1.0 OBJECTIVE

Perform the structural analyses of the Energy*Solutions* 3-60B Cask under fire accident test conditions, using a 3-dimensional finite element model.

2.0 INTRODUCTION

Energy*Solutions* 3-60B Cask (Reference 1) is designed as a Type B radioactive-material shipping package. To be certified by the U.S.N.R.C., the cask needs to meet the requirements of 10 CFR 71 (Reference 2) and follow the guidelines of U.S.N.R.C. Regulatory Guide 7.8 (Ref. 3).

This document presents the structural analysis of the 3-60B Cask for the hypothetical accident condition (HAC) fire test. The analyses in this document are performed using the finite element modeling techniques. A three-dimensional model of the cask that includes all its major components has been employed in the analyses. Temperature dependent material properties of the major components of the cask are used in the analyses.

The results of the analyses for various time instants during the fire test are presented pictorially in stress intensity contour plots as well as digital data format.

3.0 REFERENCES

- 1. Energy*Solutions* Drawing No. C-002-165024-001, Rev.0, 3-60B Cask General Arrangement and Details.
- 2. Code of Federal Regulations, Title 10, Part 71, Packaging and Transportation of Radioactive Material, January 2003.
- 3. U.S. NRC Regulatory Guide 7.8, Revision 1, March 1989, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material.
- 4. ASME Boiler & Pressure Vessel Code, Section II, Part D, Materials, The American Society of Mechanical Engineers, New York, NY, 2005.
- 5. NUREG 0481/SAND77-1872, An Assessment of Stress-Strain Data Suitable for Finite Element Elastic-Plastic Analysis of Shipping Containers, Sandia National Laboratories, 1978.
- 6. U.S. NRC Regulatory Guide 7.6, Revision 1, Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels, 1978.
- 7. ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.
- 8. EnergySolutions Document TH-023, Rev.1, Hypothetical Fire Accident Thermal Analyses of the 3-60B Cask Using a 3-D Finite Element Model.

Title_	Structural	Analyse	s of the	<u>3-6</u> 0B	Cask	Under	Hyp	othetical	Fire	Accident	Conditions	

Calc. No. <u>ST-502</u> Rev. <u>1</u>

Sheet

Sheet <u>2</u> of <u>10</u>

4.0 MATERIAL PROPERTIES

			Strength (ksi)	V >	Coefficient
Material	Temp.	Yield	Ultimate	Membrane	Young's	of Thermal
Material	(°F)	(S_v)	(S_u)	Allowable	(10^6 m)	Expansion
-	, ,		(=)	(S_m)	(10 psi)	(10^{-6} in/in)
		(1)	(1)	(1)	(1)	(1)
	-20	25.0	70.0	16.7	28.8	-
	70	25.0	70.0	16.7	28.3	8.5
ASTM A240	100	25.0	70.0	16.7	-	8.6
Type 304L	200	21.4	66.1	16.7	27.5	8.9
	300	19.2	61.2	16.7	27.0	9.2
	400	17.5	58.7	15.8	26.4	9.5
	500	16.4	57.5	14.7	25.9	9.7
		(1)	(1)	(1)	(1)	(1)
	-20	45.0	87.0	24.9	28.8	-
ASTM A240	70	45.0	87.0	24.9	28.3	8.5
Gr. 45 &	100	45.0	87.0	24.9	-	8.6
ASTM A182	200	37.5	86.4	24.7	27.5	8.9
Gr. F45	300	33.0	81.6	23.3	27.0	9.2
	400	29.9	78.5	22.4	26.4	9.5
	500	27.8	76.4	21.8	25.9	9.7
				• .		
		(1)	(1)	(1)	(1)	(1)
	-20	130	150	30	29.7	-
	70	130	150	30	29.2	6.4
ASIM A354	100	130	150	30	· _	6.5
Gr. BD	200	119.1	150	30	28.6	6.7
(Lid Bolts)	300	115	150	30	28.1	6.9
	400	111	150	30	27.7	7.1
	500	105.9	150	30	27.1	7.3
		(2)			(2)	(2)
	-20	-	• –	-	2.43	15.65
	70	5	-	-	2.27	16.06
ASTM B29	100	-	-	· _	2.21	16.22
Lead	200	-	-	-	2.01	16.70
	300	-	-	-	1.85	17.33
	400	-	-	-	1.70	18.16
	500	-	-	-	1.52	19.12

Notes:

(1) From ASME B&PV Code 2004, Section II, Part D (Reference 4).

(2) From NUREG/CR 0481 (Reference 5)

Title Str	ructural Analy	vses of the 3-6	0B Cask	Under Hypothetical Fire Accident Conditions	
Calc. No	ST-502	Rev	1	Sheet <u>3</u> of <u>10</u>	

5.0 ALLOWABLE STRESSES

	Material →	ASTM A240 Type 304L	ASTM A182 Gr.F45 & A240 Gr. 45	ASTM A354 Gr. BD
Yield Stress, S _y (psi)		25,000 ⁽¹⁾	45,000 ⁽¹⁾	130,000 ⁽¹⁾
Ultimate Stress	s, S _u (psi)	70,000 ⁽¹⁾	87,000 ⁽¹⁾	150,000 ⁽¹⁾
Design Stress	Intensity, S _m (psi)	16,700 ⁽¹⁾	24,900 ⁽¹⁾	30,000 ⁽¹⁾
Urmethotical	Membrane Stress	40,080 ⁽²⁾	· 59,760 ⁽²⁾	105,000 ⁽²⁾
Accident Conditions	Mem. + Bending Stress	60,120 ⁽²⁾	87,000 ⁽²⁾	150,000 ⁽²⁾
	Peak Stress	140,000 ⁽³⁾	174,000 ⁽³⁾	300,000 ⁽³⁾

Notes:

- (1) From ASME B&PV Code 2004, Section II, Part D (Reference 4).
- (2) Regulatory Guide 7.6 (Reference 6) does not provide any criteria. ASME B&PV Code, Section III, Appendix F has been used to establish these criteria.
- (3) Regulatory Guide 7.6, Regulatory Position 7 and ASME Section III, Division 3, WB-3221.9 criteria of limiting these stresses to 2S_a @ 10 cycles results in higher than 2S_u allowable values. The limits for peak stresses are conservatively set to be 2S_u.

6.0 MODEL DESCRIPTION

The structural analyses of the 3-60B Cask under HAC fire test have been performed using finite element modeling techniques. ANSYS finite element analysis code (Ref. 7) has been employed to perform the analyses. Since the lid of the cask is attached to the body using 16 bolts, the cask geometry has a cyclic symmetry every 11.25° of the circumference. Therefore, an 11.25° model of the cask is made using 3-dimensional 8-node structural solid elements (ANSYS SOLID185) to represent the major components of the cask, the cask body, the lid, and the bolts. The fire shield does not provide any structural strength to the cask. Therefore, it is not included in the model.

The poured lead in the body is not bonded to the steel. It is free to slide over the steel surface. Therefore, the interface between the lead and the steel is modeled by pairs of 3-d 8 node contact element (CONTA174) and 3-d target segment (TARGE170) elements. These elements allow the lead to slide over the steel at the same time prevent it from penetrating the steel surface. The interface between the two plates that form the lid is also modeled by the contact-

Title	Struct	ural Analyses	of the 3-6	0B Ca	k Under Hypothetical Fire A	ccident (Cond	itions
Calc. N	0	<u>ST-502</u>	Rev	1		Sheet _	4	_ of 10

target pairs. The transition from a coarser mesh to a finer mesh, as well as bondage between various parts of the model, is also modeled using these elements.

Figure 1 shows the outline of the model depicting the material numbering. Figure 2 shows the finite element grid of the lid, seal plate, and the bolts. Figure 3 shows the finite element grid of the cask body without the lead and Figure 4 shows that of the lead. The interface between various components of the cask is modeled by target-contact surface definition. Figure 5 shows target surfaces of various contact-target pairs. The printout of the pertinent model quantities is included in Appendix 1.

Boundary Conditions

For the analyses of the 3-60B Cask under various NCT loading cases, it is assumed that the cask is resting on the upper impact limiter in the vertical orientation, because in this orientation the payload applies deadweight loading, in addition to the internal pressure loading on the lid closure, which is the most vulnerable part of the cask. The model is conservatively restrained in the vertical direction at the skirt instead of the entire bearing surface of the upper impact limiter. Also, since the model represents an 11.25° circumferential symmetry, the nodes on the cut-planes are restrained from displacement normal to these planes.

Loading

The loading on the model include the following, as applicable.

Deadweight

The deadweight of the cask is included in the analyses as the body load in the finite element model subjected to the acceleration due to gravity. The deadweight of the lower impact limiter is included as the uniform pressure on the surface where the impact limiter contacts the cask. The deadweight of the payload is included as the uniform pressure on the lid inside surface.

Mass of each Impact Limiter = 3,800 lb

Inside Radius of the Impact Limiter = 12 in

Outside Radius of the Cask = 25.5 in

Pressure on the cask due to impact limiter weight,

 $p_{I.L} = 3,800/[p \times (25.5^2 - 12^2)] = 2.39 \text{ psi}$

Payload Mass = 9,500 lb

Lid Radius = 17.5 in

Pressure on the lid surface due to payload weight,

 $p_{lid} = 9,500/(p \times 17.5^2) = 9.874 \text{ psi}$

Because of the segmentation of arc length in the finite element models, the mass of the model is always lower than the actual mass. To account for this, as well as to include the mass of miscellaneous items not included in the model, an adjustment is made in the value of acceleration due to gravity.

Cask Body Mass = $80,000 - 9,500 - 2 \times 3,800 = 62,900$ lb

Mass of the FEM = $32 \times 1,775.6 = 56,819$ lb

Use acceleration due to gravity = 62,900/56,819 = 1.107g

Internal Pressure

The cask internal pressure under various HAC fire test (100 psig) is applied as the uniform pressure over the nodes representing the cavity of the cask (Figure 6).

Temperature

The temperature distribution at various time instants during the fire test is obtained from the thermal analyses performed in Reference 8 and is applied as the nodal temperature in the finite element model. Figures 7 through 13 show the temperature profile and the pressure distribution in the cask body at various time instants during the fire test.

7.0 RESULTS

The results obtained from various load case analyses include displacements and stress intensities at the nodal points of the finite element model. The total printout from all the load cases is included in Appendix 2. Stress intensity contour plots are presented in Figures 14 through 28. The stress intensities in various components of the 3-60B Cask under these loading conditions are tabulated in Tables 1 through 7. It should be noted that the maximum stress intensities obtained from the finite element models are peak stresses, as classified by the ASME code. However, these stress intensities are reported as membrane + bending stress intensities and compared with the corresponding allowable values.

It should be noted that under the fire test the cask body undergoes large thermal stresses at the locations where the fire-shield is welded to the cask body. However, these stresses are highly local and a slight local yielding of the material will easily accommodate them. Although these stresses are reported in Tables 2 through 4, they have been excluded in the evaluation of the cask body integrity during the fire test.

The results of the analyses show that the stresses everywhere in the cask body during the fire test are well within the allowable values.

Title_	Structura	al Analyses	of the 3-60)B Cask	Under Hypothetical	Fire Accident	Condi	itions
Calc.	No. <u> </u>	-502	Rev	1	, -	Sheet	6	_ of 10

8.0 ANSYS PRINTOUT AND DATA FILES

The printout of the important data from the program is included with this document in electronic form as Appendix 1. The electronic data of the input, output and other files is included in Appendix 2.

9.0 APPENDICES

Appendix 1 Print-out of the ANSYS model data input

Appendix 2 Electronic data on CDROM

Title_	Struc	tural Analyses o	of the 3-60	B Cask Under Hypothetical Fire A	ccident C	Condit	ions	
Calc.	No	ST-502	_ Rev	1	Sheet	7	of_ 1	0

<u>Tables</u>

(7 Pages)

Title	Structural Analyses of the 3-60B Cask Under HAC Fire Conditions

Calc. No. ST-502 Tables Rev. 1

Sheet <u>1</u> of <u>7</u>

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Doltin - Din -	$P_m + P_b$	87,000	11,070	7.86
Bolling King	F	174,000	11,070	15.72
Bolting Ring	$P_m + P_b$	87,000	11,070	7.86
(w/o Skirt)	F	174,000	11,070	15.72
Inner Shell	$P_m + P_b$	87,000	4,637	18.76
	F	174,000	4,637	37.52
0 ($P_m + P_b$	60,120	6,860	8.76
Outer Shell	F	140,000	6,860	20.41
L: T	$P_m + P_b$	60,120	5,437	11.06
LIC	F	140,000	5,437	25.75
Dese Platas	$P_m + P_b$	87,000	5,190	16.76
Base Plates	F	174,000	5,190	33.53
Seal Plates	$P_m + P_b$	60,120	3,560	16.89
	F	140,000	3,560	39.33
Dolta	$P_m + P_b$	150,000	10,593	14.16
Bolts	F	300,000	10,593	28.32

<u>Table 1</u> Stress Intensities in 3-60B Cask HAC Fire (t = 0.1 sec)

See Figure 7 for temperature distribution in the cask body and Figure 14 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the peak stress intensity (F) values have been conservatively reported as $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Structural Anal	yses of the	3-60B C	Cask Under HAC Fire	conditior	1S_			
Calc No	ST-502 Tables	Rev	1		Sheet	2	of	7	

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Dolting Ding	$P_m + P_b$	87,000	- (3)	_ (3)
Bolding King	F	174,000	172,140	1.01
Bolting Ring	$P_m + P_b$	87,000	53,681	1.62
(w/o Skirt)	F	174,000	53,681	3.24
Inner Shell	$P_m + P_b$. 87,000	14,035	6.20
Inner Shell	F	174,000	14,035	12.40
Orator Shall	$P_m + P_b$	60,120	39,916	1.51
Outer Shell	F	140,000	39,916	3.51
Lid	$P_m + P_b$	60,120	49,043	1.23
LIU	F	140,000	49,043	2.85
Page Plates	$P_m + P_b$	87,000	80,106	1.09
Dase Flates	F	174,000	80,106	2.17
Seal Plates	$P_m + P_b$	60,120	49,134	1.22
	F	140,000	49,134	2.85
Bolts	$P_m + P_b$	150,000	85,618	1.75
Dons	F	300,000	85,618	3.50

Table 2Stress Intensities in 3-60B Cask HAC Fire (t = 1,001 sec)

See Figure 8 for temperature distribution in the cask body and Figures 15 & 16 for stress intensity contour plot.

- Unless otherwise indicated in this column, the peak stress intensity (F) values have been conservatively reported as P_m + P_b stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) Stress intensity in the skirt of the bolting ring exceeds the $P_m + P_b$ allowable value. However, the stresses are concentrated at the fire-shield weld (see Figure 15). Local yielding at this location will easily accommodate these high stresses. If the skirt is disregarded, the stresses are much lower (see Figure 16).

Title	Structural Ana	lyses of the	<u>3-60B C</u>	ask Under HAC Fire	Condition	S		
Calc. No.	ST-502 Tables	Rev.	1		Sheet	3	of 7	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Dalting Ding	$P_m + P_b$	87,000	- (3)	- (3)
bolung King	F	174,000	_ (3)	_ (3)
Bolting Ring	$P_m + P_b$	87,000	65,848	1.32
(w/o Skirt)	F	174,000	65,848	2.64
Inner Shell	$P_m + P_b$	87,000	19,313	4.50
	F	174,000	19,313	9.01
Orston Shall	$P_m + P_b$	60,120	46,666	1.29
Outer Shell	F	140,000	46,666	3.00
Lid	$P_m + P_b$	60,120	59,543 ⁽⁴⁾	1.01
Liu	• F	140,000	74,217	1.89
Page Plates	$P_m + P_b$	87,000	80,086	1.09
Dase Tlates	F	174,000	80,086	2.17
Seal Plates	$P_m + P_b$	60,120	58,328 (5)	1.03
	F	140,000	65,474	2.14
Bolts	$P_m + P_b$	150,000	131,900	1.14
Bons	F	300,000	131,900	2.27

 $\frac{\text{Table 3}}{\text{Stress Intensities in 3-60B Cask HAC Fire (t = 1,806 sec)}}$

See Figure 9 for temperature distribution in the cask body and Figures 17 & 18 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the peak stress intensity (F) values have been conservatively reported as P_m + P_b stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) Stress intensity in the skirt of the bolting ring exceeds the $P_m + P_b$ allowable value. However, the stresses are concentrated at the fire-shield weld (see Figure 17). Local yielding at this location will easily accommodate these high stresses. If the skirt is disregarded, the stresses are much lower (see Figure 18).
- (4) Average stress intensity is reported. See Figure 19.
- (5) Average stress intensity is reported. See Figure 20.

Title	Structural Ana	lyses of the	3-60B Ca	sk Under HAC Fire Conditions	3		
Calc. No	ST-502 Tables	Rev	1	Sheet	4	_of7_	

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Polting Ding	$P_m + P_b$	87,000	_ (3)	_ (3)
Bolding King	F	174,000	- (3)	- (3)
Bolting Ring	$P_m + P_b$	87,000	63,726	1.37
(w/o Skirt)	F	174,000	63,726	2.73
Inner Shell	$P_m + P_b$	87,000	19,511	4.46
	F	174,000	19,511	8.92
Outer Shell	$P_m + P_b$	60,120	46,084	1.30
Outer Shell	F	140,000	46,084	3.04
Lid	$P_m + P_b$	60,120	59,242 ⁽⁴⁾	1.01
LIG	F	140,000	73,787	1.90
Base Plates	$P_{m} + P_{b}$	87,000	69,170	1.26
Dase Trates	F	174,000	69,170	2.52
Seal Plates	$P_m + P_b$	60,120	57,300 ⁽⁵⁾	1.05
	F	140,000	64,783	2.16
Bolts	$P_m + P_b$	150,000	132,370	1.13
DORS	F	300,000	132,370	2.27

<u>Table 4</u> <u>Stress Intensities in 3-60B Cask HAC Fire (t = 1,864 sec)</u>

See Figure 10 for temperature distribution in the cask body and Figures 21 & 22 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the peak stress intensity (F) values have been conservatively reported as P_m + P_b stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) Stress intensity in the skirt of the bolting ring exceeds the $P_m + P_b$ allowable value. However, the stresses are concentrated at the fire-shield weld (see Figure 21). Local yielding at this location will easily accommodate these high stresses. If the skirt is disregarded, the stresses are much lower (see Figure 22).
- (4) Average stress intensity is reported. See Figure 23.
- (5) Average stress intensity is reported. See Figure 24.

Title	Structural Ana	yses of the	<u>3-60B C</u>	ask Under HAC Fire	Condition	15			
Calc. No	ST-502 Tables	Rev	1		Sheet	5	_of_	7	

				·····
Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Polting Ding	$P_m + P_b$	87,000	48,562	1.79
Bolting King	F	174,000	48,562	3.58
Bolting Ring	$P_m + P_b$	87,000	48,562	1.79
(w/o Skirt)	F	174,000	48,562	3.58
Inner Shell	$P_m + P_b$	87,000	20,863	4.17
	F ·	174,000	20,863	8.34
Orest ere Sib ell	$P_m + P_b$	60,120	36,829	1.63
Outer Shell	F	140,000	36,829	3.80
Lid	$P_m + P_b$	60,120	52,277 ⁽³⁾	1.15
Liu	F	140,000	63,474	2.21
Dago Distor	$P_m + P_b$	87,000	27,088	3.21
Dase Flates	F	174,000	27,088	6.42
Seal Plates	$P_m + P_b$	60,120	16,635	3.61
	F	140,000	16,635	8.42
Polta	$P_m + P_b$	150,000	76,154	1.97
DOILS	F	300,000	76,154	3.94

<u>Table 5</u>

Stress Intensities in 3-60B Cask HAC Fire (t = 4,838 sec
---	----------------

See Figure 11 for temperature distribution in the cask body and Figure 25 for stress intensity contour plot.

- Unless otherwise indicated in this column, the peak stress intensity (F) values have been conservatively reported as P_m + P_b stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) Average stress intensity is reported. See Figure 26.

Title	Structural 2	Analyses of th	ne 3-60B C	ask Under HAC Fire Condition	S		
Calc. No	ST-502 Tables	Rev.	1	Sheet _	6	_of	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Polting Ping	$P_m + P_b$	87,000	47,484	1.83
	F	174,000	47,484	3.66
Bolting Ring	$P_m + P_b$	87,000	47,484	1.83
(w/o Skirt)	F	174,000	47,484	3.66
Inner Shell	$P_m + P_b$	87,000	21,080	4.13
	F	174,000	21,080	8.25
Outor Shall	$P_m + P_b$	60,120	37,135	1.62
Outer Sheh	F	140,000	37,135	3.77
Lid	$P_m + P_b$	60,120	57,409	1.05
	F	140,000	57,409	2.44
Rose Plotes	$P_m + P_b$	87,000	26,526	3.28
Dase Tlates	F	174,000	26,526	6.56
Seal Plates	$P_m + P_b$	60,120	15,413	3.90
	. F	140,000	15,413	9.08
Rolts	$P_m + P_b$	150,000	68,448	2.19
Boits	F	300,000	68,448	4.38

<u>Table 6</u>

Stress Intensities in 3-60B Cask HAC Fire (t = 5,936 sec)

See Figure 12 for temperature distribution in the cask body and Figure 27 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the peak stress intensity (F) values have been conservatively reported as $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Structural Anal	yses of the	3-60B Ca	sk Under HAC Fire Conditions	_
Calc. No	ST-502 Tables	Rev	1	Sheet <u>7</u> of 7	

Ž	tress Intensities	in 3-60B Cask HAC	Fire $(t = 14,000 \text{ sec})$	
Component	Stress Category	Allowable S.I. (psi) Calculated S.I. ⁽¹⁾ (psi)		F.S. ⁽²⁾
Dolting Ding	$P_m + P_b$	87,000	43,574	2.00
	F	174,000	43,574	3.99
Bolting Ring	$P_m + P_b$	87,000	43,574	2.00
(w/o Skirt)	F	174,000	43,574	3.99
Inn or Shall	$P_m + P_b$	87,000	19,547	4.45
Inner Snen	F	174,000	19,547	8.90
O-4 5111	$P_m + P_b$	60,120	34,102	1.76
Outer Shell	F	140,000	34,102	4.11
т:А	$P_m + P_b$	60,120	25,297	2.38
Lia	F	140,000	25,297	5.53
Dece Plates	$P_m + P_b$	87,000	23,033	3.78
Dase Flates	F	174,000	23,033	7.55
Seal Plates	$P_m + P_b$	60,120	9,585	6.27
	F	140,000	9,585	14.61
Polto	$P_m + P_b$	150,000	44,073	3.40
DUIts	F	300,000	44,073	6.81

Table 7

See Figure 13 for temperature distribution in the cask body and Figure 28 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the peak stress intensity (F) values have been conservatively reported as $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title_	Structura	l Analyse	s of the 3	-60B Cask	Under H	Iypothetica	l Fire Accide	ent Con	ditions	S
Calc.	No. <u>ST</u>	-502	Rev.	1			She	et <u>8</u>	of	10

<u>Figures</u>

(28 Pages)

<u>Figure 1</u> <u>Finite Element Model of the 3-60B Cask Identifying the Components by Material Numbers</u>

Title Calc. No. Structural Analyses of the 3-60B Cask Under Hypothetical Fire Accident ST-502 (Figures) Rev. Sheet 1 of 28

Finite Element Model of the Contact-Target Elements (Only Target Shown)

Title	Struc	tural Analy	vses of the 3-60)B Cask	Under Hypothetical Fire Accident	Cond	litions
Calc.	No	ST-502	Rev	1	Sheet _	9	_ of _10

<u>Appendix 1</u>

Printout of the ANSYS Model Data

(10 Pages)

ST-502, Rev.1, Appendix 1, Page 1 of 10

ANSYS Model Print-Out

```
***** TITLES *****
*** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM ***
ANSYS Mechanical/Emag
RELEASE 11.0SP1 UPDATE 20070830
                                 CUSTOMER 00222442
INITIAL JOBNAME = file
CURRENT JOBNAME = file
Current Working Directory: D:\Ansys Analyses\3-60B\Thermal\Fire with High Emissivity\Stress
TITLE= HAC Fire Stress Analysis at Time = 1,864 sec.
MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans
                         GLOBAL STATUS
                                            Jun 17, 2009
ANSYS - Engineering Analysis System
                                                                  11:47
                                                    WINDOWS x64 Version
Release 11.0SP1
                           00222442
Current working directory: D:\Ansys Analyses\3-60B\Thermal\Fire with High Emissivity\Stress
MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans
Product(s) enabled: ANSYS Mechanical/Emag
                            0 hours 1 minutes
0 hours 0 minutes 2.4 seconds
Total connect time. . . .
Total CP usage. . . . . . .
JOB INFORMATION -----
HAC Fire Stress Analysis at Time = 1,864 sec.
 Current jobname . . . . . . file
 Initial jobname . . . . . . file
 Used
                              Available
                             4796.000 mb
                                                  4.280 mb ( 0.1%)
 Scratch Memory Space. . . .
                                                 10.401 mb ( 0.0%)
Database space . . . . . . 1048572.000 mb
 User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIMENU.GRN
 User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIFUNC1.GRN
User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIFUNC2.GRN
User menu file in use . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\MECHTOOL.AUI
MODEL INFORMATION -----
 Solid model summary:
                             Largest
                                           Number
                                                         Number
                             Number
                                           Defined
                                                        Selected
                                               0
                                                              0
 Keypoints . . . . . . . . .
                                 0
 Lines . . . . . . . . . . .
                                 0
                                                0
                                                              0
                                               0
                                                              0
 Areas
                                 0
                                 0
                                                0
                                                              0
 Volumes . . . . . . . . . . .
```

Finite element model summary:

						Largest	Number	Number
						Number	Defined	Selected
Nodes						2895	2868	2868
Elements.			٠.		-	3949	2368	2368

Element types	. 70 . 57	35 28 3	n.a. n.a.	
material property sets	. 5	2	11.a.	
Coupling	. 0 . 267 . 0	0 150 0	n.a. n.a. n.a.	
Dynamic gap conditions	. 0	0	II.d.	
BOUNDARY COND	ITION	INFORMA	T I O N	
		Number Defined		
Constraints on nodes		1201		
Constraints on keypoints.		0		
Constraints on lines				
constraines on areas				
Forces on nodes Forces on keypoints	· · · · · · ·	0 0	·	
Surface loads on elements		197		
Number of element flagged	surfaces .	0		
Surface loads on lines		0		
Surface loads on areas		0		
Body loads on elements		0		
Body loads on nodes		2868		
Body loads on keypoints .		0		
Temperatures Uniform temperature.		70.000		
Reference temperature.		70.000		
Offset from absolute so	ale	460.000		
		v	v	7
Linear acceleration		0.0000	0.0000	1.1070
Angular velocity (about gl	obal CS)	0.0000	0.0000	0.0000
Angular acceleration (abou	it global CS	3) 0.0000	0.0000	0.0000
Location of reference CS.		0.0000	0.0000	0.0000
Angular acceleration (about fe	it reference	2 CS) 0.0000	0.0000	0.0000
ROUTINE INFOR	маттов	I		
Current routine		Preprocessing	(PREP7)	•
		·	(
Active coordinate system .	••••	. 1 (Cylindr	ical)	
Display coordinate system.		. 0 (Cartesi	an)	
Current element attributes	3:	69 (TARG	E170)	•
Real number		. 57		
Material number		. 1		
Element coordinate syst	em number.	. 0		
Current mesher type		.based on defa	ult element shaj	pe
Current element meshing sh	nape 2D	.use default e	lement shape.	
Current element meshing sh	nape 3D	.use default e	lement shape.	
SmrtSize Level		OFF		
Global element size		. 0 divisi	ons per line	
Active coordinate system .	· · · · · · ·	. 1 (Cylindr	ical)	
Display coordinate system.		. 0 (Cartesi	an)	

Active options for this analysis type: Large deformation effects .Not included Plasticity .Not included Equation solver to use .Not included Equation solver to use .Program Chosen Results file	
Results file	Active options for this analysis type: Large deformation effectsNot included PlasticityNot included CreepNot included Equation solver to useProgram Chosen
Load step number 2 Number of substeps 50 Step change boundary conditions .No S O L U T I O N O P T I O N S PROBLEM DIMENSIONALITY	Results file
Number of substeps 50 Step change boundary conditions No S O L U T I O N O P T I O N S PROBLEM DIMENSIONALITY.	Load step number 2
SOLUTION OPTIONS PROBLEM DIMENSIONALITY.	Number of substeps
PROBLEM DIMENSIONALITY.	SOLUTION OPTIONS
LOAD STEP OPTIONS	PROBLEM DIMENSIONALITY.
LOAD STEP NUMBER.2TIME AT END OF THE LOAD STEP.1.0000NUMBER OF SUBSTEPS.50MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS.15STEP CHANGE BOUNDARY CONDITIONSNOTERMINATE ANALYSIS IF NOT CONVERGEDYES (EXIT)CONVERGENCE CONTROLSVES (EXIT)LABEL REFERENCE TOLERANCE NORMMINREFF0.0000.2000E-01INERTIA LOADSXYACELYZACELACELONTOLENONOPRINT OUTPUT CONTROLSNODATEBASE OUTPUTDATEBASE OUTPUT	LOAD STEP OPTIONS
F 0.000 0.2000E-01 1 0.000 INERTIA LOADS X Y Z ACEL . . 0.0000 0.0000 1.1070 PRINT OUTPUT CONTROLS . <td< td=""><td>LOAD STEP NUMBER. 2 TIME AT END OF THE LOAD STEP. 1.0000 NUMBER OF SUBSTEPS. 50 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. 15 STEP CHANGE BOUNDARY CONDITIONS NO TERMINATE ANALYSIS IF NOT CONVERGED YES (EXIT) CONVERGENCE CONTROLS LABEL REFERENCE TOLERANCE NORM MINREF</td></td<>	LOAD STEP NUMBER. 2 TIME AT END OF THE LOAD STEP. 1.0000 NUMBER OF SUBSTEPS. 50 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. 15 STEP CHANGE BOUNDARY CONDITIONS NO TERMINATE ANALYSIS IF NOT CONVERGED YES (EXIT) CONVERGENCE CONTROLS LABEL REFERENCE TOLERANCE NORM MINREF
	Initial Initia Initi

ITEM FREQUENCY COMPONENT BASI ALL

. A

LIST ELEMENT TYPES FROM 1 TO 70 BY 1

ELEMENT TYPE	1	IS	SOLID185		3-D	8 -	NODI	E STR	UCT	URA	L SOLID		INOPR
KEYOPT (1-12) =	0	0	0 0	0	0	0	0	0	0	0	0	0	
ELEMENT TYPE	2	IS	SHELL41		MEM	BRA	NE S	SHELL					INOPR
KEYOPT(1-12) =	0	0	0 0	0	0	0	0	0	0	0	0	0	
ELEMENT TYPE	3	IS	SOLSH190		3-D	8 -	NODI	E SOLI	ID :	SHE	LL		INOPR
KEYOPT(1-12) =	0	0	0 0	0	0	0	0	0	0	0	0	0	
ELEMENT TYPE	14	IS	TARGE170		3-D	TA	RGE'	r segi	MEN	г			INOPR
KEYOPT(1-12) =	0	0	0 0	0	0	0	0	0	0	0	0	0	
ELEMENT TYPE	15	IS	CONTA174		3D	8-N	ODE	SURF	- ຣບ	RF	CONTACT		INOPR
KEYOPT (1-12) =	0	0	0 2	1	0	0	0	1	0	0	0	0	
ELEMENT TYPE	16	IS	TARGE170		3-D	ТА	RGE'	r segi	MEN	г			INOPR
KEYOPT (1-12) =	0	0	0 0	0	0	0	0	0	0	0	0	0	
ELEMENT TYPE	17	IS	CONTA174		3D	8 - N	ODE	SURF	- sຫ	RF	CONTACT		INOPR
KEYOPT(1-12) =	0	2	0 2	3	0	0	0	1	2	0	6	0	
ELEMENT TYPE	18	IS	TARGE170		3-D	TA	RGE	r segi	MEN	г			INOPR
KEYOPT (1-12) =	0	0	0 0	0	0	0	0	0	0	0	0	0	
ELEMENT TYPE	19	IS	CONTA174		3D	8 - N	ODE	SURF	- ទហ	RF	CONTACT		INOPR

KEYOPT(1-12) =	0	0	0 2	2	0	0	0	1	2 (5	5	0	
ELEMENT TYPE KEYOPT(1-12) =	20 0	IS 0	TARGE170 0 0	0	3-D 0	TA 0	RGEI 0	r segi 0	MENT 0 (C	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	21 0	IS 0	CONTA174 0 2	1	3D 0	8-N 0	0. IODE	SURF 1	- SURI 2 (F C D	ONTACT 3	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	22 0	IS 0	TARGE170 0 0	0	3-D 0	ТА 0	RGET 0	SEGI 0	MENT	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	23 0	IS 0	CONTA174 0 2	3	3D 0	8-N 0	IODE 0	SURF 1	- SURI 2 (F C	ONTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	24 0	IS 0	TARGE170 0 0	ò	3-D 0	ТА 0	RGET 0	SEGI 0	NENT	D	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	25 0	IS 0	CONTA174 0 2	3	3D 0	8-N 0	10DE 0	SURF 1	- SURI 2 0	F C D	ONTACT 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	26 0	IS 0	TARGE170 0 0	0	3-D 0	. TA 0	ARGE'I 0	SEGI 0	MENT 0	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	27 0	IS 0	CONTA174 0 2	3	3D 0	8-N 0	0 0	SURF 1	- SURI 2	F C	ONTACT 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	28 0	IS 0	TARGE170 0 0	0	3-D 0	Τ <i>Ι</i> Ο	ARGE1 0	r segi 0	MENT 0	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	29 0	IS 0	CONTA174 0 2	3	3D 0	4-8 0	0 0	SURF 1	- SUR: 2	F C	ONTACT 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	30 0	IS 0	TARGE170 0 0	0	3-D 0	Τ2 0	ARGET 0	r segi 0	MENT 0	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	31 0	IS 0	CONTA174 0 2	3	3D 0	1-8 0	10DE 0	SURF	- SUR 2	F C 0	ONTACT 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	53 0	IS 0	TARGE170 0 0	0	3-D 0	Τ2 0	ARGET	r segi 0	MENT 0	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	54 0	IS 2	CONTA175 0 0	3	NOD 0	E-1 0	0 0	JRFAC 1	E CO: 2	NTA 0	S	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	57 0	IS 0	TARGE170 0 0	0	3-D 0	0	ARGE: 0	r seg 0	0	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	58	IS 0	CONTA174 0 2	3	3D 0	8-1 0	NODE 0.	SURF	- SUR 2	F C 0	ONTACT 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	61 0	IS 0	TARGE170 0 0	0	3-D 0 ·	т <i>и</i> о	ARGE'. 0	r seg 0	0	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	62 0	1S 0	CONTA174 0 2	3	0 3D	0	NODE 0	SURF	2	F C	ONTACT 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	63 0	15 0	0 0	0	3-D 0	0	ARGE 0	0 0	0 O	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12) =	64 0	1S 0 TC	CONTAI74 0 0	3	ЦЕ 0.	8-1 0	NUDE 0	SURF 1	- SUR 2	н. С	0 0	0	INOPR
KEYOPT (1-12) =	0	15 0 15	1AKGE170 0 0	0	3-E 0	0	O O	0 0		0	0	0	TNOPK
KEYOPT (1-12) =	0	15 0 TC	0 0	3	NOD 0	0	0	I	2 2	0	0	0	TNODE
KEYOPT(1-12) =	67	ы В Ц	D 0	0	u-د 0	0 17	HRGE". 0	L SEG 0	men'l' 0	0	0	0	TNOLK

ELEMENT TYPE KEYOPT(1-12)=	68 IS 0 0	CONT 0	A175 0 3	NODI 0	E-TO-SU 0 0	JRFACE 1	CONT2 2 0	ACT 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	69 IS 0 0	TARG 0	E170 0 0	3-D 0	TARGET	SEGM	ENT 0 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	70 IS 0 0	CONT 0	A175 0 3	NODI 0	E-TO-SU 0 0	JRFACE 1	CONT 2 0	ACT 0	0	INOPR
CURRENT NODAL THREE-DIMENSI	DOF SET	IS U EL	X UY	U	Z TE	MP ·				
LIST REAL SETS	1	TO	57 H	ΒY	1					
REAL CONSTANT 1.0000	SET 0.330561	23 E-14	ITEMS 0.0000	1 TO D'	6 0,.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	23	ITEMS 0.0000	7 ТО 0 [.]	12 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	23	ITEMS : 0.0000	13 TO 0	18 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	24	ITEMS 0.000	1 TO 0	6 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	24	ITEMS 0.000	7 TO 0	12 [,] 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.33300	SET 0.0000	24	ITEMS : 0.000	13 TO 0	18 0.00	000	0	.0000		0.0000
REAL CONSTANT 1.0000	SET 0.33056	27 E-14	ITEMS 0.000	1 ТО 0	6. 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	27	ITEMS	7 TO 0	12 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	27	ITEMS : 0.000	13 TO 0	18 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 0.000	1 ТО 0	6 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 0.000	7 TO 0	12 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.33300	SET 0.0000	28	ITEMS 0.000	13 TO 0 ·	18 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 1.000	1 ТО 0	6 0.100	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 0.1000	7 TO 0E+21	12 0.00	000	1	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 1.000	13 TO 0	18 0.00	000	1	.0000		0.50000
REAL CONSTANT 0.0000	SET 1.0000	32	ITEMS 1.000	19 ТО 0	24 0.00	000	0	.0000		1.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 1.000	1 TO 0	6 0.100	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 0.1000	7 TO 0E+21	12 0.00	000	1	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 1.000	13 TO 0	18 0.00	000	1	.0000		0.50000

•

REAL CONST 0.0000	CANT SET 1.000	33 0	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONS: 0.0000	TANT SET 0.000	34 0	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONST 0.0000	TANT SET 0.000	34 0	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONST 0.0000	TANT SET 0.000	34 0	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONS	TANT SET	34 0	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONST	FANT SET 0.000	35 0	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONST	TANT SET 0.000	35 0	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONS	TANT SET 0.000	35 0	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONS	IANT SET 1.000	35 0	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONS	IANT SET 0.000	36 0	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONS	IANT SET 0.000	36 0	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONS	IANT SET	36	ITEMS 13 TO	18	1.0000	0.50000
REAL CONS	TANT SET	36	ITEMS 19 TO	24	0.0000	1.0000
REAL CONS	TANT SET	37	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONS	TANT SET	37	ITEMS 7 TO 0.10000E+21	12	1.0000	0.0000
REAL CONS	TANT SET	37	ITEMS 13 TO	18	1.0000	0.50000
REAL CONS	TANT SET	37	ITEMS 19 TO	24	0,0000	1 0000
REAL CONS	TANT SET	38	ITEMS 1 TO	6	0.0000	
REAL CONS	TANT SET	38	ITEMS 7 TO	12	1.0000	0.0000
REAL CONS	TANT SET	38	ITEMS 13 TO	18	1.0000	0.50000
REAL CONS	TANT SET	. 38	ITEMS 19 TO	24	1.0000	1.0000
REAL CONS	TANT SET	39	ITEMS 1 TO	6		1.0000
REAL CONS	TANT SET	39	ITEMS 7 TO	12	0.0000	0.0000
0.0000 REAL CONS	0.000 TANT SET 0.000	39 00	ITEMS 13 TO 1.0000	0.0000 18 0.0000	1.0000	0.50000

REAL CONSTANT 0.0000	SET 1.0000	39	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	40	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0,0000	SET 1.0000	42	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0,0000	SET 0.0000	43.	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	43	ITEMS 19 TO 1.0000	24 0 ⁴ .0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 7 TO 0.10000E+21	12 ⁶ 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	44	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	45	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT	SET	46	ITEMS 13 TO	18		

0.0000	0.0000		1.0000	0.0000	1.0000	0.50000	
REAL CONSTA	NT SET 1.0000	46	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000	
REAL CONSTA 0.0000	NT SET 0.0000	47	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000	
REAL CONSTA 0.0000	NT SET 0.0000	47	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000	
REAL CONSTA 0.0000	NT SET 0.0000	47	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000	
REAL CONSTA 0.0000	NT SET 1.0000	47	ITEMS 19 TO 1.0000	24 0.0000	. 0.0000	1.0000	
REAL CONSTA 0.0000	ANT SET 0.0000	48	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000	
REAL CONSTA 0.0000	ANT SET 0.0000	48	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000	
REAL CONST 0.0000	ANT SET 0.0000	48	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000	
REAL CONST 0.0000	ANT SET 1.0000	48	ITEMS 19 TO 1.0000	24 0.0000	• 0.0000	1.0000	
REAL CONST 0.0000	ANT SET 0.0000	50	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000	
REAL CONST 0.0000	ANT SET 0.0000	50	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	·. 0.0000	
REAL CONST 0.0000	ANT SET 0.0000	50	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000	
REAL CONST. 0.0000	ANT SET 1.0000	50	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000	
REAL CONST. 0.0000	ANT SET 0.0000	51	ITEMS 1 TO 1.0000	6 0.10000	0.0000	• 0.0000	
REAL CONST. 0.0000	ANT SET 0.0000	51	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000	
REAL CONST. 0.0000	ANT SET 0.0000	51	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000	
REAL CONST. 0.0000	ANT SET 1.0000	51	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000	
REAL CONST. 0.0000	ANT SET 0.0000	52	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000	
REAL CONST 0.0000	ANT SET 0.0000	52	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000	
REAL CONST 0.0000	ANT SET 0.0000	52	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000	
REAL CONST 0.0000	ANT SET 1.0000	52	ITEMS 19 TO 1.0000	24	0.0000	1.0000	
REAL CONST 0.0000	ANT SET 0.0000	53	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000	
REAL CONST 0.0000	ANT SET 0.0000	53	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000	

REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	53	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	54	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	54	ITEMS 7 TO 0.10000E+21	12 [;] 0.0000	1.0000	0.0000
REAL CONSTANT	SET 0.0000	54	ITEMS 13 TO	18		0.50000
REAL CONSTANT	SET	54	ITEMS 19 TO	24	0.0000	1 0000
REAL CONSTANT	SET	55	ITEMS 1 TO	6	0.0000	1.0000
REAL CONSTANT	SET	55	ITEMS 7 TO	12	0.0000	0.0000
0.0000 REAL CONSTANT	0.0000 SET	55	0.10000E+21 ITEMS 13 TO	0.0000	1.0000	0.0000
0.0000 REAL CONSTANT	0.0000 SET	55	1.0000 ITEMS 19 TO	0.0000	1.0000	0.50000
0.0000 REAL CONSTANT	1.0000 SET	55	1.0000 ITEMS 25 TO	0.0000	0.0000	1.0000
10.000 REAL CONSTANT	0.0000	56	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	50	1.0000	0.10000	0.0000	0.0000
0.0000	0.0000	56	0.10000E+21	0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	56	ITEMS 13 TC 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	56	ITÉMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	56	ITEMS 25 TC 0.0000	30	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 7 TC 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 13 TC 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	57	ITEMS 19 TC 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	57	ITEMS 25 TC 0.0000	30 0.0000	0.0000	0.0000
LIST MATERIAL PROPERTY= AL	S 1 L	то	3 BY	1		
PROPERTY TABL TEMPERATURE	E EX MA DATA	AT=	1 NUM. TEMPERATURE	POINTS= 6 DATA T	emperature	DATA
70.000 300.00	0.283001 0.270001	2+08 2+08	100.00 400.00	0.28100E+08 0.26500E+08	200.00	0.27600E+08 0.25800E+08

.

.

PROPERTY TABLE NUXY MAT= 1 NUM. POINTS= 6 100.00 0.30000 200 00 400.00 0 TEMPERATURE DATA TEMPERATURE DATA DATA 70.000 0.30000 0.30000 300.00 0.30000 0.30000 PROPERTY TABLE ALPX MAT= 1 NUM. POINTS= 6 REFERENCE TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE 1 NUM. POINTS= 6 REFERENCE TEMP. = 70.00 DATA 0.85000E-05 100.00 0.86000E-05 200.00 0.92000E-05 400.00 0.95000E-05 500.00 70.000 0.89000E-05 300.00 0.92000E-05 400.00 0.97000E-05 PROPERTY TABLE DENS MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.28300 PROPERTY TABLE MU MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA 7 TEMPERATURE DATA 0.0000 0.30000 PROPERTY TABLE EMIS MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.0000 PROPERTY TABLE EX MAT= 2 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.000 0.29900E+08 100.00 0.29900E+08 200.00 0.29900E+08 300.00 0.29900E+08 400.00 0.29900E+08 500.00 0.29900E+08 PROPERTY TABLE NUXY MAT= 2 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 100.00 0.30000 70.000 0.30000 200.00 0.30000 300.00 0.30000 400.00 0.30000 500.00 0.30000 PROPERTY TABLE ALPX MAT= 2 NUM. POINTS= TEMPERATURE DATA TEMPERATURE DATA 2 NUM. POINTS= 6 REFERENCE TEMP. = 70.00 TEMPERATURE DATA 0.65000E-05 100.00 0.65000E-05 200.00 0.65000E-05 70.000 0.65000E-05 400.00 0.65000E-05 500.00 300.00 0.65000E-05 PROPERTY TABLE DENS MAT= 2 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.28300 PROPERTY TABLE EX MAT= 3 NUM. POINTS= 8 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.24600E+07 -20.000 0.24300E+07 70.000 0.22700E+07 0.22100E+07 200.00 0.20100E+07 300.00 0.18500E+07 -40.000 100.00 0.17000E+07 500.00 0.15200E+07 400.00 PROPERTY TABLE NUXY MAT= 3 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 81.000 212.00 0.40000 302.00 0.40000 0.40000 0.40000 392.00 0 40000 513.00 621.00 0.40000 PROPERTY TABLE ALPX MAT= 3 NUM. POINTS= 8 REFERENCE TEMP. = TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 3 NUM. POINTS= 8 REFERENCE TEMP. = 70.00 -40.000
 0.15560E-04
 -20.000
 0.15650E-04
 70.000
 0.16060E-04

 0.16220E-04
 200.00
 0.16700E-04
 300.00
 0.17330E-04
 100.00 0.18160E-04 500.00 0.19120E-04 400.00 PROPERTY TABLE DENS MAT= 3 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE TEMPERATURE DATA DATA 0.0000 0.41000

• •

Title_	Struc	tural Analyse	es of the 3-60)B Cask	Under Hypothetical	Fire Accident	Condi	tions		. ;
Calc.	No	ST-502	Rev	1	-	Sheet_	10	_of_	10	

١

<u>Appendix 2</u>

Electronic Data on CDROM

(1 Page & 1 CDROM)