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I Course Objectives

e Introduce Probabilistic Risk Assessment (PRA)
modeling and analysis methods applied to
nuclear power plants

— Initiating event identification

— Event tree and fault tree model development
— Human reliability analysis

— Data analysis

— Accident sequence quantification

— Large Early Release Frequency (LERF)
analysis
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Overview of PRA

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

* Arises from a “Danger” or “Hazard”
* Always associated with undesired
event
* Involves both:
— likelihood of undesired event

— severity (magnitude) of the
consequences

] Slide 4 A Collaboration of U.S. NRC Office of Nuclear Regulatory
Research (RES) & Electric Power Research Institute (EPRI)
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Risk Definition

* Risk - the frequency with which a given consequence
occurs

. Consequence Magnitude
Risk d d ] =

Unit of Time
Frequenc [ —Events ] x Consequences [w]
q y Unit of Time q Event
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PRA/HRA Overview

I Risk Example:
Death Due to Accidents

« Societal Risk = 93,000 accidental-deaths/year
(based on Center for Disease Control actuarial data)
« Average Individual Risk
= (93,000 Deaths/Year)/250,000,000 Total U.S. Pop.
= 3.7E-04 Deaths/Person-Year
< 1/2700 Deaths/Person-Year

« In any given year, approximately 1 out of every 2,700 people in the entire
U.S. population will suffer an accidental death

» Note: www.cdc.gov latest data (2005) 117,809 unintentional deaths and
296,748,000 U.S. population, thus average individual risk <@ (117,809
deaths/year)/296,748,000 @ 4E-04 Deaths/Person-Year

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 6 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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I Risk Example:
Death Due to Cancer

« Societal Risk = 538,000 cancer-deaths/year
(based on Center for Disease Control actuarial data)

* Average Individual Risk
= (538,000 Cancer-Deaths/Year)/250,000,000 Total U.S. Pop.
= 2.2E-03 Cancer-Deaths/Person-Year
«@M 1/460 Cancer-Deaths/Person-Year

« In any given year, approximately 1 person out of every 460 people in the
entire U.S. population will die from cancer

* Note: www.cdc.gov latest data (2005) 546,016 cancer deaths and 296,748,000 U.S.
population, thus average individual risk <@ (546,016 deaths/year)/296,748,000 @)
1.8E-03 Deaths/Person-Year

A Collaboration of U.S. NRC Office of Nuclear Regulatory
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PRA/HRA Overview

Overview of PRA Process

* PRAs are performed to find severe accident weaknesses
and provide quantitative results to support decision-making.
Three levels of PRA have evolved:

Level An Assessment of: Result
1 (Systems Plant accident initiators and Core damage
Analysis) systems’/operators’ response frequency &
contributors
2 (Containment Frequency and modes of Categorization &
Analysis) containment failure frequencies of

containment releases

3 (Consequence Public health consequences Estimation of public &
Assessment) economic risks
Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 8 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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I Overview of Level-1/2/3 PRA

Bridge Event

Level-1 Tree Level-2 Level-3
Event (containment ~ Containment Event ~ Consequence
1Es Tree systems) Tree (APET) Analysis

RXTri

P \ \- Consequence
LOCA . N _, Source Code
LOSP cb ~PDS - Terms  — cajculations
SGTR / / / (MACCS)

“ oy / l

Offsite Consequence

Plant Systems Severe Accident _

and Human Action Progression Risk N

Models (Fault Analyses « Early Fatalities/year
Trees and Human (Experimental and * Latent (_Zancers/year
Reliability Computer Code + Population Dose/year
Analyses) Results) « Offsite Cost ($)/year

L]
A Collaboration of U.S. NRC Office of Nuclear Regulatory
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PRA/HRA Overview

Principal Steps in PRA

Initiating Event Accident RCS/ Source Release Offsite Health &
Event Tree Sequence Containment Term Category Conseq’s Economic
Analysis ™ Analysis Quantif. gl F;esp‘onse gl Analysis Chara;ter, Analysis Risk
> nalysis an .
uantif. Analysis
=il f f f
y T
Phenomena
Support/ Fault Uncertainty Meteorology Uncertainty
>
Dependency Tree & Analysis Uncegalnly Model &
Analysis* [ Analysis* Sensitivity Sensitivity Sensitivity
Y3 Analysis Analysis
Analysis
Population ||
] Distribution
‘
Response
Common Human P
Cause Reliability
Failure Analysis* Pathways
Analysis* Model
I
Health
Parameter Effects |7
Estimation*
. Economic | |
Used in Level 2 as required Effects.

LERF Assessment

A Collaboration of U.S. NRC Office of Nuclear Regulatory
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PRA Classification

* Internal Events — risk from accidents initiated internal to
the plant
— Includes internal flooding and fire events and loss-of-offsite power

» External Events — risk from external events
— Includes seismic, external flooding, high winds and tornadoes,
airplane crashes, lightning, hurricanes, etc.
* Full Power — accidents initiated while plant is critical
operating at >X%* power

* Low Power and Shutdown (LP/SD) — accidents initiated
while plant is <X%* power or shutdown
— Shutdown includes hot and cold shutdown, mid-loop operations,
refueling

*X is usually plant-specific. The separation between full and low power
is determined by evolutions during increases and decreases in power.

Fire PRA Workshop, 2009, Palo Alto, CA Slide 11 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Specific Strengths of PRA

* Rigorous, systematic analysis tool

* Information integration (multidisciplinary)

* Allows consideration of complex interactions
* Develops qualitative design insights

* Develops guantitative measures for decision
making

* Provides a structure for sensitivity studies

* Explicitly highlights and treats principal sources of
uncertainty

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 12 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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I Principal Limitations of PRA

* Inadequacy of available data
* Lack of understanding of physical processes
* High sensitivity of results to assumptions
« Constraints on modeling effort (limited resources)
— simplifying assumptions
— truncation of results during quantification
* PRA is typically a snapshot in time
— this limitation may be addressed by having a “living” PRA

« plant changes (e.g., hardware, procedures and operating
practices) reflected in PRA model

» temporary system configuration changes (e.g., out of service
for maintenance) reflected in PRA model

« Lack of completeness (e.g., human errors of commission typically not
considered)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 13 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatow
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Initiating Event Analysis

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)




LEVEL LEVEL LEVEL
1 2 3
Initiating Event Accident . ITCS/ . Source ge‘lease Offsite Health &
Event Tree Sequence ontainment Term ategory Conseq's Economic
Analysis [ ] Analysis [ Quantif. [ ] Response [ apaysis [ Character. Analysis Risk
> Analysis and ysi
Quantif. Analysis
=il f f f I
Phenomena
Support/ Fault Uncertainty Meteorology Uncertainty
Dependency Tree & Analysis Uncertainty \Mo—de“» r
Analysis* [T lysis* Sensitivity s & Sensitivity
Analysis Analysis ensitivity Analysis
Analysis
Population |
] Distribution
‘
R
Common Human esponse
Cause Reliability
Failure Analysis* Pathways
Analysis* Model
L Health
Parameter Effects  |”]
Estimation*
Eq
*Used in Level 2 as required »
LERF Assessment
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Initiating Event Analysis

» Purpose: Students will learn what is an initiating event (IE), how
to identify them, and group them into categories for further
analysis.

Objectives:

— Understand the relationship between initiating event
identification and other PRA elements

— Identify the types of initiating events typically considered in a
PRA

— Become familiar with various ways to identify initiating events

— Understand how initiating events are grouped

» References:
— NUREG/CR-2300, NUREG/CR-5750, NUREG/CR-3862,
NUREG/CR-4550, Volume 1

A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Initiating Events

» Definition — Any potential occurrence that could disrupt plant
operations to a degree that a reactor trip or plant shutdown is
required. Initiating events are quantified in terms of their
frequency of occurrence (i.e., number of events per calendar year
of operation)

» Can occur while reactor is at full power, low power, or shutdown

— Focus of this session is on IEs during full power operation

« Can be internal to the plant or caused by external events

— Focus of this session is on internal IEs
« Basic categories of internal IEs:

— transients (initiated by failures in the balance of plant or nuclear
steam supply)

— loss-of-coolant accidents (LOCAS) in reactor coolant system
— interfacing system LOCAs (ISLOCAS)

— LOCA outside of containment

— special transients (generally support system initiators)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 17 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Role of Initiating Events in PRA

« ldentifying initiating events is the first step in the development of
accident sequences

» Accident sequences can be conceptually thought of as a combination
of:

— an initiating event, which triggers a series of plant and/or operator
responses, and

— A combination of success and/or failure of the plant system and/or
operator response that result in a core damage state

« Initiating event identification is an iterative process that requires
feedback from other PRA elements

— system analysis
— review of plant experience and data

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 18 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Initiating Event Analysis

* Collect information on actual plant trips

* |dentify other abnormal occurrences that could cause a
plant trip or require a shutdown

* |dentify the plant response to these initiators including the
functions and associated systems that can be used to
mitigate these events

» Grouping IEs into categories based on their impact on
mitigating systems

* Quantify the frequency of each IE category (Included later
in Data Analysis session)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 19 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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l Comprehensive Engineering
Evaluation

» Review historical events (reactor trips, shutdowns, system
failures)

« Discrete spectrum of LOCA sizes considered based on location of
breaks (e.g., in vs. out of containment, steam vs. liquid),
components (e.g., pipe breaks vs. stuck-open relief valves), and
available mitigation systems

» Review comprehensive list of possible transient initiators based
on existing lists (see for example NUREG/CR-3862) and from
Safety Analysis Report

< Review list of initiating event groups modeled in other PRAs and
adapt based on plant-specific information — typical approach for
existing light-water reactors (LWRS)

» Feedback provided from other PRA taks

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 20 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)
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Sources of Data for Identifying IEs

* Plant-specific sources:
— Licensee Event Reports
— Scram reports

— Abnormal, System Operation, and Emergency
Procedures

— Plant Logs
— Safety Analysis Report (SAR)
— System descriptions

» Generic sources:
— NUREG/CR-3862
— NUREG/CR-4550, Volume 1
— NUREG/CR-5750

— Other PRAs
Fire PRA Workshop, 2009, Palo Alto, CA Slide 21 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Criteria for Eliminating IEs

* Some IEs may not have to modeled because:
— Frequency is very low (e.g., <1E-7/ry)
* ASME/ANS PRA Standard exclude ISLOCAs ,
containment bypass, vessel rupture from this criteria

— Frequency is low (<1E-6/ry) and at least two trains of
mitigating systems are not affected by the IE

— Effect is slow, easily identified, and recoverable before
plant operation is adversely affected (e.g., loss of
control room ventilation and cooling)

— Effect does not cause an automatic scram or an
administrative demand for shutdown (e.g., waste
treatment failure)

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 22 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Initiating Event Grouping

* For each identified initiating event:

— Identify the safety functions required to prevent core damage
and containment failure

— ldentify the plant systems that can provide the required safety
functions
» Group initiating events into categories that require the
same or similar plant response

* This is an iterative process, closely associated with
event tree construction. It ensures the following:
— All functionally distinct accident sequences will be included
— Overlapping of similar accident sequences will be prevented
— A single event tree can be used for all IEs in a category

Fire PRA Workshop, 2009, Palo Alto, CA Slide 23 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

l Example Initiating Events (PWR)

from NUREG/CR-5750
Category Initiating Event Mean Frequency
(per critical year)
B Loss of offsite power 4.6E-2
L Loss of condenser 0.12
P Loss of feedwater 8.5E-2
Q General transient (Power Conversion 1.2
System available)
F Steam generator tube rupture 7.0E-3
ATWS 8.4E-6
G7 Large LOCA 5E-6
G6 Medium LOCA 4E-5
G3 Small LOCA 5E-4
Fire PRA Workshop, 2009, Plo o, CA Sideze A O
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I Example Initiating Events (PWR)
from NUREG/CR-5750 (cont.)

Category Initiating Event Mean Frequency
(per critical year)

G2 Stuck-open relief valve 5.0E-3
K1 High energy line break outside 1.0E-2
containment
Cl1+C2 Loss of vital medium or low voltage 2.3E-2
ac bus
C3 Loss of vital dc bus 2.1E-3
D Loss of instrument or control air 9.6E-3
E1l Loss of service water 9.7E-4
Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 25 A Collaboration of U.S. NRC Office of Nuclear Regulatory
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)
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PRA/HRA Overview

Principal Steps in PRA

g

LEVEL LEVEL LEVEL
1 2 3

Initiating Event Accident . ITCS/ . Source ge‘lease Offsite Health &
Event Tree Sequence ontainment Term ategory Conseq's Economic
Analysis [ ] Analysis [ Quantif. [ | Response [ Apaysis [ Character. Analysis Risk
> Analysis and Analysi
Quantif. nalysis
I S 1
= | I
Phenomena
Support/ Fault Uncertainty Meteorology Uncertainty
Dependency Tree & Analysis Uncertainty Model idl r
Anaysis' P Analvaist Sensitivity senciivit Sensitivity
nalysis Analysis ensitivity Analysis
Analysis
Population |
] Distribution
‘
R
Common Human esponse
Cause Reliability
Failure Analysis* Pathways
Analysis* Model
L Health
Parameter Effects  |”]
Estimation*
Eq
*Used in Level 2 as required »
LERF Assessment
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Event Tree Analysis

» Purpose: Students will learn purposes & techniques of event tree
analysis. Students will be exposed to the concept of accident
sequences and learn how event tree analysis is related to the
identification and quantification of dominant accident sequences.

* Objectives:

— Understand purposes of event tree analysis

— Understand currently accepted techniques and notation for
event tree construction

— Understand purposes and techniques of accident sequence
identification

— Understand how to simplify event trees
— Understand how event tree logic is used to quantify PRAs
» References: NUREG/CR-2300, NUREG/CR-2728

A Collaboration of U.S. NRC Office of Nuclear Regulatory

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 28
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PRA/HRA Overview
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Event Trees

» Typically used to model the response to an initiating event
* Features:

— Generally, one system-level event tree for each initiating event group is
developed

— Identifies systems/functions required for mitigation

— Identifies operator actions required for mitigation

— ldentifies event sequence progression

— End-to-end traceability of accident sequences leading to bad outcome
* Primary use

— Identification of accident sequences which result in some outcome of
interest (usually core damage and/or containment failure)

— Basis for accident sequence quantification

Fire PRA Workshop, 2009, Palo Alto, CA Slide 29 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatow
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

Simple Event Tree

Post-
o Reactor  Emergency Emergency Accident
Initiating | Protection | Coolant Coolant Heat
Event System Pump A Pump B | Removal
Sequence - End State/Plant Damage State
A B ¢ D
—— 1. A
—— 2. AE - plant damage
— 3. AC
Success T I
4. ACE - plant damage
. 5. ACD - plant damage
Failure l
6. AB - transfer
Fire PRA Workshop, 2009, Palo Alto, CA ] Slide 30 A Collaboration of U.S. NRC Office of Nuclear Regulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)
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Required Information

* Knowledge of accident initiators
» Thermal-hydraulic response during accidents

* Knowledge of mitigating systems (frontline and support)
operation

* Know the dependencies between systems
* |[dentify any limitations on component operations
* Knowledge of procedures (system, abnormal, and

Fire PRA Workshop, 2009, Palo Alto, CA Slide 31 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

l Principal Steps in Event Tree
Development

» Determine boundaries of analysis
« Define critical plant safety functions available to mitigate each
initiating event
» Generate functional event tree (optional)
— Event tree heading - order & development
— Sequence delineation
» Determine systems available to perform each critical plant safety
function
» Determine success criteria for each system for performing each
critical plant safety function
» Generate system-level event tree
— Event tree heading - order & development
— Sequence delineation

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 32 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)
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Determining Boundaries

» Mission time
— Sufficient to reach stable state (generally 24 hours)
» Dependencies among safety functions and systems

— Includes shared components, support systems, operator
actions, and physical processes

» End States (describe the condition of both the core and containment)
— Core OK
— Core damage
— Containment OK
— Containment failed
— Containment vented
« Extent of operator recovery

Fire PRA Workshop, 2009, Palo Alto, CA Slide 33 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

Critical Safety Functions

Example safety functions for core & containment
— Reactor subcriticality
— Reactor coolant system overpressure protection
— Early core heat removal
— Late core heat removal
— Containment pressure suppression
— Containment heat removal
— Containment integrity

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 34 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)
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Functional Event Tree

* High-level representation of vital safety functions required
to mitigate abnormal event

— Generic response of the plant to achieve safe and
stable condition

* One functional event tree for transients and one for
LOCAs

* Guides the development of more detailed system-level
event tree model

» Generation of functional event trees not necessary;
system-level event trees are the critical models

— Could be useful for advanced reactor PRAs

Fire PRA Workshop, 2009, Palo Alto, CA Slide 35 A Collaboration of U.S. NRC Office of Nuclear Regulatory
PRA/HRA Overview ;

Research (RES) & Electric Power Research Institute (EPRI)

Functional Event Tree

Initiating Reactor Short term | Long term
Event Trip core cooling| core cooling SEQ # STATE
IE RX-TR ST-CC LT-CC
1 OK
2 LATE-CD
3 EARLY-CD
4 ATWS
Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 36 A Collaboration of U.S. NRC Office of Nuclear Regulatory
PRA/HRA Overview

Research (RES) & Electric Power Research Institute (EPRI)
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System Success Criteria

* [dentify systems which can perform each function

* Often includes if the system is automatically or manually
actuated.

* |[dentify minimum complement of equipment necessary to
perform function (often based on thermal/hydraulic
calculations, source of uncertainty)

— Calculations often best-estimate, rather than
conservative

* May credit non-safety-related equipment where feasible

Fire PRA Workshop, 2009, Palo Alto, CA Slide 37 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

BWR Mitigating Systems

Function Systems

Reactivity Reactor Protection System, Standby Liquid Control,
Control Alternate Rod Insertion

RCS Safety/Relief Valves

Overpressure

Protection

Coolant Injection High Pressure Coolant Injection, High Pressure Core
Spray, Reactor Core Isolation Cooling, Low Pressure Core
Spray, Low Pressure Coolant Injection (RHR)

Alternate systems- Control Rod Drive Hydraulic System,
condensate, Service Water, Firewater
Decay Heat Power Conversion System, Residual Heat Removal (RHR)

Removal modes (Shutdown Cooling, Containment Spray,
Suppression Pool Cooling)

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 38 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)
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I PWR Mitigating Systems

Function Systems

Reactivity Control Reactor Protection System (RPS)

RCS Overpressure Safety valves, Pressurizer power-operated relief valves
Protection (PORV)

Coolant Injection Accumulators, High Pressure Safety Injection (HPSI),
Chemical Volume and Control System (CVCS), Low
Pressure Safety Injection (LPSI), High Pressure
Recirculation (may require LPSI)

Decay Heat Power Conversion System (PCS), Auxiliary Feedwater
Removal (AFW), Residual Heat Removal (RHR), Feed and Bleed
(PORV + HPSI)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 39 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatow
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

Example Success Criteria

PRA/HRA Overview

Research (RES) & Electric Power Research Institute (EPRI)

Short Term Long Term
Reactor
IE Tri Core Core
P Cooling Cooling
PCS PCS
. or or
. AUORXTHD | 4t AFW | 10f3 AFW
Transient or or or
Man. RXTrIp |1 ¢ 5 poRVSs | 1 of 2 PORVS
& 1 of 2 ECI & 1of 2 ECR
) Auto Rx Trip
Medium or or 1 of 2 ECI 1of 2 ECR
Large LOCA | n1an. Rx Trip
Fire PRA Workshop, 2009, Palo Alto] CA ! Slide 4o A Collaboration of|U.S. NRC Office of Nuclear Regulatory
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l System-Level Event Tree
Development

A system-level event tree consists of an initiating event (one per
tree), followed by a number of headings (top events), and a
sequence of events representing the success or failure of the top
events

» Top events represent the systems, components, and/or human
actions required to mitigate the initiating event

* To the extent possible, top events are ordered in the time-related
sequence in which they would occur

— Selection of top events and ordering reflect emergency procedures

* Each node (or branch point) below a top event represents the
success or failure of the respective top event
— Logic is typically binary
» Downward branch — failure of top event
» Upward branch — success of top event
— Logic can have more than two branches, with each branch
representing a specific status of the top event

Fire PRA Workshop, 2009, Palo Alto, CA Slide 41 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

l System-Level Event Tree
Development (Continued)

« Dependencies among mitigating systems are identified
— Support systems can be included as top events to account for
significant dependencies (e.g., diesel generator failure in station
blackout event tree)

« Timing of important events (e.g., physical conditions leading to
system failure) determined from thermal-hydraulic calculations
 Branches can be pruned logically (i.e., branch points for specific

nodes removed) to remove unnecessary combinations of system
success criteria requirements
— This minimizes the total number of sequences that will be generated
and eliminates illogical sequences
« Branches can transfer to other event trees for development
« Each path of an event tree represents a potential scenario

» Each potential scenario results in either plant success or core
damage (or a particular end state of interest)

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 42 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)
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l Small LOCA Event Tree from
Surry SDP Notebook

SLOCA EIHP AFW FB RCSDEP HPR

LPR ‘ RS ‘ # | STATUS

1 | ok

.

4 OK
{ 5 [es)

{ 7 )
8 fes]

Plant Name Abbrev.: SURY

Fire PRA Workshop, 2009, Palo Alto, CA Slide 43 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

l Event Tree Reduction and
Simplification

» Single transient event tree can be drawn with specific IE
dependencies included at the fault tree level

 Event tree structure can often be simplified by reordering
top events
— Example — Placing ADS before LPCI and CS on a BWR transient
event tree
* Event tree development can be stopped if a partial
sequence frequency at a branch point can be shown to be
very small

« If at any branch point, the delineated sequences are
identical to those in delineated in another event tree, the
accident sequence can be transferred to that event tree
(e.g., SORV sequences transferred to LOCA trees)

* Separate secondary event trees can be drawn for certain
branches to simplify the analysis (e.g., ATWS tree)

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 44 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)




I System Level Event Tree

I ST LT
Initiating Rx Rx Core Core
Event Trip Trip h )
Cool Cool
o0Ing | X009 | geqy | STATE LOGIC
LOCA AUTO MAN ECI ECR
1 OK
2 LATE-CD /AUTO*/ECI*ECR
Success 3 EARLY-CD  /AUTO*ECI
4 OK
— 5 LATE-CD AUTO*/MAN*/ECI*ECR
Failure
6 EARLY-CD  AUTO*/MAN*ECI
7 ATWS AUTO*MAN
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ISequence Logic Used to Combine System
Fault Trees into Accident Sequence Models

» System fault trees (or cut sets) are combined, using
Boolean algebra, to generate core damage accident
sequence models.

— CD seq. #5 = LOCA * AUTO * /MAN * /ECI * ECR

#5
Transfers to
. Fault Tree

——r = Logc
AUTO IMAN /ECI  ECR
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l Sequence Cut Sets Generated
From Sequence Logic

» Sequence cut sets generated by combining system fault
trees (or cut sets) comprised by sequence logic

— Cut sets can be generated from sequence #5 “Fault
Tree”

» Sequence #5 cut sets = (LOCA) * (AUTO cut sets) *
(/MAN cut sets) * (/ECI cut sets) * ( ECR cut sets)

* Or, to simplify the calculation (via “delete term”)

— Sequence #5 cut sets ~ (LOCA) * (AUTO cut
sets) * (ECR cut sets) - any cut sets that contain
MAN + ECI cut sets are deleted
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Plant Damage State (PDS)

» Core Damage (CD) designation for end state not
sufficient to support Level 2 analysis

— Need details of core damage phenomena to
accurately model challenge to containment
integrity

*PDS relates core damage accident sequence to:

— Status of’)plant systems (e.g., AC power
operable?)

— Status of Reactor Coolant System or RCS
(e.g., pressure, integrity)

— Status of water inventories (e.g., injected into
Reactor Pressure Vessel?)
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Example Category Definitions for
PDS Indicators

1. Status of RCS at onset of Core Damage

T no break (transient)

A large LOCA (6" to 29”)

S1  medium LOCA (2" to 6”)

S2  small LOCA (1/2" to 27)

S3  very small LOCA (less than 1/27)

G steam generator tube rupture with SG integrity

H steam generator tube rupture without SG integrity

\% interfacing LOCA
2. Status of Emergency Core Cooling System (ECCS)
operated in injection only
operated in injection, now operating in recirculation
not operating, but recoverable
not operating and not recoverable
LPI available in injection and recirculation of RCS pressure reduced
3. Status of Containment Heat Removal Capability

Y operating or operable if/when needed

R not operating, but recoverable

N never operated, not recoverable

rZ0W—

Fire PRA Workshop, 2009, Palo Alto, CA Slide 49 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatow
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

) n,
A C El ELECTRIC POWER
: U —I=
?a; !5 RESEARCH INSTITUTE
@ Sandia
National
Laboratories

iy
.:wi

2 Ry

A
t

= Sdeme_-ﬂmﬂé:aﬂons -

—

Fault Tree Analysis

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

25



Principal Steps in PRA
—FF W LEVEL

g

Initiating Event Accident . ITCS/ . Source ge‘lease Offsite Health &
Event Tree Sequence ontainment Term ategory Conseq's Economic
Analysis [ | Analysis [ Quantif. [ ] Response [ apaysis [ Character. Analysis Risk
> Analysis and ysi
Quantif. Analysis
S 1
= | I
Phenomena
Support/ Fault Uncertainty Meteorology Uncertainty
Dependency Tree & Analysis Um:egalnty Model idl r
Analysis* [T Analysis* Sensitivity Sensitivi Sensitivity
nalysis Analysis ensitivity Analysis
Analysis
Population |
] Distribution
‘
R
Common Human esponse
Cause Reliability
Fallurg Analysis* Pathways
Analysis* Model
L Health
Parameter Effects  |”]
Estimation*
Eq
*Used in Level 2 as required »
LERF Assessment
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PRA/HRA Overview

Fault Tree Analysis

S
* Purpose: Students will learn purposes & techniques of fault
tree analysis. Students will learn how appropriate level of detail
for a fault tree analysis is established. Students will become
familiar with terminology, notation, and symbology emBoned in
fault tree analysis. In addition, a discussion of applicable
component failure modes relative to the postulation of fault

events will be presented.
 Objectives:
— Demonstrate a working knowledge of terminology,
notation, and symbology of fault tree analysis

— Demonstrate a knowledge of purposes & methods of
fault tree analysis

— Demonstrate a knowledge of the purposes and
methods of fault tree reduction

* References:
— NUREG-0492, Fault Tree Handbook
— NUREG/CR-2300, PRA Procedures Guide
— NUREG-1489, NRC Uses of PRA
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PRA/HRA Overview
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Fault Tree Analysis Definition

“An analytical technique, whereby an undesired state of
the system is specified (usually a state that is critical from
a safety standpoint), and the system is then analyzed in
the context of its environment and operation to find all
credible ways in which the undesired event can occur.”

NUREG-0492
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Fault Trees

* Deductive analysis (event trees are inductive)
» Starts with undesired event definition
» Used to estimate system unreliability
* Explicitly models multiple failures
* |[dentify ways in which a system can fall
» Models can be used to find:
— System “weaknesses”
— System unreliability (failure probability)
— Interrelationships between fault events
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Fault Trees (cont.)

* Fault trees are graphic model of the various parallel and
sequential combination of faults that will result in the
occurrence of an undesired (top) event.

* Fault tree development moves from the top event to the
basic faults which can cause it.

* Fault tree consists of gates which serve to permit or inhibit
the passage of faults logic up the tree.

* Different types of gates are used to show the relationship
of the input events to the higher output event.

* Fault tree analysis requires thorough knowledge of how
the system operates and is maintained.
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Fault Tree Development Process

Event .

Tree Develop & Update Analysis Notebook

Heading

Define Define Develop Perform

Top Fault || Primary System || ﬁgglllyns]stions | »| Fault Tree

Tree Event . nstruction

1 & Interfaces 5 & Constraints 4 Construction g
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Fault Tree Symbols

Symbol Description

o~ Logic gate providing a representation

OR” Gate of the Boolean union of input events.
The output will occur if at least one of
the inputs occur.

Logic gate providing a representation
of the Boolean intersection of input

“AND” Gate events. The output will occur if all of
the inputs occur.

A basic component fault which
Basic Event requires no further development.

Consistent with level of resolution

in databases of component faults.

O At =
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Fault Tree Symbols (cont.)

Symbol Description

Und | d A fault event whose development
ndevelope is limited due to insufficient
Event consequence or lack of

additional detailed information

A transfer symbol to connect
various portions of the fault tree

A Transfer Gate
A fault event for which a detailed
Undeveloped development is provided as a separate
Transfer Event fault tree and a numerical value is

derived

Used as a trigger event for logic

House Event structure changes within the fault tree.
Used to impose boundary conditions
on FT. Used to model changes in plant
system status.
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Event and Gate Naming Scheme

* A consistent use of an event naming scheme is
required to obtain correct results

* Example naming scheme: XXX-YYY-ZZ-AAAA
* Where:
— XXX is the system identifier (e.g., HPI)
— YYY is the event and component type (e.g., MOV)
— ZZ is the failure mode identifier (e.g., FS)
— AAAAA is a plant component descriptor

* A gate naming scheme should also be developed and
utilized - XXXaaa

— XXX is the system identifier (e.g., HPI)
— aaa is the gate number
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Specific Failure Modes Modeled
for Each Component

» Each component associated with a specific set of failure
modes/mechanisms determined by:

— Type of component
* E.g., Motor-driven pump, air-operated valve
— Normal/Standby state
* Normally not running (standby), normally open
— Failed/Safe state
« Failed if not running, or success requires valve to
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Typical Component Failure Modes

 Active Components
— Fail to Start
— Fail to Run
— Unavailable because of Test or Maintenance
— Fail to Open/Close/Operate
— Definitions not always consistent among PRAs

* e.g., transition from start phase to run phase can be
defined differently
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Typical Component Failure Modes
(cont.)

» Passive Components (Not always modeled in PRAS)
— Rupture
— Plugging (e.g., strainers/orifice)
— Fail to Remain Open/Closed (e.g., manual valve)
— Short (cables)
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Component Boundaries

* Typically include all items unique to a specific component,
€.g.,
— Drivers for EDGs, MDPs, MOVs, AOVSs, etc.
— Circuit breakers for pump/valve motors
— Need to be consistent with how data was collected
» That is, should individual piece parts be modeled
explicitly or implicitly

» For example, failure of actuation circuits can be
included as a contributor to a component failing to
start (FTS) and failure of room cooling can be
included as a failure mode of a component failing to
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Active Components Require “Support”

* Signal needed to “actuate” component
— Safety Injection Signal starts pump or opens valve

» Support systems might be required for component to
function

— AC and/or DC power
— Service water or component water cooling
— Room cooling
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Definition of Dependent Failures

* Three general types of dependent failures:

— Certain initiating events ﬁ _e.Fj., fires, floods, earthquakes, service water
loss) cause failure of multiple components

— Intersystem dependencies including:
¢ Functional dependencies (e.g., dependence on AC power)
e Shared-equipment dependencies (e.g., HPCl and RCIC

systems in a BWR share common suction valve from
ondensate Storage Tank)

* Human interaction dependencies (e.g., maintenance error that
disables separate systems such as leaving a manual valve
closed in the common suction header from the Reactor Water
Storage Tank to multiple ECCS system trains)

— Inter-component dependencies (e.g., design defect exists in multiple
similar valves)

* The first two types are captured by event tree and fault
tree modelin%; the third type is known as common cause
failure (i.e., the residual dependencies not explicitly
modeled) and is treated parametrically
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Common Cause Failures (CCFs)

* Conditions which may result in failure of more than one
component, subsystem, or system

» Concerns:
— Defeats redundancy and/or diversity

— Data suggest high probability of occurrence relative to
multiple independent failures
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Common Cause Failure Mechanisms

* Environment

— Radioactivity

— Temperature

— Corrosive environment
* Design deficiency
» Manufacturing error
 Test or Maintenance error
 Operational error
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l Two Common Fault Tree
Construction Approaches

* “Sink to source”
— Start with system output (i.e., system sink)

— Modularize system into a set of pipe segments (i.e.,
group of components in series)

— Follow reverse flow-path of system developing fault
tree model as the system is traced

* Block diagram-based
— Modularize system into a set of subsystem blocks

— Develop high-level fault tree logic based on
subsystem block logic (i.e., blocks configured in
series or parallel)

— Expand logic for each block
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I Example — Emergency Coolant

Injection (ECI) System
E MV1
PA Cv1
T1 W—
V1 PS-A — MV2
Water ><] ><
Source PB Cv2
C MV3
PS-B
ple
Success Criteria: Flow from any one pump through any one MV
T_ tank
V_ manual valve, normally open
PS-_ pipe segment
P_ pump
CV_ check valve
MV_  motor-operated valve, normally closed
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! ECI System Fault Tree —
“Sink to Source Method” (page 1)

ECI fails to deliver
> 1 pump flow

ECI-TOP

[}
No flow out of MV1 No flow out of MV2 No flow out of MV3

! !G-MVl ( !G—MVZ G-MV3
I 1

1
[ mvisaiscosed | Noflowoutofpump ] [ vy ails closed__| [ No flow out of pump ]

gl LS. i<l [
<> MV1 G-PUMPS <> MV2 A G-PUMPS
) (page 1)

| No flow out of PS-A | | No flow out of PS-B | MV3 fails closed Noflozveoltlégrf“gump
A-psa A c-psB mva < epumes A

(page 2) (not shown) (page 1)
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I ECI System Fault Tree —

page 1 A—

No flow out
of PS-A

“Sink to Source Method” (page 2)

@ G-PSA

[
PS-A fails

G-PSA-F

| CV1 fails closed| | PA fails |

<> Cvi A PA

Fire PRA Workshop, 2009, Palo Alto, CA
PRA/HRA Overview

Slide 71

G-V1i

No flow out of V1

| V1 fails closed | | T1 fails |

<> V1 <>T1

A Collaboration of U.S. NRC Office of Nuclear Regulatory
Research (RES) & Electric Power Research Institute (EPRI)

I ECI System Fault Tree —

PA fails

A

“Sink to Source Method” (page 3)

| PA FTS | | PAFTR |

O O

PA unavail |
| TorM ECI Pump CCF

PRA/HRA Overview

| CCW-A fails | | EP-A fails | | Act-A fails |
(Not Shown) (Not Shown) (Not Shown)
Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 72 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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I ECI System Fault Tree -
Block Diagram Method

ECI fails to deliver
> 1 pump flow
Pump segments fail

Injection lines fail Suction lines fail

g O

Witiscosed | | [ Weraiscosed | | pssrais | | Ps-Afals |

V1 fails closed

MV?3 fails closed
T1 fails
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! Boolean Fault Tree Reduction

» Express fault tree logic as Boolean equation
* Apply rules of Boolean algebra to reduce terms
* Results in reduced form of Boolean equation
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Minimal Cutset

A group of basic event failures
(component failures and/or \\\\ | ///4
human errors) that are  — -
collectively necessary and - =
sufficient to cause the TOP = ~

event to occur.

(@]
o
o
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Fault Tree Pitfalls

* Inconsistent or unclear basic event names

— X*X =X, soif X is called X1 in one place and X2 in another place,
incorrect results are obtained

» Missing dependencies or failure mechanisms
— Anissue of completeness

 Unrealistic assumptions
— Availability of redundant equipment
— Credit for multiple independent operator actions
— Violation of plant LCO
* Modeling test & maintenance unavailability can result
in illegal cutsets

* Putting recovery in fault tree might give optimistic

results
* Logic loops
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I Results

« Sanity checks on cut sets
— Symmetry
« If Train-A failures appear, do Train-B failures also appear?
— Completeness
 Are all redundant trains/systems really failed?
« Are failure modes accounted for at component level?
— Realism

« Do cut sets make sense (i.e., Train-A out for T&M ANDed with
Train-B out for T&M)?

— Predictive Capability

* If system model predicts total system failure once in 100 system
demands, is plant operating experience consistent with this?
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Principal Steps in PRA
—EF W‘ LE\3/E|.

g

Initiating Event Accident RCS/ Source Release Offsite Health &
Event | | Tree | | Sequence Conainment | ) Term | | Chategory L Conseq's Economic
Analysis Analysis Quantif. Response Analysis Character. Analysis Risk
> Analysis and .
Quantif. Analysis
=il r .t
= 1 ; i
Support/ Fault Uncertainty Pheno : — weteoraigy |, Uncerainy
Dependency Tree : Analy & lodel .
Analysis' ™ Analysis* Sensitvly : Sensitivity Sensitivity
y Analysis sis ' Analysis
' Analysis
H Population ||
] | Distribution
‘ |
| Response
Common Human i i
Cause Reliability | !
Failure Analysis* Pathways
Analysis* Model
I
Health
Parameter ) ) Effects  [”
Estimation* *Used in Level 2 as required
Economic
’

LERF Assessment
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I Human Reliability Analysis

Purpose: This session will provide a generalized, high-level
introduction to the topic of human reliability and human
reliability analysis in the context of PRA.

Objectives: Provide students with an understanding of:
- The goals of HRA and important concepts and issues
- The basic steps of the HRA process in the context of PRA
- Basic aspects of selected HRA methods

A Collaboration of U.S. NRC Office of Nuclear Regulatory

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 80
Research (RES) & Electric Power Research Institute (EPRI)

PRA/HRA Overview
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HRA Purpose

Why Develop a HRA?
— PRA reflects the as-built, as-operated plant
* HRA models the “as-operated” portion
Definition of HRA

— A structured approach used to identify potential
human failure events (HFEs) and to systematically
estimate the probability of those errors using data,
models, or expert judgment

HRA Produces

— Qualitative evaluation of the factors impacting human
errors and successes

— Human error probabilities (HEPS)
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Human Reliability Analysis

« Starts with the basic premise that the humans are, in effect,
components of the system.

— Thus, Nuclear Power Plants and the systems which
comprise them are “Man-Machine Systems.”

* Identifies and quantifies the ways in which human actions
initiate, propagate, or terminate fault & accident sequences.

* Human actions with both positive and negative impacts are
considered in striving for realism.

« A difficult task in a PRA since need to understand the plant
hardware response, the operator response, and the
accident progression modeled in the PRA
— Subject to the greatest uncertainties.
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Human Reliability Analysis Objectives

Ensure that the impacts of plant personnel actions are reflected in
the assessment of risk in such a way that:

a) both pre-initiating event and post-initiating event activities,
including those modeled in support system initiating event fault
trees, are addressed.

b) logic model elements are defined to represent the effect of such
personnel actions on system availability/unavailability and on
accident sequence development.

¢) plant-specific and scenario-specific factors are accounted for,
including those factors that influence either what activities are of
interest or human performance.

d) human performance issues are addressed in an integral way so
that issues of dependency are captured.

R &fireSSiv BV RS -Z005Palo Alto, CA Slide 83 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Modeling of Human Actions

* Human Reliability Analysis provides a structured modeling
process

* HRA process steps:
— ldentification & Definition

* Human interaction identified, then defined for use in
the PRA as a Human Failure Event (HFE)

* Includes HFE categorization as to the type of action
— Qualitative analysis of context & performance shaping

factors
— Quantification of Human Error Probability (HEP)
— Dependency
— Documentation
PR Oy 200 Palo Al CA  Slde 84 Research (RES) 2 Electic Power Research Insite (EPR)
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PRA Standard Requirements for HRA

ASME HRA High Level Requirements Compared

Pre-Initiator Post Initiator
A — ldentify HFEs E — Identify HFEs
B — Screen HFEs <blank>
C — Define HFEs F — Define HFEs

D — Assess HEPs G — Assess HEPs

<blank> H — Recovery HFEs

| — Document HFES/HEPs

Fil’eF‘ — |: :_I o —ft - — — fLLS MNRC Qfficg of MNuclaar D, Jlator
PRA/HRA Overview i Research (RES) & Electric Power Research Institute (EPRI)

l Categories Of Human Failure Events in
PRA

» Operator actions can occur throughout the accident sequence

— Pre-initiator errors (latent errors, unrevealed) occur before
the initiating event.

» May occur in or out of the main control room
Failure to restore from test/maintenance
Miscalibration

Often captured in equipment failure data

For HRA the focus is on equipment being left unavailable
or not working exactly right.

— Operator actions contribute or cause initiating events

» Usually implicitly included in the data used to quantify
initiating event frequencies.
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l Categories Of Human Failure Events in
PRA (cont’d)

— Post-initiator errors occur after reactor trip. Examples:

» Operation of components that have failed to operate
automatically, or require manual operation.

» “Event Tree top event” operator actions modeled in the
event trees (e.g., failure to depressurize the RCS in
accordance with the Emergency Operating Procedures)

» Recovery actions for hardware failures (example - aligning
an alternate cooling system, subject to available time)

» Recovery actions following crew failures (example -
providing cooling late after an earlier operator action failed)

» Operation of components from the control room or locally.
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l Categorization & Definition of
Human Failure Events in PRA (cont’d)

» Additional “category”, error of commission or aggravating errors of
commission, typically out of scope of most PRA models.

— Makes the plant response worse than not taking an action at all
» Within each operator action, there are generally, two types of error:
— Diagnostic error (cognition) — failure of detection, diagnosis, or
decision-making
— Execution error (manipulation) — failure to accomplish the critical

steps, once they have been decided, typically due to the
following error modes.

 Errors of omission (EOO, or Skip) -- Failure to perform a
required action or step, e.g., failure to monitor tank level

« Errors of commission (EOC, or Slip) -- Action performed
incorrectly or wrong action performed, e.g., opened the wrong
valve, or turned the wrong switch.
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l Human Reliability Analysis is the
Combination of Three Basic Steps

Identification & L .
> Qualitative —_— Quantification

taxonomies

context from event trees Context from event trees & data availability
error producing conditions fault trees databases

cognitive error generic error models simulation

errors of commission performance shaping factors empirical approaches

From about 1980 on, some 38 different HRA methods have
been developed - almost all centered on quantification.

There is no universally accepted HRA method (to date).

The context of the operator action comes directly from the
event trees and fault trees although some techniques have
recently ventured beyond.
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l Identification & Definition Process

* [dentify Human Failure Events (HFES) to be considered in
plant models.

— Based on PRA event trees, fault trees, & procedures.
* Includes front line systems & support systems.

— Often done in conjunction with the PRA modelers
(Qualitative screening)

— Normal Plant Operations-- Identify potential errors
involving miscalibration or failure to restore equipment by
observing test and maintenance, reviewing relevant
procedures and plant practices

» Guidelines for pre-initiator qualitative screening

— Post-Trip Conditions-- Determine potential errors in
diagnosing and manipulating equipment in response to
various accident situations
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Identification & Definition Process (cont.)

* PRA model identifies component/system/function failures
* HRA requires definition of supporting information, such as:

— for post-initiating events, the cues being used, timing and
the emergency operating procedure(s) being used.

* ATHEANA - identify the “base case” for accident scenario

— Expected scenario — including operator expectations for the
scenario

— Sequence and timing of plant behavior — behavior of plant
parameters

— Key operator actions
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Identification Process (cont’d)

* Review emergency operating procedures to identify
potential human errors

* Flow chart the Emergency Operating Procedures
(EOPs) to identify critical decision points and relevant
cues for actions

* If possible, do early observations of simulator
exercises

« List human actions that could affect course of events
(qualitative screening)
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Qualitative Analysis

» Context, a set of plant conditions based on the PRA model
— Initiating event & event tree sequence
* includes preceding hardware & operator successes/failures
— Cues, Procedure, Time window

* Qualitatively examine factors that could influence performance
(Performance Shaping Factors, PSFs) such as

- Training/experience - Scenario timing
- Clarity of cues - Workload

- Task complexity - Crew dynamics
- Environmental conditions - Accessibility

- Human-machine interface
- Management and organizational factors

- Note ATHEANA models “Error Forcing Context” consisting of plant
context & scenario-specific factors that would influence operator
response.
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Performance Shaping Factors (PSFs)

* Are people-, task-, environmental-centered
influences which could affect performance.

* Most HRA modeling techniques allow the analyst
to account for PSFs during their quantification
procedure.

* PSFs can Positively or Negatively impact human
error probabilities

*PSFs are identified and evaluated in the
human reliability task analysis
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Quantifying the Human Error Probability

* Quantifying is the process of
— selecting an HRA method then
— calculating the Human Error Probability for a HFE
» based on the qualitative assessment and
* based on the context definition.
* The calculation steps depend on the methodology being used.

 Data sources — the input data for the calculations typically comes
operator talk-throughs &/or simulations, while some methods the
data comes from databanks or expert judgment.

* The result is typically called a Human Error Probability or HEP
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Levels of Precision

» Conservative (screening) level useful for
determining which human errors are the most
significant contributors to overall system error

* Those found to be potentially significant
contributors can be profitably analyzed in
greater detail (which often lowers the HEP)
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l Screening

* Too many HFEs to do detailed quantification?

— Trying to reduce level of effort, resources

— Used during IPE era for initial model development
* ASME PRA Standard

— Pre-initiators: screening pre-initiators is addressed in
High Level Requirement HLR-HR-B

— Post-initiators: screening is not addressed explicitly as
a High Level Requirement

» Supporting requirement HR-G1 limits the PRA to
Capability Category | if conservative/screening
HEPs used.

* Thus, screening is more appropriate to Fire PRA.
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Detailed Quantification

* Point at which you bring all the information you have
about each event

— PSFs, descriptions of plant conditions given the
sequence

— Results from observing simulator exercises
— Talk-throughs with operators/trainers
— Dependencies

* Quantification Methods

— Major problem is that none of the methods handle all
this information very well

* Assign HEPs to each event in the models
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HRA Methods

* Attempt to reflect the following characteristics:
— plant behavior and conditions
— timing of events and the occurrence of human action cues

— parameter indications used by the operators and changes in
those parameters as the scenario proceeds

— time available and locations necessary to implement the
human actions

— equipment available for use by the operators based on the
sequence

— environmental conditions under which the decision to act
must be made and the actual response must be performed

— degree of training, guidance, and procedure applicability
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Common HRA Methodologies in the USA

* Technique for Human Error Rate Prediction (THERP)

» Accident Sequence Evaluation Program (ASEP) HRA
Procedure

» Cause-Based Decision Tree (CBDT) Method

» Human Cognitive Reliability (HCR)/Operator Reliability
Experiments (ORE) Method

» Standardized Plant Analysis Risk HRA (SPAR-H) Method
* A Technique for Human Event Analysis (ATHEANA)
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l Caused Based Decision Tree (CBDT)
Method (EPRI)

Series of decision trees address potential causes of errors, produces HEPs based on
those decisions.

« Half of the decision trees involve the man-machine cue interface:
Availability of relevant indications (location, accuracy, reliability of indications);
Attention to indications (workload, monitoring requirements, relevant alarms);
Data errors (location on panel, quality of display, interpersonal communications);
Misleading data (cues match procedure, training in cue recognition, etc.);
« Half of the decision trees involve the man-procedure interface:
— Procedure format (visibility and salience of instructions, place-keeping aids);
— Instructional clarity (standardized vocabulary, completeness of information,
training provided);
— Instructional complexity (use of "not" statements, complex use of "and" & "or"
terms, etc.); and
— Potential for deliberate violations (belief in instructional adequacy, availability and
consequences of alternatives, etc.).

« For time-critical actions, the CBDT is supplemented by a time reliability correlation
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EPRI HRA Calculator

« Software tool
* Uses SHARP1 as the HRA framework
* Post-initiator HFE methods:

— For diagnosis, uses CBDT (decision trees) and/or
HCR/ORE (time based correlation)

— For execution, THERP for manipulation
* Pre-Initiator HFE methods:
— Uses THERP and ASEP to quantify pre-initiator HFEs
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ATHEANA

* Experience-based (uses knowledge of domain
experts, e.g., operators, pilots, trainers,etc.)

* Focuses on the error-forcing context

* Links plant conditions, performance shaping factors
(PSFs) and human error mechanisms

« Consideration of dependencies across scenarios

* Attempts to address PSFs holistically (considers
potential interactions)

* Structured search for problem scenarios and unsafe
actions
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Dependencies

Dependency refers to the extent to which failure or
success of one action will influence the failure or
success of a subsequent action.

1) Human interaction depends on the accident
scenario, including the type of initiating event

2) Dependencies between multiple human actions
modeled within the accident scenario,

3) Human interactions performed during testing or
maintenance can defeat system redundancy,

4) Multiple human interactions modeled as a single
human interaction may involve significant
dependencies. (from SHARP1)
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I HRA Process Summary

* Human Reliability Analysis provides a structured modeling process

* Human Interactions are incorporated as Human Failure Events in a
PRA, identification & definition finds the HFEs

* Post-initiator operator actions consist of:
— Qualitative analysis of Context and Performance Shaping Factors

« Operator action must be feasible (for example, sufficient time,
sufficient staff, sufficient cues, access to the area)

— Then Quantitative assessment (using an HRA method)
¢ Includes dependency evaluation
» Two Parts of the Each Human Failure Event (HFE)
— Operator must recognize the need/demand for the action
(cognition) AND
— Operator must take steps (execution) to complete the actions.
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Principal Steps in PRA

g

LEVEL LEVEL LEVEL
1 2

Initiating Event Accident RCS/ Source Release Offsite Health &
Event | | Tree | | Sequence Conainment | ) Term | | <3ha‘egf"y L Conseq's Economic
Analysis Analysis Quantif. R::;"Ogsse Analysis c aarsgter. Analysis Risk
> ysi i
Quantif, Analysis
I S r
Y T
Phenomena
Uncertainty Meteorolo Uncertainty
Suppém/ Fault & Y Analysis Uncertainty Model Y| 2 Y
Dependency Tree & .
Analysis' [ Analysis* Sensitivity Sensitivit Sensitivity
y Analysis Analys\sy Analysis
Population ||
] Distribution
‘
Response
Common Human i
Cause Reliability
Fallurg Analysis* Pathways
Analysis* Model
L Health
Parameter Effects  |”]
Estimation*
Economic
*Used in Level 2 as required »

LERF Assessment
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Data Analysis

* Purpose: Students will be introduced to sources of
initiating event data; and hardware data and equipment
failure modes, including common cause failure, that are

modeled in PRAS.

* Objectives: Students will be able to:
— Understand parameters typically modeled in PRA and how
each is quantified.
— Understand what is meant by the terms
* Generic data
¢ Plant-specific data
< Bayesian updating
— Describe what is meant by common-cause failure, why it is
important, and how it is included in PRA
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PRA/HRA Overview
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PRA Parameters

* Initiating Event Frequencies
*Basic Event Probabilities
— Hardware

« component reliability (fail to
start/run/operate/etc.)

« component unavailability (due to test or
maintenance)
— Common Cause Failures
— Human Errors (discussed in previous session)
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Categories of Data

» Two basic categories of data: plant-specific and generic
» Some guidance on the use of each category:

— Not feasible or necessary to collect plant-specific data
for all components in a PRA (extremely reliable
components may have no failures)

— Some generic data sources are non-conservative (e.g.,
LERS do not report all failures)

— Inclusion of plant-specific data lends credibility to the
PRA

— Inclusion of plant-specific data allows comparison of
plant equipment performance to industry averages

» Should use plant-specific data whenever possible, as
dictated by the availability of relevant information
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l Boundary Conditions and Modeling
Assumptions Affect Form of Data

* Clear understanding of component boundaries and
missions needed to accurately use raw data or generic
failure rates. For example:

— Do motor driven components include circuit breakers?
(Are CB faults included in component failure rate?)

* Failure mode being modeled also impacts type and form
of data needed to quantify the PRA.

— Fail to Run (FTR) — failures while operating and
operating time

— Fail to Start/Fail to Open (FTS/FTO) — failures and
demands (successes)
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Data Sources for Parameter Estimation

» Generic data

* Plant-specific data

» Bayesian updated data
— Prior distribution
— Updated estimate
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Generic Data Issues

» Key issue is whether data is applicable for the specific
plant being analyzed

— Most generic component data is mid-1980s or earlier
vintage

— Some IE frequencies known to have decreased over
the last decade

* Frequencies updated in NUREG/CRs 5750 and
5496

— Criteria for judging data applicability not well defined
(do not forget important engineering considerations
that could affect data applicability)

— ASME PRA Standard requirements
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Plant-Specific Data Sources

* Licensee Event Reports (LERS)
— Can also be source of generic data
* Post-trip SCRAM analysis reports
» Maintenance reports and work orders
» System engineer files
* Control room logs
» Monthly operating status reports
* Test surveillance procedures
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Plant-Specific Data Issues

» Combining data from different sources can result in:
—double counting of the same failure events
— inconsistent component boundaries
—inconsistent definition of “failure”

* Plant-specific data is typically very limited
—small statistical sample size

* Inaccuracy and non-uniformity of reporting
— LER reporting rule changes

* Difficulty in interpreting “raw” failure data

—administratively declared inoperable, does not
necessarily equate to a “PRA” failure
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Bayesian Methods Employed to
Generate Uncertainty Distributions

* Two motivations for using Bayesian techniques

— Generate probability distributions (classical
methods generally only produce uncertainty
intervals, not pdf's)

— Compensate for sparse data (e.g., no failures)

* In effect, Bayesian techniques combine an initial
estimate (prior) with plant-specific data (likelihood
function) to produce a final estimate (posterior)

* However, Bayesian techniques rely on (and
incorporate) subjective judgement

— different options for choice of prior distribution (i.e.,
the starting point in a Bayesian calculation)
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Common Cause Failures (CCFs)

 Conditions which may result in failure of more than one
component, subsystem, or system

« Common cause failures are important since they:
— Defeats redundancy and/or diversity

— Data suggest high probability of occurrence relative to
multiple independent failures
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Common Cause Failure Mechanisms

* Environment

— Radioactivity

— Temperature

— Corrosive environment
* Design deficiency
» Manufacturing error
 Test or Maintenance error
* Operational error
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Limitations of CCF Modeling

» Limited data, hence generic data often used
— Applicability issue for specific plant

* Screening values may be used
— Potential to skew the results

* Not typically modeled across systems since data is
collected/analyzed for individual systems

* Not typically modeled for diverse components (e.g.,
motor-driven pump/turbine-driven pump)

 Causes not explicitly modeled (i.e., each failure
mechanism not explicitly modeled)
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l Component Data Not Truly Time
Independent

* PRAs typically assume time-independence of component failure
rates

— One of the assumptions for a Poisson process (i.e., failures
in time)
» However, experience has shown aging of equipment does occur
— Failure rate (1) = A(t)
— “Bathtub” curve

At ;
® Failure Rate
<---m-m-> <--mmm-mo —> €-------- >t
Burn-in Maturity Wearout
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Principal Steps in PRA
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Purpose and Objectives

* Purpose

— Present elements of accident sequence
guantification and importance analysis and
introduce concept of plant damage states

* Objectives
— Become familiar with the:
* process of generating and quantifying cut sets

« different importance measures typically calculated in
a PRA

 impact of correlation of data on quantification results
« definition of plant damage states
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l Prerequisites for Generating and
Quantifying Accident Sequence Cut Sets

* Initiating events and frequencies
* Event trees to define accident sequences

* Fault trees and Boolean expressions for all
systems (front line and support)

* Data (component failures and human errors)
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I Accident Sequence Quantification
(Fault-Tree Linking Approach)

* Link fault tree models on a sequence level using event
trees (i.e., generate sequence logic)

» Generate minimal cut sets (Boolean reduction) for each
sequence

 Quantify sequence minimal cut sets with data

* Eliminate inappropriate cut sets, add operator recovery
actions, and requantify
» Determine dominant accident sequences

 Perform sensitivity, importance, and uncertainty analysis

A Collaboration of U.S. NRC Office of Nuclear Regulatory
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PRA/HRA Overview

T A-FAIL B-FAIL C-FAIL # END-STATE-NAMES
10K
2 |OK
3 |CD
4 |CD
EEEEEEEEE 200501003 ___page3
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Example Fault Trees
1 1
System A System B
Fails Fails
() (N
A-FAIL B-lFAIL
Valve Y Pump 1 Fails Valve X Fails
Fails
05.00053 Q-OOOE-S 05-00053
VALVE-Y PUMP-1 VALVE-X
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Example Fault Trees (Concluded)
1
System C
Fails
C-FAIL
[ 1|
Pump 1 Fails Valve Y Fails Pump 2 Fails
O 1.000E-3 O 5.000E-3 O 1.000E-3
PUMP-1 VALVE-Y PUMP-2
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Generating Sequence Logic

* Fault trees are linked using sequence logic from event
trees. From the example event tree two sequences are
generated:

— Sequence # 3: T * /A-FAIL * B-FAIL * C-FAIL
— Sequence #4: T * A-FAIL
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Generate Minimal Cut Sets for Each
Sequence

» A cut set is a combination of events that cause the sequence to
occur

* A minimal cut set is the smallest combination of events that causes to
sequence to occur

« Cut sets are generated by “ANDing” together the failed top event fault
trees, and then, if necessary, eliminating (i.e., deleting) those cut sets
that contain failures that would prevent successful (i.e.,
complemented) top events from occurring. This process of
elimination is called Delete Term

» Each cut set represents a failure scenario that must be “ORed”
together with all other cut sets for the sequence when calculating the
total frequency of the sequence
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Sequence Cut Set Generation Example

« Sequence #3 logic is T * /A-FAIL * B-FAIL * C-FAIL
« ANDing failed top events yields
B-FAIL * C-FAIL = (PUMP-1 + VALVE-X) * (PUMP-1 *
VALVE-Y * PUMP-2)
= (PUMP-1 * PUMP-1 * VALVE-Y *
PUMP-2) + (VALVE-X * PUMP-1 *
VALVE-Y * PUMP-2)
= (PUMP-1 * VALVE-Y * PUMP-2) +
(VALVE-X * PUMP-1 * VALVE-Y *
PUMP-2)
= PUMP-1 * VALVE-Y * PUMP-2
» Using Delete Term to remove cut sets with events that would fail top event
A-FAILS (i.e., VALVE-Y) results in the elimination of all cut sets
» Sequence #4 logic is T * A-FAIL, resulting in the cut set

T *VALVE-Y
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Eliminating “Inappropriate” Cut Sets

EEE————
* When solving fault trees to generate sequence cut sets it
is likely that “inappropriate” cut sets will be generated

* “Inappropriate” cut sets are those containing invalid
combinations of events. An example would be:

— ... SYS-A-TRAIN-1-TEST * SYS-A-TRAIN-2-TEST ....

* Typically eliminated by searching for combinations of
invalid events and then deleting the cut sets containing
those combinations
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from the loss of function

restoration

Fire PRA Workshop, 2009, Palo Alto, CA
PRA/HRA Overview

Adding “Recovery Actions” to Cut Sets

» Cut sets are examined to determine whether the function
associated with a failed event can be restored; thus “recovering”

« If the function associated with an event can be restored, then a
“Recovery Action” is ANDed to the cut set to represent this

» The probability assigned to the “Recovery Action” will be the
probability that the operators fail to perform the action or actions
necessary to restore the lost function

« Probabilities are derived either from data (e.qg., recovery of off-site
power) or from human reliability analysis (e.g., manually opening
an alternate flow path given the primary flow path is failed)

Slide 133 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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I Dominant Accident Sequences

(Examples)

Surry (NUREG-1150)

Seq Description % CDF
1 Station Blackout (SBO) - Batt Depl. 26.0
2 SBO - RCP Seal LOCA 131
3 SBO-AFW Failure 116
4 SBO-RCP Seal LOCA 8.2
5 SBO - Stuck Open PORV 54
6 Medium LOCA - Recirc Failure 4.2
7 Interfacing LOCA 4.0
8 SGTR - No Depress - SG Integ'ty Fails 35

9 Loss of MFW/AFW - Feed & Bleed Fail 2.4
10  Medium LOCA - Injection Failure 21
11 ATWS - Unfavorable Mod. Temp Coeff. 5 g
12 Large LOCA - Recirculation Failure 18
13 Medium LOCA - Injection Failure 17
14  SBO - AFW Failure 16
15  Large LOCA - Accumulator Failure 16
16  ATWS - Emergency Boration Failure 1.6
17 Very Small LOCA - Injection Failure 15
18  Small LOCA - Injection Failure 11
19  SBO - Battery Depletion 11
20 SBO - Stuck Open PORV 0.8

Fire PRA Workshop, 2009, Palo Alto, CA
PRA/HRA Overview

Cum
26.0
39.1
50.7
58.9
64.3
68.5
72.5
76.0
78.4
80.5
82.5
84.3
86.0
87.6
89.2
90.8
92.3
93.4
94.5
95.3

Grand Gulf (NUREG-1150)

Seq Description % CDF ~ Cum

1
2
3

Station Blackout (SBO) With HPCS And RCIC Failuge .o 89.0
SBO With One SORV, HPCS And RCIC Failure 4.0 93.0
ATWS - RPS Mechanical Failure With MSIVs Closedg o 96.0
Operator Fails To Initiate SLC, HPCS Fails And

Operator Fails To Depressurize

Slide 134 A Collaboration of U.S. NRC Office of Nuclear Regulatory

Research (RES) & Electric Power Research Institute (EPRI)
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Importance Measures for Basic Events

* Provide a quantitative perspective on risk and sensitivity
of risk to changes in input values

» Three are encountered most commonly:
— Fussell-Vesely (F-V)
— Birnbaum
— Risk Reduction (RR)
— Risk Increase (RI) or Risk Achievement (RA)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 135 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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l Importance Measures
(Layman Definitions)

* Risk Achievement Worth (RAW)

— Relative risk increase assuming failure
* Risk Reduction Worth (RRW)

— Relative risk reduction assuming perfect performance
* Fussell-Vesely (F-V)

— Fractional reduction in risk assuming perfect
performance

* Birnbaum

— Difference in risk between perfect performance and
assumed failure

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 136 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)

68



l Importance Measures

(Mathematical Definitions)

R = Baseline Risk
R(1) = Risk with the element always failed or unavailable
R(0) = Risk with the element always successful

RAW =R(1)/RorR(1) -R
RRW = R/R(0) or R - R(0)
F-V =[R-R(0)J/R
Birnbaum = R(1) — R(0)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 137 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Uncertainty Must be Addressed in PRA

» Uncertainty arises from many sources:

— Inability to specify initial and boundary conditions
precisely

« Cannot specify result with deterministic model
« Instead, use probabilistic models (e.g., tossing a coin)

Sparse data on initiating events, component failures,
and human errors

— Lack of understanding of phenomena
— Modeling assumptions (e.g., success criteria)
— Modeling limitations (e.g., inability to model errors of

commission)
— Incompleteness (e.qg., failure to identify system failure
mode)
Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 138 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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l PRAs Identify Two Types of
Uncertainty

* Distinction between aleatory and epistemic uncertainty:

— “Aleatory” from the Latin Alea (dice), of or relating to
random or stochastic phenomena. Also called
“random uncertainty or variability.”

— “Epistemic” of, relating to, or involving knowledge;
cognitive. [From Greek episteme, knowledge]. Also
called “state-of-knowledge uncertainty.”

Fire PRA Workshop, 2009, Palo Alto, CA Slide 139 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Aleatory Uncertainty

* Variability in or lack of precise knowledge about
underlying conditions makes events unpredictable. Such
events are modeled as being probabilistic in nature. In
PRASs, these include initiating events, component failures,
and human errors.

* For example, PRAs model initiating events as a Poisson
process, similar to the decay of radioactive atoms

* Poisson process characterized by frequency of initiating
event, usually denoted by parameter A

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 140 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Epistemic Uncertainty

* Value of A is not known precisely

» Could model uncertainty in estimate of A using statistical confidence
interval

— Can't propagate confidence intervals through PRA models

— Can't interpret confidence intervals as probability
statements about value of A
* PRAs model lack of knowledge about value of A by assigning (usually
subjectively) a probability distribution to A

— Probability distribution for A can be generated using
Bayesian methods.

Fire PRA Workshop, 2009, Palo Alto, CA Slide 141 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Types of Epistemic Uncertainties

» Parameter uncertainty
» Modeling uncertainty
— System success criteria
— Accident progression phenomenology

— Health effects models (linear versus nonlinear, threshold versus
non-threshold dose-response model)

» Completeness

Complex errors of commission

Design and construction errors

Unexpected failure modes and system interactions
All modes of operation not modeled

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 142 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Addressing Epistemic Uncertainties

» Parameter uncertainty addressed by propagating
parameter uncertainty distributions through model

» Modeling uncertainty usually addressed through
sensitivity studies

— Research ongoing to examine more formal
approaches

» Completeness addressed through comparison with other
studies and peer review

— Some issues (e.g., design errors) are simply
acknowledged as limitations

— Other issues (e.g., errors of commission) are topics of
ongoing research

Fire PRA Workshop, 2009, Palo Alto, CA Slide 143
PRA/HRA Overview

A Collaboration of U.S. NRC Office of Nuclear Regulatory
Research (RES) & Electric Power Research Institute (EPRI)

l Prerequisites for Performing
a Parameter Uncertainty Analysis

* Cut sets for individual sequence or groups of
sequences (e.g., by initiator or total plant model)
exist

* Failure probabilities for each basic event,
including distribution and correlation information
(for those events that are uncertain or are
modeled as having uncertainty)

* Frequencies for each initiating event, including
distribution information

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 144 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Performing A Parameter Uncertainty Analysis
I

* Select cut sets
* Select sampling strategy

— Monte Carlo: simple random sampling
process/technique

— Latin Hypercube: stratified sampling
process/technique

* Select number of observations (i.e., number of times a
variable’s distribution will be sampled)

* Perform calculation

Fire PRA Workshop, 2009, Palo Alto, CA Slide 145 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Correlation: Effect on Results

* Correlating data produces wider uncertainty in results

— Without correlating a randomly selected high value will
usually be combined with randomly selected lower
values (and vice versa), producing an averaging effect

» Reducing calculated uncertainty in the result

— Mean value of probability distributions that are skewed
right (e.g. lognormal, commonly used in PRA) is
increased when uncertainty is increased

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 146 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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LEVEL 2/LERF Analysis

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Principal Steps in PRA

Initiating Event Accident . R;S/ . Source geglease Offsite Health &
Event Tree Sequence ontainment Term ategory Conseq's Economic
Analysis ™ Analysis ™ Quantif. g R:S"I""Fe g Analysis Charagter. Analysis || Risk
> nalysis an .
uantif. Analysis
=il f i f
| !
Phenomena
Dfsepr?;:n/cy ??:2 Uncszam‘y Analysis Uncertainty Me;‘;ggﬂfgy > Uncega'my
&
Analysis* [ , Sensitivity . Sensitivity
1ys Analysis* Analysis Sensitivity Analysis
Analysis
Common Human
Cause Reliability
Failure Analysis*
Analysis*
I
Parameter
Estimation*
*Used in Level 2 as required

LERF Assessment
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Purpose and Objectives

*Purpose: Students receive a brief introduction to
accident progression (Level 2 PRA).

* Objectives: At the conclusion of this topic,
students will be able to:

— List primary elements which comprise accident
phenomenology

— Explain how accident progression analysis is
related to full PRA

— Explain general factors involved in
containment response
* Reference: NUREG/CR-2300, NUREG-1489
(App. C)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 149 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)

Level 2 PRA Risk Measures

 Current NRC emphasis on LERF

— Risk-informed Decision-Making for Currently Operating
Reactors

— Broader view expected for new reactors
» Some discussion of alternative risk acceptance criteria
— Goals for frequency of various release magnitudes

— Release often expressed in units of activity (not health
consequences)

* Full-scope Level 2 offers Complete Characterization of Releases
to Environment

— Frequency of large/small, early/late releases

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 150 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
PRA/HRA Overview Research (RES) & Electric Power Research Institute (EPRI)

75



LERF Definition

» A LERF definition is provided in the PSA Applications
Guide:

Large, Early Release: A radioactive release from the
containment which is both large and early. Large is
defined as involving the rapid, unscrubbed release of
airborne aerosol fission products to the environment.
Early is defined as occurring before the effective
implementation of the off-site emergency response and
protective actions.

Fire PRA Workshop, 2009, Palo Alto, CA Slide 151 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatow
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Level 2 PRA is a Systematic Evaluation of
Plant Response to Core Damage Sequences

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LEVEL 2
RCS/ Source Release
Containment Term Category
3 Response [~ Analysis [ Charagter.
: Analysis an
INPUT : b uantif.
Accid | e Uncertainty | | Deterministic:
: & P
SgCIugr?tt:es it Analysis Sensitivity * Reactor transient
q Analysis » Containment response
i+ Core damage progression
(j F ;e Fission product inventory
- ===d L - released to environment
Computer Logic
code _—
calculations el Probabilistic:
Association of « Relative likelihood of
E“g”':ee”"g ““Ceﬂainﬁl’ with (confidence in) alternative
analyses ili
Y [ty responses for each sequence
Application of Grouping of  Frequency of fission product
SPEIlENE LR results release categories
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Some Subtle Features of the
Level 2 PRA Process

* Level 2 Requires More Information than a Level 1 PRA
Generates

— Containment safeguards systems not usually needed to
determine ‘core damage’

— Level 1 event trees built from success criteria can ignore
status of front-line systems that influence extent of core
damage

» Event Trees Create Very Large Number of Scenarios
to Evaluate

— Grouping of similar scenarios is a practical necessity

* Quantification Involves Considerable Subjective
Judgment
— Uncertainty, Sensitivity and Uncertainty in Uncertainty

Fire PRA Workshop, 2009, Palo Alto, CA Slide 153 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Additional Work is Often Required to Link
Level 1 Results to Level 2

Plant Damage State
(PDS) Analysis

Level-1 Sequence ) Level-2 Containment or

Event Tree Add containment  Accident Progression
e S S Event Tree (CET or APET)
i ok '
; PDS, e
i Initiating L— —CD: PDS, ! E
1 EventA —— OK 2 ! \ E
: , | Source :
' PDS, ! o '
1 L CD: no Terms '
! : : PDS; o '
! ok ' ' (Release |
: ' Resolve status of : / Categories)
: ! ignored systems ! :
! Initiating — —CD: ! ;
i EventB 5 PDS; oo -
E ----- — CD E {
""""""""""""""""" ' PDS;
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I Major Tasks:

* Plant Damage State (PDS) Analysis
— Link to Level 1

 Deterministic Assessments of Plant Response to

Severe Accidents

— Containment performance assessment

— Accident progression & source term analysis
* Probabilistic Treatment of Epistemic Uncertainties

— Account for phenomena not treated by computer codes

— Characterize relative probability of alternative outcomes
for uncertain events

» Couple Frequency with Radiological Release
— Link to Level 3

Fire PRA Workshop, 2009, Palo Alto, CA Slide 155 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Typical Steps in Level 2 Probabilistic Model

Initial plant ~ Consolidated Accident progression / Conditional
Initiating Accident damage  plant damage containment event tree  Release  consequence
Events sequences  states states end states categories bins
(< 100) (millions) ~ (50 to 100) (<20 (10° to 109 (<20) (<20

Frequency * Consequence

Accident progression /
containment event trees
(branch probabilties with
uncertainties)

Accident sequence
event trees
(event probabilties
from fault trees)

Binning Process
Risk Integration

Stop
Screen on

Iterative truncation low frequency

1011072,
to convergence  *

4 Sensiivity analysis & reconsideration of
h

L_ _loviequency PDS wih high comsequences - )
I 11 11 11 ]
I L} L} L} 1
LEVEL 1 LEVEL 1-2 LEVEL 2 LEVEL 3
Interface
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Schematic of Accident Progression Event Tree

Boundary Recovery of Core In-vessel Processes Ex-vessel Processes Final
Conditions: Prior to Vessel & Containment & Containment Outcome
Plant Damage States Breach Impact Impact Large/Early
Release
Pressure Debris
in vessel coolability
Hydrogen
released? Yes
System
Setpoint —— | Recovery of
—‘_ injection Yes
High No

Inter-

mediate

No

Hydrogen
burn before

Yes
No
vessel
breach
No
Pressure
increase due to

H, burn during

T R

Source: NUREG-1150 CCl gas generation
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Accident Progression Analysis

* There are 4 major steps in Accident Progression Analysis

— 1. Develop the Accident Progression Event Trees
(APETS)

— 2. Perform structural analysis of containment
— 3. Quantify APET issues
— 4. Group APET sequences into accident progression

bins
Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 158 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Containment Response

* How does the containment system deal with physical
conditions resulting from the accident?

— Pressure

— Heat sources

— Fission products

— Steam and water

— Hydrogen

— Other non-condensables

Fire PRA Workshop, 2009, Palo Alto, CA Slide 159 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatory
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I Full Scope Level 2 PRA: Wide Range of Possible

Releases of Accidental Releases to Environment
g5th
« Characterization of Releases . . o 50"
; 410
to the Environment of all g 4 I
Types 3 50
(] -7 8
— Large/Small ¢ 10 .
=1 e
— Early/Late 5 =5
. 21087 & s
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I CIRCUIT ANALYSIS BASICS
Introduction

* Who Should Attend?

— Nuclear plant personnel with rudimentary electrical and plant
operating knowledge, but very limited experience with electrical
control circuits, power distribution systems, and instrument
circuits

— Nuclear plant personnel with no previous exposure to
Appendix R, NFPA 805, or Fire PRA circuit analysis concepts
and methods

* Who's Here?
— Name, Organization, Experience
— What do you want from this “Basics” course?

A Collaboration of U.S. NRC Office of Nuclear Regulatory

Joint Fire PRA Course, June & October 2009 f Slide 2
Research (RES) & Electric Power Research Institute (EPRI)

Module 2: Fire PRA Circuit Analysis Basics




l CIRCUIT ANALYSIS BASICS
Objectives

* This course is intended to:

— For less experienced personnel, provide a 1-day introduction to
electrical fundamentals from a perspective of fire-induced circuit
failure analysis

— Provide fundamental information necessary to grasp the
concepts and methods of fire PRA circuit analysis that are
covered by the main Module 2 course

— Present overviews of typical nuclear plant electrical power,
control, and instrumentation circuits

— Introduce fire-induced cable failure modes and explain their
impact on circuit operation

— Describe the evolution of circuit analysis for nuclear power plant
fire protection

Joint Fire PRA Course, June & October 2009 Slide 3 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Module 2: Fire PRA Circuit Analysis Basics i Research (RES) & Electric Power Research Institute (EPRI)

. CIRCUIT ANALYSIS BASICS
Topics

* Circuit Design Basics

* Plant Electric Distribution System Design
* Plant Electrical Equipment

* Fire-Induced Cable Failures

* Evolution of Fire Protection Circuit Analysis

Joint Fire PRA Course, June & October 2009 ! Slide 4 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Module 2: Fire PRA Circuit Analysis Basics Research (RES) & Electric Power Research Institute (EPRI)




I CIRCUIT ANALYSIS BASICS
Circuit Design Basics

* Typical Circuit Devices & Symbols

» Types of Drawings and How to Read Them
» General Conventions

» Grounded vs. Ungrounded Circuits

* ANSI/IEEE Standard Device Numbers

Joint Fire PRA Course, June & October 2009 Slide 5 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Module 2: Fire PRA Circuit Analysis Basics i Research (RES) & Electric Power Research Institute (EPRI)

I CIRCUIT ANALYSIS BASICS
Typical Circuit Devices & Symbols

e Circuit Breaker & Fuses

* Motor Starters & Contactors
* Relays & Contacts

* Terminal Blocks

» Control Power Transformers
* Actuating Coils

* Indicating Lamps & Alarms

» Switches
— Control/Hand (maintained, momentary, spring-return to normal)
Limit & Torque
Sensors
Transfer & Isolation
Position

Joint Fire PRA Course, June & October 2009 ! Slide 6 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Module 2: Fire PRA Circuit Analysis Basics Research (RES) & Electric Power Research Institute (EPRI)




Typical Circuit Devices & Symbols

Refer to Symbol
Library Handout

Joint Fire PRA Course, June & October 2009 Slide 7 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatow
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! CIRCUIT ANALYSIS BASICS
Types of Drawings and How to Read Them

* Single-Line Drawings

» Three-Line Drawings

» Elementary or Schematic Diagrams

* Block Diagrams

» Cable Raceway Schedules

» Wiring or Connection Drawings

* Instrument Loop Diagrams

» Vendor Shop Drawings

» Equipment Arrangement or Location Drawings
 Tray & Conduit Layout Drawings

» Underground & Ductbank Layout Drawings

« Specialty Drawings (Electrical Penetration, Logic, Load Lists,
Coordination Diagrams, Short Circuit Calcs)

* Piping & Instrument Diagrams

Joint Fire PRA Course, June & October 2009 ] Slide 8 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Module 2: Fire PRA Circuit Analysis Basics Research (RES) & Electric Power Research Institute (EPRI)




Types of Drawings and How to Read Them

*Review Drawings...
*Get your color markers ready

-
=

Joint Fire PRA Course, June & October 2009 Slide 9 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatory
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I CIRCUIT ANALYSIS BASICS
General Conventions

* Polarity — AC & DC Circuits

* 3-Phase vs. Single-Phase Power

*Delta vs. Wye Connected Circuits

*Normally Open vs. Normally Closed Contacts
» Conductor, Cable, & Raceway IDs

* Electrical vs. Physical Connectivity

*Others ?

Joint Fire PRA Course, June & October 2009 ! Slide 10 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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I CIRCUIT ANALYSIS BASICS
Grounded vs. Ungrounded Circuits

* How can you tell?

* Why one or the other?

» Advantages & disadvantages

* Affect during normal circuit operation?

* Affect during abnormal circuit operation?
* Where will you likely see in practice?

* Types of grounding
— Solid
— High Impedance or Resistance
— Low Impedance or Resistance
* Where is ground point established?

* Why do we care so much about grounding?

Joint Fire PRA Course, June & October 2009 Slide 11 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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I CIRCUIT ANALYSIS BASICS
ANSI/IEEE Standard Device Numbers

Refer to Standard Device
Number Handout

Joint Fire PRA Course, June & October 2009 ! Slide 12 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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l CIRCUIT ANALYSIS BASICS
Plant Electrical Distribution System Design

* Voltage Levels

* Off-site Power Components

* High-voltage Switchgear and Related Equipment

* Protective Relays

* Load Centers (LC) and Station Service Transformers (SST)
* Motor Control Centers (MCC)

* Battery & DC Distribution System

« Vital AC Distribution System

* Plant Process Instrumentation (NSSS Instruments)

* Reactor Protection and Accident Mitigation Systems

Joint Fire PRA Course, June & October 2009 Slide 13 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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l CIRCUIT ANALYSIS BASICS
Plant Electrical Distribution System Design

* Primary Distribution Breakdown
— Voltage Levels
— Off-site Power Components
— High-voltage Switchgear and Related Equipment
— Protective Relays

— Load Centers (LC) and Station Service Transformers
(SST)

— Motor Control Centers (MCC)
— Battery & DC Distribution System
— Vital AC Distribution System

Joint Fire PRA Course, June & October 2009 ! Slide 14 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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I CIRCUIT ANALYSIS BASICS

Plant Electrical Distribution System Design
) e s ‘ - e Overall Plant
One-Line
Montult 2. Firb PRA Cirenit Analyars Basics Slide 15 | ecarch (RES) & Hlectic Pawer Research Insitte (EPR)
I CIRCUIT ANALYSIS BASICS
Plant Electrical Equipment
 Cables and Panel Wiring
* Raceway Types
 Transformers — Big to Small
* Air Operated Valves (AQOV)
* Solenoid Valves (SOV)
* Motor Operated Valve (MOV)
* High & Medium Voltage Switchgear
* Protective Relays
T Course e & October 2009, _Side 16 Researoh (RES) & Electc Fower Research Instie GAR)




I CIRCUIT ANALYSIS BASICS
Plant Electrical Equipment, cont...

* Circuit Breakers — Big to Small
* AC Motors — Big to Small

* DC Motors

* Instrumentation Circuits

* Electrical Control Panels

* Electrical Power Panels

* Batteries & Chargers

* Inverters
Joint Fire PRA Course, June & October 2009 Slide 17 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatory
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I CIRCUIT ANALYSIS BASICS
Cables & Raceways

« Cables and Panel * Raceway Types
Wiring — Conduit
— Single-conductor cable — Tray — ladder and solid
— Multi-conductor cable - Wireways
— Pull boxes

— Triplex cable )
— Junction boxes

— Size conventions and .
— Terminal boxes

ampacity
Shielded, unshielded ~ Ductbanks
- ielded, unshielded, .
& armored — Embedded conduit
. — Air drops
— Materials — Conductor, )
insulation, & jacket — Fire wraps
Joint Fire PRA Course, June & October 2009 ! Slide 18 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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I CIRCUIT ANALYSIS BASICS
Transformers

* Power Transformers
— Main transformers
— Unit auxiliary transformers (UAT)
— Startup or reserve auxiliary transformer (SUT, RAT)
— Station service transformer (SST)

 Control Power Transformers (CPT)

* Instrument Transformers
— Potential transformer (PT)
— Current transformer (CT)
— Zero sequence current transformer

* Specialty Transformers

A Collaboration of U.S. NRC Office of Nuclear Regulatory

Joint Fire PRA Course, June & October 2009 Slide 19
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Module 2: Fire PRA Circuit Analysis Basics

I CIRCUIT ANALYSIS BASICS
Valves

* Air Operated Valves (AOV)
— Pilot solenoid operated
— Bi-modal function

— Modulate function

* Solenoid Valves (SOV)
— AC & DC operated

» Motor Operated Valve (MOV)
— Typical design

— Inverted design

A Collaboration of U.S. NRC Office of Nuclear Regulatory
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l CIRCUIT ANALYSIS BASICS
Switchgear & Relays

« High Voltage Switchgear
— Switchyard equipment
— Typically individual components
« Medium Voltage Switchgear
— 12.47 kV, 7.2 kV, 6.9kV, & 4.16 kV
— Typically metal-clad, indoor, drawout design
— Separate control power circuit and protective devices
« Protective Relays
— Overcurrent relays (50, 51, 50N, 51N, 50G)
— Differential relays (87, 87T, 87B)
— Undervoltage relays (27)
— Frequency relays (81)
— Reverse power relays (32, 67)
— Lockout relay (86)
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I CIRCUIT ANALYSIS BASICS
Circuit Breakers

* Medium Voltage Power Circuit Breakers
— Often called Power Circuit Breakers (PCB) or Vacuum Circuit Breakers (VCB)
- 1,000V -15kV
— Separate 125 VDC control power
— Separate close and trip coils
— Fails “as-is” on loss of control power
— No overcurrent protection w/o control power
— Separate trip devices — protective relays
« Low Voltage Power Circuit Breakers (LVPCB)
— Below 1,000 V
— Same basic features as medium voltage power breakers
— Internal or external trip devices
* Molded Case Circuit Breakers
— Internal trip devices — thermal and/or magnetic
— Generally manually operated

Joint Fire PRA Course, June & October 2009 ! Slide 22 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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l CIRCUIT ANALYSIS BASICS
Motors

* AC, DC, 1-phase, 3-phase

» Synchronous vs. induction design

* Large motors controlled by circuit breaker

* Smaller motors often controlled by a “motor starter”

* Continuous duty (pump) vs. intermittent duty (MOV)

* MOVs and DC motors are most often reversing design
* High temp is usually an alarm or time-delay trip

* Locked rotor current must be considered

* We don’t know anything else about motors

Joint Fire PRA Course, June & October 2009 Slide 23 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Module 2: Fire PRA Circuit Analysis Basics i Research (RES) & Electric Power Research Institute (EPRI)

I CIRCUIT ANALYSIS BASICS
Process Instruments & Reactor Protection

» Process Instrumentation
Temperature

Level

— Flow

Pressure

» Reactor Trip
— Trip signals
— Actuation circuitry

» Engineered Safety Features Actuation System
— Input signals
— Actuation logic
— Solid-state protection system (SSPS)

Joint Fire PRA Course, June & October 2009 ! Slide 24 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Module 2: Fire PRA Circuit Analysis Basics Research (RES) & Electric Power Research Institute (EPRI)
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l CIRCUIT ANALYSIS BASICS
Instruments

* 4-20 mA design is common
 Twisted shielded pair (TSP), coaxial cables
» Key elements of instrument loop
— Loop power supply
— Transmitter/sensor
— Bi-stables for control and actuation signals
— Indicators
* Provide
— Indication
— Alarm
— RPS & ESFAS input
— Control signals
» Comprised of multiple modules/cards
* Highly integrated signals — isolation is challenging
« Distinctly different from a circuit analysis perspective

Joint Fire PRA Course, June & October 2009 Slide 25 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatory
Module 2: Fire PRA Circuit Analysis Basics i Research (RES) & Electric Power Research Institute (EPRI)

CIRCUIT ANALYSIS BASICS
Miscellaneous Equipment

* Control Panels

* Power Panels

* Batteries

* Battery Chargers
* Inverters

* Other ??
Joint Fire PRA Course, June & October 2009 ! Slide 26 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Module 2: Fire PRA Circuit Analysis Basics Research (RES) & Electric Power Research Institute (EPRI)
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I CIRCUIT ANALYSIS BASICS
Fire-Induced Cable Failures

* Short circuits
— Short to earth ground
— Short to reference ground
— Conductor-to-conductor
* Open Circuits
* Hot Shorts
— Intra-cable hot shorts
— Inter-cable hot shorts
— 3-Phase proper polarity hot shorts
— Ungrounded DC proper polarity hot shorts
— Multiple hot shorts

Joint Fire PRA Course, June & October 2009 Slide 27 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Module 2: Fire PRA Circuit Analysis Basics i Research (RES) & Electric Power Research Institute (EPRI)

I CIRCUIT ANALYSIS BASICS
Evolution of Fire Protection Circuit Analysis

» Appendix R — the early years

* Appendix R — the later years

e Appendix R — redux

* Early Generation Fire PRA

* Cable Fire Tests

» Operator Manual Actions

* NFPA 805

* NUREG/CR-6850 & Next Generation Fire PRA
» Multiple Spurious Operations (MSO)

» 10 CFR 50.48(c) — RIPB voluntary alternative to fire protection
requirements

* NFPA 805 Transition Projects
 Frequently Asked Questions (FAQ) Process

Joint Fire PRA Course, June & October 2009 ! Slide 28 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Module 2: Fire PRA Circuit Analysis Basics Research (RES) & Electric Power Research Institute (EPRI)
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I CIRCUIT ANALYSIS BASICS
Fire PRA Circuit Analysis — Module 2 Training Topics

» Task 3: Fire PRA Cable Selection
— What cables are associated with the FPRA components?
» Task 9: Detailed Circuit Analysis
— Which cables can affect the credited functionality?
— What failure modes are possible given fire damage to the cable?
» Task 10: Circuit Failure Mode Likelihood Analysis
— How likely to occur are the failure modes of concern?
» Support Task B: Fire PRA Database

— Warehousing data and determining impacts

Joint Fire PRA Course, June & October 2009 Slide 29 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Module 2: Fire PRA Circuit Analysis Basics i Research (RES) & Electric Power Research Institute (EPRI)

I CIRCUIT ANALYSIS BASICS

Questions ?

Joint Fire PRA Course, June & October 2009 ! Slide 30 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Module 2: Fire PRA Circuit Analysis Basics Research (RES) & Electric Power Research Institute (EPRI)
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Electrical Basics
Sample Drawing Index

Basics 1 Overall Plant 1-Line

Basics 2 7.2 kV Bus 1-Line

Basics 3 4.16 kV Bus 1-Line

Basics 4 600 V 1-Line

Basics 5 480 V MCC 1-Line

Basics 6 7.2 kV 3-Line Diagram

Basics 7 4.16 kV 3-Line Diagram

Basics 8 AOV Elementary & Block Diagram
Basics 9 4.16 kV Pump Schematic

Basics 10 480 V Pump Schematic

Basics 11 MOV Schematic (with Block included)
Basics 12 12-/208 VAC Panel Diagram

Basics 13 Valve Limit Switch Legend

Basics 14 AOV Schematic (with Block included)
Basics 15 Wiring (or Connection) Diagram
Basics 16 Wiring (or Connection) Diagram
Basics 17 Tray & Conduit Layout Drawing
Basics 18 Embedded Conduit Drawing

Basics 19 Instrument Loop Diagram
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NOTES:
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REMARKS

STA, SERVICE TRANS. IC
OVER CURRENT EELAY,3p

TIME DELAY RELAY

OVER CURRENT RELAY 3¢ FOR

INCOMING FEEOER FROM
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NOTES

. ALL BKRS.EXCEPT SZ-ECOZ
STATE TRIP UNITS WITH THE

E'&-Ec lo & 52-EL07 HAX
OLLOWING DESIGN

SOLID)
EI onse

(BREAKER FRAME/SENSOR RATING - AMPERES).
7. % -DENOTES MAIN CONTROL BOARD IN MAIN CONTROL RW.
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& THE FOLLOWING CONTROL CABLES D
WAFU-R4D,E,F (Y ARE TO BE
PHYSICALLY SEPARATED FROM
CABLES VAFU-VSA,B.C ¢ 2 (2EE
D-ITTTT3) IN ORDER TO ASSURE THAT
A COMMOM MODE. BVENT CANMOT CAUSE
GENERATION OF A SIGNAL WHICH
WOULD OPEN BOTH VALVES IM THE
TRAIN A SUMP LINE AT THE WRONG
TIME

REFERENCE DRAWINGS E

A=1T7838 ~ ELBCTRICAL GENERAL PETALS § NOTES,

2
>

MOV
) L1, R, 02 2

COMM TO MOV
AND LIMIT SsW/iTCH
BY FIELD

2

BLock DiAGRAM -

(FOR SEPARATION REGLIREMENTS

SEE NOTE &)

Basics - 11
MOV Schematic J

-

e -

e o

i

T o T T e o 0 B o o S o 1 5 9 5

e - -

Jow.

wea & w5
ELI"‘ML‘N-HE\'lSI-" PER ABN
0-0599. REV

| 3 | 4

7 |

8

|
I

| 10




DIESEL BUILDING
I20,-"208 VAC DIST. CABINET -MCC IN
QIRITBS07-A
MCC CELL HN-N2
B
RECEPTACLES RECEPTACLES P P . zulsmg L:Ig . ql_llgrﬂR[NE .
3-1 THRU 3-6 1-1 THRU I-6 - - - - - -
b-R  20A 6-R  20A DLN-y LY o w2l [ I-E B0 I-F 100
20A 208" 3P 50 4-P 50
€D-173329) (D-173329) w (D173329) (D-73329)
= N
L) o ot —
%Uﬁc— 204
IP, 14 WET PIT LEVEL INST. POWER
NN.DIAG.D-172901 P
LM DIAC.D 172781 SPACE— — — — —— N OZ’U:OQC IDAHMNOOA ] gy ycTgox o [DAHMNOGB _—lcuppiy In 69a
ecHeme 5C,50 Rzl QSPI&GSISA-A | R2) M| aSP25JQ4I23-A ~
:m_nonsoom I ® " CONN.DIAG.DAT3083 CONN.DIAG.DIBIBGI =
DIESEL LOCAL | oy A DLN-3 OUTDOOR LIGHTING
T, - =
|| RELAY PANEL IC ® - Y 50> _920;,}"‘3“ £ Bg.InTH moa 3
L QSH22L504-A I Rzl &Y E'_-LI (D-173329)
LEVEL IND. | ,raumennea === =— J T —
IDAHMNO9A U P 1P DIESEL LOCAL
CIN.292) A= A IDAHMNIOA |
NSYS2LT506-N | 2l DC.POWER SUPPLY | |0, unoac Jul;gl);lﬂu |DAHMNOSE N f o J"zuaom DAHMHN 10 ag?-INzTi PuLIC
CONNDIAG D72562 NSHELIDaSIN |IBIUG \ | NsRu3cSIUCN R2I~ ad B CONN.DIAGD172557
T T T YR E L] (3)JAZ e =] P
REMOTE MULTI= | oo CONN.DIAGD-72562 CONN.DIAG.D-172562 He A M e X UMNIZA s:gﬂl ?ﬂmnEm
PLEXER DSL.BLDG. T ol T NSRUSCEIZEN JUNCTION BOX D.G. STARTING AIR COOLER/DRYER
NIPYSNOOS-N R3I- L]U |2J c2yJoz Pl e QIR586633-A AUTO. DRAIN VALVE D
CONNDLAG.D-1B0752 ) P CONM.DIAG.DH 73488 _OSR43V7SS-A
. HVAC- — — IDXHMNIYA R IDXHMNIYB
SWCR ROOM'A |\DAHMNIZA ! 5 Ac"‘"‘ L Al Y 144 —0
1 0A 20 RIl 4y —o
- R2! lr-:u |ou Rl ﬁ l
CONN.DIAG.D172527 P P
HVAC-DIESEL &OIL WATER DET. =UF |
STORAGE ROOMS IC 'D“"'g";"‘ 'C’BOQ;;C 0;;;0@ IDARIH oA IN.397 IDXHMNI4C Ao
FN-E2 R2I lisu su) | 2rJ02 | NSR4IMASOBN | RIl iy —o
CONN.DIAG.DHT2526 P P CONN.DIAG.D-T72562
| . SWGR.RM A HVAC Ve SEL 1C D.G. STARTING AIR COOLER/DRYER
LOCAL CONT STA, [IDXHMNITA I7 /‘;:C— <0 a‘0'4!'4( IDABMNIBA || \)gg o1L TEMR J.B Sonm. BIAC. 3 AUTO. DRAIN VALVE
QSH23554uF-A A2l 17U 18U R21 QSRUIGSHO-A QSR43VII4—A 3
CONN.DIAG.DATIIHG
CONN.DIAG.D-T3136 2p 2P
CIRCWTR.PUMP 1B CWP MOTORHEATER | | o A 2R SDAHMNZOA sptgiginggnsz:o CONN. DIAG.
IDXHMNISE STARTER JB. 0, Q O 4160V, . D-202935
HEATER STARTER 95198 195198 204 BOA DHOb
NIRSBSSOIB-N |41 mg NIRS86508-N T s MK-CJE  [(2P02
J HIGH MAST LIGHTING]
(2303 CONMN.DIAG.D-T3I4G ‘ZI_P-‘ /2_F:\ A NOTES |
8 SPACE —— —— ——— L——< b 0% B4 400 NOTES?
zz 2, 210 s (D-173344) I.ALL BREAKERS IN THESE 208V.
;Q_ 3P 3P DISTRIBUTION PANELS ARE ITE
=< 2 EQ- .
T e < A Rt e
CIRCWTR.PUMP 1B FN-GY4 2”‘2'*3(-3)‘]0@ s 248, -
HEATER
NIP26MO0IB-N CONN.DIAG.DATZ2527 ,3.3‘ }Eb-
CONN.DIAG.D-18I519 SPACE Seigazsc | © ° —0 T~ Z6nz6n6C o CE
2p P
IDNHS006B IDNHS006A 278 T T SPACE —
(2)P03 gca;. °1° ° 288,200
(2)JA2 |
IP
JCT. BOX 7 AN P
NIYSIGOI3-N b orC © O ===~ ~ 3¢ 500 PACE _
REFERENCES: -
I A-177538 ELECT GEN.DETAILS &
UNSCHEDULED  STo-278 IDNH5006C 7] NOTES
CBLESTO | < o1 o @Jn2 27c [z} U-184788  WIRING DIAG. 4SKVA
2 ethyad b i TO GROUND BUS TRANSE 208V 3¢ SUPPLY |
LIGHT SWITCH JCT.BOX LGKVA 600/208V. TRANSFORMER & 42 CIR.LTG.PNL.
NIVSI5001-N NIYSIGOI2-N MCC CELL FN-G6
_‘
AC Panel Diagram |
L e e e e e e e e e e e e e I e e e e e e e e e e e e = e e e e e P S e e S R |
NN I e e e O 5 53 = o
v, w ow [ . v ooy L . w ooy [ . w oy [ o, W ooy [ Al 3:13-99 | I
REDRAWN PER ABN H
99-0-1%61. REV. 0 e -
— OPERATIONS
1 I E I 3 I 4 I 5 I 6 I 7 8 I 9 I 10 11 12 13

CRITICAL




NOTES:

1. BREAKERS SHOWM [N THE "OPEN' POSITION

2.COILS SHOWN IN THE *DE-ENERGIZED® STATE.

3. PRESSURE SWITCHES, FLOW SWITCHES, ETC, SHOWN IN THE *OFF-SHELF* POSITION,

4. THE COMPLETE WIRE MARK [S THE WIRE MARK SHOWN PLUS THE SYSTEM SHEET
NUMBER (e.qg. 1-ES@9, 2-ES09, ETC.)

5. VALVES SHOWN IN THE *CLOSED® POSITION (EXCEPT AS NOTED).

6. GAI-ERAC NO.'S WILL BE USED TO IDENTIFY EQUIPMENT
LOCATION WHERE APPLICABLE. SEE EQUIPMENT LIST
FOR GAI-ERAC DESIGNATION
7.ALL AUX. RELAYS WILL BE 'CUTLER-HAMMER® TYPE M-600V AS SHOWN
ON B-208-802 SHT.19. EXCEPT AS NOTED ON ELEM. DIAGRAM'S
8. DROPPING RESISTORS FOR *CMC’ LIGHT MODULES ON MCB SHALL BE AS FOLLOWS:
ol 125V0C CIRCUITS - 1950 OHMS FOR SINGLE LAMP; 168@ OHMS FOR TWO LAMPS IN SERIES
bl 120VAC CIRCUITS - 1750 OHMS FOR SINGLE LAMP; 1400 OHMS FOR TWO LAMPS IN SERIES

9, INSTRUMENTATION SETPDINTS SHOWN ON THIS SERIES DRAWINGS ARE FOR
INFORMATION ONLY. THE SETPOINT DATABASE/LIST SHALL BE CHECKED TO
VERIFY INSTRUMENT SETPOINTS LISTED ON THESE DRAWINGS.

LIMIT SWITCH DEVELOPMENT - ROTORK OPERATOR

SWITCH | CONTACT | OPEN | INTERMEDIATE | CLOSED

0T/LS | 24-25
CI/LS | 26-27
0AS 15-16
CAS 6-7
0AS2 7-18
CAs2 B-9

ADD-ON-PAK | SWITCH OPERATION
SWITCH | CONTACT | OPEN | INTERMEDIATE | CLOSED

ASL 0-11 AOD-ON-PAK SWITCHES CAN BE SET
:g% E:IZ‘E AT VALVE FULL OPEM, FULL CLOSED,
2 555 DR ANY POSITION IN BETWEEN

ASH 28-29

ASH 3p-31

LEGEND (FOR COMPUTER GEMERATED DRAWINGS)

;’_‘): INDICATING LIGHT

[:E:i INDICATING LIGHT WITH RESISTOR
A COIL/SOLENOID VALVE
T

o o BREAKER

—D BREAK [N CIRCUIT SHOWING
CONTINUATION ON AMOTHER LINE

: TERMINAL NUMBER ABOVE
o EQUIPMENT TERM[NnL[ LOCATION BELOW

+ INDICATES NO CONNECTION
};DRA+— INDICATES CONNECTION

ABBREVIATIONS
ABBREVIATIONS DEFINITIONS

AL ALARM

BLU BLUE

8.0 BLACK OUT

COMPT COMPUTER

CONT CONTROL

DFT0 DEFEATED

GRN GREEN

INTERLK INTERLOCK

MON AL 2 MONITOR LIGHT ALARM GROUP 2

MON LT 2 MONITOR LIGHT GROUP 2

REM REMOTE

T.C. TOROUE SWITCH TO STOP VALVE CLOSING
T.0. TOROUE SWITCH TO STOP VALVE OPENING
WH WESTINGHOUSE

WHT WHITE

YEL YELLOW

DEVICE [DENTIFICATION (COMPUTER DRAWINGS)
DEVICE

/ NUMBER
52 WIRE

|1 - =—MARK
— | .-

X7 X8
CONTACT—_
NUMBER KSWIA] =— LOEhTiUN

NOTE 1 =—AUXILIARY
NOTES

LIMIT SWITCH DEVELOPMENT
FOR AIR OPERATED VALVES

AND DAMPERS
DEVICE POSITION
LIMIT FULL FULL
SWITCH | CLOSE DPEN
SWITCH 33be
ACTUATED| 33be
DEVICE | 33ac
CLOSED d3ac
SWITCH 33a0
DEVICE 33bo
OPEN 33bo

NOTE: 33 CONTACTS SHOWN FOR DEVICE FULL CLOSED

LIMIT SWITCH DEVELOPMENT - LIMITOROUE OPER.

C VALVE POSITION

Do—OoOD

0
POSITION [N | FULL FULL
SWITCH |7 CLOSE OPEN

3340

1

3340 2

U 330 [
3380 4

338C
2| 338C

33AC

3340

3| 3340
3380
3380 |12

J3BC 13
4 33BC |14

5
6
7
33C 8
9
10
1l

33C |15

33AC 16

17|CLOSING TOROUE SWITCH
INTERRUPTS COMTROL CIRCUIT
IF MECHANICAL OVERLOAD
OCCURS DURING CLOSING
CYCLE OR FULLY CLOSED
VALVE

B{OPENING TORGUE SWITCH
INTERRUPTS CONTROL CIRCUIT
[F MECHANICAL OVERLOAD
OCCURS DURING OPENING
CYCLE OR FULLY OPENED
VALVE

NOTES: LIMIT SWITCH DEVELOPMENT- LIMITORGUE OPER.

1. INTERMEDIATE POSITIONS ARE EXPRESSED
IN PERCENTAGE OF FULL OPEN,
EX. 33A05 CONTACT ACTUATES WHEN THE VALVE
IS 5% OPEN,

2. THE TOLERANCE FOR ROTOR 2 CONTACTS SET AT
25% OPEN IS + 2.51.

3. LIMITORGUE VALVES STROKED OPEN TO A POSITION OF
29@% ARE CONSIDERED 'FULLY OPEN' WITH THE
EXCEPTION OF XVG28@2A & B-MS, WHICH MUST BE
STROKED OPEN TO 957, THE BASIS FOR THIS
STATEMENT IS NUCLEAR ENGINEERING LETTER
CGSS-20371, DATED 11/9/87.
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ANSI/IEEE Standard Device Numbers

1 - Master Element

2 - Time Delay Starting or Closing Relay
3 - Checking or Interlocking Relay

4 - Master Contactor

5 - Stopping Device

6 - Starting Circuit Breaker

7 — Rate of Change Relay

8 - Control Power Disconnecting Device

9 - Reversing Device

10 - Unit Sequence Switch

11 — Multifunction Device

12 - Overspeed Device

13 - Synchronous-speed Device

14 - Underspeed Device

15 - Speed - or Frequency-Matching Device
20 - Elect. operated valve (solenoid valve)
21 - Distance Relay

23 - Temperature Control Device

24 — Volts per Hertz Relay

25 - Synchronizing or Synchronism-Check Device
26 - Apparatus Thermal Device

27 - Undervoltage Relay

29 - Isolating Contactor

30 - Annunciator Relay

32 - Directional Power Relay

36 - Polarity or Polarizing Voltage Devices
37 - Undercurrent or Underpower Relay
38 - Bearing Protective Device

39 - Mechanical Conduction Monitor

40 — Loss of Field Relay

41 - Field Circuit Breaker

42 - Running Circuit Breaker

43 - Manual Transfer or Selector Device
46 - Reverse-phase or Phase-Balance Relay
47 - Phase-Sequence Voltage Relay

48 - Incomplete-Sequence Relay

49 - Machine or Transformer Thermal Relay
50 - Instantaneous Overcurrent

51 - AC Time Overcurrent Relay

52 - AC Circuit Breaker

53 - Exciter or DC Generator Relay

54 - High-Speed DC Circuit Breaker

55 - Power Factor Relay

56 - Field Application Relay

59 - Overvoltage Relay

60 - Voltage or Current Balance Relay
62 - Time-Delay Stopping or Opening Relay
63 - Pressure Switch

64 - Ground Detector Relay

65 - Governor

66 — Notching or jogging device

67 - AC Directional Overcurrent Relay

68 - Blocking or “out of step” Relay

69 - Permissive Control Device

71 - Level Switch

72 - DC Circuit Breaker

74 - Alarm Relay

75 - Position Changing Mechanism

76 - DC Overcurrent Relay

78 - Phase-Angle Measuring or Out-of-Step Relay
79 - AC-Reclosing Relay

81 - Frequency Relay

83 - Automatic Selective Control or Transfer Relay
84 - Operating Mechanism

85 - Carrier or Pilot-Wire Receiver Relay
86 - Lockout Relay

87 - Differential Protective Relay

89 - Line Switch

90 - Regulating Device

91 - Voltage Directional Relay

92 - Voltage and Power Directional Relay
94 - Tripping or Trip-Free Relay

B — Bus

F — Field

G — Ground or generator
N — Neutral

T — Transformer



TYPICAL ELECTRICAL DRAWING SYMBOLS AND CONVENTIONS

ELECTRICAL SYMBOLS

CONTACES , SWITCHES, CONTACTORS AND RILAYS Pushbutton - Nomentary or spring return.

Single Circuil (maked

SYMBOL DESCRIDPTION

Relay cvontact - Shown with rolay in de-cnergized or in
# X1

_QD_
reset position, (Show relay coil designation near con- alo 'ushbutton - Momentary or spring return.

tact.) Single Circuit (break)
N.0. N.C.
Timing Relay Contact - TDC indicates contact closes at X
Ti r1 end of timing period. TDO contact opens at end of Mushbutton - Momenl';ar}'lor spring returm.
timing period. oo Two Civcull
ToC Tho

Coil - Relay, contactors, cirruit breaker,
solenoid etc. | —j—l fushhutton - Maintained, two cirecuit
(8how device designation, Xl) H - _OJ o

b — 7
Coil - Timing Relay - Tppy indicares timing periad start:
when coil is energized. TDLO Lndlcal:es timing «-}-» pushbutton - Maintained, single circuit
1DPUY period sterts when coil is de-energized. —"I“—-—-—-—ol D) G
(DO} -
Latching Relay or Mechanically-lield Contactor Selector Two posilion, maintained
O=operate; R-reset; C-trip coil; (I) Suwictch - (designate position shown; i.e. A-=Auto;
CC=closing coll. 1 A b Tland)
(Coils may be separated on diagram) ? !
X Knife Switeh, general. (If shown closed, terminals Selector Three position, SR indicates spring
must be added.) T 66 ¢ Switch - return f[rom position so labeled.

(TRIP-{NORMAL) -CLOSE" position shown)

gk

sk §7 SR
G ° Switeh - General, single pole, single throw. &5 Limit Switeh - Wormally oper - Not applicable for
Moltor Operated Valves and Solenoid
Valves.
e Switch - One pole of multi-pole switeh shown.
1 @ Other poles shown elseswhere.
| Limit Switch - formally closed - got applicable for

Molor Operated Valves and Solenoid valves.




Used with olher symbols to indicate deviee Is adjusiable

+ (PasiLlive)

== (Nepative)

Polarity markings = Divect current.

3-phase, 3 wire zipzap, grounded neutral

Ly
N

Instantanenus Folarivy Mavkings

Connection to earth ground (may he plant grounding
systom)

Sk

3-phage, J-wire, delLa

.

3-phase, 3J-wire, open delta prounded

Connection to chassis or frame

d-phase, J-wire, wye

Terminal - may be added to any of the Ffollowing symbols
at connection poinks.

I-phase, 3-wire, wye proonded neutral

Short circuit (not a faulk)

M| 3| -

d-phase, d-wire, zipzag

Terminal - Designates termination point of field run
cables to miin contrel beard, emergency powel
board, main control board termination cabinet
or emergency power board tormination eabinet.



o

Flow Switch - Closes on increase in f[low
at wvalue shown

Flow Switeh - Opens on increase in flow
at wvalue shown

Flow Switch - Closes on decrease in flow
at value shown.

Flow Switch - Opens on decrease in Flow
at value showm.

TLiquid Level - Opens on rising level
Switeh (Closes on low level)

Liquid Level - Closes on rising level
Switch (Opens on low level)

Pressure or Vacuum - Closes on rising pressure
Switch

Pressure or Vacuum = Opens on rising pressure
Switeh (Closes on increase in
wvacuum)

Temperature Switch - Closes on increasing temp.

NI T T

é Torgue Switch - Opens on high torgue



Transductor = Conlrel winding shown with 3 loops.
Power winding shown with 3 loops.

Trapsformer - CGeneral, two winding

Autokransformer - General

Transformer - General, rhree windiny

Current Transformer - number represcnts quantity
(add instantapcous polarity marks o
and ratio) ,

Bushing Type Current Transformer

FI3 |

Potential Translformer = number represents quantity
(show instantaneous polarity
marks, voltage rating, vectors,
ete,)



Fuse - General

lligh Voltapge Primary Fuse Cutout

Lighining Arrester = General Gap Type

Lightning Arrvester - Valve or film type

Circuil Breaker - Geneval

Power Circuit Breaker - (Show location of opperating
mechanism)

p—_
L
L —

Q
T
—_—h
i
—

Circuit Breaker, 3-pole wilh magnetic - overload device
in eac¢h pole. (Show raLing}

—cl > | i

—lin T
— D
— R

Circuit Breaker, J-pole, drawour type {(Used in metal
clad switchgear groups)

£\



INDICATORS & ALARMS RELAYS

Bell, electrie

The Following methods are used on drawings te identify relays:

1)
Burzer
Two (2) 64 devieces 64-1 and 64-2 in same cell.
Horn = Ceneral
2
_@ Three (3} 27 devices 27-1, 27-2 and 27-3. The tws {2) below
the 27-2 device indicares there are two (2) 27 devices and
: their sequence numbers are in numerical order starting with -2.
Annuneiator = General

Indicaring Lipht =« Ceneral

oAl

Use the following to specify color:

& - Amber
B~ EBlue

L - Clear
G - Green
RE = Neon
0 = Orange
OF - Opalescent
P - Purple
R - Red

W - White
¥ - Yellow




ELEMENTARY DIAGRAM CONNECTIONS

TYPLCAL COMTROL  CIRCUIT

WESTINGHIOUSE MATN \l/
CONTROL BOARD PLUG
CONNECTOR, BIN #1I

SPECIAL CABLE ==}

MCIS-TE RMT ¥AL \
CABINET-PANEL PLUG
CONNECTOR, PIN #H

T

MCB-TERMINAI
CABTNET
TERMINAL #325

WIRE NUMBER Cli

600V - MCC 1H,
SECTION A
COMPARTMENT 3
TERMINAL #5

MCPR=

TCH

TCw

325

FRA3

TYPICAL INSTR. CiPoUiT

MCRY
25

DFOL

WEST INGHOUSE MAIN
CONTROI, BOARD
INSTRUMENT PLUG
PN #2

WESTINGHOUSLE MALN
CONTROUL BOARD TERM,
BLOCK & 23

WIRE NUMBER

BUS 1F, 4160y
SWITCHGIAR GELL 01
TERMIMAL =10

#abbreviation for cquipment = The corresponcing equipment number will appear

in 2 table on the elementary diagram (e.g. MCB = QLlIL2¢€009)

WIRE NUMBERING

WIRE NUMBERING SYSTEM

1. The following standard interconnecting wire numbers shall be used
wherever applicable (for computer - schedule progranming) .

Hire
Humber Purppse Hire Number

1 A -~ Phase Power

2 B - Phase Power

3 C - Phase Power

(Hote 1) Annunciator

2} D. C. Negative (Sece Note 2)

P D. C. Positive (See Mote 2)

u 115 volt A. C.-Ground Return
[see Note 2)

X 115 volt A. C. (See Note 2)

c Closing (See Hote 2}

T Tripping {See Note. 2).

o] Opening, MOV Only
{8ee Note 2}

F Instrumentatign /(e.g. indicator,
recorder, etci)5ee Note 2)
Computer (See Hote 2)

M General Control (Neither

IHNL"W:H

tripping nor closing;
See Note 2)

Anber Lamp {See Note 2)
Blue Lamp (See Note 2)
Green Lamp {See Note 2)
Red Lamp (See Note 2)

- Hhite Lamp (See Note 2}

se
A - Phase Potential
(See Notes 3 & 5)
& - Phase Current
(See Motes 3 & )
B - Phase Potential
(See Notes 3 & 5)

B rhase Current

(see Notes 3 & 5)
C - Phase Potential
{Sce Notes 3 & 5)

C - Phase Current
{See ¥otes 3 & 5)

Potential (or
Current} Neutral
(See Notes 4 & 5)



Hagic,

Generalur or Molor

J-phase wye, groucded

¥ield, Compensating, Gengrakor or Motor
Yy ield, Series, Generalor or Motor
m Field, Short or Separately Exeited, Generator or Molor

Field, Permanenl Mamnel, Generator or Motor | |
@ 1-phase |
® 2-phase
@ 3-phase, wye

A

J-phase della



ABBREVIATIONS

Al

CMA

CHV
CRO
DB

DBM

DTR

GD

Iar

HM
OHM
oP
05CG
PF
Pl

AmmeLer PL
Ampere-hour RD
Coulombme ber HEC
Contact-making (or breakine) RE
ammekber sy
Contact-making (or breaking) t°
clock THC
{ontact-making {or breaking) TLM
volrmeter TT
Oscilloscope or cathoderay v
oscillopraph VA
DE (decibel) meLer- VAR
Audio level/meter VARH
DBM {decilbels referred to VI
1 millivatt (meter)

Demand mekter v
Demand-totalizing relay

Frequency meter )
Galvanomeier WH
Ground detector

Indicating

Integrating

Microammeter

Milliammeter

Hoise metex

Chmmeter

0il pressure
Oscillegraph, string
Power factor
Fhasemater

Posicion indicator
Recording demand meter
Recording

Reactive factor
Synchroscope

Temperature meter
Thermal converter
Telemsler

Total time: Elapsed time
Voltmeter

Volb-ammeter

Varmeter

Varhour meter

Volume indieator: Meter,
audio level

Standard volume indicator
Meter, audio level
Wattmeter

Warthour meter
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EPRI/NRC-RES FIRE
PRA METHODOLOGY

Definitions

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

I What is a Fire?

 Fire is an exothermic chemical reaction
involving a fuel and oxygen in the air
* Requires presence of:
- Material that can burn, the fuel
- Oxygen (air)
- Energy (initial ignition source)
* Ignition source can be a spark, short in an
electrical device, etc.

Fire PRA Workshop, 2009, Palo Alto, CA ] Slide 2 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Introduction to Fire Analysis Research (RES) & Electric Power Research Institute (EPRI)




What is a Fire?

» Fire Triangle

Fuel
Oxygen Energy
(Air) (Initially ignition source)
Fire PRA Workshop, 2009, Palo Alto, CA Slide 3 A Collaboration of U.S. NRC Office of Nuclear Regulatory
Introduction to Fire Analysis H Research (RES) & Electric Power Research Institute (EPRI)

Materials that May Burn

« Materials that can burn are generally
categorized by:

— Ease of ignition (ignition temperature or flash
point)
» Flammable materials (e.g., gasoline)
» Combustible materials (e.g., wood, high ignition
temperature oils, and diesel fuel)
— State
 Solid (wood, electrical cable insulation)
* Liquid (diesel fuel)
» Gaseous (hydrogen)

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 4 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Introduction to Fire Analysis Research (RES) & Electric Power Research Institute (EPRI)




Combustion Process

» Combustion process involves . . .
— An ignition source comes into contact and heats
up the material
— Material vaporizes and mixes up with the oxygen
in the air and ignites

— Exothermic reaction generates additional energy
that heats the material, that vaporizes more, that
reacts with the air, etc.

— Flame is the zone where chemical reaction is
taking place

Fire PRA Workshop, 2009, Palo Alto, CA Slide 5 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Introduction to Fire Analysis i Research (RES) & Electric Power Research Institute (EPRI)

What is Fire?

Spark

4
. Flammable
mixture

Fire PRA Workshop, 2009, Palo Alto, CA Slide 6 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Introduction to Fire Analysis Research (RES) & Electric Power Research Institute (EPRI)




Flame Characteristics

* Flame characteristics

— Flame color depends on the material
burning
— Most flames are visible to the naked eye

— Flame temperature can range from
1,500°F to 3,500°F — For example . . .

* Laminar flames ~ 3,500 °F, e.g., a candle flame
* Turbulent flames ~ 1,500 °F, e.g., a fire place

Fire PRA Workshop, 2009, Palo Alto, CA Slide 7 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Introduction to Fire Analysis Research (RES) & Electric Power Research Institute (EPRI)

Effects of a Fire

A fire generates heat, smoke and
combustion products

— Heat is the main adverse effect of concern
in a nuclear power plant

— Heat generated by the fire is transferred by
radiation and convection

— Products of combustion include soot and
other species such as HCL, etc.

» Smoke and soot can adversely affect
equipment
* Smoke can be a hindrance to plant operators

Fire PRA Workshop, 2009, Palo Alto, CA Slide 8 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Introduction to Fire Analysis Research (RES) & Electric Power Research Institute (EPRI)




Fire Plume

o Afire plume. ..

— Draws fresh air from the
surroundings

— A part of the air gets used in the
flame

— Air drawn above the flames gets
heated up

— The hot gases rise and envelope
items above the fire with very hot
gases

— Hot gases transfer the larger

portion of the energy generated by
a fire by convection

A \
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Radiative Heat of a Fire

+ Radiative heat from a fire is emanated from
the flame in all directions

— A part of the radiative heat evaporates the fuel to
continue the combustion process

—

4 W
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I Flame Spread and Fire Propagation

* Flame spread is a series of ignitions
that can lead to fire propagation to
adjacent or nearby items

W
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* Pyrolisis — Breakdown of the molecules of a solid
material from exposure to heat into gaseous
molecules that combust in the flame.

» Spontaneous Ignition — Ignition of a combustible or
flammable material without an ignition source, which
is generally done by raising material temperature
above its auto-ignition temperature.

» Smoldering — A slow combustion process without
visible flames that occurs in a porous solid fuel (e.qg.,
burning of charcoal brickets or wood in a fire pit).
Generally occurs because of limited oxygen access
to the burning surfaces. It can generate large
guantity of carbon monoxide which is lethal if inhaled.

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 12 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Definitions

* Fire Plume - A fire plume is a buoyant
column of hot air rising above the base
of a fire

* Flame - A flame is the visible (light-
emitting) part of a fire. It is caused by an
exothermic reaction taking place in a
thin zone where fuel vapors and oxygen
in the air meet.
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Definitions

« Diffusion Flame — The flame of a burning material
(liquid or solid) where the combustion process occurs
at the interface where vaporized fuel comes into
contact with the oxygen in the air (e.g., flame on top
of a candle or the wood in a fireplace.)

» Pre-mixed Flame —The flame of burning gaseous
material that is mixed with air upstream of the flame
(e.g., the flame of a gas range or gas fired furnace)

* Laminar Flame — A flame with laminar flow of gases
(e.g. typical candle flame). Most flames greater than
1 ft tall demonstrate turbulent (non-laminar) behavior
because of increased gas velocities caused by
increased heat.
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Definitions

» Conduction — Heat transfer between two adjacent
stationary media through the interface between them
(e.g., putting your hand on a cold surface)

» Convection — Heat transfer between a moving fluid
and a solid or liquid material (e.g., blowing over a hot
food to cool it down)

» Radiation — Heat transfer through open space via
electromagnetic energy between two materials of
different temperatures that are within line of sight of
each other (e.g., infra-red radiation from a very hot
material).

Fire PRA Workshop, 2009, Palo Alto, CA Slide 15 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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» Mass Loss Rate (Burning Rate) — The rate of mass
loss of a burning material in a fire. It is commonly
expressed in terms of mass per unit area per unit
time (e.g., 10 g per cm? per second).

» Heat Release Rate (HRR) — The energy release per
unit time from a combustible material (kW)

» Heat Flux — Heat transferred expressed per unit time
per unit area (kW/m?2). lIts is a good measure of fire
hazard.

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 16 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
Introduction to Fire Analysis Research (RES) & Electric Power Research Institute (EPRI)




Definitions

 Heat Release Rate Profile — The heat
release rate as a function of time.

—Example ... T -]
i . s - FIED CABLE |
S IAVZL Ao
[EE:_ A ST #3 ;
[ )/ |
o & oA |
! S W ,,_\_‘_f \/
¢ s8f N\ |
I
g wof Jf

TIME (MIN)
Figure 8. Heat Release Rate Plots for Scoping Tests #1
Fire PRA Workshop, 2009, Palo Alto, CA Siue lrl.hrouqh 5 - :
Introduction to Fire Analysis H Research (RES) & Electric Power Research Institute (EPRI)

Definitions

» Fire in the Open — A fire event where heat
generated from the fire is limited by the
surface burning rate of the material. In other
words sufficient air is always available for the
fire.

» Compartment Fire — A fire inside a
compartment, which may be affected by:

— Oxygen availability
— Feedback form compartment boundaries
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Definitions

« Upper and Lower Flammability —Concentration of a
flammable gas in air in a pre-mixed flame that can
sustain combustion. If the mixture is close to lower
flammability limit, it is too lean. If the mixture is close
to the upper flammability limit, it is too fuel rich.

» Fire Modeling vs. Fire Analysis Tasks — Fire modeling
is the analytical process of estimating the behavior of
a fire event in terms of the heat flux impinging
material near the fire and behavior of those materials
as a result of that.

Fire PRA Workshop, 2009, Palo Alto, CA Slide 19 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
Introduction to Fire Analysis Research (RES) & Electric Power Research Institute (EPRI)

» Zone-of-Influence (ZOI) — The area
around a fire where radiative and
convective heat transfer is sufficiently
strong to damage equipment or cables
and/or heatup other materials to the
point of auto-ignition.
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Fire in the Open

A fire event where heat generated from
the fire is limited by the surface burning
rate of the material.

Sufficient air is always available for the
fire.

Generates hot gases and radiative heat

Fire PRA Workshop, 2009, Palo Alto, CA ] Slide 2 A Collaboration of U.S. NRC Office of Nuclear R_egulatova
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Heat Release Rate

» The heat release rate from a fire can be estimated using
the following equation:

Q=m"-A-AH,

m"is the burning mass flux
— AHc is the heat of combustion (kJ/kg)

— Ais the burning area (m2)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 3 A Couabmaﬁo%}‘g‘—g——p—rz—m——(@g
Introduction to Fire Analysis i Research (RE: lectric Power Research Institute (EPRI)

Energy

Heat Release Rate

e Can be estimated
experimentally using EE;ESM.SS.ON 4
oxygen consumption
calorimeters

EXHAUST FAN
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Flames

e Laminar
e Turbulent

Fuel Oxygen

—_— . —

Reaction Zone
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Ignition of Gases

» With a spark or small flame (pilot) present, ignition is
based on whether the gaseous fuel concentration is
between the upper (rich) and lower (lean)
flammability limits.

— The fuel-air (oxidizer) mixture is said to be flammable if a
flame will propagate in this mixture.

* For no pilot present, a gaseous fuel in air can also
ignite if the mixture is at or above the auto-ignition
temperature.

— The auto-ignition temperature is usually measured for a

stoichiometric mixture in which no fuel and oxygen remain
after the reaction.
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Ignition of Liquids

For a liquid to ignite, it must first sufficiently to form a
flammable mixture in the presence of a pilot.
— This occurs at a liquid temperature called a temperature.
— In general, this can be called the and the

term carries over to solids.

— The flash-point is the temperature at which the amount of liquid
evaporated from the surface achieves the lower flammable limit.

If no pilot is present, the mixture must be heated to the auto-
ignition temperature.

Auto-ignition temperature of gases is above its boiling point.
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Ignition of Solids

« Solids do not vaporize like liquids when heated. They form gaseous
del(lzocrinposition compounds leaving behind possible char in a process
calle .

* At some point, the gases ignite by piloted ignition or auto-ignition.

« Typically, piloted ignition temperatures for solids range from 250°C
(~480°F) to 450°C(~840°F).

e Auto-ignition temperatures can exceed 500°C (~930°F).
— For a given material, these temperatures are not constants and can change with
the nature of heating.
— For practical purposes, a (piloted) ignition temperature (T;g) may be treated as a
property of a combustible solid.

» We shall consider thin (less than ~1 mm) and thick solids to have different
time responses to ignition when exposed to impinging heat flux

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 8 A Collaboration of U.S. NRC Office of Nuclear R_egulato@
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Flame Spread

* Motion of

. . Cable tra
vaporlzatlon front at A

the igniton A — ]
temperature for “
solids and liquids )\ 1o
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Typical Flame Spread Rates

* ltis very difficult to compute flame spread rate because formulas are not
completely available, rates may not be steady, and fuel properties are
not generally available. Nevertheless, we can estimate approximate
magnitudes for spread rates based on the type of system. These
estimates are listed below:

Spread Rate (cm/s)

Smoldering solids 0.001 to 0.01

Lateral or downward spread on

thick solids 0.1

Upward spread on thick solids 1.0 to 100. (0.022 to 2.2 mph)

Horizontal spread on liquids 1.0 to 100.

Premixed flames (gaseous) 10. to 100.(laminar)

~10° (detonations)

Fire PRA Workshop, 2009, Palo Alto, CA Slide 11 A Collaboration of U.S. NRC Office of Nuclear Rggulatar;*
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Zone of Influence

» Regions nearby the fire where damage is
expected. For fires in the open:

— Flame Radiation 1
|

q — |:| Target

N |

— Convection inside the fire plume
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Buoyant Flow

» Temperature rise gives a decrease in density
» Potential energy converted into kinetic energy

Buoyant plume

Unit volume at plume gas at
density p and temperature T

Unit volume of air at density p,
and temperature T,

Fire PRA Workshop, 2009, Palo Alto, CA Slide 13 A Collaboration of U.S. NRC Office of Nuclear Rggulatarg
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Turbulent Entrainment

* Entrainment is air drawn into the fire plume by upward
movement of the buoyant plume

» Engulfment of air into the fire plume

» Eddies: fluctuating and rotating balls of fluid, large scale
rolling-up fluid motion on the edge of the plume.

Buoyant
force
Eddies
Flame
Fire PRA Workshop, 2009, Palo Alto, CA Sllde 14 A Collaboration of U.S. NRC Office of Nuclear RegulatM
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Turbulent Fire Plume

* Very low initial fuel velocity

» Entrainment and flame height controlled by
buoyancy
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I Fire Plume Temperature Along the Centerline
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Example Case - Zone-of-Influence Calculation
Flame Height and Plume Temperature

(k, G, - 7 )F° )"

T,=T,,+25
N 2 ] b
L =0.235Q,% -1.02D o Tam (H,-F)-z)
Heskdestad's Flame Height Correlation Z, = 0'083Qf% -1.02D
Input Heskestad'_s Plume Temperature
D - Fire diameter [m] 0.6 Correlation
Q; - HRR [kW] 250 Input
Tamp - Ambient temperature [C] 20
Result Q- H_RR [kW] _ 250
L - Flame height [m] 15 F, - Fire elevation [m] 0
H, - Target Elevation [m] 3.7
z, - Fire Diameter [m] 1
Result
Tpi - Plume Temp [C] 328
Fire PRA Workshop, 2009, Palo Alto, CA Slide 17 A Collaboration of U.S. NRC Office of Nuclear Regulatarz
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Example Case - Zone-of-Influence Calculation
Radiation Heat Flux

* Flame Radiation: Point Source Model

Input Parameters:

=Q;: Fire heat release rate (kW)

=R: Distance from flames (m)

=X,: Radiation fraction of the heat release rate (FIVE recommends 0.4)
=D: Fire diameter (m)

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 18 A Collaboration of U.S. NRC Office of Nuclear R_egulata@
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Example Case - Zone-of-Influence Calculation

Radiation Heat Flux

q_,, :Qer
irr 472‘R2

Point Source Flame Radiation Model
Inputs

Fire heat release rate [kW] 317
Radiation fraction 0.40
Distance from flames [m] 15
Results

Heat flux [kW/m2] 4.5

Fire PRA Workshop, 2009, Palo Alto, CA
Introduction to Fire Analysis

Slide ]5 A Collaboration of U.S. NRC Office of Nuclear Regulatg@
i Research (RES) & Electric Power Research Institute (EPRI)
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Outline

» Enclosure fire dynamics — qualitative
description

Pressure profiles and vent flows
The hot gas layer

Heat transfer

Combustion products

] Slide 2 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Qualitative Description

Extraction
System
(e.g., smoke
purge system)

Ceiling Jet

Smoke Layer

Injection Syste
(e.g., HVAC)

e |
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Phases in a Compartment Fire

* Ignition: Process that produces an exothermic reaction
— Piloted or spontaneous

— Accompanying process can be flaming or smoldering
combustion

* Growth
— Can occur at different rates depending on type of fuel,
interactions with surroundings, and access to oxygen
» Hot gas layer buildup and room heatup

» Flashover: Rapid transition to a state of total surface
involvement of combustible materials within an enclosure
— Temperatures between 500°C (930°F) to 600°C (1,110°F), or
— Heat fluxes between 15 kW/m2 to 20 kW/m2
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I Phases in a Compartment Fire

» Fully developed fire: The energy released in the
enclosure is at its greatest level and is very often limited
by the available oxygen

— Gas temperatures between 700°C (1,300°F) and 1200°C
(2,200°F)
» Decay: Fuel becomes consumed
— Hazard indicators (temperature and heat fluxes) start to
decrease
e Other terminology may include
— Pre-flashover fire
« Focus on life safety and sensitive targets

* In NPP, cables damage at 218°C (424°F) for thermoplastic cables
and 330°C (626°F) for thermoset cables

— Post-flashover fire:
« Focus in structural stability and safety of firefighters

Fire PRA Workshop, 2009, Palo Alto, CA : Slide 5 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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I Compartment Fires

"

T T T T T T T Th Th'Th
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Compartment Fires

Fire PRA Workshop, 2009, Palo Alto, CA
Introduction to Fire Analysis

TSlide 7 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Sense of Scale

Room: 12 x 18 x 8 ft. high; open doorway

Data at 5.5 ft. height

o5 f;:?ﬁr[? Flashover | |
0001 {1800 1800
§20—__60.ono— ] £ 400E
; il 550'000_ 1 1400 _1 E
w [ 240,000 41000 & 11000 5
;10-830.000_ ] & z
(6} . 20,000} 4600 %:soo T
10,000} i J
I ) -feoo = 1200
16 18 20 22 24 26 28 30 32 34 36
TIME (min.)
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i Pressure Profiles & Vent Flows

L )¢ Pressure
Fire PRA Workshop, 2009, Palo Alto, CA Slide 9 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Pressure Profiles & Vent Flows

P (h) = Pl (O)_ Po gZu — Py g(h - ZU) Inside Profile

. insice Profe
P (h)= P, (0)- p,gh
Y s profie

AP—_O(h) =AP, (0)+ pog(h - Zu)+ oy g(Zu - h) AP Profile
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Pressure Profiles & Vent Flows

Under Normal Over
Pressurized Pressurized

In\ Out Out\\\ln Qut |In

A pi—o(O) A pi—o(o) A pi—o(o)
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Smoke Layer

» Accumulation of hot gases in
the upper part of the room

* Mass: entrainment (~90%) and
combustion products (~10%)

* Volume: entrainment,
combustion products, and
expansion due to energy added

» Temperature rise: expansion
generates a larger volume than
corresponding mass resulting in
lower gas densities.

» Conservation of mass and

Fire &ﬂ@[g}{,m Alto, CA. ] Slide 12 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Smoke Layer

Room size:
-22X7x3.7m

Fire: ~1 MW Simulation Results
) Upper Layer Height

Door:2x2m

o MAGIC
E
= —o— CFAST
o Data
T T T T T
0 200 400 600 800 1000 1200
Time [Sec]
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Smoke Layer

e Conservation of Mass
— Rate of change of mass in the control volume
» Accumulation
— Mass flow through the control surface
e Plume flow

» Supply and exhaust systems
* Flow through doors and windows

Fire PRA Workshop, 2009, Palo Alto, CA ] Slide 14 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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I Heat Transfer

 To walls
— Convection and radiation
— Conduction losses
» To targets
— Convection and radiation
 Heat losses
— Conduction through walls

— Convection and radiation through openings
and vents

Fire PRA Workshop, 2009, Palo Alto, CA : Slide 15 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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I Heat Transfer

e Conduction

e Convection
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Objectives

» Fire PRA credits fire detection and
suppression features when appropriate

» The objective of this presentation is to
briefly describe typical detection and
suppression features that are credited

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 2 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Fire Detection

» Typical fire detection features credited in
the Fire PRA
— Prompt detection
— Smoke detection
— Heat detection
— Incipient detection
— Delayed detection

Fire PRA Workshop, 2009, Palo Alto, CA Slide 3 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Prompt Detection

» Continuous fire watch
» Hotwork fire watch

« Continuously manned rooms, e.g., the
control room
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Smoke Detection

» Spot type smoke detectors
— lonization detection
— Optical density detection

» Generally, smoke particles move into the
chamber for the device to actuate

* Needs power (generally line and backup battery)

- l \r
&
A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Introduction to Fire Analysis

Heat Detection

= -'_l-'_l-'{-'_l-'_l-'_l-';.f_l-'_l-'_l-'{-'_l-'_l-'_l-'

e Heat detectors e
— Detection devices
— Sprinkler heads

— Linear heat detectors

» Generally characterized by a response time

index and an activation temperature
— Response Time Index (RTI): a parameter describing how fast the
device responds to the surrounding gas temperature
— Activation Temperature: the temperature at which the detection
device actuates

Fire PRA Workshop, 2009, Palo Alto, CA ] Slide 6 A Collaboration of U.S. N»RC Office of Nuclear R_egulatory
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Incipient Detection

» Examples include air sampling systems

» Typically used where conventional fire detectors
can’t provide sufficiently rapid response.

* The objective is for plant personnel to prevent

potential fire impacts

A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Introduction to Fire Analysis

Delayed Detection

* Roving fire watch
» Plant personnel

e Control room indication

— The control room receives a process alarm
and dispatches an operator to inspect the
situation.

A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Fire Suppression

» Fire can be suppressed by:

— Cooling down the burning fuel and adjacent
items — example: water spray

— Removing oxygen — example: CO,
— Separating burning surface from impinging
heat flux from the flame — example: Foam

Fire PRA Workshop, 2009, Palo Alto, CA Slide 9 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Fire Suppression

» Prompt suppression
Automatic sprinklers
Dry-Pipe/Pre-action sprinklers
Deluge systems

CO2: Automatic or Manual
Halon: Automatic or Manual
Fire brigade

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 10 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Prompt Suppression

» Hotwork fire watch

» Some of the operators are generally
trained in the use of portable extinguishers
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Introduction to Fire Analysis i Research (RES) & Electric Power Research Institute (EPRI)

Automatic Sprinklers

» Fusible links at the nozzles
» Water readily available
» Full room coverage, localized, in trays, etc.

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 12
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Dry-Pipe/Pre-Action Sprinklers

» Sprinkler pipes are maintained dry (upstream
shutoff valve keeps the water away from
sprinkler heads)

» A smoke detection system opens the shutoff
valve that fills the pipes (turns the system into a
wet system)

» Sprinkler heads need to open from exposure to
heat from the fire.

Fire PRA Workshop, 2009, Palo Alto, CA Slide 13 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Deluge Sprinklers

» Pipes are maintained dry
 All sprinkler heads are open

» A smoke or heat detection system signals
the main shutoff valve open

 All sprinklers discharge at the same time
upon opening of the shutoff valve

» Generally used for protecting large liquid
filled transformers and high fire hazard
areas

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 14 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Carbon Dioxide

* CO, gas is used to displace oxygen from the
fire.

« Automatic CO,- Suppression agent is generally
released after smoke detection and a life safety
alarm and delay time

« Manual CO,- Requires an operator or fire
brigade personnel to activate the system after
smoke detection

* Must maintain proper suppression agent
concentration for a soak time

* Life safety considerations

Fire PRA Workshop, 2009, Palo Alto, CA Slide 15 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Halon

» Automatic Halon- Suppression agent is
generally released after smoke detection and a
life safety alarm and delay time

» Manual Halon- Requires an operator or fire
brigade personnel to activate the system after
smoke detection

* Must maintain proper suppression agent
concentration for a soak time

* Not being manufactured any more and existing
ones are being phased out because of
environmental considerations

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 16 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Fire Brigade

* Credited in most fire scenarios

» Typically characterized by the response time
and time to start suppression activities in each
room

» Typically use portable extinguishers (gaseous)
first, followed by water (fire hose) if needed

» Typically plants maintain a professional brigade
or operators/plant personnel are trained in fire
fighting techniques

Fire PRA Workshop, 2009, Palo Alto, CA Slide 17 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Passive Fire Protection

» Passive fire protection refers to fixed
features put in place for reducing or
preventing fire propagation.

Such features include coatings, cable tray
barriers, fire stops, self-closing dampers,
penetration seals, self-closing doors, and
fire-rated walls.

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 18 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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I Analysis Tools: Outline

» Fire Modeling in a Fire PRA
How fire develops in a scenario
What damage is generated
When damage is generated

Timing of detection and suppression
activities

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 2 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Five Steps of Fire Modeling

Define modeling objectives
Select and describe fire scenarios
Select the appropriate model(s)
Run/apply the model

Interpret modeling results

ok wnNE
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Fire Modeling

» Fire modeling: an approach for predicting
various aspects of fire generated conditions

 Compartment fire modeling: modeling fires
inside a compartment

» Requires an idealization and/or simplification of
the physical processes involved in fire events

* Any departure of the fire system from this
iIdealization can seriously affect the accuracy
and validity of the approach

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 4 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Capabilities

» Areas of application » Special models or areas for

— Thermal effects of plumes, future research

ceiling jets and flame + Cable fires
radiation » Fire growth inside the main
— Room heat up, and hot gas control board
layer » Fire propagation between
— Elevated fires and oxygen control panels
depletion » High energy fires
— Multiple fires » Fire suppression
— Multi-compartments: » Hydrogen or liquid spray fires

corridors and multi-levels

— Smoke generation and
migration

— Partial barriers and shields
— Fire detection

Fire PRA Workshop, 2009, Palo Alto, CA Slide 5 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Fire Models

Hand calculations: Mathematical expressions that can be solved by hand
with a relatively small computational effort

— Quasi steady conditions

— Usually semi-empirical correlations developed with data collected from
experiments

Zone models: Algorithms that solve conservation equations for energy and
mass in usually two control volumes with uniform properties

Field models: Algorithms that solve simplified versions of the Navier-
Stokes equations. The room is divided into large number of cells and
conservation equations are solved in each of them.

Special models: There are fire scenarios critical to NPP applications that
are beyond capability of existing computational fire models

— Fire experiments,
— Operating experience, actual fire events

— Engineering judgment

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 6 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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Hand Calculations

» Heat release rate, flame height and flame
radiation

Fire plume velocity, temperature heat flux,
and entrainment

Ceiling jet velocity, temperature, and heat
flux

Overall room temperature

Target temperature, and time to target
damage

Fire PRA Workshop, 2009, Palo Alto, CA Slide 7 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Example of Hand Calcs: FDT's

* FDTs are a series of Microsoft Excel® spreadsheets
issued with NUREG-1805, “Quantitative Fire Hazard
Analysis Methods for the U.S. Nuclear Regulatory
Commission Fire Protection Inspection Program.”

» The primary goal of FDTs was to be a training tool to
teach NRC Fire Protection Inspectors.

* The secondary goal of FDTs was to be used in plant
inspections and support other programs that required
Fire Dynamics knowledge such as, SDP and NFPA 805.

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 8 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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* Usually two zones
— Upper layer with hot gases
— Lower layer with clear and
colder air
» Mass and energy balance in
the zones
— Entrainment
— Natural flows in and out
— Forced flows in and out

» Fire is treated as a point of
heat release

Fire PRA Workshop, 2009, Palo Alto, CA Slide 9
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Zone Models
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I Example of a Zone Model: MAGIC

Gaseous phase combustion, governed by
pyrolysis rate and oxygen availability

Heat transfer between flame, gases and
smoke, walls and surrounding air, thermal
conduction in multi-layer walls, obstacles to
radiation

Mass flow transfer: Fire-plumes, ceiling-jet,
openings and vents

Thermal behavior of targets and cables
Secondary source ignition, unburned gas
management

Multi-compartment, multi-fire, etc.

A Collaboration of U.S. NRC Office of Nuclear Regulatory
Research (RES) & Electric Power Research Institute (EPRI)




* Solve a simplified form
of the Navier Stokes
equations for low
velocity flows

» Calculation time in the
order of hours, days or
weeks

* May help in modeling
complex geometries

Fire PRA Workshop, 2009, Palo Alto, CA
Introduction to Fire Analysis
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Field Models
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» Fire Dynamics
Simulator
Developed and

maintained by
NIST

Fire PRA Workshop, 2009, Palo Alto, CA
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I Example of Field Model: FDS

A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Special Models

» Cable fires

* High energy arcing faults and fires

* Fire growth inside the main control board
» Fire propagation between control panels

 The method described here is documented in the, EPRI
1011989 & NUREG/CR-6850, “EPRI/NRC-RES Fire
PRA Methodology for Nuclear Power Facilities.”
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Which Model to Choose

» Hand calculations available
— Combustion - Heat release rates, flame heights
— Fire generated conditions
* Plume temperatures and velocities
¢ Ceiling jet temperatures and velocities
Flow through vents
Enclosure temperature
Time and temperature to flashover
Target temperature and time to target damage
— Heat transfer: irradiation from flames, plume and ceiling jet
convective flux
* Analysts may need to go back and find additional
parameters required

Fire PRA Workshop, 2009, Palo Alto, CA ! Slide 14 A Collaboration of U.S. NRC Office of Nuclear R_egulatory
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I Verification and Validation

» Verification: the process of determining that the
implementation of a calculation method accurately
represents the developer’s conceptual description of the
calculation method and the solution to the calculation
method. Is the Math right?

» Validation: the process of determining the degree to
which a calculation method is an accurate representation
of the real world from the perspective of the intended
uses of the calculation method. Is the Physics right?

* See NUREG-1824
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I Verification and Validation

Parameter Fire Model
FDTS FIVE-Rev1 CFAST MAGIC FDS
Room of YELLOW+ | YELLOW+

Hot gas layer temperature (“upper layer Origin

emperature’) Adjacent NIA NiA YELLOW | YELLOW+

Room

Hot gas layer height (“layer interface N/A N/A

height”)
Ceiling jet temperature (“target/gas N/A YELLOW+ YELLOW-+

temperature”)
Plume temperature YELLOW- YELLOW+ N/A YELLOW
Flame height YELLOW
Oxygen concentration N/A N/A YELLOW
Smoke concentration N/A N/A YELLOW YELLOW YELLOW
Room pressure N/A N/A
Target temperature N/A N/A YELLOW YELLOW YELLOW
Radiant heat flux YELLOW YELLOW YELLOW YELLOW YELLOW
Total heat flux N/A N/A YELLOW YELLOW YELLOW
Wall temperature N/A N/A YELLOW YELLOW YELLOW
Total heat flux to walls N/A N/A YELLOW YELLOW YELLOW

Fire PRA Workshop, 2009, Palo Alto, CA ] Slide 16 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Verification and Validation

Predicted HGL Temperature Rise (°C)
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Predicted Radiation Heat Flux (kW/m?)

Slide 17

# CFD Model
® Zone Models
1 Hand Calculation Methods.

2 4 6 8 10
Measured Radiation Heat Flux (kW/m?)
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Day 1: Presentation # 6 — Fire Scenarios

Joint RES/EPRI Fire PRA Workshop
September, 2008
Washington, DC

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

I Fire Scenario

* A set of elements representing a fire event:

The ignition source, e.g., electrical cabinets, pumps

Intervening combustibles, e.g., cables

Targets, e.g., power, instrumentation or control cables

Fire protection features, e.g., automatic sprinklers

The compartment where the fire is located

A time line

Fire PRA Workshop, 2008, Washington DC ! Slide 2 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Fire Scenario Time Line

Starts with a specific ignition source

Fire growth involving the affected fuel,

Heat transfer from the fire to other items within the zone of influence,
Damage of the affected items (e.g., cables and equipment items),
Propagation of the fire to other materials,

2L

Detection of the fire (Note: this step could occur right after #2, or even
#1 if there is very early warning smoke detection present)

7. Automatic initiation of suppression systems of the area,
8. Fire brigade response,
9. Successful fire extinguishment.

Fire PRA Workshop, 2008, Washington DC Slide 3 A Collaboration of U.S. N‘RC Office of Nuclear Rggulatory
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Fire Scenario
Level of Detail

* In practice, varying levels of detail are used to define the fire
scenarios in a typical Fire PRA.

— Level of detail may depend on initial stages of screening, anticipated risk
significance of the scenario

« In principle, at any level of detail, a fire scenario represents a
collection of more detailed scenarios.

Screening AH—:LB

2l Detailed | /4™ ]
i
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l Fire Scenario
Initial Screening Stage

* In the initial stages of screening, fire scenarios are defined
in terms of compartments and loss of all items within each
compartment.

— Assumes all items fail in the worst failure mode

— Detection and suppression occur after the worst damage takes
place

— Fire does not propagate to adjacent compartments
» In multi-compartment fire propagation analysis, a similar

definition is used in the initial screening steps for
combinations of adjacent compartments.

Fire PRA Workshop, 2008, Washington DC Slide 5 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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l Fire Scenario
Detailed Scenario Identification Process

* In the detailed analysis tasks, the analyst takes those fire
scenarios that did not screen out in the initial stage and
breaks them down into scenarios using greater level of
detail.

— Level of detail depends on the risk significance of the unscreened
scenario
— Details may be introduced in terms of . . .
» Sub-groups of cables and equipment within the compartment
» Specific ignition sources and fuels
 Fire detection and suppression possibilities

Fire PRA Workshop, 2008, Washington DC ! Slide 6 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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I Fire Scenario
Example — Screening Level

* At the screening level, a fire
in this compartment fails all
equipment and cables shown
in this diagram.

* The fire is assumed to be T e Mov-2
confined to this room .

RHR
HX

RECIRC
HX

S

HCBT 0

(NOTE 2) ‘ t
VCBT 10

/| (NOTE 2) '<
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I Fire Scenario
Example — Detailed Analysis

» At the detailed level, a fire in

this compartment fails a v
specific sub-group of

components in this room. 014" Ly Wl
« The fire may still be confined 4nERpd
. Y +
to this room 17
, /ﬁ €,
v/ o
N

Scenario #2
HCBT 0
(NOTE 2) ‘ t

Scenario #3 VCBT 10 ,<
/| NOTE 2)

%
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Select and Describe Fire Scenarios

»  Selection of fire scenarios:
- How many fire scenarios are enough to demonstrate the objective?
- Which scenarios are the appropriate ones?
. Selecting scenarios is dependent on the objectives of the fire risk
quantification
- Fire conditions that are actually modeled
- Represent a complete set of fire conditions relevant to the objectives
. Selection of scenarios is dependent on the hazard characteristics of the area
- Combustibles, layouts, fire protection
. The fire scenario should challenge the conditions being considered

- Can the fire cause damage? vs. Which fire can cause damage?
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Select and Describe Fire Scenarios

1. Scenarios should have an ignition source and at least one target or
other measurable objectives

2. Consider the range of possible intervening combustibles

3. Scenarios should capture targets as well as fire’s ability to ignite or
damage them

4. Include in the scenario any fire protection system (active or passive)
that may influence the outcome of the event

Fire PRA Workshop, 2008, Washington DC ! Slide 10 A Collaboration of U.S. NRC Office of Nuclear Regulatory
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Select and Describe Fire Scenarios

5. Sometimes, multiple ignition sources or targets can be combined
into one scenario

6. Sketch the scenario on a compartment layout drawing and try to
qualitatively describe the conditions that a fire might generate. After
the analysis, compare this qualitative prediction with the modeling
results.

7. Do not neglect the importance of details such as ceiling
obstructions, soffits, open or close doors, etc.

Fire PRA Workshop, 2008, Washington DC Slide 11 A Collaboration of U.S. NRC Office of Nuclear Rggulatory
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Scenario Quantification

« Ignition frequency: fire frequency for the postulated ignition source

« Apportioning factor: probability that the ignition occurs in a specific ignition

source or plant location

« Severity factor: probability that the fire is severe enough to generate the

postulated damage
* Non suppression probability: probability of failing to suppress the fire
« Circuit failure probability: probability that the affected circuits will generate the
postulated equipment impact
« Conditional core damage probability
CDF =1-W-SF-P_-P, -CCDP
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— That is severe enough

Scenario Quantification

* A fire in a specific plant As =4, W-1-1-1
location

s = Ay W, -SF -1:1

e That is unsuppressed
ﬂzis = ﬂzg 'Wis * SF * Pns '1

— That generates the

postulated circuit failure _
mode ﬂ‘is - ﬂ‘g 'Wis -SF - Pns ) Pcf

» That prevents safe
shutdown

Acpr = 4 - ccdp
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