.66
(2)	. 00	. 02	. 05	. 02	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 02	. 00	. 21
1.6-2.0	2	10	5	2	3	0	1	2	0	0	1	2	1	1	0	1	0	31
(1)	. 81	4.07	2.03	. 81	1.22	. 00	. 41	. 81	. 00	. 00	. 41	. 81	. 41	. 41	. 00	. 41	. 00	12.60
(2)	. 05	. 24	. 12	. 05	. 07	. 00	. 02	. 05	. 00	. 00	. 02	. 05	. 02	. 02	. 00	. 02	. 00	. 73
2.1-3.0	2	13	4	7	7	6	7	6	7	1	0	0	2	2	1	0	0	65
(1)	. 81	5.28	1.63	2.85	2.85	2.44	2.85	2.44	2.85	. 41	. 00	. 00	. 81	. 81	. 41	. 00	. 00	26.42
(2)	. 05	. 31	. 09	. 17	. 17	. 14	. 17	. 14	. 17	. 02	. 00	. 00	. 05	. 05	. 02	. 00	. 00	1.54
3.1-4.0	16	10	2	0	1	4	3	2	1	0	1	1	3	1	3	1	0	49
(1)	6.50	4.07	. 81	. 00	. 41	1.63	1.22	. 81	. 41	. 00	. 41	. 41	1.22	. 41	1.22	. 41	. 00	19.92
(2)	. 38	. 24	. 05	. 00	. 02	. 09	. 07	. 05	. 02	. 00	. 02	. 02	. 07	. 02	. 07	. 02	. 00	1.16
4.1-5.0	6	5	1	1	1	0	2	4	0	1	5	0	0	2	3	3	0	34
(1)	2.44	2.03	. 41	. 41	. 41	. 00	. 81	1.63	. 00	. 41	2.03	. 00	. 00	. 81	1.22	1.22	. 00	13.82
(2)	. 14	. 12	. 02	. 02	. 02	. 00	. 05	. 09	. 00	. 02	. 12	. 00	. 00	. 05	. 07	. 07	. 00	. 80
5.1-6.0	6	2	1	1	0	0	0	6	0	0	0	0	1	1	2	4	0	24
(1)	2.44	. 81	. 41	. 41	. 00	. 00	. 00	2.44	. 00	. 00	. 00	. 00	. 41	. 41	. 81	1.63	. 00	9.76
(2)	. 14	. 05	. 02	. 02	. 00	. 00	. 00	. 14	. 00	. 00	. 00	. 00	. 02	. 02	. 05	. 09	. 00	. 57
6.1-8.0	1	1	4	0	0	0	2	4	1	3	0	0	0	0	0	1	0	17
(1)	. 41	. 41	1.63	. 00	. 00	. 00	. 81	1.63	. 41	1.22	. 00	. 00	. 00	. 00	. 00	. 41	. 00	6.91
(2)	. 02	. 02	. 09	. 00	. 00	. 00	. 05	. 09	. 02	. 07	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 40
8.1-10.0	2	3	5	1	0	0	0	0	0	1	0	0	0	0	1	1	0	14
(1)	. 81	1.22	2.03	. 41	. 00	. 00	. 00	. 00	. 00	. 41	. 00	. 00	. 00	. 00	. 41	. 41	. 00	5.69
(2)	. 05	. 07	. 12	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 33
10.1-89.5	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
(1)	. 00	. 81	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 81
(2)	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
ALL SPEEDS	35	47	24	13	14	10	15	24	9	6	8	5	7	7	10	12	0	246
(1)	14.23	19.11	9.76	5.28	5.69	4.07	6.10	9.76	3.66	2.44	3.25	2.03	2.85	2.85	4.07	4.88	. 00	100.00
(2)	. 83	1.11	. 57	. 31	. 33	. 24	. 35	. 57	. 21	. 14	. 19	. 12	. 17	. 17	. 24	. 28	. 00	5.82

$\stackrel{7}{2}$
$\begin{array}{lcccc}\text { CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION } & (60 \text {-METER TOWER) } \\ 197.0 \text { FT WIND DATA } & \text { STABILITY CLASS D } & \text { CLASS FREQUENCY (PERCENT) }=34.29\end{array}$

IᄏIכヨIOपd IHפוy

Table 2.3-38—\{CCNPP 197 ft (60 m) Septmber JFD (2000-2005)\} (Page 5 of 8)
CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 22.43

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

$$
\begin{array}{lccc}
\text { CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION } & (60 \text {-METER TOWER) } \\
197.0 \text { FT WIND DATA } & \text { STABILITY CLASS F } & \text { CLASS FREQUENCY } & \text { (PERCENT) }=10.01
\end{array}
$$

ग्0
$\stackrel{N}{i}$
i

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
$\begin{array}{lcccc}\text { CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION } & (60 \text {-METER TOWER) } \\ 197.0 \text { FT WIND DATA } & \text { STABILITY CLASS G } & \text { CLASS FREQUENCY } & \text { (PERCENT) }=10.13\end{array}$

Table 2．3－38—\｛CCNPP 197 ft（60 m）Septmber JFD（2000－2005）\} （Page 8 of 8）
CC SEPTEMBER MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY（PERCENT）＝ 100.00

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT ． 2	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
（1）	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 05
（2）	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 05
． $2-.4$	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	3
（1）	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 07
（2）	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 07
．5－1．0	6	4	9	8	12	6	5	6	0	5	6	6	2	3	5	3	0	86
（1）	． 14	． 09	． 21	． 19	． 28	． 14	． 12	． 14	． 00	． 12	． 14	． 14	． 05	． 07	． 12	． 07	． 00	2.04
（2）	． 14	． 09	． 21	． 19	． 28	． 14	． 12	． 14	． 00	． 12	． 14	． 14	． 05	． 07	． 12	． 07	． 00	2.04
1．1－1．5	12	14	14	9	13	5	10	3	7	4	4	6	7	3	7	5	0	123
（1）	． 28	． 33	． 33	． 21	． 31	． 12	． 24	． 07	． 17	． 09	． 09	． 14	． 17	． 07	． 17	． 12	． 00	2.91
（2）	． 28	． 33	． 33	． 21	． 31	． 12	． 24	． 07	． 17	． 09	． 09	． 14	． 17	． 07	． 17	． 12	． 00	2.91
1．6－2．0	20	35	16	20	22	7	12	7	8	3	15	8	7	9	9	14	0	212
（1）	． 47	． 83	． 38	． 47	． 52	． 17	． 28	． 17	． 19	． 07	． 35	． 19	． 17	． 21	． 21	． 33	． 00	5.02
（2）	． 47	． 83	． 38	． 47	． 52	． 17	． 28	． 17	． 19	． 07	． 35	． 19	． 17	． 21	． 21	． 33	． 00	5.02
2．1－3．0	57	103	35	49	77	36	36	37	34	23	16	12	24	17	11	24	0	591
（1）	1.35	2.44	． 83	1.16	1.82	． 85	． 85	． 88	． 80	． 54	． 38	． 28	． 57	． 40	． 26	． 57	． 00	13.98
（2）	1.35	2.44	． 83	1.16	1.82	． 85	． 85	． 88	． 80	． 54	． 38	． 28	． 57	． 40	． 26	． 57	． 00	13.98
3．1－4．0	118	88	22	48	34	58	49	49	51	39	47	24	31	36	19	32	0	745
（1）	2.79	2.08	． 52	1.14	． 80	1.37	1.16	1.16	1.21	． 92	1.11	． 57	． 73	． 85	． 45	． 76	． 00	17.63
（2）	2.79	2.08	． 52	1.14	． 80	1.37	1.16	1.16	1.21	． 92	1.11	． 57	． 73	． 85	． 45	． 76	． 00	17.63
4．1－5．0	93	63	42	29	44	40	58	90	71	75	62	24	15	34	30	59	0	829
（1）	2.20	1.49	． 99	． 69	1.04	． 95	1.37	2.13	1.68	1.77	1.47	． 57	． 35	． 80	． 71	1.40	． 00	19.62
（2）	2.20	1.49	． 99	． 69	1.04	． 95	1.37	2.13	1.68	1.77	1.47	． 57	． 35	． 80	． 71	1.40	． 00	19.62
5．1－6．0	51	36	50	26	18	6	19	86	81	50	55	28	18	32	48	70	0	674
（1）	1.21	． 85	1.18	． 62	． 43	． 14	． 45	2.04	1.92	1.18	1.30	． 66	． 43	． 76	1.14	1.66	． 00	15.95
（2）	1.21	． 85	1.18	． 62	． 43	． 14	． 45	2.04	1.92	1.18	1.30	． 66	． 43	． 76	1.14	1.66	． 00	15.95
6．1－8．0	41	46	89	40	2	5	12	40	42	74	59	11	10	20	47	42	0	580
（1）	． 97	1.09	2.11	． 95	． 05	． 12	． 28	． 95	． 99	1.75	1.40	． 26	． 24	． 47	1.11	． 99	． 00	13.72
（2）	． 97	1.09	2.11	． 95	． 05	． 12	． 28	． 95	． 99	1.75	1.40	． 26	． 24	． 47	1.11	． 99	． 00	13.72
8．1－10．0	32	44	70	11	0	0	12	11	11	16	7	1	2	2	12	8	0	239
（1）	． 76	1.04	1.66	． 26	． 00	． 00	． 28	． 26	． 26	． 38	． 17	． 02	． 05	． 05	． 28	． 19	． 00	5.66
（2）	． 76	1.04	1.66	． 26	． 00	． 00	． 28	． 26	． 26	． 38	． 17	． 02	． 05	． 05	． 28	． 19	． 00	5.66
10．1－89．5	17	64	33	2	3	3	3	4	5	1	1	0	0	0	0	6	0	142
（1）	． 40	1.51	． 78	． 05	． 07	． 07	． 07	． 09	． 12	． 02	． 02	． 00	． 00	． 00	． 00	． 14	． 00	3.36
（2）	． 40	1.51	． 78	． 05	． 07	． 07	． 07	． 09	． 12	． 02	． 02	． 00	． 00	． 00	． 00	． 14	． 00	3.36
ALL SPEEDS	448	498	380	242	225	166	216	333	311	290	273	121	116	156	188	263	0	4226
（1）	10.60	11.78	8.99	5.73	5.32	3.93	5.11	7.88	7.36	6.86	6.46	2.86	2.74	3.69	4.45	6.22	． 00	100.00
（2）	10.60	11.78	8.99	5.73	5.32	3.93	5.11	7.88	7.36	6.86	6.46	2.86	2.74	3.69	4.45	6.22	． 00	100.00

（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
To
$\stackrel{0}{0}$
i

Table 2.3-39—\{CCNPP 197 ft (60 m) October JFD (2000-2005)\}

(Page 1 of 8)

CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 12.84

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 18	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 18
(2)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.1-1.5	0	0	0	1	4	2	0	0	0	0	0	0	0	0	0	0	0	7
(1)	. 00	. 00	. 00	. 18	. 70	. 35	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.23
(2)	. 00	. 00	. 00	. 02	. 09	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 16
1.6-2.0	5	3	2	1	3	0	0	0	0	1	2	2	1	0	0	1	0	21
(1)	. 88	. 53	. 35	. 18	. 53	. 00	. 00	. 00	. 00	. 18	. 35	. 35	. 18	. 00	. 00	. 18	. 00	3.70
(2)	. 11	. 07	. 05	. 02	. 07	. 00	. 00	. 00	. 00	. 02	. 05	. 05	. 02	. 00	. 00	. 02	. 00	. 47
2.1-3.0	16	5	2	2	8	7	2	5	1	1	2	3	4	1	2	4	0	65
(1)	2.82	. 88	. 35	. 35	1.41	1.23	. 35	. 88	. 18	. 18	. 35	. 53	. 70	. 18	. 35	. 70	. 00	11.44
(2)	. 36	. 11	. 05	. 05	. 18	. 16	. 05	. 11	. 02	. 02	. 05	. 07	. 09	. 02	. 05	. 09	. 00	1.47
3.1-4.0	12	6	1	0	0	2	6	11	4	7	10	7	6	6	0	4	0	82
(1)	2.11	1.06	. 18	. 00	. 00	. 35	1.06	1.94	. 70	1.23	1.76	1.23	1.06	1.06	. 00	. 70	. 00	14.44
(2)	. 27	. 14	. 02	. 00	. 00	. 05	. 14	. 25	. 09	. 16	. 23	. 16	. 14	. 14	. 00	. 09	. 00	1.85
4.1-5.0	30	9	2	0	0	0	1	9	4	13	12	9	4	7	18	4	0	122
(1)	5.28	1.58	. 35	. 00	. 00	. 00	. 18	1.58	. 70	2.29	2.11	1.58	. 70	1.23	3.17	. 70	. 00	21.48
(2)	. 68	. 20	. 05	. 00	. 00	. 00	. 02	. 20	. 09	. 29	. 27	. 20	. 09	. 16	. 41	. 09	. 00	2.76
5.1-6.0	28	8	1	0	3	0	2	7	5	5	14	6	1	10	7	12	0	109
(1)	4.93	1.41	. 18	. 00	. 53	. 00	. 35	1.23	. 88	. 88	2.46	1.06	. 18	1.76	1.23	2.11	. 00	19.19
(2)	. 63	. 18	. 02	. 00	. 07	. 00	. 05	. 16	. 11	. 11	. 32	. 14	. 02	. 23	. 16	. 27	. 00	2.46
6.1-8.0	17	7	1	1	1	0	0	5	0	4	8	8	9	23	18	4	0	106
(1)	2.99	1.23	. 18	. 18	. 18	. 00	. 00	. 88	. 00	. 70	1.41	1.41	1.58	4.05	3.17	. 70	. 00	18.66
(2)	. 38	. 16	. 02	. 02	. 02	. 00	. 00	. 11	. 00	. 09	. 18	. 18	. 20	. 52	. 41	. 09	. 00	2.40
8.1-10.0	3	6	1	1	0	0	0	2	0	0	7	6	2	6	8	1	0	43
(1)	. 53	1.06	. 18	. 18	. 00	. 00	. 00	. 35	. 00	. 00	1.23	1.06	. 35	1.06	1.41	. 18	. 00	7.57
(2)	. 07	. 14	. 02	. 02	. 00	. 00	. 00	. 05	. 00	. 00	. 16	. 14	. 05	. 14	. 18	. 02	. 00	. 97
10.1-89.5	1	1	2	1	0	0	0	2	0	0	0	2	0	3	0	0	0	12
(1)	. 18	. 18	. 35	. 18	. 00	. 00	. 00	. 35	. 00	. 00	. 00	. 35	. 00	. 53	. 00	. 00	. 00	2.11
(2)	. 02	. 02	. 05	. 02	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 05	. 00	. 07	. 00	. 00	. 00	. 27
ALL SPEEDS	112	45	13	7	19	11	11	41	14	31	55	43	27	56	53	30	0	568
(1)	19.72	7.92	2.29	1.23	3.35	1.94	1.94	7.22	2.46	5.46	9.68	7.57	4.75	9.86	9.33	5.28	. 00	100.00
(2)	2.53	1.02	. 29	. 16	. 43	. 25	. 25	. 93	. 32	. 70	1.24	. 97	. 61	1.27	1.20	. 68	. 00	12.84

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAG
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

CC OCTOBER MET DATA TOTNT FREQUENCY DTSTRTBUTION (60-METER TOWR)
197.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 3.98

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

CC OCTOBER MET DATA JOINT	FREQUENCY DISTRIBUTION	(60-METER TOWER)	
$197.0 ~ F T ~ W I N D ~ D A T A ~$	STABILITY CLASS C	CLASS FREQUENCY	(PERCENT) $=4.36$

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
P
$\stackrel{0}{0}$
$i=1$
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

$$
\begin{array}{ccc}
\text { CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION } & (60-\mathrm{METER} \mathrm{TOWER)} \\
197.0 \text { FT WIND DATA } & \text { STABILITY CLASS D } & \text { CLASS FREQUENCY (PERCENT) }=33.92
\end{array}
$$

To
$\stackrel{0}{0}$
i
i

Table 2.3-39—\{CCNPP 197 ft (60 m) October JFD (2000-2005)\}
(Page 5 of 8)
CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 20.23

								IND DI	RECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 11
(2)	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
. $2-.4$	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 11
(2)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
.5-1.0	0	0	3	1	1	3	2	6	0	1	0	0	1	1	1	0	0	20
(1)	. 00	. 00	. 34	. 11	. 11	. 34	. 22	. 67	. 00	. 11	. 00	. 00	. 11	. 11	. 11	. 00	. 00	2.23
(2)	. 00	. 00	. 07	. 02	. 02	. 07	. 05	. 14	. 00	. 02	. 00	. 00	. 02	. 02	. 02	. 00	. 00	. 45
1.1-1.5	3	2	2	0	1	0	1	1	0	0	1	0	0	1	0	2	0	14
(1)	. 34	. 22	. 22	. 00	. 11	. 00	. 11	. 11	. 00	. 00	. 11	. 00	. 00	. 11	. 00	. 22	. 00	1.56
(2)	. 07	. 05	. 05	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 05	. 00	. 32
1.6-2.0	1	3	0	0	3	1	0	0	2	1	0	0	0	1	1	1	0	14
(1)	. 11	. 34	. 00	. 00	. 34	. 11	. 00	. 00	. 22	. 11	. 00	. 00	. 00	. 11	. 11	. 11	. 00	1.56
(2)	. 02	. 07	. 00	. 00	. 07	. 02	. 00	. 00	. 05	. 02	. 00	. 00	. 00	. 02	. 02	. 02	. 00	. 32
2.1-3.0	6	3	5	10	16	6	1	4	2	2	2	1	1	2	5	7	0	73
(1)	. 67	. 34	. 56	1.12	1.79	. 67	. 11	. 45	. 22	. 22	. 22	. 11	. 11	. 22	. 56	. 78	. 00	8.16
(2)	. 14	. 07	. 11	. 23	. 36	. 14	. 02	. 09	. 05	. 05	. 05	. 02	. 02	. 05	. 11	. 16	. 00	1.65
$3.1-4.0$	8	7	9	17	20	8	3	8	5	4	5	5	0	7	4	10	0	120
(1)	. 89	. 78	1.01	1.90	2.23	. 89	. 34	. 89	. 56	. 45	. 56	. 56	. 00	. 78	. 45	1.12	. 00	13.41
(2)	. 18	. 16	. 20	. 38	. 45	. 18	. 07	. 18	. 11	. 09	. 11	. 11	. 00	. 16	. 09	. 23	. 00	2.71
4.1-5.0	14	8	7	9	3	3	4	21	18	4	6	5	10	12	21	17	0	162
(1)	1.56	. 89	. 78	1.01	. 34	. 34	. 45	2.35	2.01	. 45	. 67	. 56	1.12	1.34	2.35	1.90	. 00	18.10
(2)	. 32	. 18	. 16	. 20	. 07	. 07	. 09	. 47	. 41	. 09	. 14	. 11	. 23	. 27	. 47	. 38	. 00	3.66
5.1-6.0	4	8	4	0	0	3	2	25	18	10	17	16	13	25	18	19	0	182
(1)	. 45	. 89	. 45	. 00	. 00	. 34	. 22	2.79	2.01	1.12	1.90	1.79	1.45	2.79	2.01	2.12	. 00	20.34
(2)	. 09	. 18	. 09	. 00	. 00	. 07	. 05	. 56	. 41	. 23	. 38	. 36	. 29	. 56	. 41	. 43	. 00	4.11
6.1-8.0	9	12	1	0	0	0	0	10	27	51	37	15	9	22	43	38	0	274
(1)	1.01	1.34	. 11	. 00	. 00	. 00	. 00	1.12	3.02	5.70	4.13	1.68	1.01	2.46	4.80	4.25	. 00	30.61
(2)	. 20	. 27	. 02	. 00	. 00	. 00	. 00	. 23	. 61	1.15	. 84	. 34	. 20	. 50	. 97	. 86	. 00	6.19
8.1-10.0	1	1	0	0	0	0	0	0	3	15	6	1	0	0	1	2	0	30
(1)	. 11	. 11	. 00	. 00	. 00	. 00	. 00	. 00	. 34	1.68	. 67	. 11	. 00	. 00	. 11	. 22	. 00	3.35
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 34	. 14	. 02	. 00	. 00	. 02	. 05	. 00	. 68
10.1-89.5	0	0	1	0	0	0	0	1	0	1	1	0	0	0	0	0	0	4
(1)	. 00	. 00	. 11	. 00	. 00	. 00	. 00	. 11	. 00	. 11	. 11	. 00	. 00	. 00	. 00	. 00	. 00	. 45
(2)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 09
ALL SPEEDS	46	44	33	37	45	24	13	76	75	89	75	43	34	71	94	96	0	895
(1)	5.14	4.92	3.69	4.13	5.03	2.68	1.45	8.49	8.38	9.94	8.38	4.80	3.80	7.93	10.50	10.73	. 00	100.00
(2)	1.04	. 99	. 75	. 84	1.02	. 54	. 29	1.72	1.69	2.01	1.69	. 97	. 77	1.60	2.12	2.17	. 00	20.23

Table 2.3-39—\{CCNPP 197 ft (60 m) October JFD (2000-2005)\}

C OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

Table 2.3-39—\{CCNPP 197 ft (60 m) October JFD (2000-2005)\} (Page 8 of 8)
CC OCTOBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07
(2)	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 07
. $2-.4$	1	0	1	0	0	1	0	1	1	0	0	0	1	0	0	1	0	7
(1)	. 02	. 00	. 02	. 00	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 16
(2)	. 02	. 00	. 02	. 00	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 16
.5-1.0	3	2	6	4	3	7	4	8	2	1	0	7	3	4	3	2	0	59
(1)	. 07	. 05	. 14	. 09	. 07	. 16	. 09	. 18	. 05	. 02	. 00	. 16	. 07	. 09	. 07	. 05	. 00	1.33
(2)	. 07	. 05	. 14	. 09	. 07	. 16	. 09	. 18	. 05	. 02	. 00	. 16	. 07	. 09	. 07	. 05	. 00	1.33
1.1-1.5	10	10	12	7	12	8	5	4	1	1	8	4	6	8	5	9	0	110
(1)	. 23	. 23	. 27	. 16	. 27	. 18	. 11	. 09	. 02	. 02	. 18	. 09	. 14	. 18	. 11	. 20	. 00	2.49
(2)	. 23	. 23	. 27	. 16	. 27	. 18	. 11	. 09	. 02	. 02	. 18	. 09	. 14	. 18	. 11	. 20	. 00	2.49
1.6-2.0	13	19	13	9	18	9	8	10	7	10	7	7	5	5	4	11	0	155
(1)	. 29	. 43	. 29	. 20	. 41	. 20	. 18	. 23	. 16	. 23	. 16	. 16	. 11	. 11	. 09	. 25	. 00	3.50
(2)	. 29	. 43	. 29	. 20	. 41	. 20	. 18	. 23	. 16	. 23	. 16	. 16	. 11	. 11	. 09	. 25	. 00	3.50
2.1-3.0	66	51	26	47	50	40	18	24	23	27	22	19	11	12	17	30	0	483
(1)	1.49	1.15	. 59	1.06	1.13	. 90	. 41	. 54	. 52	. 61	. 50	. 43	. 25	. 27	. 38	. 68	. 00	10.92
(2)	1.49	1.15	. 59	1.06	1.13	. 90	. 41	. 54	. 52	. 61	. 50	. 43	. 25	. 27	. 38	. 68	. 00	10.92
3.1-4.0	68	46	31	41	51	26	31	43	34	32	48	29	15	29	34	50	0	608
(1)	1.54	1.04	. 70	. 93	1.15	. 59	. 70	. 97	. 77	. 72	1.08	. 66	. 34	. 66	. 77	1.13	. 00	13.74
(2)	1.54	1.04	. 70	. 93	1.15	. 59	. 70	. 97	. 77	. 72	1.08	. 66	. 34	. 66	. 77	1.13	. 00	13.74
4.1-5.0	79	62	46	47	14	9	23	59	50	54	50	50	33	41	85	79	0	781
(1)	1.79	1.40	1.04	1.06	. 32	. 20	. 52	1.33	1.13	1.22	1.13	1.13	. 75	. 93	1.92	1.79	. 00	17.65
(2)	1.79	1.40	1.04	1.06	. 32	. 20	. 52	1.33	1.13	1.22	1.13	1.13	. 75	. 93	1.92	1.79	. 00	17.65
5.1-6.0	53	56	57	17	6	9	10	63	69	61	67	53	43	78	80	87	0	809
(1)	1.20	1.27	1.29	. 38	. 14	. 20	. 23	1.42	1.56	1.38	1.51	1.20	. 97	1.76	1.81	1.97	. 00	18.28
(2)	1.20	1.27	1.29	. 38	. 14	. 20	. 23	1.42	1.56	1.38	1.51	1.20	. 97	1.76	1.81	1.97	. 00	18.28
6.1-8.0	73	116	60	12	2	2	6	67	93	106	106	60	46	84	137	101	0	1071
(1)	1.65	2.62	1.36	. 27	. 05	. 05	. 14	1.51	2.10	2.40	2.40	1.36	1.04	1.90	3.10	2.28	. 00	24.20
(2)	1.65	2.62	1.36	. 27	. 05	. 05	. 14	1.51	2.10	2.40	2.40	1.36	1.04	1.90	3.10	2.28	. 00	24.20
8.1-10.0	40	55	29	3	0	0	1	17	10	25	23	15	8	14	18	18	0	276
(1)	. 90	1.24	. 66	. 07	. 00	. 00	. 02	. 38	. 23	. 56	. 52	. 34	. 18	. 32	. 41	. 41	. 00	6.24
(2)	. 90	1.24	. 66	. 07	. 00	. 00	. 02	. 38	. 23	. 56	. 52	. 34	. 18	. 32	. 41	. 41	. 00	6.24
10.1-89.5	25	13	9	1	0	0	0	3	1	2	2	2	0	4	0	1	0	63
(1)	. 56	. 29	. 20	. 02	. 00	. 00	. 00	. 07	. 02	. 05	. 05	. 05	. 00	. 09	. 00	. 02	. 00	1.42
(2)	. 56	. 29	. 20	. 02	. 00	. 00	. 00	. 07	. 02	. 05	. 05	. 05	. 00	. 09	. 00	. 02	. 00	1.42
ALL SPEEDS	431	430	290	188	158	111	106	299	291	319	333	247	171	279	383	389	0	4425
(1)	9.74	9.72	6.55	4.25	3.57	2.51	2.40	6.76	6.58	7.21	7.53	5.58	3.86	6.31	8.66	8.79	. 00	100.00
(2)	9.74	9.72	6.55	4.25	3.57	2.51	2.40	6.76	6.58	7.21	7.53	5.58	3.86	6.31	8.66	8.79	. 00	100.00
(1) = PERCENT	OF ALI	GOOD	OBSERV	TIONS	FOR	HIS PA												

ग्0
$\stackrel{0}{2}$
i

Table 2.3-40—\{CCNPP 197 ft (60 m) November JFD (2000-2005)\}

(Page 1 of 8)

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 13.19

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) =Percent of all good observations for this period
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

| CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION | (60 -METER TOWER) | | |
| :---: | :---: | :---: | :---: | :---: |
| 197.0 FT WIND DATA | STABILITY CLASS B | CLASS FREQUENCY | (PERCENT) $=\quad 3.59$ |

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-40—\{CCNPP 197 ft (60 m) November JFD (2000-2005)\}

(Page 3 of 8)

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 3.69

(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

Table 2.3-40—\{CCNPP 197 ft (60 m) November JFD (2000-2005) \}

(Page 4 of 8)

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 30.35

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $5-1.0$	2	2	1	1	2	0	0	2	1	0	1	0	0	2	0	2	0	16
(1)	. 15	. 15	. 08	. 08	. 15	. 00	. 00	. 15	. 08	. 00	. 08	. 00	. 00	. 15	. 00	. 15	. 00	1.22
(2)	. 05	. 05	. 02	. 02	. 05	. 00	. 00	. 05	. 02	. 00	. 02	. 00	. 00	. 05	. 00	. 05	. 00	. 37
1.1-1.5	1	4	1	3	2	0	2	1	0	0	1	2	1	0	1	2	0	21
(1)	. 08	. 31	. 08	. 23	. 15	. 00	. 15	. 08	. 00	. 00	. 08	. 15	. 08	. 00	. 08	. 15	. 00	1.60
(2)	. 02	. 09	. 02	. 07	. 05	. 00	. 05	. 02	. 00	. 00	. 02	. 05	. 02	. 00	. 02	. 05	. 00	. 49
1.6-2.0	5	4	3	7	5	3	1	2	2	1	2	0	2	1	2	3	0	43
(1)	. 38	. 31	. 23	. 53	. 38	. 23	. 08	. 15	. 15	. 08	. 15	. 00	. 15	. 08	. 15	. 23	. 00	3.28
(2)	. 12	. 09	. 07	. 16	. 12	. 07	. 02	. 05	. 05	. 02	. 05	. 00	. 05	. 02	. 05	. 07	. 00	1.00
2.1-3.0	9	6	13	5	11	12	15	15	12	5	4	4	2	2	3	2	0	120
(1)	. 69	. 46	. 99	. 38	. 84	. 92	1.15	1.15	. 92	. 38	. 31	. 31	. 15	. 15	. 23	. 15	. 00	9.17
(2)	. 21	. 14	. 30	. 12	. 26	. 28	. 35	. 35	. 28	. 12	. 09	. 09	. 05	. 05	. 07	. 05	. 00	2.78
3.1-4.0	10	6	8	10	13	12	22	23	13	12	5	8	8	2	7	13	0	172
(1)	. 76	. 46	. 61	. 76	. 99	. 92	1.68	1.76	. 99	. 92	. 38	. 61	. 61	. 15	. 53	. 99	. 00	13.14
(2)	. 23	. 14	. 19	. 23	. 30	. 28	. 51	. 53	. 30	. 28	. 12	. 19	. 19	. 05	. 16	. 30	. 00	3.99
4.1-5.0	11	4	7	9	17	13	17	21	13	8	10	7	5	9	10	13	0	174
(1)	. 84	. 31	. 53	. 69	1.30	. 99	1.30	1.60	. 99	. 61	. 76	. 53	. 38	. 69	. 76	. 99	. 00	13.29
(2)	. 26	. 09	. 16	. 21	. 39	. 30	. 39	. 49	. 30	. 19	. 23	. 16	. 12	. 21	. 23	. 30	. 00	4.03
5.1-6.0	12	2	4	7	4	6	12	32	7	11	10	13	3	4	16	30	0	173
(1)	. 92	. 15	. 31	. 53	. 31	. 46	. 92	2.44	. 53	. 84	. 76	. 99	. 23	. 31	1.22	2.29	. 00	13.22
(2)	. 28	. 05	. 09	. 16	. 09	. 14	. 28	. 74	. 16	. 26	. 23	. 30	. 07	. 09	. 37	. 70	. 00	4.01
6.1-8.0	19	19	9	2	5	8	5	50	20	19	30	11	12	34	43	49	0	335
(1)	1.45	1.45	. 69	. 15	. 38	. 61	. 38	3.82	1.53	1.45	2.29	. 84	. 92	2.60	3.28	3.74	. 00	25.59
(2)	. 44	. 44	. 21	. 05	. 12	. 19	. 12	1.16	. 46	. 44	. 70	. 26	. 28	. 79	1.00	1.14	. 00	7.77
8.1-10.0	27	15	8	0	0	0	0	23	8	8	13	3	4	31	23	21	0	184
(1)	2.06	1.15	. 61	. 00	. 00	. 00	. 00	1.76	. 61	. 61	. 99	. 23	. 31	2.37	1.76	1.60	. 00	14.06
(2)	. 63	. 35	. 19	. 00	. 00	. 00	. 00	. 53	. 19	. 19	. 30	. 07	. 09	. 72	. 53	. 49	. 00	4.27
10.1-89.5	21	10	0	0	0	0	0	9	0	0	0	1	3	18	6	3	0	71
(1)	1.60	. 76	. 00	. 00	. 00	. 00	. 00	. 69	. 00	. 00	. 00	. 08	. 23	1.38	. 46	. 23	. 00	5.42
(2)	. 49	. 23	. 00	. 00	. 00	. 00	. 00	. 21	. 00	. 00	. 00	. 02	. 07	. 42	. 14	. 07	. 00	1.65
ALL SPEEDS	117	72	54	44	59	54	74	178	76	64	76	49	40	103	111	138	0	1309
(1)	8.94	5.50	4.13	3.36	4.51	4.13	5.65	13.60	5.81	4.89	5.81	3.74	3.06	7.87	8.48	10.54	. 00	100.00
(2)	2.71	1.67	1.25	1.02	1.37	1.25	1.72	4.13	1.76	1.48	1.76	1.14	. 93	2.39	2.57	3.20	. 00	30.35
(1) = PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PA												

Table 2.3-40—\{CCNPP 197 ft (60 m) November JFD (2000-2005)\}

(Page 5 of 8)

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 28.61

								IND D	ECIIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
(1)	. 16	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 16
(2)	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
.5-1.0	1	2	0	0	1	2	1	2	0	0	0	0	1	1	1	2	0	14
(1)	. 08	. 16	. 00	. 00	. 08	. 16	. 08	. 16	. 00	. 00	. 00	. 00	. 08	. 08	. 08	. 16	. 00	1.13
(2)	. 02	. 05	. 00	. 00	. 02	. 05	. 02	. 05	. 00	. 00	. 00	. 00	. 02	. 02	. 02	. 05	. 00	. 32
1.1-1.5	3	0	1	2	2	4	0	1	2	1	0	1	1	1	1	2	0	22
(1)	. 24	. 00	. 08	. 16	. 16	. 32	. 00	. 08	. 16	. 08	. 00	. 08	. 08	. 08	. 08	. 16	. 00	1.78
(2)	. 07	. 00	. 02	. 05	. 05	. 09	. 00	. 02	. 05	. 02	. 00	. 02	. 02	. 02	. 02	. 05	. 00	. 51
1.6-2.0	2	1	3	1	4	3	2	2	1	2	0	0	0	0	1	2	0	24
(1)	. 16	. 08	. 24	. 08	. 32	. 24	. 16	. 16	. 08	. 16	. 00	. 00	. 00	. 00	. 08	. 16	. 00	1.94
(2)	. 05	. 02	. 07	. 02	. 09	. 07	. 05	. 05	. 02	. 05	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 56
2.1-3.0	4	0	9	11	11	12	6	7	8	5	2	2	2	6	10	6	0	101
(1)	. 32	. 00	. 73	. 89	. 89	. 97	. 49	. 57	. 65	. 41	. 16	. 16	. 16	. 49	. 81	. 49	. 00	8.18
(2)	. 09	. 00	. 21	. 26	. 26	. 28	. 14	. 16	. 19	. 12	. 05	. 05	. 05	. 14	. 23	. 14	. 00	2.34
3.1-4.0	8	5	7	6	12	12	6	9	10	16	13	9	8	11	9	7	0	148
(1)	. 65	. 41	. 57	. 49	. 97	. 97	. 49	. 73	. 81	1.30	1.05	. 73	. 65	. 89	. 73	. 57	. 00	11.99
(2)	. 19	. 12	. 16	. 14	. 28	. 28	. 14	. 21	. 23	. 37	. 30	. 21	. 19	. 26	. 21	. 16	. 00	3.43
4.1-5.0	11	4	3	2	2	13	8	13	9	14	21	17	10	24	29	34	0	214
(1)	. 89	. 32	. 24	. 16	. 16	1.05	. 65	1.05	. 73	1.13	1.70	1.38	. 81	1.94	2.35	2.76	. 00	17.34
(2)	. 26	. 09	. 07	. 05	. 05	. 30	. 19	. 30	. 21	. 32	. 49	. 39	. 23	. 56	. 67	. 79	. 00	4.96
5.1-6.0	7	4	3	2	2	1	5	14	25	35	20	13	15	20	45	49	0	260
(1)	. 57	. 32	. 24	. 16	. 16	. 08	. 41	1.13	2.03	2.84	1.62	1.05	1.22	1.62	3.65	3.97	. 00	21.07
(2)	. 16	. 09	. 07	. 05	. 05	. 02	. 12	. 32	. 58	. 81	. 46	. 30	. 35	. 46	1.04	1.14	. 00	6.03
6.1-8.0	7	4	0	0	1	0	2	12	56	76	54	19	15	19	34	38	0	337
(1)	. 57	. 32	. 00	. 00	. 08	. 00	. 16	. 97	4.54	6.16	4.38	1.54	1.22	1.54	2.76	3.08	. 00	27.31
(2)	. 16	. 09	. 00	. 00	. 02	. 00	. 05	. 28	1.30	1.76	1.25	. 44	. 35	. 44	. 79	. 88	. 00	7.81
8.1-10.0	4	0	0	0	1	0	0	8	8	32	31	3	3	7	6	1	0	104
(1)	. 32	. 00	. 00	. 00	. 08	. 00	. 00	. 65	. 65	2.59	2.51	. 24	. 24	. 57	. 49	. 08	. 00	8.43
(2)	. 09	. 00	. 00	. 00	. 02	. 00	. 00	. 19	. 19	. 74	. 72	. 07	. 07	. 16	. 14	. 02	. 00	2.41
10.1-89.5	0	0	0	0	0	0	0	1	0	5	1	0	0	1	0	0	0	8
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08	. 00	. 41	. 08	. 00	. 00	. 08	. 00	. 00	. 00	. 65
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 12	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 19
ALL SPEEDS	49	20	26	24	36	47	30	69	119	186	142	64	55	90	136	141	0	1234
(1)	3.97	1.62	2.11	1.94	2.92	3.81	2.43	5.59	9.64	15.07	11.51	5.19	4.46	7.29	11.02	11.43	. 00	100.00
(2)	1.14	. 46	. 60	. 56	. 83	1.09	. 70	1.60	2.76	4.31	3.29	1.48	1.28	2.09	3.15	3.27	. 00	28.61

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) = 11.62

| CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION | (60-METER TOWER) | | |
| :---: | :---: | :---: | :---: | :---: |
| 197.0 FT WIND DATA | STABILITY CLASS G | CLASS FREQUENCY | (PERCENT) $=8.95$ |

Table 2．3－40—\｛CCNPP 197 ft（60 m）November JFD（2000－2005）\}

（Page 8 of 8）

CC NOVEMBER MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY（PERCENT）$=100.00$

Table 2.3-41—\{CCNPP 197 ft (60 m) December JFD (2000-2005)\}

(Page 1 of 8)

CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER
197.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 8.34

(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

$$
\begin{aligned}
& \text { CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION } \\
& \text { (60-METER TOWER) } \\
& 197.0 \text { FT WIND DATA }
\end{aligned} \text { STABILITY CLASS B } \quad \text { CLASS FREQUENCY (PERCENT) = } 4.20
$$

$\begin{aligned} & \text { SPEED } \\ & \text { mps } \end{aligned}$	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.1-1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1.6-2.0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	3
(1)	. 00	. 55	. 55	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55	. 00	. 00	1.66
(2)	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 07
2.1-3.0	3	5	0	0	1	1	0	0	0	1	0	4	0	1	0	1	0	17
(1)	1.66	2.76	. 00	. 00	. 55	. 55	. 00	. 00	. 00	. 55	. 00	2.21	. 00	. 55	. 00	. 55	. 00	9.39
(2)	. 07	. 12	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 02	. 00	. 09	. 00	. 02	. 00	. 02	. 00	. 39
3.1-4.0	2	5	2	0	1	0	1	1	0	0	1	0	2	2	3	3	0	23
(1)	1.10	2.76	1.10	. 00	. 55	. 00	. 55	. 55	. 00	. 00	. 55	. 00	1.10	1.10	1.66	1.66	. 00	12.71
(2)	. 05	. 12	. 05	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 02	. 00	. 05	. 05	. 07	. 07	. 00	. 53
4.1-5.0	5	2	0	0	0	0	0	1	2	3	6	4	1	3	2	1	0	30
(1)	2.76	1.10	. 00	. 00	. 00	. 00	. 00	. 55	1.10	1.66	3.31	2.21	. 55	1.66	1.10	. 55	. 00	16.57
(2)	. 12	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 07	. 14	. 09	. 02	. 07	. 05	. 02	. 00	. 70
5.1-6.0	5	2	0	0	0	0	0	0	1	7	1	0	2	4	4	2	0	28
(1)	2.76	1.10	. 00	. 00	. 00	. 00	. 00	. 00	. 55	3.87	. 55	. 00	1.10	2.21	2.21	1.10	. 00	15.47
(2)	. 12	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 16	. 02	. 00	. 05	. 09	. 09	. 05	. 00	. 65
6.1-8.0	4	2	1	0	0	0	0	0	0	5	4	3	6	5	9	5	0	44
(1)	2.21	1.10	. 55	. 00	. 00	. 00	. 00	. 00	. 00	2.76	2.21	1.66	3.31	2.76	4.97	2.76	. 00	24.31
(2)	. 09	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 12	. 09	. 07	. 14	. 12	. 21	. 12	. 00	1.02
8.1-10.0	2	2	1	0	0	0	0	0	0	1	2	0	1	8	7	1	0	25
(1)	1.10	1.10	. 55	. 00	. 00	. 00	. 00	. 00	. 00	. 55	1.10	. 00	. 55	4.42	3.87	. 55	. 00	13.81
(2)	. 05	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 05	. 00	. 02	. 19	. 16	. 02	. 00	. 58
10.1-89.5	0	0	0	0	0	0	0	0	1	0	0	1	0	1	8	0	0	11
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55	. 00	. 00	. 55	. 00	. 55	4.42	. 00	. 00	6.08
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 02	. 19	. 00	. 00	. 25
ALL SPEEDS	21	19	5	0	2	1	1	2	4	17	14	12	12	24	34	13	0	181
(1)	11.60	10.50	2.76	. 00	1.10	. 55	. 55	1.10	2.21	9.39	7.73	6.63	6.63	13.26	18.78	7.18	. 00	100.00
(2)	. 49	. 44	. 12	. 00	. 05	. 02	. 02	. 05	. 09	. 39	. 32	. 28	. 28	. 56	. 79	. 30	. 00	4.20

[^1]CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 4.36

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 53
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02
1.1-1.5	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
(1)	. 53	. 00	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.06
(2)	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05
1.6-2.0	1	2	1	2	0	0	0	0	0	0	0	1	1	0	1	0	0	9
(1)	. 53	1.06	. 53	1.06	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 53	. 53	. 00	. 53	. 00	. 00	4.79
(2)	. 02	. 05	. 02	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 02	. 00	. 00	. 21
2.1-3.0	0	2	1	0	2	3	1	1	0	1	1	2	2	4	2	1	0	23
(1)	. 00	1.06	. 53	. 00	1.06	1.60	. 53	. 53	. 00	. 53	. 53	1.06	1.06	2.13	1.06	. 53	. 00	12.23
(2)	. 00	. 05	. 02	. 00	. 05	. 07	. 02	. 02	. 00	. 02	. 02	. 05	. 05	. 09	. 05	. 02	. 00	. 53
3.1-4.0	2	2	1	0	0	1	0	1	2	1	2	2	3	2	2	4	0	25
(1)	1.06	1.06	. 53	. 00	. 00	. 53	. 00	. 53	1.06	. 53	1.06	1.06	1.60	1.06	1.06	2.13	. 00	13.30
(2)	. 05	. 05	. 02	. 00	. 00	. 02	. 00	. 02	. 05	. 02	. 05	. 05	. 07	. 05	. 05	. 09	. 00	. 58
4.1-5.0	3	3	0	0	0	1	1	3	1	0	0	3	3	4	3	7	0	32
(1)	1.60	1.60	. 00	. 00	. 00	. 53	. 53	1.60	. 53	. 00	. 00	1.60	1.60	2.13	1.60	3.72	. 00	17.02
(2)	. 07	. 07	. 00	. 00	. 00	. 02	. 02	. 07	. 02	. 00	. 00	. 07	. 07	. 09	. 07	. 16	. 00	. 74
5.1-6.0	2	0	1	0	0	0	0	0	4	7	5	1	3	2	1	1	0	27
(1)	1.06	. 00	. 53	. 00	. 00	. 00	. 00	. 00	2.13	3.72	2.66	. 53	1.60	1.06	. 53	. 53	. 00	14.36
(2)	. 05	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 09	. 16	. 12	. 02	. 07	. 05	. 02	. 02	. 00	. 63
6.1-8.0	3	3	2	0	0	0	0	0	1	3	3	3	5	9	8	2	0	42
(1)	1.60	1.60	1.06	. 00	. 00	. 00	. 00	. 00	. 53	1.60	1.60	1.60	2.66	4.79	4.26	1.06	. 00	22.34
(2)	. 07	. 07	. 05	. 00	. 00	. 00	. 00	. 00	. 02	. 07	. 07	. 07	. 12	. 21	. 19	. 05	. 00	. 97
8.1-10.0	0	1	0	0	0	0	0	0	0	0	2	0	0	6	8	1	0	18
(1)	. 00	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.06	. 00	. 00	3.19	4.26	. 53	. 00	9.57
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 14	. 19	. 02	. 00	. 42
10.1-89.5	0	1	0	0	0	0	0	0	0	0	2	0	0	2	4	0	0	9
(1)	. 00	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.06	. 00	. 00	1.06	2.13	. 00	. 00	4.79
(2)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 05	. 09	. 00	. 00	. 21
ALL SPEEDS	12	14	7	2	2	5	2	5	9	12	15	12	17	29	29	16	0	188
(1)	6.38	7.45	3.72	1.06	1.06	2.66	1.06	2.66	4.79	6.38	7.98	6.38	9.04	15.43	15.43	8.51	. 00	100.00
(2)	. 28	. 32	. 16	. 05	. 05	. 12	. 05	. 12	. 21	. 28	. 35	. 28	. 39	. 67	. 67	. 37	. 00	4.36

(1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE
(2)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

Table 2.3-41—\{CCNPP 197 ft (60 m) December JFD (2000-2005)\}

(Page 4 of 8)

CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 35.33

								IND DIR	RECTIO	FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT $\begin{array}{r}\text {. } 2 \\ \\ \\ \\ \\ \\ (1) \\ (2)\end{array}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-\quad .4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $5-1.0$	0	4	2	1	0	0	0	1	0	0	1	0	0	0	0	2	0	11
	. 00	. 26	. 13	. 07	. 00	. 00	. 00	. 07	. 00	. 00	. 07	. 00	. 00	. 00	. 00	. 13	. 00	. 72
	. 00	. 09	. 05	. 02	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 00	. 25
1.1-1.5	3	2	1	2	2	0	1	1	0	0	1	1	2	2	2	1	0	21
(1)	. 20	. 13	. 07	. 13	. 13	. 00	. 07	. 07	. 00	. 00	. 07	. 07	. 13	. 13	. 13	. 07	. 00	1.38
$\begin{array}{r} (2) \\ 1.6-\quad 2.0 \end{array}$. 07	. 05	. 02	. 05	. 05	. 00	. 02	. 02	. 00	. 00	. 02	. 02	. 05	. 05	. 05	. 02	. 00	. 49
	5	3	5	4	5	3	1	1	2	1	1	3	1	4	1	5	0	45
(1)	. 33	. 20	. 33	. 26	. 33	. 20	. 07	. 07	. 13	. 07	. 07	. 20	. 07	. 26	. 07	. 33	. 00	2.95
(2)	. 12	. 07	. 12	. 09	. 12	. 07	. 02	. 02	. 05	. 02	. 02	. 07	. 02	. 09	. 02	. 12	. 00	1.04
$2.1-3.0$	17	14	5	9	4	7	4	6	7	4	2	12	13	8	11	3	0	126
$\begin{array}{r} 2.1-3.0 \\ (1) \end{array}$	1.12	. 92	. 33	. 59	. 26	. 46	. 26	. 39	. 46	. 26	. 13	. 79	. 85	. 52	. 72	. 20	. 00	8.27
$\begin{array}{r} \text { (2) } \\ 3.1-4.0 \end{array}$. 39	. 32	. 12	. 21	. 09	. 16	. 09	. 14	. 16	. 09	. 05	. 28	. 30	. 19	. 25	. 07	. 00	2.92
	23	12	15	18	7	7	10	10	14	9	5	10	11	15	22	29	0	217
$3.1-4.0$ (1)	1.51	. 79	. 98	1.18	. 46	. 46	. 66	. 66	. 92	. 59	. 33	. 66	. 72	. 98	1.44	1.90	. 00	14.24
(2)	. 53	. 28	. 35	. 42	. 16	. 16	. 23	. 23	. 32	. 21	. 12	. 23	. 25	. 35	. 51	. 67	. 00	5.03
	19	15	19	15	5	7	10	12	14	15	12	9	7	16	20	33	0	228
$\begin{array}{r} 4.1-5.0 \\ (1) \end{array}$	1.25	. 98	1.25	. 98	. 33	. 46	. 66	. 79	. 92	. 98	. 79	. 59	. 46	1.05	1.31	2.17	. 00	14.96
(2)	. 44	. 35	. 44	. 35	. 12	. 16	. 23	. 28	. 32	. 35	. 28	. 21	. 16	. 37	. 46	. 76	. 00	5.29
	22	22	19	12	3	2	3	6	8	13	12	13	12	19	28	28	0	222
$\begin{array}{r} 5.1-6.0 \\ (1) \end{array}$	1.44	1.44	1.25	. 79	. 20	. 13	. 20	. 39	. 52	. 85	. 79	. 85	. 79	1.25	1.84	1.84	. 00	14.57
(2)	. 51	. 51	. 44	. 28	. 07	. 05	. 07	. 14	. 19	. 30	. 28	. 30	. 28	. 44	. 65	. 65	. 00	5.15
$6.1-8.0$	53	54	27	7	0	0	2	15	13	16	25	15	17	37	73	41	0	395
(1)	3.48	3.54	1.77	. 46	. 00	. 00	. 13	. 98	. 85	1.05	1.64	. 98	1.12	2.43	4.79	2.69	. 00	25.92
8.1-10.0	1.23	1.25	. 63	. 16	. 00	. 00	. 05	. 35	. 30	. 37	. 58	. 35	. 39	. 86	1.69	. 95	. 00	9.16
	29	25	14	1	0	0	2	9	5	6	12	1	9	30	34	14	0	191
(1)	1.90	1.64	. 92	. 07	. 00	. 00	. 13	. 59	. 33	. 39	. 79	. 07	. 59	1.97	2.23	. 92	. 00	12.53
(2)	. 67	. 58	. 32	. 02	. 00	. 00	. 05	. 21	. 12	. 14	. 28	. 02	. 21	. 70	. 79	. 32	. 00	4.43
10.1-89.5	9	6	9	0	0	0	5	3	2	0	1	3	3	14	10	3	0	68
(1) (2)	. 59	. 39	. 59	. 00	. 00	. 00	. 33	. 20	. 13	. 00	. 07	. 20	. 20	. 92	. 66	. 20	. 00	4.46
	. 21	. 14	. 21	. 00	. 00	. 00	. 12	. 07	. 05	. 00	. 02	. 07	. 07	. 32	. 23	. 07	. 00	1.58
ALL SPEEDS	180	157	116	69	26	26	38	64	65	64	72	67	75	145	201	159	0	1524
(1) (2)	11.81	10.30	7.61	4.53	1.71	1.71	2.49	4.20	4.27	4.20	4.72	4.40	4.92	9.51	13.19	10.43	. 00	100.00
	4.17	3.64	2.69	1.60	. 60	. 60	. 88	1.48	1.51	1.48	1.67	1.55	1.74	3.36	4.66	3.69	. 00	35.33
(1) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE(2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																		

Table 2.3-41—\{CCNPP 197 ft (60 m) December JFD (2000-2005)\} (Page 5 of 8)
CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) = 36.07

	WIND DIRECTION FROM																	
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	1	1	1	0	0	1	0	0	0	3	0	2	3	0	0	2	0	14
(1)	. 06	. 06	. 06	. 00	. 00	. 06	. 00	. 00	. 00	. 19	. 00	. 13	. 19	. 00	. 00	. 13	. 00	. 90
(2)	. 02	. 02	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 07	. 00	. 05	. 07	. 00	. 00	. 05	. 00	. 32
1.1-1.5	2	0	1	1	2	0	1	1	1	2	0	2	0	1	3	0	0	17
(1)	. 13	. 00	. 06	. 06	. 13	. 00	. 06	. 06	. 06	. 13	. 00	. 13	. 00	. 06	. 19	. 00	. 00	1.09
(2)	. 05	. 00	. 02	. 02	. 05	. 00	. 02	. 02	. 02	. 05	. 00	. 05	. 00	. 02	. 07	. 00	. 00	. 39
1.6-2.0	3	3	1	2	2	0	1	3	1	0	3	1	2	2	0	2	0	26
(1)	. 19	. 19	. 06	. 13	. 13	. 00	. 06	. 19	. 06	. 00	. 19	. 06	. 13	. 13	. 00	. 13	. 00	1.67
(2)	. 07	. 07	. 02	. 05	. 05	. 00	. 02	. 07	. 02	. 00	. 07	. 02	. 05	. 05	. 00	. 05	. 00	. 60
2.1-3.0	6	6	8	6	2	6	9	4	6	4	5	3	9	9	16	11	0	110
(1)	. 39	. 39	. 51	. 39	. 13	. 39	. 58	. 26	. 39	. 26	. 32	. 19	. 58	. 58	1.03	. 71	. 00	7.07
(2)	. 14	. 14	. 19	. 14	. 05	. 14	. 21	. 09	. 14	. 09	. 12	. 07	. 21	. 21	. 37	. 25	. 00	2.55
3.1-4.0	16	9	12	6	6	6	4	16	14	13	3	12	16	35	27	19	0	214
(1)	1.03	. 58	. 77	. 39	. 39	. 39	. 26	1.03	. 90	. 84	. 19	. 77	1.03	2.25	1.74	1.22	. 00	13.75
(2)	. 37	. 21	. 28	. 14	. 14	. 14	. 09	. 37	. 32	. 30	. 07	. 28	. 37	. 81	. 63	. 44	. 00	4.96
4.1-5.0	13	14	7	5	0	8	21	7	19	11	8	12	24	57	69	57	0	332
(1)	. 84	. 90	. 45	. 32	. 00	. 51	1.35	. 45	1.22	. 71	. 51	. 77	1.54	3.66	4.43	3.66	. 00	21.34
(2)	. 30	. 32	. 16	. 12	. 00	. 19	. 49	. 16	. 44	. 25	. 19	. 28	. 56	1.32	1.60	1.32	. 00	7.70
5.1-6.0	14	3	1	0	0	2	7	22	26	20	23	16	24	51	55	50	0	314
(1)	. 90	. 19	. 06	. 00	. 00	. 13	. 45	1.41	1.67	1.29	1.48	1.03	1.54	3.28	3.53	3.21	. 00	20.18
(2)	. 32	. 07	. 02	. 00	. 00	. 05	. 16	. 51	. 60	. 46	. 53	. 37	. 56	1.18	1.27	1.16	. 00	7.28
6.1-8.0	8	7	1	0	0	0	3	20	31	70	90	20	27	57	39	25	0	398
(1)	. 51	. 45	. 06	. 00	. 00	. 00	. 19	1.29	1.99	4.50	5.78	1.29	1.74	3.66	2.51	1.61	. 00	25.58
(2)	. 19	. 16	. 02	. 00	. 00	. 00	. 07	. 46	. 72	1.62	2.09	. 46	. 63	1.32	. 90	. 58	. 00	9.23
8.1-10.0	1	1	0	0	0	0	1	9	8	30	43	2	3	17	2	0	0	117
(1)	. 06	. 06	. 00	. 00	. 00	. 00	. 06	. 58	. 51	1.93	2.76	. 13	. 19	1.09	. 13	. 00	. 00	7.52
(2)	. 02	. 02	. 00	. 00	. 00	. 00	. 02	. 21	. 19	. 70	1.00	. 05	. 07	. 39	. 05	. 00	. 00	2.71
10.1-89.5	0	0	0	0	0	0	3	6	0	2	2	0	0	1	0	0	0	14
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 19	. 39	. 00	. 13	. 13	. 00	. 00	. 06	. 00	. 00	. 00	. 90
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 14	. 00	. 05	. 05	. 00	. 00	. 02	. 00	. 00	. 00	. 32
ALL SPEEDS	64	44	32	20	12	23	50	88	106	155	177	70	108	230	211	166	0	1556
(1)	4.11	2.83	2.06	1.29	. 77	1.48	3.21	5.66	6.81	9.96	11.38	4.50	6.94	14.78	13.56	10.67	. 00	100.00
(2)	1.48	1.02	. 74	. 46	. 28	. 53	1.16	2.04	2.46	3.59	4.10	1.62	2.50	5.33	4.89	3.85	. 00	36.07

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

| CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION | ($60-$ METER TOWER) | | |
| :---: | :---: | :---: | :---: | :---: |
| 197.0 FT WIND DATA | STABILITY CLASS F | CLASS FREQUENCY | (PERCENT) $=8.81$ | 197.0 FT WIND DATA

Table 2.3-41—\{CCNPP 197 ft (60 m) December JFD (2000-2005)\}

(Page 6 of 8)

								D	IRECTIO	N FROM								
SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	0	0	1	1	2	1	1	1	0	1	1	0	1	2	1	2	0	15
(1)	. 00	. 00	. 26	. 26	. 53	. 26	. 26	. 26	. 00	. 26	. 26	. 00	. 26	. 53	. 26	. 53	. 00	3.95
(2)	. 00	. 00	. 02	. 02	. 05	. 02	. 02	. 02	. 00	. 02	. 02	. 00	. 02	. 05	. 02	. 05	. 00	. 35
1.1-1.5	1	2	1	0	0	0	0	1	1	1	2	0	2	0	3	1	0	15
(1)	. 26	. 53	. 26	. 00	. 00	. 00	. 00	. 26	. 26	. 26	. 53	. 00	. 53	. 00	. 79	. 26	. 00	3.95
(2)	. 02	. 05	. 02	. 00	. 00	. 00	. 00	. 02	. 02	. 02	. 05	. 00	. 05	. 00	. 07	. 02	. 00	. 35
1.6-2.0	0	0	2	0	2	3	1	0	1	1	0	0	0	0	1	3	0	14
(1)	. 00	. 00	. 53	. 00	. 53	. 79	. 26	. 00	. 26	. 26	. 00	. 00	. 00	. 00	. 26	. 79	. 00	3.68
(2)	. 00	. 00	. 05	. 00	. 05	. 07	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 02	. 07	. 00	. 32
2.1-3.0	7	3	1	1	2	0	1	8	2	3	5	1	4	8	4	7	0	57
(1)	1.84	. 79	. 26	. 26	. 53	. 00	. 26	2.11	. 53	. 79	1.32	. 26	1.05	2.11	1.05	1.84	. 00	15.00
(2)	. 16	. 07	. 02	. 02	. 05	. 00	. 02	. 19	. 05	. 07	. 12	. 02	. 09	. 19	. 09	. 16	. 00	1.32
3.1-4.0	2	1	1	0	2	1	1	1	2	4	10	7	4	5	11	9	0	61
(1)	. 53	. 26	. 26	. 00	. 53	. 26	. 26	. 26	. 53	1.05	2.63	1.84	1.05	1.32	2.89	2.37	. 00	16.05
(2)	. 05	. 02	. 02	. 00	. 05	. 02	. 02	. 02	. 05	. 09	. 23	. 16	. 09	. 12	. 25	. 21	. 00	1.41
4.1-5.0	0	0	0	0	0	0	2	3	3	5	8	8	3	14	11	5	0	62
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 53	. 79	. 79	1.32	2.11	2.11	. 79	3.68	2.89	1.32	. 00	16.32
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 07	. 07	. 12	. 19	. 19	. 07	. 32	. 25	. 12	. 00	1.44
5.1-6.0	1	0	0	0	0	0	4	2	13	18	8	4	6	4	10	2	0	72
(1)	. 26	. 00	. 00	. 00	. 00	. 00	1.05	. 53	3.42	4.74	2.11	1.05	1.58	1.05	2.63	. 53	. 00	18.95
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 09	. 05	. 30	. 42	. 19	. 09	. 14	. 09	. 23	. 05	. 00	1.67
6.1-8.0	2	0	0	0	0	0	0	1	18	29	19	8	1	3	0	0	0	81
(1)	. 53	. 00	. 00	. 00	. 00	. 00	. 00	. 26	4.74	7.63	5.00	2.11	. 26	. 79	. 00	. 00	. 00	21.32
(2)	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 42	. 67	. 44	. 19	. 02	. 07	. 00	. 00	. 00	1.88
8.1-10.0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	3
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 26	. 26	. 26	. 00	. 00	. 00	. 00	. 00	. 00	. 79
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 07
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
ALL SPEEDS	13	6	6	2	8	5	10	17	41	63	54	28	21	36	41	29	0	380
(1)	3.42	1.58	1.58	. 53	2.11	1.32	2.63	4.47	10.79	16.58	14.21	7.37	5.53	9.47	10.79	7.63	.00	100.00
(2)	. 30	. 14	. 14	. 05	. 19	. 12	. 23	. 39	. 95	1.46	1.25	. 65	. 49	. 83	. 95	. 67	. 00	8.81

© 2007 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

| CC DECEMBER MET DATA JOINT | FREQUENCY DISTRIBUTION | (60-METER TOWER) | |
| :---: | :---: | :---: | :---: | :---: |
| 197.0 FT WIND DATA | STABILITY CLASS G | CLASS FREQUENCY | (PERCENT) $=2.90$ |

Table 2.3-41—\{CCNPP 197 ft (60 m) December JFD (2000-2005)\} (Page 8 of 8)
CC DECEMBER MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) = 100.00

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL
mps																		
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
.5-1.0	4	5	4	2	3	3	1	2	1	6	2	2	4	2	2	7	0	50
(1)	. 09	. 12	. 09	. 05	. 07	. 07	. 02	. 05	. 02	. 14	. 05	. 05	. 09	. 05	. 05	. 16	. 00	1.16
(2)	. 09	. 12	. 09	. 05	. 07	. 07	. 02	. 05	. 02	. 14	. 05	. 05	. 09	. 05	. 05	. 16	. 00	1.16
1.1-1.5	7	6	5	3	4	0	3	3	2	4	3	3	4	4	9	2	0	62
(1)	. 16	. 14	. 12	. 07	. 09	. 00	. 07	. 07	. 05	. 09	. 07	. 07	. 09	. 09	. 21	. 05	. 00	1.44
(2)	. 16	. 14	. 12	. 07	. 09	. 00	. 07	. 07	. 05	. 09	. 07	. 07	. 09	. 09	. 21	. 05	. 00	1.44
1.6-2.0	9	9	12	9	11	6	5	4	6	7	6	5	4	6	5	11	0	115
(1)	. 21	. 21	. 28	. 21	. 25	. 14	. 12	. 09	. 14	. 16	. 14	. 12	. 09	. 14	. 12	. 25	. 00	2.67
(2)	. 21	. 21	. 28	. 21	. 25	. 14	. 12	. 09	. 14	. 16	. 14	. 12	. 09	. 14	. 12	. 25	. 00	2.67
2.1-3.0	35	34	17	18	13	17	16	21	16	17	16	27	33	31	41	26	0	378
(1)	. 81	. 79	. 39	. 42	. 30	. 39	. 37	. 49	. 37	. 39	. 37	. 63	. 76	. 72	. 95	. 60	. 00	8.76
(2)	. 81	. 79	. 39	. 42	. 30	. 39	. 37	. 49	. 37	. 39	. 37	. 63	. 76	. 72	. 95	. 60	. 00	8.76
3.1-4.0	54	34	34	24	17	15	16	31	34	35	30	35	40	67	67	66	0	599
(1)	1.25	. 79	. 79	. 56	. 39	. 35	. 37	. 72	. 79	. 81	. 70	. 81	. 93	1.55	1.55	1.53	. 00	13.89
(2)	1.25	. 79	. 79	. 56	. 39	. 35	. 37	. 72	. 79	. 81	. 70	. 81	. 93	1.55	1.55	1.53	. 00	13.89
4.1-5.0	50	36	27	20	5	16	35	30	41	41	43	47	42	101	112	106	0	752
(1)	1.16	. 83	. 63	. 46	. 12	. 37	. 81	. 70	. 95	. 95	1.00	1.09	. 97	2.34	2.60	2.46	. 00	17.43
(2)	1.16	. 83	. 63	. 46	. 12	. 37	. 81	. 70	. 95	. 95	1.00	1.09	. 97	2.34	2.60	2.46	. 00	17.43
5.1-6.0	50	29	22	13	3	4	14	34	56	81	64	45	54	90	105	88	0	752
(1)	1.16	. 67	. 51	. 30	. 07	. 09	. 32	. 79	1.30	1.88	1.48	1.04	1.25	2.09	2.43	2.04	. 00	17.43
(2)	1.16	. 67	. 51	. 30	. 07	. 09	. 32	. 79	1.30	1.88	1.48	1.04	1.25	2.09	2.43	2.04	. 00	17.43
6.1-8.0	85	70	33	9	0	0	5	39	71	143	155	63	66	127	145	74	0	1085
(1)	1.97	1.62	. 76	. 21	. 00	. 00	. 12	. 90	1.65	3.31	3.59	1.46	1.53	2.94	3.36	1.72	. 00	25.15
(2)	1.97	1.62	. 76	. 21	. 00	. 00	. 12	. 90	1.65	3.31	3.59	1.46	1.53	2.94	3.36	1.72	. 00	25.15
8.1-10.0	35	30	16	1	0	0	3	18	15	41	65	4	16	80	69	17	0	410
(1)	. 81	. 70	. 37	. 02	. 00	. 00	. 07	. 42	. 35	. 95	1.51	. 09	. 37	1.85	1.60	. 39	. 00	9.50
(2)	. 81	. 70	. 37	. 02	. 00	. 00	. 07	. 42	. 35	. 95	1.51	. 09	. 37	1.85	1.60	. 39	. 00	9.50
10.1-89.5	9	7	9	0	0	0	8	9	3	3	5	4	3	22	26	3	0	111
(1)	. 21	. 16	. 21	. 00	. 00	. 00	. 19	. 21	. 07	. 07	. 12	. 09	. 07	. 51	. 60	. 07	. 00	2.57
(2)	. 21	. 16	. 21	. 00	. 00	. 00	. 19	. 21	. 07	. 07	. 12	. 09	. 07	. 51	. 60	. 07	. 00	2.57
ALL SPEEDS	338	260	179	99	56	61	106	191	245	378	389	235	266	530	581	400	0	4314
(1)	7.83	6.03	4.15	2.29	1.30	1.41	2.46	4.43	5.68	8.76	9.02	5.45	6.17	12.29	13.47	9.27	. 00	100.00
(2)	7.83	6.03	4.15	2.29	1.30	1.41	2.46	4.43	5.68	8.76	9.02	5.45	6.17	12.29	13.47	9.27	. 00	100.00

$\begin{gathered} \underset{\lambda}{\lambda} \\ \underset{0}{0} \\ \underset{\sim}{c} \\ \underset{\omega}{\omega} \end{gathered}$	Table 2.3-42—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2000\} (Page 1 of 2)																										
	SECTOR	1	2	3	4	5	6	7	8	9	Direction Persistence (Hours)/Percent							17	18	19	20	21	22	23	24	GT. 24	TOTAL
											10	11	12	13	14	15	16										
	N	158	55	22	15	14	9	2	2	1	1	0	2	0	0	0	0	1	0	0	0	0	0	0	0	0	282
		56	76	83	89	94	97	98	98	99	99	99	100	100	100	100	100	100	0	0	0	0	0	0	0	0	
	NNE	176	63	35	13	12	4	2	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	308
		57	78	89	93	97	98	99	99	99	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
	NE	159	54	25	8	4	3	3	4	3	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	267
		60	80	89	92	94	95	96	97	99	99	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	
	ENE	156	33	17	9	2	4	2	1	0	2	1	0	1	0	0	2	0	0	0	0	0	0	0	0	0	230
		68	82	90	93	94	96	97	97	97	98	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	
	E	112	35	12	7	2	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	172
		65	85	92	97	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ESE	76	26	4	2	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	112
		68	91	95	96	96	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SE	110	19	7	2	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	141
		78	91	96	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SSE	139	41	27	15	6	1	4	1	1	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	238
		58	76	87	93	96	96	98	98	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
$\begin{aligned} & \text { R } \\ & \stackrel{0}{2} \\ & i \end{aligned}$	S	192	49	25	14	5	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	287

	Table 2.3-42—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2000\} (Page 2 of 2)																										
	SECTOR	$\frac{1}{67}$	$\frac{2}{84}$	$\frac{3}{93}$	$\begin{gathered} 4 \\ \hline 98 \end{gathered}$	$\frac{5}{99}$	$\begin{gathered} 6 \\ \hline 99 \end{gathered}$	$\frac{7}{100}$	$\frac{8}{100}$	$\frac{9}{100}$	$\begin{gathered} \text { Direc } \\ \mathbf{1 0} \\ \hline 0 \end{gathered}$	ion P 11 0	rsiste 12 0	a130	crs)/ 14 0	$\begin{gathered} \\ \hline 15 \\ \hline 0 \end{gathered}$	$\frac{16}{0}$	$\begin{gathered} 17 \\ \hline 0 \end{gathered}$	$\begin{gathered} 18 \\ \hline 0 \end{gathered}$	$\begin{gathered} 19 \\ \hline 0 \end{gathered}$	$\frac{20}{0}$	$\frac{21}{0}$	$\frac{22}{0}$	$\frac{23}{0}$			TOTAL
																									$\frac{24}{0}$	$\begin{gathered} \text { GT. } 24 \\ 0 \end{gathered}$	
	SSW	227	86	36	16	11	8	0	2	5	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	394
		58	79	89	93	95	97	97	98	99	99	99	99	99	100	100	100	100	0	0	0	0	0	0	0	0	
	SW	234	103	45	23	22	17	8	10	4	4	1	2	1	0	0	1	0	0	1	1	0	0	0	0	0	477
		49	71	80	85	90	93	95	97	98	99	99	99	99	99	99	100	100	100	100	100	0	0	0	0	0	
	WSW	216	82	23	20	9	5	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	359
		60	83	89	95	97	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	W	198	53	29	3	6	2	0	2	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	295
		67	85	95	96	98	99	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WNW	203	66	32	10	8	3	3	3	1	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	332
		61	81	91	94	96	97	98	99	99	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0	
	NW	202	58	36	15	13	11	5	4	4	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	350
		58	74	85	89	93	96	97	98	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NNW	157	50	18	8	2	0	2	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	241
		65	86	93	97	98	98	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	TOTAL	2715	873	393	180	118	73	36	31	24	16	5	6	3	3	0	4	2	0	1	1	1	0	0	0	0	4485

Table 2．3－43—\｛CCNPP 33 Feet Wind Direction Persistence Summary for Year 2001\}
（Page 1 of 2）
Direction Persistence（Hours）／Percent

SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT． 24	TOTAL
N	143	60	35	26	9	5	5	8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	292
	49	70	82	90	93	95	97	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

NNE	183	65	33	7	4	4	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	300
	61	83	94	96	97	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

NE	159	41	17	10	7	5	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	242
	66	83	90	94	97	99	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

E	116	31	16	2	2	2	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	171
	68	86	95	96	98	99	99	99	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	

ऽ＾＾әу

	Table 2.3-43—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2001\} (Page 2 of 2)																										
	Direction Persistence (Hours)/Percent																										
	SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
		61	80	89	93	97	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SSW	253	75	59	31	15	4	3	6	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	449
		56	73	86	93	96	97	98	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
	SW	258	104	42	27	24	16	10	2	11	3	0	2	2	2	0	0	2	0	0	1	0	0	0	0	0	506
		51	72	80	85	90	93	95	95	98	98	98	99	99	99	99	99	100	100	100	100	0	0	0	0	0	
	WSW	240	66	39	16	6	5	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	376
		64	81	92	96	98	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	W	175	51	17	6	3	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	254
		69	89	96	98	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WNW	194	58	26	8	10	4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	301
		64	84	92	95	98	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NW	179	59	26	20	13	8	4	3	2	2	1	0	2	0	1	0	0	0	0	0	0	0	0	0	0	320
		56	74	83	89	93	95	97	98	98	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	0	
	NNW	162	45	20	13	6	4	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	254
		64	81	89	94	97	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	TOTAL	2705	881	426	205	127	73	39	30	21	6	5	3	6	3	1	0	2	0	0	1	0	0	0	0	0	4534

Table 2.3-44—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2002\}
(Page 1 of 2)

	Direction Persistence (Hours)/Percent																										
	SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	N	145	70	37	15	13	6	5	7	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	300
		48	72	84	89	93	95	97	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NNE	165	73	27	19	7	4	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	299
		55	80	89	95	97	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NE	144	51	26	11	9	2	1	3	1	3	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	254
		57	77	87	91	95	96	96	97	98	99	99	99	99	99	100	100	100	0	0	0	0	0	0	0	0	
	ENE	124	37	21	9	5	5	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	206
		60	78	88	93	95	98	98	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	E	95	30	15	0	2	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	145
		66	86	97	97	98	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ESE	94	24	3	2	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	128
		73	92	95	96	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		124	36	12	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	178
		70	90	97	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\stackrel{7}{\sim}$	SSE	127	49	20	12	11	7	1	2	4	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	237
		54	74	83	88	92	95	96	97	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	S	149	62	24	13	8	6	3	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	267

	Table 2.3-44—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2002\} (Page 2 of 2)																										
	SECTOR	$\frac{\mathbf{1}}{56}$	$\frac{\mathbf{2}}{79}$	$\frac{3}{88}$	$\begin{gathered} \mathbf{4} \\ \hline 93 \end{gathered}$	$\frac{5}{96}$	$\begin{gathered} 6 \\ \hline 98 \end{gathered}$	$\begin{gathered} 7 \\ \hline 99 \end{gathered}$	$\frac{8}{99}$	$\frac{9}{100}$	$\begin{gathered} \hline \text { Direc } \\ \mathbf{1 0} \\ \hline 100 \end{gathered}$	ion P $\mathbf{1 1}$ 100	rsist12100	13	Hours 14 0	$\begin{gathered} / \text { Per } \\ \mathbf{1 5} \\ \hline 0 \end{gathered}$	$\begin{gathered} \text { nt } \\ 16 \\ \hline 0 \end{gathered}$	$\begin{gathered} 17 \\ \hline 0 \end{gathered}$	$\frac{18}{0}$	$\frac{19}{0}$	$\begin{gathered} 20 \\ \hline 0 \end{gathered}$	$\frac{21}{0}$	$\frac{22}{0}$	$\frac{23}{0}$	$\frac{\mathbf{2 4}}{0}$	$\begin{gathered} \text { GT. } 24 \\ \hline 0 \end{gathered}$	TOTAL
	SSW	213	85	41	20	11	10	5	2	4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	392
		54	76	86	92	94	97	98	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SW	238	95	54	20	19	12	8	8	8	8	3	4	2	0	0	2	0	0	1	1	0	0	0	0	1	484
		49	69	80	84	88	90	92	94	95	97	98	99	99	99	99	99	99	99	100	100	100	100	100	100	100	
	WSW	214	67	26	17	11	4	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	342
		63	82	90	95	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	W	177	44	20	12	3	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	259
		68	85	93	98	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WNW	170	51	7	12	8	3	1	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	257
		66	86	89	93	96	98	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NW	144	68	34	18	10	3	3	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	286
		50	74	86	92	96	97	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NNW	147	60	23	19	11	4	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	267
		55	78	86	93	97	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	TOTAL	2470	902	390	202	134	71	31	37	24	16	8	7	2	0	1	2	1	0	1	1	0	0	0	0	1	4301

Table 2.3-45—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2003\} (Page 1 of 2)

Direction Persistence (Hours)/Percent																										
SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
N	145	73	34	13	10	9	4	4	1	2	3	1	0	1	0	1	0	0	0	0	0	0	0	0	0	301
	48	72	84	88	91	94	96	97	97	98	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	
NNE	180	68	36	18	6	5	3	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320
	56	78	89	94	96	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NE	161	57	21	13	7	7	2	1	2	1	2	1	2	0	0	0	1	0	1	0	0	0	1	0	0	280
	58	78	85	90	93	95	96	96	97	97	98	98	99	99	99	99	99	99	100	100	100	100	100	0	0	
ENE	114	40	17	12	2	3	4	0	3	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	198
	58	78	86	92	93	95	97	97	98	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	100	
E	111	26	12	7	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	159
	70	86	94	98	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ESE	110	22	8	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	146
	75	90	96	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SE	134	30	16	8	4	2	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	197
	68	83	91	95	97	98	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SSE	139	56	33	11	6	11	3	4	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	267
	52	73	85	90	92	96	97	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
S	173	68	28	15	13	2	1	2	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	304

	Table 2.3-45—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2003\} (Page 2 of 2)																										
	SECTOR	1				5		7			Direction Persistence (Hours)/Percent							17	18	19	20	21	22	23			TOTAL
											10	11	12	13	14	15	16										
		57	79	88	93	98	98	99	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SSW	220	75	32	22	7	7	0	4	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	371
		59	80	88	94	96	98	98	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SW	248	77	40	30	12	8	9	5	4	4	4	0	1	1	2	1	0	0	0	0	0	0	0	0	0	446
		56	73	82	89	91	93	95	96	97	98	99	99	99	99	100	100	0	0	0	0	0	0	0	0	0	
	WSW	214	69	29	13	6	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	335
		64	84	93	97	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	W	202	43	17	11	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	280
		72	88	94	98	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WNW	202	60	26	9	4	7	1	2	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	314
		64	83	92	95	96	98	98	99	99	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
	NW	198	63	38	21	6	6	5	2	0	2	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	343
		58	76	87	93	95	97	98	99	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
	NNW	148	56	14	13	4	0	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	239
		62	85	91	97	98	98	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	TOTAL	2699	883	401	219	99	71	38	26	16	15	13	5	3	4	2	2	1	0	1	0	0	0	1	0	1	4500

Table 2．3－46—\｛CCNPP 33 Feet Wind Direction Persistence Summary for Year 2004\}
（Page 1 of 2）

Direction Persistence（Hours）／Percent																										
SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT． 24	TOTAL
N	151	61	39	23	10	2	2	4	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	295
	51	72	85	93	96	97	98	99	99	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
NNE	185	59	34	13	9	1	5	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	309
	60	79	90	94	97	97	99	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
NE	156	54	19	8	10	5	1	1	0	0	2	0	0	1	0	0	1	0	0	0	0	0	0	0	0	258
	60	81	89	92	96	98	98	98	98	98	99	99	99	100	100	100	100	0	0	0	0	0	0	0	0	
ENE	142	46	21	8	5	3	0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	229
	62	82	91	95	97	98	98	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	145	31	15	5	3	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	201
	72	88	95	98	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ESE	128	18	10	3	5	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	168
	76	87	93	95	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SE	121	41	15	4	2	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	187
	65	87	95	97	98	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SSE	136	42	23	16	11	5	9	4	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	248
	55	72	81	88	92	94	98	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
S	194	65	33	15	10	2	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	321

$\begin{gathered} \underset{\lambda}{\lambda} \\ \underset{0}{0} \\ \stackrel{c}{c} \\ \underset{\omega}{\omega} \end{gathered}$	Table 2.3-47—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2005\} (Page 1 of 2)																										
	SECTOR	1	2	3	4	5	6	7	8	9		ection 11	Persi12	13	(Hour14			17	18	19	20	21	22	23	24	GT. 24	TOTAL
	N	157	69	35	15	10	13	6	1	6	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	315
		50	72	83	88	91	95	97	97	99	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	
	NNE	199	67	26	14	7	6	2	4	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	327
		61	81	89	94	96	98	98	99	99	99	99	100	100	100	100	100	0	0	0	0	0	0	0	0	0	
	NE	151	45	29	13	8	7	2	4	3	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	264
		57	74	85	90	93	96	97	98	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	
	ENE	142	49	15	7	6	4	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	226
		63	85	91	94	97	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	E	116	37	17	8	6	5	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	191
		61	80	89	93	96	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ESE	122	22	11	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	162
		75	89	96	98	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SE	135	37	4	6	4	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	189
		71	91	93	96	98	99	99	99	99	99	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	
	SSE	129	49	31	15	9	9	5	4	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	254
		51	70	82	88	92	95	97	99	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	
$\left.\begin{aligned} & \underset{N}{0} \\ & \stackrel{N}{i} \\ & i \end{aligned} \right\rvert\,$	S	176	47	37	16	2	9	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	290

	Table 2.3-47—\{CCNPP 33 Feet Wind Direction Persistence Summary for Year 2005\} (Page 2 of 2)																										
	Direction Persistence (Hours)/Percent																										
	SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
		61	77	90	95	96	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SSW	208	71	31	17	10	5	4	0	2	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	351
		59	79	88	93	96	97	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SW	232	75	45	23	24	9	11	4	2	4	2	1	1	2	0	0	0	0	0	1	0	0	0	0	0	436
		53	70	81	86	92	94	96	97	97	98	99	99	99	100	100	100	100	100	100	100	0	0	0	0	0	
	WSW	222	65	36	12	8	4	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	350
		63	82	92	96	98	99	99	100	100	100	100	100	100	100	100	100	100	0	0	0	0	0	0	0	0	
	W	210	62	22	5	3	2	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	308
		68	88	95	97	98	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WNW	189	56	17	14	4	3	1	2	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	291
		65	84	90	95	96	97	98	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NW	160	72	23	16	11	4	1	0	0	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	291
		55	80	88	93	97	98	99	99	99	99	99	99	99	99	99	99	99	99	99	99	100	100	100	100	100	
	NNW	133	35	19	5	3	2	2	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	204
		65	82	92	94	96	97	98	98	99	99	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	
	TOTAL	2681	858	398	190	118	83	40	26	19	12	3	5	1	6	3	2	1	0	0	1	1	0	0	0	1	4449

Table 2.3-48—\{CCNPP 33 Feet Average Wind Direction Persistence Summary for Years 2000-2005\}
(Page 1 of 2)
Direction Persistence (Hours)/Percent

SECTOR	1	2	3	4	5	6	7	8	Direction Persistence (Hours)/Percent							16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
									9	10	11	12	13	14	15											
N	150	65	34	18	11	7	4	4	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	298
	50	72	84	90	93	96	97	98	99	83	83	66	66	67	50	33	17	0	0	0	0	0	0	0	0	0
NNE	181	66	32	14	8	4	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	311
	58	80	90	94	97	98	99	99	83	66	50	50	50	33	17	17	0	0	0	0	0	0	0	0	0	0
NE	155	50	23	11	8	5	2	2	2	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	261
	60	79	88	92	95	97	97	98	99	99	99	82	83	83	67	67	50	17	17	17	17	17	17	0	0	0
ENE	132	42	18	8	4	4	2	2	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	213
	62	82	90	94	95	97	98	98	82	83	66	66	33	33	33	33	17	17	17	17	17	17	17	17	17	0
E	116	32	15	5	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	173
	67	85	94	97	98	83	83	83	50	33	33	17	17	17	0	0	0	0	0	0	0	0	0	0	0	0
ESE	107	24	7	3	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	145
	73	90	95	97	99	83	17	17	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SE	121	33	12	4	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	175
	69	88	95	97	99	83	66	66	33	33	33	17	17	17	17	17	0	0	0	0	0	0	0	0	0	0
SSE	133	48	27	14	9	6	5	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	249
	54	73	84	89	93	95	97	99	99	100	100	67	50	17	0	0	0	0	0	0	0	0	0	0	0	0

SECTOR	1	2	3	4	5	6	7	8	Direction Persistence (Hours)/Percent							16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
									9	10	11	12	13	14	15											
N	150	65	34	18	11	7	4	4	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	298
	50	72	84	90	93	96	97	98	99	83	83	66	66	67	50	33	17	0	0	0	0	0	0	0	0	0
NNE	181	66	32	14	8	4	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	311
	58	80	90	94	97	98	99	99	83	66	50	50	50	33	17	17	0	0	0	0	0	0	0	0	0	0
NE	155	50	23	11	8	5	2	2	2	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	261
	60	79	88	92	95	97	97	98	99	99	99	82	83	83	67	67	50	17	17	17	17	17	17	0	0	0
ENE	132	42	18	8	4	4	2	2	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	213
	62	82	90	94	95	97	98	98	82	83	66	66	33	33	33	33	17	17	17	17	17	17	17	17	17	0
E	116	32	15	5	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	173
	67	85	94	97	98	83	83	83	50	33	33	17	17	17	0	0	0	0	0	0	0	0	0	0	0	0
ESE	107	24	7	3	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	145
	73	90	95	97	99	83	17	17	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SE	121	33	12	4	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	175
	69	88	95	97	99	83	66	66	33	33	33	17	17	17	17	17	0	0	0	0	0	0	0	0	0	0
SSE	133	48	27	14	9	6	5	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	249
	54	73	84	89	93	95	97	99	99	100	100	67	50	17	0	0	0	0	0	0	0	0	0	0	0	0

$\begin{array}{lcccccccccccccccccccccccccccccccccccc}\text { E } & 116 & 32 & 15 & 5 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 173 \\ & 67 & 85 & 94 & 97 & 98 & 83 & 83 & 83 & 50 & 33 & 33 & 17 & 17 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lccccccccccccccccccccccccccccccccccccc}\text { ESE } & 107 & 24 & 7 & 3 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 145 \\ & 73 & 90 & 95 & 97 & 99 & 83 & 17 & 17 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllll}\text { SE } & 121 & 33 & 12 & 4 & 3 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 175 \\ & 69 & 88 & 95 & 97 & 99 & 83 & 66 & 66 & 33 & 33 & 33 & 17 & 17 & 17 & 17 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

s ^^əy
Table 2.3-48—\{CCNPP 33 Feet Average Wind Direction Persistence Summary for Years 2000-2005\}
(Page 2 of 2)

SECTOR	Direction Persistence (Hours)/Percent																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	60	80	90	95	98	99	100	100	83	50	50	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SSW	225	79	42	21	12	7	3	3	3	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	395
	57	77	87	93	96	97	98	99	99	100	100	83	50	17	17	17	17	0	0	0	0	0	0	0	0	0
SW	242	90	45	25	20	11	9	6	6	5	3	2	1	1	0	1	0	0	1	1	0	0	0	0	0	469
	52	71	81	86	90	92	94	96	97	98	99	99	99	99	100	100	83	83	83	83	17	17	17	17	17	0
WSW	226	69	31	15	8	5	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	356
	64	83	92	96	98	99	99	83	83	50	33	33	17	17	17	17	17	0	0	0	0	0	0	0	0	0
W	192	51	20	7	4	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	277
	69	88	95	98	99	83	83	67	50	17	17	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WNW	189	59	22	11	6	4	1	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	296
	64	84	91	95	97	98	99	99	100	83	50	50	50	50	33	33	33	33	17	17	17	0	0	0	0	0
NW	175	64	32	19	10	6	3	3	2	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	316
	55	76	86	91	95	96	98	98	99	99	83	83	66	66	50	33	17	17	17	17	17	17	17	17	17	0
NNW	154	47	19	11	5	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	242
	64	83	91	95	97	98	99	99	83	50	33	33	17	17	17	0	0	0	0	0	0	0	0	0	0	0
TOTAL	2675	877	406	200	119	71	37	30	20	13	8	6	3	3	1	2	1	0	1	1	0	0	0	0	1	4474

Direction Persistence (Hours)/Percent

$\begin{gathered} \underset{\lambda}{\lambda} \\ \underset{0}{0} \\ \underset{\sim}{c} \\ \underset{\omega}{\omega} \end{gathered}$	Table 2.3-49—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2000\} (Page 1 of 2)																										
	SECTOR	1	2	3	4	5	6	7	8	9	Direction Persistence (Hours)/Percent							17	18	19	20	21	22	23	24	GT. 24	TOTAL
											10	11	12	13	14	15	16										
	N	146	60	37	19	12	17	2	3	1	3	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	305
		48	68	80	86	90	95	96	97	97	98	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	
	NNE	165	70	22	18	13	3	4	3	2	3	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	305
		54	77	84	90	94	95	97	98	98	99	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	
	NE	141	53	25	8	4	2	0	0	0	1	0	0	0	1	0	2	0	0	0	0	0	0	0	0	0	237
		59	82	92	96	97	98	98	98	98	99	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	
	ENE	115	42	15	12	2	5	3	3	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	199
		58	79	86	92	93	96	97	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	E	103	30	9	5	2	4	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	157
		66	85	90	94	95	97	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ESE	77	21	9	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	112
		69	88	96	96	97	98	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SE	96	29	21	5	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	154
		62	81	95	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SSE	112	35	28	19	4	11	5	2	3	1	1	2	0	0	0	1	0	0	0	0	0	0	0	0	0	224
		50	66	78	87	88	93	96	96	98	98	99	100	100	100	100	100	0	0	0	0	0	0	0	0	0	
$\begin{aligned} & \text { R } \\ & \stackrel{0}{2} \\ & i \end{aligned}$	S	154	41	28	16	7	6	2	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	258

Table 2.3-50—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2001\}
(Page 1 of 2)

SECTOR	Direction Persistence (Hours)/Percent																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
N	133	62	39	18	16	6	6	1	2	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	286
	47	68	82	88	94	96	98	98	99	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	
NNE	149	52	29	17	9	6	4	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	271
	55	74	85	91	94	97	98	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NE	136	34	20	9	4	3	2	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	210
	65	81	90	95	97	98	99	100	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
ENE	122	32	17	7	1	4	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	185
	66	83	92	96	97	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	125	44	16	5	2	2	1	1	0	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	200
	63	85	93	95	96	97	98	98	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
ESE	93	32	14	3	6	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	151
	62	83	92	94	98	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SE	119	33	11	8	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	173
	69	88	94	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SSE	118	43	35	27	15	6	5	5	1	1	1	1	0	2	0	0	0	0	0	0	1	0	0	0	0	261
	45	62	75	85	91	93	95	97	98	98	98	99	99	100	100	100	100	100	100	100	100	0	0	0	0	
S	176	51	33	19	9	12	4	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	308

SE $\begin{array}{rlcccccccccccccccccccccccccccc}119 & 33 & 11 & 8 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ & 69 & 88 & 94 & 99 & 99 & 99 & 99 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

-^əу
S 1
Table 2．3－50—\｛CCNPP 197 Feet Wind Direction Persistence Summary for Year 2001\}
（Page 2 of 2）

SECTOR	Direction Persistence（Hours）／Percent																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT． 24	TOTAL
	57	74	84	91	94	97	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SSW	174	72	43	35	17	13	5	3	4	3	0	2	0	0	1	0	0	0	0	0	0	0	0	0	0	372
	47	66	78	87	92	95	97	97	98	99	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	
SW	165	73	37	25	25	10	2	6	1	3	3	3	2	0	1	0	1	0	0	0	0	0	0	0	0	357
	46	67	77	84	91	94	94	96	96	97	98	99	99	99	100	100	100	0	0	0	0	0	0	0	0	
WSW	155	64	34	7	10	3	3	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	279
	56	78	91	93	97	98	99	99	99	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	
W	123	49	23	7	2	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	208
	59	83	94	97	98	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
WNW	139	39	23	10	2	7	0	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	225
	62	79	89	94	95	98	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NW	178	55	32	18	13	8	6	2	0	4	2	1	0	1	0	1	0	1	1	0	0	0	0	0	0	323
	55	72	82	88	92	94	96	97	97	98	98	99	99	99	99	99	99	100	100	0	0	0	0	0	0	
NNW	136	64	18	24	9	8	12	5	2	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	281
	48	71	78	86	89	92	96	98	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL	2241	799	424	239	141	90	52	40	12	21	7	9	2	4	4	1	1	1	1	0	1	0	0	0	0	4090

$\begin{gathered} \underset{\lambda}{\lambda} \\ \underset{0}{0} \\ \stackrel{c}{c} \\ \underset{\omega}{\omega} \end{gathered}$	Table 2.3-51—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2002\} (Page 1 of 2)																										
	SECTOR	1	2	3	4	5	6	7	8	9	Direction Persistence (Hours)/Percent							17	18	19	20	21	22	23	24		TOTAL
											10	11	12	13	14	15	16										
	N	125	61	42	30	14	7	5	1	4	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	292
		43	64	78	88	93	96	97	98	99	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
	NNE	149	62	30	18	13	11	5	3	5	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	299
		50	71	81	87	91	95	96	97	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NE	139	51	20	6	5	2	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	231
		60	82	91	94	96	97	97	97	98	98	98	99	99	100	100	100	100	100	100	100	100	100	0	0	0	
	ENE	124	24	13	5	4	2	2	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	177
		70	84	91	94	96	97	98	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	E	81	34	13	4	2	1	2	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	139
		58	83	92	95	96	97	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ESE	86	28	13	3	1	2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	135
		64	84	94	96	97	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SE	101	36	11	10	1	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	162
		62	85	91	98	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SSE	94	50	26	17	11	9	5	3	2	5	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	226
		42	64	75	83	88	92	94	95	96	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\left.\begin{aligned} & \underset{N}{0} \\ & \stackrel{N}{i} \\ & i \end{aligned} \right\rvert\,$	S	126	57	39	21	10	9	1	3	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	269

Table 2.3-51—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2002\}
(Page 2 of 2)
Direction Persistence (Hours)/Percent

SECTOR	Direction Persistence (Hours)/Percent																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	47	68	83	90	94	97	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SSW	153	78	53	26	15	8	5	1	5	2	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	349
	44	66	81	89	93	95	97	97	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
SW	163	60	34	36	16	4	5	7	5	5	4	3	2	0	0	0	2	1	0	0	0	0	0	0	1	348
	47	64	74	84	89	90	91	93	95	96	97	98	99	99	99	99	99	100	100	100	100	100	100	100	100	
WSW	164	52	16	9	11	7	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	263
	62	82	88	92	96	98	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
W	126	33	22	11	2	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	197
	64	81	92	97	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

WNW	147	50	18	15	12	4	3	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	25
	58	78	85	91	95	97	98	98	99	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	

NW	145	57	30	14	13	7	7	1	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	280
	52	72	83	88	93	95	98	98	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

NNW	114	50	36	18	18	7	7	0	6	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	260
	44	63	77	84	91	93	96	96	98	99	99	99	99	100	100	100	0	0	0	0	0	0	0	0	0	

Table 2.3-52—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2003\}
Direction Persistence (Hours)/Percent

										irect	n P	iste	(H)	urs)/	ercen											
SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
N	124	61	39	15	13	13	8	8	2	1	3	0	0	0	0	2	0	0	1	0	0	0	0	0	0	290
	43	64	77	82	87	91	94	97	98	98	99	99	99	99	99	100	100	100	100	0	0	0	0	0	0	
NNE	161	65	36	20	4	8	2	1	1	3	1	2	0	0	0	0	0	0	1	0	0	0	0	0	0	305
	53	74	86	92	94	96	97	97	98	99	99	100	100	100	100	100	100	100	100	0	0	0	0	0	0	
NE	137	50	22	8	5	3	3	3	1	4	2	1	1	0	1	0	0	0	1	0	0	0	0	0	0	242
	57	77	86	90	92	93	94	95	96	98	98	99	99	99	100	100	100	100	100	0	0	0	0	0	0	
ENE	138	34	12	4	4	1	6	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	202
	68	85	91	93	95	96	99	99	99	99	99	99	99	99	99	99	100	100	100	0	0	0	0	0	0	
E	99	26	14	13	0	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	156
	63	80	89	97	97	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ESE	99	30	14	1	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	149
	66	87	96	97	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SE	134	42	14	10	3	3	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	209
	64	84	91	96	97	99	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
SSE	124	56	37	15	16	5	5	5	1	3	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	271
	46	66	80	86	92	93	95	97	97	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
S	162	54	32	21	12	8	1	1	3	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	295

										irect	n P	iste	(H)	urs)/	ercen											
SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
N	124	61	39	15	13	13	8	8	2	1	3	0	0	0	0	2	0	0	1	0	0	0	0	0	0	290
	43	64	77	82	87	91	94	97	98	98	99	99	99	99	99	100	100	100	100	0	0	0	0	0	0	
NNE	161	65	36	20	4	8	2	1	1	3	1	2	0	0	0	0	0	0	1	0	0	0	0	0	0	305
	53	74	86	92	94	96	97	97	98	99	99	100	100	100	100	100	100	100	100	0	0	0	0	0	0	
NE	137	50	22	8	5	3	3	3	1	4	2	1	1	0	1	0	0	0	1	0	0	0	0	0	0	242
	57	77	86	90	92	93	94	95	96	98	98	99	99	99	100	100	100	100	100	0	0	0	0	0	0	
ENE	138	34	12	4	4	1	6	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	202
	68	85	91	93	95	96	99	99	99	99	99	99	99	99	99	99	100	100	100	0	0	0	0	0	0	
E	99	26	14	13	0	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	156
	63	80	89	97	97	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ESE	99	30	14	1	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	149
	66	87	96	97	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SE	134	42	14	10	3	3	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	209
	64	84	91	96	97	99	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
SSE	124	56	37	15	16	5	5	5	1	3	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	271
	46	66	80	86	92	93	95	97	97	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
S	162	54	32	21	12	8	1	1	3	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	295

$\begin{array}{llllllcccccccccccccccccccccccccc}\text { SSE } & 124 & 56 & 37 & 15 & 16 & 5 & 5 & 5 & 1 & 3 & 3 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 271 \\ & 46 & 66 & 80 & 86 & 92 & 93 & 95 & 97 & 97 & 99 & 100 & 100 & 100 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \end{array}$

(Page 1 of 2)

$\begin{gathered} \underset{\sim}{\lambda} \\ \underset{0}{0} \\ 0 \\ \stackrel{\rightharpoonup}{7} \\ \omega \end{gathered}$	Table 2.3-52—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2003\} (Page 2 of 2)																										
	SECTOR	1	$\frac{2}{73}$	$\begin{gathered} \mathbf{3} \\ \hline 84 \end{gathered}$	$\frac{4}{91}$	$\frac{5}{95}$	$\begin{gathered} 6 \\ \hline 98 \end{gathered}$	$\begin{gathered} 7 \\ \hline 98 \end{gathered}$	$\begin{gathered} \mathbf{8} \\ \hline 99 \end{gathered}$	$\frac{9}{100}$	$\begin{array}{r} \hline \text { Direc } \\ \mathbf{1 0} \\ \hline 100 \end{array}$	on Pe 11 100	sisten12100	(H) 13 100	urs)/P $\mathbf{1 4}$ 100	$\begin{aligned} & \text { rent } \\ & \hline 15 \\ & \hline 0 \end{aligned}$	$\frac{16}{0}$	$\frac{17}{0}$	$\frac{18}{0}$	$\frac{19}{0}$	$\frac{20}{0}$	$\frac{21}{0}$	$\frac{22}{0}$	$\frac{23}{0}$			TOTAL
																									$\frac{\mathbf{2 4}}{0}$	$\frac{\text { GT. } 24}{0}$	
	SSW	159	58	28	21	9	11	7	2	4	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	302
		53	72	81	88	91	95	97	98	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SW	177	75	22	26	6	7	7	9	3	3	2	1	0	1	1	0	0	0	0	0	0	0	0	0	0	340
		52	74	81	88	90	92	94	97	98	99	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	
	WSW	146	48	23	12	4	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	239
		61	81	91	96	97	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	W	141	47	22	6	5	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	223
		63	84	94	97	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WNW	145	65	22	17	4	4	2	0	4	0	1	0	2	1	0	0	0	0	0	0	0	0	0	0	0	267
		54	79	87	93	95	96	97	97	99	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	
	NW	138	62	39	17	7	14	2	1	3	2	2	2	0	1	0	0	0	0	0	0	0	0	0	0	0	290
		48	69	82	88	91	96	96	97	98	98	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
	NNW	122	58	20	14	8	6	6	1	2	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	240
		51	75	83	89	93	95	98	98	99	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
	TOTAL	2206	831	396	220	102	91	56	32	26	18	16	8	4	5	2	2	1	0	4	0	0	0	0	0	0	4020

$\begin{gathered} \underset{\lambda}{\lambda} \\ \underset{0}{0} \\ \stackrel{c}{c} \\ \underset{\omega}{\omega} \end{gathered}$	Table 2.3-53—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2004\} (Page 1 of 2)																										
	SECTOR	1	2	3	4	5	6	7	8	9		11	12	13	Hours		ent16	17	18	19	20	21	22	23			
	N	145	49	37	21	23	10	6	5	2	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	301
		48	64	77	84	91	95	97	98	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
	NNE	156	59	21	14	12	4	7	3	2	0	0	2	0	0	0	1	2	0	0	0	0	0	1	0	0	284
		55	76	83	88	92	94	96	97	98	98	98	99	99	99	99	99	100	100	100	100	100	100	100	0	0	
	NE	133	44	23	16	3	0	1	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	223
		60	79	90	97	98	98	99	99	99	99	99	100	100	100	100	100	100	100	100	100	0	0	0	0	0	
	ENE	129	37	17	11	5	4	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	205
		63	81	89	95	97	99	99	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	E	115	30	9	12	3	1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	173
		66	84	89	96	98	98	98	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ESE	111	30	10	5	4	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	165
		67	85	92	95	97	98	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SE	134	36	18	8	6	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	208
		64	82	90	94	97	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SSE	131	46	36	20	9	7	6	1	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	263
		50	67	81	89	92	95	97	97	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	
$\left.\begin{aligned} & \underset{N}{0} \\ & \stackrel{N}{i} \\ & i \end{aligned} \right\rvert\,$	S	159	62	35	11	14	8	2	3	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	297

Table 2.3-54—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2005\}
(Page 1 of 2)

Direction Persistence (Hours)/Percent

Direction Persistence (Hours)/Percent																										
SECTOR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
N	134	69	43	19	17	7	13	2	1	0	3	1	0	0	0	0	0	0	0	0	1	0	0	0	0	310
	43	65	79	85	91	93	97	98	98	98	99	100	100	100	100	100	100	100	100	100	100	0	0	0	0	
NNE	158	66	33	19	13	13	4	4	1	2	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	318
	50	70	81	87	91	95	96	97	98	98	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	
NE	147	46	17	11	4	6	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	235
	63	82	89	94	96	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ENE	131	56	10	7	2	2	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	211
	62	89	93	97	98	99	99	100	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
E	129	38	14	12	7	5	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	209
	62	80	87	92	96	98	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

SECTOR	1	2	3	4	5	6	7	8	9	Direction Persistence (Hours)/Percent							17	18	19	20	21	22	23	24	GT. 24	TOTAL
										10	11	12	13	14	15	16										
N	134	69	43	19	17	7	13	2	1	0	3	1	0	0	0	0	0	0	0	0	1	0	0	0	0	310
	43	65	79	85	91	93	97	98	98	98	99	100	100	100	100	100	100	100	100	100	100	0	0	0	0	
NNE	158	66	33	19	13	13	4	4	1	2	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	318
	50	70	81	87	91	95	96	97	98	98	99	99	100	0	0	0	0	0	0	0	0	0	0	0	0	
NE	147	46	17	11	4	6	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	235
	63	82	89	94	96	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ENE	131	56	10	7	2	2	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	211
	62	89	93	97	98	99	99	100	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	
E	129	38	14	12	7	5	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	209
	62	80	87	92	96	98	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

ESE	115	39	14	3	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	65	88	95	97	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SE	143	48	19	7	3	0	0	1	2	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	225
	64	85	93	96	98	98	98	98	99	100	100	100	100	100	100	100	100	0	0	0	0	0	0	0	0	

SSE	143	59	35	15	14	7	5	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	284
	50	71	83	89	94	96	98	99	99	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	

s	154	45	29	16	11	10	3	4	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
275																									

$\left.\begin{gathered} \underset{\sim}{\hat{2}} \\ \underset{0}{0} \\ 0 \\ \stackrel{\rightharpoonup}{7} \\ \omega \end{gathered} \right\rvert\,$	Table 2.3-54—\{CCNPP 197 Feet Wind Direction Persistence Summary for Year 2005\} (Page 2 of 2)																										
	SECTOR	$\frac{\mathbf{1}}{56}$	$\frac{\mathbf{2}}{72}$	$\begin{gathered} \mathbf{3} \\ \hline 83 \end{gathered}$	$\begin{gathered} 4 \\ \hline 89 \end{gathered}$	$\begin{gathered} 5 \\ \hline 93 \end{gathered}$	$\frac{6}{96}$	$\begin{gathered} 7 \\ \hline 97 \end{gathered}$	$\begin{gathered} 8 \\ \hline 99 \end{gathered}$	$\begin{gathered} 9 \\ \hline 99 \end{gathered}$	$\begin{gathered} \text { Dire } \\ \mathbf{1 0} \\ \hline 100 \end{gathered}$	ction 11 100	Persis12100	ence13100	Hours 14 0	$\begin{gathered} \hline \text { JPerc } \\ 15 \\ \hline 0 \end{gathered}$	$\begin{aligned} & \text { ent } \\ & \mathbf{1 6} \\ & \hline 0 \end{aligned}$	$\frac{17}{0}$	$\frac{18}{0}$	$\frac{19}{0}$	$\frac{20}{0}$	$\begin{gathered} 21 \\ \hline 0 \end{gathered}$	$\frac{22}{0}$	23	$\frac{\mathbf{2 4}}{0}$	$\begin{gathered} \text { GT. } 24 \\ \hline 0 \end{gathered}$	TOTAL
	SSW	152	65	38	18	12	7	3	2	1	2	0	0	1	1	2	0	0	0	0	0	0	0	0	0	0	304
		50	71	84	90	94	96	97	98	98	99	99	99	99	99	100	0	0	0	0	0	0	0	0	0	0	
	SW	167	64	34	15	15	8	5	3	3	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	317
		53	73	84	88	93	96	97	98	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WSW	152	46	31	15	12	2	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	263
		58	75	87	93	97	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	W	133	48	19	6	0	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	212
		63	85	94	97	97	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WNW	182	45	16	10	9	3	3	1	2	1	0	1	0	0	2	0	0	0	0	1	0	0	0	0	1	277
		66	82	88	91	95	96	97	97	98	98	98	99	99	99	99	99	99	99	99	100	100	100	100	100	100	
	NW	161	50	30	19	11	5	5	2	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	285
		56	74	85	91	95	97	99	99	100	100	100	100	100	100	100	100	100	0	0	0	0	0	0	0	0	
	NNW	144	40	24	12	11	5	2	4	2	1	4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	250
		58	74	83	88	92	94	95	97	98	98	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	
	TOTAL	2345	824	406	204	145	85	53	30	16	12	9	5	4	2	4	1	2	0	0	1	1	0	0	0	2	4151

$\begin{gathered} \underset{\lambda}{\lambda} \\ \underset{0}{0} \\ \stackrel{c}{c} \\ \underset{\omega}{\omega} \end{gathered}$	Table 2.3-55—\{CCNPP 197 Feet Average Wind Direction Persistence Summary for Years 2000-2005\} (Page 1 of 2)																										
	SECTOR	1	2	3	4	5	6	7	8	Direction Persistence (Hours)/Percent							16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
										9	10	11	12	13	14	15											
	N	135	60	40	20	16	10	7	3	2	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	297
		45	66	79	86	91	94	97	98	98	99	99	100	100	83	50	33	33	33	33	17	17	0	0	0	0	0
	NNE	156	62	29	18	11	8	4	3	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	297
		53	74	83	89	93	95	97	98	99	99	83	83	67	50	50	33	33	33	33	17	17	17	17	0	0	0
	NE	139	46	21	10	4	3	2	1	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	230
		61	81	90	94	96	97	98	98	82	82	82	83	83	83	67	67	50	50	50	33	17	17	0	0	0	0
	ENE	127	38	14	8	3	3	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	197
		65	84	90	95	96	98	99	100	83	83	83	67	33	33	17	17	17	17	17	0	0	0	0	0	0	0
	E	109	34	13	9	3	3	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	172
		63	83	90	95	96	98	99	99	83	66	33	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ESE	97	30	12	3	3	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	148
		66	86	94	96	98	99	83	66	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SE	121	37	16	8	3	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	189
		64	84	92	97	98	99	99	100	50	33	33	33	17	17	17	17	17	0	0	0	0	0	0	0	0	0
	SSE	120	48	33	19	12	8	5	3	2	2	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	255
		47	66	79	87	91	94	96	97	98	99	99	100	83	83	67	67	50	50	50	50	50	33	33	33	17	0
$\left.\begin{aligned} & 刀_{0}^{0} \\ & \stackrel{i}{i} \end{aligned} \right\rvert\,$	S	155	52	33	17	11	9	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	284

(1)	

Table 2.3-55—\{CCNPP 197 Feet Average Wind Direction Persistence Summary for Years 2000-2005\}

SECTOR	Direction Persistence (Hours)/Percent																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	55	73	84	91	94	97	98	99	100	100	67	50	50	33	17	0	0	0	0	0	0	0	0	0	0	0
SSW	167	69	41	24	13	9	5	4	3	2	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	341
	49	70	82	89	93	95	97	98	99	99	99	100	83	67	50	17	17	17	17	17	0	0	0	0	0	0
SW	170	72	34	23	14	8	6	6	4	3	2	2	2	0	0	0	1	0	0	0	0	0	0	0	0	347
	49	70	80	86	90	93	94	96	97	98	99	99	83	83	83	66	67	50	33	33	33	17	17	17	17	0
WSW	155	51	26	12	9	4	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	261
	60	79	89	94	97	98	99	66	66	33	33	33	33	33	33	17	17	17	17	0	0	0	0	0	0	0
W	134	44	21	7	3	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	213
	63	84	94	97	98	99	100	67	33	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WNW	156	52	22	13	8	4	2	1	2	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	263
	59	79	88	93	96	97	98	98	99	99	83	83	83	67	33	33	33	33	33	17	17	17	17	17	17	0
NW	156	55	33	18	12	8	5	3	2	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	296
	52	71	82	89	93	95	97	98	98	99	99	83	83	66	50	50	50	33	33	17	17	17	17	17	17	0
NNW	135	54	25	17	11	7	6	2	3	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	263
	51	72	82	88	92	94	96	97	98	99	100	83	67	33	33	33	0	0	0	0	0	0	0	0	0	0
TOTAL	2231	805	412	225	133	86	51	34	23	17	11	8	5	3	2	2	2	1	1	1	1	0	0	0	1	4051

Table 2.3-56—\{CCNPP Monthly Mean Temperatures (2000-2005)\}

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
${ }^{\circ} \mathrm{F}$	34.3	38.1	45.1	55.0	63.4	71.6	75.1	75.0	69.0	58.5	51.6	38.4
${ }^{\circ} \mathrm{C}$	1.3	3.4	7.3	12.8	17.4	22.0	23.9	23.9	20.6	14.7	10.9	3.6

Table 2.3-57—\{CCNPP Monthly Mean Extreme Maximum Temperatures (2000-2005)\}

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
${ }^{\circ} \mathrm{F}$	40.9	41.6	52.0	57.1	69.4	72.8	78.3	77.5	72.1	60.4	59.5	45.0
${ }^{\circ} \mathrm{C}$	4.9	5.3	11.1	13.9	20.8	22.7	25.7	25.3	22.3	15.8	15.3	7.2

Table 2.3-58_\{CCNPP Monthly Mean Extreme Minimum Temperatures (2000-2005)\}

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
${ }^{\circ} \mathrm{F}$	29.5	33.1	40.3	53.2	58.8	69.1	72.0	72.4	65.9	57.2	45.4	31.4
${ }^{\circ} \mathrm{C}$	-1.4	0.6	4.6	11.8	14.9	20.6	22.2	22.4	18.8	14.0	7.4	-0.3

Table 2.3-59— \{CCNPP Monthly Mean Daily Maximum Temperatures (2000-2005)\}

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
${ }^{\circ} \mathrm{F}$	40.6	45.4	52.7	63.3	70.8	78.8	81.8	81.4	75.2	65.3	58.9	44.7
${ }^{\circ} \mathrm{C}$	4.8	7.4	11.5	17.4	21.6	26.0	27.7	27.4	24.0	18.5	14.9	7.1

Table 2.3-60—\{CCNPP Monthly Mean Daily Minimum Temperatures (2000-2005)\}

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
${ }^{\circ} \mathrm{F}$	28.5	31.7	38.1	47.4	56.3	64.8	68.7	69.3	63.1	51.7	44.5
${ }^{\circ} \mathrm{C}$	-1.9	-0.2	3.4	8.6	13.5	18.2	20.4	20.7	17.3	10.9	6.9

Table 2.3-61—\{CCNPP Maximum Hourly Temperatures (2000-2005)\}

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
${ }^{\circ} \mathrm{F}$	77.2	75.6	84.0	90.7	89.8	91.4	96.3	93.9	87.6	86.0	78.6	75.972 .9
${ }^{\circ} \mathrm{C}$	25.1	24.2	28.9	32.6	32.1	33.0	35.7	34.4	30.9	30.0	25.9	24.422 .7

Table 2.3-62— \{CCNPP Minimum Hourly Temperatures (2000-2005)\}

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
${ }^{\circ} \mathrm{F}$	9.2	15.0	16.2	29.4	24.339 .9	51.8	55.6	55.0	43.3	32.7	22.0	8.5
${ }^{\circ} \mathrm{C}$	-12.7	-9.4	-8.8	-1.4	-4.34 .4	11.0	13.1	12.8	6.3	0.4	-5.6	-13.1

Table 2.3-63—\{CCNPP Number of Hourly Temperature Values Greater Than or Less Than Indicated Value (2000-2005)\}

Value	Number of Hours of Occurrence	Percent Frequency of Occurrence
$95.0^{\circ} \mathrm{F}$	3	0.006
$90.0^{\circ} \mathrm{F}$	137	0.262
$32.0^{\circ} \mathrm{F}$	5062	9.663
$00.0^{\circ} \mathrm{F}$	0	0.000

Table 2.3-64-\{Monthly Mean Temperatures (1971-2000) at Sites Around CCNPP\}

Table 2.3-65-\{Monthly Mean Maximum Temperatures (1971-2000) at Sites Around CCNPP $\}$

SITE		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore/Washington International Airport	${ }^{\circ} \mathrm{F}$	41.2	44.8	53.9	64.5	73.9	82.7	87.2	85.1	78.2	67.0	56.3	46.0	65.1
	${ }^{\circ} \mathrm{C}$	5.1	7.1	12.2	18.1	23.3	28.2	30.7	29.5	25.7	19.4	13.5	7.8	18.4
Annapolis, MD	${ }^{\circ} \mathrm{F}$	41.8	45.0	54.3	65.1	74.8	83.2	87.7	85.3	78.0	66.9	55.7	46.8	65.4
	${ }^{\circ} \mathrm{C}$	5.4	7.2	12.4	18.4	23.8	28.4	30.9	29.6	25.6	19.4	13.2	8.2	18.6
Cambridge, MD	${ }^{\circ} \mathrm{F}$	45.0	48.6	57.0	67.7	76.9	85.3	89.4	87.3	81.1	70.5	60.2	50.1	68.3
	${ }^{\circ} \mathrm{C}$	7.2	9.2	13.9	19.8	24.9	29.6	31.9	30.7	27.3	21.4	15.7	10.1	20.2
Princess Anne, MD	${ }^{\circ} \mathrm{F}$	46.6	49.1	57.6	67.5	76.2	84.0	88.4	86.4	81.0	70.6	60.3	51.0	68.2
	${ }^{\circ} \mathrm{C}$	8.1	9.5	14.2	19.7	24.6	28.9	31.3	30.2	27.2	21.4	15.7	10.6	20.1
Patuxent River NAS	${ }^{\circ} \mathrm{F}$	43.9	46.5	54.8	64.8	73.6	81.5	86.1	84.8	78.8	68.3	58.5	48.7	65.9
	${ }^{\circ} \mathrm{C}$	6.6	8.1	12.7	18.2	23.1	27.5	30.1	29.3	26.0	20.2	14.7	9.3	18.8
Mechanicsville, MD	${ }^{\circ} \mathrm{F}$	43.5	47.2	56.7	66.8	74.3	82.0	86.1	84.0	77.4	66.3	57.8	48.4	65.9
	${ }^{\circ} \mathrm{C}$	6.4	8.4	13.7	19.3	23.5	27.8	30.1	28.9	25.2	19.1	14.3	9.1	18.8

Table 2.3-66-\{Monthly Mean Minimum Temperatures (1971-2000) at Sites Around CCNPP $\}$

SITE		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore/Washington International Airport	${ }^{\circ} \mathrm{F}$	23.5	26.1	33.6	42.0	51.8	60.8	65.8	63.9	56.6	43.7	34.7	27.3	44.2
	${ }^{\circ} \mathrm{C}$	-4.7	-3.3	0.9	5.6	11.0	16.0	18.8	17.7	13.7	6.5	1.5	-2.6	6.8
Annapolis, MD	${ }^{\circ} \mathrm{F}$	23.8	25.1	32.8	42.1	52.3	61.6	67.3	65.8	58.5	46.3	36.2	28.6	45.0
	${ }^{\circ} \mathrm{C}$	-4.6	-3.8	0.4	5.6	11.3	16.4	19.6	18.8	14.7	7.9	2.3	-1.9	7.2
Cambridge, MD	${ }^{\circ} \mathrm{F}$	27.2	29.3	36.5	44.7	54.5	63.5	68.3	66.9	60.5	48.8	40.1	31.8	47.7
	${ }^{\circ} \mathrm{C}$	-2.7	-1.5	2.5	7.1	12.5	17.5	20.2	19.4	15.8	9.3	4.5	-0.1	8.7
Princess Anne, MD	${ }^{\circ} \mathrm{F}$	26.0	27.8	34.3	41.2	50.8	59.8	64.7	63.1	56.2	44.4	37.1	29.5	44.6
	${ }^{\circ} \mathrm{C}$	-3.3	-2.3	1.3	5.1	10.4	15.4	18.2	17.3	13.4	6.9	2.8	-1.4	7.0
Patuxent River NAS	${ }^{\circ} \mathrm{F}$	28.3	29.9	36.9	45.7	55.9	64.8	70.0	68.7	62.4	50.4	41.2	32.8	48.9
	${ }^{\circ} \mathrm{C}$	-2.1	-1.2	2.7	7.6	13.3	18.2	21.1	20.4	16.9	10.2	5.1	0.4	9.4
Mechanicsville, MD	${ }^{\circ} \mathrm{F}$	26.3	28.5	35.6	43.7	53.4	61.9	67.0	65.5	59.1	47.0	38.0	30.6	46.4
	${ }^{\circ} \mathrm{C}$	-3.2	-1.9	2.0	6.5	11.9	16.6	19.4	18.6	15.1	8.3	3.3	-0.8	8.0

Table 2.3-67—\{Monthly Mean Wet Bulb Temperatures (1983-2000) at Sites Around CCNPP $\}$

Table 2.3-68_\{Monthly Mean Dew Point Temperatures (1983-2000) at Sites Around CCNPP\}

SITE		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore/Washington International Airport	${ }^{\circ} \mathrm{F}$	23.6	25.1	30.1	40.3	51.4	61.5	65.9	64.7	58.4	47.1	34.4	25.4	44.0
	${ }^{\circ} \mathrm{C}$	-4.7	-3.8	-1.1	4.6	10.8	16.4	18.8	18.2	14.7	8.4	1.3	-3.7	6.7
Norfolk, VA	${ }^{\circ} \mathrm{F}$	31.0	32.5	37.2	45.7	55.1	64.5	65.9	68.7	59.8	52.5	43.0	34.5	49.2
	${ }^{\circ} \mathrm{C}$	-0.6	0.3	2.9	7.6	12.8	18.1	18.8	20.4	15.4	11.4	6.1	1.4	9.6
Richmond, VA	${ }^{\circ} \mathrm{F}$	27.3	28.9	33.9	43.3	54.3	63.2	68.0	63.2	60.1	49.0	38.7	29.9	46.7
	${ }^{\circ} \mathrm{C}$	-2.6	-1.7	1.1	6.3	12.4	17.3	20.0	17.3	15.6	9.4	3.7	-1.2	8.2

Table 2．3－69—\｛Number of Days with Maximum Hourly Temperature Value Greater Than or Equal to $9 \mathbf{0}^{\circ} \mathbf{F}$ at Sites Around CCNPP\}

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore／Washington International Airport	0.0	0.0	0.0	0.4	1.4	5.8	11.3	8.0	3.4	0.0	0.0	0.0	30.3
Norfolk，VA	0.0	0.0	0.0	0.4	1.5	5.9	10.9	8.6	2.8	0.1	0.0	0.0	30.2
Richmond，VA	0.0	0.0	0.1	0.8	2.3	8.7	13.8	11.0	4.1	0.3	0.0	0.0	41.1

Table 2.3-70—\{Number of Days with Maximum Hourly Temperature Value Less Than or Equal to $32^{\circ} \mathrm{F}$ at Sites Around CCNPP\}

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore/Washington International Airport	7.2	4.2	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	3.6	15.5
Norfolk, VA	3.3	1.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	5.7
Richmond, VA	4.3	1.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	7.6

Table 2.3-71—\{Number of Days with Minimum Hourly Temperature Value Less Than or Equal to $32^{\circ} \mathbf{F}$ at Sites Around CCNPP\}

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore/Washington International Airport	25.3	21.1	14.0	3.4	*	0.0	0.0	0.0	0.0	1.9	10.2	21.1	97.0
Norfolk, VA	18.0	15.5	6.0	0.4	0.0	0.0	0.0	0.0	0.0	0.2	3.0	13.1	56.2
Richmond, VA	23.0	19.5	10.8	2.3	0.1	0.0	0.0	0.0	0.0	2.1	9.4	19.2	86.4

Note:

* Denotes value is between 0.00 and 0.05
Table 2.3-72—\{Number of Days with Minimum Hourly Temperature Value Less Than or Equal to 0° F at Sites Around CCNPP\}

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore/Washington International Airport	0.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	*	0.6
Norfolk, VA	*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Richmond, VA	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4

Note:

* Denotes value is between 0.00 and 0.05
Table 2．3－73—\｛Monthly Mean Relative Humidity at Sites Around CCNPP\}

SITE		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore／Washington International Airport	\％	63	61	59	59	66	68	69	71	71	70	66	66	66
Norfolk，VA	\％	66	66	65	63	69	71	73	75	74	72	68	67	69
Richmond，VA	\％	68	66	63	61	70	72	75	77	77	74	69	69	70

Table 2.3-74—\{Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperature Values for Patuxent River Naval Air Station, Maryland (1982-2001)\}

\%	Jan		Feb		Mar		Apr		May		Jun	
	WB	MCDB										
	19a	19b	19c	19d	19e	19 f	19g	19h	19i	19j	19k	191
0.4\%	$60.2^{\circ} \mathrm{F}$	$63.7^{\circ} \mathrm{F}$	$61.3^{\circ} \mathrm{F}$	$67.1^{\circ} \mathrm{F}$	$65.1^{\circ} \mathrm{F}$	$77.6^{\circ} \mathrm{F}$	$68.8^{\circ} \mathrm{F}$	$79.7^{\circ} \mathrm{F}$	$76.0^{\circ} \mathrm{F}$	$86.3^{\circ} \mathrm{F}$	$79.5{ }^{\circ} \mathrm{F}$	$88.4{ }^{\circ} \mathrm{F}$
	$15.7^{\circ} \mathrm{C}$	$17.6^{\circ} \mathrm{C}$	$16.3^{\circ} \mathrm{C}$	$19.5{ }^{\circ} \mathrm{C}$	$18.4{ }^{\circ} \mathrm{C}$	$25.3^{\circ} \mathrm{C}$	$20.4{ }^{\circ} \mathrm{C}$	$26.5^{\circ} \mathrm{C}$	$24.4{ }^{\circ} \mathrm{C}$	$30.2^{\circ} \mathrm{C}$	$26.4{ }^{\circ} \mathrm{C}$	$31.3{ }^{\circ} \mathrm{C}$
1\%	$57.5^{\circ} \mathrm{F}$	$61.8^{\circ} \mathrm{F}$	$58.8{ }^{\circ} \mathrm{F}$	$64.4^{\circ} \mathrm{F}$	$63.0^{\circ} \mathrm{F}$	$72.3{ }^{\circ} \mathrm{F}$	$67.1^{\circ} \mathrm{F}$	$76.9^{\circ} \mathrm{F}$	$74.6{ }^{\circ} \mathrm{F}$	$83.9^{\circ} \mathrm{F}$	$78.2^{\circ} \mathrm{F}$	$86.9^{\circ} \mathrm{F}$
	$14.2^{\circ} \mathrm{C}$	$16.6^{\circ} \mathrm{C}$	$14.9{ }^{\circ} \mathrm{C}$	$18.0^{\circ} \mathrm{C}$	$17.2^{\circ} \mathrm{C}$	$22.4{ }^{\circ} \mathrm{C}$	$19.5{ }^{\circ} \mathrm{C}$	$24.9^{\circ} \mathrm{C}$	$23.7^{\circ} \mathrm{C}$	$28.8^{\circ} \mathrm{C}$	$25.7^{\circ} \mathrm{C}$	$30.5^{\circ} \mathrm{C}$
2\%	$55.0^{\circ} \mathrm{F}$	$58.5{ }^{\circ} \mathrm{F}$	$56.0^{\circ} \mathrm{F}$	$61.9^{\circ} \mathrm{F}$	$60.8^{\circ} \mathrm{F}$	$68.7^{\circ} \mathrm{F}$	$65.5^{\circ} \mathrm{F}$	$74.3{ }^{\circ} \mathrm{F}$	$73.0^{\circ} \mathrm{F}$	$81.8^{\circ} \mathrm{F}$	$77.4^{\circ} \mathrm{F}$	$85.9{ }^{\circ} \mathrm{F}$
	$12.8{ }^{\circ} \mathrm{C}$	$14.7^{\circ} \mathrm{C}$	$13.3^{\circ} \mathrm{C}$	$16.6^{\circ} \mathrm{C}$	$16.0^{\circ} \mathrm{C}$	$20.4{ }^{\circ} \mathrm{C}$	$18.6^{\circ} \mathrm{C}$	$23.5^{\circ} \mathrm{C}$	$22.8{ }^{\circ} \mathrm{C}$	$27.7^{\circ} \mathrm{C}$	$25.2^{\circ} \mathrm{C}$	$29.9^{\circ} \mathrm{C}$
\%	Jul		Aug		Sep		Oct		Nov		Dec	
	WB	MCDB										
	19m	19n	190	19p	19q	19r	19s	19t	19u	19v	19w	19x
0.4\%	$81.3^{\circ} \mathrm{F}$	$90.8^{\circ} \mathrm{F}$	$80.9^{\circ} \mathrm{F}$	$88.2^{\circ} \mathrm{F}$	$78.4^{\circ} \mathrm{F}$	$85.5^{\circ} \mathrm{F}$	$72.8{ }^{\circ} \mathrm{F}$	$80.0^{\circ} \mathrm{F}$	$67.1^{\circ} \mathrm{F}$	$72.0^{\circ} \mathrm{F}$	$63.5^{\circ} \mathrm{F}$	$68.9^{\circ} \mathrm{F}$
	$27.4^{\circ} \mathrm{C}$	$32.7^{\circ} \mathrm{C}$	$27.2^{\circ} \mathrm{C}$	$31.2^{\circ} \mathrm{C}$	$25.8^{\circ} \mathrm{C}$	$29.7^{\circ} \mathrm{C}$	$22.7^{\circ} \mathrm{C}$	$26.7^{\circ} \mathrm{C}$	$19.5{ }^{\circ} \mathrm{C}$	$22.2^{\circ} \mathrm{C}$	$17.5^{\circ} \mathrm{C}$	$20.5^{\circ} \mathrm{C}$
1\%	$80.3^{\circ} \mathrm{F}$	$89.9^{\circ} \mathrm{F}$	$79.7^{\circ} \mathrm{F}$	$88.4^{\circ} \mathrm{F}$	$77.4^{\circ} \mathrm{F}$	$84.6^{\circ} \mathrm{F}$	$71.3^{\circ} \mathrm{F}$	$78.6^{\circ} \mathrm{F}$	$65.5^{\circ} \mathrm{F}$	$69.9^{\circ} \mathrm{F}$	$61.3^{\circ} \mathrm{F}$	$65.9{ }^{\circ} \mathrm{F}$
	$26.8^{\circ} \mathrm{C}$	$32.2^{\circ} \mathrm{C}$	$26.5^{\circ} \mathrm{C}$	$31.3^{\circ} \mathrm{C}$	$25.2^{\circ} \mathrm{C}$	$29.2^{\circ} \mathrm{C}$	$21.8^{\circ} \mathrm{C}$	$25.9^{\circ} \mathrm{C}$	$18.6^{\circ} \mathrm{C}$	$21.1^{\circ} \mathrm{C}$	$16.3^{\circ} \mathrm{C}$	$18.8^{\circ} \mathrm{C}$
2\%	$79.6{ }^{\circ} \mathrm{F}$	$89.2^{\circ} \mathrm{F}$	$78.6^{\circ} \mathrm{F}$	$87.0^{\circ} \mathrm{F}$	$76.4^{\circ} \mathrm{F}$	$83.3^{\circ} \mathrm{F}$	$70.2^{\circ} \mathrm{F}$	$76.6^{\circ} \mathrm{F}$	$64.0^{\circ} \mathrm{F}$	$68.2^{\circ} \mathrm{F}$	$59.4{ }^{\circ} \mathrm{F}$	$64.2^{\circ} \mathrm{F}$
	$26.4^{\circ} \mathrm{C}$	$31.8^{\circ} \mathrm{C}$	$25.9^{\circ} \mathrm{C}$	$30.6{ }^{\circ} \mathrm{C}$	$24.7{ }^{\circ} \mathrm{C}$	$28.5^{\circ} \mathrm{C}$	$21.2^{\circ} \mathrm{C}$	$24.8{ }^{\circ} \mathrm{C}$	$17.8^{\circ} \mathrm{C}$	$20.1^{\circ} \mathrm{C}$	$15.2^{\circ} \mathrm{C}$	$17.9^{\circ} \mathrm{C}$

Note:
WB = wet bulb
MCDB = mean coincident dry bulb

Table 2.3-75-\{Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperature Values for Salisbury Wicomico County Airport, Maryland (1982-2001)\}

	Jan		Feb		Mar		Apr		May		Jun	
\%	WB	MCDB										
	19a	19b	19c	19d	19e	19 f	19g	19h	19i	19j	19k	191
0.4\%	$63.6^{\circ} \mathrm{F}$	$65.1^{\circ} \mathrm{F}$	$63.0^{\circ} \mathrm{F}$	$66.9^{\circ} \mathrm{F}$	$65.9^{\circ} \mathrm{F}$	$74.4{ }^{\circ} \mathrm{F}$	$70.5^{\circ} \mathrm{F}$	$82.3^{\circ} \mathrm{F}$	$75.9^{\circ} \mathrm{F}$	$85.2^{\circ} \mathrm{F}$	$80.2^{\circ} \mathrm{F}$	$88.1^{\circ} \mathrm{F}$
	$17.6^{\circ} \mathrm{C}$	$18.4^{\circ} \mathrm{C}$	$17.2^{\circ} \mathrm{C}$	$19.4{ }^{\circ} \mathrm{C}$	$18.8^{\circ} \mathrm{C}$	$23.6^{\circ} \mathrm{C}$	$21.4^{\circ} \mathrm{C}$	$27.9^{\circ} \mathrm{C}$	$24.4{ }^{\circ} \mathrm{C}$	$29.6^{\circ} \mathrm{C}$	$26.8^{\circ} \mathrm{C}$	$31.2{ }^{\circ} \mathrm{C}$
1\%	$61.2^{\circ} \mathrm{F}$	$63.4^{\circ} \mathrm{F}$	$61.3^{\circ} \mathrm{F}$	$65.1^{\circ} \mathrm{F}$	$64.4{ }^{\circ} \mathrm{F}$	$71.8^{\circ} \mathrm{F}$	$68.6^{\circ} \mathrm{F}$	$78.5^{\circ} \mathrm{F}$	$74.7{ }^{\circ} \mathrm{F}$	$83.9^{\circ} \mathrm{F}$	$78.7^{\circ} \mathrm{F}$	$87.0^{\circ} \mathrm{F}$
	$16.2^{\circ} \mathrm{C}$	$17.4^{\circ} \mathrm{C}$	$16.3^{\circ} \mathrm{C}$	$18.4^{\circ} \mathrm{C}$	$18.0^{\circ} \mathrm{C}$	$22.1{ }^{\circ} \mathrm{C}$	$20.3^{\circ} \mathrm{C}$	$25.8^{\circ} \mathrm{C}$	$23.7^{\circ} \mathrm{C}$	$28.8^{\circ} \mathrm{C}$	$25.9^{\circ} \mathrm{C}$	$30.6^{\circ} \mathrm{C}$
2\%	$58.8{ }^{\circ} \mathrm{F}$	$61.9^{\circ} \mathrm{F}$	$59.1{ }^{\circ} \mathrm{F}$	$62.7^{\circ} \mathrm{F}$	$62.9^{\circ} \mathrm{F}$	$69.2^{\circ} \mathrm{F}$	$66.9^{\circ} \mathrm{F}$	$75.7^{\circ} \mathrm{F}$	$73.5{ }^{\circ} \mathrm{F}$	$82.5^{\circ} \mathrm{F}$	$77.8^{\circ} \mathrm{F}$	$86.5^{\circ} \mathrm{F}$
	$14.9{ }^{\circ} \mathrm{C}$	$16.6^{\circ} \mathrm{C}$	$15.1^{\circ} \mathrm{C}$	$17.1^{\circ} \mathrm{C}$	$17.2^{\circ} \mathrm{C}$	$20.7^{\circ} \mathrm{C}$	$19.4{ }^{\circ} \mathrm{C}$	$24.3{ }^{\circ} \mathrm{C}$	$23.1{ }^{\circ} \mathrm{C}$	$28.1{ }^{\circ} \mathrm{C}$	$25.4^{\circ} \mathrm{C}$	$30.3^{\circ} \mathrm{C}$
\%	Jul		Aug		Sep		Oct		Nov		Dec	
	WB	MCDB										
	19m	19n	190	19p	19q	19r	19s	19t	19u	19v	19w	19x
0.4\%	$82.3^{\circ} \mathrm{F}$	$91.4^{\circ} \mathrm{F}$	$81.2^{\circ} \mathrm{F}$	$88.9^{\circ} \mathrm{F}$	$78.2^{\circ} \mathrm{F}$	$86.0^{\circ} \mathrm{F}$	$73.9^{\circ} \mathrm{F}$	$78.9^{\circ} \mathrm{F}$	$68.1^{\circ} \mathrm{F}$	$71.5^{\circ} \mathrm{F}$	$64.8{ }^{\circ} \mathrm{F}$	$68.3^{\circ} \mathrm{F}$
	$27.9^{\circ} \mathrm{C}$	$33.0{ }^{\circ} \mathrm{C}$	$27.3^{\circ} \mathrm{C}$	$31.6^{\circ} \mathrm{C}$	$25.7^{\circ} \mathrm{C}$	$30.0^{\circ} \mathrm{C}$	$23.3^{\circ} \mathrm{C}$	$26.1^{\circ} \mathrm{C}$	$20.1{ }^{\circ} \mathrm{C}$	$21.9^{\circ} \mathrm{C}$	$18.2^{\circ} \mathrm{C}$	$20.2^{\circ} \mathrm{C}$
1\%	$81.1^{\circ} \mathrm{F}$	$90.3^{\circ} \mathrm{F}$	$80.0^{\circ} \mathrm{F}$	$88.1{ }^{\circ} \mathrm{F}$	$77.3^{\circ} \mathrm{F}$	$84.3^{\circ} \mathrm{F}$	$72.5{ }^{\circ} \mathrm{F}$	$78.4^{\circ} \mathrm{F}$	$66.8^{\circ} \mathrm{F}$	$70.0^{\circ} \mathrm{F}$	$63.2^{\circ} \mathrm{F}$	$65.8^{\circ} \mathrm{F}$
	$27.3^{\circ} \mathrm{C}$	$32.4{ }^{\circ} \mathrm{C}$	$26.7^{\circ} \mathrm{C}$	$31.2^{\circ} \mathrm{C}$	$25.2^{\circ} \mathrm{C}$	$29.1{ }^{\circ} \mathrm{C}$	$22.5{ }^{\circ} \mathrm{C}$	$25.8^{\circ} \mathrm{C}$	$19.3{ }^{\circ} \mathrm{C}$	$21.1^{\circ} \mathrm{C}$	$17.3^{\circ} \mathrm{C}$	$18.8{ }^{\circ} \mathrm{C}$
2\%	$80.2^{\circ} \mathrm{F}$	$89.1{ }^{\circ} \mathrm{F}$	$79.0^{\circ} \mathrm{F}$	$87.0^{\circ} \mathrm{F}$	$76.4{ }^{\circ} \mathrm{F}$	$82.9^{\circ} \mathrm{F}$	$71.3^{\circ} \mathrm{F}$	$77.4^{\circ} \mathrm{F}$	$65.8^{\circ} \mathrm{F}$	$69.2^{\circ} \mathrm{F}$	$61.4^{\circ} \mathrm{F}$	$64.1{ }^{\circ} \mathrm{F}$
	$26.8{ }^{\circ} \mathrm{C}$	$31.7^{\circ} \mathrm{C}$	$26.1{ }^{\circ} \mathrm{C}$	$30.6{ }^{\circ} \mathrm{C}$	$24.7^{\circ} \mathrm{C}$	$28.3^{\circ} \mathrm{C}$	$21.8^{\circ} \mathrm{C}$	$25.2{ }^{\circ} \mathrm{C}$	$18.8{ }^{\circ} \mathrm{C}$	$20.7^{\circ} \mathrm{C}$	$16.3{ }^{\circ} \mathrm{C}$	$17.8^{\circ} \mathrm{C}$

Note:
WB = wet bulb
MCDB = mean coincident dry bulb

Table 2.3-76-\{Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperature Values for Baltimore, Maryland (1982-2001)\}

\%	Jan		Feb		Mar		Apr		May		Jun	
	WB	MCDB										
	19a	19b	19c	19d	19e	19 f	19g	19h	19i	19j	19k	191
0.4\%	$60.2^{\circ} \mathrm{F}$	$63.5^{\circ} \mathrm{F}$	$60.0^{\circ} \mathrm{F}$	$66.0^{\circ} \mathrm{F}$	$64.8{ }^{\circ} \mathrm{F}$	$77.7^{\circ} \mathrm{F}$	$68.7^{\circ} \mathrm{F}$	$80.2^{\circ} \mathrm{F}$	$74.7^{\circ} \mathrm{F}$	$85.5^{\circ} \mathrm{F}$	$78.5^{\circ} \mathrm{F}$	$88.2^{\circ} \mathrm{F}$
	$15.7^{\circ} \mathrm{C}$	$17.5^{\circ} \mathrm{C}$	$15.6^{\circ} \mathrm{C}$	$18.9{ }^{\circ} \mathrm{C}$	$18.2^{\circ} \mathrm{C}$	$25.4^{\circ} \mathrm{C}$	$20.4{ }^{\circ} \mathrm{C}$	$26.8^{\circ} \mathrm{C}$	$23.7{ }^{\circ} \mathrm{C}$	$29.7^{\circ} \mathrm{C}$	$25.8^{\circ} \mathrm{C}$	$31.2{ }^{\circ} \mathrm{C}$
1\%	$57.5^{\circ} \mathrm{F}$	$61.3^{\circ} \mathrm{F}$	$57.4{ }^{\circ} \mathrm{F}$	$62.7^{\circ} \mathrm{F}$	$62.4{ }^{\circ} \mathrm{F}$	$72.4{ }^{\circ} \mathrm{F}$	$67.3^{\circ} \mathrm{F}$	$78.4{ }^{\circ} \mathrm{F}$	$73.3^{\circ} \mathrm{F}$	$83.9^{\circ} \mathrm{F}$	$77.3^{\circ} \mathrm{F}$	$87.1^{\circ} \mathrm{F}$
	$14.2^{\circ} \mathrm{C}$	$16.3^{\circ} \mathrm{C}$	$14.1{ }^{\circ} \mathrm{C}$	$17.1^{\circ} \mathrm{C}$	$16.9^{\circ} \mathrm{C}$	$22.4{ }^{\circ} \mathrm{C}$	$19.6{ }^{\circ} \mathrm{C}$	$25.8^{\circ} \mathrm{C}$	$22.9{ }^{\circ} \mathrm{C}$	$28.8^{\circ} \mathrm{C}$	$25.2^{\circ} \mathrm{C}$	$30.6{ }^{\circ} \mathrm{C}$
2\%	$54.4^{\circ} \mathrm{F}$	$57.8^{\circ} \mathrm{F}$	$54.4{ }^{\circ} \mathrm{F}$	$60.0^{\circ} \mathrm{F}$	$60.0^{\circ} \mathrm{F}$	$68.6^{\circ} \mathrm{F}$	$65.6^{\circ} \mathrm{F}$	$75.9^{\circ} \mathrm{F}$	$72.0^{\circ} \mathrm{F}$	$81.7^{\circ} \mathrm{F}$	$76.3^{\circ} \mathrm{F}$	$85.8^{\circ} \mathrm{F}$
	$12.4{ }^{\circ} \mathrm{C}$	$14.3{ }^{\circ} \mathrm{C}$	$12.4{ }^{\circ} \mathrm{C}$	$15.6^{\circ} \mathrm{C}$	$15.6^{\circ} \mathrm{C}$	$20.3^{\circ} \mathrm{C}$	$18.7^{\circ} \mathrm{C}$	$24.4{ }^{\circ} \mathrm{C}$	$22.2{ }^{\circ} \mathrm{C}$	$27.6^{\circ} \mathrm{C}$	$24.6{ }^{\circ} \mathrm{C}$	$29.9^{\circ} \mathrm{C}$
\%	Jul		Aug		Sep		Oct		Nov		Dec	
	WB	MCDB										
	19m	19n	190	19p	19q	19r	19s	19t	19u	19v	19w	19x
0.4\%	$80.3^{\circ} \mathrm{F}$	$91.2^{\circ} \mathrm{F}$	$79.5^{\circ} \mathrm{F}$	$89.0^{\circ} \mathrm{F}$	$77.3^{\circ} \mathrm{F}$	$86.2^{\circ} \mathrm{F}$	$71.5{ }^{\circ} \mathrm{F}$	$77.8^{\circ} \mathrm{F}$	$66.5^{\circ} \mathrm{F}$	$71.3^{\circ} \mathrm{F}$	$61.7^{\circ} \mathrm{F}$	$66.5^{\circ} \mathrm{F}$
	$26.8^{\circ} \mathrm{C}$	$32.9^{\circ} \mathrm{C}$	$26.4{ }^{\circ} \mathrm{C}$	$31.7^{\circ} \mathrm{C}$	$25.2^{\circ} \mathrm{C}$	$30.1{ }^{\circ} \mathrm{C}$	$21.9^{\circ} \mathrm{C}$	$25.4^{\circ} \mathrm{C}$	$19.2^{\circ} \mathrm{C}$	$21.8^{\circ} \mathrm{C}$	$16.5^{\circ} \mathrm{C}$	$19.2{ }^{\circ} \mathrm{C}$
1\%	$79.3^{\circ} \mathrm{F}$	$90.5^{\circ} \mathrm{F}$	$78.4{ }^{\circ} \mathrm{F}$	$88.1{ }^{\circ} \mathrm{F}$	$76.3^{\circ} \mathrm{F}$	$84.7^{\circ} \mathrm{F}$	$70.5^{\circ} \mathrm{F}$	$76.4^{\circ} \mathrm{F}$	$64.7^{\circ} \mathrm{F}$	$68.9^{\circ} \mathrm{F}$	$59.5^{\circ} \mathrm{F}$	$63.1^{\circ} \mathrm{F}$
	$26.3^{\circ} \mathrm{C}$	$32.5{ }^{\circ} \mathrm{C}$	$25.8^{\circ} \mathrm{C}$	$31.2^{\circ} \mathrm{C}$	$24.6{ }^{\circ} \mathrm{C}$	$29.3{ }^{\circ} \mathrm{C}$	$21.4^{\circ} \mathrm{C}$	$24.7^{\circ} \mathrm{C}$	$18.2^{\circ} \mathrm{C}$	$20.5^{\circ} \mathrm{C}$	$15.3^{\circ} \mathrm{C}$	$17.3^{\circ} \mathrm{C}$
2\%	$78.4{ }^{\circ} \mathrm{F}$	$89.2^{\circ} \mathrm{F}$	$77.7^{\circ} \mathrm{F}$	$87.5^{\circ} \mathrm{F}$	$75.3^{\circ} \mathrm{F}$	$83.2{ }^{\circ} \mathrm{F}$	$69.1{ }^{\circ} \mathrm{F}$	$74.7{ }^{\circ} \mathrm{F}$	$63.4^{\circ} \mathrm{F}$	$67.3^{\circ} \mathrm{F}$	$56.9^{\circ} \mathrm{F}$	$60.7^{\circ} \mathrm{F}$
	$25.8{ }^{\circ} \mathrm{C}$	$31.8{ }^{\circ} \mathrm{C}$	$25.4{ }^{\circ} \mathrm{C}$	$30.8{ }^{\circ} \mathrm{C}$	$24.1{ }^{\circ} \mathrm{C}$	$28.4^{\circ} \mathrm{C}$	$20.6{ }^{\circ} \mathrm{C}$	$23.7^{\circ} \mathrm{C}$	$17.4^{\circ} \mathrm{C}$	$19.6{ }^{\circ} \mathrm{C}$	$13.8{ }^{\circ} \mathrm{C}$	$15.9^{\circ} \mathrm{C}$

Note:
WB = wet bulb
MCDB = mean coincident dry bulb
Table 2.3-77—\{CCNPP Monthly and Annual Precipitation (2000-2005)\}
Table 2．3－78—\｛CCNPP Monthly and Annual Percent Frequency of Precipitation Occurrence（2000－2005）\}

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
5.19	4.93	6.41	7.87	6.17	4.30	5.13	4.57	4.26	6.32	5.30	6.46	5.58

Table 2.3-79—\{CCNPP Hourly Rainfall Rate Distribution (2000-2005)\}

Rainfall Rate in $/ \mathbf{h r}$ $(\mathbf{m m} / \mathbf{h r})$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 0.0-0.1 \\ (0.0-2.5) \end{gathered}$	$\begin{gathered} 0.1-0.2 \\ (2.5-5.1) \end{gathered}$	$\begin{gathered} 0.2-0.3 \\ (5.1-7.6) \end{gathered}$	$\begin{gathered} 0.3-0.4 \\ (7.6-10.2) \end{gathered}$	$\begin{gathered} 0.4-0.5 \\ (10.2-12.7) \end{gathered}$	$\begin{gathered} 0.5-0.6 \\ (12.7-15.2) \end{gathered}$	$\begin{gathered} 0.6-0.7 \\ (15.2-17.8) \end{gathered}$	$\begin{gathered} 0.7-0.8 \\ (17.8-20.3) \end{gathered}$	$\begin{gathered} 0.8-0.9 \\ (20.3-22.9) \end{gathered}$	$\begin{gathered} 0.9-1.0 \\ (22.9-25.4) \end{gathered}$	$\begin{gathered} 1.0-2.0 \\ (25.4-50.8) \end{gathered}$	$\begin{gathered} 2.0-3.0 \\ (50.8-76.2) \end{gathered}$	Missing Data
Number of hours	48781	2374	306	73	87	18	10	9	6	1	1	2	1	939

Table 2.3-80—\{CCNPP Measured Extreme Precipitation Hourly Values (2000-2005)\}

Rainfall Amount (in (mm))	2.2 (55.9)	$\mathbf{1 . 5 9 (4 0 . 3 9)}$	$\mathbf{1 . 5 7}$ (39.88)
Dat Occurred	$4 / 15 / 2003$	$5 / 21 / 2001$	$6 / 30 / 2005)$

Date Occurred
Table 2.3-81-\{Mean Monthly and Annual Precipitation (1971-2000) At Sites Around CCNPP\}

Table 2.3-82—\{Mean Monthly and Annual Snowfall (1961-1990)At Sites Around CCNPP\}

SITE		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore/Washington International Airport	in	7.0	6.4	2.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.7	18.2
	mm	177.80	162.56	60.96	2.54	0.00	0.00	0.00	0.00	0.00	0.00	15.24	43.18	462.28
Norfolk, VA	in	2.6	3.8	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	8.1
	mm	66.04	96.52	33.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.16	205.74
Richmond, VA	in	4.3	4.8	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.6	12.4
	mm	109.22	121.92	35.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.62	40.64	314.96

Table 2．3－83—\｛Monthly Mean Number of Days with Precipitation（1961－1990）At Sites Around CCNPP\}

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore／Washington International Airport	10.2	9.4	10.0	10.5	10.9	9.2	9.6	9.4	7.2	7.4	9.0	9.2	112.0
Norfolk，VA	10.7	10.3	10.4	9.8	9.9	9.7	11.1	10.1	7.7	7.4	7.7	9.5	114.3
Richmond，VA	10.4	9.4	10.2	9.0	10.7	9.6	10.4	9.5	7.6	7.0	8.0	9.1	110.9

Table 2．3－84—\｛Monthly Mean Number of Days with Heavy Fog（1971－2000）At Sites Around CCNPP\}

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Baltimore／Washington International Airport	3.1	3.2	2.5	1.8	1.6	0.9	0.8	1.0	1.3	2.5	2.6	3.1	24.4
Norfolk，VA	2.1	2.5	2.0	1.5	1.8	1.0	0.5	1.0	1.2	2.1	1.9	2.1	19.7
Richmond，VA	2.7	2.1	1.7	1.6	1.8	1.5	2.0	2.4	2.9	3.3	2.3	2.8	27.1

Note：
BWI period 1949－2002，Norfolk period 1948－2002，Richmond period 1928－2002

	Table 2.3-85—\{CCNPP 33 ft (10 m) Annual Stability Persistence Summary for Year 2000																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	113	62	35	39	28	26	19	8	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	334
		34	52	63	75	83	91	96	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	302	49	11	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	364
		83	96	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	C	300	55	12	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	371
		81	96	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D	381	198	68	44	27	16	3	8	9	8	11	7	8	5	7	7	4	4	1	4	0	1	2	3	9	835
		46	69	77	83	86	88	88	89	90	91	93	93	94	95	96	97	97	98	98	98	98	98	99	99	100	
	E	273	133	70	47	32	30	23	20	11	19	8	11	6	5	1	3	0	1	0	0	0	0	0	0	0	693
		39	59	69	75	80	84	88	91	92	95	96	98	99	99	99	100	100	100	0	0	0	0	0	0	0	
	F	204	73	44	17	13	11	4	2	3	0	2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	375
		54	74	86	90	94	97	98	98	99	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	
	G	58	27	21	12	9	14	3	4	3	7	2	1	2	3	2	0	0	0	0	0	0	0	0	0	0	168
		35	51	63	70	76	84	86	88	90	94	95	96	97	99	100	0	0	0	0	0	0	0	0	0	0	
	TOTAL	1631	597	261	163	109	99	52	42	29	35	23	19	17	14	10	10	4	5	1	4	0	1	2	3	9	3140

$\begin{aligned} & \widehat{\lambda} \\ & \substack{0 \\ 0 \\ \underset{\sim}{c} \\ \underset{\omega}{c} \\ \hline} \end{aligned}$	Table 2.3-86—\{CCNPP 33 ft (10m) Annual Stability Persistence Summary for Year 2001\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	129	65	34	29	40	34	32	20	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	392
		33	49	58	66	76	84	93	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	305	46	10	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	363
$\underset{O}{\circ}$		84	97	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\xlongequal{\beth}$	C	288	47	10	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	347
$\begin{aligned} & \overline{\mathrm{O}} \\ & \underline{1} \end{aligned}$		83	97	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\underset{0}{2} \underset{ }{2}$	D	373	193	81	37	23	18	12	8	12	5	7	8	5	3	7	2	4	2	4	4	0	2	0	0	5	815
入		46	69	79	84	87	89	90	91	93	93	94	95	96	96	97	97	98	98	99	99	99	99	99	99	100	
-	E	310	130	78	48	36	28	15	12	13	9	7	6	8	7	2	3	0	0	0	0	0	0	0	0	0	712
0		44	62	73	79	85	88	91	92	94	95	96	97	98	99	100	100	0	0	0	0	0	0	0	0	0	
	F	262	102	39	33	15	14	7	4	2	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	482
$\stackrel{\text { ¢ }}{\substack{\text { I }}}$		54	76	84	90	94	96	98	99	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
$\stackrel{\pi}{n}$	G	79	35	23	19	11	7	9	5	4	6	4	3	2	1	1	0	0	0	0	0	0	0	0	0	0	209
¢		38	55	66	75	80	83	88	90	92	95	97	98	99	100	100	0	0	0	0	0	0	0	0	0	0	
\bigcirc	TOTAL	1746	618	275	169	126	101	75	49	38	24	19	17	16	11	10	5	4	2	4	4	0	2	0	0	5	3320

	Table 2.3-87—\{CCNPP 33 ft (10m) Annual Stability Persistence Summary for Year 2002\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	101	53	36	40	25	26	34	12	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	332
		30	46	57	69	77	85	95	98	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	275	47	8	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	331
		83	97	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	C	264	62	8	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	336
		79	97	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D	348	186	99	32	26	17	16	10	9	7	7	3	5	6	1	3	3	2	1	3	1	1	1	0	13	800
		44	67	79	83	86	89	91	92	93	94	95	95	96	96	97	97	97	98	98	98	98	98	98	98	100	
	E	291	126	61	47	42	28	22	28	12	8	9	12	8	3	4	4	0	0	0	0	0	1	0	0	0	706
		41	59	68	74	80	84	87	91	93	94	95	97	98	99	99	100	100	100	100	100	100	100	0	0	0	
	F	217	84	40	34	25	8	7	0	0	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	420
		52	72	81	89	95	97	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	G	75	32	26	14	10	8	5	4	2	4	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	183
		41	58	73	80	86	90	93	95	96	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	
	TOTAL	1571	590	278	169	129	87	84	54	28	22	20	15	13	10	5	7	3	2	1	3	1	2	1	0	13	3108

	Table 2.3-88—\{CCNPP 33 ft (10m) Annual Stability Persistence Summary for Year 2003\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	100	50	26	29	25	12	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	251
		40	60	70	82	92	96	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1exs!un LOOZ ©	B	207	47	15	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	272
		76	93	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	C	287	49	10	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	348
		82	97	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D	314	190	101	44	36	27	19	12	14	3	4	8	2	3	3	7	7	2	1	3	1	1	4	0	10	816
		38	62	74	80	84	87	90	91	93	93	94	95	95	95	96	96	97	98	98	98	98	98	99	99	100	
	E	285	140	69	42	48	31	17	20	11	11	11	14	6	5	3	7	0	1	0	1	0	0	0	0	0	722
		39	59	68	74	81	85	88	90	92	93	95	97	98	98	99	100	100	100	100	100	0	0	0	0	0	
	F	198	85	58	23	13	8	6	3	1	3	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	403
		49	70	85	90	94	96	97	98	98	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
	G	73	31	17	16	12	9	4	2	2	4	4	2	1	1	1	0	0	0	0	0	0	0	0	0	0	179
		41	58	68	77	83	88	91	92	93	95	97	98	99	99	100	0	0	0	0	0	0	0	0	0	0	
	TOTAL	1464	592	296	158	135	87	52	40	28	21	22	25	10	9	7	14	7	3	1	4	1	1	4	0	10	2991

	Table 2.3-89— \{CCNPP 33 ft (10 m) Annual Stability Persistence Summary for Year 2004\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	106	46	35	22	25	24	21	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	285
		37	53	66	73	82	91	98	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	226	63	7	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	298
$\underset{\sim}{\circ}$		76	97	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\subseteq .$	C	284	51	9	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	348
		82	96	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\underset{O}{\circ} \underset{\sim}{2}$	D	289	191	103	52	30	24	18	28	10	13	12	6	5	3	7	2	5	4	2	1	2	3	0	3	12	825
증 멕		35	58	71	77	81	84	86	89	90	92	93	94	95	95	96	96	97	97	97	98	98	98	98	99	100	
-	E	267	103	91	56	33	35	25	23	11	10	10	8	6	5	2	0	0	0	0	0	0	0	0	0	0	685
$\mathcal{O}_{0}^{0} \hat{0}_{0}^{\infty}$		39	54	67	75	80	85	89	92	94	95	97	98	99	100	100	0	0	0	0	0	0	0	0	0	0	
$\xrightarrow[\square]{\mathrm{h}}$	F	196	81	44	28	16	7	1	2	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	381
0		51	73	84	92	96	98	98	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\stackrel{\sim}{5}$	G	52	34	11	14	10	3	6	5	1	2	4	0	4	2	1	0	0	0	0	0	0	0	0	0	0	149
¢		35	58	65	74	81	83	87	91	91	93	95	95	98	99	100	0	0	0	0	0	0	0	0	0	0	
\bigcirc	TOTAL	1420	569	300	176	114	95	71	63	27	26	27	14	15	10	10	2	5	4	2	1	2	3	0	3	12	2971

	Table 2.3-91—\{CCNPP 33 ft (10m) Annual Stability Persistence Summary for Years 2000-2005\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	108	53	33	29	27	24	22	13	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	313
		35	52	63	72	80	88	95	98	83	50	17	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	B	255	50	10	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	317
N		80	96	99	100	50	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\subseteq	C	283	53	11	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	349
$\begin{aligned} & \cong \\ & \cong \end{aligned}$		81	96	99	100	67	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\bigcirc \stackrel{\sum_{0}^{2}}{n}$	D	333	186	94	43	30	22	15	13	11	7	8	6	5	4	5	5	4	3	3	3	1	1	1	2	9	813
或		41	64	75	81	84	87	89	90	92	93	94	94	95	95	96	97	97	98	98	98	98	98	99	99	100	0
$\begin{aligned} & 1 \\ & 7 \\ & 7 \end{aligned} \frac{10}{\leq}$	E	289	122	72	49	38	30	20	20	11	11	8	11	6	5	3	3	0	0	0	0	0	0	0	0	0	699
$\mathcal{O}_{0} \hat{i}$		41	59	69	76	82	86	89	91	93	95	96	98	98	99	100	83	67	50	33	33	17	17	0	0	0	0
	F	213	85	45	28	16	10	6	3	2	2	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	411
$0 \underset{y}{\bar{Z}}$		52	73	84	90	94	97	98	99	99	100	100	50	50	17	0	0	0	0	0	0	0	0	0	0	0	0
$\overline{\vec{\omega}}$	G	68	30	20	16	9	9	6	4	2	4	4	2	2	2	1	0	0	0	0	0	0	0	0	0	0	178
$\begin{aligned} & \text { No } \\ & \text { مِ } \end{aligned}$		38	55	66	75	80	85	89	91	92	94	96	97	98	99	83	0	0	0	0	0	0	0	0	0	0	0
$\stackrel{\circ}{\circ}$	TOTAL	1550	579	284	167	120	94	69	52	31	25	22	19	14	12	8	7	5	3	3	3	1	2	1	2	9	3080

$\begin{aligned} & \widehat{\lambda} \\ & \substack{0 \\ 0 \\ \underset{\sim}{c} \\ \underset{\omega}{c} \\ \hline} \end{aligned}$	Table 2.3-92—\{CCNPP 197 ft (60m) Annual Stability Persistence Summary for Year 2000																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	113	62	36	39	28	26	19	8	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	335
		34	52	63	75	83	91	96	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	304	49	11	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	366
$\underset{\sim}{\circ}$		83	96	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\xlongequal{\beth}$	C	300	55	12	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	371
$\begin{aligned} & \overline{\mathrm{O}} \\ & \underline{1} \end{aligned}$		81	96	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D	383	197	68	42	26	16	3	9	9	8	11	7	8	5	7	7	4	4	1	4	0	1	2	3	9	834
끄엒		46	70	78	83	86	88	88	89	90	91	93	93	94	95	96	97	97	98	98	98	98	98	99	99	100	
-	E	273	131	71	45	30	30	23	20	11	19	8	11	6	5	2	3	0	1	0	0	0	0	0	0	0	689
OD		40	59	69	75	80	84	88	90	92	95	96	98	98	99	99	100	100	100	0	0	0	0	0	0	0	
\bigcirc	F	204	73	44	17	13	11	4	2	3	0	2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	375
		54	74	86	90	94	97	98	98	99	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	
$\stackrel{\pi}{n}$	G	57	27	21	12	9	14	3	4	3	7	2	1	2	3	2	0	0	0	0	0	0	0	0	0	0	167
¢		34	50	63	70	75	84	86	88	90	94	95	96	97	99	100	0	0	0	0	0	0	0	0	0	0	
\bigcirc	TOTAL	1634	594	263	159	106	99	52	43	29	35	23	19	17	14	11	10	4	5	1	4	0	1	2	3	9	3137

	Table 2.3-93—\{CCNPP 197 ft (60m) Annual Stability Persistence Summary for Year 2001\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	130	65	34	29	40	34	32	20	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	393
		33	50	58	66	76	84	93	98	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	305	46	10	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	363
$\underset{O}{\circ}$		84	97	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\xlongequal{\beth}$	C	288	47	10	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	347
$\begin{aligned} & \overline{\mathrm{O}} \\ & \underline{1} \end{aligned}$		83	97	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\underset{0}{2} \underset{ }{2}$	D	375	194	80	37	23	18	12	8	12	5	7	8	5	3	7	2	4	2	4	4	0	2	0	0	5	817
入		46	70	79	84	87	89	90	91	93	94	94	95	96	96	97	97	98	98	99	99	99	99	99	99	100	
- ¢	E	310	131	78	48	36	28	15	12	13	9	7	6	8	8	2	3	0	0	0	0	0	0	0	0	0	714
$\mathcal{O}_{0} \stackrel{\rightharpoonup}{\sim}$		43	62	73	79	84	88	90	92	94	95	96	97	98	99	100	100	0	0	0	0	0	0	0	0	0	
	F	262	102	39	33	15	14	7	4	2	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	482
$\stackrel{\text { ¢ }}{\substack{\text { I }}}$		54	76	84	90	94	96	98	99	99	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
$\stackrel{\pi}{n}$	G	77	36	24	19	11	7	9	5	5	6	4	2	2	1	1	0	0	0	0	0	0	0	0	0	0	209
¢		37	54	66	75	80	83	88	90	92	95	97	98	99	100	100	0	0	0	0	0	0	0	0	0	0	
\bigcirc	TOTAL	1747	621	275	169	126	101	75	49	39	24	19	16	16	12	10	5	4	2	4	4	0	2	0	0	5	3325

	Table 2．3－94—\｛CCNPP 197 ft（60m）Annual Stability Persistence Summary for Year 2002\}																										
	STABILITY PERSISTENCE（HOURS）／PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT． 24	TOTAL
	A	100	53	36	40	27	27	33	14	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	335
		30	46	56	68	76	84	94	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	281	47	8	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	337
\bigcirc		83	97	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
\bigcirc	C	270	62	8	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	342
$\xlongequal{\beth}$		79	97	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\stackrel{\cong}{Z}$	D	352	189	98	32	26	17	15	10	9	8	7	3	5	6	1	3	3	3	1	3	1	1	1	0	13	807
웅		44	67	79	83	86	88	90	92	93	94	95	95	96	96	96	97	97	98	98	98	98	98	98	98	100	
Q	E	287	127	59	47	44	28	22	29	12	9	9	12	8	3	4	4	0	0	0	0	0	1	0	0	0	705
궁		41	59	67	74	80	84	87	91	93	94	95	97	98	99	99	100	100	100	100	100	100	100	0	0	0	
而下	F	219	83	41	32	25	8	7	0	0	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	420
令		52	72	82	89	95	97	99	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\frac{\mathbf{1}}{\mathbf{0}}$	G	71	32	26	15	10	10	4	5	2	4	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	183
$\frac{\stackrel{4}{\infty}}{\infty}$		39	56	70	79	84	90	92	95	96	98	99	99	99	100	0	0	0	0	0	0	0	0	0	0	0	
	TOTAL	1580	593	276	168	133	90	81	58	28	24	21	15	13	10	5	7	3	3	1	3	1	2	1	0	13	3129

	Table 2.3-95- \{CCNPP 197 ft (60 m) Annual Stability Persistence Summary for Year 2003\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	100	50	26	29	25	12	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	251
		40	60	70	82	92	96	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	208	47	15	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	273
$\underset{\sim}{\circ}$		76	93	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\xlongequal{\beth}$	C	289	49	10	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	350
$\begin{aligned} & \overline{\mathrm{O}} \\ & \underline{1} \end{aligned}$		83	97	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\bigcirc{ }^{\text {O }}$																											
\bigcirc	D	310	190	99	46	36	27	19	12	14	3	4	8	2	3	3	7	7	2	1	3	1	1	4	0	10	812
入		38	62	74	79	84	87	90	91	93	93	94	95	95	95	96	96	97	98	98	98	98	98	99	99	100	
-	E	287	137	69	41	47	30	17	20	11	11	11	15	6	5	3	7	0	1	0	0	0	0	0	0	0	718
$\bigcirc \bigcirc$		40	59	69	74	81	85	87	90	92	93	95	97	98	98	99	100	100	100	0	0	0	0	0	0	0	
	F	194	83	58	23	13	7	6	3	1	2	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	396
$0 \underset{\substack{2 \\ \hline}}{ }$		49	70	85	90	94	95	97	98	98	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	
$\stackrel{\pi}{n}$	G	71	32	17	16	12	9	4	2	2	4	4	2	1	1	1	0	0	0	0	0	0	0	0	0	0	178
¢		40	58	67	76	83	88	90	92	93	95	97	98	99	99	100	0	0	0	0	0	0	0	0	0	0	
\bigcirc	TOTAL	1459	588	294	159	134	85	52	40	28	20	23	26	10	9	7	14	7	3	1	3	1	1	4	0	10	2978

	Table 2.3-96— \{CCNPP 197 ft (60m) Annual Stability Persistence Summary for Year 2004\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	106	46	35	21	25	24	21	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	284
		37	54	66	73	82	90	98	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	225	63	7	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	297
N		76	97	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
\bigcirc	C	284	51	9	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	348
$\begin{aligned} & \bar{W} \\ & \underline{\cong} \end{aligned}$		82	96	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\bigcirc \hat{O}$	D	289	191	104	52	30	24	18	28	10	13	12	6	5	3	7	2	4	4	3	1	2	3	0	3	12	826
予		35	58	71	77	81	84	86	89	90	92	93	94	95	95	96	96	97	97	97	98	98	98	98	99	100	
$\underset{0}{\frac{1}{7}} \stackrel{10}{\Sigma}$	E	267	105	91	56	33	35	25	23	11	10	10	8	6	5	2	0	0	0	0	0	0	0	0	0	0	687
$\mathcal{O D}_{0} \hat{D}$		39	54	67	76	80	85	89	92	94	95	97	98	99	100	100	0	0	0	0	0	0	0	0	0	0	
$\xrightarrow[\square]{\mathrm{h}}$	F	197	82	44	28	15	7	1	2	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	382
$\underset{\sim}{\square}$		52	73	85	92	96	98	98	98	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\stackrel{\rightharpoonup}{\mathrm{N}}$	G	53	34	11	13	10	3	6	5	1	2	4	0	4	2	1	0	0	0	0	0	0	0	0	0	0	149
$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \underset{\sim}{0} \end{aligned}$		36	58	66	74	81	83	87	91	91	93	95	95	98	99	100	0	0	0	0	0	0	0	0	0	0	
\bigcirc	TOTAL	1421	572	301	174	113	95	71	63	27	26	27	14	15	10	10	2	4	4	3	1	2	3	0	3	12	2973

	Table 2.3-97—\{CCNPP 197 ft (60 m) Annual Stability Persistence Summary for Year 2005\}																										
	STABILITY PERSISTENCE (HOURS)/PERCENT																										
	STABILITY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	GT. 24	TOTAL
	A	101	42	30	13	18	20	21	27	11	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	285
		35	50	61	65	72	79	86	95	99	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
	B	214	47	8	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	271
$\underset{\sim}{0}$		79	96	99	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
\subseteq	C	273	54	15	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	343
$\underset{\sim}{\mathrm{O}}$		80	95	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\bigcirc \hat{O}$	D	293	158	109	48	37	24	19	11	14	9	9	5	7	4	2	6	3	4	8	4	1	0	0	3	7	785
〇		37	57	71	77	82	85	88	89	91	92	93	94	95	95	95	96	97	97	98	99	99	99	99	99	100	
$\begin{array}{ll} -1 \\ 7 & 1 \\ \hline \end{array}$	E	308	98	65	52	37	26	20	16	8	11	5	14	2	7	5	0	1	0	0	0	0	0	0	0	0	675
or		46	60	70	77	83	87	90	92	93	95	96	98	98	99	100	100	100	0	0	0	0	0	0	0	0	
	F	205	86	45	32	13	10	8	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	408
		50	71	82	90	93	96	98	99	99	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\overrightarrow{\stackrel{\rightharpoonup}{\omega}}$	G	73	19	21	20	4	12	9	6	1	1	5	6	2	4	1	0	0	0	0	0	0	0	0	0	0	184
D/		40	50	61	72	74	81	86	89	90	90	93	96	97	99	100	0	0	0	0	0	0	0	0	0	0	
\bigcirc	TOTAL	1467	504	293	168	109	92	77	64	36	24	20	26	11	15	8	6	4	4	8	4	1	0	0	3	7	2951

Table 2.3-99—\{Monthly and Annual Average Mixing Height Values (m)\}
(Page 1 of 2)

MONTH	YEAR										Monthly Average	Annual Average
	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005		
JAN	601		593	465	645	611	468	733	756	558	603	748
FEB	736		640	637	653	607	637	476	646	561	621	
MAR	833		834	829	771	909	641	574	759	815	774	
APR	873		932	855	878	597	829	723	812	809	812	
MAY	997		729		810	701	949	633	762	878	807	
JUN	824			973	756	864	953	762	837	896	858	
JUL			889	938	858	990	1020	873	834	815	902	
AUG			1069	1010	748	808	919	789	863	880	886	
SEP			940	747	700	821	714	745	677	971	789	
OCT		721	865	634	733	801	699	718	623	708	723	
NOV		713	529	614	691	467	807	585	603	581	621	
DEC		570	502	599	565	554	564	649	597	560	573	

Table 2.3-99—\{Monthly and Annual Average Mixing Height Values (m)\}

(Page 2 of 2)

\bigcirc		YEAR										Monthly Average	Annual Average
$\underset{\mp}{\rightleftharpoons}$	MONTH	1996	1997	1998	1999	2000	$\underline{2001}$	$\underline{2002}$	$\underline{2003}$	$\underline{2004}$	$\underline{2005}$		
	JAN	1971		1944	1525	$\underline{2115}$	$\underline{2003}$	1535	$\underline{2404}$	$\underline{2480}$	1830	1979	$\underline{2452}$
	FEB	2414		2099	2088	2141	1991	2090	1560	$\underline{2118}$	1841	2038	
	MAR	$\underline{2731}$		$\underline{2736}$	$\underline{2719}$	$\underline{2529}$	$\underline{2983}$	$\underline{2104}$	1883	$\underline{2489}$	$\underline{2673}$	$\underline{2539}$	
	APR	2863		3056	2804	2879	1959	2718	2372	2662	2652	2663	
	MAY	3269		$\underline{2390}$		$\underline{2658}$	$\underline{2301}$	3111	$\underline{2077}$	$\underline{2498}$	$\underline{2879}$	$\underline{2648}$	
	JUN	$\underline{2701}$			3192	$\underline{2480}$	$\underline{2835}$	3127	$\underline{2500}$	$\underline{2747}$	$\underline{2937}$	$\underline{2815}$	
	JUL			$\underline{2917}$	3075	$\underline{2814}$	3247	3347	$\underline{2862}$	$\underline{2737}$	$\underline{2672}$	$\underline{2959}$	
	AUG			3506	3312	$\underline{2452}$	$\underline{2651}$	$\underline{3015}$	$\underline{2589}$	$\underline{2829}$	$\underline{2886}$	$\underline{2905}$	
	SEP			3085	$\underline{2450}$	2296	$\underline{2694}$	2342	$\underline{2445}$	2221	3183	$\underline{2589}$	
	OCT		$\underline{2365}$	$\underline{2836}$	$\underline{2081}$	$\underline{2405}$	$\underline{2627}$	$\underline{2294}$	$\underline{2355}$	$\underline{2045}$	$\underline{2322}$	2370	
	NOV		2340	1734	2014	2266	1533	2647	1918	1979	1904	2037	
	DEC		1869	1647	1966	1853	$\underline{1817}$	1849	$\underline{2129}$	1959	1837	1881	

Table 2.3-100—\{Monthly and Annual Average Mixing Height Values (ft) Not Used\}

	YEAR										Monthly Average	Annual Average
MONTH	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005		
JAN	1971		1944	1525	2115	2003	1535	2404	2480	1830	1979	2452
FEB	2414		2099	2088	2141	1991	2090	1560	2118	1841	2038	
MAR	2731		2736	2719	2529	2983	2104	1883	2489	2673	2539	
APR	2863		3056	2804	2879	1959	2718	2372	2662	2652	2663	
MAY	3269		2390		2658	2301	3111	2077	2498	2879	2648	
UN	2707			3192	2480	2835	3127	2500	2747	2937	2815	
Ut			2917	3075	2814	3247	3347	2862	2737	2672	2959	
AUG			3506	3312	2452	2651	3015	2589	2829	2886	2905	
SEP			3085	2450	2296	2694	2342	2445	2221	3183	2589	
OCT		2365	2836	2081	2405	2627	2294	2355	2045	2322	2370	
NOV		2340	1734	2014	2266	1533	2647	1918	1979	1904	2037	
DEC		1869	1647	1966	1853	1817	1849	2129	1959	1837	1881	

Note: Empty cells denote no valid data.

Table 2.3-101—\{Temperature Inversion Frequency and Persistence, Year 2000\}

DURATION (HOURS)	NUMBER OF OBSERVATIONS	PERCENT PROBABILITY
1	96	22.91
2	53	35.56
3	33	43.44
4	32	51.07
5	17	55.13
6	18	59.43
7	15	63.01
8	13	66.11
9	13	69.21
10	16	73.03
11	20	77.80
12	27	84.25
13	23	89.74
14	19	94.27
15	12	97.14
16	7	98.81
17	4	99.76
18	0	99.76
19	0	99.76
20	1	100.00

THE LONGEST INVERSION LASTED 20 HOURS
OF THE LONGEST INVERSIONS, NUMBER 1 STARTED 14 HOURS INTO DAY 1.
THIRD COLUMN DEFINES THE PERCENT PROBABILITY THAT IF AN INVERSION OCCURS, ITS DURATION WILL BE LESS THAN THE NUMBER OF HOURS SPECIFIED

Table 2.3-102—\{Temperature Inversion Frequency and Persistence, Year 2001\}

DURATION (HOURS)	NUMBER OF OBSERVATIONS	PERCENT PROBABILITY
1	82	18.51
2	56	31.15
3	36	39.28
4	28	45.60
5	20	50.11
6	19	54.40
7	17	58.24
8	26	64.11
9	16	67.72
10	13	70.65
11	14	73.81
12	35	81.72
13	31	88.71
14	24	94.13
15	20	98.65
16	3	99.32
17	1	99.55
18	1	99.77
19	1100.00	
The longest inversion lasted 19 hours. Of the longest inversions, number 1 started 16 hours into day 10 Third column defines the percent probability that if an inversion occurs, its duration will be less than the number of hours specified		

Table 2.3-103-\{Temperature Inversion Frequency and Persistence, Year 2002\}

DURATION (HOURS)	NUMBER OF OBSERVATIONS	PERCENT PROBABILITY
1	92	21.80
2	38	30.81
3	41	40.52
4	25	46.45
5	19	50.95
6	14	54.27
7	21	59.24
8	19	63.74
9	16	67.54
10	21	72.51
11	24	78.20
12	34	86.26
13	12	89.10
14	13	92.18
15	25	98.10
16	7	99.76
17	1	100.00

The longest inversion lasted 17 hours.
Of the longest inversions, number 1 started 18 hours into day 323.
Third column defines the percent probability that if an inversion occurs, its duration will be less than the number of hours specified

Table 2.3-104—\{Temperature Inversion Frequency and Persistence, Year 2003\}

DURATION (HOURS)	NUMBER OF OBSERVATIONS	PERCENT PROBABILITY
1	113	24.30
2	72	39.78
3	33	46.88
4	42	55.91
5	14	58.92
6	22	63.66
7	17	67.31
8	14	70.32
9	11	72.69
10	14	75.70
11	13	78.49
12	19	82.58
13	20	86.88
14	26	92.47
15	23	97.42
16	8	99.14
17	1	99.35
18	1	99.57
19	1	99.78
20	1	100.00

The longest inversion lasted 20 hours.
Of the longest inversions, number 1 started 15 hours into day 76 .
Third column defines the percent probability that if an inversion occurs, its duration will be less than the number of hours specified.

Table 2.3-105—\{Temperature Inversion Frequency and Persistence, Year 2004\}

	DURATION (HOURS)	NUMBER OF OBSERVATIONS	PERCENT PROBABILITY
1	94	22.98	
2	54	36.19	
3	34	44.50	
	4	29	51.59
	12	54.52	
	6	18	58.92
	7	21	64.06
8	18	68.46	
	14	71.88	
10	13	75.06	
11	25	81.17	
12	21	86.31	
13	21	91.44	
14	13	94.62	
15	13	97.80	
16	6	99.27	
		2	99.76
	17	1	100.00

The longest inversion lasted 18 hours.
Of the longest inversions, number 1 started 18 hours into day 286.
Third column defines the percent probability that if an inversion occurs, its duration will be less than the number of hours specified

Table 2.3-106-\{Temperature Inversion Frequency and Persistence, Year 2005\}

DURATION (HOURS)	NUMBER OF OBSERVATIONS	PERCENT PROBABILITY
1	83	20.39
2	47	31.94
3	36	40.79
4	31	48.40
5	18	52.83
6	15	56.51
7	15	60.20
8	9	62.41
9	5	63.64
10	20	68.55
11	20	73.46
12	27	80.10
13	28	86.98
14	26	93.37
15	17	97.54
16	6	99.02
17	1	99.26
18	1	99.51
19	0	99.51
20	0	99.51
21	1	99.75
22	0	99.75
23	0	99.75
24	0	99.75
25	0	99.75
26	0	99.75
27	0	99.75
28	0	99.75
29	0	99.75
30	0	99.75
31	1	100.00
The longest inversion lasted 31 hours. Of the longest inversions, number 1 started 1 hours into day 12 Third column defines the percent probability that if an inversion occurs, its duration will be less than the number of hours specified		

Table 2.3-107—\{National Ambient Air Quality Standards\}

Pollutant	Primary Stds.	Averaging Times	Secondary Stds.
Carbon Monoxide	$\begin{gathered} 9 \mathrm{ppm} \\ \left(10 \mathrm{mg} / \mathrm{m}^{3}\right) \end{gathered}$	8-hour(1)	None
	$\begin{gathered} 35 \mathrm{ppm} \\ \left(40 \mathrm{mg} / \mathrm{m}^{3}\right) \end{gathered}$	1-hour(1)	None
Lead	$1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$	Quarterly Average	Same as Primary
Nitrogen Dioxide	$\begin{gathered} 0.053 \mathrm{ppm} \\ \left(100 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	Annual (Arithmetic Mean)	Same as Primary
Particulate Matter (PM_{10})	Revoked(2)	Annual(2) (Arith. Mean)	
	$150 \mu \mathrm{~g} / \mathrm{m}^{3}$	24-hour(3)	
Particulate Matter ($\mathrm{PM}_{2.5}$)	$15.0 \mu \mathrm{~g} / \mathrm{m}^{3}$	Annual(4) (Arith. Mean)	Same as Primary
	$35 \mu \mathrm{~g} / \mathrm{m}^{3}$	24-hour(5)	
Ozone	0.08 ppm	8-hour(6)	Same as Primary
	0.12 ppm	1-hour(7) (Applies only in limited areas)	Same as Primary
Sulfur Oxides	0.03 ppm	Annual (Arith. Mean)	-------
	0.14 ppm	24-hour(1)	----
	-------	3-hour(1)	$\begin{gathered} 0.5 \mathrm{ppm} \\ \left(1300 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$

Notes:
(1)Not to be exceeded more than once per year.
(2)Due to a lack of evidence linking health problems to long-term exposure to coarse particle pollution, the agency revoked the annual PM10 standard in 2006 (effective December 17, 2006).
(3)Not to be exceeded more than once per year on average over 3 years.
(4)To attain this standard, the 3-year average of the weighted annual mean PM2.5 concentrations from single or multiple community-oriented monitors must not exceed $15.0 \mu \mathrm{~g} / \mathrm{m} 3$.
(5)To attain this standard, the 3-year average of the 98th percentile of 24-hour concentrations at each population-oriented monitor within an area must not exceed $35 \mu \mathrm{~g} / \mathrm{m} 3$ (effective December 17, 2006).
(6)To attain this standard, the 3-year average of the fourth-highest daily maximum 8 -hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.08 ppm .
(7)(a)The standard is attained when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is <1, as determined by appendix H .
(b)As of June 15, 2005 EPA revoked the 1-hour ozone standard in all areas except the fourteen 8-hour ozone nonattainment Early Action Compact (EAC) Areas

Table 2.3-108-\{Tower Instrument Specifications and Accuracies for Meteorological Monitoring Program (Preoperational and Operational)\}

Characteristics	Requirements*	Specifications
Wind Speed Sensor		
Accuracy	$\begin{gathered} \pm 0.2 \mathrm{~m} / \mathrm{s}(\pm 0.45 \mathrm{mph}) \\ \text { OR } \\ \pm 5 \% \text { of observed wind speed } \end{gathered}$	$\pm 1 \%$
Resolution	$0.1 \mathrm{~m} / \mathrm{s}$ (0.1 mph)	0.1 m/s
Wind Direction Sensor		
Accuracy	± 5 degrees	± 1.5 degrees
Resolution	1.0 degree	1.0 degree
Temperature Sensors		
Accuracy (ambient)	$\pm 0.5^{\circ} \mathrm{C}\left(\pm 0.9^{\circ} \mathrm{F}\right)$	$\pm 0.05^{\circ} \mathrm{C}$
Resolution (ambient)	$0.1^{\circ} \mathrm{C}\left(0.1^{\circ} \mathrm{F}\right)$	$0.1{ }^{\circ} \mathrm{C}$
Accuracy (vertical temperature difference)	$\pm 0.1^{\circ} \mathrm{C}\left(\pm 0.18^{\circ} \mathrm{F}\right)$	$\pm 0.05^{\circ} \mathrm{C}$
Resolution (vertical temperature difference)	$0.01^{\circ} \mathrm{C}\left(0.01^{\circ} \mathrm{F}\right)$	$0.01{ }^{\circ} \mathrm{C}$
Precipitation Sensor		
Accuracy	$\pm 10 \%$ for a volume equivalent to 2.54 mm (0.1 in) of precipitation at a rate $<50 \mathrm{~mm} / \mathrm{hr}(<2 \mathrm{in} / \mathrm{hr}$)	$\pm 1 \%$
Resolution	0.25 mm (0.01 in)	0.25 mm
Time		
Accuracy	$\pm 5 \mathrm{~min}$	$\pm 5 \mathrm{~min}$
Resolution	1 min	1 min
Note: * Accuracy and resolution criteria from Regulatory Guide 1.23, Revision 1		

Table 2.3-109—\{Distances from Meteorological Tower to Nearby Obstructions to Air Flow\}

Downwind Sector*	Approximate Distance miles (meters)
N	$0.25(402)$
NNE	$0.33(531)$
NE	$\mathrm{N} / \mathrm{A}^{* *}$
ENE	$\mathrm{N} / \mathrm{A}^{* *}$
E	$\mathrm{N} / \mathrm{A}^{* *}$
ESE	$1(1609)$
SE	$0.1(161)$
SSE	$0.1(161)$
S	$0.1(161)$
SSW	$0.25(402)$
SW	$0.33(531)$
WSW	$0.1(161)$
W	$0.25(402)$
WNW	$0.33(531)$
NW	$0.25(402)$
NNW	$0.25(402)$

Notes:

* With respect to True North
** Lower than tower base elevation and therefore no possible obstructions

Table 2.3-110—\{Site-Specific EAB/LPZ Accident χ /Q Values for Ground Level Release\}

Distance Downwind $(\mathbf{m i l e s})$	$\mathbf{0 - 2}$ hours χ / \mathbf{Q} $\left(\mathbf{s e c} / \mathbf{m}^{\mathbf{3}}\right)$	$\mathbf{2 - 8}$ hours χ / \mathbf{Q} $\left(\mathbf{s e c} / \mathbf{m}^{\mathbf{3}}\right)$	$\mathbf{8 - 2 4}$ hours χ / \mathbf{Q} $\left(\mathbf{s e c} / \mathbf{m}^{\mathbf{3}}\right)$	$\mathbf{1 - 4}$ days $\left(\mathbf{s e c} / \mathbf{m}^{3}\right)$	$\mathbf{4 - 3 0}$ days χ / \mathbf{Q} $\left(\mathbf{s e c} / \mathbf{m}^{3}\right)$
$0.5(\mathrm{EAB})$	$6.914 \mathrm{E}-04$	$4.131 \mathrm{E}-04$	$2.609 \mathrm{E}-04$	$1.289 \mathrm{E}-04$	$4.686 \mathrm{E}-05$
$1.5(\mathbf{L P Z})$	$2.151 \mathrm{E}-04$	$1.176 \mathrm{E}-04$	$6.865 \mathrm{E}-05$	$3.005 \mathrm{E}-05$	$9.179 \mathrm{E}-06$

Table 2.3-111—\{Control Room/TSC $\chi /$ Q Values for Vent Stack Release $\}$

Stack Release	Wind Direction $=$ 0 $(\mathrm{~N})$	Wind Direction $=$ 23 (NNE)	Wind Direction $=$ 45 (NE)	Wind Direction $=$ 68 $(E N E)$	Wind Direction $=$ 90 (E)	```Wind Direction \(=\) 113 (ESE)```	Wind Direction $=$ 135 (SE)	$\begin{gathered} \hline \text { Wind } \\ \text { Direction = } \\ 158 \\ \text { (SSE) } \\ \hline \end{gathered}$
Time Period	$\chi / \mathbf{Q}\left(\mathrm{sec} / \mathrm{m}^{\mathbf{3}}\right.$)	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{gathered}$	$\chi / \mathbf{Q}\left(\mathbf{s e c} / \mathrm{m}^{3}\right)$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{gathered}$
0 to 2 hours	$1.43 \mathrm{E}-03$	$1.40 \mathrm{E}-03$	$1.38 \mathrm{E}-03$	$1.35 \mathrm{E}-03$	$1.29 \mathrm{E}-03$	$1.28 \mathrm{E}-03$	$1.36 \mathrm{E}-03$	$1.47 \mathrm{E}-03$
2 to 8 hours	$1.20 \mathrm{E}-03$	$1.16 \mathrm{E}-03$	$1.14 \mathrm{E}-03$	$1.03 \mathrm{E}-03$	7.85E-04	6.96E-04	$8.60 \mathrm{E}-04$	$1.11 \mathrm{E}-03$
8 to 24 hours	$4.64 \mathrm{E}-04$	$4.84 \mathrm{E}-04$	$4.64 \mathrm{E}-04$	$3.74 \mathrm{E}-04$	3.00E-04	$2.73 \mathrm{E}-04$	$2.88 \mathrm{E}-04$	$3.74 \mathrm{E}-04$
1 to 4 days	$3.16 \mathrm{E}-04$	$3.23 \mathrm{E}-04$	$3.11 \mathrm{E}-04$	$2.62 \mathrm{E}-04$	$2.08 \mathrm{E}-04$	$1.99 \mathrm{E}-04$	$2.19 \mathrm{E}-04$	$2.64 \mathrm{E}-04$
4 to 30 days	$2.82 \mathrm{E}-04$	$2.44 \mathrm{E}-04$	$2.21 \mathrm{E}-04$	$1.85 \mathrm{E}-04$	$1.52 \mathrm{E}-04$	$1.36 \mathrm{E}-04$	$1.52 \mathrm{E}-04$	$2.01 \mathrm{E}-04$
Stack Release	Wind Direction $=$ 180 (\mathbf{S})	Wind Direction $=$ 203 $(S S W)$	Wind Direction $=$ 225 $(S W)$	Wind Direction $=$ 248 (WSW)	Wind Direction $=$ 270 (W)	Wind Direction $=$ 293 (WNW)	Wind Direction $=$ 315 $(N W)$	Wind Direction $=$ 338 (NNW)
Time Period	$\chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right)$							
0-2 hours	$1.73 \mathrm{E}-03$	$1.81 \mathrm{E}-03$	$1.81 \mathrm{E}-03$	$1.80 \mathrm{E}-03$	$1.72 \mathrm{E}-03$	$1.62 \mathrm{E}-03$	$1.60 \mathrm{E}-03$	$1.54 \mathrm{E}-03$
2-8 hours	$1.38 \mathrm{E}-03$	1.55E-03	$1.54 \mathrm{E}-03$	$1.46 \mathrm{E}-03$	$1.27 \mathrm{E}-03$	$1.26 \mathrm{E}-03$	$1.29 \mathrm{E}-03$	$1.24 \mathrm{E}-03$
8-24 hours	$5.13 \mathrm{E}-04$	5.60E-04	$5.38 \mathrm{E}-04$	$4.97 \mathrm{E}-04$	$4.58 \mathrm{E}-04$	$4.88 \mathrm{E}-04$	$4.93 \mathrm{E}-04$	$4.75 \mathrm{E}-04$
1-4 days	$4.14 \mathrm{E}-04$	4.95E-04	$4.77 \mathrm{E}-04$	$4.50 \mathrm{E}-04$	$3.71 \mathrm{E}-04$	$3.49 \mathrm{E}-04$	$3.46 \mathrm{E}-04$	3.32E-04
4-30 days	3.19E-04	3.87E-04	3.77E-04	$3.42 \mathrm{E}-04$	2.98E-04	2.93E-04	3.00E-04	$3.06 \mathrm{E}-04$

Note:Bold entries identify maximum values in this table. SSW is the critical downwind sector.

Table 2.3-112—\{Control Room/TSC χ / \mathbf{Q} Values for Main Steam Relief Valve Release\}

Main Steam Relief Valve Release	SG-4 to Div. 3 Air Intake Wind Direction = 203 (SSW)	SG-1 to Div. 3 Air Intake Wind Direction = 203 (SSW)	SG-3 to Div. 3 Air Intake Wind Direction = 203 (SSW)	SG-2 to Div. 3 Air Intake Wind Direction = 203 (SSW)
Time Period	$\chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right)$			
0-2 hours	$2.97 \mathrm{E}-03$	$1.42 \mathrm{E}-03$	$3.90 \mathrm{E}-03$	$1.71 \mathrm{E}-03$
2-8 hours	$2.61 \mathrm{E}-03$	$1.26 \mathrm{E}-03$	3.41E-03	$1.50 \mathrm{E}-03$
8-24 hours	$9.41 \mathrm{E}-04$	$4.53 \mathrm{E}-04$	1.23E-03	$1.42 \mathrm{E}-04$
1-4 days	$8.18 \mathrm{E}-04$	$3.94 \mathrm{E}-04$	1.07E-03	$1.70 \mathrm{E}-04$
4-30 days	$6.42 \mathrm{E}-04$	$3.11 \mathrm{E}-04$	8.39E-04	$1.70 \mathrm{E}-04$

Note:Bold entries identify maximum values in this table. The critical wind direction sector was based on the stack releases in Table 2.3-110.

Table 2.3-113-\{Control Room/TSC χ /Q Values for Safeguards Building Roof Release (via Safeguards Building Canopies)\}

Safeguards Building Roof Release	Pt. 1 Wind Direction $=203$ (SSW)	Pt. 2 Wind Direction $=203$ (SSW)
Time Period	$\chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right)$	$\chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right)$
0-2 hours	5.88E-03	$1.48 \mathrm{E}-03$
2-8 hours	4.99E-03	$1.29 \mathrm{E}-03$
8-24 hours	1.95E-03	$5.14 \mathrm{E}-04$
1-4 days	$1.60 \mathrm{E}-03$	$4.09 \mathrm{E}-04$
4-30 days	$1.23 \mathrm{E}-03$	$3.16 \mathrm{E}-04$

Notes:Bold entries identify maximum values in this table. The critical wind direction sector was based on the stack releases in Table 2.3-110.

Table 2.3-114—\{Control Room/TSC $\chi /$ Q Values for Equipment Hatch Release\}

Equip. Hatch Release	Wind Direction $=\mathbf{2 0 3}$ $(\mathbf{S S W})$
Time Period	$\chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{\mathbf{3}}\right)$
$0-2$ hours	$9.42 \mathrm{E}-04$
$2-8$ hours	$8.10 \mathrm{E}-04$
$8-24$ hours	$2.94 \mathrm{E}-04$
$1-4$ days	$2.58 \mathrm{E}-04$
$4-30$ days	$2.03 \mathrm{E}-04$

Note:The critical wind direction sector was based on the stack releases in Table 2.3-110

Table 2.3-115-\{Control Room/TSC χ /Q Values for Safeguards Building Depressurization Shaft Release\}

Safeguards Building Depressurization Shaft Release	Wind Direction $=\mathbf{2 0 3}$ $(\mathbf{S S W})$
Time Period	$\chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{\mathbf{3}}\right)$
$0-2$ hours	$3.98 \mathrm{E}-03$
$2-8$ hours	$3.45 \mathrm{E}-03$
$8-24$ hours	$1.37 \mathrm{E}-03$
$1-4$ days	$1.09 \mathrm{E}-03$
$4-30$ days	$8.32 \mathrm{E}-04$

Note:The critical wind direction sector was based on the stack releases in Table 2.3-110.

Table 2.3-116—\{50 ${ }^{\text {th }}$ Percentile χ / Q Values $\}$

Time Period	$\chi / \mathbf{Q}\left(\mathbf{s e c} / \mathbf{m}^{\mathbf{3}}\right)$	Receptor
$0-2$ hours	$8.079 \mathrm{E}-05$	EAB
$0-2$ hours	$1.527 \mathrm{E}-05$	LPZ
$2-8$ hours	$1.181 \mathrm{E}-05$	LPZ
$8-24$ hours	$9.391 \mathrm{E}-06$	LPZ
$24-96$ hours (1-4 days)	$6.607 \mathrm{E}-06$	LPZ
$96-720$ hours (4-30 days)	$3.987 \mathrm{E}-06$	LPZ
annual average	$2.150 \mathrm{E}-06$	LPZ

Table 2.3-117—\{AEOLUS3 Design Input\}

Parameter	Value(s)
Wind speed group upper limits for AEOLUS3	$0.234,0.75,1.0,1.5,2.0,3.0,5.0,7.0,10.0,13.0,18.0,50.0$ meters/second
AEOLUS3 wind speed assigned to calms	0.25 mph
Anemometer starting speed for the AEOLUS3 runs	0.5 mph
The annual average mixing layer height at CC	900 meters for accident analysis, 748 meters for normal effluent analysis (Both are conservative, low values; 748 was used after purchase of data for one station from the National Climatic Data Center. The 900 meter value was determined by interpolation of data from many stations and may therefore be considered more accurate for the site.)
Temperature sensor separation	50 meters
Wind instrument heights	10 meters and 60 meters
CCNPP Unit 3 meteorological channel units of measure	Wind speed - miles per hour Wind direction - degrees from True North Delta Temperature - degrees Fahrenheit per sensor separation in feet
Stack flow rate for normal operations	242,458 cfm
Stack inner diameter	3.8 meters
Stack height	62 meters (2 meters above assumed Reactor Building)
Reactor Building height and cross sectional area	60 meters (used for cross sectional area for building wake - smaller height gives a lower credit for building wake; actual $=62.3$ meter) and $2940 \mathrm{~m}^{2}$
Maximum Terrain Heights	Values in meters above plant grade
0.5 miles	$0.0,0.0,0.0,0.0,16.8,19.8,22.9,22.9,19.8,29.0,29.0,25.9,32.0,22.9,22.9,19.8$
0.62 miles	$0.0,0.0,0.0,0.0,16.8,19.8,22.9,22.9,19.8,29.0,29.0,25.9,32.0,22.9,22.9,19.8$
1.5 miles	0.0, 0.0, 0.0, 0.0, 16.8, 19.8, 25.9, 22.9, 25.9, 29.0, 29.0, 25.9,32.0, 25.9, 25.9, 19.8
2.5 miles	$0.0,0.0,0.0,0.0,16.8,19.8,25.9,25.9,25.9,29.0,29.0,25.9,32.0,25.9,25.9,19.8$
3.5 miles	$0.0,0.0,0.0,0.0,16.8,19.8,25.9,25.9,26.8,29.0,29.0,25.9,32.0,25.9,25.9,19.8$
4.5 miles	0.0, 0.0, 0.0, 0.0, 16.8, 19.8, 25.9, 25.9, 26.8, 29.0, 29.0, 25.9, 32.0, 29.6, 25.9, 19.8
7.5 miles	$0.0,0.0,0.0,0.0,16.8,19.8,25.9,25.9,26.8,29.0,29.0,25.9,32.0,32.0,26.3,26.3$
15 miles	$0.0,0.0,0.0,0.0,16.8,19.8,25.9,25.9,26.8,29.0,29.0,26.3,44.3,32.0,27.3,43.3$
25 miles	$0.0,0.0,6.3,6.3,19.1,22.4,28.9,28.9,29.9,32.2,31.3,26.3,45.3,49.3,52.3,61.3$
35 miles	$6.3,1.3,6.3,6.3,19.1,22.4,28.9,28.9,29.9,32.2,39.3,46.3,45.3,51.3,66.3,61.3$
45 miles	$6.3,6.3,6.3,6.3,19.1,22.4,28.9,28.9,29.9,32.2,46.3,52.3,45.3,78.3,78.3,61.3$

Table 2.3-118—\{ARCON96 Design Inputs\}

Minimum wind speed value	$0.5 \mathrm{~m} / \mathrm{sec}$
Surface roughness	0.2
Sector averaging constant	4.3
Wind direction window	90 degrees
Control Room air intake location employed in analysis	Intake closest to stack.
Control Room air intake elevation	32.1 meters (Mid-point of intake)
Control Room air intake horizontal distance to stack base	69.0 meters (scaled)
Control Room air intake horizontal distance to Main Steam Relief Train, via Silencer (referred to as the Silencer release point in the present application):	
SG-4 Silencer to MCR Div. 3 Air Intake (AI)	53.0 meters
SG-3 Silencer to MCR Div. 3 AI	46.0 meters
SG-1 Silencer to MCR Div. 3 AI	78.0 meters
SG-2 Silencer to MCR Div. 3 AI	71.0 meters
Control Room air intake horizontal distances to Canopy exhausts (referred to as the Canopy release point in the present application)	
1) Near depressurization shaft (Safeguard Building Div. 4)	30.1 meters (scaled)
2) Southeast side of SAB Div. 4	65.3 meters (scaled)
Control Room air intake horizontal distance to Material Lock (for the Equipment Hatch release)	97.5 meters (scaled)
Control Room air intake horizontal distance to the depressurization shaft of Safeguard Building Div. 4 (referred to as the depressurization shaft release point in the present application)	31.4 meters (scaled)
Site grade elevation	0 meters
Release heights used	
Silencer	33.9 meters
Stack	32.1 meters
Canopy Pt. 1	15.5 meters
Canopy Pt. 2	11.5 meters elevation
Material Lock (for Equipment Hatch release)	23.2 meters (release height employed in analysis = 32.1 meters, conservative)
Depressurization Shaft	7 meters

Table 2．3－119—\｛Normal Effluent Annual Average，Undecayed，Undepleted χ／Q Values for Mixed Mode Release Using 242，458 cfm Flow Rate for Grid Receptors\}
（Page 1 of 2）

Downwind Sector	$\begin{gathered} \hline \chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 0.5 \text { miles } \end{gathered}$	$\begin{gathered} \hline \chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 0.75 \text { miles } \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 1.0 \text { mile } \end{gathered}$	$\begin{gathered} \chi / Q\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 1.5 \text { miles } \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 2.0 \text { miles } \end{gathered}$	$\begin{gathered} \hline \chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 2.5 \text { miles } \end{gathered}$	$\begin{gathered} \hline \chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 3.0 \text { miles } \end{gathered}$	$\begin{gathered} \hline \chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 3.5 \text { miles } \end{gathered}$	$\begin{gathered} \hline \chi / Q\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 4.0 \text { miles } \end{gathered}$	$\begin{gathered} \hline \chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 4.5 \text { miles } \end{gathered}$	$\begin{gathered} \hline \chi / \mathbf{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 5.0 \text { miles } \end{gathered}$
N	1．923E－06	1．065E－06	$5.811 \mathrm{E}-07$	$2.571 \mathrm{E}-07$	$1.538 \mathrm{E}-07$	$1.055 \mathrm{E}-07$	$8.046 \mathrm{E}-08$	$6.401 \mathrm{E}-08$	$5.261 \mathrm{E}-08$	$4.482 \mathrm{E}-08$	$3.881 \mathrm{E}-08$
NNE	3．287E－06	$1.754 \mathrm{E}-06$	$9.348 \mathrm{E}-07$	3．980E－07	$2.333 \mathrm{E}-07$	$1.584 \mathrm{E}-07$	$1.201 \mathrm{E}-07$	$9.528 \mathrm{E}-08$	7．821E－08	$6.663 \mathrm{E}-08$	5．773E－08
NE	$5.039 \mathrm{E}-06$	$2.711 \mathrm{E}-06$	$1.443 \mathrm{E}-06$	$6.059 \mathrm{E}-07$	$3.491 \mathrm{E}-07$	$2.334 \mathrm{E}-07$	$1.748 \mathrm{E}-07$	$1.372 \mathrm{E}-07$	$1.117 \mathrm{E}-07$	$9.446 \mathrm{E}-08$	8．134E－08
ENE	$2.038 \mathrm{E}-06$	$1.090 \mathrm{E}-06$	5．855E－07	$2.525 \mathrm{E}-07$	$1.491 \mathrm{E}-07$	$1.017 \mathrm{E}-07$	$7.731 \mathrm{E}-08$	$6.142 \mathrm{E}-08$	$5.048 \mathrm{E}-08$	$4.303 \mathrm{E}-08$	$3.731 \mathrm{E}-08$
E	$1.516 \mathrm{E}-06$	$8.448 \mathrm{E}-07$	$4.715 \mathrm{E}-07$	$2.135 \mathrm{E}-07$	$1.287 \mathrm{E}-07$	$8.848 \mathrm{E}-08$	$6.751 \mathrm{E}-08$	$5.374 \mathrm{E}-08$	$4.421 \mathrm{E}-08$	$3.773 \mathrm{E}-08$	$3.273 \mathrm{E}-08$
ESE	1．987E－06	$1.123 \mathrm{E}-06$	6．238E－07	$2.761 \mathrm{E}-07$	$1.627 \mathrm{E}-07$	$1.099 \mathrm{E}-07$	8．269E－08	$6.509 \mathrm{E}-08$	$5.305 \mathrm{E}-08$	$4.489 \mathrm{E}-08$	$3.866 \mathrm{E}-08$
SE	$2.416 \mathrm{E}-06$	$1.464 \mathrm{E}-06$	$8.347 \mathrm{E}-07$	3．833E－07	$2.214 \mathrm{E}-07$	$1.458 \mathrm{E}-07$	$1.072 \mathrm{E}-07$	$8.261 \mathrm{E}-08$	$6.606 \mathrm{E}-08$	$5.495 \mathrm{E}-08$	$4.660 \mathrm{E}-08$
SSE	$1.381 \mathrm{E}-06$	$8.911 \mathrm{E}-07$	5．240E－07	$2.393 \mathrm{E}-07$	$1.396 \mathrm{E}-07$	$9.489 \mathrm{E}-08$	$6.969 \mathrm{E}-08$	$5.363 \mathrm{E}-08$	$4.280 \mathrm{E}-08$	3．554E－08	3．008E－08
S	$1.815 \mathrm{E}-06$	$1.127 \mathrm{E}-06$	$6.501 \mathrm{E}-07$	3．095E－07	$1.771 \mathrm{E}-07$	$1.155 \mathrm{E}-07$	$8.420 \mathrm{E}-08$	$6.481 \mathrm{E}-08$	$5.148 \mathrm{E}-08$	$4.256 \mathrm{E}-08$	$3.589 \mathrm{E}-08$
SSW	1．599E－06	1．050E－06	$6.224 \mathrm{E}-07$	2．824E－07	1．628E－07	$1.066 \mathrm{E}-07$	$7.786 \mathrm{E}-08$	5．963E－08	$4.741 \mathrm{E}-08$	3．922E－08	$3.308 \mathrm{E}-08$
SW	$1.557 \mathrm{E}-06$	$1.013 \mathrm{E}-06$	5．897E－07	$2.619 \mathrm{E}-07$	$1.496 \mathrm{E}-07$	$9.750 \mathrm{E}-08$	7．102E－08	$5.432 \mathrm{E}-08$	$4.314 \mathrm{E}-08$	$3.568 \mathrm{E}-08$	$3.009 \mathrm{E}-08$
WSW	$1.053 \mathrm{E}-06$	7．219E－07	$4.396 \mathrm{E}-07$	$2.056 \mathrm{E}-07$	$1.204 \mathrm{E}-07$	$7.956 \mathrm{E}-08$	$5.843 \mathrm{E}-08$	$4.492 \mathrm{E}-08$	3．580E－08	$2.968 \mathrm{E}-08$	$2.508 \mathrm{E}-08$
W	$6.742 \mathrm{E}-07$	$5.085 \mathrm{E}-07$	3．282E－07	$1.627 \mathrm{E}-07$	9．803E－08	$6.584 \mathrm{E}-08$	$4.888 \mathrm{E}-08$	3．787E－08	$3.036 \mathrm{E}-08$	$2.528 \mathrm{E}-08$	$2.143 \mathrm{E}-08$
WNW	$4.529 \mathrm{E}-07$	3．122E－07	2．012E－07	$1.108 \mathrm{E}-07$	$6.956 \mathrm{E}-08$	$4.823 \mathrm{E}-08$	$3.671 \mathrm{E}-08$	$2.902 \mathrm{E}-08$	$2.365 \mathrm{E}-08$	$2.079 \mathrm{E}-08$	$1.781 \mathrm{E}-08$
NW	6．608E－07	$4.337 \mathrm{E}-07$	$2.685 \mathrm{E}-07$	$1.399 \mathrm{E}-07$	8．563E－08	$5.846 \mathrm{E}-08$	$4.403 \mathrm{E}-08$	3．454E－08	$2.799 \mathrm{E}-08$	$2.353 \mathrm{E}-08$	$2.012 \mathrm{E}-08$
NNW	$1.586 \mathrm{E}-06$	$9.808 \mathrm{E}-07$	5．737E－07	$2.658 \mathrm{E}-07$	$1.580 \mathrm{E}-07$	1．062E－07	7．933E－08	$6.190 \mathrm{E}-08$	$4.999 \mathrm{E}-08$	$4.193 \mathrm{E}-08$	$3.580 \mathrm{E}-08$

Table 2.3-119—\{Normal Effluent Annual Average, Undecayed, Undepleted $\epsilon / \mathbb{Q} /$ /Q Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Grid Receptors\}
(Page 2 of 2)

Downwind Sector	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 7.5 \mathrm{miles}^{2} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec}^{3} / \mathrm{m}^{3}\right) \\ 10 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \end{gathered}$ $15 \text { mile }$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 20 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 25 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 30 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 35 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 40 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 45 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 50 \mathrm{miles} \end{gathered}$
N	2.217E-08	$1.608 \mathrm{E}-08$	$1.013 \mathrm{E}-08$	$7.265 \mathrm{E}-09$	5.602E-09	$4.526 \mathrm{E}-09$	$3.937 \mathrm{E}-09$	$3.363 \mathrm{E}-09$	$2.926 \mathrm{E}-09$	$2.584 \mathrm{E}-09$
NNE	$3.321 \mathrm{E}-08$	$2.429 \mathrm{E}-08$	$1.555 \mathrm{E}-08$	1.129E-08	8.797E-09	7.170E-09	6.090E-09	5.239E-09	$4.773 \mathrm{E}-09$	$4.236 \mathrm{E}-09$
NE	$4.586 \mathrm{E}-08$	$3.318 \mathrm{E}-08$	$2.099 \mathrm{E}-08$	$1.515 \mathrm{E}-08$	$1.236 \mathrm{E}-08$	$1.005 \mathrm{E}-08$	$8.434 \mathrm{E}-09$	7.247E-09	$6.340 \mathrm{E}-09$	$5.625 \mathrm{E}-09$
ENE	$2.152 \mathrm{E}-08$	$1.580 \mathrm{E}-08$	$1.018 \mathrm{E}-08$	$7.445 \mathrm{E}-09$	6.198E-09	5.078E-09	$4.290 \mathrm{E}-09$	3.706E-09	3.258E-09	2.903E-09
E	$1.892 \mathrm{E}-08$	$1.390 \mathrm{E}-08$	8.963E-09	6.547E-09	5.263E-09	$4.304 \mathrm{E}-09$	3.629E-09	3.129E-09	$2.746 \mathrm{E}-09$	$2.443 \mathrm{E}-09$
ESE	$2.176 \mathrm{E}-08$	$1.570 \mathrm{E}-08$	9.870E-09	7.089E-09	5.615E-09	$4.546 \mathrm{E}-09$	$3.802 \mathrm{E}-09$	$3.257 \mathrm{E}-09$	$2.841 \mathrm{E}-09$	$2.514 \mathrm{E}-09$
SE	$2.468 \mathrm{E}-08$	$1.706 \mathrm{E}-08$	$1.011 \mathrm{E}-08$	6.975E-09	5.294E-09	4.183E-09	$3.429 \mathrm{E}-09$	2.888E-09	2.482E-09	$2.169 \mathrm{E}-09$
SSE	$1.578 \mathrm{E}-08$	$1.081 \mathrm{E}-08$	$6.328 \mathrm{E}-09$	$4.322 \mathrm{E}-09$	3.249E-09	2.550E-09	$2.079 \mathrm{E}-09$	$1.743 \mathrm{E}-09$	$1.492 \mathrm{E}-09$	$1.299 \mathrm{E}-09$
S	$1.862 \mathrm{E}-08$	$1.270 \mathrm{E}-08$	7.407E-09	5.053E-09	3.791E-09	2.977E-09	$2.429 \mathrm{E}-09$	2.037E-09	$1.746 \mathrm{E}-09$	1.522E-09
SSW	$1.716 \mathrm{E}-08$	$1.170 \mathrm{E}-08$	6.808E-09	$4.636 \mathrm{E}-09$	$3.470 \mathrm{E}-09$	2.721E-09	$2.217 \mathrm{E}-09$	1.857E-09	$1.590 \mathrm{E}-09$	$1.385 \mathrm{E}-09$
SW	$1.562 \mathrm{E}-08$	$1.065 \mathrm{E}-08$	6.206E-09	$4.230 \mathrm{E}-09$	3.169E-09	2.487E-09	$2.078 \mathrm{E}-09$	$1.741 \mathrm{E}-09$	$1.519 \mathrm{E}-09$	$1.322 \mathrm{E}-09$
WSW	$1.306 \mathrm{E}-08$	8.908E-09	5.187E-09	3.526E-09	$2.614 \mathrm{E}-09$	2.048E-09	$1.779 \mathrm{E}-09$	$1.486 \mathrm{E}-09$	$1.290 \mathrm{E}-09$	$1.120 \mathrm{E}-09$
W	$1.128 \mathrm{E}-08$	$7.736 \mathrm{E}-09$	4.767E-09	$3.231 \mathrm{E}-09$	2.399E-09	1.876E-09	$1.525 \mathrm{E}-09$	$1.275 \mathrm{E}-09$	1.089E-09	$9.469 \mathrm{E}-10$
WNW	$9.934 \mathrm{E}-09$	6.957E-09	$4.180 \mathrm{E}-09$	2.903E-09	$2.411 \mathrm{E}-09$	$1.901 \mathrm{E}-09$	$1.571 \mathrm{E}-09$	$1.321 \mathrm{E}-09$	$1.234 \mathrm{E}-09$	$1.074 \mathrm{E}-09$
NW	$1.095 \mathrm{E}-08$	7.658E-09	4.619E-09	$3.201 \mathrm{E}-09$	$2.677 \mathrm{E}-09$	$2.106 \mathrm{E}-09$	$1.789 \mathrm{E}-09$	$1.499 \mathrm{E}-09$	$1.309 \mathrm{E}-09$	$1.139 \mathrm{E}-09$
NNW	$2.036 \mathrm{E}-08$	$1.421 \mathrm{E}-08$	9.444E-09	$6.507 \mathrm{E}-09$	5.273E-09	$4.148 \mathrm{E}-09$	3.389E-09	2.847E-09	2.442E-09	2.130E-09

Table 2.3-120-\{Normal Effluent Annual Average, Undecayed, UnDdepleted $\epsilon / Q_{\chi} / \mathrm{Q}$
Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Special and Additional Receptors\}

Downwind Sector	$\chi / \mathbf{Q}\left(\mathbf{s e c} / \mathbf{m}^{\mathbf{3}}\right)$ Site Boundary	$\chi / \mathbf{Q}\left(\mathbf{s e c} / \mathbf{m}^{\mathbf{3}}\right)$ Nearest Residents	$\chi / \mathbf{Q}\left(\mathbf{s e c} / \mathbf{m}^{\mathbf{3}}\right)$ Nearest Gardens
N	$2.885 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
NNE	$9.558 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
NE	$1.379 \mathrm{E}-05$	$\mathrm{~N} / \mathrm{A}$	N / A
ENE	$4.991 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
E	$2.778 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
ESE	$2.486 \mathrm{E}-06$	$\mathrm{~N} / \mathrm{A}$	N / A
SE	$1.076 \mathrm{E}-06$	$3.0228 .707 \mathrm{E}-07$	$3.0228 .707 \mathrm{E}-07$
SSE	$5.252 \mathrm{E}-07$	$3.1593 .545 \mathrm{E}-07$	$3.1593 .054 \mathrm{E}-07$
S	$8.681 \mathrm{E}-07$	$2.1803 .717 \mathrm{E}-07$	$2.1803 .717 \mathrm{E}-07$
SSW	$8.366 \mathrm{E}-07$	$2.824 \mathrm{E}-07 \mathrm{~N} / \mathrm{A}$	$2.228 \mathrm{E}-07 \underline{\mathrm{~N} / \mathrm{A}}$
SW	$4.960 \mathrm{E}-07$	$4.8994 .040 \mathrm{E}-07$	$4.899 \mathrm{E}-073.009 \mathrm{E}-07$
WSW	$4.1523 .802 \mathrm{E}-07$	$3.1374 .279 \mathrm{E}-07$	$2.0564 .279 \mathrm{E}-07$
W	$2.914 \mathrm{E}-07$	$2.0982 .129 \mathrm{E}-07$	$7.6271 .495 \mathrm{E}-07$
WNW	$1.127 \mathrm{E}-07$	$4.823 \mathrm{E}-081.053 \mathrm{E}-07$	$4.8238 .776 \mathrm{E}-08$
NW	$2.545 \mathrm{E}-07$	$7.9005 .686 \mathrm{E}-08$	$7.9005 .686 \mathrm{E}-08$
NNW	$1.699 \mathrm{E}-06$		$\mathrm{~N} / \mathrm{A}$

Table 2.3-121—\{Normal Effluent Annual Average, Depleted $\epsilon / Q \chi / Q$ Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Grid Receptors\}

Downwind Sector	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 0.5 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec}^{3} / \mathrm{m}^{3}\right) \\ \mathbf{0 . 7 5} \mathbf{~ m i l e s} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ \mathbf{1 . 0} \mathrm{mile} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ \mathbf{1 . 5} \mathbf{~ m i l e s} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ \mathbf{2 . 0} \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 2.5 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 3.0 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 3.5 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 4.0 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 4.5 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 5.0 \mathrm{miles} \end{gathered}$
N	1.760E-06	$9.545 \mathrm{E}-07$	$5.149 \mathrm{E}-07$	$2.253 \mathrm{E}-07$	$1.340 \mathrm{E}-07$	$9.153 \mathrm{E}-08$	$6.951 \mathrm{E}-08$	$5.510 \mathrm{E}-08$	$4.513 \mathrm{E}-08$	3.833E-08	$3.308 \mathrm{E}-08$
NNE	3.008E-06	1.570E-06	8.255E-07	3.458E-07	2.007E-07	$1.353 \mathrm{E}-07$	$1.020 \mathrm{E}-07$	8.050E-08	$6.579 \mathrm{E}-08$	5.582E-08	$4.818 \mathrm{E}-08$
NE	$4.614 \mathrm{E}-06$	$2.427 \mathrm{E}-06$	$1.274 \mathrm{E}-06$	5.254E-07	$2.990 \mathrm{E}-07$	$1.980 \mathrm{E}-07$	$1.470 \mathrm{E}-07$	$1.146 \mathrm{E}-07$	$9.272 \mathrm{E}-08$	7.798E-08	$6.680 \mathrm{E}-08$
ENE	1.870E-06	$9.791 \mathrm{E}-07$	5.199E-07	2.212E-07	$1.295 \mathrm{E}-07$	$8.772 \mathrm{E}-08$	$6.629 \mathrm{E}-08$	$5.240 \mathrm{E}-08$	$4.287 \mathrm{E}-08$	3.639E-08	3.142E-08
E	$1.392 \mathrm{E}-06$	7.627E-07	$4.229 \mathrm{E}-07$	$1.902 \mathrm{E}-07$	$1.141 \mathrm{E}-07$	7.811E-08	5.935E-08	$4.707 \mathrm{E}-08$	3.860E-08	3.283E-08	2.839E-08
ESE	$1.823 \mathrm{E}-06$	1.013E-06	5.585E-07	$2.449 \mathrm{E}-07$	$1.433 \mathrm{E}-07$	$9.622 \mathrm{E}-08$	7.202E-08	$5.641 \mathrm{E}-08$	$4.578 \mathrm{E}-08$	3.859E-08	$3.311 \mathrm{E}-08$
SE	$2.220 \mathrm{E}-06$	1.328E-06	7.531E-07	3.439E-07	$1.970 \mathrm{E}-07$	$1.287 \mathrm{E}-07$	$9.395 \mathrm{E}-08$	7.192E-08	$5.715 \mathrm{E}-08$	$4.727 \mathrm{E}-08$	$3.986 \mathrm{E}-08$
SSE	$1.272 \mathrm{E}-06$	$8.145 \mathrm{E}-07$	$4.778 \mathrm{E}-07$	$2.168 \mathrm{E}-07$	$1.255 \mathrm{E}-07$	8.487E-08	6.189E-08	$4.730 \mathrm{E}-08$	3.752E-08	3.097E-08	$2.606 \mathrm{E}-08$
S	$1.680 \mathrm{E}-06$	1.033E-06	5.933E-07	$2.816 \mathrm{E}-07$	$1.596 \mathrm{E}-07$	$1.032 \mathrm{E}-07$	$7.458 \mathrm{E}-08$	$5.698 \mathrm{E}-08$	$4.493 \mathrm{E}-08$	3.689E-08	$3.091 \mathrm{E}-08$
SSW	$1.491 \mathrm{E}-06$	$9.745 \mathrm{E}-07$	$5.766 \mathrm{E}-07$	2.596E-07	$1.484 \mathrm{E}-07$	9.633E-08	$6.978 \mathrm{E}-08$	5.303E-08	$4.186 \mathrm{E}-08$	3.439E-08	2.883E-08
SW	$1.449 \mathrm{E}-06$	$9.378 \mathrm{E}-07$	$5.444 \mathrm{E}-07$	$2.396 \mathrm{E}-07$	$1.356 \mathrm{E}-07$	$8.756 \mathrm{E}-08$	$6.325 \mathrm{E}-08$	$4.799 \mathrm{E}-08$	3.784E-08	3.108E-08	$2.604 \mathrm{E}-08$
WSW	$9.797 \mathrm{E}-07$	$6.711 \mathrm{E}-07$	4.089E-07	$1.901 \mathrm{E}-07$	$1.104 \mathrm{E}-07$	7.237E-08	5.272E-08	$4.022 \mathrm{E}-08$	3.183E-08	$2.621 \mathrm{E}-08$	$2.201 \mathrm{E}-08$
W	$6.324 \mathrm{E}-07$	$4.789 \mathrm{E}-07$	$3.101 \mathrm{E}-07$	$1.533 \mathrm{E}-07$	$9.180 \mathrm{E}-08$	$6.126 \mathrm{E}-08$	$4.520 \mathrm{E}-08$	$3.480 \mathrm{E}-08$	$2.774 \mathrm{E}-08$	$2.297 \mathrm{E}-08$	$1.938 \mathrm{E}-08$
WNW	$4.205 \mathrm{E}-07$	2.897E-07	$1.876 \mathrm{E}-07$	$1.039 \mathrm{E}-07$	6.502E-08	$4.490 \mathrm{E}-08$	$3.403 \mathrm{E}-08$	$2.678 \mathrm{E}-08$	$2.174 \mathrm{E}-08$	1.909E-08	$1.629 \mathrm{E}-08$
NW	$6.130 \mathrm{E}-07$	$4.005 \mathrm{E}-07$	$2.485 \mathrm{E}-07$	$1.299 \mathrm{E}-07$	7.919E-08	$5.382 \mathrm{E}-08$	$4.035 \mathrm{E}-08$	3.151E-08	2.542E-08	$2.128 \mathrm{E}-08$	$1.812 \mathrm{E}-08$
NNW	$1.462 \mathrm{E}-06$	8.954E-07	$5.225 \mathrm{E}-07$	$2.408 \mathrm{E}-07$	$1.423 \mathrm{E}-07$	9.513E-08	7.063E-08	$5.481 \mathrm{E}-08$	$4.404 \mathrm{E}-08$	3.676E-08	3.125E-08

Table 2.3-122—\{Normal Effluent Annual Average, Depleted $\epsilon / Q \chi / Q$ Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Grid Receptors 7.5 mi to 50 mi

Downwind Sector	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ \mathbf{7 . 5} \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 10 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 15 \mathrm{mile} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 20 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 25 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 30 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 35 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 40 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 45 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 50 \mathrm{miles} \end{gathered}$
N	$1.868 \mathrm{E}-08$	$1.340 \mathrm{E}-08$	$8.305 \mathrm{E}-09$	$5.878 \mathrm{E}-09$	$4.485 \mathrm{E}-09$	$3.591 \mathrm{E}-09$	$3.132 \mathrm{E}-09$	$2.657 \mathrm{E}-09$	$2.298 \mathrm{E}-09$	$2.017 \mathrm{E}-09$
NNE	$2.736 \mathrm{E}-08$	$1.978 \mathrm{E}-08$	$1.244 \mathrm{E}-08$	8.912E-09	6.869E-09	5.547E-09	$4.687 \mathrm{E}-09$	$4.003 \mathrm{E}-09$	3.668E-09	3.235E-09
NE	3.698E-08	$2.634 \mathrm{E}-08$	$1.628 \mathrm{E}-08$	$1.156 \mathrm{E}-08$	9.443E-09	7.597E-09	$6.315 \mathrm{E}-09$	$5.381 \mathrm{E}-09$	$4.672 \mathrm{E}-09$	$4.115 \mathrm{E}-09$
ENE	$1.788 \mathrm{E}-08$	$1.297 \mathrm{E}-08$	$8.214 \mathrm{E}-09$	$5.928 \mathrm{E}-09$	$4.961 \mathrm{E}-09$	$4.034 \mathrm{E}-09$	$3.383 \mathrm{E}-09$	2.904E-09	2.539E-09	2.250E-09
E	$1.625 \mathrm{E}-08$	$1.183 \mathrm{E}-08$	7.532E-09	$5.449 \mathrm{E}-09$	$4.371 \mathrm{E}-09$	3.552E-09	$2.977 \mathrm{E}-09$	$2.554 \mathrm{E}-09$	$2.231 \mathrm{E}-09$	$1.975 \mathrm{E}-09$
ESE	$1.839 \mathrm{E}-08$	$1.311 \mathrm{E}-08$	8.101E-09	$5.743 \mathrm{E}-09$	4.529E-09	3.635E-09	$3.016 \mathrm{E}-09$	$2.565 \mathrm{E}-09$	2.224E-09	$1.957 \mathrm{E}-09$
SE	2.067E-08	$1.403 \mathrm{E}-08$	8.084E-09	$5.456 \mathrm{E}-09$	$4.081 \mathrm{E}-09$	$3.176 \mathrm{E}-09$	$2.567 \mathrm{E}-09$	2.135E-09	$1.815 \mathrm{E}-09$	$1.569 \mathrm{E}-09$
SSE	$1.337 \mathrm{E}-08$	8.997E-09	$5.116 \mathrm{E}-09$	3.418E-09	2.529E-09	$1.956 \mathrm{E}-09$	$1.572 \mathrm{E}-09$	$1.302 \mathrm{E}-09$	$1.102 \mathrm{E}-09$	$9.494 \mathrm{E}-10$
S	1.562E-08	$1.041 \mathrm{E}-08$	5.855E-09	3.883E-09	2.851E-09	2.195E-09	$1.755 \mathrm{E}-09$	$1.446 \mathrm{E}-09$	$1.219 \mathrm{E}-09$	1.046E-09
SSW	$1.457 \mathrm{E}-08$	9.706E-09	5.448E-09	3.606E-09	2.639E-09	2.027E-09	$1.617 \mathrm{E}-09$	1.330E-09	$1.120 \mathrm{E}-09$	$9.590 \mathrm{E}-10$
SW	$1.317 \mathrm{E}-08$	8.790E-09	4.952E-09	3.289E-09	2.415E-09	$1.861 \mathrm{E}-09$	1.537E-09	$1.268 \mathrm{E}-09$	$1.093 \mathrm{E}-09$	$9.369 \mathrm{E}-10$
WSW	$1.117 \mathrm{E}-08$	7.458E-09	4.203E-09	$2.785 \mathrm{E}-09$	2.022E-09	$1.556 \mathrm{E}-09$	$1.345 \mathrm{E}-09$	$1.106 \mathrm{E}-09$	$9.432 \mathrm{E}-10$	$8.070 \mathrm{E}-10$
W	9.991E-09	6.734E-09	$4.058 \mathrm{E}-09$	2.695E-09	$1.968 \mathrm{E}-09$	1.517E-09	$1.216 \mathrm{E}-09$	1.004E-09	$8.487 \mathrm{E}-10$	7.291E-10
WNW	8.964E-09	6.202E-09	3.658E-09	$2.505 \mathrm{E}-09$	2.078E-09	$1.624 \mathrm{E}-09$	$1.329 \mathrm{E}-09$	$1.107 \mathrm{E}-09$	$9.486 \mathrm{E}-10$	8.114E-10
NW	9.709E-09	$6.696 \mathrm{E}-09$	3.954E-09	$2.695 \mathrm{E}-09$	2.244E-09	1.742E-09	$1.426 \mathrm{E}-09$	1.175E-09	$9.615 \mathrm{E}-10$	$8.199 \mathrm{E}-10$
NNW	1.757E-08	$1.208 \mathrm{E}-08$	7.968E-09	5.395E-09	4.271E-09	3.304E-09	$2.657 \mathrm{E}-09$	2.194E-09	1.853E-09	1.592E-09

Table 2.3-123-\{Normal Effluent Annual Average, Depleted $\epsilon / Q \chi / Q$ Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Special and Additional Receptors\}

Downwind Sector	$\chi / \mathrm{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right)$ Site Boundary	$\chi / Q\left(\sec / \mathbf{m}^{3}\right)$ Nearest Residents	$\chi / \mathbf{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right)$ Nearest Gardens
N	$2.677 \mathrm{E}-06$	N/A	N/A
NNE	$9.030 \mathrm{E}-06$	N/A	N/A
NE	$1.301 \mathrm{E}-05$	N/A	N/A
ENE	$4.701 \mathrm{E}-06$	N/A	N/A
E	$2.597 \mathrm{E}-06$	N/A	N/A
ESE	$2.298 \mathrm{E}-06$	N/A	N/A
SE	$9.733 \mathrm{E}-07$	2.7027.859E-07	2.7027.859E-07
SSE	$4.789 \mathrm{E}-07$	$2.8693 .223 \mathrm{E}-07$	$2.8692 .773 \mathrm{E}-07$
S	$7.939 \mathrm{E}-07$	$1.9723 .389 \mathrm{E}-07$	$1.9723 .389 \mathrm{E}-07$
SSW	$7.759 \mathrm{E}-07$	2.596E-07N/A	$2.041 \mathrm{E}-07 \mathrm{~N} / \mathrm{A}$
SW	$4.573 \mathrm{E}-07$	$4.5163 .717 \mathrm{E}-07$	$4.5162 .758 \mathrm{E}-07$
WSW	$3.8613 .534 \mathrm{E}-07$	$2.9133 .980 \mathrm{E}-07$	1.9013.980E-07
W	$2.753 \mathrm{E}-07$	1.9802.009E-07	1.5331.407E-07
WNW	$1.054 \mathrm{E}-07$	4.4909.872E-08	$4.4908 .218 \mathrm{E}-08$
NW	$2.356 \mathrm{E}-07$	$7.3005 .233 \mathrm{E}-08$	$7.3005 .233 \mathrm{E}-08$
NNW	$1.570 \mathrm{E}-06$	N/A	N/A

Table 2．3－124—\｛CCNPP Unit 3 Normal Effluent Annual Average，Gamma $\epsilon / Q \chi / Q$ Values for Mixed Mode Release Using 242，458 cfm Flow Rate for Grid Receptors\}

Downwind Sector	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 0.5 \mathrm{miles} \end{gathered}$	χ / Q $\left(\mathrm{sec} / \mathrm{m}^{3}\right)$ $\mathbf{0 . 7 5}$ miles	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 1.0 \mathrm{mile} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ \mathbf{1 . 5} \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ \mathbf{2 . 0} \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 2.5 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 3.0 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 3.5 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 4.0 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 4.5 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 5.0 \mathrm{miles} \end{gathered}$
N	$1.415 \mathrm{E}-06$	9．137E－07	$5.319 \mathrm{E}-07$	$2.442 \mathrm{E}-07$	$1.460 \mathrm{E}-07$	$9.939 \mathrm{E}-08$	7．527E－08	5．957E－08	$4.877 \mathrm{E}-08$	$4.143 \mathrm{E}-08$	$3.580 \mathrm{E}-08$
NNE	$2.160 \mathrm{E}-06$	1．379E－06	7．991E－07	3．647E－07	2．176E－07	$1.481 \mathrm{E}-07$	$1.123 \mathrm{E}-07$	8．900E－08	7．299E－08	6．212E－08	5．377E－08
NE	3．100E－06	1．968E－06	$1.135 \mathrm{E}-06$	5．133E－07	3．040E－07	2．057E－07	$1.552 \mathrm{E}-07$	$1.226 \mathrm{E}-07$	1．002E－07	8．505E－08	7．345E－08
ENE	$1.504 \mathrm{E}-06$	9．617E－07	5．580E－07	$2.548 \mathrm{E}-07$	1．519E－07	$1.034 \mathrm{E}-07$	7．835E－08	$6.210 \mathrm{E}-08$	5．093E－08	$4.335 \mathrm{E}-08$	3．752E－08
E	$1.270 \mathrm{E}-06$	$8.198 \mathrm{E}-07$	4．771E－07	2．182E－07	$1.299 \mathrm{E}-07$	$8.814 \mathrm{E}-08$	$6.661 \mathrm{E}-08$	$5.265 \mathrm{E}-08$	$4.308 \mathrm{E}-08$	3．659E－08	3．162E－08
ESE	$1.470 \mathrm{E}-06$	$9.407 \mathrm{E}-07$	$5.436 \mathrm{E}-07$	2．457E－07	$1.449 \mathrm{E}-07$	$9.760 \mathrm{E}-08$	$7.331 \mathrm{E}-08$	$5.765 \mathrm{E}-08$	$4.696 \mathrm{E}-08$	3．972E－08	3．420E－08
SE	$1.716 \mathrm{E}-06$	1．100E－06	$6.334 \mathrm{E}-07$	$2.878 \mathrm{E}-07$	$1.671 \mathrm{E}-07$	$1.109 \mathrm{E}-07$	$8.221 \mathrm{E}-08$	6．389E－08	5．150E－08	$4.315 \mathrm{E}-08$	$3.683 \mathrm{E}-08$
SSE	$1.113 \mathrm{E}-06$	$7.248 \mathrm{E}-07$	$4.199 \mathrm{E}-07$	$1.884 \mathrm{E}-07$	$1.097 \mathrm{E}-07$	7．407E－08	$5.484 \mathrm{E}-08$	$4.255 \mathrm{E}-08$	$3.424 \mathrm{E}-08$	$2.864 \mathrm{E}-08$	$2.440 \mathrm{E}-08$
S	$1.453 \mathrm{E}-06$	$9.258 \mathrm{E}-07$	5．304E－07	$2.428 \mathrm{E}-07$	$1.394 \mathrm{E}-07$	$9.163 \mathrm{E}-08$	$6.741 \mathrm{E}-08$	$5.224 \mathrm{E}-08$	$4.188 \mathrm{E}-08$	3．490E－08	$2.965 \mathrm{E}-08$
SSW	$1.370 \mathrm{E}-06$	8．780E－07	$5.041 \mathrm{E}-07$	$2.225 \mathrm{E}-07$	$1.279 \mathrm{E}-07$	$8.412 \mathrm{E}-08$	6．187E－08	$4.777 \mathrm{E}-08$	$3.828 \mathrm{E}-08$	$3.190 \mathrm{E}-08$	2．709E－08
SW	$1.286 \mathrm{E}-06$	$8.259 \mathrm{E}-07$	4．729E－07	2．081E－07	$1.194 \mathrm{E}-07$	7．843E－08	$5.763 \mathrm{E}-08$	$4.445 \mathrm{E}-08$	3．559E－08	2．964E－08	$2.516 \mathrm{E}-08$
WSW	$1.004 \mathrm{E}-06$	$6.576 \mathrm{E}-07$	3．815E－07	$1.707 \mathrm{E}-07$	9．890E－08	$6.536 \mathrm{E}-08$	$4.821 \mathrm{E}-08$	$3.728 \mathrm{E}-08$	$2.990 \mathrm{E}-08$	$2.493 \mathrm{E}-08$	$2.118 \mathrm{E}-08$
W	$8.038 \mathrm{E}-07$	5．327E－07	3．119E－07	$1.414 \mathrm{E}-07$	$8.256 \mathrm{E}-08$	5．487E－08	$4.065 \mathrm{E}-08$	3．154E－08	$2.537 \mathrm{E}-08$	$2.120 \mathrm{E}-08$	$1.805 \mathrm{E}-08$
WNW	5．959E－07	3．950E－07	$2.331 \mathrm{E}-07$	$1.108 \mathrm{E}-07$	6．573E－08	$4.426 \mathrm{E}-08$	$3.315 \mathrm{E}-08$	2．597E－08	$2.105 \mathrm{E}-08$	$1.811 \mathrm{E}-08$	$1.550 \mathrm{E}-08$
NW	7．179E－07	4．689E－07	2．742E－07	$1.283 \mathrm{E}-07$	7．546E－08	$5.053 \mathrm{E}-08$	$3.771 \mathrm{E}-08$	$2.945 \mathrm{E}-08$	$2.383 \mathrm{E}-08$	2．003E－08	$1.714 \mathrm{E}-08$
NNW	$1.365 \mathrm{E}-06$	8．820E－07	$5.114 \mathrm{E}-07$	$2.308 \mathrm{E}-07$	$1.352 \mathrm{E}-07$	$9.033 \mathrm{E}-08$	$6.731 \mathrm{E}-08$	5．253E－08	$4.249 \mathrm{E}-08$	3．570E－08	3．054E－08

Table 2.3-125—\{CCNPP Unit 3 Normal Effluent Annual Average, Gamma $\epsilon / Q \chi / Q$ Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Grid Receptors\}

Downwind Sector	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 7.5 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / \mathrm{Q} \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 10 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 15 \mathrm{mile} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 20 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 25 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 30 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 35 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec}^{3} / \mathrm{m}^{3}\right) \\ 40 \mathrm{miles} \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 45 \text { miles } \end{gathered}$	$\begin{gathered} \chi / Q \\ \left(\mathrm{sec} / \mathrm{m}^{3}\right) \\ 50 \mathrm{miles} \end{gathered}$
N	$2.036 \mathrm{E}-08$	$1.475 \mathrm{E}-08$	$9.307 \mathrm{E}-09$	$6.685 \mathrm{E}-09$	5.162E-09	$4.175 \mathrm{E}-09$	$3.577 \mathrm{E}-09$	3.058E-09	$2.663 \mathrm{E}-09$	$2.353 \mathrm{E}-09$
NNE	3.084E-08	2.253E-08	$1.439 \mathrm{E}-08$	$1.044 \mathrm{E}-08$	8.122E-09	6.613E-09	5.590E-09	$4.805 \mathrm{E}-09$	$4.301 \mathrm{E}-09$	3.815E-09
NE	$4.181 \mathrm{E}-08$	3.040E-08	$1.933 \mathrm{E}-08$	$1.398 \mathrm{E}-08$	$1.119 \mathrm{E}-08$	9.095E-09	$7.631 \mathrm{E}-09$	$6.554 \mathrm{E}-09$	5.730E-09	5.082E-09
ENE	$2.155 \mathrm{E}-08$	$1.577 \mathrm{E}-08$	$1.011 \mathrm{E}-08$	7.357E-09	5.953E-09	4.856E-09	4.087E-09	3.519E-09	3.084E-09	$2.741 \mathrm{E}-09$
E	$1.803 \mathrm{E}-08$	$1.313 \mathrm{E}-08$	$8.360 \mathrm{E}-09$	$6.056 \mathrm{E}-09$	$4.773 \mathrm{E}-09$	3.885E-09	$3.264 \mathrm{E}-09$	2.806E-09	$2.456 \mathrm{E}-09$	2.180E-09
ESE	$1.924 \mathrm{E}-08$	$1.387 \mathrm{E}-08$	$8.715 \mathrm{E}-09$	6.254E-09	$4.890 \mathrm{E}-09$	3.957E-09	3.308E-09	2.833E-09	$2.471 \mathrm{E}-09$	$2.186 \mathrm{E}-09$
SE	$2.001 \mathrm{E}-08$	$1.407 \mathrm{E}-08$	8.532E-09	5.968E-09	$4.548 \mathrm{E}-09$	3.620E-09	2.985E-09	$2.526 \mathrm{E}-09$	2.179E-09	$1.911 \mathrm{E}-09$
SSE	$1.314 \mathrm{E}-08$	9.172E-09	5.492E-09	3.804E-09	2.874E-09	2.273E-09	$1.864 \mathrm{E}-09$	$1.569 \mathrm{E}-09$	$1.348 \mathrm{E}-09$	$1.178 \mathrm{E}-09$
S	$1.582 \mathrm{E}-08$	$1.099 \mathrm{E}-08$	6.561E-09	$4.538 \mathrm{E}-09$	3.423E-09	2.707E-09	$2.220 \mathrm{E}-09$	$1.870 \mathrm{E}-09$	$1.608 \mathrm{E}-09$	$1.405 \mathrm{E}-09$
SSW	$1.443 \mathrm{E}-08$	$1.001 \mathrm{E}-08$	5.965E-09	4.119E-09	3.102E-09	2.450E-09	2.007E-09	$1.689 \mathrm{E}-09$	$1.452 \mathrm{E}-09$	$1.268 \mathrm{E}-09$
SW	$1.337 \mathrm{E}-08$	$9.260 \mathrm{E}-09$	5.497E-09	3.787E-09	2.846E-09	$2.246 \mathrm{E}-09$	$1.861 \mathrm{E}-09$	$1.564 \mathrm{E}-09$	$1.355 \mathrm{E}-09$	$1.183 \mathrm{E}-09$
WSW	$1.127 \mathrm{E}-08$	7.797E-09	4.617E-09	$3.171 \mathrm{E}-09$	2.366E-09	1.862E-09	$1.570 \mathrm{E}-09$	$1.316 \mathrm{E}-09$	$1.136 \mathrm{E}-09$	9.889E-10
W	9.675E-09	6.726E-09	$4.121 \mathrm{E}-09$	$2.832 \mathrm{E}-09$	2.118E-09	$1.668 \mathrm{E}-09$	$1.363 \mathrm{E}-09$	$1.144 \mathrm{E}-09$	$9.811 \mathrm{E}-10$	8.553E-10
WNW	8.582E-09	$6.046 \mathrm{E}-09$	3.667E-09	$2.563 \mathrm{E}-09$	2.033E-09	$1.614 \mathrm{E}-09$	$1.333 \mathrm{E}-09$	$1.125 \mathrm{E}-09$	$1.007 \mathrm{E}-09$	8.809E-10
NW	$9.389 \mathrm{E}-09$	6.622E-09	4.036E-09	$2.823 \mathrm{E}-09$	2.258E-09	1.791E-09	$1.501 \mathrm{E}-09$	$1.266 \mathrm{E}-09$	$1.100 \mathrm{E}-09$	$9.619 \mathrm{E}-10$
NNW	$1.718 \mathrm{E}-08$	$1.212 \mathrm{E}-08$	7.752E-09	$5.412 \mathrm{E}-09$	4.238E-09	3.366E-09	$2.772 \mathrm{E}-09$	$2.343 \mathrm{E}-09$	2.020E-09	1.770E-09

Table 2.3-126-\{Normal Effluent Annual Average, Gamma $\epsilon / \mathbb{Q} \chi / Q$ Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Special and Additional Receptors\}

Downwind Sector	$\chi / \mathbf{Q}\left(\mathbf{s e c} / \mathrm{m}^{3}\right)$ Site Boundary	$\chi / \mathbf{Q}\left(\mathbf{s e c} / \mathbf{m}^{3}\right)$ Nearest Residents	$\chi / \mathbf{Q}\left(\mathrm{sec} / \mathrm{m}^{3}\right)$ Nearest Gardens
N	1.872E-06	N/A	N/A
NNE	$4.043 \mathrm{E}-06$	N/A	N/A
NE	$5.769 \mathrm{E}-06$	N/A	N/A
ENE	$2.580 \mathrm{E}-06$	N/A	N/A
E	$1.905 \mathrm{E}-06$	N/A	N/A
ESE	$1.733 \mathrm{E}-06$	N/A	N/A
SE	$8.150 \mathrm{E}-07$	$2.2736 .605 \mathrm{E}-07$	2.2736.605E-07
SSE	$4.208 \mathrm{E}-07$	2.4982.810E-07	2.4982.413E-07
S	$7.118 \mathrm{E}-07$	1.7122.919E-07	1.7122.919E-07
SSW	$6.895 \mathrm{E}-07$	$2.225 \mathrm{E}-07 \mathrm{~N} / \mathrm{A}$	$2.225 \mathrm{E}-07 \mathrm{~N} / \mathrm{A}$
SW	$3.963 \mathrm{E}-07$	$3.9143 .218 \mathrm{E}-07$	$3.9142 .391 \mathrm{E}-07$
WSW	3.5863.261E-07	$2.6573 .705 \mathrm{E}-07$	$2.6573 .705 \mathrm{E}-07$
W	$2.712 \mathrm{E}-07$	1.8691.900E-07	1.8691.290E-07
WNW	$1.171 \mathrm{E}-07$	$4.426 \mathrm{E}-081.046 \mathrm{E}-07$	$4.4268 .503 \mathrm{E}-08$
NW	$2.580 \mathrm{E}-07$	$6.9274 .910 \mathrm{E}-08$	$6.9274 .910 \mathrm{E}-08$
NNW	$1.447 \mathrm{E}-06$	N/A	N/A

Table 2.3-127—\{Normal Effluent Annual Average, D/Q Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Grid Receptors\}

Downwind Sector	D/Q $\left(1 / \mathrm{m}^{2}\right)$ 0.5 miles	$\begin{gathered} \hline \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 0.75 \text { miles } \end{gathered}$	$\begin{gathered} \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 1.0 \mathrm{mile} \end{gathered}$	D/Q $\left(1 / \mathrm{m}^{2}\right)$ 1.5 miles	D/Q $\left(1 / \mathrm{m}^{2}\right)$ 2.0 miles	$\begin{gathered} \hline \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 2.5 \text { miles } \end{gathered}$	$\begin{gathered} \hline \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 3.0 \text { miles } \end{gathered}$	$\begin{gathered} \hline \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 3.5 \text { miles } \end{gathered}$	$\begin{gathered} \hline \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 4.0 \text { miles } \end{gathered}$	$\begin{gathered} \mathrm{D} / \mathrm{Q} \\ \left(1 / \mathrm{m}^{2}\right) \\ 4.5 \text { miles } \end{gathered}$	$\begin{gathered} \mathrm{D} / \mathrm{Q} \\ \left(1 / \mathrm{m}^{2}\right) \\ 5.0 \text { miles } \end{gathered}$
N	1.322E-08	$7.391 \mathrm{E}-09$	3.875E-09	1.472E-09	7.661E-10	$4.653 \mathrm{E}-10$	$3.197 \mathrm{E}-10$	$2.322 \mathrm{E}-10$	$1.759 \mathrm{E}-10$	$1.390 \mathrm{E}-10$	$1.123 \mathrm{E}-10$
NNE	$2.145 \mathrm{E}-08$	$1.177 \mathrm{E}-08$	6.016E-09	2.219E-09	$1.135 \mathrm{E}-09$	6.822E-10	4.657E-10	$3.368 \mathrm{E}-10$	$2.545 \mathrm{E}-10$	$2.008 \mathrm{E}-10$	$1.622 \mathrm{E}-10$
NE	3.792E-08	$2.075 \mathrm{E}-08$	1.057E-08	3.879E-09	1.977E-09	$1.184 \mathrm{E}-09$	$8.068 \mathrm{E}-10$	$5.829 \mathrm{E}-10$	$4.402 \mathrm{E}-10$	$3.472 \mathrm{E}-10$	2.804E-10
ENE	$1.588 \mathrm{E}-08$	$8.994 \mathrm{E}-09$	4.695E-09	$1.763 \mathrm{E}-09$	9.143E-10	$5.545 \mathrm{E}-10$	$3.812 \mathrm{E}-10$	$2.773 \mathrm{E}-10$	$2.105 \mathrm{E}-10$	1.666E-10	1.349E-10
E	$1.203 \mathrm{E}-08$	$6.702 \mathrm{E}-09$	3.472E-09	$1.305 \mathrm{E}-09$	$6.721 \mathrm{E}-10$	4.053E-10	$2.774 \mathrm{E}-10$	$2.010 \mathrm{E}-10$	$1.522 \mathrm{E}-10$	1.202E-10	$9.720 \mathrm{E}-11$
ESE	$1.987 \mathrm{E}-08$	$1.081 \mathrm{E}-08$	5.498E-09	2.033E-09	1.032E-09	$6.158 \mathrm{E}-10$	$4.181 \mathrm{E}-10$	$3.012 \mathrm{E}-10$	$2.270 \mathrm{E}-10$	1.787E-10	$1.441 \mathrm{E}-10$
SE	2.758E-08	$1.520 \mathrm{E}-08$	7.823E-09	2.943E-09	$1.496 \mathrm{E}-09$	8.920E-10	$6.051 \mathrm{E}-10$	$4.355 \mathrm{E}-10$	$3.280 \mathrm{E}-10$	$2.582 \mathrm{E}-10$	$2.081 \mathrm{E}-10$
SSE	1.508E-08	8.770E-09	4.717E-09	$1.846 \mathrm{E}-09$	9.593E-10	5.823E-10	3.982E-10	2.882E-10	$2.179 \mathrm{E}-10$	$1.721 \mathrm{E}-10$	1.390E-10
S	2.818E-08	$1.604 \mathrm{E}-08$	8.446E-09	3.275E-09	1.690E-09	1.018E-09	$6.966 \mathrm{E}-10$	$5.050 \mathrm{E}-10$	3.822E-10	$3.021 \mathrm{E}-10$	$2.443 \mathrm{E}-10$
SSW	$2.181 \mathrm{E}-08$	$1.271 \mathrm{E}-08$	6.802E-09	2.649E-09	$1.380 \mathrm{E}-09$	$8.371 \mathrm{E}-10$	$5.751 \mathrm{E}-10$	$4.180 \mathrm{E}-10$	$3.172 \mathrm{E}-10$	$2.511 \mathrm{E}-10$	2.033E-10
SW	$2.151 \mathrm{E}-08$	$1.255 \mathrm{E}-08$	6.719E-09	$2.616 \mathrm{E}-09$	1.357E-09	8.192E-10	5.607E-10	$4.063 \mathrm{E}-10$	$3.075 \mathrm{E}-10$	$2.431 \mathrm{E}-10$	1.966E-10
WSW	$1.199 \mathrm{E}-08$	7.502E-09	4.250E-09	1.740E-09	$9.261 \mathrm{E}-10$	5.680E-10	$3.929 \mathrm{E}-10$	2.867E-10	$2.179 \mathrm{E}-10$	$1.729 \mathrm{E}-10$	1.400E-10
W	6.673E-09	$4.317 \mathrm{E}-09$	$2.510 \mathrm{E}-09$	1.053E-09	5.700E-10	3.537E-10	$2.466 \mathrm{E}-10$	$1.810 \mathrm{E}-10$	1.382E-10	1.098E-10	$8.910 \mathrm{E}-11$
WNW	4.775E-09	$3.015 \mathrm{E}-09$	1.737E-09	7.306E-10	3.965E-10	$2.468 \mathrm{E}-10$	$1.724 \mathrm{E}-10$	$1.267 \mathrm{E}-10$	$9.681 \mathrm{E}-11$	$7.725 \mathrm{E}-11$	6.266E-11
NW	8.120E-09	$4.833 \mathrm{E}-09$	2.646E-09	$1.061 \mathrm{E}-09$	5.619E-10	3.445E-10	$2.384 \mathrm{E}-10$	$1.741 \mathrm{E}-10$	$1.326 \mathrm{E}-10$	1.052E-10	8.525E-11
NNW	$1.920 \mathrm{E}-08$	$1.103 \mathrm{E}-08$	5.871E-09	2.275E-09	1.184E-09	7.177E-10	4.927E-10	$3.578 \mathrm{E}-10$	$2.712 \mathrm{E}-10$	$2.145 \mathrm{E}-10$	$1.735 \mathrm{E}-10$

Table 2．3－128－\｛Normal Effluent Annual Average，D／Q Values for Mixed Mode Release Using 242，458 cfm Flow Rate for Grid Receptors\}

Downwind Sector	D／Q $\left(1 / \mathrm{m}^{2}\right)$ 7.5 miles	D／Q $\left(1 / \mathrm{m}^{2}\right)$ 10 miles	D／Q $\left(1 / \mathrm{m}^{2}\right)$ 15 mile	$\begin{gathered} \hline \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 20 \mathrm{miles} \end{gathered}$	$\begin{gathered} \hline \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 25 \text { miles } \end{gathered}$	D／Q $\left(1 / \mathrm{m}^{2}\right)$ 30 miles	$\begin{gathered} \text { D/Q } \\ \left(1 / \mathrm{m}^{2}\right) \\ 35 \text { miles } \end{gathered}$	D／Q $\left(1 / \mathrm{m}^{2}\right)$ 40 miles	D／Q $\left(1 / \mathrm{m}^{2}\right)$ 45 miles	D／Q $\left(1 / \mathrm{m}^{2}\right)$ 50 miles
N	$5.031 \mathrm{E}-11$	$3.161 \mathrm{E}-11$	1．627E－11	$1.009 \mathrm{E}-11$	$7.011 \mathrm{E}-12$	5．187E－12	3．990E－12	3．183E－12	$2.596 \mathrm{E}-12$	$2.156 \mathrm{E}-12$
NNE	7．259E－11	4．579E－11	$2.373 \mathrm{E}-11$	$1.478 \mathrm{E}-11$	$1.034 \mathrm{E}-11$	7．696E－12	5．956E－12	4．767E－12	3．888E－12	3．234E－12
NE	$1.254 \mathrm{E}-10$	7．906E－11	$4.100 \mathrm{E}-11$	$2.555 \mathrm{E}-11$	$1.786 \mathrm{E}-11$	$1.329 \mathrm{E}-11$	$1.030 \mathrm{E}-11$	8．249E－12	$6.744 \mathrm{E}-12$	$5.611 \mathrm{E}-12$
ENE	$6.088 \mathrm{E}-11$	3．847E－11	2．012E－11	$1.265 \mathrm{E}-11$	8．954E－12	6．734E－12	5．259E－12	4．245E－12	$3.491 \mathrm{E}-12$	2．917E－12
E	$4.350 \mathrm{E}-11$	$2.735 \mathrm{E}-11$	$1.418 \mathrm{E}-11$	$8.878 \mathrm{E}-12$	$6.223 \mathrm{E}-12$	$4.649 \mathrm{E}-12$	$3.614 \mathrm{E}-12$	2．909E－12	$2.388 \mathrm{E}-12$	$1.994 \mathrm{E}-12$
ESE	$6.385 \mathrm{E}-11$	4．000E－11	2．053E－11	$1.272 \mathrm{E}-11$	$8.795 \mathrm{E}-12$	$6.499 \mathrm{E}-12$	5．015E－12	$4.011 \mathrm{E}-12$	$3.279 \mathrm{E}-12$	2．733E－12
SE	$9.188 \mathrm{E}-11$	5．720E－11	$2.906 \mathrm{E}-11$	1．793E－11	$1.243 \mathrm{E}-11$	9．273E－12	7．278E－12	5．937E－12	$4.959 \mathrm{E}-12$	$4.244 \mathrm{E}-12$
SSE	6．157E－11	3．806E－11	$1.920 \mathrm{E}-11$	$1.183 \mathrm{E}-11$	$8.188 \mathrm{E}-12$	6．096E－12	$4.774 \mathrm{E}-12$	3．884E－12	3．236E－12	$2.763 \mathrm{E}-12$
S	1．089E－10	$6.795 \mathrm{E}-11$	3．500E－11	2．193E－11	1．539E－11	$1.158 \mathrm{E}-11$	$9.095 \mathrm{E}-12$	7．412E－12	$6.162 \mathrm{E}-12$	5．223E－12
SSW	9．094E－11	$5.673 \mathrm{E}-11$	$2.926 \mathrm{E}-11$	1．839E－11	$1.298 \mathrm{E}-11$	$9.821 \mathrm{E}-12$	7．758E－12	$6.356 \mathrm{E}-12$	$5.308 \mathrm{E}-12$	4．519E－12
SW	$8.744 \mathrm{E}-11$	5．427E－11	$2.766 \mathrm{E}-11$	$1.720 \mathrm{E}-11$	$1.198 \mathrm{E}-11$	8．950E－12	7．656E－12	$6.425 \mathrm{E}-12$	6．883E－12	$6.214 \mathrm{E}-12$
WSW	$6.255 \mathrm{E}-11$	3．862E－11	1．952E－11	1．208E－11	$8.370 \mathrm{E}-12$	6．195E－12	5．790E－12	$4.968 \mathrm{E}-12$	5．869E－12	5．485E－12
W	4．009E－11	$2.485 \mathrm{E}-11$	$1.266 \mathrm{E}-11$	7．985E－12	$5.745 \mathrm{E}-12$	$4.473 \mathrm{E}-12$	$3.663 \mathrm{E}-12$	3．106E－12	$2.678 \mathrm{E}-12$	2．365E－12
WNW	$2.827 \mathrm{E}-11$	1．757E－11	$9.012 \mathrm{E}-12$	$5.644 \mathrm{E}-12$	$4.309 \mathrm{E}-12$	3．511E－12	$3.334 \mathrm{E}-12$	3．048E－12	$4.026 \mathrm{E}-11$	3．979E－11
NW	3．833E－11	$2.395 \mathrm{E}-11$	$1.238 \mathrm{E}-11$	7．785E－12	$6.691 \mathrm{E}-12$	5．943E－12	2．517E－11	2．703E－11	5．502E－11	5．402E－11
NNW	7．758E－11	4．832E－11	2．489E－11	$1.618 \mathrm{E}-11$	$2.645 \mathrm{E}-11$	3．090E－11	3．475E－11	3．701E－11	$3.749 \mathrm{E}-11$	$3.831 \mathrm{E}-11$

Table 2.3-129—\{Normal Effluent Annual Average, D/Q Values for Mixed Mode Release Using 242,458 cfm Flow Rate for Special and Additional Receptors\}

Downwind Sector	D/Q $\left(1 / \mathbf{m}^{2}\right)$ Site Boundary	D / Q $\left(1 / \mathrm{m}^{2}\right)$ Nearest Residents	D / Q $\left(1 / \mathbf{m}^{2}\right)$ Nearest Gardens
N	$1.895 \mathrm{E}-08$	N/A	N/A
NNE	$5.101 \mathrm{E}-08$	N/A	N/A
NE	$8.617 \mathrm{E}-08$	N/A	N/A
ENE	$3.134 \mathrm{E}-08$	N/A	N/A
E	$1.978 \mathrm{E}-08$	N/A	N/A
ESE	$2.465 \mathrm{E}-08$	N/A	N/A
SE	$1.060 \mathrm{E}-08$	2.1938.234E-09	2.1938.234E-09
SSE	$4.730 \mathrm{E}-09$	$2.5782 .960 \mathrm{E}-09$	$2.5782 .475 \mathrm{E}-09$
S	$1.186 \mathrm{E}-08$	$2.1504 .068 \mathrm{E}-09$	$2.1504 .068 \mathrm{E}-09$
SSW	$9.686 \mathrm{E}-09$	2.649E-09N/A	$1.992 \mathrm{E}-09 \mathrm{~N} / \mathrm{A}$
SW	$5.493 \mathrm{E}-09$	$5.4154 .333 \mathrm{E}-09$	$5.4153 .074 \mathrm{E}-09$
WSW	$3.9713 .580 \mathrm{E}-09$	2.8604.115E-09	1.7404.115E-09
W	$2.159 \mathrm{E}-09$	1.4381.465E-09	1.053E-099.487E-10
WNW	7.963E-10	$2.4686 .835 \mathrm{E}-10$	$2.4685 .336 \mathrm{E}-10$
NW	$2.465 \mathrm{E}-09$	5.0603.322E-10	5.0603.322E-10
NNW	$2.064 \mathrm{E}-08$	N/A	N/A

Table 2.3-130—\{Specific Locations of Receptors of Interest\}

Receptor	Distance Downwind m (ft)	Sector
Site Boundary	623.4 (2045.3)	N
Site Boundary	429.4 (1408.8)	NNE
Site Boundary	443.3 (1454.4)	NE
Site Boundary	471.0 (1545.3)	ENE
Site Boundary	554.1 (1817.9)	E
Site Boundary	692.7 (2272.6)	ESE
Site Boundary	1413.0 (4635.8)	SE
Site Boundary	1607.0 (5272.3)	SSE
Site Boundary	1385.0 (4544.0)	S
Site Boundary	1371.0 (4498).0(4498.0)	SSW
Site Boundary	1759.0 (5771.0)	SW
Site Boundary	1662.01745 .0 (5452.85725.1)	WSW
Site Boundary	1732.0 (5682.4)	W
Site Boundary	2313.0 (7588.6)	WNW
Site Boundary	1662.0 (5452.8)	NW
Site Boundary	761.9 (2499.7)	NNW
Nearest Resident	2735.01574 .0 (8973.15164.0)	SE
Nearest Resident	2092.01969 .0 (6863.56460.0)	SSE
Nearest Resident	2896.02206 .0 (9501.37237.5)	S
Nearest Resident	1770.01945 .0 (5807.16381.2)	SW
Nearest Resident	1931.01634 .0 (6335.35360.9)	WSW
Nearest Resident	2092.02074 .0 (6863.56804.5)	W
Nearest Resident	4023.02485 .0 (13199.08152.9)	WNW
Nearest Resident	3379.04097 .0 (71086.013441.6)	NW
Nearest Garden	2735.01574 .0 (8973.15164.0)	SE
Nearest Garden	2092.02130 .0 (6863.56988.2)	SSE
Nearest Garden	z896.02206.0 (9501.37237.5)	S
Nearest Garden	2735.0 (8973.1)	SSW
Nearest Garden	1770.02256 .0 (5807.17401.6)	SW
Nearest Garden	2414.01634 .0 (7919.95360.9)	WSW
Nearest Garden	2414.02529.0 (7919.98297.2)	W
Nearest Garden	4023.02795 .0 (13198.89169.9)	WNW
Nearest Garden	3379.04097 .0 (11086.013441.6)	NW

Table 2.3-131—Calvert Cliffs Nuclear Power Station Monthly Mean Temperatures (1987-2006)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
${ }^{\circ} \mathrm{F}$	36.5	38.3	44.7	54.8	63.2	71.7	76.5	75.3	68.9	58.2	50.2	39.9	56.5
${ }^{\circ} \mathrm{C}$	2.5	3.5	7.1	12.7	17.3	22.1	24.7	24.1	20.5	14.6	10.1	4.4	13.6

Table 2.3-132—Calvert Cliffs Nuclear Power Station Monthly and Annual Precipitation (1992-2006)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
in	2.11	$\underline{2.16}$	3.58	2.90	2.87	2.82	3.04	1.95	2.80	2.42	$\underline{2.74}$	2.20	31.58
mm	53.59	54.86	$\underline{90.93}$	73.66	72.90	$\underline{71.63}$	77.22	49.53	71.12	61.47	69.60	55.88	802.13

Table 2.3-133—Monthly Atmospheric Stability Summary (2000 through 2005)

Table 2.3-134—\{CCNPP 33' (10-m) 2000-2006 Annual Joint Frequency Distribution Table\} (Page 1 of 8)
CC JANOO-DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)
33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) $=10.89$
WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	wNW	NW	nNW	VRBL	total	SPEED
mps																			MPH
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LT . 4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	

© 2007 UniStar Nuclear Services, LLC. All rights reserved.

(2)	.00	.00	.00	.00	.00	.00	.00
$.2-$.4	0	0	0	0	0	0
(1)	.00	.00	.00	.00	.00	.00	.00

(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
. $5-1.0$	0	0	0	0	2	0	0	1	0	1	1	0	0	1	0	0	0	6	$1.0-2.2$
(1)	. 00	. 00	. 00	. 00	. 03	. 00	. 00	. 02	. 00	. 02	. 02	. 00	. 00	. 02	. 00	. 00	. 00	. 09	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
1.1-1.5	3	3	4	8	4	0	5	2	3	12	9	6	8	4	1	1	0	73	$2.3-3.4$

(1)	2.12	2.72	1.85	1.08	1.27	1.02	1.10	1.28	1.28	2.95	4.53	2.72	1.01	. 58	. 44	. 29	. 00	26.24	
(2)	. 23	. 30	. 20	. 12	. 14	. 11	. 12	. 14	. 14	. 32	. 49	. 30	. 11	. 06	. 05	. 03	. 00	2.86	
$3.1-4.0$	317	280	120	21	31	39	112	168	73	152	329	215	99	92	76	60	0	2184	6.8-8.9
(1)	4.84	4.27	1.83	. 32	. 47	. 60	1.71	2.56	1.11	2.32	5.02	3.28	1.51	1.40	1.16	. 92	. 00	33.34	
(2)	. 53	. 47	. 20	. 03	. 05	. 06	. 19	. 28	. 12	. 25	. 55	. 36	. 16	. 15	. 13	. 10	. 00	3.63	
4.1-5.0	179	105	49	9	5	10	54	110	36	88	183	84	76	117	136	49	0	1290	9.0-11.2
(1)	2.73	1.60	. 75	. 14	. 08	. 15	. 82	1.68	. 55	1.34	2.79	1.28	1.16	1.79	2.08	. 75	. 00	19.69	
(2)	. 30	. 17	. 08	. 01	. 01	. 02	. 09	. 18	. 06	. 15	. 30	. 14	. 13	. 19	. 23	. 08	. 00	2.14	
5.1-6.0	70	24	28	1	0	1	12	53	6	35	72	26	40	120	122	31	0	641	11.3-13.4
(1)	1.07	. 37	. 43	. 02	. 00	. 02	. 18	. 81	. 09	. 53	1.10	. 40	. 61	1.83	1.86	. 47	. 00	9.78	
(2)	. 12	. 04	. 05	. 00	. 00	. 00	. 02	. 09	. 01	. 06	. 12	. 04	. 07	. 20	. 20	. 05	. 00	1.07	
6.1-8.0	16	1	15	3	0	0	0	28	1	9	19	13	17	80	106	16	0	324	13.5-17.9
(1)	. 24	. 02	. 23	. 05	. 00	. 00	. 00	. 43	. 02	. 14	. 29	. 20	. 26	1.22	1.62	. 24	. 00	4.95	
(2)	. 03	. 00	. 02	. 00	. 00	. 00	. 00	. 05	. 00	. 01	. 03	. 02	. 03	. 13	. 18	. 03	. 00	. 54	
8.1-10.0	0	0	0	0	0	0	0	0	0	2	0	0	2	13	8	0	0	25	18.0-22.4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 03	. 00	. 00	. 03	. 20	. 12	. 00	. 00	. 38	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 01	. 00	. 00	. 04	
10.1-89.5	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	22.5-200.2
(1)	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 03	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
ALL SPEEDS	734	620	358	135	139	130	262	459	214	528	964	549	323	470	483	183	0	6551	
(1)	11.20	9.46	5.46	2.06	2.12	1.98	4.00	7.01	3.27	8.06	14.72	8.38	4.93	7.17	7.37	2.79	. 00	100.00	
(2)	1.22	1.03	. 60	. 22	. 23	. 22	. 44	. 76	. 36	. 88	1.60	. 91	. 54	. 78	. 80	. 30	. 00	10.89	

[^2](2) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD
Table 2.3-134—\{CCNPP 33' (10-m) 2000-2006 Annual Joint Frequency Distribution Table\} (Page 2 of 8)

CLASS FREQU

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	LT . 4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 04	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
.2- . 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. $4-.9$
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
.5-1.0	1	0	1	0	2	0	1	1	1	0	0	0	0	0	0	1	0	8	1.0-2.2
(1)	. 04	. 00	. 04	. 00	. 07	. 00	. 04	. 04	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 30	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
1.1-1.5	3	4	3	2	9	1	4	2	3	5	7	3	4	3	0	0	0	53	2.3-3.4
(1)	. 11	. 15	. 11	. 07	. 33	. 04	. 15	. 07	. 11	. 18	. 26	. 11	. 15	. 11	. 00	. 00	. 00	1.96	
(2)	. 00	. 01	. 00	. 00	. 01	. 00	. 01	. 00	. 00	. 01	. 01	. 00	. 01	. 00	. 00	. 00	. 00	. 09	
1.6-2.0	12	12	27	24	13	20	13	3	13	10	24	20	10	6	4	6	0	217	3.5-4.5
(1)	. 44	. 44	1.00	. 89	. 48	. 74	. 48	. 11	. 48	. 37	. 89	. 74	. 37	. 22	. 15	. 22	. 00	8.01	
(2)	. 02	. 02	. 04	. 04	. 02	. 03	. 02	. 00	. 02	. 02	. 04	. 03	. 02	. 01	. 01	. 01	. 00	. 36	
2.1-3.0	103	132	74	70	53	36	48	44	40	58	69	70	46	31	17	15	0	906	4.6-6.7
(1)	3.80	4.87	2.73	2.58	1.96	1.33	1.77	1.62	1.48	2.14	2.55	2.58	1.70	1.14	. 63	. 55	. 00	33.44	
(2)	. 17	. 22	. 12	. 12	. 09	. 06	. 08	. 07	. 07	. 10	. 11	. 12	. 08	. 05	. 03	. 02	. 00	1.51	
3.1-4.0	122	92	49	16	8	12	53	86	16	44	86	58	33	34	33	18	0	760	6.8-8.9
(1)	4.50	3.40	1.81	. 59	. 30	. 44	1.96	3.17	. 59	1.62	3.17	2.14	1.22	1.26	1.22	. 66	. 00	28.05	
(2)	. 20	. 15	. 08	. 03	. 01	. 02	. 09	. 14	. 03	. 07	. 14	. 10	. 05	. 06	. 05	. 03	. 00	1.26	
4.1- 5.0	58	18	31	3	1	3	15	31	10	22	42	23	26	27	45	29	0	384	9.0-11.2
(1)	2.14	. 66	1.14	. 11	. 04	. 11	. 55	1.14	. 37	. 81	1.55	. 85	. 96	1.00	1.66	1.07	. 00	14.17	
(2)	. 10	. 03	. 05	. 00	. 00	. 00	. 02	. 05	. 02	. 04	. 07	. 04	. 04	. 04	. 07	. 05	. 00	. 64	
5.1- 6.0	43	10	17	4	0	1	4	21	3	5	17	4	14	26	44	15	0	228	11.3-13.4
(1)	1.59	. 37	. 63	. 15	. 00	. 04	. 15	. 78	. 11	. 18	. 63	. 15	. 52	. 96	1.62	. 55	. 00	8.42	
(2)	. 07	. 02	. 03	. 01	. 00	. 00	. 01	. 03	. 00	. 01	. 03	. 01	. 02	. 04	. 07	. 02	. 00	. 38	
6.1-8.0	10	2	4	4	0	0	2	12	1	4	6	5	5	38	38	10	0	141	13.5-17.9
(1)	. 37	. 07	. 15	. 15	. 00	. 00	. 07	. 44	. 04	. 15	. 22	. 18	. 18	1.40	1.40	. 37	. 00	5.20	
(2)	. 02	. 00	. 01	. 01	. 00	. 00	. 00	. 02	. 00	. 01	. 01	. 01	. 01	. 06	. 06	. 02	. 00	. 23	
8.1-10.0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	7	0	0	10	18.0-22.4
(1)	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 04	. 26	. 00	. 00	. 37	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 02	
10.1-89.5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	22.5-200.2
(1)	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
ALL SPEEDS	354	270	206	123	86	73	140	201	87	148	251	184	138	166	188	94	0	2709	
(1)	13.07	9.97	7.60	4.54	3.17	2.69	5.17	7.42	3.21	5.46	9.27	6.79	5.09	6.13	6.94	3.47	. 00	100.00	
(2)	. 59		. 34	. 20			. 23	. 33	. 14	. 25	. 42	. 31	. 23	. 28	. 31	. 16	. 00	4.50	
(1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE																			
(2)=PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PE	RIOD												

Table 2.3-134—\{CCNPP $33^{\prime}(10-m)$ 2000-2006 Annual Joint Frequency Distribution Table\} (Page 3 of 8)
CC JANOO-DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)

CC		
33.0 FT WIND DATA	STABILITY CLASS C	CLASS FREQUENCY (PERCENT) $=$

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LT . 4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
. $2-.4$	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	. $4-.9$
(1)	. 00	. 00	. 00	. 00	. 00	. 03	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 03	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
. $5-1.0$	1	1	1	0	3	0	2	1	2	1	3	2	3	1	1	1	0	23	1.0-2.2
(1)	. 03	. 03	. 03	. 00	. 10	. 00	. 07	. 03	. 07	. 03	. 10	. 07	. 10	. 03	. 03	. 03	. 00	. 75	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04	
1.1-1.5	5	14	8	13	11	7	6	5	3	8	11	12	8	6	2	4	0	123	$2.3-3.4$
(1)	. 16	. 46	. 26	. 42	. 36	. 23	. 20	. 16	. 10	. 26	. 36	. 39	. 26	. 20	. 07	. 13	. 00	4.02	
(2)	. 01	. 02	. 01	. 02	. 02	. 01	. 01	. 01	. 00	. 01	. 02	. 02	. 01	. 01	. 00	. 01	. 00	. 20	
1.6-2.0	18	41	23	30	39	21	19	16	16	11	31	24	16	7	8	4	0	324	$3.5-4.5$
(1)	. 59	1.34	. 75	. 98	1.27	. 69	. 62	. 52	. 52	. 36	1.01	. 78	. 52	. 23	. 26	. 13	. 00	10.58	
(2)	. 03	. 07	. 04	. 05	. 06	. 03	. 03	. 03	. 03	. 02	. 05	. 04	. 03	. 01	. 01	. 01	. 00	. 54	
2.1-3.0	132	163	107	79	58	44	56	63	39	60	108	76	48	38	36	25	0	1132	4.6-6.7
(1)	4.31	5.32	3.49	2.58	1.89	1.44	1.83	2.06	1.27	1.96	3.53	2.48	1.57	1.24	1.18	. 82	. 00	36.97	
(2)	. 22	. 27	. 18	. 13	. 10	. 07	. 09	. 10	. 06	. 10	. 18	. 13	. 08	. 06	. 06	. 04	. 00	1.88	
3.1-4.0	126	71	76	19	13	8	18	92	26	32	75	56	43	32	47	30	0	764	$6.8-8.9$
(1)	4.11	2.32	2.48	. 62	. 42	. 26	. 59	3.00	. 85	1.05	2.45	1.83	1.40	1.05	1.53	. 98	. 00	24.95	
(2)	. 21	. 12	. 13	. 03	. 02	. 01	. 03	. 15	. 04	. 05	. 12	. 09	. 07	. 05	. 08	. 05	. 00	1.27	
4.1-5.0	56	22	35	7	3	2	9	44	8	18	35	27	15	33	46	26	0	386	9.0-11.2
(1)	1.83	. 72	1.14	. 23	. 10	. 07	. 29	1.44	. 26	. 59	1.14	. 88	. 49	1.08	1.50	. 85	. 00	12.61	
(2)	. 09	. 04	. 06	. 01	. 00	. 00	. 01	. 07	. 01	. 03	. 06	. 04	. 02	. 05	. 08	. 04	. 00	. 64	
5.1-6.0	15	10	18	9	0	0	3	15	2	2	19	5	8	24	31	10	0	171	11.3-13.4
(1)	. 49	. 33	. 59	. 29	. 00	. 00	. 10	. 49	. 07	. 07	. 62	. 16	. 26	. 78	1.01	. 33	. 00	5.58	
(2)	. 02	. 02	. 03	. 01	. 00	. 00	. 00	. 02	. 00	. 00	. 03	. 01	. 01	. 04	. 05	. 02	. 00	. 28	
6.1-8.0	18	4	7	5	0	0	0	5	0	2	4	0	5	27	41	9	0	127	13.5-17.9
(1)	. 59	. 13	. 23	. 16	. 00	. 00	. 00	. 16	. 00	. 07	. 13	. 00	. 16	. 88	1.34	. 29	. 00	4.15	
(2)	. 03	. 01	. 01	. 01	. 00	. 00	. 00	. 01	. 00	. 00	. 01	. 00	. 01	. 04	. 07	. 01	. 00	. 21	
8.1-10.0	2	0	2	0	0	0	0	0	0	0	0	0	0	3	3	1	0	11	18.0-22.4
(1)	. 07	. 00	. 07	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 10	. 03	. 00	. 36	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$22.5-200.2$
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
ALL SPEEDS	373	326	277	162	127	83	113	241	96	134	286	202	146	171	215	110	0	3062	
(1)	12.18	10.65	9.05	5.29	4.15	2.71	3.69	7.87	3.14	4.38	9.34	6.60	4.77	5.58	7.02	3.59	. 00	100.00	
(2)	. 62	. 54	. 46	. 27	. 21	. 14	. 19	. 40	. 16	. 22	. 48	. 34	. 24	. 28	. 36	. 18	. 00	5.09	
(1) =PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR	HIS PA													
(2) =PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR	HIS PER	RIOD												

Table 2．3－134—\｛CCNPP $33^{\prime}(10-m)$ 2000－2006 Annual Joint Frequency Distribution Table\} （Page 4 of 8）
CC JANOO－DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION（ 60 －METER TOWER）

| 33.0 | FT WIND DATA STABILITY CLASS D $\quad 33.91$ |
| ---: | ---: | ---: | ---: | \longrightarrow WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT ． 2	0	0	0	0	1	0	0	0	0	2	3	0	0	1	2	1	0	10	LT ． 4
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 01	． 01	． 00	． 00	． 00	． 01	． 00	． 00	． 05	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	
． $2-.4$	1	1	0	2	0	0	1	1	2	2	2	2	4	5	0	1	0	24	． $4-.9$
（1）	． 00	． 00	． 00	． 01	． 00	． 00	． 00	． 00	． 01	． 01	． 01	． 01	． 02	． 02	． 00	． 00	． 00	． 12	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 01	． 01	． 00	． 00	． 00	． 04	
． $5-1.0$	33	35	41	26	41	46	34	33	36	50	57	35	26	40	23	36	0	592	1．0－2．2
（1）	． 16	． 17	． 20	． 13	． 20	． 23	． 17	． 16	． 18	． 25	． 28	． 17	． 13	． 20	． 11	． 18	． 00	2.90	
（2）	． 05	． 06	． 07	． 04	． 07	． 08	． 06	． 05	． 06	． 08	． 09	． 06	． 04	． 07	． 04	． 06	． 00	． 98	
1．1－1．5	89	92	88	100	152	101	75	79	72	85	109	69	66	46	51	50	0	1324	$2.3-3.4$
（1）	． 44	． 45	． 43	． 49	． 75	． 50	． 37	． 39	． 35	． 42	． 53	． 34	． 32	． 23	． 25	． 25	． 00	6.49	
（2）	． 15	． 15	． 15	． 17	． 25	． 17	． 12	． 13	． 12	． 14	． 18	． 11	． 11	． 08	． 08	． 08	． 00	2.20	
1．6－2．0	173	244	172	219	225	159	144	137	138	139	158	108	81	64	88	84	0	2333	$3.5-4.5$
（1）	． 85	1.20	． 84	1.07	1.10	． 78	． 71	． 67	． 68	． 68	． 77	． 53	． 40	． 31	． 43	． 41	． 00	11.44	
（2）	． 29	． 41	． 29	． 36	． 37	． 26	． 24	． 23	． 23	． 23	． 26	． 18	． 13	． 11	． 15	． 14	． 00	3.88	
2．1－3．0	487	577	448	573	434	274	304	463	284	242	375	282	184	171	287	303	0	5688	4．6－6．7
（1）	2.39	2.83	2.20	2.81	2.13	1.34	1.49	2.27	1.39	1.19	1.84	1.38	． 90	． 84	1.41	1.49	． 00	27.89	
（2）	． 81	． 96	． 74	． 95	． 72	． 46	． 51	． 77	． 47	． 40	． 62	． 47	． 31	． 28	． 48	． 50	． 00	9.45	
3．1－4．0	470	352	470	445	186	116	153	406	179	154	294	191	114	150	374	452	0	4506	6．8－8．9
（1）	2.30	1.73	2.30	2.18	． 91	． 57	． 75	1.99	． 88	． 76	1.44	． 94	． 56	． 74	1.83	2.22	． 00	22.09	
（2）	． 78	． 59	． 78	． 74	． 31	． 19	． 25	． 67	． 30	． 26	． 49	． 32	． 19	． 25	． 62	． 75	． 00	7.49	
4．1－5．0	384	285	403	243	48	19	53	221	80	80	188	80	65	144	334	324	0	2951	9．0－11．2
（1）	1.88	1.40	1.98	1.19	． 24	． 09	． 26	1.08	． 39	． 39	． 92	． 39	． 32	． 71	1.64	1.59	． 00	14.47	
（2）	． 64	． 47	． 67	． 40	． 08	． 03	． 09	． 37	． 13	． 13	． 31	． 13	． 11	． 24	． 56	． 54	． 00	4.91	
5．1－6．0	265	187	267	122	1	4	19	118	22	32	85	23	31	118	267	135	0	1696	11．3－13．4
（1）	1.30	． 92	1.31	． 60	． 00	． 02	． 09	． 58	． 11	． 16	． 42	． 11	． 15	． 58	1.31	． 66	． 00	8.31	
（2）	． 44	． 31	． 44	． 20	． 00	． 01	． 03	． 20	． 04	． 05	． 14	． 04	． 05	． 20	． 44	． 22	． 00	2.82	
6．1－8．0	204	110	211	53	3	2	13	62	17	17	15	12	15	133	162	49	0	1078	13．5－17．9
（1）	1.00	． 54	1.03	． 26	． 01	． 01	． 06	． 30	． 08	． 08	． 07	． 06	． 07	． 65	． 79	． 24	． 00	5.29	
（2）	． 34	． 18	． 35	． 09	． 00	． 00	． 02	． 10	． 03	． 03	． 02	． 02	． 02	． 22	． 27	． 08	． 00	1.79	
8．1－10．0	34	11	45	10	1	0	3	9	1	2	1	1	4	22	21	3	0	168	18．0－22．4
（1）	． 17	． 05	． 22	． 05	． 00	． 00	． 01	． 04	． 00	． 01	． 00	． 00	． 02	． 11	． 10	． 01	． 00	． 82	
（2）	． 06	． 02	． 07	． 02	． 00	． 00	． 00	． 01	． 00	． 00	． 00	． 00	． 01	． 04	． 03	． 00	． 00	． 28	
10．1－89．5	4	2	13	3	1	0	1	1	0	0	0	0	0	1	1	0	0	27	$22.5-200.2$
（1）	． 02	． 01	． 06	． 01	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 13	
（2）	． 01	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 04	
ALL SPEEDS	2144	1896	2158	1796	1093	721	800	1530	831	805	1287	803	590	895	1610	1438	0	20397	
（1）	10.51	9.30	10.58	8.81	5.36	3.53	3.92	7.50	4.07	3.95	6.31	3.94	2.89	4.39	7.89	7.05	． 00	100.00	
（2）	3.56	3.15	3.59	2.99	1.82	1.20	1.33	2.54	1.38	1.34	2.14	1.33	． 98	1.49	2.68	2.39	． 00	33.91	
（1）＝PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PA													
（2）＝PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PER	RIOD												

Table 2.3-134—\{CCNPP $33^{\prime}(10-m)$ 2000-2006 Annual Joint Frequency Distribution Table\} (Page 5 of 8)
CC JANOO-DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)

| CC | | |
| :---: | :---: | :---: | :---: |
| 33.0 FT WIND DATA | STABILITY CLASS E | CLASS FREQUENCY (PERCENT) $=27.57$ | WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	3	3	0	0	2	1	4	6	7	3	12	8	5	1	2	1	0	58	LT . 4
(1)	. 02	. 02	. 00	. 00	. 01	. 01	. 02	. 04	. 04	. 02	. 07	. 05	. 03	. 01	. 01	. 01	. 00	. 35	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 01	. 00	. 02	. 01	. 01	. 00	. 00	. 00	. 00	. 10	
. $2-.4$	3	2	7	2	4	7	8	10	17	19	10	13	15	7	8	1	0	133	. $4-.9$
(1)	. 02	. 01	. 04	. 01	. 02	. 04	. 05	. 06	. 10	. 11	. 06	. 08	. 09	. 04	. 05	. 01	. 00	. 80	
(2)	. 00	. 00	. 01	. 00	. 01	. 01	. 01	. 02	. 03	. 03	. 02	. 02	. 02	. 01	. 01	. 00	. 00	. 22	
.5-1.0	54	42	35	40	59	65	67	83	120	132	137	100	81	52	63	63	0	1193	1.0-2.2
(1)	. 33	. 25	. 21	. 24	. 36	. 39	. 40	. 50	. 72	. 80	. 83	. 60	. 49	. 31	. 38	. 38	. 00	7.19	
(2)	. 09	. 07	. 06	. 07	. 10	. 11	. 11	. 14	. 20	. 22	. 23	. 17	. 13	. 09	. 10	. 10	. 00	1.98	
1.1-1.5	110	107	75	64	68	81	98	144	235	299	278	165	134	127	152	84	0	2221	$2.3-3.4$
(1)	. 66	. 65	. 45	. 39	. 41	. 49	. 59	. 87	1.42	1.80	1.68	. 99	. 81	. 77	. 92	. 51	. 00	13.39	
(2)	. 18	. 18	. 12	. 11	. 11	. 13	. 16	. 24	. 39	. 50	. 46	. 27	. 22	. 21	. 25	. 14	. 00	3.69	
1.6-2.0	137	141	63	76	99	70	115	184	296	309	319	204	178	214	233	175	0	2813	$3.5-4.5$
(1)	. 83	. 85	. 38	. 46	. 60	. 42	. 69	1.11	1.78	1.86	1.92	1.23	1.07	1.29	1.40	1.05	. 00	16.96	
(2)	. 23	. 23	. 10	. 13	. 16	. 12	. 19	. 31	. 49	. 51	. 53	. 34	. 30	. 36	. 39	. 29	. 00	4.68	
2.1-3.0	244	213	134	101	105	71	102	270	566	630	871	364	281	354	657	365	0	5328	4.6-6.7
(1)	1.47	1.28	. 81	. 61	. 63	. 43	. 61	1.63	3.41	3.80	5.25	2.19	1.69	2.13	3.96	2.20	. 00	32.12	
(2)	. 41	. 35	. 22	. 17	. 17	. 12	. 17	. 45	. 94	1.05	1.45	. 61	. 47	. 59	1.09	. 61	. 00	8.86	
3.1-4.0	162	100	88	38	16	16	36	157	234	360	775	162	123	182	393	221	0	3063	6.8-8.9
(1)	. 98	. 60	. 53	. 23	. 10	. 10	. 22	. 95	1.41	2.17	4.67	. 98	. 74	1.10	2.37	1.33	. 00	18.47	
(2)	. 27	. 17	. 15	. 06	. 03	. 03	. 06	. 26	. 39	. 60	1.29	. 27	. 20	. 30	. 65	. 37	. 00	5.09	
4.1-5.0	78	36	33	6	8	5	11	78	77	163	292	54	47	110	119	78	0	1195	9.0-11.2
(1)	. 47	. 22	. 20	. 04	. 05	. 03	. 07	. 47	. 46	. 98	1.76	. 33	. 28	. 66	. 72	. 47	. 00	7.20	
(2)	. 13	. 06	. 05	. 01	. 01	. 01	. 02	. 13	. 13	. 27	. 49	. 09	. 08	. 18	. 20	. 13	. 00	1.99	
5.1-6.0	34	15	7	0	2	1	5	30	23	56	94	12	18	48	44	18	0	407	11.3-13.4
(1)	. 20	. 09	. 04	. 00	. 01	. 01	. 03	. 18	. 14	. 34	. 57	. 07	. 11	. 29	. 27	. 11	. 00	2.45	
(2)	. 06	. 02	. 01	. 00	. 00	. 00	. 01	. 05	. 04	. 09	. 16	. 02	. 03	. 08	. 07	. 03	. 00	. 68	
$6.1-8.0$	13	1	2	2	0	1	4	25	9	12	16	3	6	22	14	4	0	134	13.5-17.9
(1)	. 08	. 01	. 01	. 01	. 00	. 01	. 02	. 15	. 05	. 07	. 10	. 02	. 04	. 13	. 08	. 02	. 00	. 81	
(2)	. 02	. 00	. 00	. 00	. 00	. 00	. 01	. 04	. 01	. 02	. 03	. 00	. 01	. 04	. 02	. 01	. 00	. 22	
8.1-10.0	7	1	0	0	0	0	1	5	0	0	0	2	0	6	2	4	0	28	18.0-22.4
(1)	. 04	. 01	. 00	. 00	. 00	. 00	. 01	. 03	. 00	. 00	. 00	. 01	. 00	. 04	. 01	. 02	. 00	. 17	
(2)	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 01	. 00	. 05	
10.1-89.5	0	0	8	2	0	2	2	0	0	0	0	0	0	1	0	0	0	15	$22.5-200.2$
(1)	. 00	. 00	. 05	. 01	. 00	. 01	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 09	
(2)	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	
ALL SPEEDS	845	661	452	331	363	320	453	992	1584	1983	2804	1087	888	1124	1687	1014	0	16588	
(1)	5.09	3.98	2.72	2.00	2.19	1.93	2.73	5.98	9.55	11.95	16.90	6.55	5.35	6.78	10.17	6.11	. 00	100.00	
(2)	1.40	1.10	. 75	. 55	. 60	. 53	. 75	1.65	2.63	3.30	4.66	1.81	1.48	1.87	2.80	1.69	. 00	27.57	
(1) =PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PA													
(2) =PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PER	RIOD												

Table 2.3-134—\{CCNPP 33' (10-m) 2000-2006 Annual Joint Frequency Distribution Table\} (Page 6 of 8)

CC JANOO-DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
 33.0 FT WIND DATA
 STABILITY CLASS F
 WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	4	2	2	2	2	3	2	8	9	9	9	3	4	4	1	0	64	LT. 4
(1)	. 00	. 06	. 03	. 03	. 03	. 03	. 05	. 03	. 13	. 14	. 14	. 14	. 05	. 06	. 06	. 02	. 00	1.01	
(2)	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 01	. 01	. 00	. 01	. 01	. 00	. 00	. 11	
. $2-.4$	0	2	6	2	9	8	8	12	11	19	11	5	7	10	1	6	0	117	. $4-.9$
(1)	. 00	. 03	. 09	. 03	. 14	. 13	. 13	. 19	. 17	. 30	. 17	. 08	. 11	. 16	. 02	. 09	. 00	1.85	
(2)	. 00	. 00	. 01	. 00	. 01	. 01	. 01	. 02	. 02	. 03	. 02	. 01	. 01	. 02	. 00	. 01	. 00	. 19	
.5-1.0	31	29	41	27	22	41	30	55	104	150	179	110	82	71	28	32	0	1032	1.0-2.2
(1)	. 49	. 46	. 65	. 43	. 35	. 65	. 47	. 87	1.64	2.37	2.83	1.74	1.30	1.12	. 44	. 51	. 00	16.31	
(2)	. 05	. 05	. 07	. 04	. 04	. 07	. 05	. 09	. 17	. 25	. 30	. 18	. 14	. 12	. 05	. 05	. 00	1.72	
1.1-1.5	25	27	24	16	15	24	36	83	216	373	342	177	104	127	71	30	0	1690	$2.3-3.4$
(1)	. 40	. 43	. 38	. 25	. 24	. 38	. 57	1.31	3.41	5.89	5.40	2.80	1.64	2.01	1.12	. 47	. 00	26.71	
(2)	. 04	. 04	. 04	. 03	. 02	. 04	. 06	. 14	. 36	. 62	. 57	. 29	. 17	. 21	. 12	. 05	. 00	2.81	
1.6-2.0	20	26	13	18	6	6	27	85	187	344	374	190	135	154	107	24	0	1716	$3.5-4.5$
(1)	. 32	. 41	. 21	. 28	. 09	. 09	. 43	1.34	2.96	5.44	5.91	3.00	2.13	2.43	1.69	. 38	. 00	27.12	
(2)	. 03	. 04	. 02	. 03	. 01	. 01	. 04	. 14	. 31	. 57	. 62	. 32	. 22	. 26	. 18	. 04	. 00	2.85	
2.1-3.0	23	37	12	9	5	1	15	38	104	229	458	172	92	135	132	11	0	1473	4.6-6.7
(1)	. 36	. 58	. 19	. 14	. 08	. 02	. 24	. 60	1.64	3.62	7.24	2.72	1.45	2.13	2.09	. 17	. 00	23.28	
(2)	. 04	. 06	. 02	. 01	. 01	. 00	. 02	. 06	. 17	. 38	. 76	. 29	. 15	. 22	. 22	. 02	. 00	2.45	
$3.1-4.0$	2	9	2	2	0	0	0	1	12	25	81	16	6	5	12	1	0	174	6.8-8.9
(1)	. 03	. 14	. 03	. 03	. 00	. 00	. 00	. 02	. 19	. 40	1.28	. 25	. 09	. 08	. 19	. 02	. 00	2.75	
(2)	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 04	. 13	. 03	. 01	. 01	. 02	. 00	. 00	. 29	
4.1-5.0	3	4	3	8	2	0	0	0	1	2	11	0	1	0	2	0	0	37	9.0-11.2
(1)	. 05	. 06	. 05	. 13	. 03	. 00	. 00	. 00	. 02	. 03	. 17	. 00	. 02	. 00	. 03	. 00	. 00	. 58	
(2)	. 00	. 01	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 06	
5.1-6.0	5	1	2	6	2	0	0	0	0	0	2	0	1	0	0	2	0	21	11.3-13.4
(1)	. 08	. 02	. 03	. 09	. 03	. 00	. 00	. 00	. 00	. 00	. 03	. 00	. 02	. 00	. 00	. 03	. 00	. 33	
(2)	. 01	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 03	
$6.1-8.0$	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	13.5-17.9
(1)	. 02	. 02	. 03	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 06	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
8.1-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18.0-22.4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$22.5-200.2$
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
ALL SPEEDS	110	140	107	90	63	82	119	276	643	1151	1467	679	431	506	357	107	0	6328	
(1)	1.74	2.21	1.69	1.42	1.00	1.30	1.88	4.36	10.16	18.19	23.18	10.73	6.81	8.00	5.64	1.69	. 00	100.00	
(2)	. 18	. 23	. 18	. 15	. 10	. 14	. 20	. 46	1.07	1.91	2.44	1.13	. 72	. 84	. 59	. 18	. 00	10.52	
(1) = PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PA													
(2) =PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PER	RIOD												

Table 2.3-134—\{CCNPP $33^{\prime}(10-m)$ 2000-2006 Annual Joint Frequency Distribution Table\} (Page 7 of 8)
CC JANOO-DECO6 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
 WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	1	1	2	2	1	2	3	9	5	12	15	3	1	2	2	0	61	LT . 4
(1)	. 00	. 02	. 02	. 04	. 04	. 02	. 04	. 07	. 20	. 11	. 27	. 33	. 07	. 02	. 04	. 04	. 00	1.35	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 10	
. $2-.4$	2	0	2	3	1	7	3	6	16	23	24	18	18	7	7	3	0	140	. $4-.9$
(1)	. 04	. 00	. 04	. 07	. 02	. 15	. 07	. 13	. 35	. 51	. 53	. 40	. 40	. 15	. 15	. 07	. 00	3.09	
(2)	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 01	. 03	. 04	. 04	. 03	. 03	. 01	. 01	. 00	. 00	. 23	
. $5-1.0$	15	4	9	12	9	12	9	30	64	119	193	196	162	108	21	12	0	975	1.0-2.2
(1)	. 33	. 09	. 20	. 27	. 20	. 27	. 20	. 66	1.41	2.63	4.27	4.33	3.58	2.39	. 46	. 27	. 00	21.55	
(2)	. 02	. 01	. 01	. 02	. 01	. 02	. 01	. 05	. 11	. 20	. 32	. 33	. 27	. 18	. 03	. 02	. 00	1.62	
1.1-1.5	6	6	9	8	2	6	7	23	119	393	488	270	167	126	18	3	0	1651	$2.3-3.4$
(1)	. 13	. 13	. 20	. 18	. 04	. 13	. 15	. 51	2.63	8.69	10.79	5.97	3.69	2.79	. 40	. 07	. 00	36.49	
(2)	. 01	. 01	. 01	. 01	. 00	. 01	. 01	. 04	. 20	. 65	. 81	. 45	. 28	. 21	. 03	. 00	. 00	2.74	
1.6-2.0	1	8	2	9	0	8	4	22	82	263	378	138	108	126	26	5	0	1180	$3.5-4.5$
(1)	. 02	. 18	. 04	. 20	. 00	. 18	. 09	. 49	1.81	5.81	8.36	3.05	2.39	2.79	. 57	. 11	. 00	26.08	
(2)	. 00	. 01	. 00	. 01	. 00	. 01	. 01	. 04	. 14	. 44	. 63	. 23	. 18	. 21	. 04	. 01	. 00	1.96	
2.1-3.0	1	4	3	0	0	2	2	7	22	64	160	72	55	51	21	2	0	466	4.6-6.7
(1)	. 02	. 09	. 07	. 00	. 00	. 04	. 04	. 15	. 49	1.41	3.54	1.59	1.22	1.13	. 46	. 04	. 00	10.30	
(2)	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 01	. 04	. 11	. 27	. 12	. 09	. 08	. 03	. 00	. 00	. 77	
$3.1-4.0$	0	1	0	0	0	0	0	1	0	3	3	1	3	0	2	0	0	14	6.8-8.9
(1)	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 07	. 07	. 02	. 07	. 00	. 04	. 00	. 00	. 31	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	
4.1-5.0	0	1	2	5	1	0	0	0	0	0	1	0	0	1	5	0	0	16	9.0-11.2
(1)	. 00	. 02	. 04	. 11	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 02	. 11	. 00	. 00	. 35	
(2)	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 03	
5.1-6.0	0	0	3	2	0	0	0	0	0	0	0	0	0	1	1	0	0	7	11.3-13.4
(1)	. 00	. 00	. 07	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 15	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
$6.1-8.0$	0	0	8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	9	13.5-17.9
(1)	. 00	. 00	. 18	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 20	
(2)	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
8.1-10.0	0	0	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	5	18.0-22.4
(1)	. 00	. 00	. 07	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 11	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
10.1-89.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$22.5-200.2$
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
ALL SPEEDS	25	25	42	44	15	36	27	92	312	870	1259	710	516	421	103	27	0	4524	
(1)	. 55	. 55	. 93	. 97	. 33	. 80	. 60	2.03	6.90	19.23	27.83	15.69	11.41	9.31	2.28	. 60	. 00	100.00	
(2)	. 04	. 04	. 07	. 07	. 02	. 06	. 04	. 15	. 52	1.45	2.09	1.18	. 86	. 70	. 17	. 04	. 00	7.52	
(1) = PERCENT	ALL	GOOD	BSERV	TIONS	OR I	IS PA													
(2) =PERCENT	ALL	GOOD	SERV	TIONS	OR I	IS PE	IOD												

Table 2.3-134—\{CCNPP $33^{\prime}(10-m)$ 2000-2006 Annual Joint Frequency Distribution Table\} (Page 8 of 8)
CC JANOO-DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION (60 -METER TOWER)

| 33.0 FT WIND DATA STABILITY CLASS ALL \quad CLASS FREQUENCY (PERCENT) $=100.00$ |
| :---: | :---: | :---: | WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	3	8	3	4	7	4	9	11	24	19	36	33	11	7	10	5	0	194	LT . 4
(1)	. 00	. 01	. 00	. 01	. 01	. 01	. 01	. 02	. 04	. 03	. 06	. 05	. 02	. 01	. 02	. 01	. 00	. 32	
(2)	. 00	. 01	. 00	. 01	. 01	. 01	. 01	. 02	. 04	. 03	. 06	. 05	. 02	. 01	. 02	. 01	. 00	. 32	
. $2-.4$	6	5	15	9	14	23	20	29	46	63	47	38	44	29	16	11	0	415	. $4-.9$
(1)	. 01	. 01	. 02	. 01	. 02	. 04	. 03	. 05	. 08	. 10	. 08	. 06	. 07	. 05	. 03	. 02	. 00	. 69	
(2)	. 01	. 01	. 02	. 01	. 02	. 04	. 03	. 05	. 08	. 10	. 08	. 06	. 07	. 05	. 03	. 02	. 00	. 69	
. $5-1.0$	135	111	128	105	138	164	143	204	327	453	570	443	354	273	136	145	0	3829	1.0-2.2
(1)	. 22	. 18	. 21	. 17	. 23	. 27	. 24	. 34	. 54	. 75	. 95	. 74	. 59	. 45	. 23	. 24	. 00	6.36	
(2)	. 22	. 18	. 21	. 17	. 23	. 27	. 24	. 34	. 54	. 75	. 95	. 74	. 59	. 45	. 23	. 24	. 00	6.36	
1.1-1.5	241	253	211	211	261	220	231	338	651	1175	1244	702	491	439	295	172	0	7135	$2.3-3.4$
(1)	. 40	. 42	. 35	. 35	. 43	. 37	. 38	. 56	1.08	1.95	2.07	1.17	. 82	. 73	. 49	. 29	. 00	11.86	
(2)	. 40	. 42	. 35	. 35	. 43	. 37	. 38	. 56	1.08	1.95	2.07	1.17	. 82	. 73	. 49	. 29	. 00	11.86	
1.6-2.0	371	501	320	398	396	297	329	460	743	1112	1338	711	542	576	471	305	0	8870	$3.5-4.5$
(1)	. 62	. 83	. 53	. 66	. 66	. 49	. 55	. 76	1.24	1.85	2.22	1.18	. 90	. 96	. 78	. 51	. 00	14.74	
(2)	. 62	. 83	. 53	. 66	. 66	. 49	. 55	. 76	1.24	1.85	2.22	1.18	. 90	. 96	. 78	. 51	. 00	14.74	
2.1-3.0	1129	1304	899	903	738	495	599	969	1139	1476	2338	1214	772	818	1179	740	0	16712	4.6-6.7
(1)	1.88	2.17	1.49	1.50	1.23	. 82	1.00	1.61	1.89	2.45	3.89	2.02	1.28	1.36	1.96	1.23	. 00	27.78	
(2)	1.88	2.17	1.49	1.50	1.23	. 82	1.00	1.61	1.89	2.45	3.89	2.02	1.28	1.36	1.96	1.23	. 00	27.78	
3.1-4.0	1199	905	805	541	254	191	372	911	540	770	1643	699	421	495	937	782	0	11465	6.8-8.9
(1)	1.99	1.50	1.34	. 90	. 42	. 32	. 62	1.51	. 90	1.28	2.73	1.16	. 70	. 82	1.56	1.30	. 00	19.06	
(2)	1.99	1.50	1.34	. 90	. 42	. 32	. 62	1.51	. 90	1.28	2.73	1.16	. 70	. 82	1.56	1.30	. 00	19.06	
4.1-5.0	758	471	556	281	68	39	142	484	212	373	752	268	230	432	687	506	0	6259	9.0-11.2
(1)	1.26	. 78	. 92	. 47	. 11	. 06	. 24	. 80	. 35	. 62	1.25	. 45	. 38	. 72	1.14	. 84	. 00	10.40	
(2)	1.26	. 78	. 92	. 47	. 11	. 06	. 24	. 80	. 35	. 62	1.25	. 45	. 38	. 72	1.14	. 84	. 00	10.40	
5.1-6.0	432	247	342	144	5	7	43	237	56	130	289	70	112	337	509	211	0	3171	11.3-13.4
(1)	. 72	. 41	. 57	. 24	. 01	. 01	. 07	. 39	. 09	. 22	. 48	. 12	. 19	. 56	. 85	. 35	. 00	5.27	
(2)	. 72	. 41	. 57	. 24	. 01	. 01	. 07	. 39	. 09	. 22	. 48	. 12	. 19	. 56	. 85	. 35	. 00	5.27	
6.1-8.0	262	119	249	68	3	3	19	132	28	44	60	33	48	300	361	88	0	1817	13.5-17.9
(1)	. 44	. 20	. 41	. 11	. 00	. 00	. 03	. 22	. 05	. 07	. 10	. 05	. 08	. 50	. 60	. 15	. 00	3.02	
(2)	. 44	. 20	. 41	. 11	. 00	. 00	. 03	. 22	. 05	. 07	. 10	. 05	. 08	. 50	. 60	. 15	. 00	3.02	
8.1-10.0	44	12	50	12	1	0	4	15	1	4	1	3	6	45	41	8	0	247	18.0-22.4
(1)	. 07	. 02	. 08	. 02	. 00	. 00	. 01	. 02	. 00	. 01	. 00	. 00	. 01	. 07	. 07	. 01	. 00	. 41	
(2)	. 07	. 02	. 08	. 02	. 00	. 00	. 01	. 02	. 00	. 01	. 00	. 00	. 01	. 07	. 07	. 01	. 00	. 41	
10.1-89.5	5	2	22	5	1	2	3	1	0	0	0	0	1	2	1	0	0	45	$22.5-200.2$
(1)	. 01	. 00	. 04	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	
(2)	. 01	. 00	. 04	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	
ALL SPEEDS	4585	3938	3600	2681	1886	1445	1914	3791	3767	5619	8318	4214	3032	3753	4643	2973	0	60159	
(1)	7.62	6.55	5.98	4.46	3.14	2.40	3.18	6.30	6.26	9.34	13.83	7.00	5.04	6.24	7.72	4.94	. 00	100.00	
(2)	7.62	6.55	5.98	4.46	3.14	2.40	3.18	6.30	6.26	9.34	13.83	7.00	5.04	6.24	7.72	4.94	. 00	100.00	
(1) =PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR I	HIS PA													
(2) =PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR T	HIS P	RIOD												

Table 2．3－135—\｛CCNPP $197^{\prime}(60-m)$ 2000－2006 Annual Joint Frequency Distribution Table\}
（Page 1 of 8）
CC JANOO－DEC06 MET DATA JOINT EREQUENCY DISTRIBUTION（ $60-$－METER TOWER）197．0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY（PERCENT）$=10.94$

（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	
．2－． 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	． $4-.9$
（1）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	
． $5-1.0$	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	1．0－2．2
（1）	． 00	． 00	． 02	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 03	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	
1．1－1．5	2	3	2	3	4	2	1	1	0	1	0	1	1	1	0	0	0	22	$2.3-3.4$
（1）	． 03	． 05	． 03	． 05	． 06	． 03	． 02	． 02	． 00	． 02	． 00	． 02	． 02	． 02	． 00	． 00	． 00	． 34	
（2）	． 00	． 01	． 00	． 01	． 01	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 04	
1．6－2．0	12	13	9	12	20	1	1	1	2	4	12	11	6	0	1	6	0	111	$3.5-4.5$
（1）	． 18	． 20	． 14	． 18	． 31	． 02	． 02	． 02	． 03	． 06	． 18	． 17	． 09	． 00	． 02	． 09	． 00	1.70	
（2）	． 02	． 02	． 02	． 02	． 03	． 00	． 00	． 00	． 00	． 01	． 02	． 02	． 01	． 00	． 00	． 01	． 00	． 19	
2．1－3．0	75	91	58	55	76	48	26	22	29	48	77	33	17	10	10	15	0	690	4．6－6．7
（1）	1.15	1.39	． 89	． 84	1.16	． 73	． 40	． 34	． 44	． 73	1.18	． 51	． 26	． 15	． 15	． 23	． 00	10.56	
（2）	． 13	． 15	． 10	． 09	． 13	． 08	． 04	． 04	． 05	． 08	． 13	． 06	． 03	． 02	． 02	． 03	． 00	1.16	
3．1－4．0	166	181	38	18	30	54	63	91	54	120	157	93	42	27	18	22	0	1174	$6.8-8.9$
（1）	2.54	2.77	． 58	． 28	． 46	． 83	． 96	1.39	． 83	1.84	2.40	1.42	． 64	． 41	． 28	． 34	． 00	17.97	
（2）	． 28	． 30	． 06	． 03	． 05	． 09	． 11	． 15	． 09	． 20	． 26	． 16	． 07	． 05	． 03	． 04	． 00	1.97	
4．1－5．0	246	132	20	6	14	32	79	112	52	150	222	112	64	50	59	42	0	1392	9．0－11．2
（1）	3.77	2.02	． 31	． 09	． 21	． 49	1.21	1.71	． 80	2.30	3.40	1.71	． 98	． 77	． 90	． 64	． 00	21.31	
（2）	． 41	． 22	． 03	． 01	． 02	． 05	． 13	． 19	． 09	． 25	． 37	． 19	． 11	． 08	． 10	． 07	． 00	2.33	
5．1－6．0	154	93	14	1	7	6	55	91	39	108	203	89	62	75	72	56	0	1125	11．3－13．4
（1）	2.36	1.42	． 21	． 02	． 11	． 09	． 84	1.39	． 60	1.65	3.11	1.36	． 95	1.15	1.10	． 86	． 00	17.22	
（2）	． 26	． 16	． 02	． 00	． 01	． 01	． 09	． 15	． 07	． 18	． 34	． 15	． 10	． 13	． 12	． 09	． 00	1.88	
6．1－8．0	141	78	22	5	6	6	39	89	28	152	244	87	78	180	168	64	0	1387	13．5－17．9
（1）	2.16	1.19	． 34	． 08	． 09	． 09	． 60	1.36	． 43	2.33	3.74	1.33	1.19	2.76	2.57	． 98	． 00	21.23	
（2）	． 24	． 13	． 04	． 01	． 01	． 01	． 07	． 15	． 05	． 25	． 41	． 15	． 13	． 30	． 28	． 11	． 00	2.32	
8．1－10．0	35	33	11	2	0	0	7	23	3	47	62	19	16	107	110	13	0	488	18．0－22．4
（1）	． 54	． 51	． 17	． 03	． 00	． 00	． 11	． 35	． 05	． 72	． 95	． 29	． 24	1.64	1.68	． 20	． 00	7.47	
（2）	． 06	． 06	． 02	． 00	． 00	． 00	． 01	． 04	． 01	． 08	． 10	． 03	． 03	． 18	． 18	． 02	． 00	． 82	
10．1－89．5	4	6	9	1	0	0	0	6	1	12	9	5	10	35	38	5	0	141	$22.5-200.2$
（1）	． 06	． 09	． 14	． 02	． 00	． 00	． 00	． 09	． 02	． 18	． 14	． 08	． 15	． 54	． 58	． 08	． 00	2.16	
（2）	． 01	． 01	． 02	． 00	． 00	． 00	． 00	． 01	． 00	． 02	． 02	． 01	． 02	． 06	． 06	． 01	． 00	． 24	
ALL SPEEDS	835	630	184	103	158	149	271	436	208	642	986	450	296	485	476	223	0	6532	
（1）	12.78	9.64	2.82	1.58	2.42	2.28	4.15	6.67	3.18	9.83	15.09	6.89	4.53	7.42	7.29	3.41	． 00	100.00	
（2）	1.40	1.06	． 31	． 17	． 26	． 25	． 45	． 73	． 35	1.08	1.65	． 75	． 50	． 81	． 80	． 37	． 00	10.94	

[^3]Table 2.3-135—\{CCNPP 197' (60-m) 2000-2006 Annual Joint Frequency Distribution Table\} (Page 2 of 8)
CC JANOO-DECO6 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS B (LIASS FREQUENCY (PERCENT) $=4.50$ WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LT . 4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. $4-.9$
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
.5-1.0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	2	0	0	7	1.0-2.2
(1)	. 00	. 04	. 04	. 00	. 04	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 04	. 00	. 07	. 00	. 00	. 26	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
1.1-1.5	2	4	2	5	3	3	3	1	0	0	4	2	1	0	0	0	0	30	$2.3-3.4$
(1)	. 07	. 15	. 07	. 19	. 11	. 11	. 11	. 04	. 00	. 00	. 15	. 07	. 04	. 00	. 00	. 00	. 00	1.12	
(2)	. 00	. 01	. 00	. 01	. 01	. 01	. 01	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 05	
1.6-2.0	6	10	14	20	10	11	3	1	4	3	7	5	1	1	3	3	0	102	$3.5-4.5$
(1)	. 22	. 37	. 52	. 74	. 37	. 41	. 11	. 04	. 15	. 11	. 26	. 19	. 04	. 04	. 11	. 11	. 00	3.79	
(2)	. 01	. 02	. 02	. 03	. 02	. 02	. 01	. 00	. 01	. 01	. 01	. 01	. 00	. 00	. 01	. 01	. 00	. 17	
2.1-3.0	66	81	48	38	68	30	22	17	12	26	25	33	14	9	4	13	0	506	4.6-6.7
(1)	2.45	3.01	1.79	1.41	2.53	1.12	. 82	. 63	. 45	. 97	. 93	1.23	. 52	. 33	. 15	. 48	. 00	18.82	
(2)	. 11	. 14	. 08	. 06	. 11	. 05	. 04	. 03	. 02	. 04	. 04	. 06	. 02	. 02	. 01	. 02	. 00	. 85	
3.1-4.0	94	87	16	12	13	22	37	42	20	26	46	38	29	24	13	17	0	536	6.8-8.9
(1)	3.50	3.24	. 60	. 45	. 48	. 82	1.38	1.56	. 74	. 97	1.71	1.41	1.08	. 89	. 48	. 63	. 00	19.93	
(2)	. 16	. 15	. 03	. 02	. 02	. 04	. 06	. 07	. 03	. 04	. 08	. 06	. 05	. 04	. 02	. 03	. 00	. 90	
4.1-5.0	78	46	8	4	5	11	30	56	17	33	51	38	22	20	20	20	0	459	9.0-11.2
(1)	2.90	1.71	. 30	. 15	. 19	. 41	1.12	2.08	. 63	1.23	1.90	1.41	. 82	. 74	. 74	. 74	. 00	17.07	
(2)	. 13	. 08	. 01	. 01	. 01	. 02	. 05	. 09	. 03	. 06	. 09	. 06	. 04	. 03	. 03	. 03	. 00	. 77	
5.1-6.0	49	26	9	1	3	1	25	42	8	37	59	22	20	22	29	21	0	374	11.3-13.4
(1)	1.82	. 97	. 33	. 04	. 11	. 04	. 93	1.56	. 30	1.38	2.19	. 82	. 74	. 82	1.08	. 78	. 00	13.91	
(2)	. 08	. 04	. 02	. 00	. 01	. 00	. 04	. 07	. 01	. 06	. 10	. 04	. 03	. 04	. 05	. 04	. 00	. 63	
6.1-8.0	43	18	16	3	2	3	7	28	9	38	53	20	27	42	57	33	0	399	13.5-17.9
(1)	1.60	. 67	. 60	. 11	. 07	. 11	. 26	1.04	. 33	1.41	1.97	. 74	1.00	1.56	2.12	1.23	. 00	14.84	
(2)	. 07	. 03	. 03	. 01	. 00	. 01	. 01	. 05	. 02	. 06	. 09	. 03	. 05	. 07	. 10	. 06	. 00	. 67	
8.1-10.0	25	12	10	3	0	0	2	19	3	17	13	5	9	39	41	15	0	213	18.0-22.4
(1)	. 93	. 45	. 37	. 11	. 00	. 00	. 07	. 71	. 11	. 63	. 48	. 19	. 33	1.45	1.52	. 56	. 00	7.92	
(2)	. 04	. 02	. 02	. 01	. 00	. 00	. 00	. 03	. 01	. 03	. 02	. 01	. 02	. 07	. 07	. 03	. 00	. 36	
10.1-89.5	5	7	2	1	0	0	0	3	3	0	3	3	1	13	17	5	0	63	$22.5-200.2$
(1)	. 19	. 26	. 07	. 04	. 00	. 00	. 00	. 11	. 11	. 00	. 11	. 11	. 04	. 48	. 63	. 19	. 00	2.34	
(2)	. 01	. 01	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 00	. 01	. 01	. 00	. 02	. 03	. 01	. 00	. 11	
ALL SPEEDS	368	292	126	87	105	81	129	210	76	180	261	166	125	170	186	127	0	2689	
(1)	13.69	10.86	4.69	3.24	3.90	3.01	4.80	7.81	2.83	6.69	9.71	6.17	4.65	6.32	6.92	4.72	. 00	100.00	
(2)	. 62	. 49	. 21	. 15	. 18	. 14	. 22	. 35	. 13	. 30	. 44	. 28	. 21	. 28	. 31	. 21	. 00	4.50	
(1) =PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR	HIS PA													
(2) =PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR	HIS PER	RIOD												

Table 2.3-135—\{CCNPP 197' (60-m) 2000-2006 Annual Joint Frequency Distribution Table\} (Page 3 of 8)
CC JANOO-DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS C \quad CLASS FREQUENCY (PERCENT) $=5.10$ 197.0 FT WIND DATA STABILITY CLASS C CLASS FREQUE

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LT. 4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
. $2-.4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. $4-.9$
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
. $5-1.0$	1	1	1	0	0	2	1	1	1	1	0	4	0	1	0	0	0	14	1.0-2.2
(1)	. 03	. 03	. 03	. 00	. 00	. 07	. 03	. 03	. 03	. 03	. 00	. 13	. 00	. 03	. 00	. 00	. 00	. 46	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 02	
1.1-1.5	3	7	9	8	8	1	3	1	2	1	4	4	3	1	3	3	0	61	$2.3-3.4$
(1)	. 10	. 23	. 30	. 26	. 26	. 03	. 10	. 03	. 07	. 03	. 13	. 13	. 10	. 03	. 10	. 10	. 00	2.00	
(2)	. 01	. 01	. 02	. 01	. 01	. 00	. 01	. 00	. 00	. 00	. 01	. 01	. 01	. 00	. 01	. 01	. 00	. 10	
1.6-2.0	15	33	22	26	27	13	6	6	2	4	16	10	8	5	4	4	0	201	$3.5-4.5$
(1)	. 49	1.08	. 72	. 85	. 89	. 43	. 20	. 20	. 07	. 13	. 53	. 33	. 26	. 16	. 13	. 13	. 00	6.61	
(2)	. 03	. 06	. 04	. 04	. 05	. 02	. 01	. 01	. 00	. 01	. 03	. 02	. 01	. 01	. 01	. 01	. 00	. 34	
2.1-3.0	67	103	54	65	56	40	35	27	21	17	43	29	20	19	6	12	0	614	4.6-6.7
(1)	2.20	3.38	1.77	2.14	1.84	1.31	1.15	. 89	. 69	. 56	1.41	. 95	. 66	. 62	. 20	. 39	. 00	20.18	
(2)	. 11	. 17	. 09	. 11	. 09	. 07	. 06	. 05	. 04	. 03	. 07	. 05	. 03	. 03	. 01	. 02	. 00	1.03	
3.1-4.0	118	95	32	14	18	24	33	39	26	26	58	47	31	21	30	32	0	644	$6.8-8.9$
(1)	3.88	3.12	1.05	. 46	. 59	. 79	1.08	1.28	. 85	. 85	1.91	1.54	1.02	. 69	. 99	1.05	. 00	21.16	
(2)	. 20	. 16	. 05	. 02	. 03	. 04	. 06	. 07	. 04	. 04	. 10	. 08	. 05	. 04	. 05	. 05	. 00	1.08	
4.1-5.0	72	49	11	3	11	9	20	68	18	38	54	37	24	22	37	35	0	508	9.0-11.2
(1)	2.37	1.61	. 36	. 10	. 36	. 30	. 66	2.23	. 59	1.25	1.77	1.22	. 79	. 72	1.22	1.15	. 00	16.69	
(2)	. 12	. 08	. 02	. 01	. 02	. 02	. 03	. 11	. 03	. 06	. 09	. 06	. 04	. 04	. 06	. 06	. 00	. 85	
5.1-6.0	48	27	8	6	1	2	6	41	10	27	48	31	17	23	26	27	0	348	11.3-13.4
(1)	1.58	. 89	. 26	. 20	. 03	. 07	. 20	1.35	. 33	. 89	1.58	1.02	. 56	. 76	. 85	. 89	. 00	11.44	
(2)	. 08	. 05	. 01	. 01	. 00	. 00	. 01	. 07	. 02	. 05	. 08	. 05	. 03	. 04	. 04	. 05	. 00	. 58	
$6.1-8.0$	36	31	19	5	1	2	9	39	12	38	45	25	21	32	63	30	0	408	13.5-17.9
(1)	1.18	1.02	. 62	. 16	. 03	. 07	. 30	1.28	. 39	1.25	1.48	. 82	. 69	1.05	2.07	. 99	. 00	13.41	
(2)	. 06	. 05	. 03	. 01	. 00	. 00	. 02	. 07	. 02	. 06	. 08	. 04	. 04	. 05	. 11	. 05	. 00	. 68	
8.1-10.0	13	26	9	3	1	0	2	10	2	8	18	3	5	33	34	7	0	174	18.0-22.4
(1)	. 43	. 85	. 30	. 10	. 03	. 00	. 07	. 33	. 07	. 26	. 59	. 10	. 16	1.08	1.12	. 23	. 00	5.72	
(2)	. 02	. 04	. 02	. 01	. 00	. 00	. 00	. 02	. 00	. 01	. 03	. 01	. 01	. 06	. 06	. 01	. 00	. 29	
10.1-89.5	10	8	6	2	0	0	0	0	0	2	3	0	2	12	25	1	0	71	22.5-200.2
(1)	. 33	. 26	. 20	. 07	. 00	. 00	. 00	. 00	. 00	. 07	. 10	. 00	. 07	. 39	. 82	. 03	. 00	2.33	
(2)	. 02	. 01	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 02	. 04	. 00	. 00	. 12	
ALL SPEEDS	383	380	171	132	123	93	115	232	94	162	289	190	131	169	228	151	0	3043	
(1)	12.59	12.49	5.62	4.34	4.04	3.06	3.78	7.62	3.09	5.32	9.50	6.24	4.30	5.55	7.49	4.96	. 00	100.00	
(2)	. 64	. 64	. 29	. 22	. 21	. 16	. 19	. 39	. 16	. 27	. 48	. 32	. 22	. 28	. 38	. 25	. 00	5.10	
(1) =PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR	HIS PA													
(2) =PERCENT	OF ALI	GOOD	OBSERV	ATIONS	FOR	HIS PER	RIOD												

Table 2.3-135—\{CCNPP 197' (60-m) 2000-2006 Annual Joint Frequency Distribution Table\} (Page 4 of 8)
CC JANOO-DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA
ATABILITY CLASS D
WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	LT . 4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
. $2-.4$	0	2	0	0	1	0	0	1	0	0	0	0	1	2	1	1	0	9	. $4-.9$
(1)	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 04	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	
. $5-1.0$	18	18	26	21	28	13	11	12	11	12	12	9	8	11	8	17	0	235	1.0-2.2
(1)	. 09	. 09	. 13	. 10	. 14	. 06	. 05	. 06	. 05	. 06	. 06	. 04	. 04	. 05	. 04	. 08	. 00	1.16	
(2)	. 03	. 03	. 04	. 04	. 05	. 02	. 02	. 02	. 02	. 02	. 02	. 02	. 01	. 02	. 01	. 03	. 00	. 39	
1.1-1.5	45	52	47	55	57	41	24	15	16	17	22	22	24	19	20	21	0	497	$2.3-3.4$
(1)	. 22	. 26	. 23	. 27	. 28	. 20	. 12	. 07	. 08	. 08	. 11	. 11	. 12	. 09	. 10	. 10	. 00	2.45	
(2)	. 08	. 09	. 08	. 09	. 10	. 07	. 04	. 03	. 03	. 03	. 04	. 04	. 04	. 03	. 03	. 04	. 00	. 83	
1.6-2.0	72	106	77	99	119	59	36	22	32	25	57	36	35	27	29	52	0	883	$3.5-4.5$
(1)	. 36	. 52	. 38	. 49	. 59	. 29	. 18	. 11	. 16	. 12	. 28	. 18	. 17	. 13	. 14	. 26	. 00	4.36	
(2)	. 12	. 18	. 13	. 17	. 20	. 10	. 06	. 04	. 05	. 04	. 10	. 06	. 06	. 05	. 05	. 09	. 00	1.48	
2.1-3.0	306	347	188	256	258	152	164	165	107	112	109	110	83	66	91	106	0	2620	4.6-6.7
(1)	1.51	1.71	. 93	1.26	1.27	. 75	. 81	. 81	. 53	. 55	. 54	. 54	. 41	. 33	. 45	. 52	. 00	12.93	
(2)	. 51	. 58	. 31	. 43	. 43	. 25	. 27	. 28	. 18	. 19	. 18	. 18	. 14	. 11	. 15	. 18	. 00	4.39	
3.1-4.0	279	282	174	287	230	194	198	240	167	144	174	148	109	101	143	206	0	3076	6.8-8.9
(1)	1.38	1.39	. 86	1.42	1.14	. 96	. 98	1.18	. 82	. 71	. 86	. 73	. 54	. 50	. 71	1.02	. 00	15.19	
(2)	. 47	. 47	. 29	. 48	. 39	. 32	. 33	. 40	. 28	. 24	. 29	. 25	. 18	. 17	. 24	. 35	. 00	5.15	
4.1-5.0	277	225	243	283	209	122	170	319	153	158	160	134	81	106	188	261	0	3089	9.0-11.2
(1)	1.37	1.11	1.20	1.40	1.03	. 60	. 84	1.57	. 76	. 78	. 79	. 66	. 40	. 52	. 93	1.29	. 00	15.25	
(2)	. 46	. 38	. 41	. 47	. 35	. 20	. 28	. 53	. 26	. 26	. 27	. 22	. 14	. 18	. 31	. 44	. 00	5.17	
5.1-6.0	258	227	254	224	95	72	117	295	99	131	175	123	68	124	279	324	0	2865	11.3-13.4
(1)	1.27	1.12	1.25	1.11	. 47	. 36	. 58	1.46	. 49	. 65	. 86	. 61	. 34	. 61	1.38	1.60	. 00	14.14	
(2)	. 43	. 38	. 43	. 38	. 16	. 12	. 20	. 49	. 17	. 22	. 29	. 21	. 11	. 21	. 47	. 54	. 00	4.80	
6.1-8.0	443	480	411	211	63	46	92	333	126	180	303	126	81	218	502	479	0	4094	13.5-17.9
(1)	2.19	2.37	2.03	1.04	. 31	. 23	. 45	1.64	. 62	. 89	1.50	. 62	. 40	1.08	2.48	2.36	. 00	20.21	
(2)	. 74	. 80	. 69	. 35	. 11	. 08	. 15	. 56	. 21	. 30	. 51	. 21	. 14	. 37	. 84	. 80	. 00	6.86	
8.1-10.0	301	328	240	47	4	4	35	117	38	89	127	18	27	162	259	181	0	1977	18.0-22.4
(1)	1.49	1.62	1.18	. 23	. 02	. 02	. 17	. 58	. 19	. 44	. 63	. 09	. 13	. 80	1.28	. 89	. 00	9.76	
(2)	. 50	. 55	. 40	. 08	. 01	. 01	. 06	. 20	. 06	. 15	. 21	. 03	. 05	. 27	. 43	. 30	. 00	3.31	
10.1-89.5	173	238	131	21	2	2	12	35	11	23	15	9	12	86	91	48	0	909	$22.5-200.2$
(1)	. 85	1.17	. 65	. 10	. 01	. 01	. 06	. 17	. 05	. 11	. 07	. 04	. 06	. 42	. 45	. 24	. 00	4.49	
(2)	. 29	. 40	. 22	. 04	. 00	. 00	. 02	. 06	. 02	. 04	. 03	. 02	. 02	. 14	. 15	. 08	. 00	1.52	
ALL SPEEDS	2172	2306	1791	1504	1066	706	859	1554	760	891	1154	735	529	922	1611	1696	0	20256	
(1)	10.72	11.38	8.84	7.42	5.26	3.49	4.24	7.67	3.75	4.40	5.70	3.63	2.61	4.55	7.95	8.37	. 00	100.00	
(2)	3.64	3.86	3.00	2.52	1.79	1.18	1.44	2.60	1.27	1.49	1.93	1.23	. 89	1.54	2.70	2.84	. 00	33.93	
(1) = PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR T	HIS PA													
(2) =PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR T	HIS PER	RIOD												

Table 2．3－135—\｛CCNPP $197^{\prime}(60-m)$ 2000－2006 Annual Joint Frequency Distribution Table\} （Page 5 of 8）
CC JANOO－DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY（PERCENT）$=27.60$ WIND DIRECTION FROM

SPeed	N	NNE	NE	ene	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	nNW	VRBL	TOTAL	Speed
mps																			MPH
LT ． 2	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	0	4	LT ． 4
（1）	． 00	． 00	． 01	． 00	． 01	． 00	． 00	． 00	． 00	． 01	． 00	． 00	． 01	． 00	． 00	． 00	． 00	． 02	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 01	
． $2-.4$	2		2	1	1	0	1	1	2	0	0	0	1	0	1	0	0	12	． $4-.9$
（1）	． 01	． 00	． 01	． 01	． 01	． 00	． 01	． 01	． 01	． 00	． 00	． 00	． 01	． 00	． 01	． 00	． 00	． 07	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 02	
．5－1．0	12	8	21	13	25	18	13	21	7	14	7		8	8	12	11	0	206	1．0－2．2
（1）	． 07	． 05	． 13	． 08	． 15	． 11	． 08	． 13	． 04	． 08	． 04	． 05	． 05	． 05	． 07	． 07	． 00	1.25	
（2）	． 02	． 01	． 04	． 02	． 04	． 03	． 02	． 04	． 01	． 02	． 01	． 01	． 01	． 01	． 02	． 02	． 00	． 35	
1．1－1．5	19	21	19	21	18	14	22	17	15	14	13	8	9	13	13	13	0	249	2．3－3．4
（1）	． 12	． 13	． 12	． 13	． 11	． 08	． 13	． 10	． 09	． 08	． 08	． 05	． 05	． 08	． 08	． 08	． 00	1.51	
（2）	． 03	． 04	． 03	． 04	． 03	． 02	． 04	． 03	． 03	． 02	． 02	． 01	． 02	． 02	． 02	． 02	． 00	． 42	
1．6－2．0	25	41	36	35	51	26	20	29	29	21	21	19	12	20	14	15	0	414	3．5－4．5
（1）	． 15	． 25	． 22	． 21	． 31	． 16	． 12	． 18	． 18	． 13	． 13	． 12	． 07	． 12	． 08	． 09	． 00	2.51	
（2）	． 04	． 07	． 06	． 06	． 09	． 04	． 03	． 05	． 05	． 04	． 04	． 03	． 02	． 03	． 02	． 03	． 00	． 69	
2．1－3．0	92	89	91	98	116	80	79	86	84	62	95	60	67	78	88	94	0	1359	4．6－6．7
（1）	． 56	． 54	． 55	． 59	． 70	． 49	． 48	． 52	． 51	． 38	． 58	． 36	． 41	． 47	． 53	． 57	． 00	8.25	
（2）	． 15	． 15	． 15	． 16	． 19	． 13	． 13	． 14	． 14	． 10	． 16	． 10	． 11	． 13	． 15	． 16	． 00	2.28	
3．1－4．0	175	113	101	82	126	102	97	175	162	139	158	133	121	172	176	206		2238	6．8－8．9
（1）	1.06	． 69	． 61	． 50	． 76	． 62	． 59	1.06	． 98	． 84	． 96	． 81	． 73	1.04	1.07	1.25	． 00	13.59	
（2）	． 29	． 19	． 17	． 14	． 21	． 17	． 16	． 29	． 27	． 23	． 26	． 22	． 20	． 29	． 29	． 35	． 00	3.75	
4．1－5．0	192	125	96	50	44	103	142	305	325	231	219	193	161	298	401	377	0	3262	9．0－11．2
（1）	1.17	． 76	． 58	． 30	． 27	． 63	． 86	1.85	1.97	1.40	1.33	1.17	． 98	1.81	2.43	2.29	． 00	19.80	
（2）	． 32	． 21	． 16	． 08	． 07	． 17	． 24	． 51	． 54	． 39	． 37	． 32	． 27	． 50	． 67	． 63	． 00	5.46	
5．1－6．0	164	99	49	18	26	26	68	334	423	371	329	224	151	302	447	391	0	3422	$11.3-13.4$
（1）	1.00	． 60	． 30	． 11	． 16	． 16	． 41	2.03	2.57	2.25	2.00	1.36	． 92	1.83	2.71	2.37	． 00	20.77	
（2）	． 27	． 17	． 08	． 03	． 04	． 04	． 11	． 56	． 71	． 62	． 55	． 38	． 25	． 51	． 75	． 66	． 00	5.73	
6．1－8．0	128	131	32	T	7	19	41	251	453	930	865	191	118	272	351	302	0	4098	13．5－17．9
（1）	． 78	． 80	． 19	． 04	． 04	． 12	． 25	1.52	2.75	5.65	5.25	1.16	． 72	1.65	2.13	1.83	． 00	24.88	
（2）	． 21	． 22	． 05	． 01	． 01	． 03	． 07	． 42	． 76	1.56	1.45	． 32	． 20	． 46	． 59	． 51	． 00	6.87	
8．1－10．0	56	27	8	2	3	4	7	65	84	274	273	28	20	70	47	37	0	1005	18．0－22．4
（1）	． 34	． 16	． 05	． 01	． 02	． 02	． 04	． 39	． 51	1.66	1.66	． 17	． 12	． 42	． 29	． 22	． 00	6.10	
（2）	． 09	． 05	． 01	． 00	． 01	． 01	． 01	． 11	． 14	． 46	． 46	． 05	． 03	． 12	． 08	． 06	． 00	1.68	
10．1－89．5	18	17	12	2	1	4	8	27	10	44	27	3	4	15	6	7	0	205	22．5－200．2
（1）	． 11	． 10	． 07	． 01	． 01	． 02	． 05	． 16	． 06	． 27	． 16	． 02	． 02	． 09	． 04	． 04	． 00	1.24	
（2）	． 03	． 03	． 02	． 00	． 00	． 01	． 01	． 05	． 02	． 07	． 05	． 01	． 01	． 03	． 01	． 01	． 00	． 34	
ALL SPEEDS	883	671	468	329	419	396	498	1311	1594	2101	2007	867	673	1248	1556	1453	0	16474	
（1）	5.36	4.07	2.84	2.00	2.54	2.40	3.02	7.96	9.68	12.75	12.18	5.26	4.09	7.58	9.45	8.82	． 00	100.00	
（2）	1.48	1.12	． 78	． 55		． 66	． 83	2.20	2.67	3.52	3.36	1.45	1.13	2.09	2.61	2.43	． 00	27.60	
（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE																			
（2）＝PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PE	RIOD												

Table 2.3-135—\{CCNPP $197^{\prime}(60-m)$ 2000-2006 Annual Joint Frequency Distribution Table\} (Page 6 of 8)
CC JANOO-DECO6 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA STABILITY CLASS F (LLASS FREQUENCY (PERCENT) $=10.44$ WIND DIRECTION FROM

SPEED	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	3	LT. 4
(1)	. 00	. 00	. 00	. 02	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 05	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	
.2- . 4	2	1	0	0	0	1	1	2	1	0	1	1	0	0	0	0	0	10	. $4-.9$
(1)	. 03	. 02	. 00	. 00	. 00	. 02	. 02	. 03	. 02	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 16	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	
. $5-1.0$	6	5	7	10	12	13	7	8	6	12	10	5	6	5	7	6	0	125	1.0-2.2
(1)	. 10	. 08	. 11	. 16	. 19	. 21	. 11	. 13	. 10	. 19	. 16	. 08	. 10	. 08	. 11	. 10	. 00	2.01	
(2)	. 01	. 01	. 01	. 02	. 02	. 02	. 01	. 01	. 01	. 02	. 02	. 01	. 01	. 01	. 01	. 01	. 00	. 21	
1.1-1.5	8	10	9	8	18	7	9	12	11	7	7	4	9	9	9	8	0	145	$2.3-3.4$
(1)	. 13	. 16	. 14	. 13	. 29	. 11	. 14	. 19	. 18	. 11	. 11	. 06	. 14	. 14	. 14	. 13	. 00	2.33	
(2)	. 01	. 02	. 02	. 01	. 03	. 01	. 02	. 02	. 02	. 01	. 01	. 01	. 02	. 02	. 02	. 01	. 00	. 24	
1.6-2.0	11	7	13	20	17	16	17	11	13	15	14	11	11	10	12	11	0	209	$3.5-4.5$
(1)	. 18	. 11	. 21	. 32	. 27	. 26	. 27	. 18	. 21	. 24	. 22	. 18	. 18	. 16	. 19	. 18	. 00	3.35	
(2)	. 02	. 01	. 02	. 03	. 03	. 03	. 03	. 02	. 02	. 03	. 02	. 02	. 02	. 02	. 02	. 02	. 00	. 35	
2.1-3.0	48	41	29	26	36	29	30	36	45	45	44	39	34	50	29	40	0	601	4.6-6.7
(1)	. 77	. 66	. 47	. 42	. 58	. 47	. 48	. 58	. 72	. 72	. 71	. 63	. 55	. 80	. 47	. 64	. 00	9.64	
(2)	. 08	. 07	. 05	. 04	. 06	. 05	. 05	. 06	. 08	. 08	. 07	. 07	. 06	. 08	. 05	. 07	. 00	1.01	
3.1-4.0	43	24	28	19	20	31	57	64	105	92	89	81	60	62	55	61	0	891	6.8-8.9
(1)	. 69	. 38	. 45	. 30	. 32	. 50	. 91	1.03	1.68	1.48	1.43	1.30	. 96	. 99	. 88	. 98	. 00	14.29	
(2)	. 07	. 04	. 05	. 03	. 03	. 05	. 10	. 11	. 18	. 15	. 15	. 14	. 10	. 10	. 09	. 10	. 00	1.49	
4.1-5.0	42	22	11	6	4	13	46	100	155	165	142	118	102	104	97	97	0	1224	9.0-11.2
(1)	. 67	. 35	. 18	. 10	. 06	. 21	. 74	1.60	2.49	2.65	2.28	1.89	1.64	1.67	1.56	1.56	. 00	19.63	
(2)	. 07	. 04	. 02	. 01	. 01	. 02	. 08	. 17	. 26	. 28	. 24	. 20	. 17	. 17	. 16	. 16	. 00	2.05	
5.1-6.0	18	13	8	4	0	5	32	108	306	277	191	129	112	110	130	76	0	1519	11.3-13.4
(1)	. 29	. 21	. 13	. 06	. 00	. 08	. 51	1.73	4.91	4.44	3.06	2.07	1.80	1.76	2.09	1.22	. 00	24.37	
(2)	. 03	. 02	. 01	. 01	. 00	. 01	. 05	. 18	. 51	. 46	. 32	. 22	. 19	. 18	. 22	. 13	. 00	2.54	
6.1-8.0	10	14	11	8	3	1	8	72	241	377	286	121	53	59	137	18	0	1419	13.5-17.9
(1)	. 16	. 22	. 18	. 13	. 05	. 02	. 13	1.15	3.87	6.05	4.59	1.94	. 85	. 95	2.20	. 29	. 00	22.76	
(2)	. 02	. 02	. 02	. 01	. 01	. 00	. 01	. 12	. 40	. 63	. 48	. 20	. 09	. 10	. 23	. 03	. 00	2.38	
8.1-10.0	5	2	1	3	0	0	0	0	6	24	32	2	1	1	1	0	0	78	18.0-22.4
(1)	. 08	. 03	. 02	. 05	. 00	. 00	. 00	. 00	. 10	. 38	. 51	. 03	. 02	. 02	. 02	. 00	. 00	1.25	
(2)	. 01	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 01	. 04	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 13	
10.1-89.5	4	3	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	10	22.5-200.2
(1)	. 06	. 05	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 16	
(2)	. 01	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	
ALL SPEEDS	197	142	118	105	110	117	207	413	889	1015	817	512	388	410	477	317	0	6234	
(1)	3.16	2.28	1.89	1.68	1.76	1.88	3.32	6.62	14.26	16.28	13.11	8.21	6.22	6.58	7.65	5.09	. 00	100.00	
(2)	. 33	. 24	. 20	. 18	. 18	. 20	. 35	. 69	1.49	1.70	1.37	. 86	. 65	. 69	. 80	. 53	. 00	10.44	
(1) = PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PA													
(2) = PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS PER	RIOD												

Table 2．3－135—\｛CCNPP 197＇（60－m）2000－2006 Annual Joint Frequency Distribution Table\} （Page 7 of 8）
CC JANOO－DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION（60－METER TOWER）
197．0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY（PERCENT）$=7.48$ 197．0 FT WIND DATA STABILITY CLASS G WIND DIRECTION FROM

SPEed	N	NNE	NE	Ene	E	ESE	SE	SSE	S	SSW	SW	WSW	W	wnw	NW	nNw	VRBL	TOTAL	SPEED
mps																			MPH
LT ． 2	0	0	0	0	1	0	0	0	0	0	2	1	3	0	2	0	0	9	LT ． 4
（1）	． 00	． 00	． 00	． 00	． 02	． 00	． 00	． 00	． 00	． 00	． 04	． 02	． 07	． 00	． 04	． 00	． 00	． 20	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 01	． 00	． 00	． 00	． 00	． 02	
．2－． 4	2	1	1	0	2	1	3	0	1	2	0	1	2	0	1	1	0	18	． $4-.9$
（1）	． 04	． 02	． 02	． 00	． 04	． 02	． 07	． 00	． 02	． 04	． 00	． 02	． 04	． 00	． 02	． 02	． 00	． 40	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 01	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 03	
．5－1．0	11	9	10	5	15	9	12	13	4	11	12	11	6	10	13	12	0	163	1．0－2．2
（1）	． 25	． 20	． 22	． 11	． 34	． 20	． 27	． 29	． 09	． 25	． 27	． 25	． 13	． 22	． 29	． 27	． 00	3.65	
（2）	． 02	． 02	． 02	． 01	． 03	． 02	． 02	． 02	． 01	． 02	． 02	． 02	． 01	． 02	． 02	． 02	． 00	． 27	
1．1－1．5	19	11	20	11	22	13	15	15	13	10	15	20	12	10	12	10	0	228	$2.3-3.4$
（1）	． 43	． 25	． 45	． 25	． 49	． 29	． 34	． 34	． 29	． 22	． 34	． 45	． 27	． 22	． 27	． 22	． 00	5.11	
（2）	． 03	． 02	． 03	． 02	． 04	． 02	． 03	． 03	． 02	． 02	． 03	． 03	． 02	． 02	． 02	． 02	． 00	． 38	
1．6－2．0	17	16	12	16	18	8	25	16	29	26	19	17	19	9	14	14	0	275	$3.5-4.5$
（1）	． 38	． 36	． 27	． 36	． 40	． 18	． 56	． 36	． 65	． 58	． 43	． 38	． 43	． 20	． 31	． 31	． 00	6.16	
（2）	． 03	． 03	． 02	． 03	． 03	． 01	． 04	． 03	． 05	． 04	． 03	． 03	． 03	． 02	． 02	． 02	． 00	． 46	
2．1－3．0	41	35	18	24	22	26	26	35	48	66	41	54	54	39	40	34	0	603	4．6－6．7
（1）	． 92	． 78	． 40	． 54	． 49	． 58	． 58	． 78	1.08	1.48	． 92	1.21	1.21	． 87	． 90	． 76	． 00	13.51	
（2）	． 07	． 06	． 03	． 04	． 04	． 04	． 04	． 06	． 08	． 11	． 07	． 09	． 09	． 07	． 07	． 06	． 00	1.01	
3．1－4．0	34	13	4	3	7	8	33	49	71	78	92	95	64	62	41	62	0	716	$6.8-8.9$
（1）	． 76	． 29	． 09	． 07	． 16	． 18	． 74	1.10	1.59	1.75	2.06	2.13	1.43	1.39	． 92	1.39	． 00	16.04	
（2）	． 06	． 02	． 01	． 01	． 01	． 01	． 06	． 08	． 12	． 13	． 15	． 16	． 11	． 10	． 07	． 10	． 00	1.20	
4．1－5．0	11	1	2	2	1	6	12	51	113	154	164	125	72	68	61	64	0	907	9．0－11．2
（1）	． 25	． 02	． 04	． 04	． 02	． 13	． 27	1.14	2.53	3.45	3.67	2.80	1.61	1.52	1.37	1.43	． 00	20.31	
（2）	． 02	． 00	． 00	． 00	． 00	． 01	． 02	． 09	． 19	． 26	． 27	． 21	． 12	． 11	． 10	． 11	． 00	1.52	
5．1－ 6.0	3	3	1	1	0	5	7	32	138	171	145	85	67	50	57	41	0	806	11．3－13．4
（1）	． 07	． 07	． 02	． 02	． 00	． 11	． 16	． 72	3.09	3.83	3.25	1.90	1.50	1.12	1.28	． 92	． 00	18.05	
（2）	． 01	． 01	． 00	． 00	． 00	． 01	． 01	． 05	． 23	． 29	． 24	． 14	． 11	． 08	． 10	． 07	． 00	1.35	
$6.1-8.0$	2	4	7	2	0	4	3	39	128	151	96	65	62	50	67	4	0	684	13．5－17．9
（1）	． 04	． 09	． 16	． 04	． 00	． 09	． 07	． 87	2.87	3.38	2.15	1.46	1.39	1.12	1.50	． 09	． 00	15.32	
（2）	． 00	． 01	． 01	． 00	． 00	． 01	． 01	． 07	． 21	． 25	． 16	． 11	． 10	． 08	． 11	． 01	． 00	1.15	
8．1－10．0	0	0	2	2	0	0	0	1	2	8	4	11	3	5	3	0	0	41	18．0－22．4
（1）	． 00	． 00	． 04	． 04	． 00	． 00	． 00	． 02	． 04	． 18	． 09	． 25	． 07	． 11	． 07	． 00	． 00	． 92	
（2）	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 01	． 01	． 02	． 01	． 01	． 01	． 00	． 00	． 07	
10．1－89．5	0	3	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	22．5－200．2
（1）	． 00	． 07	． 27	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 34	
（2）	． 00	． 01	． 02	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 03	
ALL SPEEDS	140	96	89	66	88	80	136	251	547	677	590	485	364	303	311	242	0	4465	
（1）	3.14	2.15	1.99	1.48	1.97	1.79	3.05	5.62	12.25	15.16	13.21		8.15	6.79	6.97	5.42	． 00	100.00	
（2）	． 23		． 15	． 11	． 15	． 13	． 23	． 42	． 92	1.13	． 99	． 81	． 61	． 51	． 52	． 41	． 00	7.48	
（1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE																			
（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD																			

Table 2.3-135—\{CCNPP 197' (60-m) 2000-2006 Annual Joint Frequency Distribution Table\} (Page 8 of 8)
CC JANOO-DEC06 MET DATA JOINT FREQUENCY DISTRIBUTION (60-METER TOWER)
197.0 FT WIND DATA
STABILITY CLASS ALL
CLASS FREQUE

SPeed	N	NNE	NE	ene	E	ESE	SE	SSE	S	SSW	SW	wSW	W	wnw	NW	NNW	VRBL	TOTAL	SPEED
mps																			MPH
LT . 2	0	1	1	1	2	2	0	0	0	1	2	2	4	0	2	0	0	18	LT . 4
(1)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 03	
(2)	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 03	
.2- . 4	6	4	3	1	4	2	5	4	4	2	1	2	4	2	3	2	0	49	. 4 - . 9
(1)	. 01	. 01	. 01	. 00	. 01	. 00	. 01	. 01	. 01	. 00	. 00	. 00	. 01	. 00	. 01	. 00	. 00	. 08	
(2)	. 01	. 01	. 01	. 00	. 01	. 00	. 01	. 01	. 01	. 00	. 00	. 00	. 01	. 00	. 01	. 00	. 00	. 08	
.5-1.0	48	42	67	49	82	55	44	56	29	50	41	37	29	35	42	46	0	752	$1.0-2.2$
(1)	. 08	. 07	. 11	. 08	. 14	. 09	. 07	. 09	. 05	. 08	. 07	. 06	. 05	. 06	. 07	. 08	. 00	1.26	
(2)	. 08	. 07	. 11	. 08	. 14	. 09	. 07	. 09	. 05	. 08	. 07	. 06	. 05	. 06	. 07	. 08	. 00	1.26	
1.1-1.5	98	108	108	111	130	81	77	62	57	50	65	61	59	53	57	55	0	1232	$2.3-3.4$
(1)	. 16	. 18	. 18	. 19	. 22	. 14	. 13	. 10	. 10	. 08	. 11	. 10	. 10	. 09	. 10	. 09	. 00	2.06	
(2)	. 16	. 18	. 18	. 19	. 22	. 14	. 13	. 10	. 10	. 08	. 11	. 10	. 10	. 09	. 10	. 09	. 00	2.06	
1.6-2.0	158	226	183	228	262	134	108	86	111	98	146	109	92	72	77	105	0	2195	$3.5-4.5$
(1)	. 26	. 38	. 31	. 38	. 44	. 22	. 18	. 14	. 19	. 16	. 24	. 18	. 15	. 12	. 13	. 18	. 00	3.68	
(2)	. 26	. 38	. 31	. 38	. 44	. 22	. 18	. 14	. 19	. 16	. 24	. 18	. 15	. 12	. 13	. 18	. 00	3.68	
2.1-3.0	695	787	486	562	632	405	382	388	346	376	434	358	289	271	268	314	0	6993	4.6-6.7
(1)	1.16	1.32	. 81	. 94	1.06	. 68	. 64	. 65	. 58	. 63	. 73	. 60	. 48	. 45	. 45	. 53	. 00	11.71	
(2)	1.16	1.32	. 81	. 94	1.06	. 68	. 64	. 65	. 58	. 63	. 73	. 60	. 48	. 45	. 45	. 53	. 00	11.71	
3.1-4.0	909	795	393	435	444	435	518	700	605	625	774	635	456	469	476	606	0	9275	$6.8-8.9$
(1)	1.52	1.33	. 66	. 73	. 74	. 73	. 87	1.17	1.01	1.05	1.30	1.06	. 76	. 79	. 80	1.02	. 00	15.54	
(2)	1.52	1.33	. 66	. 73	. 74	. 73	. 87	1.17	1.01	1.05	1.30	1.06	. 76	. 79	. 80	1.02	. 00	15.54	
4.1- 5.0	918	600	391	354	288	296	499	1011	833	929	1012	757	526	668	863	896	0	10841	9.0-11.2
(1)	1.54	1.01	66	. 59	48	. 50	. 84	1.69	1.40	1.56	1.70	1.27	. 88	1.12	1.45	1.50	. 00	18.16	
(2)	1.54	1.01	66	. 59	48	. 50	. 84	1.69	1.40	1.56	1.70	1.27	. 88	1.12	1.45	1.50	. 00	18.16	
5.1- 6.0	694	488	343	255	132	117	310	943	1023	1122	1150	703	497	706	1040	936	0	10459	11.3-13.4
(1)	1.16	. 82	. 57	. 43	. 22	. 20	. 52	1.58	1.71	1.88	1.93	1.18	. 83	1.18	1.74	1.57	. 00	17.52	
(2)	1.16	. 82	. 57	. 43	. 22	. 20	. 52	1.58	1.71	1.88	1.93	1.18	. 83	1.18	1.74	1.57	. 00	17.52	
6.1-8.0	803	756	518	241	82	81	199	851	997	1866	1892	635	440	853	1345	930	0	12489	13.5-17.9
(1)	1.35	1.27	. 87	. 40	. 14	. 14	. 33	1.43	1.67	3.13	3.17	1.06	. 74	1.43	2.25	1.56	. 00	20.92	
(2)	1.35	1.27	. 87	. 40	. 14	. 14	. 33	1.43	1.67	3.13	3.17	1.06	. 74	1.43	2.25	1.56	. 00	20.92	
8.1-10.0	435	428	281	62	8	8	53	235	138	467	529	86	81	417	495	253	-	3976	18.0-22.4
(1)	. 73	. 72	. 47	. 10	. 01	. 01	. 09	. 39	. 23	. 78	. 89	. 14	. 14	. 70	. 83	. 42	. 00	6.66	
(2)	. 73	. 72	. 47	. 10	. 01	. 01	. 09	. 39	. 23	. 78	. 89	. 14	. 14	. 70	. 83	. 42	. 00	6.66	
10.1-89.5	214	282	173	27	3	6	20	71	25	82	58	20	29	161	177	66	-	1414	22.5-200.2
(1)	. 36	. 47	. 29	. 05	. 01	. 01	. 03	. 12	. 04	. 14	. 10	. 03	. 05	. 27	. 30	. 11	. 00	2.37	
(2)	. 36	. 47	. 29	. 05	. 01	. 01	. 03	. 12	. 04	. 14	. 10	. 03	. 05	. 27	. 30	. 11	. 00	2.37	
ALL SPEEDS	4978	4517	2947	2326	2069	1622	2215	4407	4168	5668	6104	3405	2506	3707	4845	4209	-	59693	
(1)	8.34	7.57	4.94	3.90	3.47	2.72	3.71	7.38	6.98	9.50	10.23	5.70	4.20	6.21	8.12	7.05	. 00	100.00	
(2)	8.34	7.57	4.94	3.90	3.47	2.72	3.71	7.38	6.98	9.50	10.23	5.70	4.20	6.21	8.12	7.05	. 00	100.00	
(1) =PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS P													
(2) =PERCENT	OF ALL	GOOD	OBSERV	ATIONS	FOR	HIS P	RIOD												

Figure 2.3-1—\{Not Used $\}$

Figure 2.3-2—\{Not Used\}

Figure 2.3-3—\{Not Used\}

Figure 2.3-4—\{Not Used\}

Figure 2.3-5—\{Not Used\}

Figure 2.3-6-\{Not Used\}

Figure 2.3-7-\{Not Used\}

Figure 2.3-11-\{Date of Maximum Tornado Threat\}

Figure 2.3-13-\{Ozone Concentration for Maryland Counties\}

Ozone 4th highest 8 -hour average concentration

4th highest 8 -hour overoge concentrotion (ppm) in 2006

Figure 2.3-14—\{CCNPP 33' (10 m) Annual Wind Rose (2000-2005)\}

CCNPP JAN 2000 - DEC 2005
33-FOOT WIND DATA

STABILITY CLASS AL
CALM WINDS 0.33%
$\begin{aligned} & \text { NOTE: Frequencies indicate } \\ & \text { direction from which } \\ & \text { the wind is blowing. }\end{aligned}$

Figure 2.3-15—\{CCNPP 197' (60 m) Annual Wind Rose (2000-2005)\}

CCNPP JAN 2000 - DEC 2005

197-FOOT WIND DATA

Figure 2.3-16—\{CCNPP 33' (10 m) January Wind Rose (2000-2005)\}

CC STATION JAN

33-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-17—\{CCNPP 33' (10 m) February Wind Rose (2000-2005)\}

CC STATION FEB

Figure 2.3-18—\{CCNPP 33' (10 m) March Wind Rose (2000-2005)\}

CC STATION MAR

33-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.32\%

NOTE: Frequencies indicate
direction from which the wind is blowing.

Figure 2.3-19—\{CCNPP 33' (10 m) April Wind Rose (2000-2005)\}

CC STATION APR

33-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.15%

NOTE: Frequencies indicate direction from which the wind is blowing.

Figure 2.3-20—\{CCNPP 33' (10 m) May Wind Rose (2000-2005)\}

CC STATION MAY

33-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.25%

NOTE: Frequencles Indicate direction from which the wind is blowing.

Figure 2.3-21—\{CCNPP 33' (10 m) June Wind Rose (2000-2005) \}
CC STATION JUN

33-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.42%

NOTE: Frequencies indicate
direction from which the wind is tlowing.

Figure 2.3-22—\{CCNPP 33' (10 m) July Wind Rose (2000-2005)\}
CC STATION JUL

33-FOOT WIND DATA

Figure 2.3-23—\{CCNPP 33' (10 m) August Wind Rose (2000-2005)\}

CC STATION AUG

33-FOOT WIND DATA

Figure 2.3-24—\{CCNPP 33' (10 m) September Wind Rose (2000-2005)\}
CC STATION SEP

33-FOOT WIND DATA

S
STABILITY CLASS ALL
CALM WINDS 0.52%

NOTE: Frequencies indicate direction from which the wind is blowing.

Figure 2.3-25—\{CCNPP 33' (10 m) October Wind Rose (2000-2005)\}

CC STATION OCT

33-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-26—\{CCNPP 33' (10 m) November Wind Rose (2000-2005)\}

CC STATION NOV

33-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-27—\{CCNPP 33' (10 m) December Wind Rose (2000-2005)\} CC STATION DEC

33-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-28—\{CCNPP 197' (60 m) January Wind Rose (2000-2005)\}
CC STATION JAN

197-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.02%

NOTE: Frequencies indicate
direction from which
the wind is blowing.

$\begin{array}{rrrrrrrrrr}.2-.4 & .5-1.0 & 1.1-1.5 & 1.6-2.0 & 2.1-3.0 & 3.1-4.0 & 4.1-5.0 & 5.1-6.0 & 6.1-8.0 & 8.1-10.0 \\ 10.1-89.5\end{array}$

Figure 2.3-29—\{CCNPP 197' (60 m) February Wind Rose (2000-2005)\}
CC STATION FEB

197-FOOT WIND DATA

STABILITY CLASS ALL

.2-.4 $4-1.0 \quad 1.1-1.5 \quad 1.6-2.0 \quad 2.1-3.0 \quad 3.1-4.0 \quad 4.1-5.0 \quad 5.1-6.0 \quad 6.1-8.0 \quad 8.1-10.010 .1-89.5$

Figure 2.3-30—\{CCNPP 197 ' (60 m) March Wind Rose (2000-2005) \}
CC STATION MAR

197-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.00%

NOTE: Frequencies indicate direction from which the wind is blowing.

Figure 2.3-31—\{CCNPP 197' (60m) April Wind Rose (2000-2005)\} CC STATION APR

197-FOOT WIND DATA

Figure 2.3-32—\{CCNPP 197' (60 m) May Wind Rose (2000-2005)\}
CC STATION MAY

197-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-33—\{CCNPP 197' (60 m) June Wind Rose (2000-2005)\}

CC STATION JUN

197-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.02%

NOTE: Frequencles Indicate
direction from which the wind is blowing

Figure 2.3-34—\{CCNPP 197' (60 m) July Wind Rose (2000-2005)\}
CC STATION JUL

197-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.02%

NOTE: Frequencies indicate
direction from which
the wind is blowing.

Figure 2.3-35—\{CCNPP 197' (60 m) August Wind Rose (2000-2005)\}
CC STATION AUG

197-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.09%

NOTE: Frequencies indicate direction from which the wind is blowing.

Figure 2.3-36—\{CCNPP 197' (60 m) September Wind Rose (2000-2005)\}
CC STATION SEP

197-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-37—\{CCNPP 197' (60 m) October Wind Rose (2000-2005)\}
CC STATION OCT

197-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-38-\{CCNPP 197' (60 m) November Wind Rose (2000-2005)\}
CC STATION NOV

197-FOOT WIND DATA

STABILITY CLASS ALL
CALM WINDS 0.05%

NOTE: Frequencies indicate direction from which
the wind is blowing.

Figure 2.3-39—\{CCNPP 197' (60 m) December Wind Rose (2000-2005)\}

CC STATION DEC

197-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-40-\{BWI Annual Wind Rose\}

WIND ROSE PLOT:
Station \#93721

BALTIMORE/BLT-WASHINGTON INT'L, MD

DISPLAY:
Wind Speed Dir ection (blowing from)

DATA PERIOD:

1984,1985,1986,1987,1988,1990,1991,1992
Jan 1 - Dec 31 (00:00-23:00)
CALM WINDS:
4.12%
TOTAL COUNT:
70152 hrs
:---

Figure 2.3-41— $\{$ Norfolk Annual Wind Rose $\}$

WIND ROSE PLOT:
Station \#13737
NORFOLK INT'L AIRPORT, VA

DISPLAY:
Wind Speed Direction (blowing from)

Calms: 5.27%
DATA PERIOD:

1984,1985,1986,1987,1988,1989,1990,19
Jan 1 - Dec 31 (00:00-23:00)
CALM WINDS:
5.27%
TOTAL COUNT:
78912 hrs
:---

Figure 2.3-42-\{Richmond Annual Wind Rose\}

WIND ROSE PLOT:
Station \#13740
RICHMOND/R E BYRD INT'L AIRPORT, VA

DISPLAY:
Wind Speed Direction (blowing from)

WIND SPEED (m / s)

Calms: 7.35%

DATA PERIOD:
$1984,1985,1986,1987,1988,1989,1990,1991,1992$
Jan $1 \quad$ Dec $31(00: 00-23: 00)$
CALM WINDS:
7.35%
TOTAL COUNT:
78912 hrs

Figure 2.3-43—\{CCNPP 33' (10 m) Annual Precipitation Wind Rose (2000-2005)\}
CCNPP JAN 2000 - DEC 2005

33-FOOT WIND DATA

STABILITY CLASS ALL

Figure 2.3-44—\{CCNPP 197' (60 m) Annual Precipitation Wind Rose (2000-2005)\} CCNPP JAN 2000 - DEC 2005

197-FOOT WIND DATA

STABILITY CLASS ALL CALM WINDS 0.04%

NOTE: Frequencies indicate direction from which the wrind is blowing.

Figure 2.3-45—\{CCNPP 33' (10 m) January Precipitation Wind Rose for Rate Class 0.0-0.1 in/hr\}

CC STATION JAN

33-FOOT WIND DATA

PRECIP RATE CLASS 0.0-0.1 IN/HR

Figure 2.3-46—\{CCNPP 33' (10 m) January Precipitation Wind Rose for Rate Class
0.1-0.2 in/hr\}

CCNPP JAN

33-FOOT WIND DATA

PRECIP RATE CLASS 0.1-0.2 IN/HR

Figure 2.3-47—\{CCNPP 33' (10 m) January Precipitation Wind Rose for Rate Class 0.2-0.3 in/hr\}

CCNPP JAN

33-FOOT WIND DATA

PRECIP RATE CLASS 0.2-0.3 IN/HR

$\begin{array}{lllllllllllll}.2-.4 & .5-1.0 & 1.1-1.5 & 1.0-2.0 & 2.1-3.0 & 3.1-4.0 & 4.1-5.0 & 5.1-6.0 & 6.1-6.0 & 8.1-10.0 & 10.1-69.5\end{array}$

Figure 2.3-48—\{CCNPP 33' (10 m) January Precipitation Wind Rose for Rate Class 0.3-0.4 in/hr\}

CCNPP JAN

Figure 2.3-49—\{CCNPP 33' (10 m) January Precipitation Wind Rose for Rate Class 0.4-0.5 in/hr\}

CCNPP JAN

33-FOOT WIND DATA

Figure 2.3-50—\{CCNPP 33' (10 m) January Precipitation Wind Rose for All Rate classes\}

CCNPP JAN

33-FOOT WIND DATA

S

Figure 2.3-51—\{CCNPP 33' (10 m) February Precipitation Wind Rose for Rate Class 0.0-0.1 in/hr\}

CCNPP FEB

33-FOOT WIND DATA

PRECIP RATE CLASS 0.0-0.1 IN/HR

Figure 2.3-52- \{CCNPP 33' (10 m) February Precipitation Wind Rose for Rate Class 0.1-0.2 in/hr\}

CCNPP FEB

33-FOOT WIND DATA

PRECIP RATE CLASS 0.1-0.2 IN/HR

Figure 2.3-53- \{CCNPP 33' (10 m) February Precipitation Wind Rose for Rate Class 0.2-0.3 in/hr\}

CCNPP FEB

33-FOOT WIND DATA

PRECIP RATE CLASS 0.2-0.3 IN/HR

Figure 2.3-54- \{CCNPP 33' (10 m) February Precipitation Wind Rose for Rate Class 0.3-0.4 n/hr\}

CCNPP FEB

33-FOOT WIND DATA

PRECIP RATE CLASS 0.3-0.4 IN/HR
CALM WINDS 0.00%

NOTE: Frequencies indicate direction from which the wind is blowing.

.2-. 4 .5-1.0 1.1-1.5 1.6-2.0 2.1-3.0 3.1-4.0 $4.1-5.0 \quad 5.1-6.0 \quad 6.1-8.0 \quad 8.1-10.010 .1-69.5$

Figure 2.3-55—\{CCNPP 33' (10 m) February Precipitation Wind Rose for All Rate classes

CCNPP FEB

33-FOOT WIND DATA

Figure 2.3-56—\{CCNPP 33' (10 m) March Precipitation Wind Rose for Rate Class 0.0-0.1 in/hr\}

CCNPP MAR

33-FOOT WIND DATA

Figure 2.3-57—\{CCNPP 33' (10 m) March Precipitation Wind Rose for Rate Class 0.1-0.2 in/hr\}

CCNPP MAR

33-FOOT WIND DATA

PRECIP RATE CLASS 0.1-0.2 IN/HR

Figure 2.3-58-\{CCNPP 33' (10 m) March Precipitation Wind Rose for Rate Class 0.2-0.3 in/hr\}

CCNPP MAR

33-FOOT WIND DATA

Figure 2.3-59—\{CCNPP 33' (10 m) March Precipitation Wind Rose for Rate Class 0.3-0.4 in/hr\}

CCNPP MAR

33-FOOT WIND DATA

PRECIP RATE CLASS 0.3-0.4 IN/HR CALM WINDS 0.00\%

NOTE: Frequencles Indicate direction from which the wind is blowing

Figure 2.3-60— \{CCNPP 33' (10 m) March Precipitation Wind Rose for Rate Class $0.4-0.5 \mathrm{in} / \mathrm{hr}\}$

CCNPP MAR

33-FOOT WIND DATA

PRECIP RATE CLASS 0.4-0.5 IN/HR

Figure 2.3-61—\{CCNPP 33' (10 m) March Precipitation Wind Rose for All Rate classes\}
CCNPP MAR

33-FOOT WIND DATA

PRECIP RATE CLASS ALLRATES IN/HR

Figure 2.3-62—\{CCNPP 33' (10 m) April Precipitation Wind Rose for Rate Class 0.0-0.1 in/hr\}

CCNPP APR

33-FOOT WIND DATA

Figure 2.3-63—\{CCNPP33' (10 m) April Precipitation Wind Rose for Rate Class 0.1-0.2 in/hr\}

CCNPP APR

33-FOOT WIND DATA

PRECIP RATE CLASS 0.1-0.2 IN/HR
CALM WINDS 0.00%

NOTE: Frequencies indicate direction from which the wind is blowing.

Figure 2.3-64—\{CCNPP 33' (10 m) April Precipitation Wind Rose for Rate Class 0.2-0.3 in/hr\}

CCNPP APR

33-FOOT WIND DATA

S
PRECIP RATE CLASS 0.2-0.3 IN/HR

$2-.4 \quad .5-1.0 \quad 1.1-1.5 \quad 1.6-2.0 \quad 2.1-3.0 \quad 3.1-4.0 \quad 4.1-5.0 \quad 5.1-6.0 \quad 6.1-8.0 \quad 8.1-10.010 .1-89.5$

Figure 2.3-65—\{CCNPP 33' (10 m) April Precipitation Wind Rose for Rate Class 0.3-0.4 in/hr\}

PRECIP RATE CLASS 0.3-0.4 IN/HR

Figure 2.3-66—\{CCNPP 33' (10 m) April Precipitation Wind Rose for Rate Class 0.4-0.5 in/hr\}

CCNPP APR

33-FOOT WIND DATA

PRECIP RATE CLASS 0.4-0.5 IN/HR
CALM WINDS 0.00%

NOTE: Frequencles Indlcate direction from which the wind is blowing.

Figure 2.3-67—\{CCNPP 33' (10 m) April Precipitation Wind Rose for Rate Class 0.7-0.8 in/hr\}

CCNPP APR

33-FOOT WIND DATA

PRECIP RATE CLASS 0.7-0.8 IN/HR

Figure 2.3-68-\{CCNPP 33' (10 m) April Precipitation Wind Rose for All Rate classes\}
CCNPP APR

33-FOOT WIND DATA

S

Figure 2.3-69—\{CCNPP 33' (10 m) May Precipitation Wind Rose for Rate Class 0.0-0.1 in/hr\}

CCNPP MAY

33-FOOT WIND DATA

PRECIP RATE CLASS 0.0-0.1 IN/HR

Figure 2.3-70—\{CCNPP 33' (10 m) May Precipitation Wind Rose for Rate Class 0.1-0.2 in/hr\}

CCNPP MAY

33-FOOT WIND DATA

PRECIP RATE CLASS 0.1-0.2 IN/HR

Figure 2.3-71—\{CCNPP 33' (10 m) May Precipitation Wind Rose for Rate Class 0.2-0.3 in/hr\}

CCNPP MAY

33-FOOT WIND DATA

S
PRECIP RATE CLASS 0.2-0.3 IN/HR

Figure 2.3-72—\{CCNPP 33' (10 m) May Precipitation Wind Rose for Rate Class 0.3-0.4 in/hr\}

CCNPP MAY

33-FOOT WIND DATA

S
PRECIP RATE CLASS 0.3-0.4 IN/HR

Figure 2.3-73—\{CCNPP 33' (10 m) May Precipitation Wind Rose for Rate Class 0.5-0.6 in/hr\}

CCNPP MAY

33-FOOT WIND DATA

S
PRECIP RATE CLASS 0.5-0.6 IN/HR

Figure 2.3-74—\{CCNPP 33' (10 m) May Precipitation Wind Rose for Rate Class 0.6-0.7 in/hr\}

CCNPP MAY

33-FOOT WIND DATA

PRECIP RATE CLASS 0.6-0.7 IN/HR

[^0]: (1) =PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAG

[^1]: (2) = PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

[^2]: (1)=PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE

[^3]: （1）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PAGE（2）＝PERCENT OF ALL GOOD OBSERVATIONS FOR THIS PERIOD

