SCIENTIFIC NOTEBOOK 897E Volume 1 of 1 $\int M = 1/2/01$

Maintained by Oleg Povetko

SCIENTIFIC NOTEBOOK

Oleg Povetko

Southwest Research Institute Center for Nuclear Waste Regulatory Analyses San Antonio, Texas

INITIAL ENTRIES

Scientific Notebook: #897E Volume 1

Issued to: Oleg Povetko

Issue Date: 08/07/2007

Account Numbers: 20.06002.01.222

20.14002.01.081, 20.14002.01.170 (line with new account numbers added 01/02/2008 op)

Project Title: Radionuclide Release Rates and Solubility Limits. Support Prelicensing Transition to License Application Review – ENG4 ISI

Participants: Oleg Povetko (OP), Alexei Kouznetsov (AK), (Independent Consultant, Calgary, Canada), Vladislav Golikov (VG), (Consultant, Federal Radiological Center, Institute of Radiation Hygiene, St. Petersburg, Russia)

Objective: document activities related to the analyses of generation of radiolytic species in waste packages at potential Yucca Mountain repository for postclosure period

Goal of Project

The goal of this project is to provide independent scoping evaluations for potential of radiolytic species generation inside failed waste packages. The species are generated in the radiation environment inside the waste package cavity in voids filled with air and water vapor.

08/08/2007 (OP)

I made literature search and identified the following DOE report pertinent to radiolysis species generation.

"Radiolytic Species Generation from Internal Waste Package Criticality, rev 00, 2001". Initiated review of this document.

08/20/2007 (OP)

I initiated modeling of 21-PWR TAD WP for radiolysis studies.

08/24/2007 (AK) (OP)

Consultant conducted literature search on neutron and gamma radiolysis. He examined more thoroughly DOE AMR "Radiolytic Specie Generation from Internal Waste Package Criticality, CAL-EBS-NU-000017 REV 00", 2001.

Beginning of AK entry.

#08/22/2007

Examined literature on the neutron and gamma radiolysis: "Radiolytic Specie Generation from Internal Waste Package Criticality, CAL-EBS-NU-000017 REV 00".

- ٠ Химические изменения, которые претерпевают некоторые материалы при облучении, известное как радиолиз или радиолитическое разложение, наблюдается, когда такие материалы, как пластмасса или резина, подвергаются облучению, что приводит к образованию ряда новых химических соединений.
- Радиолиз также вызывает усиленное выделение некоторых химических веществ, содержащихся в материалах отходов.
- Радиолиз воды и органических соединений вызывает образование водорода, а также других воспламеняющихся или токсичных химических веществ. Такое радиолитическое разложение является одним из основных источников опасности возникновения пожаров и/или взрывов в некоторых емкостях с высокоактивными отходами на предприятиях Хэнфорда и Саванна-Ривер-Сайт.
- От образования и накопления опасных химических веществ в результате радиолиза пострадали хранилище с плутонием в Роки-Флэтс и хранилища с ТРУ-отходами на ряде других объектов.
- Одной из причин было разложение изделий из пластмассы под действием радиолиза на воспламеняющиеся и токсичные газы.
- Фактически, радиолиз может сделать отходы со временем более опасными или сделать опасными отходы, первоначально неопасные.

Translation Follows AW 6/12/09

- Radiation effects on the corrosion of metals and alloys include, among other things, radiolysis of the local gaseous and aqueous environment to produce both oxidizing and reducing radicals.
- Radiolysis processes in moist air environments lead to the fixation of nitrogen as NO, NO₂, and especially HNO₃ (Reed and Van Konynenburg 1988, pp. 393-404).
- Nitric acid is assumed to be the principal corrosive radiolytic chemical specie and is produced in an irradiated air-water vapor ystem when the hydroxyl radicals generated from the water vapor convert nitrogen dioxides, hat are formed by the radiolytic reaction between nitrogen and oxygen, to nitric acids.
- Radiolysis producing a local depression of the pH resulting in localized corrosion of cladding terial is included in the localized corrosion model as a special feature, YMP FEP NO. .1.02.15.00 (CRWMS M&O 2000d, Section 6.2.5).
- Zircaloy has excellent corrosion resistance to nitric acid and hydrogen peroxide, the concentration of these species can be enhanced by radiolysis during n internal WP criticality, potentially accelerating the corrosion effects in the cladding material.

The purpose of this calculation is to provide a detailed calculation the potential for generation of radiolytic species during a **postulated static criticality event in a WP**.

Radiolytic production of particular chemical species depends upon

- the radiation environment,
- the chemical components present, and
- the physical environment where the radiolytic reactions are occurring.

The yield of any given chemical species is characterized by a single parameter, "G", identified as the G-factor (Reed and Van Konynenburg 1991, pp. 1396-1403).

Definition:

The "G" value represents the number of molecules of a chemical species produced per 100 eV of

absorbed radiation energy in the volume containing the irradiated environment.

Measurements of the "G" factor for production of nitrogen dioxide (one-to-one production ratio for nitric acid) from mixed neutron-gamma radiation range from approximately 0.5 to 2.5 molecules/100 eV of absorbed energy (Reed and Van Konynenburg 1991, p. 1399).

Assumption:

- 1. 21-pressurized water reactor (PWR) WP, containing commercial spent nuclear fuel (CSNF) assemblies, was assumed to have failed and subsequently partially filled with water
- 2. The steel basket structure was assumed to have fully degraded with the degradation products settling to the bottom of the WP
- **3.** Hematite (Fe₂O₃) is assumed to be the only ironbearing degradation product formed from the original basket material (Assumption 3.1)
- 4. In a separate suite of evaluations, the contribution to the degradation product volume from diaspore generated by oxidized aluminum from the thermal shunt plates is also considered.
- 5. The packing fraction of the hematite, or the hematite-diaspore mixture, was assumed to be 0.58 (Assumption 3.2), with the remaining space filled with water.
- 6. For evaluations involving mixtures, complete reaction of the Fe and Al in the donating structures provides a mole fraction of 0.8439 (mass fraction = 0.9350) for the hematite in the degradation product mixture material.
- 7. Degradation products were assumed to be present outside the fuel pirs in assemblies below the degradation product-water mixture level, but not within the guide tube and instrument tube spaces of those assemblies.
- 8. The water level above the degradation product-water mixture was assumed to extend sufficiently high to maintain criticality, leaving an air-water vapor space at the top of the WP.
- **9.** The radiant energy deposition in the air-water vapor space was calculated with the MCNP code (Briesmeister, 1997) using the KCODE option and tracking the transport of both neutron and gamma particles.
- **10.** The gamma interactions include photon and electron processes leading to dissociation of the gas molecules and generation of nitric acids in the air-water vapor space.

Method

A series of these tallies have been specified in the MCNP input decks to obtain estimates for the following physical quantities:

1. Total, neutron, and gamma energy depositions, in MeV, in the moist air regions of the waste package

2. Average energy released per fission for the waste package

3. Average number of neutrons released per fission for the waste package

4. keff for each of the SNF regions: the fuel pins surrounded by degradation products (lower

region), the fuel pins surrounded by water (middle region), and the fuel pins surrounded by

moist air (top region) (see Figure 5.4 for region definition).

Information is collected for both gamma and neutron events using "f6" and "f4" tally types

3. ASSUMPTIONS

3.1 It is assumed that the steel in the basket assembly and fuel assembly end fittings is fully

degraded. Hematite (Fe₂O₃) and Diaspore (ALO(OH)) are assumed to be the only degradation products remaining from the steel internals. The rational for this assumption is that these minerals have a very low solubility whereas other degradation products with higher solubilities are more likely to be transported out of the WP. This minimizes the amount of neutron absorber materials in the WP which is conservative. This assumption is used in Sections 2 and 5.

3.2 It is assumed that the porosity of packed particles resulting from degradation of the steel

and aluminum internal structure of a 21 PWR WP is 42%. The rationale for this assumption is that measurements of the porosity of compacted granular materials (sand) was limited to approximately 42% before onset of container distortion (CRWMS M&O 1998b, p. 15). This assumption is used in Sections 2, 5, and 6.

3.3 It is assumed that the "G" factor for radiolytic production of nitric acid has the same value for neutron radiation as for gamma radiation. The rationale for this assumption is that radiolytic specie production is proportional to the absorbed energy rather than the effective dose. This assumption is used in Sections 2, 5, and 6.

3.4 It is assumed that the spacing between fuel assemblies in an asymmetric arrangement (resting on the WP) is 0.25 cm. The rationale for this assumption is that degradation products from the basket structure remaining between assemblies will prevent direct contact between assemblies This assumption is used in Sections 5 and 6.

3.5 It is assumed that the stainless steel inner shell of the WP is not degraded. The rationale

for this assumption is that it is conservative. Degradation products from the WP shell would increase the total volume of the hematite in the WP, thus decreasing the moist air space available for radiolytic reactions. This assumption is used in Sections 5 and 6.

3.6 It is assumed that the Babcock and Wilcox (B&W) Mark B 15x15 fuel design used for

this calculation is representative of the fuel types anticipated for potential disposition in the MGR. The basis for this assumption is this assembly type has been used for WP source term (CRWMS M&O 1999a, Section 3) and radiolysis calculations (BSC 2001b, Section 5.2). This assumption is used in Section 5.

3.7 It is assumed that the instrument tube in a B&W Mark B fuel assembly is the same length

as the fuel pins. The rationale for this assumption is that it is conservative allowing slightly more moderator within the assemblies immersed in the degradation products. This assumption is used in Section 5.

End of AK entry. No new entries on this page

09/03/2007

In order to develop MCNP model I initiated the following working files containing all current collected information necessary for model building.

a-h.i fuel_comp.xls 21-PWR-EDAII-A-0914_cor.xls deg_comp.xls

10/01/2007 (AK)(OP)

#09/12/07

Obtained, examined and analyzed data on relative humidity, WP and drift wall temperatures available from TPA output, CNWRA reports and ACNW presentations.

Extracted necessary data from physics handbooks.

Performed calculations to determine water vapor parameters. Data is needed as MCNP model input.

Waste package drift wall temperatures and vapour pressures and densities

Table 09/12/07-	 Drift Wall Ten 	nperatures		
Time[yr]	0.5	Mean		
8.56430E+01 8.99580E+01 9.43740E+01 9.88940E+01 1.03520E+02 1.08250E+02	1.46320E+02 1.46120E+02 1.45730E+02 1.45200E+02 1.40570E+02 1.38910E+02	1.46560E+02 1.46360E+02 1.45970E+02 1.45430E+02 1.40790E+02 1.39130E+02	Interpolation to 100 0.5 1.44093E+02	Years: Mean 1.44321E+02
4.48250E+02 4.61060E+02 4.74160E+02 4.87570E+02 5.01300E+02 5.15350E+02	1.17840E+02 1.17450E+02 1.17060E+02 1.16610E+02 1.16110E+02 1.15590E+02	1.17980E+02 1.17590E+02 1.17200E+02 1.16750E+02 1.16250E+02 1.15730E+02	Interpolation to 500 0.5 1.16157E+02	Years: Mean 1.16297E+02
 1.85430E+03 1.90000E+03 1.94680E+03 1.99470E+03 2.04370E+03 2.09390E+03 9.76900E+03	7.99960E+01 7.91490E+01 7.83050E+01 7.74770E+01 7.66960E+01 7.59460E+01 4.56260E+01	8.01100E+01 7.92620E+01 7.84180E+01 7.75900E+01 7.68090E+01 7.60590E+01 4.56950E+01	Interpolation to 2000 0.5 7.73925E+01) Years: Mean 7.75055E+01
1.00000E+04 1.04500E+04 1.00000E+05	4.53450E+01 4.47640E+01 2.51610E+01	4.54140E+01 4.48310E+01 2.51670E+01		

(See SN September 2007 Radiolysis.xls, Sheet "drift wall temperature")

Densities					
Time	Drift Wall		Vapour	Vapour	
	temperature	Х	Pressure*	Density**	
		x = 1.0 -			
Years	centigrades	(t+273.0)/647.3	Pa==n/m^2	g/cm^3	
100	144.0930437	0.35564183	4.03886E+05	0.020795827	
500	116.1573416	0.398799102	1.74788E+05	0.009645758	
2,000	77.39252449	0.458686043	4.23425E+04	0.002595206	
10,000	45.345	0.508195582	9.69178E+03	0.000653816	
100,000	25.161	0.539377414	3.17352E+03	0.000228581	
*Vapor Pressure= 221.2E+5 *exp((vpa * x +vpb * x**(1.5) + vpc * x**3 +vpd * x**6)/ (1 - x)) Vpa = - 7.76451; Vpb = 1.45838; Vpc = - 2.7758; Vpd = - 1.23303;					
** Vapor Density= <i>P</i> * μ Where: μ = 17.8559 (for H2O) <i>R</i> = 831,441 ± 0,00026	/ <i>R / T</i> ; [Дж/(моль∙К]				

Table 09/12/07-2. Table 16. Drift Wall Temperatures and Correspondence Vapour Pressures and Densities

(See SN September 2007 Radiolysis.doc, Sheet "Radiolise Results")

No new entries on this page

.

#09/15/07

Developed ORIGEN-ARP depletion model based on South Texas reactor campaigr based on data avalaible from "PWR Source Term Generation and Evaluation , Rev 0B, 2004" AMR

	I.	Assembly Type and its Operating Parameters
Source: Document Identifier Pages:		<i>PWR Source Term Generation and Evaluation 000-00C-MGR0-00100-000-00B Page 24 of 33</i>

The moderator temperature	578	κ
Density of the moderator	0.7136	g/cm^3
Input average boron concentration	552.6316	ppm
Operational history of the assembly in the react	orone cycle a	ind new libraries at least every 100
days		
Thermal Reactor Power	2568	MVVt
Assemblies in a core	177	
Power/Assembly	14.50847	MVVt
MTU per Assembly	0.46363	MTU
Enrichement	5%	
Assembly	15 × 15 for	Babcock & Wilcox and
BurnUp	78.25865 GV	Vd/MTU
BurnUp Days	2500.818	days

Fuel Type is selected from the list of fuel types and is input for all compositions listed on the first composition screen.

The fuel assembly types include:

8 × 8 (for BWR fuel), PWR fuel). 14 × 14 (for ABB Combustion Engineering–type PWR fuel with large water

holes)

w15x15 15 × 15 for Babcock & Wilcox and 17 × 17 - Westinghouse-type

#09/16/07

Performed ORIGEN-ARP calculations to determine gamma and neutron sources inside WP for 5-100,000 years for maximum CSNF assembly. Documented results. Data is needed as MCNP model input

II. OrigenARP Input and Output Parameters

II.1 Compositions:

II.2 Input Summary:

Number o: Input Op Input Un	f Isotopes tion its	= 5 = Entering data us; = grams	ing form		
Library: Enrichme: Moderato:	w15x15 nt Factor (Wi r Density (g,	t%U235) = 5.000001 /cc) = 0.713500			
Nuclide	ID	Library ======	Concentration		
11 234	922340	lctinide	206.315400		
U 235	922350	Actinide	23181.500000		
U 236	922360	Actinide	106.634900		
11 238	922380	Actinide	440135.500000		
0	80000	Natural	62361.553000		
••	.				
Neutron Number o	f group	= 44GrpENDF5 = 44			
2.0	000000e+007	8.1873000e+006	6.4340000e+006	4.80000C0e+006	3.0000000e+006
2.4	790000e+006	2.3540000e+006	1.8500000e+006	1.40000C0e+006	9.0000000e+005
4.0	000000e+005	1.0000000e+005	2.5000000e+004	1.70000C0e+004	3.0000000e+003
5.5	000000e+002	1.0000000e+002	3.0000000e+001	1.00000C0e+001	8.1000000e+000
6.0	000000e+000	4.7500000e+000	3.0000000e+000	1.77000C0e+000	1.0000000e+000
6.2	500000e-001	4.000000e- 00 1	3.7500000e-001	3.50000COe-001	3.2500000e-001
2.7	500000e-001	2.5000000e-001	2.2500000e-001	2.00000C0e-001	1.5000000e-001
1.0	000000e-001	7.0000000e-002	5.000000e-002	4.00000C0e-002	3.0000000e-002
2.5	300000e-002	1.0000000e-002	7.5000000e-003	3.00000C0e-003	1.0000000e-005
Gamma Gr	oup =	44GrpENDF5			
Number o	f groups =	44			
2.0	000000e+007	1.4000000e+007	1.2000000e+007	1.0000000e+007	8.0000000e+006
7.5	000000e+006	7.0000000e+006	6.5000000e+006	6.00000C0e+006	5.5000000e+006
5.0	000000e+006	4.5000000e+006	4.0000000e+006	3.50000COe+006	3.0000000e+006
2.5	000000e+006	2.3499990e+006	2.1499990e+006	2.00000C0e+006	1.7999990e+006
1.6	599990e+006	1.5699990e+006	1.500000e+006	1.4399950e+006	1.3299990e+006
1.1	999990e+006	1.0000000e+006	7.9999990e+005	6.9999950e+005	5.9999990e+005
5.1	199990e+005	5.0999990e+005	4.4999990e+005	3.9999950e+005	2.9999990e+005
1.9	999990e+005	1.4999990e+005	9.9999940e+004	7.4999940e+004	6.9999940e+004
6.0	000000e+004	4.5000000e+004	3.0000000e+004	2.00000C0e+004	9.9999960e+003
Number o	f cases es on this na	= 8			
TICW CILLI	ee on ane pa	.A.			
				p r.	

~

```
Case Number #1 -- Irradiation
______
Title: Case: 0-1000 days
Basis: 0.46363 MTU
Time units =
                  Days
OUTPUT OPTIONS
Tables = Nuclides
Output:
     Light Elements
     Actinides
     Fission Products
Output units = grams
Table cutoff = 0.000010
Power
                  Cumulative
                                Write Results
MW/Basis
                     Time
                                 to Dataset
-----
                  _____
                                _____
                  1.0000000e+002
1.4508470e+001
                                    No
                  2.000000e+002
1.4508470e+001
                                   No
1.4508470e+001
                  3.0000000e+002
                                    No
                  4.0000000e+002
                                    No
1.4508470e+001
1.4508470e+001
                  5.000000e+002
                                   No
                  6.0000000e+002
                                   No
1.4508470e+001
1.4508470e+001
                  7.0000000e+002
                                   No
```

```
No new entries on this page
```

1.4508470e+001

1.4508470e+001

1.4508470e+001

8.0000000e+002

9.0000000e+002

1.0000000e+003

No

No

Yes

```
Case Number #2 -- Irradiation
   Title: case 1000 - 2000 days
   Basis: 0.46363 MTU
   Time units =
                      Days
   OUTPUT OPTIONS
   Tables = Nuclides
   Output:
        Light Elements
        Actinides
        Fission Products
   Output units = grams
   Table cutoff = 0.000010
   Power
                      Cumulative
                                    Write Results
   MW/Basis
                         Time
                                     to Dataset
   _____
                      =========
                                    ==================
                      1.0000000e+002
   1.4508470e+001
                                        No
                      2.000000e+002
   1.4508470e+001
                                        No
   1.4508470e+001
                      3.000000e+002
                                        No
   1.4508470e+001
                      4.0000000e+002
                                        No
   1.4508470e+001
                      5.000000e+002
                                        No
   1.4508470e+001
                      6.000000e+002
                                        No
   1.4508470e+001
                      7.0000000e+002
                                        No
   1.4508470e+001
                      8.000000e+002
                                        No
   1.4508470e+001
                      9.0000000e+002
                                        No
   1.4508470e+001
                      1.0000000e+003
                                        Yes
No new entries on this page
```

```
Case Number #3 -- Irradiation
__________
Title: 3 case 2000 - 2556.464
Basis: 0.46363 MTU
Time units =
                  Days
OUTPUT OPTIONS
Tables = Nuclides
Output:
     Light Elements
     Actinides
     Fission Products
Output units = grams
Table cutoff = 0.000010
Power
                  Cumulative
                                 Write Results
                     Time
MW/Basis
                                 to Dataset
_____
                   =========
                                 _____
                  5.5646400e+001
                                    No
1.4508470e+001
1.4508470e+001
                  1.1129280e+002
                                    No
1.4508470e+001
                  1.6693920e+002
                                    No
                  2.2258560e+002
1.4508470e+001
                                    No
1.4508470e+001
                  2.7823200e+002
                                    No
                  3.3387840e+002
                                    No
1.4508470e+001
1.4508470e+001
                  3.8952480e+002
                                    No
```

```
No new entries on this page
```

1.4508470e+001

1.4508470e+001

4.4517120e+002

5.0081760e+002

No

No

Case Number #4 -- Decay _____ Title: 100 Years Basis: 0.46363 MTU = 0.000000 Beginning time = Years Time units U02 Neutron source = Bremsstrahlung = UO2 = Total Library Type Output Options: No output is requested for this case. Cumulative Time Source Spectra Save Results _____ _____ No No 1.0000000e-001 3.0000000e-001 No No 1.0000000e+000 No No No No 3.0000000e+000 1.0000000e+001 No No No 3.0000000e+001 No 1.0000000e+002 Yes Yes Case Number #5 -- Decay Title: 500 Years Basis: 0.46363 MTU Beginning time = 100.000000 = Years Time units = UO2 Neutron source Bremsstrahlung = UO2 Library Type = Total Output Options: No output is requested for this case. Cumulative Time Source Spectra Save Results -----_____ ______ 3.0000000e+002 No No 5.0000000e+002 Yes Yes No new entries on this page ____

Case Number #6 -- Decay Title: 2000 Years Basis: 0.46363 MTU Beginning time = 500.000000 = Time units Years Neutron source = UO2 Bremsstrahlung = UO2 = Total Library Type Output Options: No output is requested for this case. Cumulative Time Source Spectra Save Results ______ -----_____ 1.0000000e+003 No No 2.0000000e+003 Yes Yes Case Number #7 -- Decay Title: 10000 Years Basis: 0.46363 MTU Beginning time = 2000.000000 Time units = Years Neutron source = UO2 Bremsstrahlung = UO2 Library Type = Tota = Total Library Type Output Options: No output is requested for this case. Cumulative TimeSource SpectraSave Results================================= 3.0000000e+003 1.0000000e+004 No No Yes Yes Case Number #8 -- Decay _____ Title: 100000 Years Basis: 0.46363 MTU Beginning time = 10000.000000 Time units = Years Neutron source = UO2 Bremsstrahlung = UO2 Library Type = Total Output Options: No output is requested for this case. Cumulative Time Source Spectra Save Results -----============ ______ 3.0000000e+004 No No

Yes

Yes

1.0000000e+005

II.3 OrigenARP Input/Output Data:

<u>Origen ARP\PWR_P14.inp</u> – Input file; <u>Origen ARP\PWR_P14.out</u> – Output File;

Table 09/16/07-1. OrigenARP output data for 100 years down (case 4)Nuclide/Years100 Y

		Nuclide/	rears		
	Scale	A \A/		(albania)	ot/om^2
light clomont	טו ר	A.vv.	MCNP ID	(g/basis)	alvenno
light element	\$ 	15 9575	9016 626	6 22600	1 24206 - 02
aatinidaa	0	15.6575	0010.020	0.23000E+04	1.242506-02
acumues		222 025	00005 660	1 542005+02	
	u235	233.025	92235.660	1.543000+03	2.09290E-05
	U236	234.018	92230.000	3.37800E+03	4.00243E-00
	u238	236.006	92238.660	4.13700E+05	5.54049E-03
	np237	235.0118	93237.660	6.52800E+02	8.77962E-06
	pu238	236.0045	94238.66c	1.75400E+02	2.34906E-06
	pu239	236.9986	94239.66c	2.84000E+03	3.78755E-05
	pu240	237.992	94240.66c	1.80800E+03	2.40116E-05
	pu241	238.978	94241.66c	7.52300E+00	9.94990E-08
	pu242	239.979	94242.66c	7.75500E+02	1.02140E-05
	am243	240.9734	95243.66c	2.81900E+02	3.69753E-06
fission produ	cts				
34	se 82			3.42300E+01	
35	br 81	80.2212	35081.55c	2.09100E+01	8.23854E-07
36	kr 83	82.2018	36083.66c	3.19800E+01	1.22965E-06
36	kr 84	83.1906	36084.66c	1.26700E+02	4.81380E-06
36	kr 85			3.36900E-02	
36	kr 86	85.1726	36086.66c	1.81134E+02	6.72179E-06
37	rb 85	84.1824	37085.66c	1.21400E+02	4.55809E-06
37	rb 87	86.1624	37087.66c	2.43300E+02	8.92503E-06
38	sr 88			3.35200E+02	
38	sr 90			4.26300E+01	
39	v 89	88,142	39089.66c	4.46000E+02	1.59933E-05
40	zr 90	89,132	40090.66c	5.09200E+02	1.80568E-05
40	zr 91	90.122	40091.66c	5.92100E+02	2.07658E-05
40	zr 92	91 112	40092 66c	6 55400E+02	2 27361E-05
40	zr 93	92 1083	40093 66c	7 10600E+02	2.43844E-05
40	zr 94	93 096	40094 66c	8 10900E+02	2 75310E-05
40	zr 96	95.081	40096 66c	8 47100E+02	2 81596E-05
42	mo 95	00.001	10000.000	7 40900E+02	2.010002.00
42	mo 96			9 38900E+01	
42	mo 97			8 58900E+07	
42	mo 98			8 95400E+02	
42	mo100	05 116	42000 660	2 61000E+02	1 10064E 04
42		90.110 00.1F	43000.000	7 53700E±03	1.13304L-04 2 10712E 05
40	10 99 ru100	90.10	40099.000	2 22700E+02	2.421130-00
44	ru100	100.020	44104 50-	2.231000702	0 633635 05
44	10101	100.039	44101.500	3.0400UETU3	9.03203E-05
44				9.40200E+02	
44	ru104			0./5900E+02	
44	ru106			2.99900E-28	

45	rh103	102.021	45103.66c	3.84200E+02	1.19029E-05
46	pd104	103.0114	46104.66c	4.37000E+02	1.34085E-05
46	pd105	104.0039	46105.66c	4.83500E+02	1.46937E-05
46	pd106	104.9937	46106.66c	5.02300E+02	1.51212E-05
46	pd107			2.88300E+02	
46	pd108	106.9769	46108.66c	4.78800E+02	1.41465E-05
46	pd110	108.961	46110.66c	6.55800E+01	1.90233E-06
47	ag109	107.969	47109.66c	8.96600E+01	2.62473E-06
48	cd110	108.959	48110.66c	8.36200E+01	2.42567E-06
48	cd111	109.952	48111.66c	3.27400E+01	9.41154E⊶07
50	sn126	117.6704	50000.42c	2.17200E+01	5.83415E-07
52	te128			9.82700E+01	
52	te130			4.13100E+02	
53	i127	125.8143	53127.66c	4.94100E+01	1.24128E-06
53	i129	127.798	53129.60c	1.69900E+02	4.20199E⊶06
54	xe131	129.781	54131.66c	3.14400E+02	7.65697E⊶06
54	xe132	130.771	54132.66c	1.37300E+03	3.31852E⊶05
54	xe134	132.755	54134.66c	1.66300E+03	3.95938E⊶05
54	xe136	134.74	54136.66c	2.44800E+03	5.74249E··05
55	cs133	131.764	55133.66c	1.07100E+03	2.56908E-05
55	cs135	133.747	55135.60c	5.16700E+02	1.22107E-05
55	cs137	135.731	55137.60c	1.26700E+02	2.95041E⊶06
56	ba134			3.09400E+02	
56	ba136			5.93700E+01	
56	ba137			1.25400E+03	
56	ba138	136.715	56138.66c	3.02877E+03	7.00222E∾05
57	la139			1.29600E+03	
58	ce140			1.36300E+03	
58	ce142			1.19300E+03	
59	pr141	139.697	59141.50c	1.17600E+03	2.66076E-05
60	nd142			4.84000E+01	
60	nd143	141.682	60143.50c	6.59100E+02	1.4/035E-05
60	nd144	4.40.000	00445 50	1.61900E+03	
60	nd145	143.668	60145.50C	2.24300E+03	4.93463E-05
60	nd146			8.48900E+02	
60	nd148	146.646	60148.50C	1.44610E+03	3.11683E-05
60	nd150	445 050	04447 50	2.01500E+02	
61	pm14/	145.653	61147.50C	3.01400E-10	6.54047E-18
62	sm147	145.653	62147.660	1.65200E+02	3.58489⊑-06
62	Sm148	1 40 000	00450 50-	2.18500E+02	4 400705 05
62	SM150	148.629	62150.500	5.19000E+02	1.103/0E-05
62	SM152	150.615	62152.500	1.54410E+02	3.24035E-06
62	SM154	151 609	62452.664	4.43100E+01	
03 60	eu 153	101.008	03 103.00C		2.1331/E-00
03 64	eu 154	102.0	03134.00C	9.90400E-03	2.00/93E-10
ю4 С 4	ga 156	104.083	04100.000	2.01000E+02	4.109/9E-06
04	ga 158	100.00/	04 I J D. D D C	3.09000E+01	1.00290E-0/

No new entries on this page

_ _ _ _ _ _

- - -

_ _

_ _

	Nuclide/	Years		500 Y
Scale ID	A.W.	MCNP ID	(g/basis)	at/cm^3
0	15.8575	8016.62c	6.23600E+04	1.24296E-02
u234	232.03	92234.66c	4.41E+02	6.00322E-06
u235	233.025	92235.66c	1.58E+03	2.13631E-05
u236	234.018	92236.66c	3.45E+03	4.66102E-05
u238	236.006	92238.66c	4.14E+05	5.54049E-03
np237	235.0118	93237.66c	1.06E+03	1.41889E-05
pu239	236.9986	94239.66c	2.82E+03	3.75821E-05
pu240	237.992	94240.66c	1.74E+03	2.30687E-05
pu242	239.979	94242.66c	7.75E+02	1.02100E-05
am241	238.986	95241.66c	4.56E+02	6.02555E-06
am243	240.9734	95243.66c	2.72E+02	3.56112E-06
br 81	80.2212	35081.55c	2.09E+01	8.23854E-07
se 82			3.42E+01	
kr 83	82.2018	36083.66c	3.20E+01	1.22965E-06
kr 84	83.1906	36084.66c	1.27E+02	4.81380E-06
rb 85	84.1824	37085.66c	1.21E+02	4.55809E-06
kr 86	85.1726	36086.66c	1.81E+02	6.72054E-06
rb 87	86.1624	37087.66c	2.43E+02	8.92503E-06
sr 88	88	37087.66c	3.35E+02	1.20395E-05
y 89	88.142	39089.66c	4.46E+02	1.59933E-05
zr 90	89.132	40090.66c	5.52E+02	1.95674E-05
zr 91	90.122	40091.66c	5.92E+02	2.07658E-05
zr 92	91.112	40092.66c	6.55E+02	2.27361E-05
zr 93	92.1083	40093.66c	7.11E+02	2.43810E-05
zr 94	93.096	40094.66c	8.11E+02	2.75310E-05
mo 95			7.41E+02	
zr 96	95.081	40096.66c	8.47E+02	2.81596E-05
mo 96			9.39E+01	
mo 97			8.59E+02	
mo 98			8.95E+02	
tc 99	98.15	43099.66c	7.53E+02	2.42391E-05
mo100	95.116	42000.66c	3.61E+03	1.19964E-04
ru100			2.24E+02	
ru101	100.039	44101.50c	1.04E+03	3.29692E-05
ru102			9.45E+02	
ru103	102.022	44103.50c	2.01E+03	6.21256E-05
ru104			6.76E+02	
pd104	103.0114	46104.66c	4.37E+02	1.34085E-05
pd105	104.0039	46105.66c	4.84E+02	1.46937E-05
pd106	104.9937	46106.66c	5.02E+02	1.51212E-05
pd107			2.88E+02	
pd108	106.9769	46108.66c	4.79E+02	1.41465E-05
ag109	107.969	47109.66c	8.97E+01	2.62473E-06
pd110	108.961	46110.66c	6.56E+01	1.90233E-06

Table 09/16/07-2. OrigenARP output data for 500 years down (case 5)

cd110	108.959	48110.66c	8.36E+01	2.42567E-06
cd111	109.952	48111.66c	3.27E+01	9.41154E-07
sn126	117.6704	50000.42c	2.17E+01	5.81804E-07
i127	125.8143	53127.66c	4.94E+01	1.24128E-06
te128			9.83E+01	
i129	127.798	53129.60c	1.70E+02	4.20199E-06
te130			4.13E+02	
xe131	129.781	54131.66c	3.14E+02	7.65697E-06
xe132	130.771	54132.66c	1.37E+03	3.31852E-05
cs133	131.764	55133.66c	1.07E+03	2.56908E-05
xe134	132.755	54134.66c	1.66E+03	3.95938E-05
ba134			3.09E+02	
cs135	133.747	55135.60c	5.17E+02	1.22083E-05
xe136	134.74	54136.66c	2.45E+03	5.74249E-05
ba136			5.94E+01	
ba137			1.38E+03	
ba138	136.715	56138.66c	3.16E+03	7.29583E-05
la139			1.30E+03	
ce140			1.36E+03	
pr141	139.697	59141.50c	1.18E+03	2.66076E-05
ce142			1.19E+03	
nd142			4.84E+01	
nd143	141.682	60143.50c	6.59E+02	1.47035E-05
nd144			1.62E+03	
nd145	143.668	60145.50c	3.09E+03	
nd146			8.49E+02	
sm147	145.653	62147.66c	1.65E+02	3.58489E-06
nd148	146.646	60148.50c	3.96E+02	8.52867E-06
sm148			2.19E+02	
nd150			2.02E+02	
sm150	148.629	62150.50c	5.19E+02	1.10370E-05
sm152	150.615	62152.50c	1.10E+02	2.31049E-06
eu153	151.608	63153.66c	1.75E+02	3.65694E-06
sm154			4.43E+01	
gd154	152.599	64154.66c	3.78E+01	7.83556E-07
gd156	154.583	64156.66c	2.01E+02	4.10979E-06
gd158	156.567	64158.66c	3.89E+01	7.85298E-07

Table 09/	16/07-3. Or	igenARP outp	ut data for 2000 yea	ars down (case 6)
	Nuclide/			UUU T
Scale ID	A.W.	MCNP ID	(g/basis)	at/cm^3
0	15.8575	8016.62c	6.23600E+04	1.24296E-02
u234	232.03	92234.66c	4.46E+02	6.08087E-06
u235	233.025	92235.66c	1.69E+03	2.29636E-05
u236	234.018	92236.66c	3.70E+03	4.99868E-05
u238	236.006	92238.66c	4.14E+05	5.54049E-03
np237	235.0118	93237.66c	1.46E+03	1.96761E-05
pu239	236.9986	94239.66c	2.73E+03	3.64485E-05
pu240	237.992	94240.66c	1.48E+03	1.96954E-05
, pu242	239,979	94242.66c	7.74E+02	1.01876E-05
am243	240.9734	95243.66c	2.36E+02	3.09286E-06
se 82			3.42E+01	
br 81	80.2212	35081.55c	2.09E+01	8.23854E-07
kr 83	82.2018	36083.66c	3.20E+01	1.22965E-06
kr 84	83.1906	36084.66c	1.27E+02	4.81380E-06
kr 86	85.1726	36086.66c	1.81E+02	6.72054E-06
rb 85	84.1824	37085.66c	1.21E+02	4.55809E-06
rb 87	86.1624	37087.66c	2.43E+02	8.92503E-06
sr 88	88	37087.66c	3.35E+02	1.20395E-05
y 89	88.142	39089.66c	4.46E+02	1.59933E-05
zr 90	89.132	40090.66c	5.52E+02	1.95674E-05
zr 91	90.122	40091.66c	5.92E+02	2.07658E-05
zr 92	91.112	40092.66c	6.55E+02	2.27361E-05
zr 93	92.1083	40093.66c	7.10E+02	2.43638E-05
zr 94	93.096	40094.66c	8.11E+02	2.75310E-05
zr 96	95.081	40096.66c	8.47E+02	2.81596E-05
mo 95			7.41E+02	
mo 96			9.39E+01	
mo 97			8.59E+02	
mo 98			8.95E+02	
mo100	95,116	42000.66c	3.61E+03	1.19964E-04
tc 99	98,15	43099.66c	7.49E+02	2.41200E-05
ru100			2.24E+02	
ru101	100.039	44101.50c	1.04E+03	3.29692E-05
ru102			9.45E+02	
ru103	102.022	44103 50c	2 01E+03	6 21256E-05
ru104			6 76E+02	0.212002 00
pd104	103 0114	46104 66c	4 37E+02	1 34085E-05
pd105	104 0039	46105 66c	4 84E+02	1 46937E-05
pd106	104 9937	46106.66c	5.02E+02	1.10007E-00
pd107			2 88E+02	
pd108	106 9769	46108 66c	4 79F+02	1 41436F-05
pd110	108 961	46110 66c	6 56E+01	1 90233E-06
ag109	107 969	47109.660	8.97F+01	2 62473F-06
			0.01 - 01	

cd110	108.959	48110.66c	8.36E+01	2.42567E-06
cd111	109.952	48111.66c	3.27E+01	9.41154E-07
sn126	117.6704	50000.42c	2.14E+01	5.75894E-07
te128			9.83E+01	
te130			4.13E+02	
i127	125.8143	53127.66c	4.94E+01	1.24128E-06
i129	127.798	53129.60c	1.70E+02	4.20199E-06
xe131	129.781	54131.66c	3.14E+02	7.65697E-06
xe132	130.771	54132.66c	1.37E+03	3.31852E-05
xe134	132.755	54134.66c	1.66E+03	3.95938E-05
xe136	134.74	54136.66c	2.45E+03	5.74249E-05
cs133	131.764	55133.66c	1.07E+03	2.56908E-05
cs135	133.747	55135.60c	5.16E+02	1.22036E-05
ba134			3.09E+02	
ba136			5.94E+01	
ba137			1.38E+03	
ba138	136.715	56138.66c	3.16E+03	7.29583E-05
la139			1.30E+03	
ce140			1.36E+03	
ce142			1.19E+03	
pr141	139.697	59141.50c	1.18E+03	2.66076E-05
nd142			4.84E+01	
nd143	141.682	60143.50c	6.59E+02	1.47035E-05
nd144			1.62E+03	
nd145	143.668	60145.50c	2.24E+03	4.93463E-05
nd146			8.49E+02	
nd148	146.646	60148.50c	1.45E+03	3.11683E-05
nd150			2.02E+02	
sm147	145.653	62147.66c	1.65E+02	3.58489E-06
sm148			2.19E+02	
sm150	148.629	62150.50c	5.19E+02	1.10370E-05
sm152	150.615	62152.50c	1.54E+02	3.24035E-06
sm154			4.43E+01	
eu153	151.608	63153.66c	1.31E+02	2.73317E-06
gd154	152.599	64154.66c	3.78E+01	7.83556E-07
gd156	154.583	64156.66c	2.01E+02	4.10979E-06

No new entries on this page

156.567 64158.66c

gd158

3.89E+01

7.85298E-07

Table	Nuclide/	Years	10 10 10000 10000 10000 100000 100000 100000 100000 1000000	,000 Y
Scale ID	A.W.	MCNP ID	(g/basis)	at/cm^3
0	15.8575	8016.62c	6.24E+04	1.24296E-02
u234	232.03	92234.66c	4.37E+02	5.95146E-06
u235	233.025	92235.66c	2.26E+03	3.06407E-05
u236	234.018	92236.66c	4.53E+03	6.12105E-05
u238	236.006	92238.66c	4.14E+05	5.54049E-03
np237	235.0118	93237.66c	1.50E+03	2.02276E-05
pu239	236.9986	94239.66c	2.28E+03	3.03937E-05
pu240	237.992	94240.66c	6.37E+02	8.45719E-06
pu242	239.979	94242.66c	7.64E+02	1.00572E-05
am243	240.9734	95243.66c	1.11E+02	1.45724E-06
se 82			3 42F+01	
br 81	80 2212	35081 550	2.09E+01	8 23854E-07
kr 83	82 2018	36083 660	3 20E+01	1 22965E-06
kr 84	83 1906	36084 66c	1 27E+02	4 81380E-06
kr 86	85 1726	36086 66c	1.27E+02	6 72054E-06
rh 85	84 1824	37085 66c	1.01E+02	4 55809E-06
rb 87	86 1624	37087.66c	2 43E+02	8 92503E-06
er 88	88	37087.66c	2.45E+02	1 20395E-05
V 80	88 142	39089 66c	4 46E+02	1.59933E-05
y 03 7r 90	89 132	40090.66c	5 52E+02	1.00000E 00
zr Q1	90 122	40090.000 40091.66c	5.92E+02	2 07658E-05
zr 92	91 112	40092 66c	6.55E+02	2 27361E-05
zr 93	92 1083	40093.66c	7.08E+02	2 42780E-05
7r 94	93 096	40094 66c	8 11F+02	2 75310E-05
zr 96	95 081	40096 66c	8.47E+02	2 81596E-05
mo 95	55.001	40000.000	7 41F+02	2.010002.001
mo 96			9 39E+01	
mo 97			8 59E+02	
mo 98			8.95E+02	
mo100	95 116	42000.66c	3.61E+03	1.19964E-04
tc 99	98 15	43099 66c	7 30E+02	2.34952E-05
ru100	00.10		2 24E+02	
ru101	100 039	44101 50c	1.04E+02	3 29692E-05
ru102	100.000	11101.000	9 45E+02	0.200022 00 1
ru102	102 022	44103 50c	2.01E+03	6 21256E-05
ru104	TOLIGLE	11100.000	6 76E+02	0.212002 00
nd104	103 0114	46104 66c	4.37F+02	1.34085E-05
nd105	104 0039	46105.66c	4.84F+02	1 46937E-05
nd106	104 9937	46106 660	5 02F+02	1.51212E-05
nd107	104.0001	40100.000	2 88F+02	1.01212E-00
nd108	106 9769	46108 66c	4 79F+02	1 41377E-05
nd110	108 961	46110 66c	6 56F+01	1 90233E-06
parto	100.001	10110.000	0.000	1.002002.001

Table 09/16/07-4. OrigenARP output data for 10000 years down (case 7)

ag109	107.969	47109.66c	8.97E+01	2.62473E-06
cd110	108.959	48110.66c	8.36E+01	2.42567E-06
cd111	109.952	48111.66c	3.27E+01	9.41154E-07
sn126	117.6704	50000.42c	2.03E+01	5.44736E-07
te128			9.83E+01	·
te130			4.13E+02	
i127	125.8143	53127.66c	4.94E+01	1.24128E-06
i129	127.798	53129.60c	1.70E+02	4.19951E-06
xe131	129.781	54131.66c	3.14E+02	7.65697E-06
xe132	130.771	54132.66c	1.37E+03	3.31852E-05
xe134	132.755	54134.66c	1.66E+03	3.95938E-05
xe136	134.74	54136.66c	2.45E+03	5.74249E-05
cs133	131.764	55133.66c	1.07E+03	2.56908E-05
cs135	133.747	55135.60c	5.15E+02	1.21729E-05
ba134			3.09E+02	
ba136			5.94E+01	
ba137			1.38E+03	
ba138	136.715	56138.66c	3.16E+03	7.29583E-05
la139			1.30E+03	
ce140			1.36E+03	
ce142			1.19E+03	
pr141	139.697	59141.50c	1.18E+03	2.66076E-05
nd142			4.84E+01	
nd143	141.682	60143.50c	6.59E+02	1.47035E-05
nd144			1.62E+03	
nd145	143.668	60145.50c	2.24E+03	4.93463E-05
nd146			8.49E+02	
nd148	146.646	60148.50c	1.45E+03	3.11683E-05
nd150			2.02E+02	
sm147	145.653	62147.66c	1.65E+02	3.58489E-06
sm148			2.19E+02	
sm150	148.629	62150.50c	5.19E+02	1.10370E-05
sm152	150.615	62152.50c	1.54E+02	3.24035E-06
sm154			4.43E+01	
eu153	151.608	63153.66c	1.31E+02	2.73317E-06
gd154	152.599	64154.66c	3.78E+01	7.83556E-07
gd156	154.583	64156.66c	2.01E+02	4.10979E-06
gd158	156.567	64158.66c	3.89E+01	7.85298E-07

No new entries on this page

-1-27 -

lable	09/16/07-5. Nuclide/	VrigenARP of Years	utput data for 100	100 000 Years down (0	case
Scale	1100.000	louio			
ID	A.W.	MCNP ID	(g/basis)	at/cm^3	
0	15.8575	8016.62c	6.24E+04	1.24296E-02	
u234	232.03	92234.66c	3.44E+02	4.68461E-06	
u235	233.025	92235.66c	4.43E+03	6.00471E-05	
u236	234.018	92236.66c	5.15E+03	6.94899E-05	
u238	236.006	92238.66c	4.14E+05	5.54183E-03	
np237	235.0118	93237.66c	1.47E+03	1.97299E-05	
pu239	236.9986	94239.66c	1.83E+02	2.44323E-06	
pu242	239.979	94242.66c	6.47E+02	8.51756E-06	
se 82			3.42E+01		
br 81	80.2212	35081.55c	2.09E+01	8.23854E-07	
kr 83	82.2018	36083.66c	3.20E+01	1.22965E-06	
kr 84	83.1906	36084.66c	1.27E+02	4.81380E-06	
kr 86	85.1726	36086.66c	1.81E+02	6.72054E-06	
rb 85	84.1824	37085.66c	1.21E+02	4.55809E-06	
rb 87	86.1624	37087.66c	2.43E+02	8.92503E-06	
sr 88	88	37087.66c	3.35E+02	1.20395E-05	
y 89	88.142	39089.66c	4.46E+02	1.59933E-05	
zr 90	89.132	40090.66c	5.52E+02	1.95674E-05	
zr 91	90.122	40091.66c	5.92E+02	2.07658E-05	
zr 92	91.112	40092.66c	6.55E+02	2.27361E-05	
zr 93	92.1083	40093.66c	6.79E+02	2.33069E-05	
zr 94	93.096	40094.66c	8.11E+02	2.75310E-05	
zr 96	95.081	40096.66c	8.47E+02	2.81596E-05	
mo 95			7.41E+02	I	
mo 96			9.39E+01		
mo 97			8.59E+02		
mo 98			8.95E+02		
mo100	95.116	42000.66c	3.61E+03	1.19964E-04	
tc 99	98.15	43099.66c	5.43E+02	1.74830E-05	
ru 99			2.11E+02		
ru100			2.24E+02		
ru101	100.039	44101.50c	2.88E+03	9.08573E-05	
ru102			9.45E+02		
ru104			6.76E+02		
rh103	102.022	44103.50c	3 84E+02	1 19028E-05	
pd104	103.0114	46104.66c	4.37E+02	1.34085E-05	
pd105	104.0039	46105.66c	4.84F+02	1.46937E-05	
pd106	104,9937	46106.66c	5.02E+02	1.51212E-05	
pd107			2 85F+02		
pd108	106 9769	46108 66c	4 76F+02	1 40549F-05	
nd110	108 961	46110 66c	6 56E+01	1 90233E-06	
		.0.1.0.000	0.000.001	1.002000-00	

Table 09/16/07-5 (OrigenARP	output data for 100000 years down (case 8)
	ongo a a	output data for receive years down (output)
Nuclide/	Years	100 000 Y

ag109 cd110 cd111 te128 te130	107.969 108.959 109.952	47109.66c 48110.66c 48111.66c	8.97E+01 8.36E+01 3.27E+01 9.83E+01 4.13E+02	2.62473E-06 2.42567E-06 9.41154E-07
i127	125.8143	53127.66c	4.94E+01	1.24128E-06
i129	127.798	53129.60c	1.69E+02	4.18220E-06
xe131	129.781	54131.66c	3.14E+02	7.65697E-06
xe132	130.771	54132.66c	1.37E+03	3.31852E-05
xe134	132.755	54134.66c	1.66E+03	3.95938E-05
xe136	134.74	54136.66c	2.45E+03	5.74249E-05
cs133	131.764	55133.66c	1.07E+03	2.56908E-05
cs135	133.747	55135.60c	5.01E+02	1.18467E-05
ba134			3.09E+02	
ba136			5.94E+01	
ba137			1.38E+03	
ba138	136.715	56138.66c	3.16E+03	7.29583E-05
la139			1.30E+03	
ce140			1.36E+03	
ce142			1.19E+03	
pr141	139.697	59141.50c	1.18E+03	2.66076E-05
nd142			4.84E+01	1
nd143	141.682	60143.50c	6.59E+02	1.47035E-05
nd144			1.62E+03	I
nd145	143.668	60145.50c	2.24E+03	4.93463E-05
nd146			8.49E+02	1
nd148	146.646	60148.50c	1.45E+03	3.11683E-05
nd150			2.02E+02	1
sm147	145.653	62147.66c	1.65E+02	3.58489E-06
sm148			2.19E+02	1
sm150	148.629	62150.50c	5.19E+02	1.10370E-05
sm152	150.615	62152.50c	1.54E+02	3.24035E-06
sm154			4.43E+01	1
eu153	151.608	63153.66c	1.31E+02	2.73317E-06
gd154	152.599	64154.66c	3.78E+01	7.83556E-07
gd156	154.583	64156.66c	2.01E+02	4.10979E-06
gd158	156.567	64158.66c	3.89E+01	7.85298E-07

Table 09/16/07-6.

Smeared by Assembly Nuclides Densities for the Fuel Clad, Guide Tube and Instrument Tube

Scale ID	A.W.	MCNP ID	Nuclides Densities [at/cm ³]
cr	51.549	24000.50c	7.72271E-06
fe	55.365	26000.55c	1.43800E-05
Zr	90.436	40000.66c	4.32181E-03
sn	117.6704	50000.42c	4.73643E-05

See SN September 2007 Radiolysis.xls, Sheet "Neutron Nuclides Densities"

Table 09/16/07-7. OrigenARP output data for 500 years down (case 5) accommodated for the photon transport libraries

	Nuclide		500 Years	
Scale ID	A.W.	MCNP ID	(g/basis)	at/cm^3
0	15.8575	8000.04p	6.23600E+04	1.24296E-02
				1
u234	232.03		4.41E+02	6.00322E-06
u235	233.025		1.58E+03	2.13631E-05
u236	234.018		3.45E+03	4.66102E-05
u238	236.006		4.14E+05	5.54049E-03
		92000.04p		5.61446E-03
np237	235 0118	93000 04n	1.06E+03	1 41889E-05
nu239	236 9986	<u> </u>	2 82E+03	3 75821E-05
pu200 pu240	237 992		1 74E+03	2 30687E-05
pu2 10	239 979		7 75E+02	1 02100E-05
Pu2-12	200.010	94000 04p	1.102.02	7.08607E-05
om241	238 086	04000.04p	4 565+02	6 02555E 06
am241	230.900		4.30L+02	3 56112E 06
am245	240.37.34	05000 04p	2.720,02	9.58666E 06
		93000.04p		9.000002-00
se 82	78.2817	34000.04p	3.42E+01	1.38208E-06
br 81	80.2212	35000.04p	2.09E+01	8.23854E-07
kr 83	82.2018		3.20E+01	1.22965E-06
kr 84	83.1906		1.27E+02	4.81380E-06
kr 86	85.1726		1.81E+02	6.72054E-06
		36000.04p	-	1.27640E-05
rb 85	84.1824		1.21E+02	4.55809E-06
rb 87	86.1624		2.43E+02	8.92503E-06
		37000.04p		1.34831E-05
~~	00 0074		0.055.00	
sr 88	86.8674	38000.04p	3.35E+02	1.21964E-05
y 89	88.142	39000.04p	4.46E+02	1.59933E-05
zr 90	89.132	•	5.52E+02	1.95674E-05
zr 91	90.122		5.92E+02	2.07658E-05
zr 92	91.112		6.55E+02	2.27361E-05
zr 93	92.1083		7.11E+02	2.43810E-05
zr 94	93.096		8.11E+02	2.75310E-05
zr 96	95.081		8.47E+02	2.81596E-05
		40000.04p	· · ·	1.43141E-04
mo 95	90	- 1-	- 7.41E+02	2.60197E-05
mo 96	91		9.39E+01	3.26109E-06
mo 97	92		8.59E+02	2.95080E-05
mo 98	93		8.95E+02	3.04312E-05

mo100	95.116		1.02E+03	3.39279E-05
		42000.04p		1.23148E-04
tc 99	98 15	43000 04n	7 53E+02	2 42391E-05
	99		2 24E+02	7 14194E-06
ru100	100 039		8 20E+02	2 59014E-05
Tator	100.000		0.202.02	2.000142.00
ru102	101		9.45E+02	2.95793E-05
ru103	102.022		3.84E+02	1.19028E-05
ru104	103		6.76E+02	2.07410E-05
		44000.04p		9.52665E-05
pd104	103.0114		4.37E+02	1.34085E-05
pd105	104.0039		4.84E+02	1.46937E-05
pd106	104.9937		5.02E+02	1.51212E-05
pd107	106		2.88E+02	8.59655E-06
pd108	106.9769		1.91E+02	5.62847E-06
pd110	108.961		6.56E+01	1.90233E-06
		46000.04p		5.93508E-05
	· · · · · · · · · · · · · · · · · · ·			
ag109	107.969	47000.04p	8.97E+01	2.62473E-06
cd110	108.959		8.36E+01	2.42567E-06
cd111	109.952		3.27E+01	9.41154E-07
		48000.04p		3.36683E-06
sn126	117.6704	50000.04p	2.17E+01	5.81804E-07
te128	126.504		9.83E+01	2.45529E-06
te130	126.504		4.13E+02	1.03213E-05
		52000.04p	_	1.27766E-05
i127	125.8143		4.94E+01	1.24128E-06
i129	127.798		1.70E+02	4.20199E-06
		53000.04p		5.44327E-06
xe131	129,781	,	- 3.14E+02	7.65697E-06
xe132	130,771		1.37E+03	3.31852E-05
xe134	132.755		1.66E+03	3.95938E-05
xe136	134.74		2.45E+03	5.74249E-05
		54000.04p		1 37861E-04
cs133	131 764		1 07E+03	2 56908E-05
cs135	133 747		5 17E+02	1 22083E-05
		55000 04p	0.112 02	3 78991E-05
ba13/	133	00000.04p	3 00E+02	7 35282E-06
ba134	135		5.03E+02	1 30001E-06
ba137	136	-	1 38F+03	3 20952E-05
ha138	136 715		1.00E+00	3 25053E-05
	100.710	56000 040	1.712.05	7 224245 05
		<u> </u>	,	1.33434E-03
la139	137.712	57000.04p	1.30E+03	2.97453E-05
ce140	138.916	iF	1.36E+03	3.10119F-05
ce142	138,916		1.19F+03	2.71440E-05
		·		

		58000.04p		5.81559E-05
	139 697	59000 04n	1 18E+03	2 66076E-05
	140.692	00000.0-+p	4.84E+01	1.087/1E.06
nu 142	140.002		4.04ETU1	1.00741E-00
na143	141.082		0.11E+U2	1.30230E-05
nd144	142.668		1.62E+03	3.58679E-05
nd145	143.668		6.24E+02	1.37281E-05
nd146	144.646		8.49E+02	1.85496E-05
nd148	146.646		3.96E+02	8.52867E-06
nd150	148.646		2.02E+02	4.28457E-06
		60000.04p	_	9.56701E-05
sm147	145.653		1.65E+02	3.58489E-06
sm148	146.64		2.19E+02	4.70960E-06
sm150	148.629		3.01E+02	6.39037E-06
sm152	150.615		1.10E+02	2.31049E-06
sm154	152.615		4.43E+01_	9.17677E-07
		62000.04p		1.79130E-05
eu153	151.608	63000.04p	1.31E+02	2.73317E-06
gd154	152.599		3.78E+01	7.83556E-07
gd156	154.583		2.01E+02	4.10979E-06
gd158	156.567		3.89E+01	7.85298E-07
		64000.04p		5.67865E-06

Table 09/16/07-8.

Smeared by Assembly Nuclides Densities for the Fuel Clad, Guide Tube and Instrument Tube

Scale ID	A.W.	MCNP ID	Nuclides Densities [at/cm ³]
cr	51.549	24000.04p	7.72271E-06
fe	55.365	28000.04p	1.43800E-05
Zr	90.436	40000.04p	4.32181E-03
sn	117.6704	50000.04p	4.73643E-05

See SN September 2007 Radiolysis.xls, Sheet "Photon Nuclides Densities"

All Photon Calculation Cases Uses the Same Material Composition

					•	10,000	100,000
grp	Start	End	100 Years	500 Years	2000 Years	Years	Years
	MeV	MeV	n/sec/basis	n/sec/basis	n/sec/basis	n/sec/bas s	n/sec/basis
1	1.00E-11	3.00E-09	5.137E-05	4.468E-05	3.602E-05	1.181E-05	7.537E-07
2	3.00E-09	7.50E-09	4.330E-05	3.187E-05	2.574E-05	8.548E-06	6.446E-07
3	7.50E-09	1.00E-08	2.264E-05	1.506E-05	1.217E-05	4.079E-06	3.400E-07
4	1.00E-08	2.53E-08	1.447E-04	8.317E-05	6.737E-05	2.301E-05	2.317E-06
5	2.53E-08	3.00E-08	4.828E-05	2.502E-05	2.031E-05	7.052E-06	8.192E-07
6	3.00E-08	4.00E-08	1.092E-04	5.404E-05	4.390E-05	1.537E-05	1.896E-06
7	4.00E-08	5.00E-08	1.178E-04	5.570E-05	4.529E-05	1.598E-05	2.089E-06
8	5.00E-08	7.00E-08	2.598E-04	1.174E-04	9.555E-05	3.400E-05	4.700E-06
9	7.00E-08	1.00E-07	4.445E-04	1.919E-04	1.563E-04	5.610E-05	8.197E-06
10	1.00E-07	1.50E-07	8.683E-04	3.602E-04	2.937E-04	1.063E-04	1.631E-05
11	1.50E-07	2.00E-07	1.019E-03	4.191E-04	3.440E-04	1.309E-04	1.992E-05
12	2.00E-07	2.25E-07	5.565E-04	2.261E-04	1.856E-04	7.080E-05	1.092E-05
13	2.25E-07	2.50E-07	5.853E-04	2.361E-04	1.938E-04	7.388E-05	1.149E-05
14	2.50E-07	2.75E-07	6.127E-04	2.458E-04	2.017E-04	7.684E-05	1.203E-05
15	2.75E-07	3.25E-07	1.303E-03	5.191E-04	4.260E-04	1.621E-04	2.558E-05
16	3.25E-07	3.50E-07	6.883E-04	2.727E-04	2.238E-04	8.508E-05	1.352E-05
17	3.50E-07	3.75E-07	7.117E-04	2.811E-04	2.307E-04	8.765E-05	1.398E-05
18	3.75E-07	4.00E-07	7.344E-04	2.893E-04	2.373E-04	9.013E-05	1.442E-05
19	4.00E-07	6.25E-07	7.533E-03	2.938E-03	2.410E-03	9.131E-04	1.479E-04
20	6.25E-07	1.00E-06	1.567E-02	6.038E-03	4.950E-03	1.868E-03	3.073E-04
21	1.00E-06	1.77E-06	4.169E-02	1.591E-02	1.304E-02	4.902E-03	8.170E-04
22	1.77E-06	3.00E-06	8.709E-02	3.305E-02	2.706E-02	1.014E-02	1.704E-03
23	3.00E-06	4.75E-06	1.577E-01	5.963E-02	4.882E-02	1.824E-02	3.080E-03
24	4.75E-06	6.00E-06	1.327E-01	5.009E-02	4.100E-02	1.530E-02	2.590E-03
25	6.00E-06	8.10E-06	2.550E-01	9.614E-02	7.869E-02	2.932E-02	4.975E-03
26	8.10E-06	1.00E-05	2.614E-01	9.845E-02	8.057E-02	2.999E-02	5.097E-03
27	1.00E-05	3.00E-05	4.047E+00	1.519E+00	1.243E+00	4.617E-01	7.876E-02
28	3.00E-05	1.00E-04	2.616E+01	9.807E+00	7.834E+00	2.896E+00	4.950E-01
29	1.00E-04	5.50E-04	3.712E+02	1.386E+02	1.115E+02	4.120E+01	7.035E+00
30	5.50E-04	3.00E-03	4.713E+03	1.758E+03	1.418E+03	5.241E+02	8.948E+01
31	3.00E-03	1.70E-02	6.382E+04	2.381E+04	1.915E+04	7.081E+03	1.208E+03
32	1.70E-02	2.50E-02	5.384E+04	2.008E+04	1.613E+04	5.967E+03	1.018E+03
33	2.50E-02	1.00E-01	8.365E+05	3.122E+05	2.513E+05	9.297E+04	1.585E+04
34	1.00E-01	4.00E-01	6.016E+06	2.246E+06	1.813E+06	6.706E+05	1.142E+05
35	4.00E-01	9.00E-01	1.308E+07	4.872E+06	3.934E+06	1.453E+06	2.466E+05
36	9.00E-01	1.40E+00	1.311E+07	4.858E+06	3.906E+06	1.441E+)6	2.419E+05
37	1.40E+00	1.85E+00	1.068E+07	3.929E+06	3.107E+06	1.146E+)6	1.892E+05
38	1.85E+00	2.35E+00	1.042E+07	3.795E+06	2.913E+06	1.076E+06	1.734E+05
39	2.35E+00	2.48E+00	2.313E+06	8.360E+05	6.280E+05	2.321E+05	3.676E+04
40	2.48E+00	3.00E+00	8.331E+06	2.987E+06	2.217E+06	8.172E+05	1.280E+05
41	3.00E+00	4.80E+00	1.426E+07	5.043E+06	3.872E+06	1.407E+06	2.168E+05
42	4.80E+00	6.43E+00	3.714E+06	1.295E+06	1.053E+06	3.771E+05	5.453E+04
43	6.43E+00	8.19E+00	1.158E+06	3.922E+05	3.190E+05	1.129E+05	1.512E+04
44	8.19E+00	2.00E+01	3.903E+05	1.265E+05	1.027E+05	3.579E+04	4.292E+03
		Total	8.44316E+07	3.07377E+07	2.41528E+07	8.87528E+06	1.43898E+06

Table 09/16/07-9. Total neutron spectra for basis = 0.46363 MTU [neutrons/sec/basis]

See <u>SN September 2007 Radiolysis.xls</u>, Sheet "Neutron Spectra"

Table 09/16/07-10. Total Photon Spectra for basis = 0.46363 MTU [photons/sec/basis]

		_					10000	100000
grp		Start	End	100 Years	500 Years	2000 Years	Years	Years
		MeV	MeV	p/sec/basis	p/sec/basis	p/sec/basis	p/sec/basis	p/sec/basis
	1	1.00000E-02	2.00000E-02	1.34600E+14	2.51900E+13	5.32600E+12	1.74200E+12	1.64100E+11
	2	2.00000E-02	3.00000E-02	4.51400E+13	3.95200E+12	4.63500E+11	7.21100E+10	2.62500E+10
	3	3.00000E-02	4.50000E-02	5.39900E+13	2.96800E+11	1.58600E+11	7.34700E+10	1.50900E+10
	4	4.50000E-02	6.00000E-02	6.55500E+13	2.35800E+13	2.17600E+12	2.80300E+10	1.02200E+10
	5	6.00000E-02	7.00000E-02	1.00100E+13	3.67900E+10	3.09000E+10	1.67000E+10	4.91800E+09
	6	7.00000E-02	7.50000E-02	5.71700E+12	1.41200E+12	1.22600E+12	5.78600E+11	5.40800E+09
	7	7.50000E-02	1.00000E-01	1.67800E+13	2.40200E+11	2.03900E+11	1.14100E+11	4.53500E+10
	8	1.00000E-01	1.50000E-01	1.78800E+13	1.29300E+12	1.11100E+12	5.28700E+11	1.12300E+10
	9	1.50000E-01	2.00000E-01	1.07300E+13	1.45800E+10	1.24200E+10	7.98400E+09	7.22100E+09
	10	2.00000E-01	3.00000E-01	8.88900E+12	6.17800E+11	5.37000E+11	2.58100E+11	2.41700E+10
	11	3.00000E-01	4.00000E-01	5.88400E+12	8.37000E+10	7.84500E+10	4.97100E+10	3.93500E+10
	12	4.00000E-01	4.50000E-01	1.72800E+12	2.30400E+10	2.29000E+10	2.17700E+10	1.57200E+10
	13	4.50000E-01	5.10000E-01	1.65500E+12	5.31100E+08	3.98200E+08	3.81100E+08	1.43200E+09
	14	5.10000E-01	5.12000E-01	1.17100E+09	2.45200E+06	5.73400E+05	4.73400E+06	3.62500E+07
	15	5.12000E-01	6.00000E-01	7.28800E+11	6.28300E+08	5.72100E+08	6.06500E+08	8.79000E+08
	16	6.00000E-01	7.00000E-01	3.54200E+14	8.25000E+10	4.77300E+10	4.80000E+10	4.84700E+10
	17	7.00000E-01	8.00000E-01	7.11500E+11	2.38900E+09	2.21800E+09	2.55800E+09	5.35400E+09
	18	8.00000E-01	1.00000E+00	7.66100E+11	1.32700E+09	1.23200E+09	1.53700E+09	3.89000E+09
	19	1.00000E+00	1.20000E+00	3.37200E+11	6.44600E+08	6.82700E+08	1.82500E+09	1.02800E+10
	20	1.20000E+00	1.33000E+00	1.54800E+11	1.04700E+08	1.36800E+08	6.30000E+08	4.34300E+09
	21	1.33000E+00	1.44000E+00	4.30700E+10	7.40400E+06	5.16900E+07	6.05200E+08	4.70200E+09
	22	1.44000E+00	1.50000E+00	1.39700E+10	8.86600E+07	8.75200E+07	8.83200E+07	9.07500E+07
	23	1.50000E+00	1.57000E+00	1.27200E+10	2.94800E+06	1.83200E+07	2.14200E+08	1.83700E+09
	24	1.57000E+00	1.66000E+00	1.78200E+10	2.16500E+06	1.15900E+07	1.34900E+08	1.04700E+09
	25	1.66000E+00	1.80000E+00	1.03800E+10	1.80100E+07	1.23400E+08	1.39000E+09	1.07900E+10
	26	1.80000E+00	2.00000E+00	4.72200E+09	3.17700E+06	1.92900E+07	2.12700E+08	1.64400E+09
	27	2.00000E+00	2.15000E+00	8.10600E+08	5.55000E+05	8.74500E+06	1.06000E+08	8.25300E+08
	28	2.15000E+00	2.35000E+00	1.84100E+07	7.03700E+06	3.48000E+07	3.71400E+08	2.88000E+09
	29	2.35000E+00	2.50000E+00	3.08600E+06	5.24300E+05	9.08200E+06	1.10100E+08	8.57900E+08
	30	2.50000E+00	3.00000E+00	2.85700E+08	8.31900E+06	3.26500E+06	1.01900E+07	7.20800E+07
	31	3.00000E+00	3.50000E+00	5.14800E+06	1.78200E+06	1.64500E+06	2.93200E+06	1.86200E+07
	32	3 50000E+00	4 00000E+00	2.98300E+06	1.02600E+06	8.39900E+05	3.22700E+05	6.57000E+04
	33	4 00000E+00	4.50000E+00	1.72800E+06	5.94500E+05	4.86900E+05	1.87100E+05	3.80900E+04
	34	4.50000E+00	5.00000E+00	1.00100E+06	3.44500E+05	2.82200E+05	1.08400E+05	2.20800E+04
	35	5 00000E+00	5 50000E+00	5 80400E+05	1.99700E+05	1.63600E+05	6.28600E+04	1.28000E+04
	36	5 50000E+00	6.00000E+00	3.36400E+05	1.15700E+05	9.48600E+04	3.64400E+04	7.42300E+03
	37	6.00000E+00	6 50000E+00	1 95000E+05	6 70700E+04	5.50000E+04	2.11300E+04	4.30400E+03
	38	6 50000E+00	7 00000E+00	1 13000E+05	3 88800E+04	3.18900E+04	1.22500E+04	2.49500E+03
	39	7 00000E+00	7 50000E+00	6 55100E+04	2 25400E+04	1 84900E+04	7 10100E+03	1 44700E+03
	40	7.50000E+00	8 00000E+00	3 79800E+04	1 30600E+04	1 07200E+04	4 11700E+03	8 38900E+02
	40	8 00000E+00	1 00000E+00	4 48400E+04	1 54300E+04	1 26600E+04	4 86300E+03	9 90900E+02
	יד- 2∆			2 31700E+04	7 972000 +04	6 54400E+02	2 51400E+02	5 12300E+02
	42		1 400000 +01					0.00000E+00
			2 000000000					
	44			7 255562144	5.00000E+00		3 5500000000000000000000000000000000000	A 68476E+11
			i utal.	7.0000CT14	J.UUZUZET 13	1.1-000E+13	J.JJUUUET 12	- <u>+,</u> 00+/0L≁11

See SN September 2007 Radiolysis.xls, Sheet "Gamma Spectra"

#09/22/07, #09/23/07 Refined MCNP model created for investigation radiolytic generation of nitric acid and other species inside cavity of failed 21-PWR TAD WP within air-water vapor volume Performed preliminary runs of the MCNP model.Documented results.

III. MCNP Calculations Cases

III.1. MCNP Input Data

Fuel Smeared in Dry Assembly with External Sources (Different Cases for Neutron and Gamma Transport)

Table 09/23/07-1.	Common Cases Para	meters:
	11 mm Neutronit A97	8 analogous to
Fuel Basket Plate:	304B6 with 75%% B-	-10 and B-11
Casc:	TAD canister	
Assembly:	Smeared Dry	
Filled With	Air + H2O	
BurnUp	78.25864508	GWd/MTU

Table 09/23/07-2. MCNP Input Case Codes

			H2O	
	Physics:	Years of	in	
	(N/G)	Decay	Air	Absorber Plates
	Р	Y	Н	AP
				11 mm Neutronit A978 analogous to 304B6 with 75%% B-10 and B-11
PN_Y100_H0_APB11	Ν	100	0	B11
PN_Y500_H0_APB11	Ν	500	0	B11
PN_Y2000_H0_APB11	Ν	2000	0	B11
PN_Y10000_H0_APB11	Ν	10000	0	B11
PN_Y100000_H0_APB11	Ν	100000	0	B11
PG_Y100_H0_APB11	G	100	0	B11
PG_Y500_H0_APB11	G	500	0	B11
PG_Y2000_H0_APB11	G	2000	0	B11
PG_Y10000_H0_APB11	G	10000	0	B11
PG_Y100000_H0_APB11	G	100000	0	B11

Table 09/23/07-3. MCNP Input/Output

MCNP Case Codes	MCNP Input	MCNP Output
PN_Y100_H0_APB11	MCNP\Neutron\PN_Y100_H0_APB11.inp	MCNP\Neutron\PN Y100 H0 APB11.out
PN_Y500_H0_APB11	MCNP\Neutron\PN_Y500_H0_APB11.inp	MCNP\Neutron\PN_Y500_H0_APB11.out
PN_Y2000_H0_APB11	MCNP\Neutron\PN_Y2000_H0_APB11.inp	MCNP\Neutron\PN_Y2000_H0_APB11.out
PN_Y10000_H0_APB11	MCNP\Neutron\PN_Y10000_H0_APB11.inp	MCNP\Neutron\PN Y10000 H0 APB11.out
PN_Y100000_H0_APB11	MCNP\Neutron\PN_Y100000_H0_APB11.inp	MCNP\Neutron\PN_Y100000_H0_APB11.out
PG_Y100_H0_APB11	MCNP\Gamma\PG_Y100_H0_APB11.inp	MCNP\Gamma\PG Y100 H0 APB11.out
PG_Y500_H0_APB11	MCNP\Gamma\PG_Y500_H0_APB11.inp	MCNP\Gamma\PG_Y500_H0_APB11.out
PG_Y2000_H0_APB11	MCNP\Gamma\PG_Y2000_H0_APB11.inp	MCNP\Gamma\PG_Y2000_H0_APB11.out
PG_Y10000_H0_APB11	MCNP\Gamma\PG_Y10000_H0_APB11.inp	MCNP\Gamma\PG_Y10000_H0_APB11.out
PG_Y100000_H0_APB11	MCNP\Gamma\PG_Y100000_H0_APB11.inp	MCNP\Gamma\PG_Y100000_H0_APB11.out
III.2. MCNP Input Data Geometry

Figure 09/23/07-1. PWR-21 Radial Geometry

Figure 09/23/07-2. Assembly Radial Geometry

Figure 09/23/07-3. PWR-21 Axial Geometry

III.3. MCNP Cell Parameters

Table 09/23/07-4. MCNP Outputted Cell Parameters

Cell	atom density	gram density	Input volume	calculated volume	Mass
1	2.15408E-03	2.21868E-02	2.06981E+06		4.59225E+04
1011	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1012	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1013	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1021	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1022	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1023	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1024	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1025	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1031	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1032	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1033	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1034	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1035	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1041	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1042	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1043	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1044	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1045	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1051	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1052	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1053	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
3	2.35422E-02	3.44986E+00		1.90531E+05	6.57305E+05
4	8.58620E-02	7.81992E+00		5.37562E+03	4.20369E+04
5	8.58620E-02	7.81992E+00		5.37562E+03	4.20369E+04
6	8.58620E-02	7.81992E+00		5.37562E+03	4.20369E+04
7	8.58620E-02	7.81992E+00		5.37562E+03	4.20369E+04
801	8.87710E-02	7.74452E+00		1.26316E+04	9.78255E+04
901	8.87710E-02	7.74452E+00		1.26316E+04	9.78255E+04
101	8.87710E-02	7.74452E+00		1.26316E+04	9.78255E+04
111	8.87710E-02	7.74452E+00		1.26316E+04	9.78255E+04
8	2.15408E-03	2.21868E-02		4.88015E+03	1.08275E+02
9	2.15408E-03	2.21868E-02		4.88015E+03	1.08275E+02
10	2.15408E-03	2.21868E-02		4.88015E+03	1.08275E+02
11	2.15E-03	2.22E-02		4.88E+03	1.08E+02
12	9.87E-02	1.78E+00		1.60E+04	2.84E+04
13	2.15E-03	2.22E-02		9.74E+03	2.16E+02
14	9.87E-02	1.78E+00		1.60E+04	2.84E+04
15	2.15E-03	2.22E-02		9.74E+03	2.16E+02
120	2.15E-03	2.22E-02		9.92E+03	2.20E+02
121	2.15E-03	2.22E-02		9.92E+03	2.20E+02
122	8.70E-02	7.96E+00		1.18E+06	9.40E+06
123	8.70E-02	7.96E+00		2.46E+05	1.96E+06
124	8.70E-02	7.96E+00		2.46E+05	1.96E+06
125	2.15E-03	2.22E-02		7.21E+04	1.60E+03
126	2.15E-03	2.22E-02		7.21E+04	1.60E+03
127	2.15E-03	2.22E-02		7.79E+05	1.73E+04
128	8.51E-02	8.69E+00		1.37E+06	1.19E+07

SN No. 897E, Vol.1 maintained by Oleg Povetko

129	8.51E-02	8.69E+00	5.37E+04	4.67E+05	
130	8.51E-02	8.69E+00	5.37E+04	4.67E+05	
131	2.15E-03	2.22E-02	6.71 E+06	1.49E+05	
132	2.15E-03	2.22E-02	2.17E+06	4.81E+04	
133	2.15E-03	2.22E-02	2.17E+06	4.81E+04	
134	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
No new entries on this page					

Total Assemblies Volume= $7.00388E+06 \text{ cm}^3$ = Summ(Cell#1011 : Cell#1053)

Out of Assemblies Volume = calculated volume of Cell #1 - Total Assemblies Volume = 9.07368E+06 - 7.00388E+06 = 206981 cm³

See <u>SN September 2007 Radiolysis.xls</u>, sheet "MCNP Cells Volumes"

V. Cells Absorbed Energies and Nitrogen Dioxide Production

Table 09/23/07-5. Cell #1 Neutron Radiation Power Calculation Results

Down	Neutron Spectrum Particles/	Assemblies	MCNP Case	MCNP F6 Tally:Neutron MeV/	Error	Radiation Power per Gram of Weight
Years	sec/basis			g/Particle		MeV/g/sec
100	8.44316E+07	21	PN_Y100_H0_APB11	1.20909E-06	0.0063	2.14379E+0
500	3.07377E+07	21	PN_Y500_H0_APB11	1.15635E-06	0.0062	7.46414E+0
2000	2.41528E+07	21	PN_Y2000_H0_APB11	9.33076E-07	0.0062	4.73265E+0
10000	8.87528E+06	21	PN_Y10000_H0_APB11	5.54051E-07	0.0063	1.03264E+0;
100000	1.43898E+06	21	PN_Y100000_H0_APB11	3.20950E-07	0.0051	9.69862E+0

Neutron

Photon

Table 09/23/07-6. Cell #1 Photon Radiation Power Calculation Results

Down	Gamma Spectrum Particles/	Assemblies	MCNP Case	MCNP F6 Tally:Gamma MeV/	Relative Error	Radiation Power per Gram of Weigh
Years	sec/basis			g/Particle		MeV/g/sec
100	7.35556E+14	21	PG_Y100_H0_APB11	1.21864E-09	0.0092	1.88239E+0
500	5.68282E+13	21	PG_Y500_H0_APB11	6.67947E-12	0.0849	7.97122E+0
2000	1.14E+13	21	PG_Y2000_H0_APB11	2.06937E-11	0.0477	4.95408E+0
10000	3.55006E+12	21	PG_Y10000_H0_APB11	7.34349E-11	0.0322	5.47467E+0
100000	4.68476E+11	21	PG_Y100000_H0_APB11	1.41971E-09	0.0106	1.39671E+0

(See SN September 2007 Radiolysis.xls, Sheet "Radiolysis Results")

Table 09/23/07-8. Nitrogen Dioxide Production in Cell #1 from Neutron Radiation

	Neutron Radiation Power per	Vapour	G-Factor for production of pitrogen	Nitrogon Diovide	Production	
Down Weight* D		Density**	dioxide	in Cell #1 from N Moleculs/	I	
Years	MeV/g/sec	g/cm^3	Moleculs/MeV	cm^3/sec	Moleculs/sec	g/Year
100	2.14379E+03	2.07958E-02	10000	4.45819E+05	9.22302E+11	2.20440E-03
500	7.46414E+02	9.64576E-03	10000	7.19973E+04	1.48947E+11	3.55998E-04
2000	4.73265E+02	2.59521E-03	10000	1.22822E+04	2.54092E+10	6.07305E-05
10000	1.03264E+02	6.53816E-04	10000	6.75160E+02	1.39676E+09	3.33839E-06
100000	9.69862E+00	2.28581E-04	10000	2.21692E+01	4.58632E+07	1.09618E-07

See Table 17 "Cell #1 Neutron Radiation Power Calculation Results"

See Table 16 "Drift Wall Temperatures and Calculated Vapour Pressures and Densities"

Table Table 09/23/07-9. Nitrogen Dioxide Production in Cell #1 from Gamma Radiation Gamma

Down	Radiation Power per Gram of Vapour n Weight* Density**		G-Factor for production of nitrogen Nitrogen Dioxide Production dioxide in Cell #1 from Gamma Radiation Moleculs/			
Years	MeV/g/sec	g/cm^3	Moleculs/MeV	cm^3/sec	Moleculs/sec	g/Year
100	1.88239E+07	2.07958E-02	10000	3.91460E+09	8.09844E+15	1.93561E+01
500	7.97122E+03	9.64576E-03	10000	7.68885E+05	1.59065E+12	3.80183E-03
2000	4.95408E+03	2.59521E-03	10000	1.28569E+05	2.65980E+11	6.35720E-04
10000	5.47467E+03	6.53816E-04	10000	3.57943E+04	7.40505E+10	1.76988E-04
100000	1.39671E+04	2.28581E-04	10000	3.19261E+04	6.60482E+10	1.57862E-04

See Table 18 "Cell #1 Photon Radiation Power Calculation Results"

See Table 16 "Drift Wall Temperatures and Calculated Vapour Pressures and Densities"

Figure 09/23/07-1. Nitrogen Dioxide Production Power

Spline Interpolation of the calculated results to perform integrating over time and presents at the Figure 09/23/07-1 has been performed by C# FunWork software (see solution at the <u>FunWork_2005\FunWork\FunWork.sln</u> and resultes at the <u>FunWork_2005\FunWork\bin\Debug\Ln_G_Sec_SplineApproximation</u> and FunWork 2005\FunWork\bin\Debug\Ln_G_Sec_Neutron_SplineApproximation)

Figure 09/23/07-2. Nitrogen Dioxide Accumulation

See SN September 2007 Radiolysis.xls;

Sheet:" Radiolysis Results"; Cells: AB42:AB246 – Gamma; Cells: AJ42:AJ246 – Neutrons;

VI. Quality Assurance

Quality Assurance (QA) program has been applied to this analysis by:

- "Radcog", ver 02.17, testing calculations and
- Comparisons present results with data from "Radiolytic Specie Generation from Internal Waste Package Criticality", Document Identifier: CAL-EBS-NU-000017 REV 00, Page 32, Table 6.2;
- VI.1. "Radcog" Testing calculations

21 Fuel assembly irradiate air-vapor volume inside TAD Internal (see Figure 09/23/07-3, Figure 09/23/07-4)

Figure 09/23/07-3. PWR-21 simplified geometry as inputted at "Radcog"

TAD External
🚊 TAD Internal
- As_11
- As_12
As_13
As_21
- As_22
- As_23
As_24
As_25
As_31
As_32
As_33
As_34
As_35
As_41
- As_42
As_43
- As_44
~ As_45
As_51
As_52
- As_53

Figure 09/23/07-4. PWR-21 3D Elements and their hierarchy:

No new entries on this page

13

	RadCog		MCNP			
Comp	outer time = 10.78	minutes	Comp	outer time = 15.5	3 minutes	
3-D		Stat.			Stat.	
Element:	Mev/g/particle:	Error(%):	Cell#	Mev/g/particle:	Error(%):	
TAD		0.10	•		• (=	
Internal	3.67E-09	0.43	2	4.15E-09	0.17	
As_11	2.46E-08	0.53	3	2.3E-08	0.23	
As_12	2.48E-08	0.52	4	2.36E-08	0.23	
As_13	2.45E-08	0.53	5	2.31E-08	0.23	
As_21	2.48E-08	0.52	6	2.31E-08	0.23	
As_22	2.56E-08	0.51	7	2.44E-08	0.23	
As_23	2.57E-08	0.51	8	2.45E-08	0.23	
As_24	2.57E-08	0.51	9	2.43E-08	0.23	
As_25	2.48E-08	0.52	10	2.31E-08	0.23	
As_31	2.52E-08	0.52	11	2.35E-08	0.23	
As_32	2.59E-08	0.51	12	2.45E-08	0.23	
As_33	2.59E-08	0.51	13	2.44E-08	0.23	
As_34	2.58E-08	0.51	14	2.45E-08	0.23	
As_35	2.45E-08	0.53	15	2.36E-08	0.23	
As_41	2.43E-08	0.53	16	2.31E-08	0.23	
As_42	2.56E-08	0.51	17	2.44E-08	0.23	
As_43	2.57E-08	0.51	18	2.44E-08	0.23	
As_44	2.55E-08	0.51	19	2.44E-08	0.23	
As_45	2.43E-08	0.53	20	2.3E-08	0.23	
As_51	2.45E-08	0.53	21	2.31E-08	0.23	
As_52	2.47E-08	0.52	22	2.36E-08	0.23	
As 53	2.44E-08	0.53	23	2.31E-08	0.23	

Table Table 09/23/07-10. RadCog and MCNP Absorbed Dose Calculations Results RadCog MCNP

Calculation has been produced for the Air+H2O Vapor Density = $2.19958E-02 \text{ g/cm}^3$ (100 years down)

No new entries on this page

. ۲

Geome	try)			(000) (gui o 00.20		
Down	•••	Gamma Radiatio	on Power for Cell #1	NO2	1	NNO3
				gram produced over 90,000	gram produced over 90,000	moles produced over 90,000
Years		MeV/g/sec	rad/hr	years	years	years
	100	18823947	1085.7	1742049	2386050	3819
	500	7971.2	0.4597	342	468	7
	2000	4954.1	0.2857	57.2	78.3	1.2
	10000	5474.7	0.31576	15.9	21.8	0.34
	100000	13967.1	0.80559	14.2	19.5	0.31

Table Table 09/23/07-11, Absorbed Doses at the Cell #1 (see Figure 09/23/07-1.2.3: PWR-21

*"The 74-mole quantity of HNO3 from the hypothetical static criticality calculation compares to approximately 20 moles of HNO3 produced over 90,000 years at < 4 rad/hr from radionuclide decay (BSC 2001b, Section 6)."

See "Radiolytic Specie Generation from Internal Waste Package Criticality", Document Identifier: CAL-EBS-NU-000017 REV 00, Page 31

12/03/2007 (OP)(AK)

The following draft report was shared with NRC for comments. Radiolytic Specie Generation From Waste Package Residual Radionuclide Decay

Scoping Calculation to Estimate Radiolytic Production of Nitric Acid in Waste Package Emplaced in Repository After Permanent Closure

BACKGROUND

Radiolytic processes in moist air environments lead to the fixation of nitrogen as NO, NO₂, and especially HNO₃. Nitric acid is assumed to be one of the corrosive radiolytic chemical species and is produced in an irradiated air-water vapor system when the hydroxyl radicals generated from the water vapor convert nitrogen oxides, that are formed by the radiolytic reaction between nitrogen and oxygen, to nitric acid.

PURPOSE

Estimate radiolytic nitric acid production in 21-PWR TAD WP disposed of in Yucca Mountain geologic repository.

METHODOLOGY

- ORIGEN-ARP depletion model is constructed based on South Texas reactor campaign. Neutron and gamma radiation spectra are determined as function of time in repository for t>100 years.
- 2. TPA simulation is executed. The amount of water vapor in drift air is extracted from the output postprocessing.
- 3. The MCNP irradiation model of 21-PWR TAD WP is created.
- 4. Neutron and gamma energy absorption in water/vapor mixture are calculated using MCNP simulation.

ASSUMPTIONS

- 1. WP is breached, so water vapor penetrates the WP through the breach.
- 2. Time of breach > 100 years

- 3. The amount of water is determined by the relative humidity inside the drift. The water vapor concentration in air inside WP is equal to the concentration of water vapor in drift air outside WP.
- 4. Neutron and gamma decay radiations are functions of decay time
- 5. G (NO₂)=1.0 molecules/100 eV of energy absorbed by the water vapor. Number of produced NO₂ molecules equals number of HNO₃ molecules.
- 6. Produced nitric acid remains stable for sufficiently long time.
- 7. Energy absorption takes place only in TAD canister cavity space between assemblies and canister walls.

RESULTS

I. Assembly Type and Its Operating Parameters for Burnup Calculations

ORIGEN-ARP depletion model is based on South Texas reactor campaign based on data available from "*PWR Source Term Generation and Evaluation*, *Rev 0B*, 2004" AMR

Source:	PWR Source Term Generation and Evaluation
Document Identifier	000-00C-MGR0-00100-000-00B
Pages:	Page 24 of 33

The moderator temperature	578	K						
Density of the moderator	0.7136	g/cm^3						
Input average boron concentration	552.6316	ppm						
Operational history of the assembly in the reactor one cycle and new libraries at least								
every 100 days								
Thermal Reactor Power	2568	MWt						
Assemblies in a core	177							
Power/Assembly	14.50847	MWt						
MTU per Assembly	0.46363	MTU						
Enrichement	5%							
Assembly	15 × 15 fo	r Babcock & Wilcox and						

SN No. 897E, Vol.1 maintained by Oleg Povetko

BurnUp78.25865 GWd/MTUBurnUp Days2500.818 daysFuel Type has been selected from the list of fuel types as "w15x15" - 15×15 forBabcock & Wilcox.

II. OrigenARP Input and Output Parameters

OrigenARP calculations are performed for the assembly operation parameters.

OrigenARP input / output file hyperlinks are:

Origen ARP\PWR_P14.inp - Input file;

Origen ARP\PWR_P14.out – Output File;

Figure II.1 represents main (composition) screen of the OrigenARP GUI.

Figure II.1. Main screen of the OrigenARP GUI.

Neutron nuclide densities are recalculated from original OrigenARP output by converting them for MCNP input for each time step: 100, 500, 2 000, 10 000 and 100 000 years (see <u>SN September 2007 Radiolysis.xls</u>, sheet "Neutron Nuclides Densities"). Photon nuclide densities are recalculated from original OrigenARP output by converting them for MCNP input only for one time step - 500 years (see <u>SN September 2007 Radiolysis.xls</u>, sheet "Photon Nuclides Densities"), so all photon calculation cases uses the same material composition.

Neutron spectra for each time step adapted for 44 group library have been extracted from OrigenARP output file as is (see <u>SN September 2007 Radiolysis.xls</u>, Sheet "Neutron Spectra") and presents at the Table II.1.

Photon spectra for each time step adapted for 44 group photon library are extracted from OrigenARP output file as is (see <u>SN September 2007 Radiolysis.xls</u>, Sheet "Gamma Spectra") and presents at the Table II.2. **No new entries on this page**

	_						100,000
grp	Start	End	100 Years	500 Years	2000 Years	10,000 Years	Years
	MeV	MeV	n/sec/basis	n/sec/basis	n/sec/basis	n/sec/basis	n/sec/basis
1	1.00E-11	3.00E-09	5.137E-05	4.468E-05	3.602E-05	1.181E-05	7.537E-07
2	3.00E-09	7.50E-09	4.330E-05	3.187E-05	2.574E-05	8.548E-06	6.446E-07
3	7.50E-09	1.00E-08	2.264E-05	1.506E-05	1.217E-05	4.079E-06	3.400E-07
4	1.00E-08	2.53E-08	1.447E-04	8.317E-05	6.737E-05	2.301E-05	2.317E-06
5	2.53E-08	3.00E-08	4.828E-05	2.502E-05	2.031E-05	7.052E-06	8.192E-07
6	3.00E-08	4.00E-08	1.092E-04	5.404E-05	4.390E-05	1.537E-05	1.896E-06
7	4.00E-08	5.00E-08	1.178E-04	5.570E-05	4.529E-05	1.598E-05	2.089E-06
8	5.00E-08	7.00E-08	2.598E-04	1.174E-04	9.555E-05	3.400E-05	4.700E-06
9	7.00E-08	1.00E-07	4.445E-04	1.919E-04	1.563E-04	5.610E-05	8.197E-06
10	1.00E-07	1.50E-07	8.683E-04	3.602E-04	2.937E-04	1.063E-04	1.631E-05
11	1.50E-07	2.00E-07	1.019E-03	4.191E-04	3.440E-04	1.309E-04	1.992E-05
12	2.00E-07	2.25E-07	5.565E-04	2.261E-04	1.856E-04	7.080E-05	1.092E-05
13	2.25E-07	2.50E-07	5.853E-04	2.361E-04	1.938E-04	7.388E-05	1.149E-05
14	2.50E-07	2.75E-07	6.127E-04	2.458E-04	2.017E-04	7.684E-05	1.203E-05
15	2.75E-07	3.25E-07	1.303E-03	5.191E-04	4.260E-04	1.621E-04	2.558E-05
16	3.25E-07	3.50E-07	6.883E-04	2.727E-04	2.238E-04	8.508E-05	1.352E-05
17	3.50E-07	3.75E-07	7.117E-04	2.811E-04	2.307E-04	8.765E-05	1.398E-05
18	3.75E-07	4.00E-07	7.344E-04	2.893E-04	2.373E-04	9.013E-05	1.442E-05
19	4.00E-07	6.25E-07	7.533E-03	2.938E-03	2.410E-03	9.131E-04	1.479E-04
20	6.25E-07	1.00E-06	1.567E-02	6.038E-03	4.950E-03	1.868E-03	3.073E-04
21	1.00E-06	1.77E-06	4.169E-02	1.591E-02	1.304E-02	4.902E-03	8.170E-04
22	1.77E-06	3.00E-06	8.709E-02	3.305E-02	2.706E-02	1.014E-02	1.704E-03
23	3.00E-06	4.75E-06	1.577E-01	5.963E-02	4.882E-02	1.824E-02	3.080E-03
24	4.75E-06	6.00E-06	1.327E-01	5.009E-02	4.100E-02	1.530E-02	2.590E-03
25	6.00E-06	8.10E-06	2.550E-01	9.614E-02	7.869E-02	2.932E-02	4.975E-03
26	8.10E-06	1.00E-05	2.614E-01	9.845E-02	8.057E-02	2.999E-02	5.097E-03
27	1.00E-05	3.00E-05	4.047E+00	1.519E+00	1.243E+00	4.617E-01	7.876E-02
28	3.00E-05	1.00E-04	2.616E+01	9.807E+00	7.834E+00	2.896E+00	4.950E-01
29	1.00E-04	5.50E-04	3.712E+02	1.386E+02	1.115E+02	4.120E+01	7.035E+00
30	5.50E-04	3.00E-03	4.713E+03	1.758E+03	1.418E+03	5.241E+02	8.948E+01
31	3.00E-03	1.70E-02	6.382E+04	2.381E+04	1.915E+04	7.081E+03	1.208E+03
32	1.70E-02	2.50E-02	5.384E+04	2.008E+04	1.613E+04	5.967E+03	1.018E+03
33	2.50E-02	1.00E-01	8.365E+05	3.122E+05	2.513E+05	9.297E+04	1.585E+04
34	1.00E-01	4.00E-01	6.016E+06	2.246E+06	1.813E+06	6.706E+05	1.142E+05
35	4.00E-01	9.00E-01	1.308E+07	4.872E+06	3.934E+06	1.453E+06	2.466E+05
36	9.00E-01	1.40E+00	1.311E+07	4.858E+06	3.906E+06	1.441E+06	2.419E+05
37	1.40E+00	1.85E+00	1.068E+07	3.929E+06	3.107E+06	1.146E+06	1.892E+05
38	1.85E+00	2.35E+00	1.042E+07	3.795E+06	2.913E+06	1.076E+06	1.734E+05
39	2.35E+00	2.48E+00	2.313E+06	8.360E+05	6.280E+05	2.321E+05	3.676E+04
40	2.48E+00	3.00E+00	8.331E+06	2.987E+06	2.217E+06	8.172E+05	1.280E+05
41	3.00E+00	4.80E+00	1.426E+07	5.043E+06	3.872E+06	1.407E+06	2.168E+05
42	4.80E+00	6.43E+00	3.714E+06	1.295E+06	1.053E+06	3.771E+05	5.453E+04
43	6.43E+00	8.19E+00	1.158E+06	3.922E+05	3.190E+05	1.129E+05	1.512E+04
44	8.19E+00	2.00E+01	3.903E+05	1.265E+05	1.027E+05	3.579E+04	4.292E+03
		Total	8.44316E+07	3.07377E+07	2.41528E+07	8.87528E+06	1.43898E+06

Table II.1. Total neutron spectra for basis = 0.46363 MTU neutrons/sec/basis

Table II.2. Total Photon Spectra for basis = 0.46363 MTU [photons/sec/basis]

		Chart	Fod	100 Vaara	500 V	2000 \/a am	40000 \/	100000
grp		Start	Ena	100 Years	500 Years	2000 Years	10000 Years	Years
	4			p/sec/basis	p/sec/basis	p/sec/basis	p/sec/basis	p/sec/basis
	1	1.00000E-02	2.00000E-02	1.34000E+14	2.51900E+13	5.32600E+12	1.74200E+12	1.64100E+11
	2	2.00000E-02	3.00000E-02	4.01400E+13	3.95200E+12	4.63500E+11	7.21100E+10	2.62500E+10
	3	3.00000E-02	4.50000E-02	5.39900E+13	2.96800E+11	1.58600E+11	7.34700E+10	1.50900E+10
	4	4.50000E-02	6.00000E-02	0.0000E+13	2.35800E+13	2.17600E+12	2.80300E+10	1.02200E+10
	5	6.00000E-02	7.00000E-02	1.00100E+13	3.67900E+10	3.09000E+10	1.67000E+10	4.91800E+09
	0 7	7.00000E-02	7.50000E-02	5.71700E+12	1.41200E+12	1.22600E+12	5.78600E+11	5.40800E+09
	1	7.50000E-02	1.00000E-01	1.07800E+13	2.40200E+11	2.03900E+11	1.14100E+11	4.53500E+10
	ð	1.00000E-01	1.50000E-01	1.78800E+13	1.29300E+12	1.11100E+12	5.28700E+11	1.12300E+10
	9 10	1.50000E-01	2.00000E-01	1.07300E+13	1.45800E+10	1.24200E+10	7.98400E+09	7.22100E+09
	10	2.00000E-01	3.00000E-01	8.88900E+12	6.17800E+11	5.37000E+11	2.58100E+11	2.41700E+10
	11	3.00000E-01	4.00000E-01	5.88400E+12	8.37000E+10	7.84500E+10	4.9/100E+10	3.93500E+10
	12	4.00000E-01	4.50000E-01	1.72800E+12	2.30400E+10	2.29000E+10	2.1//00E+10	1.57200E+10
	13	4.50000E-01	5.10000E-01	1.65500E+12	5.31100E+08	3.98200E+08	3.81100E+08	1.43200E+09
	14	5.10000E-01	5.12000E-01	1.17100E+09	2.45200E+06	5.73400E+05	4.73400E+06	3.62500E+07
	15	5.12000E-01	6.00000E-01	7.28800E+11	6.28300E+08	5.72100E+08	6.06500E+08	8.79000E+08
	10	6.00000E-01	7.00000E-01	3.54200E+14	8.25000E+10	4.77300E+10	4.80000E+10	4.84/00E+10
	17	7.00000E-01	8.00000E-01	7.11500E+11	2.38900E+09	2.21800E+09	2.55800E+09	5.35400E+09
	10	0.00000E-01	1.00000E+00	7.00100E+11	1.32700E+09	1.23200E+09	1.53700E+09	3.89000E+09
	19	1.000002+00	1.20000E+00	3.37200E+11	0.44000E+08	6.82700E+08	1.82500E+09	1.02800E+10
	20	1.20000E+00	1.33000E+00	1.04600E+11	1.04/00E+08	1.36800E+08	6.30000E+08	4.34300E+09
	21	1.33000E+00	1.44000E+00	4.30700E+10	7.40400E+06	5.16900E+07	6.05200E+08	4.70200E+09
	22	1.44000E+00	1.50000E+00	1.39700E+10	8.86600E+07	8.75200E+07	8.83200E+07	9.07500E+07
	23	1.50000E+00	1.57000E+00	1.27200E+10	2.94800E+06	1.83200E+07	2.14200E+08	1.83700E+09
	24	1.57000E+00	1.66000E+00	1.78200E+10	2.16500E+06	1.15900E+07	1.34900E+08	1.04/00E+09
	25	1.66000E+00	1.80000E+00	1.03800E+10	1.80100E+07	1.23400E+08	1.39000E+09	1.0/900E+10
	20	1.80000E+00	2.00000E+00	4.72200E+09	3.17700E+06	1.92900E+07	2.12700E+08	1.64400E+09
	27	2.00000E+00	2.15000E+00	8.10600E+08	5.55000E+05	8.74500E+06	1.06000E+08	8.25300E+08
-	28	2.15000E+00	2.35000E+00	1.84100E+07	7.03700E+06	3.48000E+07	3.71400E+08	2.88000E+09
-	29	2.35000E+00	2.50000E+00	3.08600E+06	5.24300E+05	9.08200E+06	1.10100E+08	8.57900E+08
	30	2.50000E+00	3.00000E+00	2.85/00E+08	8.31900E+06	3.26500E+06	1.01900E+07	7.20800E+07
	31	3.00000E+00	3.50000E+00	5.14800E+06	1.78200E+06	1.64500E+06	2.93200E+06	1.86200E+07
	32	3.50000E+00	4.00000E+00	2.98300E+06	1.02600E+06	8.39900E+05	3.22700E+05	6.57000E+04
	33	4.00000E+00	4.50000E+00	1.72800E+06	5.94500E+05	4.86900E+05	1.8/100E+05	3.80900E+04
	34 25	4.50000E+00	5.00000E+00	1.00100E+06	3.44500E+05	2.82200E+05	1.08400E+05	2.20800E+04
	30	5.00000E+00	5.50000E+00	5.80400E+05	1.99700E+05	1.63600E+05	6.28600E+04	1.28000E+04
	30	5.50000E+00	6.00000E+00	3.36400E+05	1.15700E+05	9.48600E+04	3.64400E+04	7.42300E+03
	37	6.00000E+00	6.50000E+00	1.95000E+05	6.70700E+04	5.50000E+04	2.11300E+04	4.30400E+03
	38	6.50000E+00	7.00000E+00	1.13000E+05	3.88800E+04	3.18900E+04	1.22500E+04	2.49500E+03
ŝ	39	7.00000E+00	7.50000E+00	6.55100E+04	2.25400E+04	1.84900E+04	7.10100E+03	1.44700E+03
4	4U 4 4	1.50000E+00	8.00000E+00	3.79800E+04	1.30600E+04	1.07200E+04	4.11/00E+03	8.38900E+02
4	41 40	8.00000E+00	1.00000E+01	4.48400E+04	1.54300E+04	1.26600E+04	4.86300E+03	9.90900E+02
4	42	1.00000E+01	1.20000E+01	2.31700E+03	7.97200E+02	6.54400E+02	2.51400E+02	5.12300E+01
4	43	1.20000E+01	1.40000E+01	0.00000E+00	U.UUUUUUE+00	0.00000E+00	U.UU000E+00	0.00000E+00
4	44	1.40000E+01	2.00000E+01	U.UUUUUUE+00	U.UUUUUE+00	0.00000E+00	U.UU000E+00	0.00000E+00
			i otal:	7.35556E+14	5.68282E+13	1.14000E+13	3.55006E+12	4.68476E+11

SN No. 897E, Vol.1 maintained by Oleg Povetko

See SN September 2007 Radiolysis.xls, Sheet "Gamma Spectra"

III. MCNP Calculational Cases

Refined MCNP model is created for investigation of radiolytic generation of nitric acid and other species inside 21-PWR TAD WP within air-water vapor volume.

III.1. MCNP Input Data

Fuel is smeared in volume of a dry assembly with external volume sources in each of

them (different set of cases for neutron and gamma transport).

Tables III.1, III.2 reflect MCNP case codes and their main parameters. Table III.3

consists of hyperlinks on MCNP input/output files.

Tables III.1 Common MCNP Input Parameters							
	11 mm Neutronit A978 analogous to						
Fuel Basket Plate:	304B6 with 75%%	6 B-10 and B-11					
Casc:	TAD canister						
Assembly:	Smeared Dry						
Filled With	Air + H2O						
BurnUp	78.25864508	GWd/MTU					

Tables III.2. MCNP Case Codes

			H2O	
	Physics:	Years of	in	
	(N/G)	Decay	Air	Absorber Plates
	Р	Y	Н	AP
				11 mm Neutronit A978 analogous to 304B6 with 75%% B-10 and B-11
PN_Y100_H0_APB11	Ν	100	0	B11
PN_Y500_H0_APB11	Ν	500	0	B11
PN_Y2000_H0_APB11	Ν	2000	0	B11
PN_Y10000_H0_APB11	Ν	10000	0	B11
PN_Y100000_H0_APB11	Ν	100000	0	B11
PG_Y100_H0_APB11	G	100	0	B11
PG_Y500_H0_APB11	G	500	0	B11
PG_Y2000_H0_APB11	G	2000	0	B11
PG_Y10000_H0_APB11	G	10000	0	B11
PG_Y100000_H0_APB11	G	100000	0	B11

Tables III.3. MCNP Input/Output file hyperlinks

MCNP Case Codes	MCNP Input	MCNP Output
PN_Y100_H0_APB11	MCNP\Neutron\PN_Y100_H0_APB11.inp	MCNP\Neutron\IPN_Y100_H0_APB11.out
PN_Y500_H0_APB11	MCNP\Neutron\PN_Y500_H0_APB11.inp	MCNP\Neutron\IPN_Y500_H0_APB11.out
PN_Y2000_H0_APB11	MCNP\Neutron\PN_Y2000_H0_APB11.inp	MCNP\Neutron\IPN_Y2000_H0_APB11.out
PN_Y10000_H0_APB11	MCNP\Neutron\PN_Y10000_H0_APB11.inp	MCNP\Neutron\IPN_Y10000_H0_APB11.out

PN Y100000 H0 APB11	MCNP\Neutron\PN_Y100000_H0_APB11.inp	MCNP\Neutron\PN_Y100000_H0_APB11.out
PG Y100 H0 APB11	MCNP\Gamma\PG Y100 H0 APB11.inp	MCNP\Gamma\PG_Y100_H0_APB11.out
PG Y500 H0 APB11	MCNP\Gamma\PG Y500 H0 APB11.inp	MCNP\Gamma\PG Y500 H0 APB11.out
PG Y2000 H0 APB11	MCNP\Gamma\PG Y2000 H0 APB11.inp	MCNP\Gamma\PG_Y2000_H0_APB11.out
PG Y10000 H0 APB11	MCNP\Gamma\PG Y10000 H0 APB11.inp	MCNP\Gamma\PG Y10000 H0 APB11.out
PG Y100000 H0 APB11	MCNP\Gamma\PG Y100000 H0 APB11.inp	MCNP\Gamma\PG_Y100000_H0_APB11.out

III.2. MCNP Input Data Geometry

Figures III.2.1 - III.2.3 below show MCNP cases geometry and location of the cell #1 – the cell where radiolysis processes in moist air environments lead to the fixation of nitrogen as NO₂. Vapor density and absorbed dose rate calculations are performed in the cell #1 as the most valuable cell for radiolysis processes.

Figure III.2.1. PWR-21 Radial Geometry

SN No. 897E, Vol.1 maintained by Oleg Povetko

Figure III.2.2. Assembly Radial Geometry

Figure III.2.3. PWR-21 Axial Geometry

III.3. MCNP Cell Parameters

MCNP cell parameters are extracted from MCNP output and present at the Table II.3.1. *Total Assemblies Volume* = $7.00388E+06 \text{ cm}^3$ = Summ(Cell#1011 : Cell#1053) - see <u>SN</u> <u>September 2007 Radiolysis.xls</u>, sheet "MCNP Cells Volumes" *Out of Assemblies Volume* = calculated volume of Cell #1 - Total Assemblies Volume = $9.07368E+06 - 7.00388E+06 = 206981 \text{ cm}^3$

Volume of the cell #1 is used as an input in all future calculations.

Table III.3.1. MCNP Cell Parameters

Cell	atom density	gram density	Input volume	calculated volume	Mass
1	2.15408E-03	2.21868E-02	2.06981E+06		4.59225E+04
1011	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1012	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1013	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1021	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1022	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1023	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1024	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1025	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1031	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1032	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1033	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1034	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1035	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1041	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1042	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1043	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1044	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1045	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1051	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1052	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
1053	2.15408E-03	2.21868E-02		3.33518E+05	7.39969E+03
3	2.35422E-02	3.44986E+00		1.90531E+05	6.57305E+05
4	8.58620E-02	7.81992E+00		5.37562E+03	4.20369E+04
5	8.58620E-02	7.81992E+00		5.37562E+03	4.2:0369E+04
6	8.58620E-02	7.81992E+00		5.37562E+03	4.2:0369E+04
7	8.58620E-02	7.81992E+00		5.37562E+03	4.20369E+04
801	8.87710E-02	7.74452E+00		1.26316E+04	9.7'8255E+04
901	8.87710E-02	7.74452E+00		1.26316E+04	9.7'8255E+04
101	8.87710E-02	7.74452E+00		1.26316E+04	9.78255E+04
111	8.87710E-02	7.74452E+00		1.26316E+04	9.78255E+04
8	2.15408E-03	2.21868E-02		4.88015E+03	1.08275E+02
9	2.15408E-03	2.21868E-02		4.88015E+03	1.08275E+02
10	2.15408E-03	2.21868E-02		4.88015E+03	1.08275E+02
11	2.15E-03	2.22E-02		4.88E+03	1.08E+02
12	9.87E-02	1.78E+00		1.60E+04	2.84E+04
13	2.15E-03	2.22E-02		9.74E+03	2.16E+02
14	9.87E-02	1.78E+00		1.60E+ 04	2.84E+04
15	2.15E-03	2.22E-02		9.74E+03	2.16E+02
120	2.15E-03	2.22E-02		9.92E+03	2.20E+02
121	2.15E-03	2.22E-02		9.92E+03	2.20E+02
122	8.70E-02	7.96E+00		1.18E+06	9.40E+06
123	8.70E-02	7.96E+00		2.46E+05	1.96E+06
124	8.70E-02	7.96E+00		2.46E+05	1.96E+06
125	2.15E-03	2.22E-02		7.21E+04	1.60E+03
126	2.15E-03	2.22E-02		7.21E+04	1.60E+03
127	2.15E-03	2.22E-02		7.79E+05	1.73E+04

SN No. 897E, Vol.1 maintained by Oleg Povetko

128	8.51E-02	8.69E+00	1.37E+06	1.19E+07
129	8.51E-02	8.69E+00	5.37E+04	4.67E+05
130	8.51E-02	8.69E+00	5.37E+04	4.67E+05
131	2.15E-03	2.22E-02	6.71E+06	1.49E+05
132	2.15E-03	2.22E-02	2.17E+06	4.81E+04
133	2.15E-03	2.22E-02	2.17E+06	4.81E+04
134	0.00E+00	0.00E+00	0.00E+00	0.00E+00

IV. Waste package drift wall temperatures and vapor pressures and densities

Data on relative humidity are obtained, examined and analyzed to figure out vapor densities in the cell #1. WP and drift wall temperatures are available from <u>TPA output</u>. All calculations are performed and presented in <u>SN September 2007 Radiolysis.xls</u>, sheet "Drift wall temperature" and "Radiolysis Results" and Tables IV.1, IV.2 to determine water vapor parameters for MCNP model input.

Tables IV.1 Drift Wall Temperatures 0.5 Time[yr] Mean 8.56430E+01 1.46320E+02 1.46560E+02 8.99580E+01 1.46120E+02 1.46360E+02 Interpolation to 100 Years: 9.43740E+01 1.45730E+02 1.45970E+02 0.5 Mean 1.44093E+02 1.44321E+02 9.88940E+01 1.45200E+02 1.45430E+02 1.03520E+02 1.40570E+02 1.40790E+02 1.08250E+02 1.38910E+02 1.39130E+02 4.48250E+02 1.17840E+02 1.17980E+02 4.61060E+02 1.17450E+02 1.17590E+02 Interpolation to 500 Years: 4.74160E+02 1.17060E+02 1.17200E+02 0.5 Mean 1.16157E+02 1.16297E+02 4.87570E+02 1.16610E+02 1.16750E+02 5.01300E+02 1.16110E+02 1.16250E+02 5.15350E+02 1.15590E+02 1.15730E+02 ... 1.85430E+03 7.99960E+01 8.01100E+01 1.90000E+03 7.91490E+01 7.92620E+01 Interpolation to 2000 Years: 1.94680E+03 7.83050E+01 7.84180E+01 0.5 Mean 7.73925E+01 1.99470E+03 7.74770E+01 7.75900E+01 7.75055E+01 2.04370E+03 7.66960E+01 7.68090E+01 2.09390E+03 7.59460E+01 7.60590E+01 . . . 9.76900E+03 4.56260E+01 4.56950E+01 1.00000E+04 4.53450E+01 4.54140E+01 1.04500E+04 4.47640E+01 4.48310E+01 1.00000E+05 2.51610E+01 2.51670E+01

Tables IV.2 Drift Wall Temperatures and Corresponding Water Vapor Pressures and Densities

Time	Drift Wall temperature	х	Vapour Pressure*	Vapour Density**
		x = 1.0 -		
Years	centigrades	(t+273.0)/647.3	Pa==n/m^2	g/cm^3
100	144.0930437	0.35564183	4.03886E+05	0.020795827
500	116.1573416	0.398799102	1.74788E+05	0.009645758
2,000	77.39252449	0.458686043	4.23425E+04	0.002595206
10,000	45.345	0.508195582	9.69178E+03	0.000653816
100,000	25.161	0.539377414	3.17352E+03	0.000228581

*Vapor Pressure= 221.2E+5 *exp((vpa * x +vpb * x**(1.5) + vpc * x**3 +vpd * x**6)/ (1 - x)) Vpa = - 7.76451; Vpb = 1.45838; Vpc = - 2.7758; Vpd = - 1.23303;

** Vapor Density= $P * \mu / R / T$; Where: $\mu = 17.8559$ (for H₂O) $R = 831,441 \pm 0,00026$ [J/(mole*K)]

(See SN September 2007 Radiolysis.xls, Sheet "Radiolise Results")

V. Cells Absorbed Energies and Nitrogen Dioxide Production

Nitric acid is assumed to be the principal corrosive radiolytic chemical specie and is produced in an irradiated air-water vapor system when the hydroxyl radicals generated from the water vapor convert nitrogen dioxides, that are formed by the radiolytic reaction between nitrogen and oxygen, to nitric acids.

The "G" value represents the number of molecules of a chemical species produced per 100 eV of

absorbed radiation energy in the volume containing the irradiated environment. Measurements of the "G" factor for production of **nitrogen dioxide** (one-to-one production ratio for nitric acid) from mixed neutron-gamma radiation range from approximately **0.5 to 2.5** molecules/100 eV of absorbed energy (Reed and Van Konynenburg 1991). Present calculation assumed that the "G" factor for production of nitrogen dioxide is equal 1 (one molecule nitrogen dioxide and as a result one molecule of nitric acid per 100 eV of absorbed radiation energy)

All intermediate results are presented in the <u>SN September 2007 Radiolysis.xls</u>, Sheet:" Radiolysis Results", Cells: AB42:AB246 – Gamma; Cells: AJ42:AJ246 – Neutrons. Table V.1 and V.2 represent Neutron and Gamma Radiation Power Calculation Results in cell #1 which are the input for Nitrogen Dioxide Production calculations presented in Table V.3 and V.4.

Table V.5 shows nitrogen dioxide accumulation from gamma radiation in cell #1 under assumption that no acid removal mechanisms present.

Nitrogen dioxide production power chart for gamma and neutron radiation depends on time step smoothed and represented at the Fig. V.1. Spline interpolation of the MCNP results is done to perform correct temporal integration and is presented in Figure V.1.

Spline approximation is performed by C# FunWork software (see solution at the <u>FunWork_2005\FunWork\FunWork.sln</u> and results at the <u>FunWork_2005\FunWork\bin\Debug\Ln_G_Sec_SplineApproximation</u> and <u>FunWork_2005\FunWork\bin\Debug\Ln_G_Sec_Neutron_SplineApproximation</u>)</u>

Numerical integration is performed and verified in <u>SN September 2007 Radiolysis.xls</u>, Sheet:" Radiolysis Results", Cells: V41:AR646. Results of integration are presented at the Fig.V.2.

Table V.1 C	Cell #1	Neutron	Radiation	Rate	Calculation Results
-------------	---------	---------	-----------	------	---------------------

	Neutron			MCNP F6		Radiation Rate per Gram of
Down	Spectrum	Assemblies	MCNP Case	Tally:Neutron	Error	Weight
	Particles/			MeV/		
Years	sec/basis			g/Particle		MeV/g/sec
100	8.44316E+07	21	PN_Y100_H0_APB11	1.20909E-06	0.0063	2.14379E+0;
500	3.07377E+07	21	PN_Y500_H0_APB11	1.15635E-06	0.0062	7.46414E+0;
2000	2.41528E+07	21	PN_Y2000_H0_APB11	9.33076E-07	0.0062	4.73265E+0;
10000	8.87528E+06	21	PN_Y10000_H0_APB11	5.54051E-07	0.0063	1.03264E+0;
100000	1.43898E+06	21	PN_Y100000_H0_APB11	3.20950E-07	0.0051	9.69862E+0(

Neutron

•

Table V.2 Cell #1 Photon Radiation Rate Calculation Results

Down	Gamma Spectrum Particles/	Assemblies	MCNP Case	MCNP F6 Tally:Gamma MeV/	Relative Error	Photon Radiation Rati per Gram of Weight
Years	sec/basis			g/Particle		MeV/g/sec
100	7.35556E+14	21	PG_Y100_H0_APB11	1.21864E-09	0.0092	1.88239E+
500	5.68282E+13	21	PG_Y500_H0_APB11	6.67947E-12	0.0849	7.97122E+
2000	1.14E+13	21	PG_Y2000_H0_APB11	2.06937E-11	0.0477	4.95408E+
10000	3.55006E+12	21	PG_Y10000_H0_APB11	7.34349E-11	0.0322	5.47467E+
100000	4.68476E+11	21	PG_Y100000_H0_APB11	1.41971E-09	0.0106	1.39671E+

Table V.3 Nitric Acid Production in Cell #1 from Neutron Radiation

		Radiation Rate per	Manaur	G-Factor for	Nitrio Acid Produ	unticon	
	Down	Weight*	Density**	nitric acid	in Cell #1 from Noleculs/	Neutron Radiatior	1
,	Years	MeV/g/sec	g/cm^3	Moleculs/MeV	cm^3/sec	Moleculs/sec	g/Year
	100	2.14379E+03	2.07958E-02	10000	4.45819E+05	9.22302E+11	3.01932E-03
	500	7.46414E+02	9.64576E-03	10000	7.19973E+04	1.48947E+11	4.87603E-04
	2000	4.73265E+02	2.59521E-03	10000	1.22822E+04	2.54092E+10	8.31814E-05
	10000	1.03264E+02	6.53816E-04	10000	6.75160E+02	1.39676E+09	4.57253E-06
	100000	9.69862E+00	2.28581E-04	10000	2.21692E+01	4.58632E+07	1.50141E-07
*							

* See Table 17 "Cell #1 Neutron Radiation Rate Power Calculation Results"

** See Table 16 "Drift Wall Temperatures and Calculated Vapour Pressures and Densities"

Table V.4 Nitric Acid Production in Cell #1 from Gamma Radiation

	Gamma					
	Radiation					
	Rate per		G-Factor for			
	Gram of		production of	Nitric Acid Pro	oduction	
Down	Weight*	Vapor Density**	nitric acid	in Cell #1 from Gamma Radiation		
	-			Moleculs/		
Years	MeV/g/sec	g/cm^3	Moleculs/MeV	cm^3/sec	Moleculs/sec	g/Year

100	1.88239E+07	2.07958E-02	10000	3.91460E+09	8.09844E+15	2.65117E+01
500	7.97122E+03	9.64576E-03	10000	7.68885E+05	1.59065E+12	5.20729E-03
2000	4.95408E+03	2.59521E-03	10000	1.28569E+05	2.65980E+11	8.70733E-04
10000	5.47467E+03	6.53816E-04	10000	3.57943E+04	7.40505E+10	2.42417E-04
100000	1.39671E+04	2.28581E-04	10000	3.19261E+04	6.60482E+10	2.16220E-04

See Table 18 "Cell #1 Photon Radiation Rate Calculation Results" See Table 16 "Drift Wall Temperatures and Calculated Vapor Pressures and ** Densities"
SN No. 897E, Vol.1 maintained by Oleg Povetko

Figure V.1 Nitric Acid Production Rate

(After Pensado, 2006)

Figure V.1b Repository Thermal Periods (Pensado, 2006)

Table V.5 Nitric Acid Accumulation from Gamma Radiation in	Cell #1
Under Assumption that No Acid Removal Mechanisms Present	

	Gamma		
	Radiation		Nitric Acid
	Rate per	G-Factor for	Production
	Gram of	production of	in Cell #1 from
Down	Weight*	nitric acid	Gamma Radiation
Years	MeV/g/sec	Moleculs/MeV	gram
100	1.88239E+07	10000	0
500	7.97122E+03	10000	499.9
2000	4.95408E+03	10000	502.1
10000	5.47467E+03	10000	505.4
100000	1.39671E+04	10000	523.1

Figure V.2 Nitric Acid Accumulation under assumption that no acid removal mechanisms present

VI. Verification of results

Results are checked by comparing with the RADCOG version 02.17 outputs and with the output data from "Radiolytic Specie Generation from Internal Waste Package Criticality", Document Identifier: CAL-EBS-NU-000017 REV 00, Page 32, Table 6.2.

RADCOG testing calculations:

PWR 21 simplified geometry is represented by twenty one fuel assemblies that irradiate air-vapor volume inside "TAD Internal" 3D Element (see Figures VI.1, VI.2). Absorbed energy calculation results for gamma sources with different energies listed at the Tables VI.1, VI.2. All results are produced for the Air/H₂O vapor density **2.19958E-02** g/cm³ which represents 100-year case.

RADCOG Input / Output file hyperlinks are:

PWR 21\PWR-21 Simplified Model Radiolisis.hpr

PWR 21\PWR-21 Simplified Model Radiolisis DosesResults 1000_000.xls

Correspondence MCNP Input / Output file hyperlinks are:

PWR 21\PWR-21 Simplified Model Radiolisis.inp

PWR 21\PWR-21 Simplified Model Radiolisis.out

Tables VI.1	RadCog and MCNP	Absorbed Energy	Calculations Results for a
4 MeV Mon	o-energetic Isotropic	Volume Source	

0	1	
RADCOG	MCNP	Difference
100,000 chords	1,000,000 particles	
Mev/g/particle	Mev/g/particle	%
8.64E-08	8.65E-08	0
2.66E-07	2.59E-07	-3
2.79E-07	2.76E-07	-1
2.59E-07	2.61E-07	1
2.62E-07	2.59E-07	-1
3.00E-07	2.98E-07	-1
3.11E-07	3.06E-07	-2
3.01E-07	2.98E-07	-1
2.66E-07	2.59E-07	-3
2.77E-07	2.72E-07	-2
3.11E-07	3.07E-07	-1
3.13E-07	3.08E-07	-1
3.02E-07	3.06E-07	1

SN No. 897E, Vol.1 maintained by Oleg Povetko

2.75E-07	2.75E-07	0
2.57E-07	2.61E-07	2
3.01E-07	3.01E-07	0
3.12E-07	3.10E-07	0
2.96E-07	2.99E-07	1
2.59E-07	2.59E-07	0
2.66E-07	2.60E-07	-2
2.77E-07	2.77E-07	0
2.58E-07	2.61E-07	1

Tables VI.2 RADCOG and MCNP Absorbed Dose Calculations Results for Radionuclide Decay Gamma Source for 100 Years From OrigenARP Output

				MCNP	
RADCOG 1,000,000 chords				10,000,000 partic	cles
Comp	outer time = 10.78	minutes	Comp	outer time = 15.5	3 minutes
3-D		Stat.			Stat.
Element:	Mev/g/particle:	Error(%):	Cell#	Mev/g/particle:	Error(%):
TAD					
Internal	3.67E-09	0.43	2	4.15E-09	0.17
As_11	2.46E-08	0.53	3	2.3E-08	0.23
As_12	2.48E-08	0.52	4	2.36E-08	0.23
As_13	2.45E-08	0.53	5	2.31E-08	0.23
As_21	2.48E-08	0.52	6	2.31E-08	0.23
As_22	2.56E-08	0.51	7	2.44E-08	0.23
As_23	2.57E-08	0.51	8	2.45E-08	0.23
As_24	2.57E-08	0.51	9	2.43E-08	0.23
As_25	2.48E-08	0.52	10	2.31E-08	0.23
As_31	2.52E-08	0.52	11	2.35E-08	0.23
As_32	2.59E-08	0.51	12	2.45E-08	0.23
As_33	2.59E-08	0.51	13	2.44E-08	0.23
As_34	2.58E-08	0.51	14	2.45E-08	0.23
As_35	2.45E-08	0.53	15	2.36E-08	0.23
As_41	2.43E-08	0.53	16	2.31E-08	0.23
As_42	2.56E-08	0.51	17	2.44E-08	0.23
As_43	2.57E-08	0.51	18	2.44E-08	0.23
As_44	2.55E-08	0.51	19	2.44E-08	0.23
As 45	2.43E-08	0.53	20	2.3E-08	0.23
As 51	2.45E-08	0.53	21	2.31E-08	0.23
As_52	2.47E-08	0.52	22	2.36E-08	0.23
As 53	2.44E-08	0.53	23	2.31E-08	0.23

Figures VI.1 PWR-21 TAD WP Simplified Geometry as Represented in RADCOG Model

- TAD External
🖹 TAD Internal
As_11
As_12
As_13
As_21
As_22
As 23
As 24
As_25
- As 31
As 32
As_33
As 34
As 35
As 41
As 42
As 43
As 44
As 45
As 51
As 52
Δ* 53
- ma JJ

Figures VI.2 PWR-21 TAD WP Simplified Geometry 3D Elements and Their Hierarchy in RADCOG model

<u>Comparisons of the results with data from "Radiolytic Specie Generation from</u> <u>Internal Waste Package Criticality"</u>

In Tables VI.3 presents gamma radiation decay powers and corresponding nitric acid production in the Cell #1 in assuming a constant gamma radiation decay rate over 90,000 years. Data has been presented only for comparison purposes. According Tables VI.3, row #1, 7.5 moles of HNO3 produced over 90,000 years at 0.4597 rad/hr from radionuclide decay. For 4 rad/hr it would be approximately 65 moles – 3 times more then shown in "*Radiolytic Specie Generation from Internal Waste Package Criticality*"

Tables VI.3 Nitric Acid Production in the Cell #1 Estimation in Assuming of a Constant Gamma Radiation Decay Power Over 90,000 years

	Gamma Radiation	Decay Power			
Down	for Cell #1		NO2	١	NO3
Years	MeV/g/sec	rad/hr	gram produced over 90,000 years	gram produced over 90,000 years	moles produced over 90,000 years
500	7971.2	0.4597	342	468	7.5
2000	4954.1	0.2857	57.2	78.3	1.25
10000	5474.7	0.31576	15.9	21.8	0.349
100000	13967.1	0.80559	14.2	19.5	0.311

^{*} "The 74-mole quantity of HNO3 from the hypothetical static criticality calculation

compares to approximately 20 moles of HNO_3 produced over 90,000 years at < 4 rad/hr from radionuclide decay (BSC 2001b, Section 6)."

See "Radiolytic Specie Generation from Internal Waste Package Criticality", Document Identifier: CAL-EBS-NU-000017 REV 00, Page 31

CONCLUSIONS

The rate of nitric acid radiolytic production by decay radiation is the highest for earlier years when the radiation rates are higher; the rate drops exponentially with time.

The time point of 100 years was selected as the onset of the dust deliquescence corrosion period (Pensado, 2006, page 5). The nitric acid production rate is presented in Figure V.1. The production rate is found to be about 26.5 grams per year per waste package at the year 100. After this onset the rate drops exponentially to about 5 milligrams per year by the year 500. The cumulative data presented in Figure V.2 should be taken cautiously because the cumulative amount of acid is determined mostly by the selection of the initial time point (i.e. 100 years in this calculation). The later the onset time point of acid accumulation the lower the accumulation plateau is on the plot in Figure V.2.

01/02/08 (AK)(OP)

The total energy deposited in cell #1 increases after 2000 years. The possible cause is the modification of gamma spectrum. In order to investigate why the increase occurs, some gamma spectrum normalizations were made combined with DCF(E) graphical representation.

#11/22/07

Performed set of calculations to support explanation of increasing of the total energy deposited in a cell after 2000 years of cooling time;

$$Dose \approx \int_{E} \Sigma(E) \overline{\Phi}_{V}(E) dE$$

Where

Dose (Gy/sec) – Dose in the Cell #1;

 $\Sigma(E)$ - Photon Flux-to-Dose Rate Conversion Factor (Gy/sec)/(p/cm²··s);

 $\overline{\Phi}_{V}(E)$ - Average Photon Spectrum in the Cell #1 (p/cm²-s/MeV);

Because $\overline{\Phi}_{V}(E)$ mostly depends on the Source Spectrum and because Spectrum in the Cell #1 does NOT depend on vapor density (it's too small to absorb photons significantly), Dose in the cell #1 will depend mostly on "hardness" of the photon spectrum in the cell #1 that depends on the photon source.

 $\Sigma(E)$ - Photon Flux-to-Dose Rate Conversion Factor – depends on the Energy also, so the high-energetic photons will weigh more.

Figures 11/22/07-1, 11/22/07-2 and 11/22/07-2 present photon spectra and Photon Fluxto-Dose Rate Conversion Factor and can explain, why after 2000 years dose in the cell #1 increases.

Figures 11/22/07-3. Normalized Spectra in the Cell #1

Conclusion: Gamma spectrum hardens with time. This hardening causes increase of deposited energy since DCF increases with E. **No new entries on this page**

-1-85 -

01/03/08 (AK)(OP)

Peroxide (H_2O_2) production was calculated on the external surface of the WP in thin water film.

Source of energy: gamma rays from maximum CSNF.

Medium: 0.67 mm water film.

Peroxide production G factor is assumed=0.68 molecule per 100 eV of absorbed gamma energy.

Cell 1310 (water film on WP surface) Absorbed Energies and Peroxide Production

The "G" value represents the number of molecules of a chemical species produced per 100 eV of absorbed radiation energy in the volume containing the irradiated environment. In present calculations assumed that the "G" factor for production of Peroxide is equal 0.68 molecule per 100 eV of absorbed radiation energy

All intermediate results are presented in the SN December 2007 Radiolysis.xlsx,

Sheet:" Radiolysis Results - Peroxid"

Table 12/26/07-1 represent Gamma Radiation Power Calculation Results in cell #1310 which are the input for Peroxide Production calculations presented in Table 12/26/07-2 Table 12/26/07-3 shows Peroxide accumulation from gamma radiation in cell #1310 under assumption that no acid removal mechanisms present.

Nitrogen dioxide production power chart for gamma radiation depends on time step smoothed and represented at the Fig 12/26/07-1 Spline interpolation of the MCNP results has been done to perform correct integrating over time and presents at the Figure 12/26/07-2.

Spline approximation has been performed by C# FunWork software (see "Report ..."

Table	12/20/07 - 1. CCII #1.	STOT HOLOH Ka	ulation Rate C	alculation Re	Suits	
Down	Years	100	500	2000	10000	100000
Gamma						
Spectrum	Particles/sec/basis	7.356E+14	5.683E+13	1.140E+13	3.550E+12	4.685E+11
# Assemblies		21	21	21	21	21
MCNP F6						
Tally:Gamma	MeV/g/Particle	1.858E-12	1.091E-14	4.038E-14	3.495E-13	1.520E-11
Relative Error		2.800E-02	4.245E-01	2.169E-01	9.170E-02	2.440E-02
Statistic	Particles	6.607E+07	7.725E+07	7.228E+07	6.795E+07	1.818E+07
Gamma	MeV/g/sec	2.870E+04	1.302E+01	9.668E+00	2.605E+01	1.495E+02
Radiation Power	Gy/sec	4.598E-06	2.086E-09	1.549E-09	4.174E-09	2.396E-08
per Gram of	Gy/hr	1.655E-02	7.510E-06	5.576E-06	1.503E-05	8.62E-05
Weight*	rad/hr	1.655E+00	7.510E-04	0.000558	0.001503	0.008625

Table 12/26/07-1. Cell #1310 Photon Radiation Rate Calculation Results

Table 12/26/07-1 Peroxide Production in Cell #1310 from Gamma Radiation

Down	Gamma Radiation Power	G-Factor for production of Peroxide	Peroxide Production in Cell #1310 from Gamma Radiation
Years	rad/hr	Moleculs per 100 eV	g/Year
100	1.655134	0.68	6.58570E-03
500	0.000751	0.68	2.98812E-06
2000	0.000558	0.68	2.21878E-06
10000	0.001503	0.68	5.97898E-06
100000	0.008625	0.68	3.43177E-05

Figure 12/26/07-1. Peroxide Production Rate

Table 12/26/07-1 Peroxide	Accumulation from Gar	mma Radiation in	Cell #1310 Under
Assumption that No Acid R	temoval Mechanisms Pre	esent	

issumption that i to i tera i terito var integrationis i resent				
-	Gamma	G-Factor for production	Peroxide	
Down	Radiation Power	of nitrogen dioxide	Production	
Years	rad/hr	Moleculs per 100 eV	g	
100	1.692883	0.68	0	
500	0.000754	0.68	0.134911	
2000	0.000559	0.68	0.137651	
10000	0.002347	0.68	0.172177	
100000	0.008471	0.68	2.039827	

Figure 12/26/07-2 Peroxide Accumulation under assumption that no acid removal mechanisms present

#12292007 #12302007

Investigation of increasing of deposited gamma energy after 2000 years

Performed set of calculations to support explanation of increasing of the total energy deposited in a cell after 2000 years of cooling time;

$$Dose \approx \int_{E} \Sigma(E) \overline{\Phi}_{V}(E) dE$$

Where

Dose (Gy/sec) – Dose in the Cell #1;

 $\Sigma(E)$ - Photon Flux-to-Dose Rate Conversion Factor (Gy/sec)/(p/cm²··s);

 $\overline{\Phi}_{V}(E)$ - Average Photon Spectrum in the Cell #1 (p/cm²-s/MeV);

Because $\overline{\Phi}_{V}(E)$ mostly depends on the Source Spectrum and because Spectrum in the Cell #1 does NOT depend on vapor density (it's too small to absorb photons significantly), Dose in the cell #1 will depend mostly on "hardness" of the photon spectrum in the cell #1 that depends on the photon source.

 $\Sigma(E)$ - Photon Flux-to-Dose Rate Conversion Factor – depends on the Energy also, so the high-energetic photons will weigh more.

Figures 11/22/07-1, 11/22/07-2 and 11/22/07-2 present photon spectra and Photon Fluxto-Dose Rate Conversion Factor and can explain, why after 2000 years dose in the cell #1 increases.

SN No. 897E, Vol.1 maintained by Oleg Povetko

Figures 12/30/07. Normalized Spectra in the Cell #1 No new entries on this page

02/01/2008 (AK)(OP)

Results for nitric acid generation were compared with DOE results from "Bechtel SAIC. Gamma and Neutron Radiolysis in the 21-PWR Waste Package from Ten to One Million Years. 000-00C-DSU0-00700-000-00A. 2004." report.

Comparison results are compiled in DOE Comparing Results.xls spreadsheet and also in

Notebook closed - No Further entries ARW 6/12/2009

ADDITIONAL INFORMATION FOR SCIENTIFIC NOTEBOOK NO. 897E

Document Date:	08/08/2007
Availability:	Southwest Research Institute® Center for Nuclear Waste Regulatory Analyses 6220 Culebra Road San Antonio, Texas 78228
Contact:	Southwest Research Institute® Center for Nuclear Waste Regulatory Analyses 6220 Culebra Road San Antonio, TX 78228-5166 Attn.: Director of Administration 210.522.5054
Data Sensitivity:	 ■"Non-Sensitive" □ Sensitive □ Sensitive - Copyright" □ Sensitive - Copyright
Date Generated:	05/11/2009
Operating System: (including version number)	Windows
Application Used: (including version number)	
Media Type: (CDs, 3 ½, 5 1/4 disks, etc.)	1 CD
File Types: (.exe, .bat, .zip, etc.)	xls, doc, inp
Remarks: (computer runs, etc.)	Notebook supplemental material