Radon Emissions From Tailings Ponds

Presented To:

National Mining Association (NMA) /Nuclear Regulatory Commission (NRC) Uranium Recovery Workshop

Denver - July 2, 2009

Presented By: Dr. Douglas B. Chambers

Today's Discussion

- Subpart W
- Radon
- Radon diffusion
- Radon flux from tailings
- Radon from water cover
- EPA's proposed method of monitoring
- Summary observations

Subpart W NESHAP for Radon Emissions from Operating Mill Tailings

- Uranium byproduct material or tailings means waste produced by the extraction or concentration of uranium from any ore processed primarily for its source material content.
- Rn-222 flux from existing uranium mill tailings pile of less than 20 pCi/m² · s

Subpart W ...(cont'd) NESHAP for Radon Emissions from Operating Mill Tailings

New tailings impoundments must meet one of two work practices

- For phased disposal, no more than two 40 acre cells (including existing impoundments can be in operation at any single time
- For continuous disposal, tailings are dewatered and immediately disposed with no more than 10 acres in operation at any one time
- Annual radon flux testing required

Nominal Radon Flux (BID – Final Rule for Radon, EPA 1986)

- Dry Tailings (soil) 1 pCi Rn-222/m²s per pCi Ra-226/g
- Saturated 0.3 pCi Rn-222/m²s per pCi Ra-226/g
- Water Cover 0 pCi Rn-222/m²s per pCi Ra-226/g

Radon

- Radon is everywhere
- Produced through radioactive decay of Ra-226
- □ Half-life of 3.82 days
- EPA has raised issue with ISR evaporation ponds
- EPA has raised issue with Pb-210

Protecting People and the Environmen

Radon Production Rate

The radon production rate (q) in a porous radium-bearing material can be expressed as:

$$q = [Ra] \times \rho \times \frac{E}{P} \times \lambda$$
$$= \frac{\beta \times E}{P} = \frac{\beta}{P}$$

Where:

- [Ra] = radium-226 concentration
- ρ = bulk density (g/cm³)
- E = emanation coefficient
- P = porosity (void fraction)
- λ = radon decay constant
- β = emanating power (pCi/s-cm³)

Diffusion Length

Where:

- L = diffusion length
 - = distance to which concentration
 - decreases by factor of e (= 2.718)
- $L = \left| \frac{D}{\lambda p} \right|^{18}$ decreases by factor of e (= 2.718)D = bulk diffusion coefficient (cm²/s)
 - λ = radon decay constant
 - $= 2.1 \times 10^{-6}/s$
 - P = porosity (void volume/total volume)

Diffusion of Radon Across a Medium

In general, when radon is covered by inert material, diffusive flux (J) can be expressed (approximately) as:

Where:

Z = "Cover" thickness

L = diffusion length

Diffusion of Radon Across a Medium

U.S.NRC United States Nuclear Regulatory Commission Protecting People and the Environment

Experimental Diffusion Coefficients (UNSCEAR 2000)

SOURCE: After UNSCEAR 2000

Radon Flux

Based on Fick's Laws:

$$J = \beta x L (pCi/m^2 \cdot s)$$

Where:

- β = emanating power (pCi/m³ · s)
- L = diffusion length

Effects of Depth to Water Table

Radon From Water Cover (1)

Two Mechanisms

- Diffusion
- Turbulent transfer

Radon From Water Cover (2)

Diffusion

- Diffusion coefficient in water << diffusion coefficient in air (1/100th)
- Rn-222 gas exchange via diffusion from surface of small lake has been measured (Experimental lakes, Ontario)

F $(pCi/m^2 \cdot d) \cong k_{Rn} (m/d) \times [C-Co] (pCi/m^3)$ $\cong k_{Rn} \times C$

✤ For k _{Pn} ~ 0.5m/d	C (pCi/L)	$F(pCi/m^2 \cdot s)$
	10	5.8 x 10 ⁻⁵
	100	5.8 x 10 ⁻⁴
	1000	5.8 x 10 ⁻³
United States Nuclear Regulatory Commission Protecting People and the Environment	16	

Radon From Water Cover (3)

Turbulence (wave action)

- ✤ Rn-222 is produced at the rate of 2.1 x 10⁻⁶/s from Ra-226
- Assumes radon released at surface as it is produced from Ra-226 within "turbulent" layer

Ra-226 (pCi/L)	Depth of Turbulent Mixing (cm)	Rn-222 (pCi/m ² \cdot s)
10	10	0.002
	50	0.01
100	10	0.02
	50	0.1
1000	10	0.2
	50	1

Can We Measure Radon Flux From Water Covered Tailings ?

- EPA's proposal
- Schiager's method
- Diurnal variation
- Rn-222 with distance
- Pb-210 with distance

Pond Showing Z & R Directions and Detector Array

SOURCE: After EPA, 2009

Schiager's Box Model

Incremental Radon

Using Schiager model

- * 80 acres of pond
- Radon flux of 1 pCi/m² · S
- * L= 600 m
- Sigma z from Turner workbook of (about) 24m
- Assume u = 3 m/s
- Radon concentration at edge of cell
 - $C = (1 \times 600)/(3 \times 24) pCi/m^3 \times 1 m^3/1000L$
 - = 0.08 pCi/L

Rn-222 Concentration Diurnal Variation

SOURCE: After Pearson, U.S. Department of Health & Welfare, 1967

Pb-210 with Distance*

* Denver Windrose, 80 acre source at 1pCi/m²s, direction of maximum concentration

** Background Pb-210 ranges from 3x10⁻⁶ pCi/L to 30x10⁻⁶ pCi/L (UNSCEAR 2000)

Key Observations

- Rn-222 is everywhere
- Concentrations of Rn-222 vary with location, time of day, meteorological conditions
- Rn-222 flux from ponded areas << dry areas</p>
- Practical limits on ability to measure Rn-222 (or Pb-210) from pond areas
- Suggest feasibility assessment (DQO process) prior to implementation of proposed monitoring practices

