ALNRC 00025 May 15, 2009

# Enclosure H

Quarterly Discharge Monitoring Reports (DMR) for 2004 through 2008

Enclosure H: Callaway Quarterly NPDES Discharge Monitoring Reports:

| 2004                   | Report Period          | Report Months    |
|------------------------|------------------------|------------------|
| UOTCR 04-0011          | NPDES Monthly Report   | February 2004    |
| UOTCR 04-0020          | NPDES Monthly Report   | May 2004         |
| UOTCR 04-034           | NPDES Monthly Report   | August 2004      |
| UOTCR 04-042           | NPDES Monthly Report   | November 2004    |
|                        |                        |                  |
| 2005                   |                        |                  |
| UOTCR 05-011           | NPDES Monthly Report   | February 2005    |
| UOTCR 05-019           | NPDES Monthly Report   | May 2005         |
| UOTCR 05-035           | NPDES Monthly Report   | August 2005      |
| UOTCR 05-042           | NPDES Monthly Report   | November 2005    |
|                        |                        |                  |
| 2006                   |                        |                  |
| UOTCR 06-009           | NPDES Monthly Report   | February 2006    |
| UOTCR 06-0021          | NPDES Monthly Report   | May 2006         |
| UOTCR 06-0030          | NPDES Monthly Report   | August 2006      |
| UOTCR 06-0037          | NPDES Monthly Report   | November 2006    |
|                        |                        |                  |
| 2007                   |                        |                  |
| UOTCR 07-0016          | NPDES Monthly Report   | February 2007    |
| UOTCR 07-0032          | NPDES Monthly Report   | May 2007         |
| Callaway DMR 3Qtr 2007 | NPDES Quarterly Report | Jul-Aug-Sep 2007 |
| Callaway DMR 4Qtr 2007 | NPDES Quarterly Report | Oct-Nov-Dec 2007 |
|                        |                        |                  |
| 2008                   |                        |                  |
| Callaway DMR 1Qtr 2008 | NPDES Quarterly Report | Jan-Feb-Mar 2008 |
| Callaway DMR 2Qtr 2008 | NPDES Quarterly Report | Apr-May-Jun 2008 |
| Callaway DMR 3Qtr 2008 | NPDES Quarterly Report | Jul-Aug-Sep 2008 |
| Callaway DMR 4Qtr 2008 | NPDES Quarterly Report | Oct-Nov-Dec 2008 |
|                        |                        |                  |

## **UOTCR 04-0011**

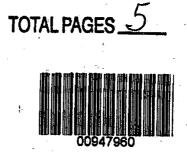
March 11, 2004

Steven S. Weiss Mail Code 602

## **Callaway NPDES Monthly Report**

Attached is the NPDES Monthly Report for February 2004. Results are noted in comment section of each Outfall.

An exception report was submitted to Missouri Department of Natural Resources for the February 11, 2004, overflow of sanitary water from manhole #4, and its subsequent discharge via storm water runoff Outfall 012.


Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 (2 copies) R/C Clerk A160.0998



INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:21 PM

. .

-

## NPDES MONITORING REPORT

. . . . .

.

. .

#### OUTFALL 001 RADWASTE SYSTEM

| DATES | VSOURGE C                             | ELOW S | TSS | Boron The |      |
|-------|---------------------------------------|--------|-----|-----------|------|
| 1     | 6                                     | .090   | 6   | 193       | 6.22 |
| 2     | 7                                     | .093   | 8   | 326       | 6.37 |
| 4     | 6                                     | .091   | 12  | 115       | 6.19 |
| 5     | 7                                     | .094   | 2   | 100       | 7.53 |
| 7     | 6                                     | .093   | 9   | 66        | 6.54 |
| 13    | 7                                     | .093   | 9   | 63        | 7.33 |
| 18    | 6                                     | .042   |     | 122       | 6.78 |
| 20    | 6                                     | .041   | 4   | 459       | 6.38 |
| 23    | 7                                     | .093   | 4   | 106       | 6.53 |
| 24    | 6                                     | .092   | 8   | 213       | 6.15 |
| 27    | 7                                     | .094   | 6   | 75        | 6.07 |
| 29    | 6                                     | .093   | 9   | 65        | 6.22 |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       | •                                     |        |     |           |      |
|       | · · ·                                 |        |     |           |      |
|       |                                       |        |     |           |      |
|       | · · · · · · · · · · · · · · · · · · · |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       |                                       |        |     |           |      |
|       | •                                     |        |     | ·····     |      |
| ····· |                                       |        |     | · · · · - |      |
|       |                                       |        |     |           |      |
| L     |                                       |        |     | <u> </u>  |      |

| SPARAMETER<br>21 CL 10 CL 1 | FREO    |                    | nsi sasari si<br>NS |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | MONTHLY<br>AVERAGE | DAUM2-<br>MAXE      |
| FLOW (MGD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EB      | N.A.               | N.A.                |
| pH (STD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EB      | 6.0-9.0            | 6.0-9.0             |
| TSS (mg/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EB      | 30                 | 45                  |
| Boroa (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EB      | N.A.               | N.A.                |
| TRC (ug/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monthly | N.A.               | 190                 |
| BOD (mg/i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monthly | N.A.               | N.A.                |
| O&G (mg/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monthly | 15                 | 20                  |

....

•• •

5 7

... . . . .

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### SOURCES

1 = WASTE MONITOR TANK A

2 = WASTE MONITOR TANK B

3 = STEAM GENERATOR BLOWDOWN

4 = SEC. LIQ. WASTE MONITOR TANK A

5 = SEC. LIQ. WASTE MONITOR TANK B

6 = LIQ. RADWASTE DISCHARGE TANK A

•7 = LIQ. RADWASTE DISCHARGE TANK B

EB = EACH BATCH

| 2 SP 10 | BOD(m_/J) | 11.C(07/1) | 080 (men) |
|---------|-----------|------------|-----------|
| 5       | 1.8       | 30         | 2         |
|         |           |            | <u> </u>  |
|         |           | h          |           |
| COMMENT | S:        | <u>ا</u>   |           |
|         |           |            |           |

File C170.0005

Page 1 of 4

CA-0320 01/15/04

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:21 PM

UOTCR040011 00947960 (000)

- 14

PERMIT NO. MO-0098001 - REPORTING PERIOD (MO/YR) February, 2004 PAGE 2 OF 4

. .

.: ·

....

## NPDES MONITORING REPORT

٠.

### OUTFALL 002 COOLING TOWER BLOWDOWN

|   | 2041       |                 | $\frac{g(n)}{\sqrt{2}}$ |      | (-)       |
|---|------------|-----------------|-------------------------|------|-----------|
|   | 1          | 2.0             | 62                      | .17  | 300       |
|   | 2          | 4.4             | 63                      | .09  | 90        |
|   | 3          | 0               | 57                      | .13  | 450       |
| ĺ | 4          | 0               | 68                      | +3   | · • • I   |
|   | 5          | 0               | 64                      | .18  | 510       |
|   | 6          | . 0             | 58                      | .14  | 260       |
| . | 7          | • 0             | 61                      | .18  | 540       |
|   | 8          | 0               | 55                      | *1   | <b>*1</b> |
|   | 9 ~        | 1.9             | 58                      | .02  | 160       |
| • | 10         | · · 0· · · ·    | •- • 64                 | *1   | •1        |
|   | 11         | . 0             | 65                      | *1   | *1        |
|   | 12         | 0               | 59                      | .18  | 480       |
|   | 13         | 1.1             | 62                      | <.01 | 80        |
|   | 14         | 0               | 48.                     | *1   | ≠j        |
|   | 15         | 1.0             | 60                      | .14  | 440       |
|   | 16         | <b>Z.9</b>      | 62                      | .17  | 380       |
|   | .17        | . 3.5           | 64                      | <.01 | 0         |
|   | 18         | 6.8             | 70                      | <.01 | 50        |
|   | 19         | 6.3             | 78                      | .02  | 150       |
|   | · 20 · · · | 5.5             | 72                      | 07   | 130       |
|   | 21         | - 8.6           | 64                      | .04  | 800       |
|   | 22         | 0               | 68                      | ÷1   | *1        |
|   | 23         | 4.6             | 69                      | .02  | 50        |
| * | 24         | <u>3.3</u> ""'' | 67                      | .02  | 140       |
|   | 25         | 8.0 .           | 67                      | < 01 | 0         |
|   | 26         | 7.6             | 70                      | .01  | 140       |
|   | 27         | 4.6             | 72                      | <.01 | 150       |
|   | 28         | 4.3             | 74                      | <.01 | 140       |
|   | 29         | 1.8             | 79                      | <.01 | 120       |

| DATE | 1010 | (mg/s) + (t |
|------|------|-------------|
| 2    | 70   | 2304        |
| .9   | 33   | 1508        |
| 16   | 63   | 1402        |
| 23   | 120  | 1644        |
|      |      |             |

| State of the second | A CONTRACTOR OF THE OWNER |                          |
|---------------------|---------------------------|--------------------------|
|                     |                           |                          |
|                     |                           |                          |
| DATE                |                           |                          |
| 9                   | 786                       |                          |
| <u> </u>            |                           | ······                   |
| 16                  | 686                       | 1.0                      |
| L                   | L                         | المجمعة معاديه والمساجعة |

101.100.2 ALD C FLOW CONT. N.A. N.A. TOTAL SUSPENDED SOLIDS WKLY. N.A. N.A. TOTAL DISSOLVED SOLIDS WKLY. N.A. ·N.A. OIL AND GREASE 20 QRTLY (1) 15 TOTAL RESIDUAL CHLORINE DAILY N.A. N.A. SULFATE QRTLY.(1) N.A. N.A. FREE AVAIL. CHLORINE DAILY N.A. 0.2 (mg/l) 110°F TEMPERATURE (MAXIMUM) DAILY 110°F CONT. 6.0 - 9.0 6.0 - 9.0 pH

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: <u>\*1 Blowdown secured.</u> No pH excursions occurred this month.

#### File C170.0005

Page 2 of 4

CA-0320 01/15/04

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:21 PM

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) February, 2004

PAGE 3 OF 4

and the second second

4

. . . . . . . .

#### NPDES MONITORING REPORT

. . .

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

SANITARY WASTE

| 2010年1月 | 開催の可能      |   |      |      |
|---------|------------|---|------|------|
| 20      | .005       | 4 | 3.2  | 7.47 |
|         |            |   |      |      |
|         | • •• • • • |   | •••• |      |
|         |            |   |      |      |
|         |            |   |      |      |

. .

OUTFALL 007

|      | £      | 11        |           |                |
|------|--------|-----------|-----------|----------------|
| pН   |        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0      |
| BOD  |        | QRTLY (1) | 45        | 65             |
| TSS  |        | QRTLY (1) | 70        | 110            |
| FLOW |        | QRTLY (1) | N.A.      | N.A.           |
|      |        | 0.860     | PACEA'C P | A MALLY AVG ST |
|      | 101446 |           |           |                |

STORM WATER RUNOFF PONDS

MOTAYCE BOXILYMAX

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

110 XAVA 51

## OUTFALLS 010 - 015

|      | TOTIVITUEL | A PARA |    | O anote | -(COD) |        |
|------|------------|--------|----|---------|--------|--------|
| 20   | 10         | .013   | 10 | 2       | 15     | 8.43   |
| 20   | 11         | .06    | 20 | 2       | ·25    | 7.62   |
| · 20 | 12         | 005    | 6. | 7       | - 18   | • 7.95 |
| 20   | 13         | .005   | 30 | 2       | 15     | 7.88   |
| 20   | 14         | .02    | 10 | 2       | ব      | 7.91   |
| 20   | 15         | .009   | 5  | 2       | 20     | 8.40   |

#### OUTFALL 016

|     |     |         |    |      | t RG<br>L (age) a |
|-----|-----|---------|----|------|-------------------|
| 12  | 7.3 | 12      | 3. | 8.04 | 60                |
|     |     |         |    |      |                   |
| • • |     | • • • • |    |      | •                 |

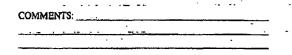
#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

FLOW QRTLY. (1) N.A. N.A. N.A. TSS QRTLY (1) N.A. COD QRTLY(1) N:A. N.A. O and G QRTLY (1) 15 20 pН QRTLY(1) >6.0 >6.0

ERBO 74


States and states

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMACE. |           | 國家國際國家回避  | III SAMA       |
|-----------|-----------|-----------|----------------|
|           |           | EMORANGER | 10/110/01/11/2 |
| FLOW      | QRTLY (1) | N.A.      | N.A.           |
| TSS       | QRTLY (1) | 30        | 100-           |
| O and G   | QRTLY (1) | 15        | 20             |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 • 9.0      |
| TRC       | QRTLY (1) | N.A.      | 190            |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.



File C170.0005

•

CA-0320 01/15/04

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) February, 2004 PAGE 4 OF 4

### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Reviewer

Approved

Plant Manager

Page 4 of 4

CA0320 01/15/04

## INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:21 PM

## **UOTCR 04-020**

June 8, 2004

Steven S. Weiss Mail Code 602

4

## **Callaway NPDES Monthly Report**

Attached is the NPDES Monthly Report for May 2004. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 (2 copies) R/C Clerk A160.0998



TOTAL PAGES 5

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:22 PM

UOTCR040020 00989662 (000)

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) May, 2004 PAGE 1 OF 4

## NPDES MONITORING REPORT

# OUTFALL 001 RADWASTE SYSTEM

| 10.03 | Sources       |                                       |          |                                       | ELI.                                  | 9777777777777                         | $L^{(2)}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |              |
|-------|---------------|---------------------------------------|----------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|
| 3     | (), <b>()</b> | .092                                  | 14       | 388                                   | 6.84                                  | Star , experience in advice           | and the second s | MONDEL DY                             | $\mathbb{E}$ |
| 5     | 6             | .091                                  | 14       | 8                                     | 7.33                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATTIXET                               |              |
| 8     | 7             | .093                                  | 9        | 270                                   | 7.34                                  | FLOW (MGD)                            | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N.A.                                  | ·            |
| 12    | 6             | .093                                  | 10       | 66                                    | 7.23                                  | pH (STD)                              | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0-9.0                               | 6.           |
| 20    | 7             | .091                                  | 10       | 22                                    | 7.37                                  | TSS (mg/1)                            | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                    |              |
| 22    | 6             | .093                                  | 16       | 310                                   | 7.17                                  | Boron (mg/l)                          | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N.A.                                  | 1            |
| 24    | 7             | .091                                  | 13       | 30                                    | 7.78                                  | TRC (ug/l)                            | Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N.A.                                  |              |
| 28    | 6             | .089                                  | 34       | 35                                    | 7.66                                  | BOD (mg/l)                            | Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N.A.                                  | 1            |
| 30    | 7             | .092                                  | 14       | 217                                   | 7.35                                  | O&G (mg/1)                            | Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                    | ľ .          |
| 31    | 6             | .052                                  | 20       | 189                                   | 7.27                                  | ALL SAMPLES                           | ANALYZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BY Ameren UI                          | Call         |
|       |               |                                       |          |                                       |                                       | Plant OPERATIC                        | NS LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATORY USING                           | ł            |
|       |               | •                                     |          |                                       |                                       | METHODS SPE                           | CIFIED UNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DER 10CSR 20-7                        | .015         |
|       |               |                                       |          |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          |                                       | · · · · · · · · · · · · · · · · · · · | SOURCES                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          |                                       |                                       | 1 = WASTE M                           | IONITOR TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANK A                                 |              |
|       |               |                                       |          |                                       | h                                     | 2 = WASTEM                            | IONITOR T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANK B                                 |              |
|       |               |                                       |          |                                       |                                       | 3 = STEAM G                           | ENERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BLOWDOWN                              |              |
|       |               |                                       | <u></u>  |                                       |                                       | 4 = SEC. LIQ.                         | WASTE MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NITOR TANK                            | A            |
|       |               |                                       |          |                                       |                                       | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NITOR TANK                            |              |
|       |               |                                       |          |                                       | <b></b>                               | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHARGE TAN                            |              |
|       |               |                                       |          |                                       |                                       | 7 = LIQ. RAD                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          | · · · · · · · · · · · · · · · · · · · |                                       | EB = EACH BA                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          |                                       | ·                                     | For Direction BO                      | 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TROUBLE SI                            | 3            |
|       |               | · · · · · · · · · · · · · · · · · · · |          | <u> </u>                              | <u> </u>                              | 3                                     | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                   |              |
|       |               |                                       | ·        |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          |                                       |                                       | COMMENTS:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                              |              |
|       |               |                                       |          |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |              |
|       |               |                                       | <u> </u> |                                       |                                       | ······                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          |                                       |                                       | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|       |               |                                       |          |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |

## File C170.0005

Page 1 of 4

CA-0320 01/15/04

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:22 PM

UOTCR040020 00989662 (000)

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR<u>) May, 2004</u> PAGE 2 OF 4

### NPDES MONITORING REPORT

## OUTFALL 002 COOLING TOWER BLOWDOWN

| TEOW       TEOW       TEOE       TEOE       TEOE         (2) 4       0       68       <0.01       <100         (2) 21       8.9       73       <0.01       100         (2) 22       4.5       66       <0.01       <100         (2) 23       0.1       74       <0.01       <100         (2) 24       5.3       70       01       <100         (2) 25       7.2       69       <0.01       <100         (2) 26       10.1       72       <0.01       <100         (2) 27       6.9       72       <0.01       <100         (2) 26       10.1       72       <0.01       <100         (2) 27       6.9       72       <0.01       <100         (2) 28       6.6       73       <0.01       <100         30       6.6       77       <0.01       <100         31       8.4       64       <0.01       <100         31       8.4       64       <0.01       <100         31       8.4       64       <0.01       <100         30       6.6       77       <0.01       <100         30 <td< th=""><th></th><th></th><th>And And Andrews</th><th></th><th></th></td<> |               |       | And And Andrews     |                                         |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|---------------------|-----------------------------------------|--------------|
| (2) 4       0       68 $c0.01$ $<100$ (2) 21       8.9       73 $c0.01$ $100$ (2) 22       4.5       66 $<0.01$ $<100$ (2) 23       0.1       74 $<0.01$ $<100$ (2) 23       0.1       74 $<0.01$ $<100$ (2) 24       5.3       70       01 $<100$ (2) 25       7.2       69 $<0.01$ $<100$ (2) 25       7.2       69 $<0.01$ $<100$ (2) 25       7.2       69 $<0.01$ $<100$ (2) 25       7.2       69 $<0.01$ $<100$ (2) 25       8.9       70 $<0.01$ $<100$ (2) 28       6.6       73 $<0.01$ $<100$ (2) 29       8.9       70 $<0.01$ $<100$ (3)       6.6       77 $<0.01$ $<100$ (2) 29       8.9       70 $<0.01$ $<100$ (3)       6.6       77 $<0.01$ $<100$ (4)       (1)       (1) $<10$                                                                                                                                                                                                                                                                                                                                                             | - DATE.       | (XO)) | 77317D<br>167303391 | . JAC<br>(                              | ττ.<br>(C-Ω) |
| (2) 21 $8.9$ $73$ $< c0.01$ $100$ (2) 22 $4.5$ $66$ $<0.01$ $<100$ (2) 23 $0.1$ $74$ $<0.01$ $<100$ (2) 23 $0.1$ $74$ $<0.01$ $<100$ (2) 24 $5.3$ $70$ $01$ $<100$ (2) 25 $7.2$ $69$ $<0.01$ $<100$ (2) 25 $7.2$ $69$ $<0.01$ $<100$ (2) 25 $7.2$ $6.9$ $72$ $<0.01$ $<100$ (2) 28 $6.6$ $73$ $<0.01$ $<100$ (2) 29 $8.9$ $70$ $<0.01$ $<100$ (2) 29 $8.9$ $70$ $<0.01$ $<100$ 30 $6.6$ $77$ $<0.01$ $<100$ $31$ $8.4$ $64$ $<0.01$ $<100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |       |                     |                                         |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2) 21        | 8.9   | 73                  | <0.01                                   | 100          |
| (2) 23       0.1       74       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2) 22        | 4.5   | 66                  | <0.01                                   | <100         |
| (2) $25$ 7.2       69       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | St. 2 * 1 * 1 |       | .74                 |                                         | 1 2 2 M 11   |
| (2) $26$ 10.1       72       <0.01       <100         (2) $27$ $6.9$ $72$ <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2) 24        | 5.3   | 70                  | .01                                     | <100         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2) 25        | 7.2   | 69                  | <0.01                                   | <100         |
| (2) 28       6.6       73       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2) 26        | 10.1  | 72                  | <0.01                                   | <100         |
| (2) 29       8.9       70       <0.01       <100         30       6.6       77       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) 27        | 6.9   | 72                  | <0.01                                   | <100         |
| (2) 29       8.9       70       <0.01       <100         30       6.6       77       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) 28        | 6.6   | 73                  | <0.01                                   | <100         |
| 30     6.6     77     <0.01     <100       31     8.4     64     <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2) 29        | 8.9   | 70                  |                                         | <100         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 6.6   | 77                  | <0.01                                   | <100         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31            | 8.4   | 64                  | <0.01                                   | <100         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         | ,            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       | · · ·               |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       | · · ·               |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | •     |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         | 11 et 1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | · · · ·      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4             | •     | •                   |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |                     |                                         |              |

| + x 12.14 · 1 | 185<br>(TTD) |      |
|---------------|--------------|------|
| 4             | 7            | 1004 |
| 20            | 9            | 480  |
| 25            | 6            | 214  |
| 31            | 21           | 246  |
|               |              |      |

Same Barrier Barrier

| DATE | 5:1Jcn<br>(17 <b>13</b> ) | <u>оссе</u><br>(т. <b>Ц</b> ) |
|------|---------------------------|-------------------------------|
| 4    | 458                       | 3                             |
| 20   | 180                       | 1.                            |

| Second and a second second | FREQ    | · · · · · /12/6 | 1051 . 8      |
|----------------------------|---------|-----------------|---------------|
|                            |         | ANCE -          | UNIET<br>UNVE |
| FLOW                       | CONT.   | N.A.            | N.A.          |
| TOTAL SUSPENDED SOLIDS     | WKLY.   | N.A.            | N.A.          |
| TOTAL DISSOLVED SOLIDS     | WKLY.   | N.A.            | N.A.          |
| OIL AND GREASE             | QRTLY * | 15              | 20            |
| TOTAL RESIDUAL CHLORINE    | DAILY   | N.A.            | N.A.          |
| SULFATE                    | QRTLY.* | N.A.            | N.A.          |
| FREE AVAIL. CHLORINE       | DAILY   | N.A.            | 0.2 (mg/l)    |
| TEMPERATURE (MAXIMUM)      | DAILY   | 110°F           | .110°F        |
| pH                         | CONT.   | 6.0 - 9.0       | 60-90         |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

 SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: (2) DIP SAMPLE,

No pH excursions occurred this month. No CTBD on dates not listed

## File C170.0005

Page 2 of 4

CA-0320 01/15/04

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:22 PM

UOTCR040020 00989662 (000)

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) May, 2004 PAGE 3 OF 4

### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL 007

| 18 .013 5<br>25 | 12.4    | 7.76 |
|-----------------|---------|------|
|                 | 12.4    |      |
|                 |         |      |
|                 | · · · · |      |
|                 |         |      |
|                 |         |      |

#### SANITARY WASTE

| PARAMETER# |                    | E STREEP  | <b>ITE</b> (((1))) |
|------------|--------------------|-----------|--------------------|
|            | REO -              | MOYAVC    | WHAT AVEL          |
| FLOW       | QRTLY •            | N.A.      | N.A.               |
| TSS        | QRTLY •<br>QRTLY • | 70        | 110                |
| BOD<br>pH  | ORTLY *            | 6.0 - 9.0 | 65                 |

\* SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

## OUTFALLS 010 - 015

| DATE | TOTTEADL | (MGD) |    | (a)(1) | COD<br>(agl) | -<br>TH |
|------|----------|-------|----|--------|--------------|---------|
| 20   | 10       | .050  | 3  | 2      | 24           | 8.18    |
| 20   | 11       | .229  | 39 | 10     | 47           | 7.78    |
| 20   | 12       | .018  | 58 | 2      | 19           | 7.96    |
| 29   | 13       | .020  | 37 | 6      | 37           | 7.64    |
| 20   | 14       | .082  | 35 | 2      | 26           | 8.56    |
| 20   | 15       | .033  | 47 | 2      | 24           | 8.00    |

#### OUTFALL 016

| DATE   | EVON<br>(MGD) |    | Cand CI | T.H. | ATURG A |
|--------|---------------|----|---------|------|---------|
| 20     | 2.7           | 11 | 1       | 8.17 | <100    |
| 4 - S. |               |    |         | •    |         |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

## STORM WATER RUNOFF PONDS

|                   | The second second as | 1               | and the second second |
|-------------------|----------------------|-----------------|-----------------------|
| <b>PARAMETERS</b> | ENERRO MAR           |                 | I INS                 |
|                   |                      | <b>国MO</b> AVG起 | <b>EDAILYIMAX</b>     |
| FLOW              | QRTLY.               | N.A.            | N.A.                  |
| TSS               | QRTLY *              | N.A.            | N.A.                  |
| COD               | QRTLY *              | N.A.            | N.A.                  |
| O and G           | QRTLY *              | 15              | 20                    |
| рН                | QRTLY*               | >6.0            | >6.0                  |

SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETERS | KEREO              |           |            |
|------------|--------------------|-----------|------------|
|            | Berthing of States | BMO AVG.  | BDAILY MAX |
| FLOW       | QRTLY *            | N.A.      | N.A.       |
| TSS        | QRTLY +            | 30        | 100        |
| O and G    | QRTLY *            | 15        | 20         |
| pН         | QRTLY *            | 6.0 - 9.0 | 6.0 - 9.0  |
| TRC        | QRTLY *            | N.A.      | 190        |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COMMENTS: \_

File C170.0005

Page 3 of 4

CA-0320 01/15/04

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:22 PM

UOTCR040020 00989662 (000)

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) May 2004 PAGE 4 OF 4

## NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer Reviewer

Approved Plant Manager

Page 4 of 4

CA0320 01/15/04

## **UOTCR 04-034**

September 13, 2004

Steven S. Weiss Mail Code 602

## Callaway NPDES Monthly Report

Attached is the NPDES Monthly Report for August 2004. Results are noted in comment section of each Outfall.

An exception report was submitted to Missouri Department of Natural Resources for the August 20, 2004, overflow of sanitary water from manhole #4, and its subsequent discharge via storm water runoff Outfall 012.

This report contains the one-time monitoring value, 21 ppb, for monoethanolamine (cas 141-43-5) on Outfall 001.

Please let me know if you have any questions or need additional information.

C. A. Riggs

## CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 (2 copies) R/C Clerk A160.0998

TOTAL PAGES\_

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>August, 2004</u> PAGE 1 OF 4

### NPDES MONITORING REPORT

### OUTFALL 001 RADWASTE SYSTEM

| DATE | SOURCE  | FLOW<br>(MGD) | TSS<br>(mg/l) | Boron<br>(mg/l) | pН   |
|------|---------|---------------|---------------|-----------------|------|
| 2    | 6       | .092          | 8             | 17              | 6.28 |
| 5    | 7       | .093          | 12            | 30              | 6.23 |
| 6    | 6       | .091          | 15            | 4               | 6.46 |
| 7    | 7       | .092          | 8             | 20              | 6.70 |
| 9    | 6       | .091          | 20            | 4               | 7.81 |
| 10   | 7       | .093          | 12            | 2               | 8.19 |
| 11   | 6       | .091          | 1             | 2               | 8.22 |
| 13   | 7       | .092          | 18            | 10              | 7.06 |
| 14   | 6       | .092          | 13            | 18              | 6.41 |
| 16   | 7       | .094          | 22            | 12              | 6.50 |
| 17   | 6       | .092          | 13            | 0.5             | 6.76 |
| 18   | 7       | .093          | 17            | 25              | 6.63 |
| 20   | 6       | .092          | 15            | 13              | 6.13 |
| 21   | 7       | .091          | 9             | 4               | 6.10 |
| 23   | 6       | .083          | 14            | 14              | 6.19 |
| 26   | 7       | .092          | 9             | 3               | 6.33 |
| 27   | 6       | .092          | 12            | 28              | 7.26 |
| 28   | 7.      | .093          | 9             | 7               | 6.60 |
| 29   | 6       | .091          | .19           | 10              | 6.90 |
| 31   | 7.      | .093          | 17            | 63              | 7.45 |
| •    |         |               |               |                 |      |
|      |         |               |               |                 |      |
|      |         |               |               |                 |      |
| •    |         |               |               | 1               |      |
|      |         |               | · ·           |                 |      |
|      | · · · · |               |               |                 |      |
|      | 1       |               |               |                 |      |
|      | 4       |               |               | <u> </u>        |      |
|      |         |               |               |                 |      |
|      |         |               |               | <b></b>         |      |
|      | ļ       |               |               | ļ               |      |
|      | 1       |               |               | <u></u>         |      |

| PARAMETER    | FREQ.   | LIMITS             |              |
|--------------|---------|--------------------|--------------|
| ·····        |         | MONTHLY<br>AVERAGE | DAILY<br>MAX |
| FLOW (MGD)   | EB      | N.A.               | N.A.         |
| pH (STD)     | EB      | 6.0-9.0            | 6.0-9.0      |
| T\$\$ (mg/1) | EB      | 30                 | 45           |
| Boron (mg/l) | EB      | N.A.               | N.A.         |
| TRC (ug/l)   | Monthly | N.A.               | 190          |
| BOD (mg/l)   | Monthly | N.A.               | N.A.         |
| O&G (mg/1)   | Monthly | 15                 | 20           |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

## SOURCES

1 = WASTE MONITOR TANK A

2 = WASTE MONITOR TANK B

3 = STEAM GENERATOR BLOWDOWN

4 = SEC. LIQ. WASTE MONITOR TANK A

5 = SEC. LIQ. WASTE MONITOR TANK B

6 = LIQ. RADWASTE DISCHARGE TANK A

7 = LIQ. RADWASTE DISCHARGE TANK B

EB = EACH BATCH

| Date    | BOD (mg/l)            | TRC (ug/l)     | O&G (mg/l)  |
|---------|-----------------------|----------------|-------------|
| 4       | -                     | 100            | 4           |
| 6 ·     | .63                   | -              | -           |
|         | TS: <u>"B" DMT on</u> | 08-16-04 contr | ined 21 PPB |
| of ETA. |                       |                |             |

File C170.0005

CA-0320 01/15/04

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)<u>August, 2004</u> PAGE 2 OF 4

NPDES MONITORING REPORT

## OUTFALL 002 COOLING TOWER BLOWDOWN

| ഹണം      | ELECTI | ഞ്ഞ            | 500   | TEC      |
|----------|--------|----------------|-------|----------|
|          | (MED)  | DITP<br>(MVP9P | (570) | (ET:(1)) |
| 1        | 4      | 88             | <.01  | 100      |
| 2        | 5.1    | 86             | < 01  | 30       |
| 3        | 3.1    | 90             | < 01  | 100      |
| • 4      | 2.5    | 94             | <.01  | 190      |
| 5        | 3.9    | 88             | <.01  | 70       |
| 6        | 5.3    | 83             | <.01  | 80       |
| 7        | 4.4    | 86             | <.01  | 70       |
| 8        | 4.4    | 88             | <.01  | 100      |
| .9       | 4.2    | 83             | .01   | 100      |
| 10       | 2.1    | 85             | <.01  | 150      |
| <u> </u> | 1.7    | 79             | <.01  | 60       |
| 12       | 2.1    | 76             | <.01  | 210      |
| 13       | 4.4    | 78             | .02   | 160      |
| 14       | 3.1    | 80             | .01   | 70       |
| - 15     | 2.9    | 80             | .03   | 80       |
| 16       | 4.2    | 82             | <.01  | <10      |
| 17       | 1.0    | 83             | <.01  | 20       |
| 18       | 1.0    | 83             | .06   | 20       |
| 19       | 3.0    | 82             | <.01  | 20       |
| 20       | 3.2    | 83             | .01   | 110      |
| 21       | 2.9    | 83             | .01   | 120      |
| 22       | 3:3    | 85             | .02   | 70       |
| 23       | 4.3    | · 85           | .04   | 190      |
| 24       | 2.8    | 84             | .02   | 120      |
| 25       | 3.4    | 85             | .02   | .90      |
| 26       | 3.5    | 90             | <.01  | 150      |
| 27       | 2.4    | 86             | .01   | 80       |
| 28       | 6.3    | 88             | .03   | 140      |
| 29       | 2.9    | - 84           | .02   | 90       |
| 30       | 3.8    | 80             | <.01  | 90       |
| 31       | 2.9    | 84             | <.01  | 100      |

| DATE DATE | (1385)<br> | (G):(D) |
|-----------|------------|---------|
| 2         | 61         | 2360    |
| 9         | 46         | 1944    |
| 16        | 46         | 2072    |
| 23        | 56         | 2256    |
| 30        | 67         | 1764    |

the second s

| DATE  | Salfatto<br>(tarAD) | OZO<br>(TAD) |
|-------|---------------------|--------------|
| 2     | 1400                | 1.9          |
| . · · |                     |              |

| FARAMEDER               | 121203  | 山         | WIMDES .       |  |
|-------------------------|---------|-----------|----------------|--|
|                         |         | 6ZCO.     | MANDAY<br>MANT |  |
| FLOW                    | CONT.   | N.A.      | N.A.           |  |
| TOTAL SUSPENDED SOLIDS  | WKLY.   | N.A.      | N.A.           |  |
| TOTAL DISSOLVED SOLIDS  | WKLY.   | N.A.      | N.A.           |  |
| OIL AND GREASE          | QRTLY * | 15        | 20             |  |
| TOTAL RESIDUAL CHLORINE | DAILY   | N.A.      | N.A.           |  |
| SULFATE                 | QRTLY.* | N.A.      | N.A.           |  |
| FREE AVAIL. CHLORINE    | DAILY   | N.A.      | 0.2 (mg/l)     |  |
| TEMPERATURE (MAXIMUM)   | DAILY   | 110°F     | 110°F          |  |
| pH                      | CONT.   | 6.0 - 9.0 | 6.0 - 9.0      |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

\* SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: \_ No PH excursions occurred this month.

File C170.0005

Page 2 of 4



## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>August, 2004</u> PAGE 3 OF 4

J

## NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

## OUTFALL 007

| DAR | ELOXI<br>(XCD) | 7555<br>(a. 7 <b>1</b> 1) | EOD<br>(arAD) |      |
|-----|----------------|---------------------------|---------------|------|
| 13  | .001           | 10                        |               | 7.08 |
| 18  | .001           | 18                        | 16            | 7.3  |
|     |                |                           |               |      |
|     |                |                           |               |      |
|     |                |                           |               |      |
|     | <u>}</u>       |                           |               |      |

#### SANITARY WASTE

| RAVRADAEDVER |         | 141/10/53(612/10) |             |
|--------------|---------|-------------------|-------------|
|              | 17339)  | MOLAVES           | WIND & AWAS |
| FLOW         | QRTLY + | N.A.              | N.A.        |
| TSS          | QRTLY * | 70                | 110         |
| BOD          | QRTLY * | 45                | 65          |
| рН           | QRTLY * | 6.0 - 9.0         | 6.0 - 9.0   |

 SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### QUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

USC (CrAI)

90

### OUTFALLS 010 - 015

| DATES | OTTAM. | (MED); | USS<br>((ar/D) | 0an0C.<br>(ar/D) | (COD):<br>(TTFD) | <br>  |
|-------|--------|--------|----------------|------------------|------------------|-------|
| 11    | 10     | .050   | 6              | 2                | 28               | 8.34  |
| 11    | 11     | .229   | 10             | 1                | 30               | 7.38  |
| 11    | 12     | .018   | 8              | 0                | 18               | 9.36  |
| 11    | 13     | .020   | 41             | 1                | 25               | 8.94  |
| 11    | 14     | .082   | 8              | l                | 23               | 10.32 |
| n     | 15     | .033   | 10             | 1 - 7            | 33               | 8.10  |

OUTFALL 016

Dand G

(mon)

2

لذلع

8.17

TSS

(mg/L)

20

## STORM WATER RUNOFF PONDS

| PARAMETUER | - 13780                               | I PULLINS   |             |
|------------|---------------------------------------|-------------|-------------|
|            | · · · · · · · · · · · · · · · · · · · | MOLAVE      | DAILEYIMAXC |
| FLOW       | QRTLY *                               | N.A.        | N.A.        |
| TSS        | QRTLY *                               | <u>N.A.</u> | N.A.        |
| COD        | QRTLY +                               | N.A.        | N.A.        |
| O and G    | QRTLY *                               | 15          | 20          |
| pH         | QRTLY*                                | >6.0        | >6.0        |

\* SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| EARAMETE | RE FREO | IUNINS    |            |  |
|----------|---------|-----------|------------|--|
| ····     |         | MOLAVES   | DAVIGYDMAN |  |
| FLOW     | QRTLY * | N.A.      | N.A.       |  |
| TSS      | QRTLY * | 30        | 100        |  |
| O and G  | QRTLY * | 15        | 20         |  |
| pН       | QRTLY * | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC      | ORTLY * | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: Outfall 016 TRC results on Attachment 1.

#### OUTFALL 017

ULTIMATE HEAT SINK. No Discharge

DINA3

11

RELOW

(MAD)

2.16

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

File C170.0005

Page 3 of 4

## CA-0320 01/15/04

. ....

**PERMIT NO. MO-0098001** REPORTING PERIOD (MO/YR) August, 2004 PAGE 4 OF 4

## NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Review Approved Plant Manager

Page 4 of 4

CA0320 01/15/04

## ATTACHMENT 1 AUGUST 31, 2004

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml) |
|------|-------------|
| 3    | 110         |
| 4    | 140         |
| 5    | 110         |
| 10   | 70          |
| 11   | 150         |
| 12   | 140         |
| 17   | 180         |
| 18   | 160         |
| 19   | 170         |
| 24   | 160         |
| 25   | 90          |
| 31   | 190         |

## ATTACHMENT 1

## **UOTCR 04-042**

December 10, 2004

Steven S. Weiss Mail Code 602

4

## **Callaway NPDES Monthly Report**

Attached is the NPDES Monthly Report for November 2004. Results are noted in comment section of each Outfall.

An exception report was submitted to Missouri Department of Natural Resources for the November 30, 2004 unauthorized discharge of oily waste water from an outside oily waste sump.

The TSS monthly average was exceeded on Outfall 016 due to the failure of a pump feeding polyelectrolyte.

Attachment 1 of the Discharge Monitoring Report contains the Outfall 002 asbestos results. This is a one time monitoring requirement per the new NPDES permit. Results were less than the detectable limit of the testing laboratory IATL.

The 2004 WET test results are included with this report for submittal to DNR.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 (2 copies) R/C Clerk A160.0998



TOTAL PAGES 45

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:24 PM

UOTCR040042 00958493 (001)

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)<u>November, 2004</u> PAGE 1 OF 4

9

į

## NPDES MONITORING REPORT

| DATE                                          | SOURCE   | FLOW<br>(MGD).                        | TSS<br>(mg/1) | Boron<br>(mg/l) | рĦ   |
|-----------------------------------------------|----------|---------------------------------------|---------------|-----------------|------|
| 3                                             | 7        | .091                                  | 15            | 19              | 6.44 |
| 3<br>5                                        | 6        | .093                                  | 20            | 3               | 8.01 |
| 6                                             | 7        | .092                                  | 16            | 17              | 7.78 |
| 8                                             | 6        | .091                                  | 23            | 5               | 8.44 |
| 9                                             | 7        | .093                                  | 16            | 88              | 7.45 |
| 12                                            | 6        | .090                                  | 10            | 1               | 8.58 |
| 14                                            | 7        | .093                                  | 16            | 178             | 7.06 |
| 15                                            | 6        | .071                                  | 14            | 76              | 7.82 |
| 19                                            | 7        | .094                                  | 13            | 108             | 6.23 |
| 24                                            | 7        | .090                                  | 14            | 16              | 8.89 |
| 25                                            | 7        | .093                                  | 10            | 0               | 8.67 |
| 26                                            | 6        | .091                                  | 27            | 3               | 7.64 |
| 28                                            | 7        | .092                                  | 1 .           | . 7             | 7.69 |
| 29                                            | 6        | .091                                  | 34            | 32              | 6.21 |
| 30                                            | 7        | .094                                  | 20            | 12              | 7,44 |
|                                               |          |                                       |               |                 |      |
| _                                             |          |                                       |               | '               | ·    |
|                                               |          | · · · · · · · · · · · · · · · · · · · |               |                 |      |
|                                               |          |                                       |               |                 | *    |
|                                               |          |                                       |               |                 |      |
|                                               |          |                                       |               |                 |      |
|                                               |          |                                       |               |                 |      |
|                                               |          |                                       |               |                 |      |
|                                               |          |                                       |               |                 |      |
|                                               |          |                                       |               |                 |      |
|                                               |          |                                       |               |                 |      |
|                                               |          |                                       | ۰.            |                 |      |
|                                               |          |                                       |               |                 |      |
|                                               | <u> </u> |                                       |               |                 |      |
| ~                                             |          |                                       |               |                 |      |
| <u>, , , , , , , , , , , , , , , , , , , </u> |          |                                       |               |                 | **   |

### OUTFALL 001 RADWASTE SYSTEM

| FREQ    | LIMT                                      | 75.                                                              |
|---------|-------------------------------------------|------------------------------------------------------------------|
|         | MONTHLY<br>AVERAGE                        | DAILY<br>MAX                                                     |
| EB      | N.A.                                      | N.A.                                                             |
| EB      | 6.0-9.0                                   | 6.0-9.0                                                          |
| EB      | 30                                        | 45                                                               |
| EB      | N.A.                                      | N.A.                                                             |
| Monthly | N.A.                                      | 190                                                              |
| Monthly | N.A.                                      | N.A.                                                             |
| Monthly | 15                                        | 20                                                               |
|         | EB<br>EB<br>EB<br>B<br>Monthly<br>Monthly | MONTHLY<br>AVERAGEEBN.A.EB60.9.0EB30EBN.A.MonthlyN.A.MonthlyN.A. |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### SOURCES

1 = WASTE MONITOR TANK A

2 = WASTE MONITOR TANK B

3 = STEAM GENERATOR BLOWDOWN

4 = SEC: LIQ. WASTE MONITOR TANK A

5 = SEC. LIQ. WASTE MONITOR TANK B

6 = LIQ. RADWASTE DISCHARGE TANK A

7 = LIQ. RADWASTE DISCHARGE TANK B

EB = EACH BATCH

| Date   | BOD (mg/l) | TRC (ug/1) | O&G (mg/l) |
|--------|------------|------------|------------|
| 3      | 472        | <10        | 1.4        |
|        |            |            | <u> </u>   |
|        |            | -          | +          |
| COMMEN | L          | _ <u>_</u> | I          |

File C170.0005

Page 1 of 4

UOTCR040042 00958493 (001)

CA-0320 01/15/04

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>November, 2004</u> PAGE 2 OF 4

#### NPDES MONITORING REPORT

## OUTFALL 002 COOLING TOWER BLOWDOWN

| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 5.3<br>3.5<br>2.6<br>4.6<br>2.1<br>5.8<br>5.9<br>3.7 | 79<br>77<br>72<br>74<br>74<br>82 | .04<br>.02<br>.03<br><.01<br>.02 | 160<br>200<br>110<br>130 |
|---------------------------------|------------------------------------------------------|----------------------------------|----------------------------------|--------------------------|
| 3<br>4<br>5<br>6<br>7           | 2.6<br>4.6<br>2.1<br>5.8<br>5.9                      | 72<br>74<br>74<br>82             | .03<br><.01                      | 110<br>130               |
| 4<br>5<br>6<br>7                | 2.6<br>4.6<br>2.1<br>5.8<br>5.9                      | 74<br>74<br>82                   | <.01                             | 130                      |
| 5<br>6<br>7                     | 2.1<br>5.8<br>5.9                                    | 74<br>82                         |                                  |                          |
| 6<br>7                          | <b>5.8</b><br>5.9                                    | 82                               | .02                              |                          |
| 7                               | 5.9                                                  |                                  |                                  | 50                       |
|                                 |                                                      |                                  | .02                              | 90                       |
| i l                             | 27                                                   | 78                               | <.01                             | 40                       |
| 8                               | 3.1                                                  | 74                               | <.01                             | 10                       |
| 9                               | 5.0                                                  | 75                               | <.01                             | 70                       |
| 10                              | 5.0                                                  | 82                               | .02                              | 40                       |
| 11                              | 4.0                                                  | 76                               | .03                              | 40                       |
| 12                              | 4.6                                                  | 71                               | .06                              | 170                      |
| 13                              | 4.0                                                  | 67                               | .10                              | 150                      |
| 14                              | 6.0                                                  | 68                               | .07                              | 90                       |
| 15                              | 5.2                                                  | 74                               | .01                              | 60                       |
| 16                              | 4.6                                                  | 73                               | <.01                             | 10                       |
| 17                              | 4.3                                                  | 81                               | <.01                             | <10                      |
| 18                              | 3.9                                                  | 78                               | <.01                             | <10                      |
| 19                              | 5.2                                                  | 73                               | <.01                             | 60                       |
| 20                              | 4.7                                                  | 72                               | .02                              | 240                      |
| 21                              | 4.5                                                  | 72                               | .02                              | 140                      |
| 22                              | 4.7                                                  | . 72                             | .12                              | 180                      |
| 23                              | 4.5                                                  | 73                               | .06                              | 180                      |
| 24                              | 5.9                                                  | 73                               | .02                              | 40                       |
| 25                              | 6.5                                                  | 65                               | .04                              | 200                      |
| 26                              | 6.0                                                  | 73                               | .08                              | 200                      |
| 27                              | 4.7                                                  | 73                               | .01                              | 90                       |
| 28                              | 6.5                                                  | 65                               | .06                              | 90                       |
| 29                              | 5.2                                                  | 69                               | <.01                             | 130                      |
| 30                              | 6.4                                                  | 66                               | <.01                             | 20                       |

|      | ليصبح والتعاو | L       |
|------|---------------|---------|
| 29   | 30            | 1540    |
| 22   | 72            | 2024    |
| 15   | 59            | 1724    |
| 8    | 79            | 1484    |
| 1    | 49            | 2372    |
| DATE |               | (GT (D) |

| DYNE | Sm[]mic<br>(m:7[]) | 036<br>(mal) |
|------|--------------------|--------------|
| 1    | 978                | . 8          |

| BARAMEDER               | 1222.00 | ि छ          | MIEUS              |
|-------------------------|---------|--------------|--------------------|
|                         |         | ACO.<br>AVE. | 10X11157<br>171582 |
| FLOW                    | CONT.   | N.A.         | N.A.               |
| TOTAL SUSPENDED SOLIDS  | WKLY.   | N.A.         | N.A.               |
| TOTAL DISSOLVED SOLIDS  | WKLY.   | N.A.         | N.A.               |
| OIL AND GREASE          | QRTLY * | 15           | 20                 |
| TOTAL RESIDUAL CHLORINE | DAILY   | N.A.         | N.A.               |
| SULFATE                 | QRTLY.* | N.A.         | N.A.               |
| FREE AVAIL CHLORINE     | DAILY   | N.A.         | 0.2 (mg/l)         |
| TEMPERATURE (MAXIMUM)   | DAILY   | 110 ° F      | 110° F             |
| рН                      | CONT.   | 6.0 - 9.0    | 6.0 - 9.0          |

ALL SAMPLES ANALYZED BY Amerea UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

\* SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

See Atlachment 1 for the one time asbestos monitoring of Outfall 002 required by the new NPDES permit.

#### File C170.0005

Page 2 of 4

CA-0320 01/15/04

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>November</u>, 2004 PAGE 3 OF 4

1

### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL 007

| DATES         | MI(MGD) | K TSSO | BOD 1 |                                       |
|---------------|---------|--------|-------|---------------------------------------|
| 10            | .04     | 9      | 7     | 9.2                                   |
|               |         |        |       | · · · · · · · · · · · · · · · · · · · |
| · · ·         |         |        |       |                                       |
| ····· · · · · |         |        |       |                                       |
|               |         |        |       |                                       |

#### SANITARY WASTE

| - PARAMETER | A130    | LUR<br>WOLANES | IUS (UL/D) AND A |
|-------------|---------|----------------|------------------|
| FLOW        | QRTLY • | N.A.           | N.A.             |
| TSS         | QRTLY * | 70             | 110              |
| BOD         | QRTLY * | 45             | 65               |
| рH          | QRTLY * | 6.0 - 9.0      | 6.0 - 9.0        |

\* SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### <u>OUTFALL 009</u> INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

| DAVES | CITATIVIN, | FLOW .<br>(YGD) | (  | 00110<br>(UTA) | (ar/a) | _n£  |
|-------|------------|-----------------|----|----------------|--------|------|
| 19    | 10         | .087            | 8  | 1              | 19     | 8.16 |
| 19    | 11         | .399            | 25 | 8              | 56     | 7.77 |
| 19    | 12         | .031            | 49 | 2              | 22     | 8.36 |
| 19    | 13         | .035            | 31 | 3              | 36     | 7.85 |
| 19    | 14         | .143            | 14 | .1             | 22     | 7.93 |
| 19    | 15         | .058            | 50 | 1              | 22     | 8.14 |

#### OUTFALL 016

| DATES  | IFLOW<br>(CCD) | 2855<br>(ar(1)) | Octail(C<br>(Carilli) | pD.  | UEC<br>(UED) |
|--------|----------------|-----------------|-----------------------|------|--------------|
| 9      | 0.94           | 13              | 3                     | 7.91 | <10          |
| (2) 29 | 1.37           | 78              |                       |      | _            |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| PARAMETER | FREO.   | ][]      | MINS  |
|-----------|---------|----------|-------|
|           | ][      | MO. ANC. | DATOY |
| FLOW      | QRTLY.* | N.A.     | N.A.  |
| TSS       | QRTLY * | N.A.     | N.A.  |
| COD       | QRTLY * | N.A.     | N.A.  |
| O and G   | QRTLY * | 15       | -20   |
| рH        | QRTLY*  | >6.0     | >6.0  |

 SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### **COOLING TOWER BYPASS**

| RAMANAS | FREO    | IUMDES    |           |  |
|---------|---------|-----------|-----------|--|
|         |         | MOSAVE    | DAILOYMAX |  |
| FLOW    | QRTLY * | N.A.      | N.A.      |  |
| TSS     | QRTLY * | 30        | 100       |  |
| O and G | QRTLY * | 15        | 20        |  |
| pН      | QRTLY * | 6.0 - 9.0 | 6.0 - 9.0 |  |
| TRC     | QRTLY * | N.A.      | 190       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: (2) High TSS resulted in monthly average being exceeded. High TSS due to loss of poly feed.

File C170.0005

Page 3 of 4

CA-0320 01/15/04

UOTCR040042 00958493 (001)

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>November</u>, 2004 PAGE 4 OF 4

1

## NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Reviewen Preparer Approved Plant Manager

Page 4 of 4

CA0320 01/15/04

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:24 PM

UOTCR040042 00958493 (001)

# LUICIC UT-UUTA KEU

001

January 7, 2004

Steven S. Weiss Mail Code 602

## Callaway NPDES Monthly Report

ATTACHED IS AN UPDATED PAGE 3 OF THE NOVEMBER REPORT (dated December 10, 2004, 400 TER 04 042). BLEASE PLACE THIS IN THE REPORT AND DISCARD THE OLD PAGE?

Luanna M. Belsky

cc: G. P. Gary (470) C170.0005 (2 copies) R/C Clerk A160.0998



TOTAL PAGES 2

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>November, 2004</u> PAGE 3 OF 4

### NPDES MONITORING REPORT

## <u>OUTFALL 003</u> WATER TREATMENT PLANT NO DISCHARGE

### OUTFALL 007

| 10                                    | .04 | 9 | 7 | 7.51 |
|---------------------------------------|-----|---|---|------|
| <u></u>                               |     |   |   | ·    |
| · · · · · · · · · · · · · · · · · · · |     |   |   |      |
|                                       | ·   |   |   |      |

### SANITARY WASTE

|      |         | \$ <i>MO/026</i> 5 | MARKED DRG 7 |
|------|---------|--------------------|--------------|
| FLOW | QRTLY • | N.A.               | N.A.         |
| TSS  | QRTLY + | 70                 | 110          |
| BOD  | QRTLY * | 45                 | 65           |
| pH   | QRTLY * | 6.0 - 9.0          | 6.0 - 9.0    |

\* SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

|    | Anone Ver | PLOOM<br>MOD  |    | Nord Con<br>Nord Con | (0000)<br>(0007)) |      |
|----|-----------|---------------|----|----------------------|-------------------|------|
| 19 | 10        | .087          | 8  | 1                    | 19                | 8.16 |
| 19 | 11        | .399          | 25 | 8                    | 56                | 7.77 |
| 19 | 12        | . <b>03</b> 1 | 49 | 2                    | 22                | 8.36 |
| 19 | 13        | .035          | 31 | 3                    | 36                | 7.85 |
| 19 | 14        | .143          | 14 | 1                    | 22                | 7.93 |
| 19 | 15        | .058          | 50 | 1                    | 22                | 8.14 |

#### OUTFALL 016

|        |      |    | Conteller<br>Sangleber |      |                |
|--------|------|----|------------------------|------|----------------|
| 9      | 0.94 | 13 | 3                      | 7.91 | <i>&lt;</i> 10 |
| (2) 29 | 1.37 | 78 | -                      |      |                |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

.

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

### STORM WATER RUNOFF PONDS

| PARAMETE. |          | 4       | MINS STATES |
|-----------|----------|---------|-------------|
|           |          | OMO AVG | DHIDEMAD    |
| FLOW      | QRTLY. * | N.A.    | N.A         |
| TSS       | QRTLY *  | N.A.    | N.A.        |
| COD       | QRTLY *  | N.A.    | N.A.        |
| O and G   | QRTLY *  | 15      | 20          |
| pН        | QRTLY*   | >6.0    | >6.0        |

\* SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### **COOLING TOWER BYPASS**

| PARAMADE | RILES DRAG | The Second | ITS REAL    |
|----------|------------|------------|-------------|
|          |            | AMO AND A  | DATE ENANCE |
| FLOW     | QRTLY *    | N.A.       | <u>N.A.</u> |
| TSS      | QRTLY *    | 30         | 100         |
| O and G  | _QRTLY *   | 15         | 20          |
| pН       | QRTLY *    | 6.0 - 9.0  | 6.0 - 9.0   |
| TOC      | OPTLY *    | NΔ         | 100         |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: (2) High TSS resulted in monthly average being exceeded. High TSS due to loss of poly feed.

#### File C170:0005

Page 3 of 4

CA-0320 01/15/04

## UOTCR040042 00958493 (001)

## UOTCR 05-011

March 9, 2005

Steven S. Weiss Mail Code 602

## Callaway NPDES Monthly Report

Attached is the NPDES Monthly Report for February 2005. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 (2 copies) R/C Clerk A160.0998



TOTAL PAGES 5

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:31 PM

UOTCR050011 (000)

## PERMIT NO. MO-0098001 **REPORTING PERIOD** FEBRUARY, 2005 PAGE 1 of 4

"1" - 5 15 C THE S. C. 100. 4"7 3

...... T. 

## NPDES MONITORING REPORT

## OUTFALL 001 **RADWASTE SYSTEM**

199.01 44 TLAC

| DATE | SOURCE      | FLOW,                                  | ((.4 TSS<br>(mg/1)                    | Boron (mg/I) | <b>pH</b>                                     | PARAMETER        | FREQ            | 7-16- 11<br>11-1-1 | MITS         |
|------|-------------|----------------------------------------|---------------------------------------|--------------|-----------------------------------------------|------------------|-----------------|--------------------|--------------|
| 1    | 66          | .090                                   | 30                                    | 9            | 8.62                                          |                  | l'interiore and | MONTHL             | DAILY        |
| 3    | 7           | .093                                   | 12                                    | 10           | 6.61                                          | 11-14 Mars       | 1.1.1           | AVERAGE            | MAX          |
| 4    | 6           | .092                                   | - 11                                  | 7            | 6.13                                          | FLOW (MGD)       | EB              | N.A.               | N.A.         |
| 5    | 7           | .093                                   | 10                                    | 16           | 8.45                                          | pH (STD)         | EB              | 6.0-9.0            | 6.0-9.0      |
| 6    | 6           | .093                                   | 14                                    | 6            | 7.77                                          | TSS (mg/1)       | EB              | 30                 | 45           |
| - 10 | 7           | .093                                   | 13                                    | 10           | 8.46                                          | Boron (mg/l)     | EB              | N.A.               | N.A.         |
| 11   | 6           | .092                                   | 10                                    | 9            | 8.45                                          | TRC (ug/l)       | Monthly         | N.A.               | 190          |
| 15   | 7           | .091                                   | 35 (1)                                | <.3          | 8.85                                          | BOD (mg/l)       | Monthly         | N.A.               | N.A.         |
| 23   | 6           | .090                                   | 6                                     | 5            | 8.66                                          | O&G (mg/1)       | Monthly         | 15                 | 20           |
| 25   | 7           | .093                                   | 10                                    | 63           | 8.83                                          | ALL SAMPLES      | ANALYZE         | D BY Ameren        | UE Callaway  |
| 26   | 6           | .093                                   | 2                                     | 124          | 8.32                                          | Plant OPERATIC   | NS LABOR        | ATORY USD          | NG           |
|      |             |                                        |                                       |              |                                               | METHODS SPE      | CIFIED UN       | DER IOCSR 2        | 0-7.015      |
|      |             |                                        |                                       |              |                                               |                  |                 | κ.                 |              |
|      |             |                                        | · · · · · · · · · · · · · · · · · · · |              |                                               | SOURCES          |                 |                    |              |
|      |             |                                        |                                       |              | <u>                                      </u> | I = WASTEM       | ONITOR T        | ANK A              |              |
|      |             |                                        |                                       |              | <b> </b>                                      | 2 = WASTEM       | ONITOR T        | ANKB               |              |
| _    |             |                                        |                                       |              |                                               | 3 = STEAM G      |                 |                    | N            |
|      |             |                                        |                                       |              | h                                             | 4 = SEC. LIQ.    |                 |                    |              |
|      |             |                                        |                                       |              |                                               | -                |                 |                    |              |
|      |             |                                        |                                       |              |                                               | 5 = SEC. LIQ.    |                 |                    |              |
|      |             |                                        |                                       |              |                                               | 6 = LIQ. RAD     | · · ·           |                    |              |
|      |             |                                        |                                       |              |                                               | 7 = LIQ. RAD     | WASTE DI        | SCHARGE TA         | NK B         |
|      |             | ,                                      |                                       |              | ·                                             | EB = EACH BA     | ТСН             |                    |              |
|      |             |                                        |                                       |              |                                               | Date BO          | D (mg/l)        | TRC (ug/l)         | 0&G (mg/l)   |
|      | · · · · · · |                                        |                                       |              |                                               | 3                | 226             | 20                 | 2            |
|      |             |                                        | ·····                                 | h            |                                               |                  |                 |                    |              |
|      |             | ,                                      |                                       |              | <u> </u>                                      |                  |                 |                    |              |
|      | ·           | ······································ |                                       |              | <b> </b> {                                    | COMMENTS:        | l               | · · ·              |              |
|      |             | ·                                      |                                       | +            | {{                                            | (1) Exceeds mon  | hiv average     | limit but is hel   | ow the daily |
|      |             |                                        |                                       |              |                                               | max limit. Actua |                 |                    |              |
|      |             |                                        |                                       |              |                                               |                  |                 |                    |              |
|      |             |                                        |                                       |              |                                               |                  |                 |                    |              |
|      |             |                                        | · · · · · · · · · · · · · · · · · · · | <u> </u>     | · · · · · · · · · · · · · · · · · · ·         |                  |                 |                    |              |

## File C170.0005

Page 1 of 4

CA-0320 01/11/05

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:31 PM

UOTCR050011 (000)

## PERMIT NO. MO-0098001 REPORTING PERIOD FEBRUARY, 2005 PAGE 2 of 4

....

## NPDES MONITORING REPORT

## OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLON<br>(MP) | ULLIP<br>(LI)ST 917 | T.C.<br>(1270) |
|------|--------------|---------------------|----------------|
|      | 2.0          | 62                  | <10            |
| 2    | 4.1          | 64                  | 60             |
| 3    | 6.1          | 67                  | 50             |
| 4    | 5.1          | 73                  | 60             |
| 5    | 6.7          | . 74                | 100            |
| 6    | 7.6          | 72                  | 70             |
| 7    | 3.6          | 74                  | 130            |
| 8    | 2.2          | 63                  | 100            |
| 9    | 3.2.         | .62                 | 40             |
| 10   | 3.9          | 66                  | <10            |
| 11   | 3.4          | 68                  | 180            |
| 12   | 3.5          | 72                  | 70             |
| 13   | 7.6          | 75                  | 40             |
| 14   | 3.7          | 75                  | 70             |
| 15   | 5.4          | 77                  | 70             |
| 16   | 3.2          | 68                  | <10            |
| 17   | 3.0          | 67                  | 100            |
| 18   | 1.0          | 67                  | 180            |
| 19   | 2.2          | 64                  | 110            |
| 20   | 3.5          | 72                  | 10             |
| 21   | 2.8          | 73                  | 100            |
| 22   | 6.1          | 67                  | 120            |
| 23   | 5.6          | .67                 | 100            |
| 24   | 5.9          | 65                  | 120            |
| 25   | 6.6          | 73                  | 130            |
| 26   | 7.5          | 70                  | 140            |
| 27   | 6.6          | 70                  | 150            |
| 28   | 5.4          | 70                  | 180            |
|      |              |                     |                |
|      |              |                     |                |
|      |              |                     |                |
|      |              |                     |                |

| DAVIES | 48S<br>(DD) | 10255<br>(055700) |
|--------|-------------|-------------------|
| 7      | 57          | 1576              |
| 14     | 69          | 2988              |
| 21     | 96          | 2312              |
| 28     | 51          | 1364              |
|        |             |                   |
|        |             |                   |

| ITY, 072 | - S1Gna<br>- (1170) | (02:20)<br>(1117/10) |
|----------|---------------------|----------------------|
| 7        | 742                 | 1                    |
|          |                     |                      |

| IPANIA MATSONALS        | 1.1.1.20) | 101            | VI0/S         |
|-------------------------|-----------|----------------|---------------|
|                         |           | 5.02<br>ANIC:- | DALLY<br>KANK |
| FLOW                    | CONT.     | N.A.           | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY      | N.A.           | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.           | N.A.          |
| OIL AND GREASE          | QRTLY (1) | 15             | 20            |
| SULFATE                 | QRTLY.(1) | N.A.           | N.A.          |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F          | 110°F         |
| pH                      | CONT.     | 6.0 - 9.0      | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.           | 190 ug/L      |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

## File C170.0005

CA-0320 01/11/05

## PERMIT NO. MO-0098001 REPORTING PERIOD <u>FEBRUARY, 2005</u> PAGE <u>3 of 4</u>

### NPDES MONITORING REPORT

<u>OUTFALL 003</u> WATER TREATMENT PLANT NO DISCHARGE

## OUTFALL 007

| DATE | FLOW (MGD) | TSS 7 | -BOD 1 | <u>्र</u> स् |
|------|------------|-------|--------|--------------|
| 10   | .177       | 4     | 4      | 7.89         |
| •    |            |       |        |              |
|      | •          |       |        | •            |
|      |            |       |        |              |
|      |            |       |        |              |
|      |            |       |        | •            |

#### SANITARY WASTE

| PARAMETER | de solor  | Y. Sorth  | TS (Helder A) 2. |
|-----------|-----------|-----------|------------------|
|           | FREQ      | MO AVC    | WELL'AVG.        |
| FLOW      | QRTLY (i) | N.A.      | N.A.             |
| TSS       | QRTLY (I) | 70        | 110              |
| BOD       | QRTLY (I) | 45        | 65               |
| рН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0        |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

|        | OUTFALL 009            |  |  |  |  |  |
|--------|------------------------|--|--|--|--|--|
| INTAKE | INTAKE HEATER BLOWDOWN |  |  |  |  |  |
|        | DISCUADOR              |  |  |  |  |  |

#### OUTFALLS 010 - 015

| DATE | OUTFALL  | ^FLOW<br>(MGD) | (TSS')<br>(mg/1) | 0 and G<br>(mg/1) | COD<br>(mg/l) | рН   |
|------|----------|----------------|------------------|-------------------|---------------|------|
| 7    | 10       | .035           | 6                | 2                 | 22            | 8.25 |
| 7    | <u>n</u> | .161           | 42               | 2                 | 20            | 8.35 |
| 7    | 12       | .012           | 29               | 2                 | 20            | 8.54 |
| 7    | 13       | .014           | 14               | 3                 | 12            | 8.07 |
| 7    | 14       | .058           | 16               | .2                | 20            | 8.25 |
| 7    | 15       | .023           | 16               | 0                 | 5             | 8.55 |

## OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>_(mg/l) | 0 and C<br>(mg/1) | рН   | TRC<br>(4g/l) |
|------|---------------|----------------|-------------------|------|---------------|
| 10   | 1.62          | 10             | 2                 | 7.86 | <10           |
|      |               |                |                   |      |               |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| PARAMETER? | KAPREO S. | COMITS   |           |  |
|------------|-----------|----------|-----------|--|
| 「お客でのやいす。  | e 1       | MO. AVG. | DALLY MAX |  |
| FLOW       | QRTLY.(1) | N.A.     | N.A.      |  |
| TSS        | QRTLY (1) | N.A.     | N.A.      |  |
| COD        | QRTLY (1) | N.A.     | N.A.      |  |
| O and G    | QRTLY (1) | 15       | 20        |  |
| рН         | QRTLY(1)  | >6.0     | >6.0      |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER | FREQ          | Let L     | LIMITS     |  |  |
|-----------|---------------|-----------|------------|--|--|
| - ALT AL  | -1, 1, 7, 29, | MO AVG    | DAILY MAXA |  |  |
| FLOW      | QRTLY (1)     | N.A.      | N.A.       |  |  |
| TSS       | QRTLY (1)     | 30        | 100        |  |  |
| O and G   | QRTLY (1)     | -15       | 20         |  |  |
| pH        | QRTLY (1)     | 6.0 - 9.0 | 6.0 - 9.0  |  |  |
| TRC       | ORTLY (1)     | N.A.      | 190        |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: \_\_\_\_

File C170.0005

Page 3 of 4

CA-0320 01/11/05

INFORMATION ONLY COPY ISSUED ON 3/11/2009 @ 3:31 PM

UOTCR050011 (000)

## PERMIT NO. MO-0098001 REPORTING PERIOD <u>FEBRUARY, 2005</u> PAGE <u>4 of 4</u>

## NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

pproved Preparer Plant Manager

Page 4 of 4

CA0320 01/11/05

UOTCR050011 (000)

## UOTCR 05-019

June 14, 2005

Steven S. Weiss Mail Code 602

## Callaway NPDES Monthly Report

Attached is the NPDES Monthly Report for May, 2005. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998



TOTAL PAGES 5

## PERMIT NO. MO-0098001 REPORTING PERIOD <u>MAY. 2005</u> PAGE <u>1 of 4</u>

## NPDES MONITORING REPORT

## OUTFALL 001 RADWASTE SYSTEM

| DATE | SOURCE | FLOW - | TSS<br>(mg/l) | Boron ; | <b>11</b> |
|------|--------|--------|---------------|---------|-----------|
| 3    | 7      | .092   | 9             | 63      | 8.40      |
| 7    | 7      | .093   | 11            | 62      | 8.77      |
| 10   | 6      | .090   | 18            | 19      | 8.58      |
| 19   | .7     | .090   | 32            | 66      | 8.98      |
| 22   | 6      | .092   | 12            | 0.3     | 8.53      |
| 26   | 7      | .094   | 12            | 78      | 8.78      |
| 29   | 6      | .092   | 7             | 133     | 8.62      |
|      |        |        |               |         |           |
|      |        |        |               |         |           |
|      |        |        |               |         |           |
|      |        | ·      |               |         |           |
|      |        |        |               |         |           |
|      |        |        |               |         |           |
|      |        |        |               |         |           |
|      |        | ,      |               |         |           |
|      |        |        |               |         |           |
|      |        |        | ·             |         |           |
|      |        |        |               |         |           |
|      |        |        |               |         |           |
|      |        |        |               |         |           |
|      |        |        |               |         |           |

| PARAMETER    | FRED    | Lin                |             |
|--------------|---------|--------------------|-------------|
|              | ******  | MONTHLY<br>AVERAGE | DADA<br>MAX |
| FLOW (MGD)   | EB      | N.A.               | N.A.        |
| pH (STD)     | EB      | 6.0-9.0            | 6.0-9.0     |
| TSS (mg/1)   | EB      | 30                 | 45          |
| Boron (mg/l) | EB      | N.A.               | N:A.        |
| TRC (ug/l)   | Monthly | N.A.               | 190         |
| BOD (mg/l)   | Monthly | N.A.               | 'N.A.       |
| O&G (mg/1)   | Monthly | 15                 | 20          |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### SOURCES

1 = WASTE MONITOR TANK A

2 = WASTE MONITOR TANK B

3 = STEAM GENERATOR BLOWDOWN

4 = SEC. LIQ. WASTE MONITOR TANK A

5 = SEC. LIQ. WASTE MONITOR TANK B

6 = LIQ. RADWASTE DISCHARGE TANK A

7 = LIQ. RADWASTE DISCHARGE TANK B

EB = EACH BATCH

| F.(Date | BOD (mg/l) | TRC (ug/l)* | O&G (mg/) |
|---------|------------|-------------|-----------|
| 19      | ***        | 20          | 5         |
| 25      | 32         |             |           |
|         |            | •           |           |
| COMMEN  | TS:        |             |           |

File C170.0005

Page 1 of 4

### CA-0320 01/1.1/05

## PERMIT NO. MO-0098001 REPORTING PERIOD MAY, 2005 PAGE 2 of 4

----

1

### NPDES MONITORING REPORT

### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP'<br>(MAX-9F | TRC      |
|------|---------------|------------------|----------|
| 1    | 4.2           | 70               | 100      |
| 2    | 5.8           | 72               | . 30 (2) |
| 3    | 0             | 74               | 50       |
| 4    | 3.6           | 75               | 50       |
| 5    | 3.8           | 79               | 140      |
| 6    | 3.9           | 81               | 50       |
| 7    | 3.1           | 83               | 92       |
| 8    | 3             | 84               | 50       |
| 9    | 4             | 85               | 50       |
| 10   | 5.6           | 86               | 70       |
| 11   | 7.1           | 85               | 50       |
| 12   | 6.3           | 85               | - 50     |
| 13   | 5.2           | 84               | 55       |
| 14   | 6             | 80               | 64       |
| 15   | 5.8           | 75               | 59       |
| 16   | 4.8           | 79               | 50       |
| 17   | 4             | 82               | 50       |
| 18   | 4.1           | 84               | 50       |
| 19   | 6.8           | 82               | 50       |
| 20   | 6.5           | 84               | 50       |
| 21   | 5.3           | 82               | 50       |
| 22   | 6.1           | 85               | 30 (2)   |
| 23   | 4.1           | 82               | 133      |
| 24   | 3.7           | 82               | 50       |
| 25   | 5.1           | 81               | 58       |
| 26   | 5.8           | 80               | 50       |
| 27   | 5.6           | 80               | 50       |
| 28   | 6.1           | 80               | 50       |
| 29   | 6.3           | 89               | 74       |
| 30   | 6.1           | 83 <sup>1</sup>  | 50       |
| 31   | 6.4           | 83               | 35 (2)   |

| DATRO | TSS  | TDS  |
|-------|------|------|
| 2     | 1544 | 23   |
| 9     | 2414 | 86   |
| 16    | 1212 | 61   |
| 23    | 1608 | 25   |
| 30    | 2416 | 36 . |
|       |      |      |
|       |      |      |

| DATE | sulface<br>(mg/l) | 0&G<br>(mg/l) |
|------|-------------------|---------------|
| 2    | 854               | 0.4           |
| •    |                   |               |

| PARAMETER               | FREQ      |           | MITS         |
|-------------------------|-----------|-----------|--------------|
|                         | · · · · · | MO.       | DAILY<br>MAX |
| FLOW                    | CONT.     | N.A.      | N.A.         |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.      | N.A.         |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.      | N.A.         |
| OIL AND GREASE          | QRTLY (1) | 15        | 20           |
| SULFATE                 | QRTLY.(I) | N.A.      | N.A.         |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F     | 110°F        |
| рН                      | CONT.     | 6.0 - 9.0 | 6.0 - 9.0    |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.      | 190 ug/L     |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: <u>No pH excursions occurred this month</u> (2) By spectrophotometric method.

. ....

#### File C170.0005

## CA-0320 01/11/05

## PERMIT NO. MO-0098001 REPORTING PERIOD <u>MAY, 2005</u> PAGE <u>3 of 4</u>

## NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

## OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | HOD |      |
|------|---------------|---------------|-----|------|
| 5    | .00001        | 9             | 19  | 7.36 |
|      |               |               |     |      |
|      |               |               |     |      |
|      |               |               |     |      |
|      |               |               |     |      |

#### SANITARY WASTE

| PARAMETERS |           | LIM       | 国際の受益的    |
|------------|-----------|-----------|-----------|
|            | FREQ      | MO AVG"   | WKLY. AVG |
| FLOW       | QRTLY (1) | N.A.      | N.A.      |
| TSS        | QRTLY(1)  | 70        | 110       |
| BOD        | QRTLY (I) | 45        | 65        |
| pH         | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 002 INTAKE HEATER BLOWDOWN NO DISCHARGE

## OUTFALLS 010 - 015

| DATE | OUTFALL- | FLOW             | (mg/1) | O and G<br>(mg/l) | COD<br>(mg/l) | ≓ip <b>H</b> |
|------|----------|------------------|--------|-------------------|---------------|--------------|
| 23   | 10       | .011             | 2      | 2                 | 20 (2)        | 8.31         |
| 9    | 11 ·     | .048             | 17     | 3                 | 25 (2)        | 8.18         |
| 23   | 12       | .004             | 44     | 1                 | 25 (2)        | 8.19         |
| 23   | 13       | .004             | 47     | 3                 | 20 (2)        | 8.35         |
|      | 14       | - NO DISCHARGE - |        |                   |               |              |
| .23  | 15       | .007             | 12     | 1                 | 18 (2)        | 7.53         |

#### OUTFALL 016

| DATE | (MGD) | . TSS<br>(mg/1) | 0 and G<br>(mg/1) | рН   | TRC |
|------|-------|-----------------|-------------------|------|-----|
| 4    | 1.6   | 8               | Ż                 | 7.95 | 50  |
|      |       |                 |                   |      |     |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| PARAMETERS | FREQ      | LIMITS |              |
|------------|-----------|--------|--------------|
|            |           | MOAVG  | DAILY MAX: 1 |
| FLOW       | QRTLY.(1) | N.A.   | N.A.         |
| TSS        | QRTLY (1) | N.A.   | N.A.         |
| COD        | QRTLY (1) | N.A.   | N.A.         |
| O and G    | QRTLY (1) | 15     | 20           |
| рН         | QRTLY(1)  | >6.0   | >6.0         |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETE                                 | R FREQ    | LIMITS    |             |  |
|------------------------------------------|-----------|-----------|-------------|--|
| 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | B. 12     | MO. AVG.  | · DAILY MAX |  |
| FLOW                                     | QRTLY (1) | N.A.      | N.A.        |  |
| TSS                                      | QRTLY (1) | 30        | 100         |  |
| O and G                                  | QRTLY (1) | 15        | 20          |  |
| pН                                       | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0   |  |
| TRC                                      | ORTLY (1) | N.A.      | 190         |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COMMENTS: \_

(2) Samples exceeded the 28 days from date of sample to time of

analysis.

#### File C170.0005

Page 3 of 4

### CA-0320 01/11/05

¥

## PERMIT NO. MO-0098001 **REPORTING PERIOD MAY, 2005** PAGE 4 of 4

1

## NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Reviewe pproved

Plant Manager

Page 4 of 4

CA0320 01/11/05

## UOTCR 05-035

September 12, 2005

Steven S. Weiss Mail Code 602

## Callaway NPDES Monthly Report

Attached is the NPDES Monthly Report for August, 2005. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998



PERMIT NO. MO-0098001 REPORTING PERIOD <u>AUGUST, 2005</u> PAGE <u>1 of 5</u>

### NPDES MONITORING REPORT

### OUTFALL 001 RADWASTE SYSTEM

| DATE                                  | SOURCE                                | FLOW<br>(MGD) | TSS<br>(mg/l) | Boron<br>(mg/l)         | pH   | PARAMETER     | FREQ.      | LIA          | 1ITS       |
|---------------------------------------|---------------------------------------|---------------|---------------|-------------------------|------|---------------|------------|--------------|------------|
| 2                                     | 6                                     | .092          | 4.4           | 17                      | 8.57 |               | 1          | MONTHLY      |            |
| 4                                     | 6                                     | .052          | 4.9           | 48                      | 6.65 |               |            | AVERAGE      | MAX.       |
| 6                                     | 6                                     | .092          | 3.2           | 0.3                     | 8.94 | FLOW (MGD)    | EB         | N.A.         | N.A.       |
| 7                                     | 7                                     | .094          | 4             | 19                      | 8.26 | pH (STD)      | EB         | 6.0-9.0      | 6.0-9.0    |
| 10                                    | 6                                     | .091          | 8.4           | 29                      | 8.54 | TSS (mg/1)    | EB         | 30           | 45         |
| 13                                    | 7                                     | .093          | 4.1           | 32                      | 8.90 | Boron (mg/l)  | EB         | N.A.         | N.A.       |
| 19                                    | 6                                     | .093          | 4.5           | 17                      | 8.81 | TRC (ug/l)    | Monthly    | N.A.         | 190        |
| 23                                    | 7                                     | .093          | 3.3           | 7                       | 8.51 | BOD (mg/l)    | Monthly    | N.A.         | N.A.       |
| 26                                    | 6                                     | .093          | 3.9           | 28                      | 6.86 | O&G (mg/1)    | Monthly    | 15           | 20         |
| 28                                    | 7                                     | .094          | 6             | 45                      | 7.56 | ALL SAMPLES   | ANALYZEI   | BY Ameren U  | E Callaway |
| 30                                    | 6                                     | .093          | 4.8           | 56                      | 6.89 | Plant OPERATI | ONS LABOR  | ATORY USIN   | 6          |
|                                       |                                       |               |               |                         |      | METHODS SPE   | CIFIED UNI | DER 10CSR 20 | 7.015      |
|                                       |                                       |               |               |                         |      |               |            | 5 .          |            |
|                                       |                                       |               |               |                         | · ·  | SOURCES       |            |              |            |
|                                       |                                       |               |               |                         |      | I = WASTER    | MONITOR T  | ANK A        |            |
|                                       |                                       |               |               | · · · · · · · · · · · · |      | 2 = WASTEN    | MONITOR T  | ANK B        |            |
|                                       |                                       |               |               | ·                       |      | 3 = STEAM (   | JENERATOR  | BLOWDOWN     | Į.         |
| · · · · ·                             |                                       |               |               |                         |      | 4 = SEC. LIQ  | . WASTE MO | ONITOR TANK  | ( <b>A</b> |
|                                       |                                       |               |               |                         |      | 5 = SEC. LIQ  |            | •            |            |
|                                       | · · · · · · · · · · · · · · · · · · · |               |               |                         |      | 6 = LIQ. RAE  |            |              |            |
| · · · · · · · · · · · · · · · · · · · |                                       |               | ·             |                         |      | 7 = LIQ. RAE  |            |              |            |
| ·                                     |                                       | ······        |               |                         |      | EB = EACH BA  |            |              |            |
|                                       | · · · · · · · · · · · · · · · · · · · |               |               |                         |      | Date B        |            | TRC (ug/l)   | 0&G (mg/   |
|                                       |                                       |               |               |                         |      | 4             |            |              |            |
|                                       |                                       |               | ······        |                         |      | 1             |            | 50           | 2.2        |
| <u> </u>                              |                                       |               |               |                         |      |               |            |              |            |
|                                       |                                       | ······        |               |                         |      |               |            |              |            |
|                                       |                                       |               | -             |                         |      | 00M (8) 70    |            | •            |            |
|                                       |                                       |               | ·····         |                         |      | COMMENTS:     |            |              |            |
|                                       |                                       |               |               |                         |      |               |            |              |            |
|                                       |                                       |               |               | ,                       |      |               |            |              | <u> </u>   |
| •                                     |                                       |               |               |                         |      |               |            |              |            |

File C170.0005

CA-0320 01/11/05

#### PERMIT NO. MO-0098001 REPORTING PERIOD AUGUST, 2005 PAGE 2 of 5

#### NPDES MONITORING REPORT

#### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>. (ug/l) |
|------|---------------|-----------------|-----------------|
| 1    | 6             | 92              | 50              |
| .2   | . 8           | 95              | 50              |
| 3    | 8.8           | 91              | <50             |
| 4    | 10            | 88              | 50              |
| 5    | 9.2           | 91              | 50              |
| 6    | 5.7           | 88              | 50              |
| 7    | 8.2           | 87              | <50             |
| 8    | 7.7           | 90              | 50              |
| 9    | 6.7           | 92              | 50              |
| 10   | 5.3           | .92             | 50              |
| 11.  | 6.3           | 92              | 50              |
| 12   | 7.0           | 89              | 50              |
| 13   | 7.9           | 90              | 50              |
| 14   | 8.4           | 85              | 50              |
| 15   | 8.4           | - 84            | . 77            |
| 16   | 7.8           | 85              | 50              |
| 17   | 4.3           | 87              | 50              |
| 18   | 7.1           | 92              | 50              |
| 19   | 7.3           | 94              | 50              |
| 20   | 8.0           | 88              | 50              |
| 21   | 9.3           | 90              | 50              |
| 22   | 6.9           | 90              | <50             |
| 23   | 9.2           | 85              | <50             |
| 24   | 5.6           | 85              | <50             |
| 25   | 8.6           | 87              | 50              |
| 26   | 8.7           | 88              | 50              |
| 27   | 9.3           | 86              | 50              |
| 28   | 9.7           | 87              | 50              |
| 29   | 5.8           | 87              | 50              |
| 30   | 7.7           | 86              | <50             |
| 31   | 8.2           | .85             | <50             |

| DATE | TSS<br>(mg/l) | TD\$<br>(mg/l) |
|------|---------------|----------------|
| 1    | 48            | 2088           |
| 8    | 94            | 1340           |
| 15   | 62            | 1709           |
| - 22 | 28            | 1448           |
| 29   | 25            | 616            |

| DATE | Sulfate<br>(mg/l) | 0&G<br>(mg/l) |
|------|-------------------|---------------|
| 8    | 1000              | 5.6           |
|      | •                 |               |

| PARAMETER               | FREQ      | LIMITS      |              |
|-------------------------|-----------|-------------|--------------|
|                         |           | MO.<br>AVG. | DAILY<br>MAX |
| FLOW                    | CONT.     | N.A.        | N.A.         |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.         |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.         |
| OIL AND GREASE          | QRTLY (1) | 15          | 20           |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.         |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F        |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L     |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

#### File C170.0005

#### **PERMIT NO. MO-0098001 REPORTING PERIOD AUGUST, 2005** PAGE 3 of 5

### NPDES MONITORING REPORT

### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL.007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | BOD<br>(mg/l) | рН   |
|------|---------------|---------------|---------------|------|
| 18   | .0006         | 18            |               |      |
| 28   | .0006         | 36            | 3             | 8.98 |
|      |               |               |               |      |
|      | <u> </u>      | 1             |               |      |
|      |               |               |               |      |
|      |               |               |               |      |

#### SANITARY WASTE

| PARAMETER | 1         | LIM       | TS (mg/1)  |
|-----------|-----------|-----------|------------|
|           | FREQ      | MO. AVG.  | WELY. AVG. |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |
| TSS       | QRTLY (1) | .70       | 110        |
| BOD       | QRTLY (1) | 45        | 65         |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

# OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

| DATE | OUTPALL | FLOW<br>.(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/l) | COD<br>(mg/l) | pH   |
|------|---------|----------------|---------------|-------------------|---------------|------|
| 17   | 10      | .065           | 9.6           | 1.5               | 33            | 8.59 |
| 17   | 11      | .298           | 19.1          | 1.5               | 33            | 8.01 |
| 17   | 12      | .023           | 39            | 27                | 38            | 8.84 |
| .17  | 13      | .026           | 7.3           | 1                 | 33            | 8.77 |
| 17   | 14      | .107           | 41            | 1                 | . 13          | 8.04 |
| 17   | 15      | .043           | 19            | 1.5               | 35            | 8.65 |

### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ       | L        | MITS      |
|-----------|------------|----------|-----------|
|           |            | MO. AVG. | DAILY MAX |
| FLOW      | QRTLY. (1) | N.A.     | N.A.      |
| TSS       | QRTLY (1)  | N.A.     | N.A.      |
| COD       | QRTLY (1)  | N.A.     | N.A.      |
| O and G   | QRTLY (1)  | N.A.     | N.A.      |
| pH        | QRTLY(1)   | >6.0     | >6.0      |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### OUTFALL 016

| DATE | MGD) | 7.55<br>(mg/1) | O and G<br>(mg/l) | þН   | TRC<br>(ug/l) |
|------|------|----------------|-------------------|------|---------------|
| 8    | 2.17 | 12             | 1.4               | 8.34 | 50            |
|      |      |                |                   |      |               |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### COOLING TOWER BYPASS

| PARAMETER | FREQ      | L         | MITS      |
|-----------|-----------|-----------|-----------|
|           |           | MO. AVG.  | DAILY MAX |
| FLOW      | QRTLY (1) | N.A.      | N.A.      |
| TSS       | QRTLY (I) | 30        | 100       |
| O and G   | QRTLY (1) | 15        | 20        |
| pН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |
| TRC       | ORTLY (1) | N.A.      | 190       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: Outfall 016 TRC results on Attachment 1.

File C170.0005

Page 3 of 5

CA-0320 01/11/05

PERMIT NO. MO-0098001 REPORTING PERIOD<u>AUGUST, 2005</u> PAGE <u>4 of 5</u>

#### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Review oved Operations Manager

Page 4 of 5

CA0320 01/11/05

#### PERMIT NO. MO-0098001 REPORTING PERIOD AUGUST, 2005 PAGE 5 of 5

### NPDES MONITORING REPORT

### OUTFALL 016 COOLING TOWER BYPASS AFTER ADDITION FREE AVAILABLE CHLORINE (FAC) AFTER ADD SAMPLE RESULTS AND TOTAL RESIDUAL CHLORINE (TRC)

| Date       | <u>TRC (mg/l)</u>                     |
|------------|---------------------------------------|
| 08/16/2005 | 50                                    |
| 08/17/2005 | <50                                   |
| 08/18/2005 | 50                                    |
| 08/23/2005 | 92                                    |
|            | · · · · · · · · · · · · · · · · · · · |
|            | · · · ·                               |
|            |                                       |
|            |                                       |
|            | · · · · · · · · · · · · · · · · · · · |
|            |                                       |
|            |                                       |
|            |                                       |
|            |                                       |

Page 5 of 5

CA0320 01/11/05

### UOTCR 05-042

December 6, 2005

Steven S. Weiss Mail Code 602

### **Callaway NPDES Monthly Report**

Attached is the NPDES Monthly Report for November, 2005. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998



#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) NOVEMBER, 2005 PAGE 1 OF 4

NPDES MONITORING REPORT

#### SOURCE DATIS TD. .08 10 7.15 2 7 8 6 .055 6 51 7.12 3 16 .091 67 8.08 7 6 .085 12 81 7.89 10 6 12 12 7 .093 3 8.86 15 6 .092 11 7 6.96 16 64 6.82 17 7 .092 18 88 6 .094 6 6.6 19 7 .085 22 238 7.23 22 6 .093 11 399 7.01 23 7 .094 17 136 7:27 13 25 .093 483 6.61 6 28 7 .093 8 Ó.3 6.84 2 29 6 .093 11 6.56

#### OUTFALL 001 RADWASTE SYSTEM

| PARAMETER    | FREO    | 21                  | 16              |
|--------------|---------|---------------------|-----------------|
|              |         | MONTELAT<br>AVENAGE | DADAT:<br>L'ANA |
| FLOW (MGD)   | EB      | N.A.                | N.A.            |
| pH (STD)     | EB      | 6.0-9.0             | 6.0-9.0         |
| TSS (mg/1)   | EB      | 30                  | 45              |
| Boron (mg/l) | EB      | N.A.                | N.A.            |
| TRC (ug/l)   | Monthly | N.A.                | 190             |
| BOD (mg/l)   | Monthly | N.A.                | N.A.            |
| O&G (mg/1)   | Monthly | 15                  | 20              |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### SOURCES

! = WASTE MONITOR TANK A

2 = WASTE MONITOR TANK B

3 = STEAM GENERATOR BLOWDOWN

4 = SEC. LIQ. WASTE MONITOR TANK A

5 = SEC. LIQ. WASTE MONITOR TANK B

6 = LIQ. RADWASTE DISCHARGE TANK A

7 = LIQ. RADWASTE DISCHARGE TANK B

EB = EACH BATCH

| 010   | BOD(mell) | ATRC(USA) | (0&G (m/) |
|-------|-----------|-----------|-----------|
| 2     | 5         | 150       | 7         |
| 10    |           | 20        | •         |
|       |           |           |           |
| COMME | NTS:      |           |           |
|       |           |           |           |
|       |           |           |           |
|       |           |           |           |
|       |           |           |           |

File C170.0005

CA-0320 01/11/05

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) NOVEMBER, 2005 PAGE 2 OF 4

and I state to a los

#### **NPDES MONITORING REPORT**

### OUTFALL 002 COOLING TOWER BLOWDOWN

| DY TEL | (LIOT) | P  | 17-01P<br>17-01P |     |
|--------|--------|----|------------------|-----|
| 1      | 0.4 (  | 2) | 63               | <50 |
| 2      | 6.4    |    | 59               | <50 |
| 3      | 3.8    |    | 59               | <50 |
| 4      | 0 (    | 2) | 59               | <50 |
| 5      | 0.6 (  | 2) | 62               | ⊲0  |
| 6      | 0.6 (  | 2) | 63               | <50 |
| 7.     | 0.3 (  | 2) | 56 <sup>.</sup>  | <50 |
|        | 4.5    |    | 60               | <50 |
| . 9    | 5.7    |    | 65               | <50 |
| 10     | 8.9    |    | 54               | <50 |
| 11     | 6.3    |    | 57               | <50 |
| 12     | 8.0    |    | 63               | <50 |
| 13     | 6.2    |    | 56               | <50 |
| 14     | 1.2    |    | 52               | <50 |
| 15     | 0 (2   | 2) | 50               | <50 |
| 16     | 0 (2   | 2) | 33               | <50 |
| 17     | 0 (2   | 2) | 55               | <50 |
| 18     | 0.3 (2 | 2) | 47               | <50 |
| 19     | 0 (2   | 2) | 61               | <50 |
| 20     | 1.7    |    | 61               | <50 |
| 21     | 1.6    |    | 65               | <50 |
| 22     | 4.1    |    | 65               | <50 |
| 23     | 4.2    |    | 69               | ব্য |
| 24     | 4.3    |    | 71               | <50 |
| 25.    | 4.3    | Ī  | 66               | <50 |
| . 26   | 4.3    |    | 75               | <50 |
| 27     | 3.5    |    | 79               | <50 |
| 28     | 4.8    | Τ  | 71               | <50 |
| 29     | 5.9    |    | 63               | <50 |
| 30     | 5.63   | Ι  | 65               | <50 |

| A NDATE | 155<br>(17/11) |      |
|---------|----------------|------|
| 7       | 253 (3)        | 336  |
| 14      | 7              | 308  |
| 21      | 43             | 1130 |
| 28      | 82             | 1120 |

| DATE | 5-17-25<br>4 (m <sup>-11</sup> )) (c |   |
|------|--------------------------------------|---|
| 14   | 168                                  | 1 |
|      |                                      |   |

| PARAMETER + F)          | FREQ      | See Li    | AITSEN SIN |
|-------------------------|-----------|-----------|------------|
|                         |           | MO.T.     | DAILY MAX  |
| FLOW                    | CONT.     | N.A.      | N.A.       |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.      | N.A.       |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.      | N.A.       |
| OIL AND GREASE          | QRTLY (1) | 15        | 20         |
| SULFATE                 | QRTLY.(1) | N.A.      | N.A.       |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F     | 110°F      |
| pH                      | CONT.     | 6.0 - 9.0 | 6.0 - 9.0  |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.      | 190 ug/L.  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COMMENTS:

| No pH excursions occurred this month                |  |
|-----------------------------------------------------|--|
| (2) Dip Samples.                                    |  |
| (3) Basin Level very low and murky; hard to sample. |  |

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) NOVEMBER, 2005 PAGE 3 OF 4

e

### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL 007

| DAVE | FLOW<br>(MGD) |   | BOD St. | S DH |
|------|---------------|---|---------|------|
| . 16 | .07           | 4 | 5       | 7.95 |
| ·    |               | · |         |      |
|      |               |   | ·       | ·    |
|      |               |   |         | ···· |
|      | · · · · ·     |   |         |      |

#### SANITARY WASTE

| PARAMETER |           |           | ITS (mgl) Ref. State |
|-----------|-----------|-----------|----------------------|
|           | FREOS     | MOMONAVC. | WKLYSAYC,            |
| FLOW      | QRTLY (1) | N.A.      | N.A.                 |
| TSS       | QRTLY (1) | 70        | L10 ·                |
| BOD       | QRTLY (1) | 45        | 65                   |
| pН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0            |

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

| DATE | OUTFALL | (MGD) | TSS<br>S(mg/1) | 60, and G | CODE: | <b>新</b> |
|------|---------|-------|----------------|-----------|-------|----------|
| 14   | 10      | .038  | 5              | l         | 40    | 8.36     |
| 14   | 11      | .173  | 29             | 1         | 43    | 8.39     |
| 14   | 12      | .013  | 28             | 3 (2)     | 23    | 9.42     |
| 14   | 13      | .015  | 103            | l         | 40    | 9.56     |
| 14   | 14      | .062  | 69             | <u> </u>  | 48    | 8.82     |
| 14   | 15      | .025  | 11             | 1         | 50    | 8.38     |

#### OUTFALL 016

| ANDATE N | FLOW<br>(MGD) | 101755<br>( <i>mp</i> /1)() | 10 and G | PHILE<br>AND AND AND AND AND AND AND AND AND AND | TRC<br>(ug/l) |
|----------|---------------|-----------------------------|----------|--------------------------------------------------|---------------|
| 14       | 6.8           | 4 ·                         | 1        | 8.32                                             | <50           |
| 21       |               |                             |          |                                                  | 148           |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| PARAMETER     | REAL REO. MIL | 编编和 BEALIMITS WAR AND AND |             |  |
|---------------|---------------|---------------------------|-------------|--|
| 73631年17日1月1日 |               | MO AVG                    | CDAILY/MAX5 |  |
| FLOW          | QRTLY. (I)    | N.A.                      | N.A.        |  |
| TSS           | QRTLY (1)     | N.A.                      | N.A.        |  |
| COD           | QRTLY (1)     | N.A.                      | N.A.        |  |
| O and G       | QRTLY (1)     | 15                        | 20          |  |
| рН            | QRTLY(I)      | >6.0                      | >6.0        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETE        | RAMEREQUE | CARACTER LIMITS SERVICE |            |  |
|-----------------|-----------|-------------------------|------------|--|
| <b>希利拉斯</b> 尼特的 |           | SMOXAVG3                | DAILY/MAXS |  |
| FLOW            | QRTLY (1) | N.A.                    | N.A.       |  |
| TSS             | QRTLY (1) | 30                      | 100        |  |
| O and G         | QRTLY (1) | 15                      | 20         |  |
| рН              | QRTLY (1) | 6.0 - 9.0               | 6.0 - 9.0  |  |
| TRC             | ORTLY (I) | NA                      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COMMENTS:

(2) Sample for oil and grease taken 11-09-05.

File C170.0005

Page 3 of 4

#### CA-0320 01/11/05

**PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) NOVEMBER, 2005** PAGE 4 OF 4

7

#### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

**Spproved** Rev

Plant Manager

Page 4 of 4

CA0320 01/11/05

### **UOTCR 06-009**

March 10, 2006

Steven S. Weiss Mail Code 602

### Callaway NPDES Monthly Report

Attached is the NPDES Monthly Report for February, 2006. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

2 C. A. Riggs

CAR/RSB:lmb

Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>FEBRUARY, 2006</u> PAGE 1 OF 4

### NPDES MONITORING REPORT

#### OUTFALL 001 RADWASTE SYSTEM

| pare e | SOURCE | KLOWA<br>(MGD)                        |    | Alizant<br>Standard                   | pH -   | DE PAVE     |                           | 1923-1923           | 1.       |
|--------|--------|---------------------------------------|----|---------------------------------------|--------|-------------|---------------------------|---------------------|----------|
| 3      | 6      | .081                                  | 20 | 21                                    | 8.42   |             |                           | skostrini<br>Nanoda |          |
| 16     | 7      | .094                                  | 15 | 3                                     | 8.92   |             |                           | CONTRACTOR          |          |
| 24     | 6      | .092                                  | 12 | 8                                     | 6.37   | FLOW (MG    | D) EB                     | N.A.                | N.       |
|        |        |                                       | -  |                                       |        | pH (STD)    | EB                        | 6.0-9.0             | 6.0      |
|        |        |                                       |    |                                       |        | TSS (mg/1)  | EB                        | 30                  | 4        |
|        |        |                                       |    | _                                     |        | Boron (mg/l | ) EB                      | N.A.                | N.       |
|        |        |                                       |    |                                       |        | TRC (ug/l)  | Monthly                   | N.A.                | 19       |
|        |        |                                       |    |                                       |        | BOD (mg/l)  | Monthly                   | N.A.                | N.       |
|        |        |                                       |    |                                       |        | O&G (mg/1)  | ) Monthly                 | 15                  | 2        |
|        |        |                                       |    |                                       |        | ALL SAMP    | LES ANALYZEI              | BY Ameren U         | E Callav |
|        |        |                                       |    | · · · · · · · · · · · · · · · · · · · |        | Plant OPER  | ATIONS LABOR              | ATORY USING         | 3        |
|        |        | · · · · · · · · · · · · · · · · · · · |    |                                       |        | METHODS     | SPECIFIED UNI             | DER 10CSR 20-       | 7.015    |
|        |        |                                       |    |                                       |        |             |                           |                     |          |
|        |        |                                       |    |                                       |        | SOURCES     |                           |                     |          |
|        |        |                                       |    | ······                                |        |             | TE MONITOR TA             | ANK A               |          |
|        |        |                                       |    |                                       |        |             | TE MONITOR TA             |                     |          |
|        | ÷      |                                       |    |                                       |        |             |                           |                     |          |
|        |        |                                       |    |                                       |        |             | M GENERATOR               |                     |          |
|        |        |                                       |    |                                       |        |             | LIQ. WASTE MO             |                     |          |
|        |        |                                       |    |                                       |        | 5 = SEC.    | LIQ. WASTE MO             | DNITOR TANK         | В        |
|        |        |                                       |    |                                       |        | 6 = LIQ.F   | RADWASTE DIS              | CHARGE TAN          | ΚA       |
|        |        |                                       |    |                                       |        | 7 = LIQ.F   | ADWASTE DIS               | CHARGE TAN          | КB       |
|        |        |                                       |    |                                       |        | EB = EACH   | I BATCH                   |                     |          |
|        |        |                                       |    |                                       | ·····  |             |                           |                     | o. Coo   |
|        |        |                                       |    |                                       |        | 3           | 9.99.99.99.99.90.97.97.97 | <50                 | 12       |
|        |        |                                       |    |                                       |        | 16          | 16                        | ·····               |          |
|        |        |                                       |    |                                       |        |             |                           |                     |          |
|        |        |                                       |    |                                       |        | COMMENT     | <u>.</u>                  |                     |          |
|        |        |                                       |    |                                       |        | COMMENT     |                           |                     |          |
|        |        |                                       |    |                                       | ······ |             | <u></u>                   |                     |          |
|        |        |                                       |    |                                       |        |             |                           |                     |          |
|        |        |                                       |    |                                       |        |             |                           |                     |          |
|        |        |                                       |    |                                       |        |             |                           |                     |          |

CA-0320 01/11/05

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>FEBRUARY, 2006</u> PAGE 2 OF 4

#### NPDES MONITORING REPORT

#### OUTFALL 002 COOLING TOWER BLOWDOWN

.

| 8499753776777937<br>8<br>11 | Arrow |     | TIKC 1     |
|-----------------------------|-------|-----|------------|
| -                           |       |     |            |
| 1                           | 4.2   | 73  | <u>111</u> |
| 2                           | 3.4   | 70  | 53         |
| 3                           | 4.3   | 67  | 63         |
| 4                           | 4.2   | 61  | 94         |
| 5                           | 4.3   | 65  | 104        |
| 6                           | 4.4   | 63  | <50        |
| 7                           | 4.3   | 66  | <50        |
| 8                           | 4.3   | 64  | <50        |
| 9                           | 4.2   | 63  | 87         |
| 10                          | 4.3   | 63  | 68         |
| 11                          | 4.3   | 60  | 68         |
| 12                          | 4.2   | 55  | 155        |
| 13                          | 2.8   | 62  | 185        |
| 14                          | 4.1   | 71  | 66         |
| 15                          | 4.1   | 72  | <50        |
| 16                          | 4.9   | 73  | <50        |
| 17                          | 6.8   | 65  | 64         |
| 18                          | 4.4   | 59  | <50        |
| 19                          | 4.3   | 62  | 133        |
| 20                          | 4.2   | 67  | 114        |
| 21                          | 4.1   | 72  | <50        |
| 22                          | 4.3   | 68  | 59         |
| 23                          | 4.9   | 71  | 114        |
| 24                          | 3.6   | .74 | <50        |
| 25                          | 4.2   | 67  | 133        |
| 26                          | 4.7   | 66  | 117        |
| 27                          | 5.0   | 76  | 139        |
| 28                          | 4.0   | 78  | <50        |
| - 20                        | 4.0   | /0  |            |
|                             |       |     |            |
|                             |       |     | لنبسيب     |

| 4000 2384 |
|-----------|
|           |
|           |
| 2168      |
| 2028      |
| 2024      |
|           |

| 6 | 1226 | 14 |   |
|---|------|----|---|
|   |      |    | - |

|                         |           | 1995 - 1997<br>1997 - 1997<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 |           |
|-------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|
| FLOW                    | CONT.     | N.A.                                                                                                                              | N.A.      |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.                                                                                                                              | N.A.      |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.                                                                                                                              | N.A.      |
| OIL AND GREASE          | QRTLY (1) | 15                                                                                                                                | 20        |
| SULFATE                 | QRTLY (1) | N.A.                                                                                                                              | N.A.      |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F                                                                                                                             | 110°F     |
| pH                      | CONT.     | 6.0 - 9.0                                                                                                                         | 6.0 - 9.0 |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.                                                                                                                              | 190 ug/L  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>FEBRUARY, 2006</u> PAGE 3 OF 4

#### NPDES MONITORING REPORT

#### <u>OUTFALL 003</u> WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL 007

| DIE | .FLOW | (mg/l) | + BOD+++<br>(mg/1) | PH -                                  |
|-----|-------|--------|--------------------|---------------------------------------|
| 9   | .013  | 4      | 9                  | 8.26                                  |
|     |       | ·      |                    | ······                                |
|     |       |        |                    | · · · · · · · · · · · · · · · · · · · |
|     |       | \$     |                    |                                       |
|     | 1     |        |                    |                                       |

#### SANITARY WASTE

| PARAMETER |           |           | HTS (mPA) - States |
|-----------|-----------|-----------|--------------------|
| FLOW      | ORTLY (1) | N.A.      | NA.                |
| TSS       | QRTLY (1) | 70        | 110                |
| BOD       | QRTLY (1) | 45        | 65                 |
| pH        | ORTLY (1) | 6.0 - 9.0 | 6.0 - 9.0          |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### <u>OUTFALL 009</u> INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

|     | Conntie |      |     | 0 and Gr | COD | N DE |
|-----|---------|------|-----|----------|-----|------|
| 16  | 10      | .002 | 7   | 2        | 15  | 8.44 |
| 16  | 11      | .011 | 32  | 2        | 40  | 8.29 |
| 6   | 12      | .001 | 116 | 1        | 23  | 8.57 |
| (1) | 13      |      |     |          |     |      |
| 16  | 14      | .004 | 22  | 2        | 24  | 8.10 |
| 6   | 15      | .002 | 8   | 1        | 26  | 8.71 |

#### OUTFALL 016

| <b>D</b> | LLOR<br>MCD | TSS<br>(mg/L) | Connace<br>Constant | ≥ pH₂ | TRCS<br>Taglo |
|----------|-------------|---------------|---------------------|-------|---------------|
| 16       | 3.29        | 10            | 1                   | 8.32  | <50           |
|          |             |               |                     |       |               |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| EA RAMETE | Ro Marker ( | 2011   | ALTS & BOOM |
|-----------|-------------|--------|-------------|
|           |             | MONACO | 60 YA AGAM  |
| FLOW      | QRTLY. (1)  | N.A.   | N.A.        |
| TSS       | QRTLY (1)   | N.A.   | N.A.        |
| COD       | QRTLY (1)   | N.A.   | N.A.        |
| O and G   | QRTLY (1)   | 15     | 20          |
| pH        | QRTLY(1)    | >6.0   | >6.0        |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| (P.R.MISTIC |           | 2<br>     |           |
|-------------|-----------|-----------|-----------|
| FLOW        | QRTLY (1) | N.A.      | N.A.      |
| TSS         | QRTLY (1) | 30        | 100       |
| O and G     | QRTLY (I) | 15        | 20        |
| pH          | QRTLY(1)  | 6.0 - 9.0 | 6.0 - 9.0 |
| TRC         | ORTLY (1) | N.A.      | 190       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: : (1) No Discharge noted.

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>FEBRUARY, 2006</u> PAGE 4 OF 4

#### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Approved Plant Manager

> CA0320 01/11/05

Page 4 of 4

### UOTCR 06-0021

June 7, 2006

Steven S. Weiss Mail Code 602

### Callaway NPDES Monthly Report

Attached is the NPDES Monthly Report for May 2006. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:mad

Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998



### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) MAY 2006 PAGE 1 OF 4

### NPDES MONITORING REPORT

### OUTFALL 001 RADWASTE SYSTEM

| nin i | en konstantingen som |         |        |       | e en |
|-------|----------------------------------------------------------|---------|--------|-------|------|
| 1     | 7                                                        | .093    | 15     | 2     | 8.76 |
| 10    | .6                                                       | .089    | 12     | 20    | 8.73 |
| 18    | 7                                                        | .091    | 31 (1) | 2     | 8.91 |
| 21    | 6                                                        | .091    | 20     | 97    | 8.40 |
| 28    | 7                                                        | .090    | 26     | 202   | 6.05 |
|       |                                                          |         |        |       |      |
|       |                                                          | ,       |        |       |      |
|       |                                                          |         |        | ·     |      |
|       |                                                          |         |        |       |      |
|       | ,                                                        |         |        |       |      |
|       |                                                          |         |        | · · · | :    |
|       | ······                                                   |         |        |       |      |
|       |                                                          |         |        |       |      |
| ~     |                                                          |         |        |       |      |
|       |                                                          |         |        |       |      |
|       | <u></u>                                                  | · · · · |        |       |      |
|       |                                                          |         |        |       |      |
|       |                                                          |         | ·····  |       |      |
|       |                                                          |         |        |       |      |
|       |                                                          |         |        |       |      |
|       | -                                                        |         |        | •     |      |
|       | •                                                        |         |        |       |      |
|       |                                                          |         |        |       |      |
|       |                                                          |         |        |       |      |
|       |                                                          |         |        |       |      |
|       |                                                          |         |        |       |      |
|       |                                                          |         |        |       |      |
|       | * e                                                      |         |        |       |      |
|       |                                                          |         |        |       |      |
|       |                                                          |         |        |       |      |
|       |                                                          |         |        |       |      |



#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) MAY 2006 PAGE 2 OF 4

#### NPDES MONITORING REPORT

| N. OKOR  | n ar thirt an an<br>Charles an |     |      |
|----------|--------------------------------------------------------------------|-----|------|
|          | THOMEON A                                                          |     |      |
| <u> </u> | 8.0                                                                | 79  | - 51 |
| 2        | 3.3                                                                | 84  | 50   |
| 3        | 3.5                                                                | 8.4 | <50  |
| 4        | 3.9                                                                | 78  | <50  |
| 5        | 5.9                                                                | 76  | <50  |
| 6        | 4.3                                                                | 76  | <50  |
| 7        | 3.3                                                                | 79  | <50  |
| . 8      | 3.5                                                                | 80  | <50  |
| 9        | 3.4                                                                | 86  | 50   |
| 10       | 5.7                                                                | 83  | 50   |
| 11       | 2.0                                                                | 77  | 50   |
| 12       | 3.0                                                                | 67  | 132  |
| 13       | 3.3                                                                | 73  | 107  |
| 14       | 2.9                                                                | 75  | 99   |
| 15       | 2.6                                                                | 79  | 61   |
| 16       | 2.5                                                                | 82  | <50  |
| 17       | 3.5                                                                | 83  | 50   |
| 18       | 1.6                                                                | 69  | <50  |
| 19       | . 0                                                                | 65  | 189  |
| 20       | 0                                                                  | 62  | 61   |
| 21       | 0.1                                                                | 63  | 158  |
| 22       | 0.3                                                                | 63  | <50  |
| 23       | 0                                                                  | 63  | <50  |
| 24       | 0                                                                  | 64  | <50  |
| 25       | 0                                                                  | 70  | <50  |
| 26       | 0                                                                  | 70  | <50  |
| 27       | 0                                                                  | 71  | <50  |
| 28       | 0                                                                  | 73  | <50  |
| 29       | 0                                                                  | 74  | <50  |
| 30       | 0                                                                  | 74  | <50  |
| 31       | 2.0                                                                | 78  | 50   |

#### OUTFALL 002 COOLING TOWER BLOWDOWN

| TOTE |    |      |
|------|----|------|
| 1    | 39 | 2080 |
| 8    | 48 | 1972 |
| 15   | 59 | 1444 |
| 22   | 36 | 1904 |
| 29   | 41 | 992  |

|   | Sulfae A<br>Mine S |     |
|---|--------------------|-----|
| 1 | 824                | 0.4 |
|   |                    |     |

| OR ML UR                |           | MO -       |           |
|-------------------------|-----------|------------|-----------|
| FLOW                    | CONT.     | N.A.       | N.A.      |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.       | N.A.      |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.       | N.A.      |
| OIL AND GREASE          | QRTLY (1) | 15         | 20        |
| SULFATE                 | QRTLY (1) | N.A.       | N.A.      |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110° F     | 110°F     |
| рН                      | CONT.     | .6.0 - 9.0 | 6.0 - 9.0 |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.       | 190 ug/L  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursion occurred this month.

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) MAY 2006 PAGE 3 OF 4

#### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL 007

| 4 | .031 | 3     | 2 | 7.58 |
|---|------|-------|---|------|
|   |      | )<br> | ļ |      |
|   |      |       |   |      |
|   |      |       |   |      |
|   |      |       |   |      |

#### SANITARY WASTE

| PARAMILTER |           |           | UNICOTO SE DE |
|------------|-----------|-----------|---------------|
|            | 0.00000   |           | CARKO AVG     |
| FLOW       | QRTLY (1) | N.A.      | N.A.          |
| TSS        | QRTLY (1) | 70        | 110           |
| BOD        | QRTLY (1) | 45        | 65            |
| pH         | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0     |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### <u>OUTFALL 009</u> INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

| 07.07<br> | needer. |      |    |   |    |      |
|-----------|---------|------|----|---|----|------|
| 2         | 10      | .020 | 4  | 5 | 25 | 8.56 |
| 2         | 11      | .094 | 6  | 2 | 47 | 8.17 |
| 2         | 12      | .007 | 26 | 1 | 20 | 8.15 |
| 2         | 13      | .008 | 5  | 1 | 27 | 7.9  |
| 2         | 14      | .034 | 23 | 3 | 32 | 8.25 |
| 2         | 15      | .014 | 4  | 1 | 30 | 8.79 |

### OUTFALL 016

| DATE S |      | en ester<br>Cardon |   |      |      |
|--------|------|--------------------|---|------|------|
| 8      | 2.25 | 12                 | 2 | 7.95 | .<50 |
|        |      |                    |   |      |      |

#### OUTFALL 017

#### ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

|         | (17.0)<br>S |            | 1051107<br>10511107 | 0.000 |
|---------|-------------|------------|---------------------|-------|
| FLOW    | ł           | QRTLY. (1) | N.A.                | N.A.  |
| TSS     | \$ر         | QRTLY (1)  | N.A.                | N.A.  |
| COD     |             | QRTLY (1)  | • N.A.              | N.A.  |
| O and G |             | QRTLY (1)  | 15                  | 20    |
| pН      |             | QRTLY(1)   | >6.0                | >6.0  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| 1       |           |           |           |
|---------|-----------|-----------|-----------|
| FLOW    | ORTLY (1) | N A       | N.A.      |
| TSS     | QRTLY (1) | 30        | 100       |
| O and G | QRTLY (1) | 15        | 20        |
| pH      | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |
| TRC     | QRTLY (1) | N.A.      | 190       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: See Attachment 1 for additional TRC results for Outfall 016

#### **PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) MAY 2006** PAGE 4 OF 4

#### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Review

Preparer

Approved

Plant Manager

CA0320 01/11/05

## ATTACHMENT 1 DATE: MAY 2006

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml) |
|------|-------------|
| 2    | 116         |
| 3    | 154         |
| 4    | 163         |
| 9    | 101         |
| 11   | 134         |
| 15   | <50         |
|      |             |
|      |             |
|      |             |
|      |             |
|      |             |

## Chemical Analysis Report Laboratory Services Department AmerenUE

CC: M. Bollinger 602

| Requestor or Contact: | Ron Boutelle |
|-----------------------|--------------|
| Department:           | Callaway     |
| Date Received:        | 22-May-06    |

General Sample Description: Callaway Plant NPDES Sample Sample Point: CAL Stormwtr Runoff Outfall 10 Lab Sample No.: UU09135 Report Date: 25-May-06 Login Record File: 06050403

Collection Date: 02-May-06 Collection Time: 3:50 PM Original Sample ID: 010

| Parameter | Results | Units | MDL | Analysis<br>Code | Analyst |
|-----------|---------|-------|-----|------------------|---------|
| COD       | 25      | mg/L  | 1   | U3013A           | ARD     |

General Sample Description: Callaway Plant NPDES Sample Sample Point: CAL Stormwtr Runoff Outfall 11 Lab Sample No.: UU09136 Collection Date: 02-May-06 Collection Time: 4:00 PM Original Sample ID: 011

| Parameter     Results     Units     MDL     Code     Analyst       COD     47     mg/L     1     U3013A     ARD |           |                                        |       |                                       | Analysis |                                        |
|-----------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|-------|---------------------------------------|----------|----------------------------------------|
|                                                                                                                 | Parameter | Results                                | Units | MDL                                   | Code     | Analyst                                |
| COD 47 mg/L 1 U3013A ARD                                                                                        | <u></u>   | ······································ |       | · · · · · · · · · · · · · · · · · · · |          | ······································ |
|                                                                                                                 | COD       | 47                                     | mg/L  | 1                                     | U3013A   | ARD                                    |

General Sample Description: Callaway Plant NPDES Sample Sample Point: CAL Stormwtr Runoff Outfall 12 Lab Sample No.: UU09137 Collection Date: 02-May-06 Collection Time: 4:25 PM Original Sample ID: 012

| Parameter | Results | Units | MDL | Analysis<br>Code | Analyst |
|-----------|---------|-------|-----|------------------|---------|
|           |         |       |     |                  |         |
| COD       | 20      | mg/L  | 1   | U3013A           | ARD     |

General Sample Description: Callaway Plant NPDES Sample Sample Point: CAL Stormwtr Runoff Outfall 13 Lab Sample No.: UU09138 Collection Date: 02-May-06 Collection Time: 4:15 PM Original Sample ID: 013

|           |         |       |     | Analysis |         |
|-----------|---------|-------|-----|----------|---------|
| Parameter | Results | Units | MDL | Code     | Analyst |
|           |         |       |     |          |         |
| COD       | 27      | mg/L  | 1   | U3013A   | ARD     |
|           |         |       |     |          |         |

#### Requestor or Contact: Ron Boutelle Department: Callaway Date Received: 22-May-06

General Sample Description: Callaway Plant NPDES Sample Sample Point: CAL Stormwtr Runoff Outfall 14 Lab Sample No.: UU09139 Report Date: 25-May-06 Login Record File: 06050403

Collection Date: 02-May-06 Collection Time: 3:40 PM Original Sample ID: 014

|           |         |       |     | Analysis |         |
|-----------|---------|-------|-----|----------|---------|
| Parameter | Results | Units | MDL | Code     | Analyst |
| COD       | 32      | mg/L  | 1   | U3013A   | ARD     |
|           |         |       | •   |          |         |

General Sample Description: Callaway Plant NPDES Sample Sample Point: CAL Stormwtr Runoff Outfall 15 Lab Sample No.: UU09140 Collection Date: 02-May-06 Collection Time: 3:45 PM Original Sample ID: 015

| Parameter Results Units MDL C |
|-------------------------------|
|                               |

Comments:

Carol Zale Approved By:

Page 2 of 2

PO Box 620 Fulton, MO 65251

### **UOTCR060030**

September 14, 2006

Steven S. Weiss Mail Code 602

### Callaway NPDES Monthly Report



Attached is the NPDES Monthly Report for August 2006. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:mad

Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998

#### **PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** 8/6/2006\_ PAGE \_1\_ OF \_4\_

### NPDES MONITORING REPORT

| DATE            | SOURCE  | FLOW<br>(MGD) | TSS<br>(mg/1)                         | Boron<br>(mg/1) | <i>p</i> <b>H</b> | PA        | RAMETER                                                  | FREQ.         | <b>u</b>     | MITS               |
|-----------------|---------|---------------|---------------------------------------|-----------------|-------------------|-----------|----------------------------------------------------------|---------------|--------------|--------------------|
| 7               | 6       | .093          | 11                                    | 97              | 8.52              | 1.42      | 2.31 · · ·                                               |               | MONTHL       | Y ZDAILY           |
| <u>14</u><br>21 | 7 6     | .092          | 13<br>24                              | 303             | 8.75<br>8.58      | · •       | eter (2007)<br>Ann an a |               | . 127.9      |                    |
| 21              | 7       | .093          | 7                                     | 3               | 8.58              |           | OW (MGD)                                                 | EB            | N.A.         | <u>N.A.</u>        |
| 31              |         | .093          | 18                                    | 3_              | 8.8               |           | (STD)                                                    | EB            | 6.0-9.0      | 6.0-9.0            |
| 31              | 6       | .093          | 10                                    | 4               | 0.0               |           | S (mg/1)                                                 | EB            | 30           | 45                 |
| · · · ·         |         | ·             |                                       |                 | <u> </u>          | BO        | ron (mg/l)<br>C (ug/l)                                   | EB<br>Monthly | N.A.<br>N.A. | <u>N.A.</u><br>190 |
|                 |         |               |                                       |                 | <u> </u>          | 1         | D (mg/l)                                                 | Monthly       | N.A.         | N.Ā.               |
|                 |         |               | · · · · · · · · · · · · · · · · · · · |                 |                   |           |                                                          |               |              |                    |
|                 |         |               |                                       |                 |                   | 1.        | G (mg/1)                                                 | Monthly       | 15           | 20                 |
|                 |         |               |                                       |                 |                   |           |                                                          |               | D BY Ameren  | -                  |
|                 |         |               |                                       |                 |                   | Pla       | nt OPERATI                                               | ONS LABO      | RATORY USI   | ٩G                 |
|                 |         |               |                                       |                 |                   | ME        | THODS SPI                                                | CIFIED UN     | DER IOCSR 2  | 0-7.015            |
|                 |         | -             |                                       |                 |                   |           |                                                          |               |              |                    |
|                 |         |               |                                       |                 | 1                 | <u>so</u> | URCES                                                    |               |              |                    |
|                 |         | · · ·         |                                       |                 | 1                 | 1         | = WASTE                                                  | MONITOR T     | ANK A        |                    |
|                 |         | ·····         |                                       |                 | <b>+</b>          | 2 :       | = WASTE                                                  | MONITOR T     | 'ANK É       |                    |
|                 |         |               | ÷                                     |                 | +                 |           |                                                          |               | RBLOWDOW     | N ·                |
|                 |         |               |                                       |                 | <u></u>           |           | - ·                                                      |               | ONITOR TAN   |                    |
| ابنج شب         | <u></u> |               |                                       |                 | ·                 |           | -                                                        |               | ONITOR TAN   |                    |
|                 |         |               | ······                                |                 |                   |           |                                                          |               | SCHARGE TA   |                    |
|                 |         |               |                                       |                 | <b></b>           |           |                                                          |               |              |                    |
|                 |         |               |                                       |                 |                   |           |                                                          |               | SCHARGE TA   | NKB                |
|                 |         |               |                                       |                 |                   |           | = EACH BA                                                |               |              |                    |
|                 |         |               |                                       |                 |                   | 1         | Date BC                                                  | DD (mg/l)     | TRC (ug/l)   | O&G (mg/l)         |
|                 |         |               |                                       |                 |                   |           | 7                                                        | 8             | <50          | 5                  |
|                 | :       |               |                                       |                 |                   |           |                                                          |               |              | · .                |
|                 |         |               |                                       |                 |                   |           |                                                          |               |              |                    |
|                 |         |               |                                       |                 | 1                 | CO        | MMENTS: _                                                |               |              |                    |
|                 |         |               |                                       |                 | <u> </u> ]        |           |                                                          | ·             |              |                    |
|                 |         |               |                                       |                 | <u> </u> ]        |           |                                                          |               |              |                    |
|                 |         |               | · · · · · · · · · · · · · · · · · · · | <u></u>         | <b>├</b> ────┤    |           |                                                          |               |              |                    |
| ł               |         | <u></u>       | i                                     |                 | <b> </b>          |           |                                                          |               |              |                    |
|                 |         |               |                                       |                 |                   |           |                                                          | •• •••••      |              |                    |

### **OUTFALL 001 RADWASTE SYSTEM**

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_\_8/6/2006\_\_\_\_ PAGE \_\_2\_\_ OF \_\_4\_\_

NPDES MONITORING REPORT

#### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |
|------|---------------|-----------------|---------------|
| 1    | 9.6           | 97              | <50           |
| 2    | 7.9           | 98              | <50           |
| 3    | 8.8           | 92              | 69.           |
| 4    | 5.1           | 91              | 65            |
| 5    | 4.9           | 92              | 65            |
| 6    | 5.0           | 96              | 72            |
| 7    | 6.4           | 97              | 85            |
| 8    | 5.1           | 95              | <50           |
| 9    | 5.2           | 99              | <50,          |
| 10   | 6.3           | 95              | <50           |
| 11   | 5.0           | 94              | 70            |
| 12   | 5.8           | 93              | 84            |
| 13   | 6.5           | 95              | 61            |
| 14   | 7.1           | 95              | <50           |
| 15   | 3.7           | 91              | 77            |
| 16   | 5.9           | 90              | 60            |
| 17   | 4.8           | 96              | 179           |
| 18   | 5.3           | 97              | 88            |
| 19   | 6.9           | 95              | 57            |
| 20   | 6.5           | 92              | <50           |
| 21   | 7.3           | 93              | 62            |
| 22   | 4.2           | 92              | 76            |
| 23   | 5.9           | 93              | <50           |
| 24   | 5.3           | 93              | 76            |
| 25   | 8.0           | 93              | 96            |
| 26   | 5.8           | 94              | 81            |
| 27   | 6.1           | 94              | 67            |
| 28   | 6.6           | 91              | 92            |
| 29   | 5.4           | 89              | <50           |
| 30   | 1.7           | 87              | <50           |
| 31   | 4.3           | 88              | <50           |

| DATE | TSS<br>(mg/1) | TDS<br>(mg/1) |
|------|---------------|---------------|
| 7    | 54            | 2084          |
| 14   | 56            | 2140          |
| 21   | 70            | 1676          |
| 28   | 54            | 1880          |

| DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/1) |
|------|-------------------|---------------|
| 7    | 1532              | 3             |
|      |                   |               |

| PARAMETER               | FREQ.     | LIMITS      |               |  |
|-------------------------|-----------|-------------|---------------|--|
|                         |           | MO.<br>AVG. | DAILY<br>MAX. |  |
| FLOW                    | CONT.     | N.A.        | N.A.          |  |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |  |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.          |  |
| OIL AND GREASE          | QRTLY (1) | 15          | 20            |  |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.          |  |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F         |  |
| рН                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |  |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

**PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** PAGE \_3\_ OF \_4\_

8/6/2006\_\_\_

### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL 007

| FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/1) | pH                    |
|---------------|---------------|---------------|-----------------------|
| .0001         | 17            | 4             | 6.88                  |
|               |               | }             |                       |
|               |               |               |                       |
|               |               |               |                       |
|               |               | <u>├</u> ───┤ |                       |
|               | (MGD)         | (MGD) (mg/1)  | (MGD) (mg/1) * (mg/1) |

#### SANITARY WASTE

| PARAMETER |           | LIMITS (mg/1) |            |  |  |
|-----------|-----------|---------------|------------|--|--|
|           | FREQ.     | MO. AVG.      | WKLY. AVG. |  |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |  |
| TSS       | QRTLY (1) | 70            | 110        |  |  |
| BOD       | QRTLY (1) | 45            | 65         |  |  |
| pН        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | (mg/1) ; | 0 and G<br>(mg/1) | COD<br>(mg/l) | рН   |
|------|---------|---------------|----------|-------------------|---------------|------|
| 3    | 10      | .013          | 32       | 1                 | 42            | 8.61 |
| 3    | 11      | .062          | 13       | 1                 | 27            | 8.44 |
| 3    | 12      | .005          | 22       | 3                 | 32            | 9.47 |
| 28   | 13      | .005          | 38       | 2                 | 15            | 7.58 |
| 28   | 14      | .023          | 12       | 5                 | 17            | 7.76 |
|      | 15      |               |          | No Discharge      | e.            |      |

#### OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS 🚿<br>(mg/1) | O and G<br>(mg/1) | рН   | TRC<br>(ug/l) |
|------|---------------|-----------------|-------------------|------|---------------|
| 9    | 3.5           | 12              | 1.0               | 8.46 | <50           |
| ·    | -             |                 |                   |      |               |

#### OUTFALL 017

#### ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| PARAMETER | FREO      | LIMITS & |            |  |  |
|-----------|-----------|----------|------------|--|--|
|           |           | MO: AVG. | DAILY MAX. |  |  |
| FLOW      | QRTLY.(1) | N.A.     | N.A.       |  |  |
| TSS       | QRTLY (1) | N.A.     | N.A.       |  |  |
| COD       | QRTLY (1) | N.A.     | N.A.       |  |  |
| O and G   | QRTLY (1) | 15       | 20         |  |  |
| pH        | QRTLY(1)  | >6.0     | >6.0       |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER : | FREQ      | LIMITS    |            |  |
|-------------|-----------|-----------|------------|--|
|             |           | MO. AVG.  | DAILY MAX. |  |
| FLOW        | QRTLY (1) | N.A.      | N.A.       |  |
| TSS         | QRTLY (1) | 30        | 100        |  |
| O and G     | QRTLY (1) | 15        | 20         |  |
| pH _        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC         | QRTLY (1) | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: After add TRC results for outfall 016 on Attachment 1.



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_8/6/2006 PAGE \_4\_ OF \_4\_\_

### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Approved

Plant Manager

Page 4 of 4

CA0320 01/11/05

## ATTACHMENT 1 8/6/2006

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| <u>Date</u> | TRC (ug/ml) |
|-------------|-------------|
| 17          | 179         |
| 22          | 66          |
| 23          | <50         |
| 24          | <50         |
| 28          | 115         |
| 29          | <50         |
|             | 178         |
|             |             |
|             |             |
|             |             |
|             |             |

ATTACHMENT 1

PO Box 620 Fulton, MO 65251

### **UOTCR060037**

December 18, 2006

Steven S. Weiss Mail Code 602

### **Callaway NPDES Monthly Report**

meren UE

Attached is the NPDES Monthly Report for November 2006. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

CAR/RSB:sll

Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998

a subsidiary of Ameren Corporation

### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 11-06 PAGE 1 OF 4

### NPDES MONITORING REPORT

| DATE                                         | SOURCE | FLOW<br>(MGD) | TSS<br>(mg/l) | Boron<br>(mg/l) | pН                                    | PARAM     | ETER      | FREQ.     | Ш            | MITS        |
|----------------------------------------------|--------|---------------|---------------|-----------------|---------------------------------------|-----------|-----------|-----------|--------------|-------------|
| 8                                            | 6      | .092          | 13            | 29              | 8.9                                   |           |           |           | MONTHL       | Y DAILY     |
| 9                                            | 7      | .093          | 12            | · 1             | 8.8                                   | ] [       |           |           | AVERAGE      | MAX.        |
| 13                                           | 6      | .092          | 10            | 9               | 7.73                                  | FLOW (N   | (GD)      | EB        | N.A.         | N.A.        |
| 22                                           | 7      | .094          | 10            | 5               | 6.93                                  | pH (STD)  |           | EB        | 6.0-9.0      | 6.0-9.0     |
| 28                                           | 6      | .091          | 16            | 3               | 7.11                                  | TSS (mg/  | 1)        | EB        | 30           | 45          |
|                                              |        |               |               |                 |                                       | Boron (m  |           | EB        | <u>N.A.</u>  | N.A.        |
|                                              |        |               |               |                 |                                       | TRC (ug/  | l)        | Monthly   | N.A.         | 190         |
|                                              |        |               |               |                 |                                       | BOD (mg   | /l)       | Monthly   | N.A.         | N.A.        |
|                                              |        |               |               |                 |                                       | O&G (mg   | /1)       | Monthly   | 15           | 20          |
|                                              |        |               |               |                 |                                       | ALL SAN   | PLES A    | NALYZEI   | DBY Ameren   | UE Callaway |
|                                              |        |               |               |                 |                                       | Plant OPI | RATIO     | NS LABOR  | ATORY USE    | ٩G          |
|                                              |        |               |               |                 |                                       | METHOI    | DS SPEC   | IFIED UNI | DER 10CSR 20 | -7.015      |
|                                              |        |               |               |                 |                                       |           |           |           |              |             |
|                                              |        |               |               |                 |                                       | SOURCE    | <u>s</u>  |           |              |             |
|                                              |        |               |               |                 |                                       | ] 1 = WA  | STE MO    | ONITOR T. | ANK A        |             |
|                                              |        |               |               |                 |                                       | 2 = WA    | STE M     | ONITOR T  | ANK B        |             |
|                                              |        |               |               |                 | ·                                     | ] 3 = ST  | EAM GE    | NERATOR   | BLOWDOW      | N           |
|                                              |        |               |               |                 |                                       | 4 = SE    | C. LIQ. V | VASTE MO  | ONITOR TAN   | KA          |
|                                              |        |               |               |                 |                                       | 5 = SE    | C. LIQ. V | VASTE MO  | DNITOR TAN   | КB          |
| <u></u>                                      |        |               |               |                 |                                       | 6 = LIC   | ). RADV   | ASTE DIS  | CHARGE TA    | NK A        |
|                                              |        |               |               |                 | <u> </u>                              | 7 = LIC   | . RADW    | ASTE DIS  | CHARGE TA    | NK B        |
| <u></u>                                      |        |               |               |                 |                                       | EB = EA   | CH BAT    | СН        |              |             |
|                                              |        |               |               |                 |                                       | Date      | BOI       | (mg/l)    | TRC (ug/l)   | O&G (mg/i)  |
|                                              |        |               |               |                 |                                       | 8         |           | 19        | 10           | 5           |
|                                              |        |               |               |                 |                                       | ]         |           |           |              |             |
|                                              |        |               |               |                 |                                       |           |           |           |              |             |
|                                              |        |               |               |                 | · · · · · · · · · · · · · · · · · · · | COMME     | NTS:      | L         |              |             |
| ·                                            |        |               |               |                 |                                       | 1         |           |           |              |             |
| <u>.                                    </u> |        |               |               |                 |                                       | 1         |           |           |              |             |
|                                              | 1      |               |               |                 |                                       | 1         |           |           |              |             |
| لير                                          |        |               |               | ┠               |                                       | 1         |           |           |              |             |

#### OUTFALL 001 RADWASTE SYSTEM

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 11-06 PAGE 2 OF 4

#### NPDES MONITORING REPORT

#### OUTFALL 002 COOLING TOWER BLOWDOWN

|      | [             |                 |                   |
|------|---------------|-----------------|-------------------|
| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l)     |
| 1    | 6.8           | 70              | <del>50</del> (2) |
| 2    | 6.2           | 70              | 64                |
| 3    | 6.2           | 74              | 82                |
| 4    | 7.2           | 74              | 50 (2)            |
| 5    | 7.1           | 76              | 50 (2)            |
| 6    | 4.2           | 75              | 50 (2)            |
| 7    | 4.4           | 76              | 50 (2)            |
| 8    | 5.3           | 84              | 50 (2)            |
| 9    | 2.8           | 84              | 50 (2)            |
| 10   | 6.0           | 85              | 80                |
| 11   | 7.3           | 68              | 105               |
| 12   | 6.8           | 74              | 54                |
| 13   | 5.0           | 74              | 50 (2)            |
| 14   | 6.0           | 75              | 50 (2)            |
| 15   | 6.7           | 75              | 50 (2)            |
| 16   | 7.0           | 70              | 50 (2)            |
| 17   | 6.6           | 74              | 50 (2)            |
| 18   | 7.9           | 69              | 50 (2)            |
| 19   | 5.7           | 69              | 50 (2)            |
| 20   | 6.1           | 69              | 50 (2)            |
| 21   | 1.5           | 76              | 85                |
| 22   | 6.0           | 79              | 86                |
| 23   | 4.5           | 81              | 59                |
| 24   | 4 <i>A</i>    | 83              | 74                |
| 25   | 5.2           | 84              | 76                |
| 26   | 6.3           | 83              | 50 (2)            |
| 27   | 2.8           | 78              | 50 (2)            |
| 28   | 5.9           | . 81            | 50 (2)            |
| 29   | 5.8           | 82              | 50 (2)            |
| 30   | 5.0           | 61              | 50 (2)            |

| DATE | TSS<br>(mg/1) | TDS<br>(mg/1) |
|------|---------------|---------------|
| 6    | 93            | 1582          |
| 13   | 68            | 1732          |
| 20   | 46            | 1708          |
| 27   | 45            | 2188          |

| and the second |
|------------------------------------------------------------------------------------------------------------------|
| 92 3                                                                                                             |
|                                                                                                                  |

| PARAMETER               | FREQ.     | LIMITS      |              |  |
|-------------------------|-----------|-------------|--------------|--|
| ,                       |           | MO.<br>AVG. | DAILY<br>MAX |  |
| FLOW                    | CONT.     | N.A.        | N.A.         |  |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.         |  |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.         |  |
| OIL AND GREASE          | QRTLY (I) | 15          | 20           |  |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.         |  |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F        |  |
| рН                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |  |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L     |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month

(2) <LOQ

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 11-06 PAGE 3 OF 4

#### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

### OUTFALL 007

| FLOW<br>(MGD) | T\$\$<br>(mg/1) | BOD<br>(mg/1) | pH                  |
|---------------|-----------------|---------------|---------------------|
| .002          | 4               | 4             | 7.11                |
|               |                 |               |                     |
|               |                 |               |                     |
|               |                 |               |                     |
|               | (MGD)           | (MGD) (mg/1)  | (MGD) (mg/1) (mg/1) |

#### SANITARY WASTE

| PARAMETER | Γ         | LIMITS (mg/1) |            |  |
|-----------|-----------|---------------|------------|--|
|           | FREQ.     | MO. AVG.      | WKLY. AVG. |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BOD       | QRTLY (1) | 45            | 65         |  |
| pН        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

#### **OUTFALLS 010 - 015**

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/1) | COD<br>(mg/l) | pН   |
|------|---------|---------------|---------------|-------------------|---------------|------|
| 7    | 10      | .033          | 22            | 1                 | -             | 7.99 |
| 7    | 11      | .153          | 68            | 2                 | -             | 8.12 |
| 7    | 12      | .012          | 32            | 5                 | -             | 8.39 |
| 27   | 10      | -             | -             | -                 | 27            | -    |
| 27   | 11      | -             | -             | -                 | 17            | -    |
| 27   | 12      | -             | -             | -                 | 15            | -    |

OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | O and G<br>(mg/1) | рĦ   | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|------|---------------|
| 7    | 1.44          | 19            | 3                 | 8.26 | <50           |
|      | ,             |               |                   |      |               |

#### **OUTFALL 017**

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | LIMITS   |            |
|-----------|------------|----------|------------|
|           |            | MO. AVG. | DAILY MAX. |
| FLOW      | QRTLY. (1) | N.A.     | N.A.       |
| TSS       | QRTLY(1)   | N.A.     | N.A.       |
| COD       | QRTLY (1)  | N.A.     | N.A.       |
| O and G   | QRTLY (1)  | 15       | 20         |
| pН        | QRTLY(1)   | >6.0     | >6.0       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |  |
|-----------|-----------|-----------|------------|--|
|           |           | MO. AVG.  | DAILY MAX. |  |
| FLOW      | QRTLY(1)  | N.A.      | N.A.       |  |
| TSS       | QRTLY(1)  | 30        | 100        |  |
| O and G   | QRTLY (1) | 15        | 20         |  |
| pН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC       | QRTLY(1)  | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: Outfall 016 TRC results on Attachment 1 \*No discharge noted on outfalls 13, 14, and 15.

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 11-06 PAGE 4 OF 4

#### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Reviewer Preparer

Approved

Plant Manager

CA0320 01/11/05

## ATTACHMENT 1 November 2006

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date                                  | TRC (ug/ml)                           |
|---------------------------------------|---------------------------------------|
| 10                                    | 164<br><50                            |
| 28                                    | <50                                   |
|                                       |                                       |
|                                       |                                       |
|                                       |                                       |
|                                       |                                       |
|                                       | +                                     |
| · · · · · · · · · · · · · · · · · · · |                                       |
| ·                                     | · · · · · · · · · · · · · · · · · · · |
|                                       |                                       |
|                                       |                                       |

### **ATTACHMENT 1**

PO Box 620 Fulton, MO 65251

### **UOTCR 07-0016**

March 14, 2007

Steven S. Weiss Mail Code 602

# **Ameren** UE

### Callaway NPDES Monthly Report

Attached is the NPDES Monthly Report for February 2007. Results are noted in comment section of each Outfall.

Please let me know if you have any questions or need additional information.

C. A. Riggs

### CAR/RSB:sll

Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998



## **PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** 02/07 PAGE \_1\_ OF \_4\_\_

\_\_\_\_ ..........

# NPDES MONITORING REPORT

### SOURCE DATE FLOW TSS Boron pН PARAMETER FREQ. LIMITS (MGD) (mg/1) (mg/l) 2 7 .083 10 25 8.84 MONTHLY AVERAGE 8 6 .094 10 14 6.25 13 7 .092 25 24 8.68 FLOW (MGD) EB N.A. 16 .093 6 4 44 8.57 6.0-9.0 pH (STD) EB 18 7 .095 5 21 8.7 TSS (mg/1) EB 30 20 .094 5 6 41 8.42 Boron (mg/l) EB N.A. TRC (ug/l) Monthly N.A. 21 7 .093 2 23 7.16 BOD (mg/l) Monthly N.A. 23 .094 6 4 15 8.7 O&G (mg/1) Monthly 15 ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015 SOURCES 1 = WASTE MONITOR TANK A 2 = WASTE MONITOR TANK B . 3 = STEAM GENERATOR BLOWDOWN 4 = SEC. LIQ. WASTE MONITOR TANK A 5 = SEC. LIQ. WASTE MONITOR TANK B 6 = LIQ. RADWASTE DISCHARGE TANK A 7 = LIQ. RADWASTE DISCHARGE TANK B EB = EACH BATCH BOD (mg/l) Date TRC (ug/l) O&G (mg/l) 2 30 <10 •• COMMENTS:

# **OUTFALL 001 RADWASTE SYSTEM**

DAILY

MAX.

N.A.

6.0-9.0

45

N.A.

190

N.A.

20

4

\_......

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 02/07 PAGE 2\_\_\_\_\_OF

# NPDES MONITORING REPORT

# OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |
|------|---------------|-----------------|---------------|
| 1    | 8.2           | 63              | <50           |
| 2    | 3.6           | 61              | <50           |
| 3    | 6.2           | 58              | <50           |
| 4    | 4.2           | 63              | 84            |
| 5    | 4.5           | 58              | <50           |
| 6    | 4.4           | 72              | <50           |
| 7    | 4.4           | 59              | <50           |
| 8    | 4.6           | 60              | <50           |
| 9    | 4.4           | 62              | <50           |
| 10   | 5.0           | 62              | 88            |
| 11   | 4.6           | 65              | 54            |
| 12   | 4.5           | 65              | <50           |
| 13   | 4.5           | 62              | <50           |
| 14   | 5.0 ·         | 56              | <50           |
| 15   | 4.5           | 57              | <50           |
| 16   | 4.0           | 66              | 69            |
| 17   | 5.5           | 65              | <50           |
| 18   | 4.3           | 67              | 80            |
| 19   | 4.7           | 76              | 53            |
| 20   | 5.1           | 74              | <50           |
| 21   | 5.0           | 77              | 68            |
| 22   | 5.8           | 72              | <50           |
| 23   | 5.2           | 76              | <50           |
| 24   | 5.5           | 78              | <50           |
| 25   | 4.3           | 72              | 79            |
| 26   | 7.9           | 68              | <50           |
| 27   | 8.7           | 71              | <50           |
| 28   | 7.4           | 81              | <50           |
|      |               |                 |               |
|      |               |                 |               |

-----

| DATE | TSS<br>(mg/l) | TDS<br>(mg/l) |
|------|---------------|---------------|
| 5    | 50            | 1824          |
| 12   | 64            | 2076          |
| 19   | 74            | 2016          |
| 26   | 63            | 1352          |
| 26   | 63            |               |

| DATE | Sulfate<br>(mg/l) | 0&G<br>(mg/1) |
|------|-------------------|---------------|
| 5    | 988               | 2             |
|      |                   |               |

| PARAMETER                             | FREQ      | LIMITS      |              |  |
|---------------------------------------|-----------|-------------|--------------|--|
| · · · · · · · · · · · · · · · · · · · |           | MO.<br>AVG. | DAILY<br>MAX |  |
| FLOW                                  | CONT      | N.A.        | N.A.         |  |
| TOTAL SUSPENDED SOLIDS                | WKLY.     | N.A.        | N.A.         |  |
| TOTAL DISSOLVED SOLIDS                | WKLY.     | N.A.        | N.A.         |  |
| OIL AND GREASE                        | QRTLY (1) | 15          | 20           |  |
| SULFATE                               | QRTLY.(1) | N.A.        | N.A.         |  |
| TEMPERATURE (MAXIMUM)                 | DAILY     | 110 ° F     | 110°F        |  |
| pH                                    | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |  |
| TOTAL RESIDUAL CHLORINE               | DAILY     | N.A.        | 190 ug/L     |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

----

COMMENTS: \_\_\_\_\_ No pH excursions occurred this month.

**PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** PAGE \_3\_ OF \_4\_

02/07

# NPDES MONITORING REPORT

### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

# OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/1) | pH   |
|------|---------------|---------------|---------------|------|
| 8    | .003          | 2             | 0             | 8.56 |
|      |               |               |               |      |
|      |               |               |               |      |
|      |               | ·             |               |      |
|      | ]             |               |               |      |

# SANITARY WASTE

| PARAMETER |           | LIM       | TS (mg/1)  |
|-----------|-----------|-----------|------------|
|           | FREQ.     | MO. AVG.  | WKLY. AVG. |
| FLOW      | QRTLY(1)  | N.A.      | N.A.       |
| TSS       | QRTLY (1) | 70        | 110        |
| BOD       | QRTLY(1)  | 45        | 65         |
| pH        | QRTLY(1)  | 6.0 - 9.0 | 6.0 - 9.0  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

# OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

# OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and<br>G<br>(mg/1) | COD<br>(mg/l) | pН   |
|------|---------|---------------|---------------|----------------------|---------------|------|
| 6    | 11      | .154          | 23            | 1                    | 20            | 7.72 |
| 6    | 12      | .012          | 4             | 2                    | 22            | 9.01 |
| 28   | 13      | .014          | 37            | 3                    | 27            | 9.08 |
| 28   | 14      | .055          | 119           | 3                    | 22            | 8.32 |
| 6    | 15      | .022          | 9             | 1                    | 20            | 8.20 |
|      |         |               |               | 4                    |               |      |

# STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | FREQ. LIM |            |
|-----------|------------|-----------|------------|
|           |            | MO. AVG.  | DAILY MAX. |
| FLOW      | QRTLY. (1) | N.A.      | N.A.       |
| TSS       | QRTLY (1)  | N.A.      | N.A.       |
| COD       | QRTLY (1)  | N.A.      | N.A.       |
| O and G   | QRTLY(1)   | 15        | 20         |
| pH        | QRTLY(1)   | >6.0      | >6.0       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

# **COOLING TOWER BYPASS**

| PARAMETER | FREQ      | LIMITS    |           |
|-----------|-----------|-----------|-----------|
|           |           | MO. AVG.  | DAILY MAX |
| FLOW      | QRTLY (1) | N.A.      | N.A.      |
| TSS       | QRTLY (1) | 30        | 100       |
| O and G   | QRTLY (1) | 15        | 20        |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |
| TRC       | ORTLY (1) | N.A.      | 190       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

OUTFALL 016

O and G

(mg/1)

7

pН

8.21

TRC

(ug/l)

<50

TSS

(mg/1)

15

FLOW

(MGD)

3.7

### **OUTFALL 017**

ULTIMATE HEAT SINK No Discharge

DATE

5

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

COMMENTS:

. . . . .

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_02/07\_\_\_\_\_ PAGE \_4\_\_ OF \_4\_\_

# NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Approved

Plant Manager

# UOTCR 07-0032

June 12, 2007

Steven S. Weiss Mail Code 602

# Callaway NPDES Monthly Report

Attached is the NPDES Monthly Report for May, 2007. Results are noted in comment section of each Outfall.

Outfall 015 COD was missed on 5-07-07, and the Outfall did not discharge the rest of the month.

Please let me know if you have any questions or need additional information.

C. A. Riggs

# CAR/RSB:sll

# Attachments

cc: G. P. Gary (470) C170.0005 R/C Clerk A160.0998

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 05/2007 PAGE \_1\_ OF \_5\_ 05/2007

# NPDES MONITORING REPORT

# OUTFALL 001 RADWASTE SYSTEM

| DATE | SOURCE | FLOW<br>(MGD) | TSS<br>(mg/1)(*1) | Boron<br>(mg/1)                       | pН    | PARAMETE     | R FREQ.        | L LI          | MITS        |
|------|--------|---------------|-------------------|---------------------------------------|-------|--------------|----------------|---------------|-------------|
| 2    | 7      | .092          | 28                | 216                                   | 7.08  |              |                | MONTHL        | Y DAIL      |
| 7    | 6      | .092          | 19                | 69                                    | 6.97  |              |                | AVERAGE       | S MAX.      |
| 10 · | 7      | .091          | 21                | 62                                    | 6.03  | FLOW (MGD    | ) EB           | N.A.          | N.A.        |
| 11   | 6      | .090          | 7                 | 8                                     | 6.84  | pH (STD)     | EB             | 6.0-9.0       | 6.0-9.0     |
| 12   | 7      | .093          | 8                 | 8                                     | 7.74  | TSS (mg/1)   | EB             | 30            | 45          |
| 14   | 6      | .092          | 16                | 201                                   | 6.34  | Boron (mg/l) | EB             | N.A.          | N.A.        |
| 16   | . 7    | .093          | 5                 | 300                                   | 6.22  | TRC (ug/i)   | Monthly        | N.A.          | 190         |
| 17   | 6      | .091          | 12                | . 184                                 | 7.32  | BOD (mg/l)   | Monthly        | N.A.          | N.A.        |
| 19   | 7      | .091          | 10                | 218                                   | 7.66  | O&G (mg/1)   | Monthly        | 15            | 20          |
| 22   | 6      | .091          | 18                | 94                                    | 8.04  | ALL SAMPLI   | S ANALYZE      | D BY Ameren   | UE Callaway |
| 28   | 6      | .093          | · 40 (*1)         | 3                                     | 8.13  | Plant OPERA  | TIONS LABO     | RATORY USI    | ١G          |
| 29   | 7      | .092          | 10                | 20                                    | 6.28  | METHODS S    | PECIFIED UN    | DER 10CSR 20  | 0-7.015     |
| 30   | .6     | .090          | 12                | 20                                    | 8.56  |              |                |               |             |
|      |        | .070          | 12                |                                       | 0.50  | SOURCES      |                |               |             |
|      |        |               |                   | · · · · · · · · · · · · · · · · · · · | ····· | I = WASTE    | MONITOR T      | ANK A         |             |
|      |        |               | · · · ·           |                                       |       | 2 = WASTE    | MONITOR T      | ANK B         |             |
|      |        |               |                   |                                       |       | 3 = STEAM    | GENERATO       | R BLOWDOW     | N           |
|      |        |               |                   |                                       |       | 4 = SEC. LI  |                |               |             |
|      |        | · · · · ·     |                   |                                       |       | 5 = SEC. LI  | -              |               |             |
|      |        |               |                   |                                       |       | 6 = LIQ. RA  | -              |               | •           |
|      |        |               |                   |                                       |       | -            |                | •             |             |
|      |        |               |                   |                                       |       | 7 = LIQ.RA   |                | CHARGE TA     | NKB         |
|      |        |               |                   |                                       |       | EB = EACH I  |                |               | · .         |
|      |        |               |                   |                                       |       | Date I       | SOD (mg/l)     | TRC (ug/l)    | O&G (mg     |
|      |        |               |                   |                                       |       | 2            | 7              | 10            | 4           |
|      |        |               |                   |                                       |       |              |                |               |             |
|      |        |               |                   |                                       |       |              |                |               |             |
|      |        |               |                   |                                       |       | COMMENTS:    | k              |               |             |
|      |        |               |                   |                                       |       | (*1) Monthly | average for TS | S was 15.8 mg | <u>/L</u>   |
| 1    |        |               |                   |                                       |       |              |                |               |             |
|      |        |               | · · · · · ·       |                                       |       |              |                |               |             |
|      |        |               |                   |                                       |       |              |                |               |             |

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 05/2007 PAGE 2 0F 5

# NPDES MONITORING REPORT

# OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |
|------|---------------|-----------------|---------------|
| . 1  | (*2)0         | 68              | <50           |
| 2    | 4.3           | 63              | <50           |
| 3    | (*2)0         | 65              | <50           |
| 4    | (*2) 0        | 71              | <50           |
| 5    | (*2) 0        | 69              | <50           |
| 6    | (*2)0         | 71              | <50           |
| 7    | (*2) 0        | 66              | <50           |
| 8    | 1.0           | 72              | <50           |
| 9    | (*2) 0        | 72              | <50           |
| 10   | (*2)0         | - 78            | <50           |
| 11   | (*2)0         | 81              | 64            |
| 12   | 0.5           | 85              | <50           |
| 13   | (*2) 0        | 85              | <50           |
| 14   | (*2) 0        | 89              | <50           |
| 15   | 5.2           | 88              | <50           |
| 16   | 1.6           | 80              | <50           |
| 17   | 1.8           | 78              | <50           |
| 18   | 4.0           | 4.0 80          |               |
| 19   | 3.5           | 83              | <50           |
| 20   | 2.9           | 84              | <50           |
| 21   | 4.1           | 85              | <50           |
| 22   | 1.7           | 86              | 79            |
| 23   | 5.1           | 87              | <50           |
| 24   | 5.0           | 87              | <50           |
| 25   | 4.5           | 83              | 53            |
| 26   | 5.4           | 86              | 73            |
| 27   | 4.3           | 87              | 98            |
| 28   | 4.6           | 87              | <50           |
| 29   | 4.1           |                 |               |
| 30   | 7.2           | 87              | 57            |
| 31   | 3.7           | 87              | <50           |

| DATE    | TSS<br>(mg/l) | TDS<br>(mg/1) |
|---------|---------------|---------------|
| 2       | 10            | 396           |
| 7 (*2)  | 15            | 320           |
| 14 (*2) | 53            | 1458          |
| 21      | 115           | 1390          |
| 28      | 34            | 2188          |

| Sulfate<br>(mg/1) | (mg/1) |
|-------------------|--------|
| 776               | 0.1    |
|                   | (mg/1) |

| PARAMETER               | FREQ.     | LI          | MITS          |
|-------------------------|-----------|-------------|---------------|
| ·                       |           | MO.<br>AVG. | DAILY<br>MAX. |
| FLOW                    | CONT.     | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| OIL AND GREASE          | QRTLY (1) | 15          | 20            |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.          |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F         |
| рН                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month

(\*2) All samples taken by dip sample from C Circ Water Pump Bay due to no discharge.\_\_\_\_

**PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** PAGE <u>3</u> OF <u>5</u>

05/2007

# NPDES MONITORING REPORT

### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

# OUTFALL 007

| DATE                                  | FLOW<br>(MGD) | TSS<br>(mg/l) | BOD<br>(mg/1) | pН    |
|---------------------------------------|---------------|---------------|---------------|-------|
| 19                                    | .0001         | 12            |               | 8.47  |
| 31                                    | .0001         |               | 5.1           |       |
|                                       | -             |               |               |       |
| · · · · · · · · · · · · · · · · · · · |               |               |               |       |
|                                       |               | <u> </u>      |               | · · · |

# SANITARY WASTE

| PARAMETER |           | LIMITS (mg/1) |            |  |
|-----------|-----------|---------------|------------|--|
|           | FREQ.     | MO. AVG.      | WKLY. AVG. |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BOD       | QRTLY (1) | 45            | 65         |  |
| рH        | ORTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

# OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

# OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/1) | COD<br>(mg/l) | рH   |
|------|---------|---------------|---------------|-------------------|---------------|------|
| 7    | 10      | .042          | 16            | 0                 | (*3)          | 8.14 |
| 7    | 11      | .192          | 10            | 1                 | (*3)          | 7.64 |
| 7    | .12     | .015          | 18            | 3                 | (*3)          | 9.00 |
| 7    | 13      |               | No            | Discharge         |               |      |
| 7    | 14      | .069          | 98            | . 1               | (*3)          | 7.78 |
| 7    | 15      | .028          | 26            | × 1               | (*4)          | 9.00 |

# **OUTFALL 016**

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/1) | pН  | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|-----|---------------|
| 17   | 2.27          | 8             | 7                 | 7.7 | <50           |
|      |               |               |                   |     |               |

# STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | LIMITS   |            |  |
|-----------|------------|----------|------------|--|
|           |            | MO. AVG. | DAILY MAX. |  |
| FLOW      | QRTLY. (1) | N.A.     | N.A.       |  |
| TSS       | QRTLY(1)   | N:A      | N.A.       |  |
| COD       | QRTLY(1)   | N.A.     | N.A.       |  |
| O and G   | QRTLY (1)  | 15       | 20         |  |
| pH        | QRTLY(1)   | >6.0     | >6.0       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

# COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |  |
|-----------|-----------|-----------|------------|--|
|           |           | MO. AVG.  | DAILY MAX. |  |
| FLOW      | QRTLY(1)  | N.A.      | N.A.       |  |
| TSS       | QRTLY(1)  | 30        | 100        |  |
| O and G   | QRTLY (1) | 15        | 20         |  |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC       | QRTLY (1) | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

# OUTFALL 017

# ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

COMMENTS: See Attachment 1 for additional outfall -016 TRC analyses.

(\*3) see page 4 of 5 for COD values.

(\*4) Outfall 15 COD was missed on 5-07-07 and outfall did not discharge the rest of the month.



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE \_\_4\_\_ OF \_\_5\_\_

05/2007

# NPDES MONITORING REPORT

## OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

# SANITARY WASTE

# OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/1) | pН |
|------|---------------|---------------|---------------|----|
|      | Not           | Applicable    |               |    |
|      |               |               |               |    |

| PARAMETER |           | LIMITS (mg/1) |            |  |
|-----------|-----------|---------------|------------|--|
|           | FREQ.     | MO. AVG.      | WKLY. AVG. |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BOD       | QRTLY (1) | 45            | 65         |  |
| pH        | ORTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

## OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

## OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/1) | CO<br>D<br>(mg/<br>l) | pH |
|------|---------|---------------|---------------|-------------------|-----------------------|----|
| 19   | 10      | .042          |               |                   | 30                    |    |
| 19   | 11      | .192          |               |                   | 39                    |    |
| 19   | 12      | .015          |               |                   | 42                    |    |
| 31   | 14      | .069          |               |                   | 25                    |    |

# OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | O and G<br>(mg/1) | pH | TRC<br>(ug/l) | ] |
|------|---------------|---------------|-------------------|----|---------------|---|
|      |               |               |                   |    |               |   |

# OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

## STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | LIMITS   |            |  |
|-----------|------------|----------|------------|--|
|           |            | MO. AVG. | DAILY MAX. |  |
| FLOW      | QRTLY. (1) | N.A.     | N.A.       |  |
| TSS       | QRTLY (1)  | N.A.     | N.A.       |  |
| COD       | QRTLY (1)  | N.A.     | N.A.       |  |
| O and G   | QRTLY (1)  | 15       | 20         |  |
| pH        | QRTLY(1)   | >6.0     | >6.0       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

# COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |  |
|-----------|-----------|-----------|------------|--|
|           |           | MO. AVG.  | DAILY MAX. |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |  |
| TSS       | QRTLY (1) | 30        | 100        |  |
| O and G   | QRTLY (1) | 15        | 20         |  |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC       | QRTLY (1) | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

# COMMENTS:

# File C170.0005

# CA-0320 01/11/05

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE \_5\_ OF \_5\_

# NPDES MONITORING REPORT

05/2007

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Reviewer Plant Manager



# ATTACHMENT 1

DATE: \_\_\_\_\_ 05/2007

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml)                           |
|------|---------------------------------------|
| 8    | <50                                   |
| 29   | <50                                   |
| 31   | <50<br><50<br><50                     |
|      |                                       |
|      | · · · · · · · · · · · · · · · · · · · |
|      |                                       |
|      |                                       |

**ATTACHMENT 1** 

## Ameren Services

Environmental, Safety & Health 314.554.3480 (Telephone) 314.554.4182 (Facsimile) ssweiss@ameren.com

October 22, 2007

Department of Natural Resources Northeast Regional Office 1709 Prospect Drive Macon, Missouri 63552-2602

Re: Ameren UE Callaway Power Plant NPDES Permit No. MO-0098001 Third Quarter, 2007 NPDES Discharge Monitoring Report (DMR)



# CERTIFIED MAIL

Dear Sir or Madam:

In accordance with requirements of the Union Electric Company, d/b/a Ameren UE Callaway Power Plant, NPDES Permit MO-0098001, please find enclosed the *Third Quarter 2007 (July, August, and September)* DMR:

Please call me at 314-554-3480 if you have any questions concerning the enclosed reports.

Sincerely,

Steven S. Weiss Environmental Scientist, NPDES DMR Coordinator Environmental, Safety & Health Ameren Services as Affiliated Agent for Union Electric Company, d/b/a AmerenUE

Attachment

bcc: R.S. Boutelle (CA-460) JCP / SSW WQ311221

a subsidiary of Ameren Corporation

One Ameren Plaza 1901 Chouteau Avenue PO Box 66149 St. Louis, MO 63166-6149 314.621.3222

1004289000361167040

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)\_\_\_\_\_07/2007 PAGE 1\_\_OF \_4\_\_\_

# NPDES MONITORING REPORT

# OUTFALL 001 RADWASTE SYSTEM

| DATE                                                                                                                                                                                                                               | SOURCE         | FLOW<br>(MGD)                         | TSS<br>(mg/1)(*1)                                       | Boron<br>(mg/l) | pН                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|---------------------------------------------------------|-----------------|---------------------------------------|
| 3                                                                                                                                                                                                                                  | 7              | .094                                  | 9                                                       | 30              | 7.82                                  |
| 6                                                                                                                                                                                                                                  | 6              | .094                                  | 17                                                      |                 | 8.90                                  |
| 13                                                                                                                                                                                                                                 | 1              | .092                                  | 9                                                       | 4               | 8.75                                  |
| 20                                                                                                                                                                                                                                 | 6              | .094                                  | lO                                                      | <b>1</b>        | 8.69                                  |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       | $= \frac{1}{2} \left[ \frac{1}{2} \frac{1}{2} \right] $ |                 |                                       |
| 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
| at apres                                                                                                                                                                                                                           | and the second |                                       |                                                         | etter internet  |                                       |
|                                                                                                                                                                                                                                    |                | 13                                    |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                | <u></u>                               |                                                         |                 |                                       |
| ·                                                                                                                                                                                                                                  |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                | · · · · · · · · · · · · · · · · · · · |                                                         | <u> </u>        |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 | -                                     |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 | · · · · · · · ·                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       | t.                                                      |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
| ,                                                                                                                                                                                                                                  |                | · · · · ·                             |                                                         |                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| **************************************                                                                                                                                                                                             |                |                                       |                                                         |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       | <u> </u>                                                |                 |                                       |
|                                                                                                                                                                                                                                    |                |                                       |                                                         |                 |                                       |
| 1 A A A A A                                                                                                                                                                                                                        | 1              |                                       |                                                         |                 |                                       |

| PARAMETER    | FREQ.   | LIMITS             |               |  |
|--------------|---------|--------------------|---------------|--|
|              |         | MONTHLY<br>AVERAGE | DAILY<br>MAX. |  |
| FLOW (MGD)   | EB      | N.A.               | N.A.          |  |
| pH (STD)     | EB      | 6.0-9.0            | 6.0-9.0       |  |
| TSS (mg/i)   | EB      | 30                 | 45            |  |
| Boroa (mg/l) | EB      | N.A.               | N.A.          |  |
| TRC (ug/l)   | Monthly | N.A.               | 190           |  |
| BOD (mg/l)   | Monthly | N.A.               | N.A.          |  |
| 0&G (mg/1)   | Monthly | 15                 | 20            |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING

METHODS SPECIFIED UNDER 10CSR 20-7.015

# DURCES

1 = WASTE MONITOR TANK A

2 - WASTE MONITOR TANK B

= STEAM GENERATOR BLOWDOWN

4 = SEC. LIQ. WASTE MONITOR TANK A

5 = SEC. LIQ. WASTE MONITOR TANK B

6 = LIQ. RADWASTE DISCHARGE TANK A

7 = LIQ. RADWASTE DISCHARGE TANK B

EB = EACH BATCH

| Date | BOD (mg/l)                                                                                                      | TRC (ug/l) | O&G (mg/l) |
|------|-----------------------------------------------------------------------------------------------------------------|------------|------------|
| · 3  |                                                                                                                 | <10        | 7          |
| 20   | 10.5                                                                                                            |            |            |
|      |                                                                                                                 |            |            |
|      | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |            |            |

COMMENTS:

File C170.0005

Page 1 of 4

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_07/2007 PAGE \_2\_ OF \_4\_\_

# NPDES MONITORING REPORT

# OUTFALL 002 COOLING TOWER BLOWDOWN

|      | <u></u>       |                 |               |
|------|---------------|-----------------|---------------|
| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |
| 1    | 5.3           | 86              | <50           |
| 2    | 4.9           | 87              | <50           |
| 3    | 6.4           | 90              | <50           |
| 4    | 4.4           | 91              | <u>&lt;0</u>  |
| 5    | 6.5           | 91              | 113           |
| 6    | 4.0           | 89              | <50           |
| 7    | 2.7           | 91              | <50           |
| 8    | 4.0           | 92              | <50           |
| 9    | 4.0           | 92              | <50           |
| 10   | 3.9           | 91              | <50           |
| 11   | 4.0           | 87              | <50           |
| 12   | 4.2           | 88              | <50           |
| 13   | 4.4           | 88              | <50           |
| 14   | 5.9           | 90              | <50           |
| 15   | 5.5           | 90              | <50           |
| 16   | 5.3           | 92              | <50           |
| .17  | 5.1           | 91              | 83            |
| 18   | 7.8           | 93              | <50           |
| 19   | 6.0           | 93              | 178           |
| 20   | 3.4           | 89              | 116           |
| 21   | 6.0           | 87              | 127           |
| 22   | 45            | 87              | <50           |
| 23   | 4.5           | 88              | <50           |
| 24   | 4.9           | 90              | <50           |
| 25   | 1.9           | 91              | 111           |
| 26   | 3.8           | 92              | 87            |
| 27   | 4.8           | 93              | 142           |
| 28   | 6.3           | 91              | 124           |
| 29   | 7.3           | 91              | 78            |
| 30   | 7.4           | 90              | 93            |
| 31   | 5.8           | 90              | <50           |

| DATE |                   | SS<br>g/1)    | TDS<br>(mg/I) |
|------|-------------------|---------------|---------------|
| 2    |                   | 19            | 2002          |
| 9    |                   | 16            | 2224          |
| 16   |                   | 52            | 2128          |
| 23   |                   | 18            | 1624          |
| 30   |                   | 16            | 2032          |
|      |                   |               |               |
| DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/l) |               |
| No   | Sample            | Required      |               |
|      |                   |               |               |

.

| PARAMETER               | FREQ.     | LI          | MITS          |
|-------------------------|-----------|-------------|---------------|
|                         |           | MO.<br>AVG. | DAILY<br>MAX. |
| FLOW                    | CONT.     | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| OIL AND GREASE          | QRTLY (1) | 15          | 20            |
| SULFATE                 | QRTLY.(I) | N.A.        | N.A.          |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110 ° F     | 110°F         |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |

ъ.

ALL SAMPLES ANALYZED BY America UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_ PAGE \_3\_ OF \_4\_\_

FLOW

(MGD)

No

DATE

# NPDES MONITORING REPORT

# OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

pH

BOD

(mg/1)

Required

07/2007

# SANITARY WASTE

| PARAMETER |           | LIM       | TS (mg/1)  |
|-----------|-----------|-----------|------------|
|           | FREQ.     | MO. AVG.  | WALY. AVG. |
| FLOW      | QRTLY (I) | N.A.      | N.A.       |
| TSS       | QRTLY (I) | 70        | 110        |
| BOD       | QRTLY (I) | 45        | 65         |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

## OUTFALL 002 INTAKE HEATER BLOWDOWN NO DISCHARGE

## OUTFALLS 010 - 015

OUTFALL 007

TSS

(mg/1)

Samples

| DATE    | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and G<br>(mg/l) | CO<br>D<br>{mg/<br>l) | pН |
|---------|---------|---------------|---------------|-------------------|-----------------------|----|
| <b></b> |         |               |               |                   |                       |    |
|         |         | No            | Samples       | Required          | · · · · · ·           |    |
|         |         |               |               |                   |                       |    |
|         | ·       |               |               |                   |                       |    |

# OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/1) | рĤ       | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|----------|---------------|
|      | No            | Sample        | Required          | <u>.</u> |               |

# OUTFALL 017

# ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

# STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | L        | IMITS      |
|-----------|------------|----------|------------|
|           |            | MO. AVG. | DAILY MAX. |
| FLOW      | QRTLY. (I) | N.A.     | N.A.       |
| TSS       | QRTLY (1)  | N.A.     | N.A.       |
| COD       | QRTLY (1)  | N.A.     | N.A.       |
| O and G   | QRTLY (1)  | 15       | 20         |
| pH        | QRTLY(I)   | >6.0     | >6.0       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

## COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |
|-----------|-----------|-----------|------------|
|           |           | MO. AVG.  | DAILY MAX. |
| FLOW      | QRTLY(1)  | N.A.      | N.A.       |
| TSS       | QRTLY (I) | 30        | 100        |
| O and G   | QRTLY(I)  | 15        | 20         |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |
| TRC       | QRTLY (1) | N.A.      | 190        |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: \_See Attachment I for Outfall 16 TRC.

CA-0320 01/11/05

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_\_\_07/2007 PAGE \_\_4\_\_ OF \_\_4\_\_

# NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald S Doutths Preparer Reviewer

Approved

Plant Manager

CA0320

Page 4 of 4

# ATTACHMENT 1 DATE: \_\_\_\_\_072007\_\_\_\_

# Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| <u>Date</u> | <u>TRC (ug/ml)</u> |
|-------------|--------------------|
| 3           | <50                |
| 4           | <50                |
| 6           | <50                |
| 19          | <50                |
| 24          | 119                |
| 25          | <50                |
| 26          | <50                |
| 27          | <50                |
| 31          | <50                |
|             |                    |

ATTACHMENT I

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_08/2007 PAGE \_\_1\_\_ OF \_\_4\_\_

NPDES MONITORING REPORT

# OUTFALL 001 RADWASTE SYSTEM

| DATE        | SOURCE   | FLOW<br>(MGD)                         | TSS<br>(mg/1)(*1)                     | Boron<br>(mg/1)                                                                                                               | рH       |
|-------------|----------|---------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------|
| 3           | 7        | .092                                  | _17                                   | 0.5                                                                                                                           | 8.68     |
| 9           | 6        | .092                                  | 9                                     | 0.5                                                                                                                           | 8.76     |
| 24          | 7        | .093                                  | 9                                     | 6                                                                                                                             | 8.20     |
| 25          | 6        | .091                                  | 7                                     | 0.5                                                                                                                           | 8.34     |
| 31          | 7        | .092                                  | 7                                     | 0.5                                                                                                                           | 8.60     |
|             |          |                                       |                                       | ni is च∃rani.                                                                                                                 |          |
|             |          |                                       |                                       | ana jero.<br>Na serie s |          |
|             | 1        |                                       |                                       |                                                                                                                               |          |
|             |          |                                       |                                       |                                                                                                                               |          |
|             |          |                                       |                                       |                                                                                                                               |          |
|             |          | 192 <sup>5</sup>                      |                                       | - 98                                                                                                                          |          |
| -           | <u> </u> |                                       |                                       |                                                                                                                               |          |
|             |          | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                                                                                                               |          |
|             |          |                                       |                                       | <u> </u>                                                                                                                      |          |
|             |          |                                       |                                       |                                                                                                                               |          |
|             |          |                                       |                                       |                                                                                                                               |          |
|             |          |                                       |                                       |                                                                                                                               |          |
|             | <u> </u> |                                       |                                       |                                                                                                                               |          |
|             |          |                                       |                                       |                                                                                                                               |          |
| - <u>A-</u> |          | •<br>•                                |                                       | · · · · · · · · · · · · · · · · · · ·                                                                                         |          |
|             |          |                                       |                                       |                                                                                                                               |          |
|             |          |                                       |                                       |                                                                                                                               | <u> </u> |
|             |          |                                       |                                       |                                                                                                                               |          |
|             |          |                                       |                                       | <u> </u>                                                                                                                      |          |
|             |          |                                       |                                       |                                                                                                                               |          |
|             | :<br>    |                                       |                                       |                                                                                                                               |          |
|             |          |                                       |                                       | · · · · · · · · · · · · · · · · · · ·                                                                                         |          |
|             |          |                                       |                                       |                                                                                                                               |          |
|             | **       | <u> </u>                              |                                       |                                                                                                                               |          |
| <b>_</b>    |          |                                       |                                       |                                                                                                                               |          |
|             |          | <u> </u>                              |                                       |                                                                                                                               |          |
|             |          |                                       |                                       | <u></u>                                                                                                                       |          |
|             |          |                                       | and the second                        | e ang                                                                                                                         |          |

| PARAMETER    | FREQ.                       | LIMITS             |               |  |
|--------------|-----------------------------|--------------------|---------------|--|
|              | tin di<br>tin di<br>tin tin | MONTHLY<br>AVBRAGE | DAILY<br>MAX. |  |
| FLOW (MGD)   | EB                          | N.A.               | N.A.          |  |
| pH (STD)     | EB                          | 6.0-9.0            | 6.0-9.0       |  |
| TSS (mg/l)   | EB                          | 30                 | 45            |  |
| Boron (mg/l) | EB                          | N.A.               | N.A.          |  |
| TRC (ug/l)   | Monthly                     | N.A.               | 190           |  |
| BOD (mg/l)   | Monthly                     | N.A.               | N.A.          |  |
| O&G (mg/1)   | Monthly                     | 15                 | 20            |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

# SOURCES

I = WASTE MONITOR TANK A

2 = WASTE MONITOR TANK B

- 3 = STEAM GENERATOR BLOWDOWN
- 4 = SEC. LIQ. WASTE MONITOR TANK A
- 5 = SEC. LIQ. WASTE MONITOR TANK B
- 6 = LIQ. RADWASTE DISCHARGE TANK A
- 7 = LIQ. RADWASTE DISCHARGE TANK B

EB = EACH BATCH

| Date | BOD (mg/l) | TRC (ug/l) | O&G (mg/l) |
|------|------------|------------|------------|
| 3    | 24         | 20         | 11         |
|      |            |            |            |
|      |            |            |            |

COMMENTS:

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_\_08/2007 PAGE \_\_2\_\_ OF \_\_4\_\_

NPDES MONITORING REPORT

| FLOW<br>(MGD)                         | TEMP<br>(MAX 9F                                                                                                                                                                                                            | TRC<br>(ug/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.0                                   | 91                                                                                                                                                                                                                         | -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.3                                   | 92                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.3                                   | 93                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.6                                   | 93                                                                                                                                                                                                                         | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.7                                   | 94                                                                                                                                                                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.0                                   | 94                                                                                                                                                                                                                         | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.7                                   | 95                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.3                                   | 95                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 75                                    | 94                                                                                                                                                                                                                         | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.9                                   | 93                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.8                                   | 95                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.7                                   | 94                                                                                                                                                                                                                         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | 92                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.9                                   | 95                                                                                                                                                                                                                         | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.1                                   | 95                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.4                                   | 95                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.4                                  | 93                                                                                                                                                                                                                         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.4                                   | 94                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.4                                   | 94                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.0                                   | 93                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.7                                   | 94                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.3                                   |                                                                                                                                                                                                                            | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.5                                   | 94                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 91                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | 91                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | 90                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                            | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.7                                   | 93                                                                                                                                                                                                                         | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                            | <u>ය</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                            | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       |                                                                                                                                                                                                                            | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | (MGD)<br>4.0<br>4.3<br>4.3<br>5.6<br>5.7<br>6.0<br>7.7<br>6.3<br>7.5<br>3.9<br>3.8<br>3.7<br>3.5<br>3.9<br>4.1<br>5.4<br>10.4<br>5.4<br>10.4<br>5.4<br>10.4<br>5.4<br>4.0<br>4.7<br>4.3<br>4.5<br>4.5<br>4.1<br>5.9<br>5.7 | (MGD)         (MAX %           4.0         91           4.3         92           4.3         93           5.6         93           5.7         94           6.0         94           7.7         95           6.3         95           7.5         94           3.9         93           3.8         95           3.7         94           3.5         92           3.7         94           3.5         92           3.7         94           3.5         92           3.7         94           3.5         92           3.7         94           3.5         92           3.7         94           3.5         92           3.7         94           4.1         93           5.4         94           4.0         93           4.7         94           4.3         95           4.5         91           4.1         91           5.9         90           5.7         93 |

# OUTFALL 002 COOLING TOWER BLOWDOWN

| . [ |      | TSS    | TDS    |
|-----|------|--------|--------|
| 1   | DATE | (mg/1) | (mg/1) |
| 1   | 6    | 38     | 1900   |
| 1   | 13.  | 52     | 2822   |
|     | 20   | 45     | 1706   |
|     | 27   | 98 (2) | 1992   |

| DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/1) |
|------|-------------------|---------------|
| 6    | 1200              | 0             |
|      |                   |               |

| PARAMETER               | FREQ.     | LIMITS      |               |
|-------------------------|-----------|-------------|---------------|
| <u>8</u>                |           | MO.<br>AVG. | DAILY<br>MAX. |
| FLOW                    | CONT.     | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| OIL AND GREASE          | QRTLY (I) | 15          | 20            |
| SULFATE                 | QRTLY (1) | N.A.        | N.A. *        |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110° F        |
| pH                      | CONT.     | 6.0 9.0     | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plani OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: <u>No pH excursions occurred this month.</u>
(2) Verified by back-up sample.



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE <u>3</u> OF <u>4</u>

08/2007\_\_\_\_\_

# NPDES MONITORING REPORT

# OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

# OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | BOD<br>(mg/1) | рН |
|------|---------------|---------------|---------------|----|
|      |               |               |               |    |
|      |               |               |               |    |
|      | No            | Discharge     |               |    |
|      |               |               |               |    |
|      |               |               |               |    |
|      |               |               |               |    |

# SANITARY WASTE

| PARAMETER |           | LIMITS (mg/1) |            |  |
|-----------|-----------|---------------|------------|--|
|           | FREQ.     | MO. AVG.      | WKLY. AVG. |  |
| FLOW      | QRTLY (I) | N.A.          | N.A.       |  |
| TSS       | QRTLY (I) | 70            | 110        |  |
| BOD       | QRTLY (I) | 45            | 65         |  |
| pH        | QRTLY (I) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

OUTFALL 609 INTAKE HEATER BLOWDOWN NO DISCHARGE

# OUTFALLS 010 - 015

| DATE | OUTFAL<br>L | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and<br>G<br>(mg/l) | CO<br>D<br>(mg/<br>I) | pН   |
|------|-------------|---------------|---------------|----------------------|-----------------------|------|
| 20   | 10          | 017           | 44            | 3                    | 17                    | 7.96 |
| 20   | 11          | .079          | 99            | 5                    | 30                    | 8.14 |
| 20   | 12          | .006          | 11            | 4                    | 25                    | 8.90 |
|      | 13          | No            | Discharge     |                      |                       |      |
|      | 14          | No            | Discharge     |                      |                       |      |
| :    | 15          | No            | Discharge     |                      |                       | 1.00 |

# STORM WATER RUNOFF PONDS

|            | MO. AVG.                            |                                                                                                                                                            |
|------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | MIC. AYG.                           | DAILY MAX.                                                                                                                                                 |
| QRTLY. (I) | N.A.                                | N.A.                                                                                                                                                       |
| QRTLY (I)  | N.A.                                | N.A.                                                                                                                                                       |
| QRTLY (I)  | N.A.                                | N.A.                                                                                                                                                       |
| QRTLY (I)  | 15                                  | 20                                                                                                                                                         |
| QRTLY(1)   | >6.0                                | >6.0                                                                                                                                                       |
|            | QRTLY (I)<br>QRTLY (I)<br>QRTLY (I) | QRTLY (I)         N.A.           QRTLY (I)         N.A.           QRTLY (I)         N.A.           QRTLY (I)         N.A.           QRTLY (I)         N.A. |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

# OUTFALL 016\*

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | O and G<br>(mg/I) | pH . | TRC<br>(ug/l) |   |
|------|---------------|---------------|-------------------|------|---------------|---|
| 10   | 4.34          | 9             | 1                 | 8.5  | <50           |   |
|      |               |               |                   |      |               | ] |

## COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |  |
|-----------|-----------|-----------|------------|--|
|           |           | MO. AVG.  | DAILY MAX. |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |  |
| TSS       | QRTLY (I) | 30        | 100        |  |
| O and G   | QRTLY (1) | 15        | 20         |  |
| pН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC       | QRTLY (I) | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: \*See TRC results for Outfall 16 on Attachment I.

# OUTFALL 017

## ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

File C170.0005



PERMIT NO. MO-0098001 **REPORTING PERIOD (MO/YR)** 08/2007 PAGE \_\_4\_ OF \_\_4\_

# NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Reviewer

Approved

Plant Manager Director HH 3 14 9-26-07

Page 4 of 4



# ATTACHMENT 1

DATE: \_\_\_\_\_08/2007

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml) |
|------|-------------|
| 1    | <50         |
| 2    | 174         |
| 7    | <50         |
| 8    | 78          |
| 9    | <50         |
| 15   | <50         |
| 16   | <50         |
| 21   | <50         |
| 22   | <50         |
| 23   | <50         |
| 28   | <50         |
| 29   | <50         |
| 30   | 75          |

# ATTACHMENT 1

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 09/2007 PAGE 1\_0F 4\_ 09/2007

# NPDES MONITORING REPORT

| DATE                                                                                                            | SOURCE                                | FLOW                              | TSS                  | Boron              | рĦ                                                                                                                         | PARAMETEI                                | FREQ.      | LI                     | MITS       |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|----------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------|------------------------|------------|
| 12                                                                                                              | 6                                     | (MGD)<br>.093<br>.093             | (mg/1)(*1)<br>6<br>6 | (mg/l)<br>25<br>55 | <u>8.84</u><br>8.72                                                                                                        |                                          |            | MONTHLY<br>AVERAGE     |            |
| 26                                                                                                              | 6                                     | .093                              | 9                    | 46                 | 8.91                                                                                                                       | FLOW (MGD)                               | EB         | N.A.                   | N.A.       |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | pH (STD)                                 | EB         | 6.0-9.0                | 6.0-9.0    |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | TSS (mg/1)                               | EB         | 30                     | 45         |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | Boron (mg/l)                             | EB         | N.A.                   | N.A.       |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | TRC (ug/l)                               | Monthly    | N.A.                   | 190        |
| <u></u>                                                                                                         |                                       |                                   |                      |                    |                                                                                                                            | BOD (mg/l)                               | Monthly    | N.A.                   | N.A.       |
| م <u>ىر دې در موسو</u> د<br>ا                                                                                   |                                       |                                   |                      |                    |                                                                                                                            | O&G (mg/1)                               | Monthly    | 15                     | 20         |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | ALL SAMPLE<br>Plant OPERAT<br>METHODS SI | IONS LABO  | RATORY USIN            | IG         |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | - 14                                     |            |                        |            |
|                                                                                                                 |                                       |                                   |                      | 1                  |                                                                                                                            | SOURCES                                  |            |                        | . t _      |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | 1 = WASTE                                | MONITOR T  | ANK A                  |            |
| 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |                                       |                                   |                      |                    |                                                                                                                            | 2 = WASTE                                | MONITOR T  | ANK B                  |            |
|                                                                                                                 |                                       |                                   |                      |                    | <del>a de la competencia d</del> | 3 = STEAM                                | GENERATO   | R BLOWDOW              | N ÷        |
| <u> </u>                                                                                                        |                                       |                                   |                      |                    |                                                                                                                            | 4 = SEC. Li                              | Q. WASTE M | ONITOR TANK            | KA         |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | 5 = SEC. LI                              | Q. WASTE M | ONITOR TAN             | κв         |
|                                                                                                                 |                                       |                                   |                      | }                  |                                                                                                                            | 6 = LIQ. RA                              | DWASTE DI  | SCHARGE TAI            | NK A       |
| ······                                                                                                          |                                       | <u></u>                           |                      | <u> </u>           |                                                                                                                            | 7 = LIO. RA                              | DWASTE DI  | SCHARGE TA             | NK B       |
| · · · · · · · · · · · · · · · · · · ·                                                                           |                                       |                                   |                      |                    |                                                                                                                            | EB = EACH E                              |            |                        |            |
| <u></u>                                                                                                         | · · · · · · · · · · · · · · · · · · · |                                   |                      |                    |                                                                                                                            | <u> </u>                                 | OD (mg/l)  | TRC (ug/l)             | O&G (mg/l) |
| والمتحديث والمحاجر                                                                                              |                                       | <u>نى بەر ئەرىكە شەر مەر</u><br>ب |                      |                    |                                                                                                                            |                                          | 0          | 20                     | 3          |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            |                                          |            |                        |            |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | +                                        |            |                        |            |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | COMMENTS:                                |            |                        |            |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            |                                          |            | <del>بې د فريندي</del> |            |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | :                                        |            | <u>16. 4 1.</u>        |            |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            | · · · · · · · · · · · · · · · · · · ·    | <u></u>    |                        |            |
|                                                                                                                 |                                       |                                   |                      |                    |                                                                                                                            |                                          |            |                        |            |

# OUTFALL 001 RADWASTE SYSTEM

File C170.0005

Page 1 of 4

CA-0320 01/11/05

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 09/2007 PAGE 2 OF 4

# NPDES MONITORING REPORT

# OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(42/1) |
|------|---------------|-----------------|---------------|
| 1    | 6.1           | 89              | 64            |
| 2    | 6.4           | 91              | <50           |
| 3    | 6.5           | 93              | <50           |
| 4    | 6.4           | 94              | <50           |
| 5    | 6.1           | 93              | <50           |
| 6    | 5.4           | 93              | 64            |
| 7    | 5.3           | 93              | <50           |
| 8    | 5.5           | 91              | 97            |
| 9    | 5.5           | 91              | <\$0          |
| 10   | 6.0           | 91              | <50           |
| 11   | 5.3           | 84              | <50           |
| 12   | 6.0           | 83              | <50           |
| 13   | 2.8           | 88              | 127           |
| 14   | 5.5           | 82              | 122           |
| 15   | 4.6           | 78              | 172           |
| 16   | 4.2           | 83              | <50           |
| 17   | 4.9           | . 90            | 93            |
| 18   | 4.0           | . 92            | <50           |
| 19   | 4.8           | 92              | <50           |
| 20   | 4.6           | 92              | <50           |
| 21   | 4.6           | 90              | 71            |
| 22   | 4.7           | 90              | 77            |
| 23   | 4.6           | 93              | 99            |
| 24   | 4.6           | 93              | 107           |
| 25   | 4.6           | 91              | 99            |
| 26   | 4.7           | 87              | <50           |
| 27   | 4.8           | 85              | 79            |
| 28   | 3.7           | 85              | 104           |
| 29   | 4.6           | 86              | 71            |
| 30   | 4.2           | 91              | <50           |

| DATE | TSS<br>(mg/l) | TDS<br>(mg/l) |
|------|---------------|---------------|
| 3    | 50            | 2520          |
| 10   | 57            | 1500          |
| 17   | 71            | 2002          |
| 24   | 55            | 2153          |

| DATE | Sulfate<br>(urg/1) | 04.G<br>(mg/1) |
|------|--------------------|----------------|
| No   | Sample             | Required       |
|      |                    |                |

| PARAMETER                             | FREQ      | LIMITS      |              |  |
|---------------------------------------|-----------|-------------|--------------|--|
| · · · · · · · · · · · · · · · · · · · |           | MO.<br>AVG. | DAILY<br>MAX |  |
| FLOW                                  | CONT.     | N.A.        | N.A.         |  |
| TOTAL SUSPENDED SOLIDS                | WKLY.     | N.A.        | N.A.         |  |
| TOTAL DISSOLVED SOLIDS                | WKLY.     | N.A.        | N.A.,        |  |
| OIL AND GREASE                        | QRTLY (1) | 15          | 20           |  |
| SULFATE                               | QRTLY.(1) | N.A.        | N.A.         |  |
| TEMPERATURE (MAXIMUM)                 | DAILY     | 110°F       | 110°F        |  |
| pH                                    | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |  |
| TOTAL RESIDUAL CHLORINE               | DAILY     | N.A.        | 190 ug/L     |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER IOCSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

File C170.0005

CA-0320

# NPDES MONITORING REPORT

## OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

# OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l)                         | BOD<br>(mg/l) | рН   |
|------|---------------|---------------------------------------|---------------|------|
|      |               | · · · · · · · · · · · · · · · · · · · |               |      |
|      | No            | Sample                                | Required      |      |
|      |               |                                       |               |      |
|      |               |                                       |               |      |
|      |               |                                       | ,             | l se |

# SANITARY WASTE

| PARAMETER |           | LIMITS (mg/l) |            |  |
|-----------|-----------|---------------|------------|--|
|           | FREQ.     | MOAVG         | WELY. AVG. |  |
| FLOW      | QRTLY (I) | N:A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BOD       | QRTLY (1) | 45            | 65         |  |
| pH        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

# OUTFALL 809 INTAKE HEATER BLOWDOWN NO DISCHARGE

# OUTFALLS 010 - 015

| DATE | OUTFAL<br>L | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and<br>G<br>(mg/l) | CO<br>D<br>(mg/<br>I) | pH |
|------|-------------|---------------|---------------|----------------------|-----------------------|----|
|      | No          | Sample        | Required      |                      |                       |    |
|      |             |               |               |                      |                       |    |

# OUTFALL 016\*

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | O and G<br>(mg/l) | pН | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|----|---------------|
|      |               |               |                   |    |               |
|      | No            | Sample        | Required          |    |               |

# OUTFALL 017

# ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

### LOWDOWN RGE

# STORM WATER RUNOFF PONDS

| PARAMETER | FREQ       | LIMITS   |           |  |
|-----------|------------|----------|-----------|--|
|           |            | MO. AVG. | DAILY MAX |  |
| FLOW      | QRTLY. (1) | N.A.     | N.A       |  |
| TSS       | QRTLY (1)  | N.A.     | N.A.      |  |
| COD       | QRTLY (1)  | N.A.     | N.A.      |  |
| O and G   | QRTLY (1)  | 15       | 20        |  |
| oH        | ORTLY(1)   | >6.0     | >6.0      |  |

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

## COOLING TOWER BYPASS

فكالم مراجع

| PARAMETER | FREQ      | L         | MITS      |
|-----------|-----------|-----------|-----------|
|           |           | MO. AVG.  | DALLY MAX |
| FLOW      | QRTLY (1) | N.A.      | N.A.      |
| TSS       | QRTLY (1) | 30        | 100       |
| O and G   | QRTLY (1) | 15        | 20        |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |
| TRC       | ORTLY (1) | N.A.      | 190       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: Outfall 016 TRC results on Attachment 1

File C170.0005

Page 3 of 4

CA-0320 01/11/05

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE \_\_4\_\_ OF \_\_4\_\_

NPDES MONITORING REPORT

09/2007

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

Reviewer

Approved

CA0320 01/11/05

Plant Manager

Page 4 of 4

s.,

4

# Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml) |
|------|-------------|
| 4    | 146         |
| 5    | 85          |
| 6    | 180         |
| 13   | 61          |
| 18   | <50         |
| 19   | 132         |
| 20   | <50         |
| 25   | <50         |
| 26   | <50         |
|      |             |
|      |             |

ATTACHMENT 1

Amaran Services Environmental, Safety & Health 314.554.3480 (Telephone) 314.554.4182 (Facsimile) ssweiss@ameren.com One Ameren Piaza 1901 Chouteau Avenue PO Box 66149 St. Louis, MO 63166-6149 314.621.3222

January 22, 2008

Department of Natural Resources Northeast Regional Office 1709 Prospect Drive Macon, Missouri 63552-2602



meren

# Re: Ameren UE Callaway Power Plant NPDES Permit No. MO-0098001 Fourth Quarter, 2007 NPDES Discharge Monitoring Report (DMR)

Dear Sir or Madam:

In accordance with requirements of the Union Electric Company, d/b/a Ameren UE Callaway Power Plant, NPDES Permit MO-0098001, please find enclosed the *Fourth Quarter 2007 (October, November, and December)* DMR.

Per our NPDES Permit Reportable Event Report that was submitted to you on October 15, 2007, the Total Residual Chlorine (TRC) permit limit was exceeded on October 10<sup>th</sup> from Outfall 002 (Cooling Tower Blowdow). The TRC exceedance is also documented in the Comments section on Page 2 of the October DMR.

Please call me at 314-554-3480 if you have any questions concerning the enclosed reports.

Sincerely,

Steven S. Weiss Environmental Scientist, NPDES DMR Coordinator Environmental, Safety & Health Ameren Services as Affiliated Agent for Union Electric Company, d/b/a AmerenUE

Attachment

bcc: R.S. Boutelle (CA-460) JCP / SSW (WQ3.1.2.1

1

4

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)\_\_\_\_\_\_10/2007 PAGE \_1\_\_ OF \_4\_\_

NPDES MONITORING REPORT

# OUTFALL 001 RADWASTE SYSTEM

|             | PARAMETER     | рĦ    | Boron<br>(mg/1) | TSS<br>(mg/1)(*1) | FLOW<br>(MGD)                            | SOURCE | DATE                 |
|-------------|---------------|-------|-----------------|-------------------|------------------------------------------|--------|----------------------|
| Ĺ           |               | 8.76  | 103             | 8                 | .094                                     | 7      | 5                    |
| Ľ           |               | 8.74  | 49              | 9                 | .093                                     | 6      | 13:                  |
| Ĺ           | FLOW (MGD)    | 8.72  | 43              | 22                | .092                                     | 7      | 20                   |
| L           | pH (STD)      |       |                 |                   |                                          |        | 1.1                  |
| L           | TSS (mg/1)    |       |                 |                   |                                          |        | <u>.</u>             |
|             | Boron (mg/l)  |       |                 |                   |                                          |        |                      |
| Ľ           | TRC (ug/i)    |       |                 |                   |                                          |        |                      |
| П           | BOD (mg/l)    |       |                 |                   |                                          |        |                      |
| Π           | O&G (mg/1)    |       |                 |                   |                                          |        |                      |
| ĀN          | ALL SAMPLES   |       |                 |                   |                                          |        |                      |
| )N          | Plant OPERATI |       |                 |                   |                                          |        | e per presenta en la |
| CII         | METHODS SPE   |       |                 |                   |                                          |        |                      |
|             |               | ····· | ·               |                   |                                          |        |                      |
|             | SOURCES       |       |                 |                   |                                          |        |                      |
| <b>(</b> )  | J = WASTEN    |       |                 |                   |                                          |        |                      |
|             | h.            |       |                 |                   |                                          |        |                      |
|             | 2 = WASTEN    |       |                 |                   |                                          |        |                      |
|             | 3 = STEAM C   |       |                 |                   |                                          |        |                      |
|             | 4 = SEC. LIQ  |       |                 | Sec. 1            |                                          |        |                      |
|             | 5 = SEC. LIQ  |       |                 |                   |                                          |        |                      |
| W,          | 6 = LJQ.RAD   |       |                 |                   | 1                                        |        |                      |
| W           | 7 = LIQ. RAD  |       |                 |                   | 1. A A A A A A A A A A A A A A A A A A A |        |                      |
| Ť           | EB = EACH BA  |       |                 |                   |                                          |        |                      |
| Ð           | Date BC       |       |                 |                   |                                          |        |                      |
|             | .5            |       |                 |                   |                                          |        |                      |
| •           | 20            |       |                 |                   |                                          |        |                      |
| 7,          |               |       |                 |                   |                                          |        |                      |
| ÷           | <u></u>       |       |                 |                   |                                          |        |                      |
|             | COMMENTS:     |       |                 |                   |                                          |        |                      |
| <del></del> |               |       |                 |                   |                                          |        |                      |
|             |               |       |                 |                   |                                          |        |                      |
|             |               |       |                 |                   |                                          |        |                      |
| Ţ.,         |               |       |                 |                   |                                          |        |                      |

| PARAMETER    | FREQ.   | LIMI               | TS      |
|--------------|---------|--------------------|---------|
|              |         | MONTHLY<br>AVERAGE |         |
| FLOW (MGD)   | EB      | N.A.               | N.A.    |
| pH (STD)     | EB      | 6.0-9.0            | 6.0-9.0 |
| TSS (mg/l)   | EB      | 30                 | 45      |
| Boron (mg/l) | EB      | N.A.               | N.A.    |
| TRC (ug/l)   | Monthly | N.A.               | 190     |
| BOD (mg/l)   | Monthly | N.A.               | N.A.    |
| O&G (mg/1)   | Monthly | 15                 | 20      |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING

METHODS SPECIFIED UNDER 10CSR 20-7.015

= WASTE MONITOR TANK A

2 = WASTE MONITOR TANK B

3 = STEAM GENERATOR BLOWDOWN

4 = SEC. LIQ. WASTE MONITOR TANK A

5 = SEC. LIQ. WASTE MONITOR TANK B

6 = LIQ. RADWASTE DISCHARGE TANK A

7 = LIQ. RADWASTE DISCHARGE TANK B EB = EACH BATCH

Date BOD (mg/l) TRC (ug/l)

| .5 |    | 30 | 5 |
|----|----|----|---|
| 20 | 10 |    |   |
|    |    |    |   |

O&G (mg/l)

PERMIT NO. MO-6098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_\_10/2007 PAGE \_2\_\_ OF \_4\_\_\_

NPDES MONITORING REPORT

| DATE                                  | FLOW<br>(MGD) | TEMP          | TRC                   |
|---------------------------------------|---------------|---------------|-----------------------|
|                                       | 43            | (MAX 9F<br>86 | ( <i>ag/l</i> )<br>91 |
| 2                                     | 6.0           | 90            | 72                    |
| 3                                     | 6.7           | .85           | 94                    |
| 4                                     | 0.6           | 92            | 127                   |
| 5                                     | 7.9           | 92            | 88                    |
| 6                                     | 7.1           | 93            | <50                   |
| 7                                     | 7.0           | 93            | 87                    |
| 8                                     | 6.9           | 89            | <50                   |
| 9                                     | 6.7           | 76            | 117                   |
| 10                                    | 5.5           | - 80          | 203/98 (2)            |
| · · · · · · · · · · · · · · · · · · · | 4.1           | 77            | 113                   |
| J2                                    | 3.0           | 78            | 66                    |
| 13                                    | 3.0           | 80            | 72                    |
| 14                                    | 3.8           | 84            | <50                   |
| 15                                    | 4.5           | 83            | <50                   |
| 16                                    | 4.8           | 81            | <50                   |
| 17                                    | 5.2           | 85            | 73                    |
| 18                                    | 4.8           | 84            | <50                   |
| 19                                    | 4.4           | 80            | <50                   |
| 20                                    | 5.7           | 83            | <50                   |
| 21                                    | 4.6           | 85            | <50                   |
| 22                                    | 3.6           | 79            | <50                   |
| 23                                    | 3.4           | 71            | <0                    |
| 24                                    | 2.8           | 76            | <50                   |
| 25                                    | 4.4           | 74            | <50                   |
| 26                                    | 4.4           | 74            | <50                   |
| 27                                    | 4.3           | 74            | . < <b>5</b> 0        |
| 28                                    | 4.3           | 73            | ح٥                    |
| 29                                    | 5.0           | 75            | <50                   |
| 30                                    | 6.4           | 78            | <50                   |
| 31                                    | 2.7           | Π             | <50                   |

# OUTFALL 002 COOLING TOWER BLOWDOWN

|   | DATE | TSS<br>(mg/l) | TDS<br>(mg/l) |
|---|------|---------------|---------------|
|   | 1    | 77            | 2425          |
|   | 8    | 72            | 1952          |
|   | 15   | 63            | 2116          |
|   | 22   | 69            | 1560          |
| 1 | 29   | 56            | 2032          |

| DATE | Sulfaie<br>(mg/1) | 0&G<br>(Hig/1) |
|------|-------------------|----------------|
| No   | Sampie            | Required       |
|      |                   |                |

| PARAMETER                                                                                                       | FREQ.                                                                      | LIMITS      |               |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|---------------|
| nanananan ya manana y | neneral (n. <del>11</del> 74).<br>Na sana sana sana sana sana sana sana sa | MO.<br>AVG. | DAILY<br>MAX. |
| FLOW                                                                                                            | CONT.                                                                      | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS                                                                                          | WKLY.                                                                      | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS                                                                                          | WKLY.                                                                      | N.A.        | N.A.          |
| OIL AND GREASE                                                                                                  | QRTLY (1)                                                                  | . 15        | 20            |
| SULFATE                                                                                                         | QRTLY (1)                                                                  | N.A.        | N.A.          |
| TEMPERATURE (MAXIMUM)                                                                                           | DAILY                                                                      | 110 F       | 110°F         |
| pH                                                                                                              | CONT.                                                                      | 6.0 - 9.0   | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE                                                                                         | DAILY                                                                      | N.A.        | 190 ug/L      |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: <u>No pH excursions occurred this month.</u> (2) exceeded 190 ppl. TRC for approximately 32 minutes.



# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)

PAGE <u>3</u> OF <u>4</u>

# NPDES MONITORING REPORT

102007

# OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

## SANITARY WASTE

| DATE                                  | FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/1) | pH |
|---------------------------------------|---------------|---------------|---------------|----|
| · · · · · · · · · · · · · · · · · · · | No            | Sample        | Required      |    |
|                                       |               |               |               |    |
|                                       |               | 1             |               |    |

OUTFALL 007

| PARAMETER |           | LIMITS (mg/1) |            |  |  |
|-----------|-----------|---------------|------------|--|--|
|           | FREQ.     | MO. AVG.      | WALF. AVG. |  |  |
| FLOW      | QRTLY (I) | N.A.          | N.A.       |  |  |
| TSS       | QRTLY (1) | 70            | 110        |  |  |
| BOD       | QRTLY (1) | 45            | 65         |  |  |
| рH        | QRTLY (I) | 6.0 - 9.0     | 6.0 - 9.0  |  |  |
|           |           |               | 1          |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

## OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

# OUTFALLS 010 - 015

| DATE     | OUTFAL<br>L | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and<br>G<br>(mg/l) | CO<br>D<br>(mg/<br>1) | pН |
|----------|-------------|---------------|---------------|----------------------|-----------------------|----|
|          |             |               |               |                      |                       |    |
|          | No          | Sample        | Required      | <u> </u>             |                       |    |
|          |             |               |               |                      |                       |    |
| <u> </u> | •<br>•      |               | ~             |                      |                       |    |

# OUTFALL 016\*

| DATE | FLOW<br>(MGD) | TŠS<br>(mg/1) | O and G<br>(mg/l) | pH | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|----|---------------|
|      | No            | Sample        | Required          |    |               |

# STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.     | LIMITS   |            |  |
|-----------|-----------|----------|------------|--|
|           |           | MO. AVG. | DAILY MAX. |  |
| FLOW      | QRTLY.(I) | N.A.     | N.A.       |  |
| TSS       | QRTLY (I) | N.A.     | N.A.       |  |
| COD       | QRTLY (1) | N.A.     | N.A.       |  |
| O and G   | QRTLY (I) | 15       | 20         |  |
| pH        | QRTLY(I)  | >6.0     | >6.0       |  |

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

# COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |  |
|-----------|-----------|-----------|------------|--|
|           | _         | MO. AVG.  | DAILY MAX. |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |  |
| TSS       | QRTLY (1) | 30        | 100        |  |
| O and G   | QRTLY (1) | 15        | 20         |  |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC       | QRTLY (1) | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

# OUTFALL 017

2. 17

\*

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015 COMMENTS: <u>Outfall 016 Cooling Tower Bypass TRC results</u> on Attachment I.

.

10/2007

**PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** PAGE\_4\_OF\_4\_

# NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

(Pin#) Preparer

4

(Pin#) Reviewe

YDDIO (Pin#)

Plant Manager

Page 4 of 4

# ATTACHMENT 1 10/2007

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml) |
|------|-------------|
| 2    | <50         |
| 3    | <50         |
| . 9  | <50         |
| 10   | <50         |
| 11   | 80          |
| 16   | <50         |
| 17   | 148         |
| 18   | 126         |
| 25   | <50         |
| 29   | <50         |
| 30   | <50         |
| 31   | <50         |

Ł

ATTACHMENT 1

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_\_11/2007 PAGE \_1\_\_\_ OF \_\_4\_\_

# NPDES MONITORING REPORT

# OUTFALL 001 RADWASTE SYSTEM

| DATE   | SOURCE                                | FLOW<br>(MGD)                         | TSS<br>(mg/1)(*1) | Boron<br>(mg/1)                        | pH   | PARAMETÈ              | R FREQ               | L             | MITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|---------------------------------------|---------------------------------------|-------------------|----------------------------------------|------|-----------------------|----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | 6                                     | .091                                  | 33 (I)            | 2                                      | 8.92 |                       |                      | MONTHLY       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9      | 6                                     | .091                                  | 27                | 15                                     | 8.87 |                       |                      | AVERAGE       | MAX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26     | 7                                     | .090                                  | 22                | 4                                      | 7.76 | FLOW (MGD             | ) EB                 | N.A.          | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29     | 6                                     | .095                                  | 15                | 123                                    | 6.68 | pH (STD)              | EB                   | 6.0-9.0       | 6.0-9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                       |                                       |                   |                                        |      | TSS (mg/1)            | EB                   | 30            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                       |                                       |                   |                                        |      | Boron (mg/l)          | EB                   | N.A.          | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                       |                                       |                   |                                        |      | TRC (ug/l)            | Monthly              | N.A.          | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                       |                                       |                   |                                        |      | BOD (mg/l)            | Monthly              | N.A.          | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                       |                                       |                   |                                        |      | O&G (mg/1)            | Monthly              | 15            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ······ |                                       |                                       |                   |                                        |      | ALL SAMPL             | ES ANALYZE           | DBY Ameren    | UE Callaway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                       |                                       |                   | ··                                     |      | Plant OPERA           | TIONS LABOR          | ATORY USD     | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                       | · · · · ·                             | <b></b>           | <u>.</u>                               |      | METHODS S             | PECIFIED UN          | DER IOCSR 2   | -7.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                       |                                       | <u> </u>          |                                        |      |                       |                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       |                                       | <u> </u>          |                                        |      | SOURCES               |                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       |                                       | ╉╼╍╌╌╴┨           | · · · ·                                |      |                       | E MONITOR T          | ANKA          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | {{                                    |                                       |                   |                                        |      |                       | E MONITOR T          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       | ·                                     |                   |                                        |      | 1                     | GENERATO             |               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                       | · · · · · · · · · · · · · · · · · · · |                   |                                        |      |                       | I OLIVERATO          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       | - 14 A                                |                   |                                        |      |                       |                      | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       |                                       |                   |                                        | · .  | J .                   | IQ. WASTE M          |               | 1997 - March 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 |
|        |                                       | - 14                                  |                   |                                        |      |                       | ADWASTE DI           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | · · · · · · · · · · · · · · · · · · · |                                       |                   |                                        |      | 7 = LIQ.R.            |                      | SCHARGE TA    | NKB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                       |                                       |                   |                                        |      | EB = EACH             | BATCH                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       |                                       |                   |                                        |      | Date                  | BOD (mg/l)           | TRC (ug/l)    | O&G (mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                       |                                       |                   |                                        |      | 2                     | 2                    | <10           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                       |                                       | 1                 | ······································ |      |                       |                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       |                                       | <u> </u>          |                                        |      | 1                     |                      | ······        | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                       |                                       |                   |                                        |      |                       |                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | · ·                                   |                                       | ╂┈╍╍╌╴┤           |                                        |      | COMMENTS<br>(1) TSS m | :<br>othiv average y | vas 24.3 mg/l |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | <b> </b>                              |                                       | <b></b>           |                                        |      |                       | waafi wiinige 1      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       |                                       | ·}                |                                        |      |                       |                      | <u></u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       |                                       |                   |                                        |      |                       | ·····                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>11/2007</u> PAGE <u>2</u> OF <u>4</u>

# NPDES MONITORING REPORT

# OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE            | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l)  |
|-----------------|---------------|-----------------|----------------|
| .1              | 4.4           | 73              | 70             |
| 2               | 5.1           | 73              | ସ              |
| 3               | 4.4           | 72              | 60             |
| 4               | 4.9           | 74              | 65             |
| 5               | 4.6           | 77              | <b>5</b> 0     |
| 6               | 7.3           | 68              | <50            |
| 7               | 9.1           | 70              | <30            |
| 8               | 4.3           | 72              | 53             |
| 9               | 6.2           | 72              | 50             |
| 10              | 4.9           | 74              | С<br>О         |
| ni <sup>n</sup> | 4.3           | 81              | <0             |
| 12              | 4.5           | 80              | <b>S</b> 0     |
| 13              | 5.0           | 77              | <50            |
| 14              | 5.7           | 75              | <b>S</b> 0     |
| 15              | 5.9           | 69              | \$             |
| 16              | 5.5           | 72              | <50            |
| 17              | 6.8           | 73              | <50            |
| 18              | 3.9           | 71              | <50            |
| 19              | 4.1           | 79              | <u>&lt;</u> 30 |
| 20              | 4.1           | 80              | <50            |
| 21              | . 5.2         | 72              | <50            |
| 22              | 6.3           | 66              | 58             |
| 23              | 6.1           | 63              | 62             |
| 24              | 6.1           | 62              | <u>ح</u> ٥     |
| 25              | 6.6           | 62              | <50            |
| 26              | 6.0           | 64              | 76             |
| 27              | 6.1           | 66              | 57             |
| 28              | 7.0           | 69              | <50            |
| 29              | 4.7           | 66              | <50            |
| 30              | <b>4.</b> B   | 65              | <50            |

| DATE | TSS<br>(mg/l) | TDS<br>(mg/l) |
|------|---------------|---------------|
| 5    | 63            | 1996          |
| 12   | 52            | 2036          |
| 19   | 64            | 1916          |
| 26   | 59            | 1710          |
|      | 4<br>/        |               |

| DATE | Sulfate<br>(mg/1) | O&G<br>(mg/l) |
|------|-------------------|---------------|
| 12   | 1330              | 0.4           |
|      |                   |               |

| PARAMETER               | FREQ.     | LI          | MITS         |
|-------------------------|-----------|-------------|--------------|
| •                       |           | MO.<br>AVG. | DAILY<br>MAX |
| FLOW                    | CONT.     | N.A.        | N.A.         |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.         |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A         | N.A.         |
| OIL AND GREASE          | QRTLY (1) | 15          | 20           |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.         |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110° F      | 110°F        |
| рН                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L     |

ALL SAMPLES ANALYZED BY America UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month

# File C170.0005

11/2007

T

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE \_3\_ OF \_4\_

#### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL 007

| N   | DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | BOD<br>(mg/1)           | рН |
|-----|------|---------------|---------------|-------------------------|----|
| ł   |      |               |               |                         |    |
|     |      |               |               | 7                       |    |
| ,   |      | No            | Discharge     | Noted                   |    |
| ÷.  |      |               |               |                         |    |
| ;   |      |               |               |                         |    |
| 1.1 |      |               |               | an an Ar<br>An An An An |    |

#### SANITARY WASTE

| PARAMETER |           | LIM       | UTS (mg/l) |
|-----------|-----------|-----------|------------|
|           | FREQ.     | MO. AVG.  | WKLY. AVG. |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |
| TSS       | QRTLY (I) | 70        | 110        |
| BOD       | QRTLY (1) | 45        | 65         |
| pH        | QRTLY (I) | 6.0 - 9.0 | 6.0 - 9.0  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | •     |      |       |       | ۰. |
|---------------------------------------|-------|------|-------|-------|----|
|                                       | OUT   | FALL | 009   | 1.1.1 |    |
|                                       | -     |      |       |       |    |
| NTAKE                                 | HEA   | TER  | SLOWI | юw    | £. |
|                                       | 10 10 | 000  | 808   |       | ÷. |

#### NO DISCHARGE

#### OUTFALLS 010 - 015

| DATE | OUTFAL<br>L | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and G<br>(mg/I) | CO<br>D<br>(mg/<br>l) | pН   |
|------|-------------|---------------|---------------|-------------------|-----------------------|------|
|      |             | .020          | 11            | 2                 | 17                    | 8.19 |
| 21   | 12          | .007          | 18            | 2                 | 10                    | 9.44 |
| 21   | 13          | .008          | 9             | 3                 | 7                     | 8.30 |
| 21   | 14          | .034          | 23            | 2                 | 21                    | 7.82 |
|      |             |               |               |                   |                       |      |
|      | n de la com |               |               |                   |                       |      |

#### OUTFALL 016\*

| DATE | FLOW<br>(MGD) | T\$S<br>(mg/1) | O and G<br>(mg/1) | pĦ   | TRC<br>(ug/l) |
|------|---------------|----------------|-------------------|------|---------------|
| 14   | 2.6           | 10             | 0                 | 8.26 | . <50         |
|      |               |                |                   |      |               |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | LIMITS   |            |  |  |
|-----------|------------|----------|------------|--|--|
|           |            | MO. AVG. | DAILY MAX. |  |  |
| FLOW      | QRTLY. (I) | N.A.     | N.A.       |  |  |
| TSS       | QRTLY (I)  | N.A.     | N.A.       |  |  |
| COD       | QRTLY (I)  | N.A.     | N.A.       |  |  |
| O and G   | QRTLY (1)  | 15       | 20         |  |  |
| pH        | QRTLY(I)   | >6.0     | >6.0       |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER FREQ |           | LIMITS    |            |  |  |
|----------------|-----------|-----------|------------|--|--|
| ka shi she waa |           | MO. AVG.  | DAILY MAX. |  |  |
| FLOW           | QRTLY (1) | N.A.      | N.A.       |  |  |
| TSS            | QRTLY (1) | 30        | 100        |  |  |
| O and G        | QRTLY (1) | 15        | 20         |  |  |
| pH             | QRTLY (I) | 6.0 - 9.0 | 6.0 - 9.0  |  |  |
| TRC            | QRTLY (I) | N.A.      | 190        |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No discharge from Outfalls 11 and 15.

**PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** 11/2007 PAGE\_4\_ OF \_4\_

NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

638

(Pin#) Preparer

12267 Pin#)

Approved (Pin#)

Plant Manager

Page 4 of 4



# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 12/2007 PAGE \_\_1\_ OF \_\_4\_

#### NPDES MONITORING REPORT

## OUTFALL 001 RADWASTE SYSTEM

es.

| DATE | SOURCE                                                                                                          | FLOW<br>(MGD) | TSS<br>(mg/l)                         | Boron<br>(mg/1) | pH                      | PARAMETER FREQ. LIMITS                |               |                       | MITS        |
|------|-----------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|-----------------|-------------------------|---------------------------------------|---------------|-----------------------|-------------|
| 5    | 7                                                                                                               | .081          | 27                                    | 192             | 8.44                    |                                       |               | MONTHLY               | DAILY       |
| 16   | 7                                                                                                               | .091          | 18                                    | 66              | 8.7                     |                                       |               | AVERAGE               | MAX.        |
| 24   | 7                                                                                                               | .069          | 8                                     | 102             | 8.86                    | FLOW (MGD)                            | EB            | N.A.                  | N.A.        |
| 30   | 6                                                                                                               | .093          | 19                                    | 31              | 8.47                    | pH (STD)                              | EB            | 6.0-9.0               | 6.0-9.0     |
|      |                                                                                                                 |               |                                       |                 |                         | TSS (mg/1)                            | EB            | 30                    | 45          |
|      |                                                                                                                 |               |                                       |                 |                         | Boron (mg/l)                          | EB            | N.A.                  | N.A.        |
| •    |                                                                                                                 |               |                                       |                 |                         | TRC (ug/l)                            | Monthly       | N.A.                  | 190         |
|      |                                                                                                                 |               | · · · · · · · · · · · · · · · · · · · |                 |                         | BOD (mg/l)                            | Monthly       | N.A.                  | N.A.        |
|      |                                                                                                                 |               |                                       |                 |                         | O&G (mg/1)                            | Monthly       | 15                    | 20          |
| •.   |                                                                                                                 |               |                                       |                 |                         | ALL SAMPLES                           | ANALYZE       | D BY Ameren U         | JE Callaway |
| •    | t in a second |               |                                       |                 | 4                       | Plant OPERATI                         | ONS LABO      | RATORY USIN           | IG          |
|      |                                                                                                                 |               | •••••                                 |                 | · · · · · · · · · · · · | METHODS SPE                           | CIFIED UN     | DER JOCSR 20          | 7.015       |
|      |                                                                                                                 |               |                                       |                 |                         |                                       |               |                       |             |
|      |                                                                                                                 |               |                                       |                 |                         | SOURCES                               |               |                       |             |
|      |                                                                                                                 | ·····         |                                       |                 |                         | I = WASTEN                            |               |                       |             |
|      | ···                                                                                                             |               |                                       |                 |                         |                                       | -             |                       |             |
|      |                                                                                                                 |               |                                       |                 |                         | 2 = WASTEN                            | -             |                       |             |
|      |                                                                                                                 |               |                                       |                 |                         | 3 = STEAM (                           |               | and the second second |             |
|      |                                                                                                                 |               |                                       |                 |                         | 4 = SEC. LIQ                          |               |                       | ,           |
|      |                                                                                                                 |               |                                       |                 |                         | 5 = SBC. LIQ                          | WASTE M       | ONITOR TANK           | КВ          |
|      |                                                                                                                 |               |                                       |                 |                         | 6 = LiQ.RAD                           | WASTE DI      | SCHARGE TAI           | NKA         |
|      |                                                                                                                 |               |                                       |                 |                         | 7 = LIQ.RAD                           | WASTE DI      | SCHARGE TAI           | NK B        |
|      |                                                                                                                 |               |                                       |                 |                         | EB = EACH BA                          | TCH           |                       | 2           |
|      |                                                                                                                 |               |                                       |                 |                         | Date BC                               | DD (mg/l)     | TRC (ug/l)            | O&G (mg     |
|      |                                                                                                                 |               |                                       |                 |                         | 5                                     | 9.4           | 10                    | 19.57*      |
|      |                                                                                                                 |               |                                       |                 |                         | 16                                    |               |                       | 14.96       |
|      |                                                                                                                 |               |                                       |                 |                         | 24                                    |               |                       | 7.5         |
|      |                                                                                                                 |               |                                       |                 |                         | 30                                    |               |                       | 9.92        |
|      |                                                                                                                 |               |                                       |                 |                         | COMMENTS:                             |               |                       |             |
|      |                                                                                                                 |               |                                       |                 |                         | (*) Month                             | ly average fo | r 0.1 and Greas       | e was 12.99 |
|      |                                                                                                                 |               |                                       |                 |                         | mg/L                                  |               |                       |             |
|      |                                                                                                                 |               |                                       |                 |                         | · · · · · · · · · · · · · · · · · · · |               |                       | _ <u></u> , |
|      |                                                                                                                 |               |                                       | ······          |                         |                                       |               |                       | •           |

12/2007

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_ PAGE \_2\_OF \_4\_\_

#### NPDES MONITORING REPORT

#### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 2F | TRC<br>(ug/l) |
|------|---------------|-----------------|---------------|
| 1    | 4,4           | 66              | <50           |
| 2    | 4.3           | 69              | ٥٥            |
| 3    | 4.3           | 60              | <50           |
| 4    | 4.4           | 64              | <b>S</b> 0    |
| .5   | 5.3           | 64              | 30            |
| 6    | 4.6           | 59              | <50           |
| 7    | 4.1           | 59              | 54            |
| 8    | 4.1           | 59              | 123           |
| 9    | 4.2           | 58              | 55            |
| 10   | 4.1           | 56              | 72            |
| n    | 4.0           | 59              | <50           |
| 12   | 8.0           | 58              | <50           |
| 13   | 4.0           | 57              | <50           |
| i4   | 4.0           | 57              | 65            |
| 15   | 4.0           | 57 .            | <50           |
| 16   | 5.5           | 58              | 100           |
| 17   | 4.8           | 60              | 131           |
| 18   | 4.9           | 61              | <b>S</b> 0    |
| 19   | 5.2           | 62              | <b>ح</b> 50   |
| 20   | 5:1           | 63              | <50           |
| 21   | 4.2           | 64              |               |
| 22   | 4.2           | 66              | ⊲0            |
| 23   | 4.1           | 60              | 58            |
| 24   | 4.4           | 59              | <10           |
| 25   | 5.4           | 62              | 52            |
| 26   | 4.3           | 61              | <50           |
| 27   | 4.2           | 58              | 54            |
| 28   | 4.3           | 58              | 67            |
| 29   | 4.4           | 58              | <b>ර</b> 0    |
| 30   | 4.3           | 59              | 148           |
| 31   | 5.8           | 60              | <50           |

| DATE | TSS<br>(mg/1) | TDS<br>(mg/l) |
|------|---------------|---------------|
| 3    | 53            | 2064          |
| 10   | 50            | 1944          |
| 17   | 63            | 3280          |
| 24   | 55            | 1512          |
| 31   | 72            | 1452          |

| DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/1) |
|------|-------------------|---------------|
| No   | Sample            | Required      |
| 1    |                   |               |

| PARAMETER                                | FREQ.     | LIMITS      |               |  |
|------------------------------------------|-----------|-------------|---------------|--|
| an a |           | MO.<br>AVG. | DAILY<br>MAX. |  |
| FLOW                                     | CONT.     | N.A.        | N.A.          |  |
| TOTAL SUSPENDED SOLIDS                   | WKLY.     | N.A.        | N.A.          |  |
| TOTAL DISSOLVED SOLIDS                   | WKLY.     | N.A.        | N.A.          |  |
| OIL AND GREASE                           | QRTLY (I) | 15          | 20            |  |
| SULFATE                                  | QRTLY.(1) | N.A.        | N.A.          |  |
| TEMPERATURE (MAXIMUM)                    | DAILY     | 110°F       | 110° F        |  |
| pH                                       | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |  |
| TOTAL RESIDUAL CHLORINE                  | DAILY     | N.A.        | 190 ug/L      |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

File C170.0005

Page 2 of 4

CA-0320 01/11/05

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_ PAGE \_\_3\_\_ OF \_\_4\_\_

#### NPDES MONITORING REPORT

12/2007

# OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE OUTFALL 007 PH PARAMEN DATE (MGD) (mg/l) pH No Sample Required No Sample Required (1) SAMPL Classing

## SANITARY WASTE

| PARAMETER | 1         | LIM       | TTS (mg/1) |
|-----------|-----------|-----------|------------|
|           | FREQ.     | MO. AVG.  | WKLY. AVG. |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |
| TSS       | QRTLY (1) | 70        | 110        |
| BOD       | QRTLY(I)  | 45        | 65         |
| рН        | QRTLY(I)  | 6.0 - 9.0 | 6.0 - 9.0  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN

#### NO DISCHARGE

#### OUTFALLS 010 - 015

| DATE | OUTFAL<br>L | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and G<br>(mg/l) | CO<br>D<br>(mg/<br>I) | pH |
|------|-------------|---------------|---------------|-------------------|-----------------------|----|
|      |             | - No          | Samples       | Required          |                       |    |
|      |             |               |               |                   |                       | ·  |

#### OUTFALL 016\*

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/1) | рĦ | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|----|---------------|
|      | No            | Sample        | Required          |    |               |
|      |               |               |                   |    |               |

#### OUTFALL 017

#### ULTIMATE HEAT SINK

No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | L        | IMITS      |
|-----------|------------|----------|------------|
| ·. · ·    |            | MO. AVG. | DAILY MAX. |
| FLÓW      | QRTLY. (I) | N.A.     | N.A.       |
| TSS       | QRTLY (1)  | N.A.     | N.A.       |
| COD       | QRTLY (I)  | N.A.     | N.A.       |
| O and G   | QRTLY (I)  | · IS     | 20         |
| pH        | QRTLY(1)   | >6.0     | >6.0       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER | PARAMETER FREQ |           | MITS       |
|-----------|----------------|-----------|------------|
|           |                | MO. AVG.  | DAILY MAX. |
| FLOW 8    | QRTLY (I)      | N.A.      | N.A.       |
| TSS       | QRTLY (I)      | 30        | 100        |
| O and G   | QRTLY (I)      | 15        | 20         |
| рН        | QRTLY (I)      | 6.0 - 9.0 | 6.0 - 9.0  |
| TRC       | QRTLY (I)      | N.A.      | 190        |

() SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COMMENTS:

## File C170.0005

#### Page 3 of 4

CA-0320 01/11/05

12/2007

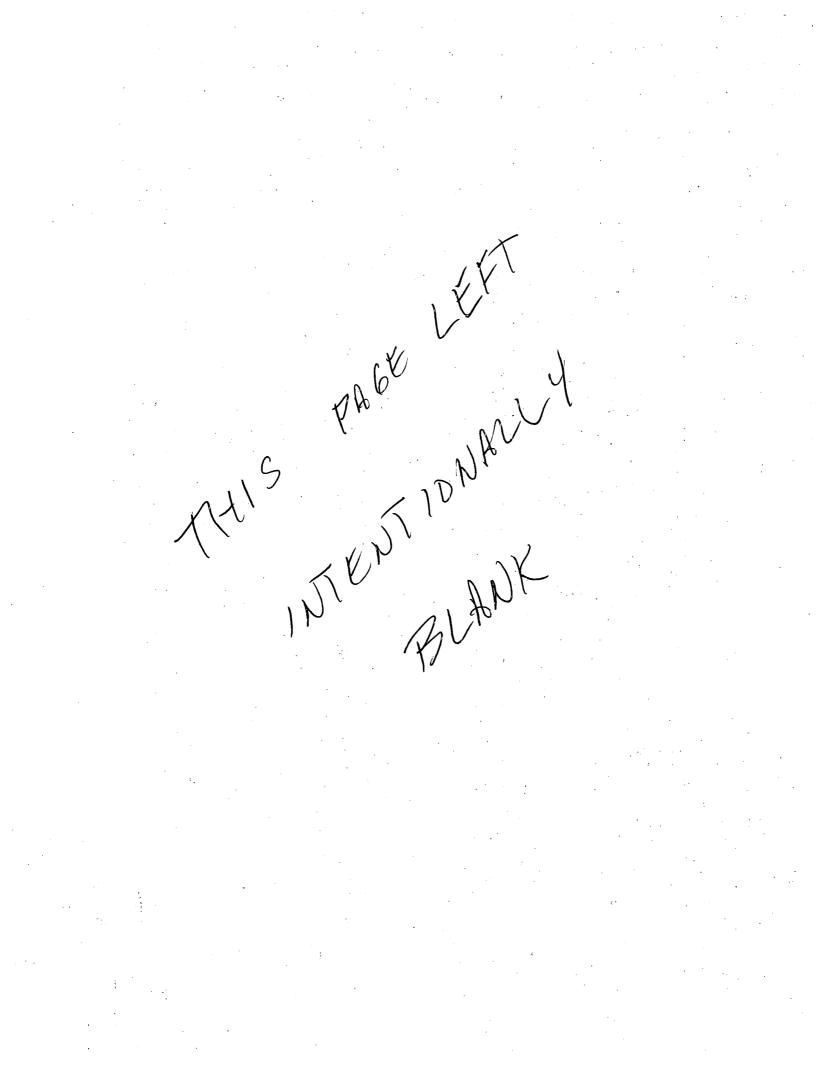
PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE \_4\_ OF \_4\_

#### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Know SK 638

Preparer (Pin#)


12267 Reviewe

(Pin#) Approved

Plant Manager

Page 4 of 4





Ameren Services Environmental Services 314.554.3480 (Telephone) 314.554.4182 (Facsimile) ssweiss@ameren.com One Ameren Plaza 1901 Chouteau Avenue PO Box 66149 St. Louis, MO 63166-6149 314.621.3222

April 28, 2008

Department of Natural Resources Northeast Regional Office 1709 Prospect Drive Macon, Missouri 63552-2602

· Re:

#### Ameren UE Callaway Power Plant NPDES Permit No. MO-0098001 First Quarter, 2008 NPDES Discharge Monitoring Reports (DMRs)



#### Dear Sir or Madam:

In accordance with requirements of the Union Electric Company, d/b/a Ameren UE Callaway Power Plant, NPDES Permit MO-0098001, please find enclosed the DMRs for the *First Quarter 2008 (months of January, February, and March.* 

There were two incidents in the month of March involving overflow of fully treated effluent from the sewage lagoon lift station. Both overflow incidents did not involve "bypass of a treatment system", did not pose any risk to health or environment, and did not reach "waters if the state". Samples of the treated effluent overflow indicated it was in compliance with the NPDES permit limitations for pH, Total Suspended Solids (TSS), and Biochemical Oxygen Demand (BOD). Per NPDES permit Standard Conditions, both incidents were deemed not reportable as 24-hour or 5-day notification reporting requirements.

The first incident was discovered at 1510 hours on March 17<sup>th</sup> 2008 and involved the sewage lagoon #3 lift station overflowing onto the ground and into an adjacent excavation trench for installation of our discharge line piping replacement project. The outlet valve of the lift station was shut immediately to stop the flow. The control panel for the lift station transfer pumps was found de-energized. It was discovered, during investigation, that power was lost to the lift station pumps when a portion of the excavation embankment sloughed off during heavy rains and pulled the power cable from conduit that supplied the power to the control panel of the lift station pumps.

Chemistry personnel collected samples from the lift station. Results for pH, TSS, and BOD were in compliance with NPDES permit limits. The water released was fully treated effluent it posed no threat to the environment or human health.

Based on evaluation of the spill path and proximity of the excavation trench, Callaway concluded that water could not have made its way to navigable waters of the state. Additionally, the large amount of rainfall received during this period, commingling of storm water on the ground and in the trench it was not feasible to recover the treated effluent.

a subsidiary of Ameren Corporation

## bcc: R.S. Boutelle (CA-460) JCP / SSW WQ3 12:1

÷,

As a contingency for preventing additional overflow of lift station, two sump pumps were staged at Sewage Lagoon #3 overflow standpipe and pumped from Lagoon #3 to Wetlands Pond #1. This configuration was chosen to maintain a flow path consistent with the current NPDES permit process flow. Temporary power has since been run to the lift station to supply the lift station pumps until a permanent modification could be put in place.

Mike Bollinger of Ameren Environmental Services reported this overflow incident to Troy Lalond of MDNR's Northeast Regional Office on March 20<sup>th</sup> approximately 0845 hours. Mr. Lalond concurred there was no risk to the environment and there was no bypass of the treatment system, and it was determined the treated effluent was contained on-site within the pipeline excavation and did not reach "waters of the state". Mr. Lalond and Mr. Bollinger agreed this overflow incident be reported on the 1<sup>st</sup> Quarter NPDES DMR.

The second incident occurred on March 29<sup>th</sup>, 2008 when the Sewage Lagoon #3 lift station pumps were not able to keep up with influent flow combined with substantial rainfall. Similarly, the overflow was immediately stopped. Runoff of the treated effluent ended up in the adjacent excavation trench could not have made its way to navigable "waters of the state" and posed no threat to human health or environment. Results of samples collected from the overflow resulted within NPDES permit limits for pH, TSS, and BOD. Both pumps have since been repaired.

Please call me at 314-554-3480 if you have any questions concerning the enclosed reports.

Sincerely,

Gail P. Stary for

Steven S. Weiss Environmental Scientist, NPDES DMR Coordinator Ameren Environmental Services Ameren Services as Affiliated Agent for Union Electric Company, d/b/a AmerenUE

Attachment

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 01/2008 PAGE 1 OF 4

#### NPDES MONITORING REPORT

#### OUTFALL 001 RADWASTE SYSTEM

| DATE | SOURCE                  | FLOW<br>(MGD) | TSS<br>(mg/l)                         | Boron<br>(mg/l) | pli      | PARAMETER    | FREQ                                   | Ш            | MITS      |
|------|-------------------------|---------------|---------------------------------------|-----------------|----------|--------------|----------------------------------------|--------------|-----------|
| 4    | 7                       | .093          | 10                                    | 62              | 6.63     |              |                                        | MONTHL       | DAI       |
| 16   | 6                       | .093          | 6                                     | 49              | 8.85     |              |                                        | AVERAGE      | MA        |
| 19   | 7                       | .093          | 5                                     | 54              | 8.98     | FLOW (MGD)   | EB                                     | N.A.         | N.4       |
| 28   | 6                       | .095          | 7                                     | 69              | 8.67     | pH (STD)     | EB                                     | 6.0-9.0      | 6.0-9     |
| 30   | 7                       | .094          | 8                                     | 6               | 8.31     | TSS (mg/1)   | EB                                     | 30           | 45        |
|      |                         |               |                                       |                 |          | Boron (mg/l) | EB                                     | N.A.         | N./       |
|      | 1.                      |               |                                       |                 |          | TRC (ug/l)   | Monthly                                | N.A.         | 19        |
|      |                         |               |                                       |                 |          | BOD (mg/l)   | Monthly                                | N.A.         | N.        |
|      |                         |               |                                       |                 |          | O&G (mg/1)   | Monthly                                | 15           | 2         |
|      |                         |               |                                       |                 | -        | ALL SAMPLE   | S ANALYZE                              | D BY Ameren  | UE Callaw |
|      |                         |               |                                       |                 |          | Plant OPERAT | IONS LABOR                             | RATORY USIN  | 10        |
|      | ······                  |               |                                       |                 | []       | METHODS SP   | ECIFIED UN                             | DER JOCSR 20 | -7.015    |
|      |                         |               |                                       | <u></u>         |          | •            |                                        |              |           |
|      | · · · · · · · · · · · · |               |                                       |                 | <u> </u> | SOURCES      |                                        |              |           |
|      | ·                       |               |                                       | <u> </u>        | ······   | I = WASTE    | MONITOR T                              | ANK A        |           |
|      |                         |               |                                       | <u> </u>        |          | 2 = WASTE    |                                        |              |           |
|      | ·                       |               |                                       |                 |          | 3 = STEAM    |                                        |              | м         |
|      |                         |               |                                       |                 | <u> </u> | 4 = SEC, LIC |                                        |              |           |
|      |                         |               |                                       |                 | <u> </u> |              | -                                      |              |           |
|      |                         |               |                                       |                 |          | 5 = SEC. LIC | -                                      |              |           |
|      |                         |               |                                       |                 |          | 6 = LIQ.RA   |                                        |              |           |
|      |                         |               |                                       |                 |          | 7 = LIQ. RAI |                                        | SCHARGE TA   | NKB       |
|      |                         |               |                                       |                 |          | EB = EACH B  |                                        |              |           |
|      |                         |               |                                       | · · · · · ·     |          | Date B       | OD (mg/l)                              | TRC (ug/l)   | O&G (n    |
|      |                         |               |                                       |                 |          | 4            | 1.7                                    | 10           | 5         |
|      |                         |               |                                       |                 |          |              |                                        |              |           |
|      |                         |               |                                       |                 |          |              |                                        |              |           |
|      |                         |               |                                       |                 |          |              |                                        |              |           |
|      |                         |               |                                       |                 |          | Lunn <u></u> |                                        |              |           |
|      |                         |               | · · · · · · · · · · · · · · · · · · · |                 | <u> </u> | COMMENTS:    |                                        |              |           |
|      | 1                       | ·[            |                                       | . •             |          |              | ······································ |              | ·         |
|      |                         |               |                                       | · · · ·         |          |              |                                        |              |           |
|      |                         |               |                                       |                 |          | · · ·        |                                        |              |           |
|      |                         |               |                                       |                 |          |              |                                        |              |           |
|      |                         |               | . <u> </u>                            |                 |          |              |                                        |              |           |

File C170.0005

Page 1 of 4

17

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE \_2\_OF \_4\_ 01/2008

#### NPDES MONITORING REPORT

## OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD)          | TEMP<br>(MAX 9F | TRC<br>(ng/l) |
|------|------------------------|-----------------|---------------|
| 1    | 4.1                    | 58              | <50           |
| 2    | 4.4                    | 54              | 168           |
| 3    | 4.7                    | 58              | . 114         |
| 4    | 4.6                    | 63              | <0            |
| 5    | 4.7                    | 67              | 120           |
| 6    | 5.8                    | 70              | 69            |
| 7    | 5.9                    | 73              | <50           |
| 8    | 6.1                    | 72              | 59            |
| 9    | 5.2                    | 64              | 128           |
|      | at market 4.4 standard | 64              |               |
| 11   | 4.4                    | 63              | <50           |
| 12   | 4.3                    | 63              | 66            |
| 13   | 4.4                    | 59              | 110           |
| 14   | 4.4                    | 57              | <50           |
| 15   | 4.5                    | 57              | <50           |
| 16   | 5.8                    | 60              | <50           |
| 17   | 4.5                    | 56              | <50           |
| 18   | 4.4                    | 56              | <50           |
| 19   | 6.7                    | 52              | <50           |
| 20   | 4.6                    | 54              | <0            |
| 21   | 4.6                    | 57              | 56            |
| 22   | 3.6                    | 55              | <50           |
| 23   | 3.6                    | 64              | 86            |
| 24   | 5.7                    | 52              | <50           |
| 25   | 5.7                    | 53              | <50           |
| 26   | 5.1                    | 58              | 69            |
| 27   | 4.9                    | 60              | <50           |
| 28   | 4.7                    | 64              | <50           |
| 29   | 4.6                    | 66              | <50           |
| 30   | 4.8                    | 67              | 67            |
| 31   | 5.6                    | 57              | <50           |

|      | TSS    | TDS    |
|------|--------|--------|
| DATE | (mg/1) | (mg/1) |
| 7    | 71     | 1612   |
| 14   | 52     | 1710   |
| 21   | 40     | 1352   |
| 28   | 58     | 1440   |
|      |        |        |

| DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/l) |
|------|-------------------|---------------|
| No   | Sample            | Required      |
|      |                   |               |

| PARAMETER               | FREQ.     | in internation of U | MITS         |
|-------------------------|-----------|---------------------|--------------|
|                         |           | MO.<br>AVG.         | DAILY<br>MAX |
| FLOW                    | CONT.     | N.A.                | N.A.         |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.                | N.A.         |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.                | N.A.         |
| OIL AND GREASE          | QRTLY (1) | 15                  | 20           |
| SULFATE                 | QRTLY.(1) | N.A.                | N.A.         |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F               | 110° F       |
| pH                      | CONT.     | 6.0 - 9.0           | 6.0 - 9.0    |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.                | 190 ug/L     |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

COMMENTS: No pH excursions occurred this month

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)

YR) \_\_\_\_\_01/2008

#### PAGE \_3\_ OF \_4\_\_

#### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

#### OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | BOD<br>(mg/l) | рН |
|------|---------------|---------------|---------------|----|
|      |               |               |               |    |
|      | No            | Sample        | Required      |    |
|      |               |               |               |    |
|      |               |               |               |    |
|      | +             |               |               |    |

#### SANITARY WASTE

| PARAMETER |           | LIMITS (mg/1) |            |  |
|-----------|-----------|---------------|------------|--|
| · ·       | FREQ.     | MO. AVG.      | WKLY. AVG. |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BÓD       | QRTLY (1) | 45            | 65         |  |
| рН        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

| DATE | OUTFAL<br>L | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and G<br>(mg/l) | CO<br>D<br>(mg/<br>l) | pН |
|------|-------------|---------------|---------------|-------------------|-----------------------|----|
|      |             | No            | Samples       | Required          |                       |    |
|      |             |               |               |                   |                       |    |
|      |             |               |               |                   |                       |    |

#### OUTFALL 016\*

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/l) | pН | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|----|---------------|
|      | No            | Sample        | Required          |    | 1             |
| ÷    |               |               |                   |    |               |

#### OUTFALL 017

#### ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.     | LIMITS   |               |  |  |
|-----------|-----------|----------|---------------|--|--|
|           |           | MO. AVG. | DAILY MAX.    |  |  |
| FLOW      | QRTLY.(I) | N.A.     | N.A.          |  |  |
| TSS       | QRTLY (1) | N.A.     | N.A.          |  |  |
| COD       | QRTLY (1) | N.A.     | N.A.          |  |  |
| O and G   | QRTLY (1) | 15       | ····· 20 · ·· |  |  |
| pH        | QRTLY(1)  | >6.0     | >6.0          |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |  |  |
|-----------|-----------|-----------|------------|--|--|
|           |           | MO. AVG.  | DAILY MAX. |  |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |  |  |
| TSS       | QRTLY (1) | 30        | 100        |  |  |
| Q and G   | QRTLY (1) | 15        | 20         |  |  |
| pH        | QRTLY (I) | 6.0 - 9.0 | 6.0 - 9.0  |  |  |
| TRC       | QRTLY (I) | N.A.      | 190        |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COMMENTS:

File C170.0005

Page 3 of 4

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE \_4\_ OF \_4\_

#### NPDES MONITORING REPORT

01/2008

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

(Pin#) Reviewer (Pin#) Preparer App) Plant Manager

Page 4 of 4

CA0320 01/11/05

## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)\_\_\_\_\_02/2008 PAGE \_1\_\_ OF \_4\_\_

NPDES MONITORING REPORT

#### OUTFALL 001 RADWASTE SYSTEM

| DATE     | SOURCE | FLOW<br>(MGD) | TSS<br>(mg/l)                         | Boron<br>(mg/l) | рН     | P.    | ARAMETER    | FREQ.     | LI                                    | MITS        |
|----------|--------|---------------|---------------------------------------|-----------------|--------|-------|-------------|-----------|---------------------------------------|-------------|
| 8        | _6     | .090          | 4                                     | 4               | 8.2    |       |             |           | MONTHLY<br>AVERAGE                    |             |
| 19       | 7      | .093          | 11                                    | 1               | 8.85   |       |             |           | ATELAGE                               | Marca       |
| 28       | 6      | .093          | 3                                     | 2               | 8.69   | FI    | .O₩ (MGD)   | EB        | <u>N.A.</u>                           | N.A.        |
|          |        |               | <u> </u>                              |                 |        | 니 만   | I (STD)     | EB        | 6.0-9.0                               | 6.0-9.0     |
|          |        |               | <u>8</u>                              | L               |        |       | SS (mg/1)   | EB        | 30                                    | 45          |
|          |        |               |                                       | · · · · ·       |        |       | oron (mg/l) | EB        | N.A.                                  | <u>N.A.</u> |
|          |        |               | _                                     |                 |        |       | RC (ug/l)   | Monthly   | N.A.                                  | 190         |
|          |        |               |                                       |                 |        | B     | OD (mg/l)   | Monthly   | N.A.                                  | N.A.        |
|          |        |               |                                       | <b></b>         | -      |       | &G (mg/1)   | Monthly   | 15                                    | 20          |
|          |        |               |                                       |                 |        |       | LL SAMPLES  | ANALYZE   | D BY Ameren                           | UE Callaway |
|          |        |               | <u> </u>                              |                 |        | - P1  | ant OPERATK | ONS LABO  | RATORY USIN                           | łG .        |
|          |        |               |                                       |                 | =      | м     | ETHODS SPE  | CIFIED UN | DER 10CSR 20                          | -7.015      |
| <u> </u> |        | ····          | · · · · · · · · · · · · · · · · · · · | <u> </u>        |        | 4     |             |           |                                       |             |
|          |        |               |                                       |                 |        |       | DURCES      |           |                                       |             |
|          |        |               |                                       |                 |        |       |             |           |                                       |             |
|          |        |               |                                       |                 |        |       | = WASTE M   | 1 A A     |                                       |             |
|          |        |               |                                       |                 |        | 1     | - WASTEN    | 1.1.1     |                                       |             |
|          |        |               |                                       |                 |        | 3     | 🝷 STEAM G   | ENERATO   | R BLOWDOW                             | N           |
|          |        |               | I                                     |                 |        | 4     | = SEC. LIQ. | WASTE M   | ONITOR TAN                            | KA          |
|          |        |               |                                       |                 |        | 5     | - SEC. LIQ. | WASTE M   | ONITOR TAN                            | КB          |
|          |        |               |                                       |                 |        | 6     | = LIQ RAD   | WASTE DI  | SCHARGE TA                            | NK A        |
|          |        |               | <u> </u>                              |                 |        | 1 7   | = LIO. RAD  | WASTE DI  | SCHARGE TA                            | NK B        |
| ·        |        |               |                                       |                 |        | 1 A A | B = EACH BA |           |                                       | •           |
|          |        |               |                                       |                 |        |       | <u> </u>    | )D (mg/l) | TRC (ug/l)                            | O&G (mg/l   |
|          |        |               |                                       |                 |        | ┥┝─   | 8           | 7         | 10                                    | 2           |
|          |        |               |                                       |                 | •••••• | 1     |             |           | <u></u>                               |             |
|          |        |               | <u>├</u>                              |                 |        | ┫┟──  |             |           |                                       |             |
|          |        |               | <u> </u>                              |                 |        | ┨╵┝┷  |             | ·         |                                       |             |
|          |        |               |                                       |                 |        | ┨╷┠╍  |             |           |                                       | L           |
|          |        |               |                                       |                 |        | d     | OMMENTS:    |           | · · · · · · · · · · · · · · · · · · · | -           |
|          |        |               | T                                     |                 |        | 1:-   |             |           |                                       |             |
|          |        |               |                                       |                 |        | 1 _   |             |           |                                       |             |
|          |        |               | <u> </u>                              |                 |        | 1 -   |             |           |                                       | <del></del> |
|          |        |               | L                                     |                 |        | 1. T  |             |           |                                       |             |



S.

#### **PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** 02/2008

PAGE 2 OF 4

|         | MALE NOT 1 |       | DEDEL  |
|---------|------------|-------|--------|
| INT DED | TATOTAT T  | OIUNG | REPORT |
|         |            |       |        |

#### OUTFALL 002 COOLING TOWER BLOWDOWN

an the second state of a surface of the

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(#g/l) |
|------|---------------|-----------------|---------------|
| 1    | 5.8           | 56              | 72            |
| 2    | 5.4           | 57              | 80            |
| 3    | 4.6           | 60              | <50           |
| 4    | 5.0           | 68              | 103           |
| 5    | 4.5           | 63              | 115           |
| 6    | 5.0           | 57              | <u>1</u> 25   |
| 7    | 4.4           | 63              | <50           |
| 8    | 5.1           | 67              | <50           |
| 9    | 4.2           | 63              | <\$0          |
| 10   | 4.2           | 56              | 55            |
|      | 4.2           | ·               | <50           |
| 12   | 4.5           | 53              | 151           |
| 13   | 3.9           | 53              | <50           |
| 14   | 5.3           | 57              | <50           |
| 15   | 5.1           | 56              | <50           |
| 16   | 5.2           | 64              | <50           |
| 17   | 5:4           | 70              | <50           |
| 18   | 5.5           | 55              | <50           |
| 19   | 5.5           | 52              | 51            |
| 20   | 4.7           | 54              | <50           |
| 21   | 4.6           | 53              | <50           |
| 22   | 4.4           | 53              | <50           |
| 23   | 4.5           | 53              | <50           |
| 24   | 4.5           | 54              | <50           |
| 25   | 1.7           | 56              | <50           |
| 26   | 4.4           | 55              | <50           |
| 27   | 4.8           | 54              | <50           |
| 28   | 5.8           | 55              | <50           |
| 29   | 4.9           | 58              | <50           |
|      |               |                 |               |
|      | 1.1           |                 |               |

|     |      | TSS    | TDS    |
|-----|------|--------|--------|
|     | DATE | (mg/l) | (mg/1) |
| 1   | 4    | 57     | 1152   |
|     | 11   | 47     | 1360   |
| 1   | 18   | 34     | 1376   |
| . [ | 25   | 30     | 892    |
| 1   |      |        |        |

|              | DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/l) |
|--------------|------|-------------------|---------------|
|              | 4    | 1110              | 4             |
| , <b>*</b> . |      |                   |               |
| -            | 1.1  | 12                | 1             |

| PARAMETER               | FREQ      | water LL    | water LIMITS entertainered |  |  |
|-------------------------|-----------|-------------|----------------------------|--|--|
|                         |           | MO.<br>AVG. | DAILY<br>MAX               |  |  |
| FLOW                    | CONT.     | N.A.        | N.A.                       |  |  |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.                       |  |  |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.                       |  |  |
| OIL AND GREASE          | QRTLY (1) | 15          | 20                         |  |  |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.                       |  |  |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F                      |  |  |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0 %                |  |  |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L                   |  |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE 3\_0F 4\_

02/2008

#### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

PARAMETER

#### OUTFALL 007

|  |   | S | A | ar | AR | Y | ŴA      | ST | Ê |
|--|---|---|---|----|----|---|---------|----|---|
|  | • |   |   |    |    |   | 1.1.1.1 |    | · |

| 1 | DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/1)   | рН   |
|---|------|---------------|---------------|-----------------|------|
| [ | 28   | .031          | 6             | 7               | 7.72 |
| I |      |               |               |                 |      |
| Ī |      |               |               |                 |      |
| ſ |      |               |               |                 |      |
| ſ |      |               |               |                 |      |
| ſ |      |               |               | (1, 1, 2, 2, 3) |      |

|      |             | FREQ      | MO. AVG.  | WKLY. AVG. |
|------|-------------|-----------|-----------|------------|
| FLOW | de la       | QRTLY (1) | N.A.      | N.A.       |
| TSS  | <i>#</i>    | QRTLY (1) | 70        | 110        |
| BOD  | 1. <u> </u> | QRTLY (1) | 45        | 65         |
| pH   | *           | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |
|      | ×           | · · · ·   |           |            |

LIMITS (mg/l)

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

| DATE | OUTFAL<br>L | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and<br>G<br>(mg/l) | COD<br>(mg/l) | рĦ   |
|------|-------------|---------------|---------------|----------------------|---------------|------|
| 14   | 10          | .032          | 19            | 1                    | 22            | 8.02 |
| 14   | .11         | .149          | 99            | 1                    | 24            | 7.61 |
| 14   | 12          | .011          |               |                      |               | 8.74 |
| - 4  | 13          | NO            | DISCHARGE     |                      |               |      |
|      | 14          | NO            | DISCHARGE     |                      |               |      |
|      | 15          | NO            | DISCHARGE     | 1-,                  |               |      |

#### OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/1) | pН   | TRC<br>(ut/) |
|------|---------------|---------------|-------------------|------|--------------|
| 8    | 4.46          | 12            | 3                 | 8.15 | <50          |
|      |               |               |                   |      |              |

#### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.     | LIMITS  |            |  |
|-----------|-----------|---------|------------|--|
|           |           | MQ AVG. | DAILY MAX. |  |
| FLOW      | QRTLY.(I) | N.A.    | N.A.       |  |
| TSS       | QRTLY (1) | N.A.    | N.A.       |  |
| COD       | QRTLY (1) | N.A.    | N.A.       |  |
| O and G   | QRTLY (I) | 15      | 20         |  |
| рH        | QRTLY(I)  | >6.0    | >6.0       |  |

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER | FREQ      | Ľ         | MITS       |
|-----------|-----------|-----------|------------|
|           |           | MO. AVG.  | DAILY MAX. |
| FLOW      | QRTLY(1)  | N.A.      | N.A.       |
| TSS       | QRTLY(1)  | 30        | 100        |
| O and G   | QRTLY (1) | 15        | 20         |
| рН        | QRTLY (I) | 6.0 - 9.0 | 6.0 - 9.0  |
| TRC       | ORTLY (1) | N.A.      | 190        |

(I) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### COMMENTS:

File C170.0005

Page 3 of 4



02/2008

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE \_4\_ OF \_4\_

NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

638 MORS Preparer (Pin#) Reviewer

Plant Manager

CA0320

01/11/05

Page 4 of 4

 PERMIT NO. MO-0098001

 REPORTING PERIOD (MO/YR)
 03/2008

 PAGE
 1
 0F
 4

NPDES MONITORING REPORT

#### OUTFALL 001 RADWASTE SYSTEM

| DATE    | SOURCE                                                                                                                                                                                                                              | FLOW<br>(MGD)           | TSS<br>(mg/l) | Boron<br>(mg/l) | pН      | PARAMET                                  | ER FREQ.     | LI                    | M <i>ITS</i>                            |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|-----------------|---------|------------------------------------------|--------------|-----------------------|-----------------------------------------|
| 12      | 7                                                                                                                                                                                                                                   | .094                    | 10            | 16              | 8.88    |                                          |              | MONTHL                |                                         |
| 24      | 6                                                                                                                                                                                                                                   | .090                    | 5             | 8               | 8.95    |                                          |              | AVERAGE               | MAX                                     |
| 1       |                                                                                                                                                                                                                                     |                         |               |                 |         | FLOW (MG                                 | D) EB        | N.A.                  | N.A.                                    |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | pH (STD)                                 | EB           | 6.0-9.0               | 6.0-9.                                  |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | TSS (mg/1)                               | EB           | 30                    | 45                                      |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | Boron (mg/l)                             | EB           | N.A.                  | N.A.                                    |
|         |                                                                                                                                                                                                                                     |                         |               |                 | x       | TRC (ug/!)                               | Monthly      | N.A.                  | 190                                     |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | BOD (mg/l)                               | Monthly      | N.A.                  | N.A                                     |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | 0&G (mg/1)                               | Monthly      | 15                    | 20                                      |
|         |                                                                                                                                                                                                                                     | <u> </u>                |               | <b></b>         |         | ALL SAMP                                 | LES ANALYZE  | D BY Ameren           | UE Callawa                              |
|         |                                                                                                                                                                                                                                     |                         | f             |                 |         | the same to by the implement whether the | TIONS LABO   | a interesting and     |                                         |
|         | <u> </u>                                                                                                                                                                                                                            |                         |               |                 |         | · , , · -                                | SPECIFIED UN |                       | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |
|         |                                                                                                                                                                                                                                     |                         | - <u>15</u>   |                 |         | MIGINOLS                                 | DI LUTIEU UN | DUR IN DR A           |                                         |
|         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                               |                         |               |                 | l       |                                          |              |                       |                                         |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | SOURCES                                  |              |                       |                                         |
|         | a de la companya de l<br>La companya de la comp |                         | <u> </u>      |                 |         |                                          | TE MONITOR 1 | and the second second |                                         |
|         |                                                                                                                                                                                                                                     | · · · · ·               |               |                 |         | 2 = WAST                                 | TE MONITOR 1 | ANK B                 |                                         |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | 3 = STEA                                 | M GENERATO   | R BLOWDOW             | N                                       |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | 4 = SEC. 1                               | LIQ. WASTE M | ONITOR TAN            | KA                                      |
|         |                                                                                                                                                                                                                                     |                         |               | -               |         | 5 = SEC. 1                               | LIQ. WASTE M | ONITOR TAN            | KB                                      |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | 6 = LIO. F                               | ADWASTE DI   | SCHARGE TA            | NK A                                    |
|         | <u></u>                                                                                                                                                                                                                             |                         |               |                 |         |                                          | ADWASTE DI   |                       | 11 A.                                   |
|         | <u></u>                                                                                                                                                                                                                             |                         | <u></u>       |                 |         | EB = EACH                                | a kata Tahu  |                       |                                         |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | Date                                     | BOD (mg/l)   | TRC (ug/l)            | O&G (m                                  |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         |                                          |              |                       |                                         |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | 12                                       | 12.9         | <10                   | 0                                       |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         |                                          |              |                       |                                         |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         |                                          |              |                       |                                         |
|         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                               |                         |               |                 |         |                                          |              |                       |                                         |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         |                                          |              |                       |                                         |
| <u></u> |                                                                                                                                                                                                                                     |                         |               |                 | <u></u> | COMMENT                                  | S:           |                       | <u> </u>                                |
|         |                                                                                                                                                                                                                                     | بب ب <del>با معتب</del> |               |                 |         |                                          |              | <u> </u>              |                                         |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         | ** <u></u>                               | <u></u>      | <u></u>               | <u> </u>                                |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         |                                          |              |                       |                                         |
|         |                                                                                                                                                                                                                                     |                         |               |                 |         |                                          |              |                       |                                         |

 PERMIT NO. MO-0098001

 REPORTING PERIOD (MO/YR)
 03

 PAGE
 2
 OF
 4

.

R) <u>03/2008</u>

## NPDES MONITORING REPORT

#### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE       | FLOW<br>(MGD) | ТЕМР<br>(МАХ Э.Г | TRC<br>(ugA) |
|------------|---------------|------------------|--------------|
| 1          | 4.5           | 63               | <50          |
| 2          | 4.7           | 67               | <50          |
| 3          | 4.6           | 66               | <50          |
| 4          | 4.4           | 57               | <50          |
| 5          | 3.7           | 66               | 90           |
| 6          | 4.7           | 62               | 50           |
| 7          | 4.4           | 57               | <50          |
| 8          | 4.4           | 55               | 80           |
| 9          | 4.3           | 58               | <\$0         |
| 10         | 4.5           | 59               | 50           |
| <b>1</b> 1 | 4.4           | <b>61</b>        | <50          |
| . 12       | 4.9           | 64               | <50          |
| 13         | 4.6           | 65               | <50          |
| 14         | 5.1           | 64               | <50          |
| 15         | 4.9           | 64               | <50          |
| 16         | 4.9           | 61               | <\$0         |
| 17         | 4.7           | 63               | <50          |
| 18         | 3.8           | 64               | <50          |
| 19         | 1.1           | 62               | <50          |
| 20         | 4.0           | 65               | <50          |
| 21         | 5.1           | 67               | <50          |
| 22         | 5.2           | 62               | <50          |
| 23         | 4.5           | 60               | <50          |
| 24         | 4.3           | 64               | <50          |
| 25         | 4.6           | 64               | <50          |
| 26         | 1.2           | - 65             | <50          |
| 27         | 4.9           | 65               | <50          |
| 28         | 2.1           | 63               | <50          |
| 29         | 2.9           | 66               | <50          |
| 30         | 4.5           | 66               | <50          |
| 31         | 4.4           | 67               | <50          |

|      | <b>TSS</b> | TDS            |
|------|------------|----------------|
| DATE | (mg/1)     | (mg/l)         |
| 3    | 51         | (mg/1)<br>1540 |
| 10   | 39         | 1040           |
| 17   | 57         | 1484           |
| 24   | 62         | 1004           |
| 31   | 55         | 1812           |

| DATE | Sulfate<br>(mg/l) | 0&G<br>(mg/1). |
|------|-------------------|----------------|
| No   | Sample            | Required       |
|      |                   |                |

| PARAMETER               | FREQ      | LL          | MITS          |
|-------------------------|-----------|-------------|---------------|
|                         |           | MQ.<br>AVG. | DAILY<br>MAX. |
| FLOW                    | CONT.     | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| OIL AND GREASE          | QRTLY (1) | 15          | 20            |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.          |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F         |
| рН                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |

÷

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: No pH excursions occurred this month.

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE \_ 3\_ OF \_ 4\_

FLOW

(MGD)

مو

DATE

17 (\*)

29 (\*)

#### NPDES MONITORING REPORT

03/2008

рĦ

8.54

8.64

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

## OUTPALL 007

(mg/1)

16

17

| SANIT | ARY | WAS | TE |
|-------|-----|-----|----|
|       |     |     |    |

| PARAMETER |           | LIMITS (mg/l) |            |  |
|-----------|-----------|---------------|------------|--|
|           | FREQ.     | MO. AVG.      | WELY. AVG. |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BOD       | QRTLY (1) | 45            | 65         |  |
| pH        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

STORM WATER RUNOFF PONDS

7 71417

|         |   |     |     | OUTFALL 009            |
|---------|---|-----|-----|------------------------|
| с.<br>Ц | 1 | , e | 1.f | INTAKE HEATER BLOWDOWN |
| Ĵ,      |   | 1   | • • | NO DISCHARGE           |

DIDAMET

OUTFALLS 010 - 015

BOD

(mg/1)

13

13

| DATE | OUTFAL<br>L                          | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/l) | COD<br>(mg/l) | pH_  |
|------|--------------------------------------|---------------|---------------|-------------------|---------------|------|
|      |                                      |               |               |                   |               | 1.12 |
|      |                                      |               |               |                   |               |      |
|      | 94 (ladige - 1949) and 1950 (1997) a | No            | Sample        | Required          | 7 KW .        |      |
|      |                                      |               |               |                   |               |      |
|      |                                      |               |               |                   |               |      |
|      |                                      |               |               |                   |               |      |

#### OUTFALL 016

| DATE | FLOW<br>(MGD) | T\$\$<br>(mg/l) | O and G<br>(mg/l) | рН | TRC<br>(ug/l) |
|------|---------------|-----------------|-------------------|----|---------------|
|      | No            | Sample          | Required          |    |               |
|      |               |                 |                   |    |               |

| PARAMIDICA | TACLA      | LUTEI             |            |  |
|------------|------------|-------------------|------------|--|
|            |            | MO. AVG.          | DAILY MAX. |  |
| FLOW       | QRTLY. (1) | N.A.              | N.A.       |  |
| TSS        | QRTLY(1)   | N.A.              | N.A.       |  |
| COD        | QRTLY(1)   | N.A.              | N.A.       |  |
| O and G    | QRTLY (1)  | marine 15 million | 20         |  |
| pH         | QRTLY(1)   | >6.0              | >6.0       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |           |
|-----------|-----------|-----------|-----------|
|           |           | MO. AVG.  | DAILY MAX |
| FLOW      | QRTLY (1) | N.A.      | N.A.      |
| TSS       | QRTLY (1) | 30        | 100       |
| O and G   | QRTLY (1) | 15        | 20        |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |
| TRC       | QRTLY (1) | N.A.      | 190       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

COMMENTS: (\*) Sewage lagoon lift station overflow samples Note that the discharge from the converted wetland and the flows, reported herein are NOT discharged, as this Outfall (#007) is recycled to the head of the Water Treatment Plant for fluther treatment and reuse.

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

File C170.0005

Page 3 of 4



03/2008

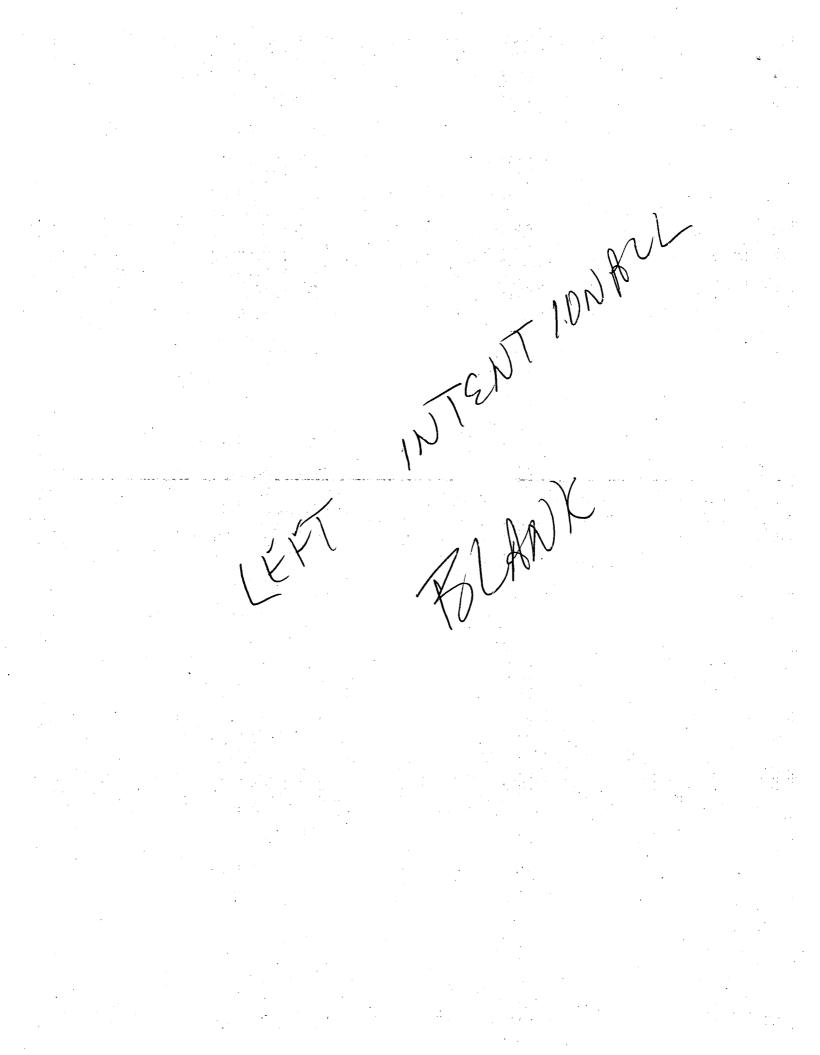
PERMIT NO. MO-0098001 **REPORTING PERIOD (MO/YR)** PAGE \_4\_ OF \_4\_

NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

638 (Ìin#)

Preparer


12267 Reviewen

(5061)

Approved (Pin#) Plant Manager 4/2×/08 Fn Fud: Digg

CA0320 01/11/05

Page 4 of 4



Ameren Services Environmental Services 314.554.3480 (Telephone) 314.554.4182 (Facsimile) ssweiss@ameren.com One Ameren Plaza 1901 Chouteau Avenue PO Box 66149 St. Louis, MO 63166-6149 314.621.3222

July 18, 2008

Re:

Department of Natural Resources Northeast Regional Office 1709 Prospect Drive Macon, Missouri 63552-2602

> Ameren UE Callaway Power Plant NPDES Permit No. MO-0098001



Dear Sir or Madam:

In accordance with requirements of the Union Electric Company, d/b/a Ameren UE Callaway Power Plant, NPDES Permit MO-0098001, please find enclosed the DMRs for the Second Quarter 2008 (April, May, and June).

Second Quarter, 2008 NPDES Discharge Monitoring Reports (DMRs)

Please call me at 314-554-3480 if you have any questions concerning the enclosed reports.

Sincerely,

Steven S. Weiss Environmental Scientist, NPDES DMR Coordinator Ameren Environmental Services Ameren Services as Affiliated Agent for Union Electric Company, d/b/a AmerenUE

Attachment

a subsidiary of Ameren Corporation

R.S. Boutelle (CA-460) JCP / SSW WQ3.1.2.1 bcc:

- i

#### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)\_\_\_\_\_04/2008 PAGE \_\_\_\_\_OF \_\_4\_\_\_

NPDES MONITORING REPORT

#### OUTFALL 001 RADWASTE SYSTEM

| DATE                                         | SOURCE                                                                                                                                          | FLOW<br>(MGD)                                                                                                  | TSS<br>(mg/l)                         | Boron<br>(mg/1)                                                                                                                                                                                                                                                                                                                                       | рН   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2                                            | 1                                                                                                                                               | .092                                                                                                           | 13                                    | 50                                                                                                                                                                                                                                                                                                                                                    | 8.88 |
| 15                                           | 6.                                                                                                                                              | .090                                                                                                           | 25                                    | 5.                                                                                                                                                                                                                                                                                                                                                    | 7.88 |
| 21                                           | 7                                                                                                                                               | 091                                                                                                            | 10                                    | 73                                                                                                                                                                                                                                                                                                                                                    | 8.07 |
| 26                                           | 6                                                                                                                                               | .090                                                                                                           | ~ 14                                  | 63                                                                                                                                                                                                                                                                                                                                                    | 8.49 |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       | -                                                                                                                                                                                                                                                                                                                                                     |      |
|                                              | 1.41.2.9.41.045.41.44.244.244.244.244.244.244.244.244.2                                                                                         | energy and a period of the second | wertstellereterterschrödert           | enget                                                                                                                                                                                                                                                                                                                                                 |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
| n an     | na star se se se transférie.<br>Transférie de la companya de la comp |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              | ~                                                                                                                                               |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 | - «, *, *<br>                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       | а    |
|                                              |                                                                                                                                                 | <u>يد بر من ال</u>                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       | I    |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              | ,                                                                                                                                               |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
| <u>,</u>                                     |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              | <u></u>                                                                                                                                         |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
| an in an |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                       |      |
|                                              |                                                                                                                                                 |                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |
| 1                                            |                                                                                                                                                 | <u>مى بۇرۇرى بار بار بار بار بار بار بار بار بار بار</u>                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                       |      |

| AVERAGE         M.           FLOW (MGD)         EB         N.A.         N           pH (STD)         EB         6.0-9.0         6.0           TSS (mg/1)         EB         30         4           Boroa (mg/l)         EB         N.A.         N           TRC (ug/l)         Monthly         N.A.         1 | PARAMETER    | FREQ.   | LIMITS  |               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------|---------------|--|
| pH (STD)         EB         6.0-9.0         6.0           TSS (mg/1)         EB         30         4           Boron (mg/1)         EB         N.A.         N           TRC (ug/1)         Monthly         N.A.         1                                                                                     |              |         |         | DAILY<br>MAX. |  |
| TSS (mg/1)         EB         30         4           Boroa (mg/l)         EB         N.A.         N           TRC (ug/l)         Monthly         N.A.         I                                                                                                                                               | FLOW (MGD)   | EB      | N.A.    | N.A.          |  |
| Boroa (mg/l)         EB         N.A.         N           TRC (ug/l)         Monthly         N.A.         If                                                                                                                                                                                                   | pH (STD)     | EB      | 6.0-9.0 | 6.0-9.0       |  |
| TRC (ug/l) Monthly N.A. I                                                                                                                                                                                                                                                                                     | TSS (mg/1)   | EB      | 30      | 45            |  |
|                                                                                                                                                                                                                                                                                                               | Boroa (mg/l) | EB      | N.A.    | N.A.          |  |
| BOD (mg/l) Monthly N.A. N                                                                                                                                                                                                                                                                                     |              | Monthly | N.A.    | 190           |  |
|                                                                                                                                                                                                                                                                                                               | BOD (mg/l)   | Monthly | N.A.    | N.A.          |  |
| O&O (mg/1) Monthly 15 2                                                                                                                                                                                                                                                                                       | O&G (mg/1)   | Monthly | 15      | 20            |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

#### OURCES

I = WASTE MONITOR TANK A

2 = WASTE MONITOR TANK B

3 = STEAM GENERATOR BLOWDOWN

4 = SEC LIQ. WASTE MONITOR TANK A

5 = SEC\_LIQ. WASTE MONITOR TANK B

= LIQ RADWASTE DISCHARGE TANK A

7 = LIQ. RADWASTE DISCHARGE TANK B

B = EACH BATCH

| g/1) | O&G (mg | TRC (ug/l) | BOD (mg/l) | Date |
|------|---------|------------|------------|------|
|      | 8.4     | 20         | 2.2        | 2    |
|      |         |            |            |      |
|      |         |            |            |      |
|      |         |            |            |      |
|      |         |            |            |      |

OMMENTS: \_\_\_\_\_

File C170.0005

Page 1 of 4



## PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_04/2008

PAGE \_2\_ OF \_4\_

### NPDES MONITORING REPORT

#### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |
|------|---------------|-----------------|---------------|
| 1    | 42            | 66              | <50           |
| 2    | 3.8           | 64              | <50           |
| 3    | 3.5           | η               | <50           |
| 4    | 3.6           | 64              | <50           |
| 5    | 4.0           | 66              | <50           |
| 6    | 3.7           | 68              | <50           |
| 7    | 2:1           | 67              | <50           |
| 8    | 5.6           | 66              | <50           |
| 9    | 4.0           | 67              | <50           |
| 10   | 3.7           | 68              | <50           |
| 11   | 5.5           | 69              | <50           |
| 12   | 5.4           | 65              | <50           |
| 13   | 5.9           | 64              | <50           |
| 14   | 4.3           | 65              | <50           |
| 15   | 5.7           | 67              | <50           |
| 16   | 4.3           | 71              | <50           |
| 17   | 4.2           | 70              | <50           |
| 18   | 4.6           | 69              | <50           |
| 19   | 4.8           | 68              |               |
| 20   | 4.9           | 78              | <50           |
| 21   | 5.9           | 75              | <50           |
| 22   | 5.9           | . 77            | <50           |
| 23   | . 4.6 .       | 77              | <50           |
| 24   | 5.2           | 76              | < 50          |
| 25   | 4.5           | 78              | <50           |
| 26   | 4.3           | 72              | <50           |
| 27   | 41            | 71              | <50           |
| 28   | 3.3           | 69              | <50           |
| 29   | 3.9           | 68              | <50           |
| 30   | 1.5           | 74              | <50           |
|      |               |                 |               |

| DATE | TSS<br>(mg/1) | TDS<br>(mg/l) |
|------|---------------|---------------|
| 7    | 46            | 1356          |
| 14   | 42            | 792 (2)       |
| 21   | 49            | 1276          |
| 28   | 58            | 1428          |
|      |               |               |

| DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/1) |
|------|-------------------|---------------|
| No   | Sample            | Required      |
|      |                   |               |
|      |                   |               |

| PARAMETER               | FREQ.     | L           | MITS          |
|-------------------------|-----------|-------------|---------------|
|                         |           | MO.<br>AVG. | DAILY<br>MAX. |
| FLOW                    | CONT.     | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | NA.         | N.A.          |
| OIL AND GREASE          | QRTLY (1) | 15          | 20            |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.          |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110° F        |
| РЙ                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

File C170.0005

Page 2 of 4



PERMIT NO. MO-0098001 **REPORTING PERIOD (MO/YR)** 

PAGE 3 OF 4

#### NPDES MONITORING REPORT

## OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

04/2008

|   | DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/l) | pН |
|---|------|---------------|---------------|---------------|----|
| ł |      | Nò            | Samples       | Required      | 4  |
|   |      |               |               |               |    |
|   |      |               |               |               |    |
| l |      |               | •             |               |    |
| Į |      |               |               |               |    |
|   |      |               |               |               |    |

OUTFALL 007

#### SANITARY WASTE

n 1840.

| PARAMETER |           | 1.00      | UTS (mg/1) |
|-----------|-----------|-----------|------------|
|           | FREQ.     | MO. AVG.  | WKLY. AVG. |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |
| TSS       | QRTLY (I) | 70        | 110        |
| BOD       | QRTLY (1) | 45        | 65         |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

## OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

#### OUTFALLS 010 - 015

| DATE                                                                                                            | OUTFAL<br>L                 | FLOW<br>(MGD) | TSS<br>(ung/l) | 0 and G<br>(mg/1) | COD<br>(mgA) | pĦ       |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|----------------|-------------------|--------------|----------|
|                                                                                                                 |                             |               |                |                   |              |          |
|                                                                                                                 |                             |               |                |                   |              |          |
| in the second | en andre state andre samere | No No         | - Samples      | Required          | a managera   | 1996-142 |
|                                                                                                                 |                             |               |                |                   |              |          |
|                                                                                                                 |                             |               |                |                   |              |          |
|                                                                                                                 |                             |               |                |                   |              |          |

#### STORM WATER RUNOFF PONDS

| PARAMETER    | FREQ.      |          | THITS      |
|--------------|------------|----------|------------|
| Sec. 24. A.L |            | MO. AVG. | DAILY MAX. |
| FLOW         | QRTLY, (I) | N.A.     | N.A        |
| TSS          | QRTLY (1)  | N.A.     | N.A.       |
| COD          | QRTLY (I)  | N.A.     | N,A,       |
| O and G      | QRTLY (I)  | 15       | 20         |
| рH           | QRTLY(1)   | >6.0     | >6.0       |

SAMPLES SHALL BE TAKEN DURING THE MONTHS (1) OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS   |            |  |
|-----------|-----------|----------|------------|--|
|           |           | MO. AVG. | DAILY MAX. |  |
| FLOW      | QRTLY (I) | N.A.     | N.A.       |  |
| TSS       | QRTLY (1) | 30       | 100        |  |
| O and G   | QRTLY (1) | 15       | 20         |  |
| pH        | QRTLY (1) | 6.0 9.0  | 6.0 - 9.0  |  |
| TRC       | QRTLY (1) | N.A.     | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: Outfall 016 TRC results on Attachment 1

## OUTFALL 016

|   | DATE        | FLOW<br>(MGD) | TSS<br>(mg/1) | O and<br>G<br>(mg/l) | pH | TRC<br>(ug/l) | . *. |
|---|-------------|---------------|---------------|----------------------|----|---------------|------|
| Γ | · · · · · · | No            | Samples       | Requir               |    |               |      |
| Ľ | ·           |               |               |                      |    |               | ·    |

#### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

File C170.0005

Page 3 of 4



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE \_4\_ OF \_4\_

#### NPDES MONITORING REPORT

04/2008

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

(12267) Approved (Pin#) (Pin#) Preparer Reviewer

Plant Director

CA0320 01/11/05

Page 4 of 4

## ATTACHMENT 1 DATE: <u>04/08</u>

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date                                     | TRC (ug/ml)                                                                                                     |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 16                                       | 139                                                                                                             |
| 17                                       | 100                                                                                                             |
| 22                                       | <50                                                                                                             |
| 25                                       | <50                                                                                                             |
|                                          |                                                                                                                 |
|                                          |                                                                                                                 |
|                                          |                                                                                                                 |
|                                          |                                                                                                                 |
|                                          |                                                                                                                 |
|                                          |                                                                                                                 |
|                                          |                                                                                                                 |
| a see as the second second second as the | and the second secon |

LICHEMSTRY ADMINNPDES ATTACHMENT I WORKSHEET.DOC

ATTACHMENT 1

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 05/2008 PAGE 1 OF 4

## NPDES MONITORING REPORT

#### OUTFALL 001 RADWASTE SYSTEM

| DATE        | SOURCE                                | FLOW<br>(MGD) | TS5<br>(mg/l)                                | Boron<br>(mg/1)                                                                                                 | рН                                       | PARAMETER                | FREQ.                                 | LIM                                   | ITS      |
|-------------|---------------------------------------|---------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|---------------------------------------|---------------------------------------|----------|
| 6           | 7                                     | .088          | 0                                            | 9                                                                                                               | 8.3                                      |                          |                                       | MONTHLY                               | DAIL     |
| 12          | 6                                     | .091          | 24                                           | 10                                                                                                              | 8.95                                     |                          |                                       | AVERAGE                               | МАХ      |
| 17          | 7                                     | .070          | 9                                            | 7                                                                                                               | 8.95                                     | FLOW (MGD)               | EB                                    | N.A.                                  | N.A.     |
|             |                                       |               |                                              |                                                                                                                 |                                          | pH (STD)                 | EB                                    | 6.0-9.0                               | 6.0-9.   |
|             |                                       |               |                                              | •                                                                                                               |                                          | TSS (mg/1)               | EB                                    | 30                                    | 45       |
|             |                                       |               |                                              |                                                                                                                 |                                          | Boron (mg/l)             | EB                                    | N.A                                   | N.A.     |
|             | r .                                   |               |                                              |                                                                                                                 |                                          | TRC (ug/l)               | Monthly                               | N.A.                                  | 190      |
| · . · ·     |                                       |               |                                              |                                                                                                                 | Na                                       | BOD (mg/l)               | Monthly                               | N.A.                                  | N.A.     |
|             | ·                                     |               |                                              |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·    | O&G (mg/1)               | Monthly                               | 15                                    | 20       |
|             |                                       |               |                                              |                                                                                                                 |                                          | ALL SAMPLES              | ANALYZEI                              | BY Ameren U                           | Callaway |
| <u></u>     |                                       |               | n yaaray karang kalan mahayyati salan diyosa | and a state of the second s | for participants and the participants of | Plant OPERATI            |                                       |                                       | -        |
|             | · · · · · · · · · · · · · · · · · · · |               | 1                                            |                                                                                                                 |                                          | METHODS SPI              |                                       |                                       |          |
|             |                                       |               |                                              |                                                                                                                 |                                          | METHODS OF               |                                       | JER WESK 20-                          | .015     |
|             |                                       |               |                                              |                                                                                                                 |                                          |                          |                                       |                                       |          |
| . <u></u> . |                                       |               |                                              |                                                                                                                 |                                          | SOURCES                  | · - · · ·                             |                                       |          |
| •           |                                       |               |                                              |                                                                                                                 |                                          | I = WASTE MONITOR TANK A |                                       |                                       |          |
|             |                                       |               |                                              | ·                                                                                                               |                                          | 2 = WASTE                | MONITOR T                             | ANK B                                 |          |
|             |                                       |               | ·                                            | -                                                                                                               |                                          | 3 = STEAM (              | JENERATOR                             | BLOWDOWN                              |          |
|             |                                       |               |                                              |                                                                                                                 |                                          | 4 = SEC. LIQ             | WASTE MO                              | NITOR TANK                            | A        |
|             |                                       |               |                                              |                                                                                                                 | · · ·                                    | 5 = SEC. LIQ             | . WASTE MO                            | DNITOR TANK                           | B        |
|             |                                       |               | · · · · ·                                    |                                                                                                                 |                                          | 6 = LIQ. RAI             | WASTE DIS                             | CHARGE TAN                            | KA       |
|             |                                       |               | · · · · ·                                    |                                                                                                                 |                                          | 7 = LIQ. RAI             | WASTE DIS                             | CHARGE TAN                            | КВ       |
|             |                                       |               |                                              |                                                                                                                 |                                          | EB = EACH B              |                                       |                                       |          |
|             |                                       |               |                                              |                                                                                                                 |                                          |                          | DD (mg/l)                             | TRC (ug/l)                            | 0&G (mg  |
|             |                                       |               | <u> </u>                                     |                                                                                                                 |                                          |                          |                                       |                                       |          |
|             |                                       |               |                                              |                                                                                                                 |                                          | .6                       |                                       | 10                                    | 6        |
|             | l                                     |               |                                              |                                                                                                                 |                                          | . 12                     | 4.8                                   |                                       |          |
|             |                                       |               |                                              |                                                                                                                 |                                          |                          |                                       |                                       |          |
|             |                                       |               |                                              |                                                                                                                 |                                          |                          |                                       |                                       |          |
|             |                                       |               |                                              |                                                                                                                 |                                          |                          |                                       |                                       |          |
|             |                                       |               |                                              |                                                                                                                 |                                          | COMMENTS:                | · · · · · · · · · · · · · · · · · · · |                                       |          |
|             |                                       |               | <u> </u> :                                   |                                                                                                                 |                                          |                          |                                       | · · · · · · · · · · · · · · · · · · · |          |
| •           | · · ·                                 |               |                                              |                                                                                                                 |                                          | ·                        |                                       | v.                                    |          |
|             |                                       |               |                                              |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·    |                          | • • •                                 |                                       |          |
|             | t                                     |               |                                              |                                                                                                                 |                                          |                          |                                       |                                       |          |
|             | L                                     | L             | 1                                            |                                                                                                                 | المرتبينين فتوجيا                        |                          |                                       |                                       |          |

File C170.0005

Page 1 of 4

05/2008

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_ PAGE \_2\_\_ OF \_4\_\_

a.

NPDES MONITORING REPORT

#### OUTFALL 802 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD)     | TEMP<br>(MAX 9F           | TRC<br>(#8/0) |
|------|-------------------|---------------------------|---------------|
| 1    | 1.5               | 76                        | <50           |
| 2    | 4.2               | 75                        | <50           |
| 3    | 5.9               | 71                        | <50           |
| 4    | 4.2               | 72                        | 64_           |
| 5    | 4.2               | 75                        | <50           |
| 6    | 4.2               | 76                        | <50           |
| 7    | 5.7               | 76                        | <\$0          |
| 8    | 4.4               | 74                        | <50           |
| 9    | 4.8               | 73                        | 71            |
| 10   | source 3.5 months | aberration 72 contraction | ×× <50        |
| 11   | 4.6               | 71                        | <50           |
| 12   | 4.7               | 78                        | <50           |
| 13   | 5.9               | 76                        | <50           |
| 14   | 5.8               | 75                        | <50           |
| 15   | 5.0               | 72                        | <50           |
| 16   | 4.1               | 75                        | <50           |
| 17   | 3.3               | 77                        | <50           |
| 18   | 6.7               | 76                        | <50           |
| 19   | 3.5               | 78                        | <50           |
| 20   | 4.6               | 82                        | <50           |
| 21   | 6.2               | 75                        | <50           |
| 22   | 0                 | 78                        | `< <b>S</b> 0 |
| 23   | 8.2               | 77                        | <\$0          |
| 24   | <b>7.</b> I       | 76                        | <50           |
| 25   | 5.1               | 81                        | <50           |
| 26   | 5.1               | 80                        | <50           |
| 27   | 4.7               | 80                        | <50           |
| 28   | 5.2               | 76                        | 70            |
| 29   | 3.8               | 80                        | <50           |
| 30   | 4.7               | 82                        | <50           |
| .31  | 5.5               | 82                        | <50           |

| (mg/1) | (mg/i)         |
|--------|----------------|
| 44     | 1784           |
| 50     | 1756           |
| 43     | 1828           |
| 37     | 1744           |
| 1. A.  |                |
|        | 50<br>43<br>17 |

|    | DATE                                          | Sulfate<br>(mg/1) | O& G<br>(mg/l) |
|----|-----------------------------------------------|-------------------|----------------|
| ۰. | 5                                             | 990               | 2              |
| 4  | <u>,                                     </u> |                   |                |

| PARAMETER               | FREQ.     | LIMITS      |              |  |
|-------------------------|-----------|-------------|--------------|--|
|                         |           | MQ.<br>AVG. | DAILY<br>MAX |  |
| FLOW                    | CONT.     | N.A.        | N.A.         |  |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.         |  |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.         |  |
| OIL AND GREASE          | QRTLY (1) | 15          | 20           |  |
| SULFATE                 | QRTLY (1) | N.A.        | N.A.         |  |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F        |  |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |  |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L     |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: \_\_\_\_\_ No pH excursions occurred this month.\_\_\_\_

File C170.0005



 PERMIT NO. MO-0098001
 05/2008

 REPORTING PERIOD (MO/YR)
 05/2008

PAGE <u>3</u> OF <u>4</u>

#### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT

#### NO DISCHARGE

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | BOD<br>(mg/]) | pН   |
|------|---------------|---------------|---------------|------|
| 17   | .04           | 1.0           |               | 7.67 |
| 31   |               |               | 8.4           |      |
|      |               | ·             |               |      |
|      |               |               |               |      |
|      |               |               |               | •    |

OUTFALL 007

#### SANITARY WASTE

| PARAMETER |           | LIMITS (mg/l) |            |  |  |  |  |
|-----------|-----------|---------------|------------|--|--|--|--|
|           | FREQ.     | MO. AVG.      | WELY. AVG. |  |  |  |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |  |  |  |
| TSS       | QRTLY (1) | 70            | 110        |  |  |  |  |
| BOD       | QRTLY (1) | 45            | 65         |  |  |  |  |
| рН        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |  |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

| OUTFALL 009            |
|------------------------|
| INTAKE HEATER BLOWDOWN |
| NO DISCHARGE           |

#### OUTFALLS 010 - 015

| 10   |      | (mg/l)             | (mg/l)                                                           | (mg/l)                                                                              | pН                                                                                                             |
|------|------|--------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 10   | 0.11 | 7                  | 3                                                                | 17.5                                                                                | 8.1                                                                                                            |
| 11   | 0.51 | 51 -               | 3                                                                | 32.5                                                                                | 7.8                                                                                                            |
| 12 - | 0.04 |                    | 6                                                                |                                                                                     | 8.3                                                                                                            |
| 14   | 0.18 | 19                 | б                                                                | 22.5                                                                                | 8.0                                                                                                            |
| 15   | 0.07 | 5                  | 2                                                                | 25.5                                                                                | 8.5                                                                                                            |
|      | 14   | 12 0.04<br>14 0.18 | 12         0.04         28            14         0.18         19 | 12         0.04         -28        6           14         0.18         19         6 | 12         0.04         -28        6         -15.0           14         0.18         19         6         22.5 |

#### OUTFALL 016

| DATE FLOW<br>(MGD) |       | O and<br>G<br>(mg/l) | pH                       | TRC<br>(48/1)            |
|--------------------|-------|----------------------|--------------------------|--------------------------|
| 2.28               | 12    | 1.0                  | 8.11                     | <50                      |
|                    | (MGD) | (MGD) (mg/l)         | (MGD) (mg/l) G<br>(mg/l) | (MGD) (mg/l) G<br>(mg/l) |

#### OUTFALL 017

#### ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015 STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.     | LIMITS   |            |  |  |  |
|-----------|-----------|----------|------------|--|--|--|
|           |           | MO. AVG. | DAILY MAX. |  |  |  |
| FLOW      | QRTLY.(I) | N.A.     | N.A.       |  |  |  |
| TSS       | QRTLY(I)  | N.A.     | N.A.       |  |  |  |
| COD       | QRTLY (I) | N.A.     | N.A.       |  |  |  |
| O and G   | QRTLY (I) | 15       | 20         |  |  |  |
| pH        | QRTLY(1)  | >6.0     | >6.0       |  |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

#### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS.   |           |  |  |  |
|-----------|-----------|-----------|-----------|--|--|--|
|           | 3         | MO. AVG.  | DAILY MAX |  |  |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.      |  |  |  |
| TSS       | QRTLY (1) | 30        | 100       |  |  |  |
| O and G   | QRTLY (I) | 15        | 20        |  |  |  |
| pН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |  |  |  |
| TRC       | QRTLY (I) | N.A.      | 190       |  |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: Note that the discharge from the converted wetland and the flows reported herein are NOT discharged, as this Outfall (#007) is recorded to the head of the Water Treatment Plant for further treatment and reuse.

No discharge noted on Outfall 013.

Outfail 016 TRC results on Altachment 1.

File C170.0005

Page 3 of 4



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_ PAGE \_4\_\_ OF \_4\_\_

NPDES MONITORING REPORT

05/2008

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

mall 5408 det Enjo D. Sohu (12267) 1141.4440 (Pin#) Approved (Pin#) Preparer Reviewe Plant Director

Page 4 of 4

CA0320

01/11/05

## ATTACHMENT 1 DATE: 05/08

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date                                                  | TRC (ug/ml)                                                                                                    |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 7                                                     | <50                                                                                                            |
| 8                                                     | 57                                                                                                             |
| 9                                                     | 91                                                                                                             |
| 13                                                    | 160                                                                                                            |
| 14                                                    | 80                                                                                                             |
| .15                                                   | 155                                                                                                            |
| 20                                                    | 118                                                                                                            |
| 21                                                    | <50                                                                                                            |
| 27                                                    | 180                                                                                                            |
| 28                                                    | <50                                                                                                            |
|                                                       |                                                                                                                |
| an aga aga ain ang ang ang ang ang ang ang ang ang an | and a second |

I:CHEMSTRYADMINWPDESATTACHMENT I WORKSHEET.DOC

ATTACHMENT I

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 06/2008 PAGE 1 OF 4

### NPDES MONITORING REPORT

#### OUTFALL 001 RADWASTE SYSTEM

| DATE                                                                                                            | SOURCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FLOW<br>(MGD)                        | TSS<br>(mg/1)                         | Boron<br>(mg/1)                    | рH                                      |            | PARAMETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R FREQ     | LD                                    | AITS                                        |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-----------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|---------------------------------------------|
| 2                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .093                                 | 16                                    | 20                                 | 8.91                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | MONTHLY                               | DAILY                                       |
| 6                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .092                                 | 4                                     | 15                                 | 8.69                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·  | AVERAGE                               | MAX.                                        |
| 9                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .088                                 | 12                                    | 2                                  | 8.28                                    |            | FLOW (MGD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) EB       | N.A.                                  | N.A.                                        |
| 11                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .089                                 | 3                                     | 5                                  | 7.59                                    |            | pH (STD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EB         | 6.0-9.0                               | 6.0-9.0                                     |
| 20                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .093                                 | 19                                    | 11                                 | 8.78                                    |            | TSS (mg/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EB         | 30                                    | 45                                          |
| 24                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .093                                 | 7                                     | 43                                 | 8.73                                    |            | Boron (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EB         | N.A.                                  | N.A.                                        |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         |            | TRC (ug/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monthly    | N.A.                                  | 190                                         |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         |            | BOD (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monthly    | N.A.                                  | • N.A.                                      |
| -                                                                                                               | 1997 - 1997<br>1997 - 1997 - 1997<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | an an teanant.<br>Tana                |                                    |                                         |            | O&G (mg/I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monthly    | 15                                    | 20                                          |
| Na tanang manang man | r -<br>Mala Carlot - Formation (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | here the second second second second | worken and the second                 | and the second second              | Alter alter and the alter of the second | esta della | ALL SAMPLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S ANALYZE  | D BY Ameren L                         | JE Callaway                                 |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | 7          | Plant OPERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TIONS LABO | RATORY USIN                           | G                                           |
| •                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          | METHODS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ECIFIED UN | IDER IOCSR 20                         | 7.015                                       |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | • •                                   |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          | SOURCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · • ·    |                                       |                                             |
|                                                                                                                 | and the second s |                                      |                                       |                                    |                                         |            | I = WASTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MONITOR    |                                       |                                             |
| <u> </u>                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MONITOR 1  |                                       |                                             |
| 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | R BLOWDOWN                            | ł                                           |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·  | ONITOR TANK                           | a fa se |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |                                       |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | gara da di                            |                                    | - <u></u>                               | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ONITOR TANK                           | · ·                                         |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | SCHARGE TAN                           |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | SCHARGE TAN                           | √K B                                        |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         |            | EB = EACHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BATCH      |                                       |                                             |
|                                                                                                                 | n an an search an an sea<br>Tha tha tha search an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                       |                                    |                                         |            | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BOD (mg/l) | TRC (ug/l)                            | O&G (mg/l)                                  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         |            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2          | 20                                    | 6                                           |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                       |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                       |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -                                     | <u>موسط کی منبع کار منبع کار م</u> |                                         | - <b>1</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                       |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          | La constante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | <u>1</u>                              |                                             |
| ·                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a state of the                       |                                       |                                    |                                         |            | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                       |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | a                                     |                                    |                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                       |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | an an an an an an<br>Tha an an an ang |                                    |                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>   |                                       |                                             |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                                    |                                         | -          | in the second se |            | · · · · · · · · · · · · · · · · · · · | <u></u>                                     |
|                                                                                                                 | A second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 A 1                                | 100 B. 100 B. 100 B.                  |                                    | 1                                       | 1          | 1. St. 1. St. 1. St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                       | 1 M 1 M 1                                   |



PERMIT NO. MO-0098001 **REPORTING PERIOD (MO/YR)** 06/2008 PAGE \_2\_OF \_4\_

### NPDES MONITORING REPORT

### <u>OUTFALL 002</u> COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(#g/l)  |
|------|---------------|-----------------|----------------|
| 1    | 5.5           | . 82            | 60             |
| 2    | 6.7           | 81              | <50            |
| 3    | 4.9           | 83              | <50            |
| 4    | 6.0           | 83              | <50            |
| 5    | 4.3           | 84              | <50            |
| 6    | 4.7           | 84              | <50            |
| 7    | 5.2           | 85              | <50            |
| 8    | 5.5           | 86              | <50            |
| 9    | 5.6           | 84              | <50            |
| 10   | 4.4           | 83              | <50            |
| 11   | 3.9           | 84              | <u>&lt;</u> 50 |
| 12   | 4.9           | 85              | <50            |
| .13  | 4.5           | 83              | <50            |
| 14   | 4.5           | 83              | <50            |
| 15   | 4.5           | 84              | <50            |
| 16   | 4.5           | 83              | <50            |
| 17   | 4.4           | 81              | <50            |
| 18   | 1.5           | 82              | <50            |
| 19   | 4.5           | 82              | <50            |
| 20   | 5.8           | 88              | <50            |
| 21   | 4.1           | 89              | <50            |
| 22   | 3.9           | 86              | <\$0           |
| 23   | 4.3           | 83              | <50            |
| 24   | 6.3           | 83              | <50            |
| -25  | 8.2           | 84              | <50            |
| 26   | 7.1           | 88              | <50            |
| 27   | 2.3           | 83              | 123            |
| 28   | 5.2           | 83              | 88             |
| 29   | 5.7           | 80              | 69             |
| 30   | 4.5           | 82              | 88             |

| DATE | (mg/l) | (mg/1) |
|------|--------|--------|
| 2    | 31     | 1758   |
| 9    | 22     | 1168   |
| 16   | 43     | 1306   |
| 23   | 49     | 888    |
| 30   | 47     | 1776   |

| DATE  | Sulfate<br>(mg/l) | 0&G<br>(mg/1) |
|-------|-------------------|---------------|
| No. 1 | Sample            | Required      |
|       |                   |               |

| PARAMETER               | FREQ.     | LI          | MITS          |
|-------------------------|-----------|-------------|---------------|
|                         |           | MO.<br>AVG. | DAILY<br>MAX. |
| FLOW                    | CONT.     | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A,          |
| OIL AND GREASE          | QRTLY (1) | 15          | 20            |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A:          |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F         |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |

2

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: \_ No pH excursions occurred this month.

File C170.0005

Page 2 of 4



**PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** 

PAGE 3 OF 4

### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

OUTFALL 007

06/2008

| DATE | FLOW<br>(MGD) | 155<br>(mg/1) | BOD<br>(mg/l) | pН |
|------|---------------|---------------|---------------|----|
| No   |               | Required      |               |    |
|      |               | <u> </u>      |               |    |
| -    |               |               |               |    |
|      |               |               |               |    |
|      |               |               |               |    |
|      |               | 1             |               |    |

### SANITARY WASTE

÷.

| PARAMETER |           | LIMITS (mg/l) |            |  |
|-----------|-----------|---------------|------------|--|
| •         | FREQ.     | MO. AVG.      | WELY. AVG. |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BOD       | QRTLY (1) | 45            | 65         |  |
| pH        | QRTLY (I) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

## OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

### OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/l) | COD<br>(mg/l) | рH |
|------|---------|---------------|---------------|-------------------|---------------|----|
|      |         | No            | Sample        | Required          |               |    |
|      |         |               |               |                   |               |    |
|      |         |               |               |                   |               |    |
|      | · · ·   |               |               |                   |               |    |
|      |         |               |               |                   |               |    |
|      |         |               |               |                   |               |    |

OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | O and G<br>(mg/l) | pН | . TRC<br>(#g/l) |
|------|---------------|---------------|-------------------|----|-----------------|
|      | No            | Sample        | Required          |    |                 |
|      |               |               |                   |    |                 |

### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY America UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      |            | MUTS              |
|-----------|------------|------------|-------------------|
| ;         |            | MO. AVG. : | DAILY MAX.        |
| FLOW      | QRTLY. (1) | N.A.       | N.A.              |
| TSS       | QRTLY (1)  | · N.A.     | N.A.              |
| COD       | QRTLY (1)  | N.A.       | N.A.              |
| O and G   | QRTLY (I)  |            | comins 20 minutes |
| pH        | QRTLY(1)   | >6.0       | >6.0              |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |
|-----------|-----------|-----------|------------|
|           |           | MO. AVG.  | DAILY MAX. |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |
| TSS       | QRTLY (1) | 30        | 100        |
| Q and G   | QRTLY(1)  | 15        | 20         |
| pH        | QRTLY (I) | 6.0 - 9.0 | 6.0 - 9.0  |
| TRC       | QRTLY (1) | N.A.      | 190        |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: <u>Note that the discharge from the converted wetland and</u> the flows reported herein are NOT discharged, as this Outfall (#007) is <u>recycled to the head of the Water Treatment Plant for further treatment and</u> reuse

No discharge noted on Outfall 013. Outfall 016 TRC results on Attachment 1

### File C170.0005

Page 3 of 4



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE \_\_4\_\_ OF \_\_4\_\_

### NPDES MONITORING REPORT

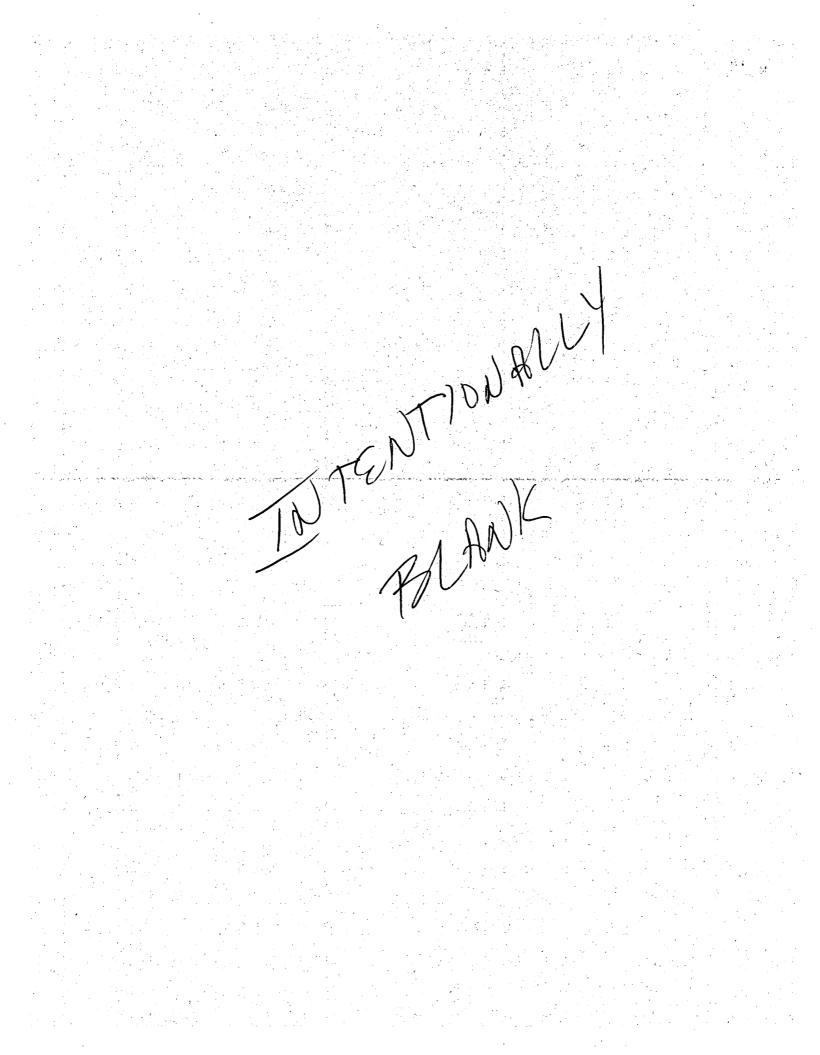
06/2008

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

F (12267 २४ (Pin#) Reviewer (Pin#) Preparer Approved Plant Director

Pagé 4 of 4

CA0320 01/11/05


# ATTACHMENT 1 DATE: <u>06/08</u>

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| <u>Date</u> | TRC (ug/ml) |
|-------------|-------------|
| 3           | <50         |
| 4           | <50         |
| 5           | <50         |
| 10          | <50         |
| 11          | <50         |
| 12          | <50         |
| 17          | <50         |
| 18          | <50         |
| 19          | <50         |
| 24          | <50<br><50  |
| 26          | <50         |

I:CHEMSTRY\ADMININPDES\ATTACHMENT | WORKSHEET.DOC

ATTACHMENT 1



Ameren Services Environmental Services 314.554.3480 (Telephone) 314.554.4182 (Facsimile) ssweiss@ameren.com One Ameren Plaza 1901 Chouteau Avenue PO Box 66149 St. Louis, MO 63166-6149 314.621.3222

October 23, 2008

Department of Natural Resources Northeast Regional Office 1709 Prospect Drive Macon, Missouri 63552-2602

Re: Ameren UE Callaway Power Plant NPDES Permit No. MO-0098001 Third Quarter, 2008 NPDES Discharge Monitoring Reports (DMRs)

**Dear Sir or Madam:** 

In accordance with requirements of the Union Electric Company, d/b/a Ameren UE Callaway Power Plant, NPDES Permit MO-0098001, please find enclosed the DMRs for the *Third Quarter 2008 (July, August, and September)*.

Please call me at 314-554-3480 if you have any questions concerning the enclosed reports.

Sincerely,

a subsidiary of Ameren Corporation

Steven S. Weiss Environmental Scientist, NPDES DMR Coordinator Ameren Environmental Services Ameren Services as Affiliated Agent for Union Electric Company, d/b/a AmerenUE

Attachment

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             | $f \in \mathcal{F}_{1}^{+}$                                                                                                                                                                                                                                                                                                                          |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                             | a la constanta data a su                                                                                                                                                                                                                                                                                                                             |                                          |
| · 같은 · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.<br>2.                                                                                                        |                                                             | and and a second se                                                                                                                                                                                                                                       |                                          |
| bcc: R.S. Boutelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (CA-460)                                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
| bcc: R.S. Boutelle<br>JCP / SSW<br>WQ3.1.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
| WQ3,1.2,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      | а<br>                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      | ан сайтан<br>Алан сайтан<br>Алан сайтан  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an a                                                                        |                                                             | dendiger e bei also inner diener der                                                                                                                                                                                                                                                                                                                 | e e en e                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      | •                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      | e en |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | <ul> <li>A set of a straight</li> <li>A straight</li> </ul> |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             | in a star in the second se                                                                                                                                                                                                                                       |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      | an a |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sele side of the second sec |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      | n an Connair<br>An Connair Ann           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             | and a second second<br>Second second second<br>Second second |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                          |
| n an the second state of the se<br>Second state of the second state of the |                                                                                                                 |                                                             | أهريه المراز الأقي المراز المع                                                                                                                                                                                                                                                                                                                       | •                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                             | ч.                                                                                                                                                                                                                                                                                                                                                   |                                          |

 PERMIT NO. MO-0098001

 REPORTING PERIOD (MO/YR)
 07/2008

 PAGE 1\_OF 4\_
 07/2008

NPDES MONITORING REPORT

### OUTFALL 001 RADWASTE SYSTEM

| DATE     | SOURCE   | FLOW<br>(MGD)                | TSS<br>(mg/1) | Boron<br>(mg/1)                         | рН                                    | PARAMETE     | R FREQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LI            | AITS                                     |
|----------|----------|------------------------------|---------------|-----------------------------------------|---------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|
| 1        | 6        | .090                         | 7             | 1                                       | 8.82                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MONTHLY       |                                          |
| 10       | 7        | .092                         | 4             | 65                                      | 6.64                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVERAGE       | MAX.                                     |
| 15       | 6        | .092                         | 22            | 55                                      | 6.47                                  | FLOW (MGD    | ) EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N.A.          | N.A.                                     |
|          | 7        | .092                         | 20            | 41                                      | 7.14                                  | pH (STD)     | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0-9.0       | 6.0-9.0                                  |
|          | 6        | .066                         | 26            | 30                                      | 6.11                                  | TSS (mg/1)   | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30            | 45                                       |
| <b>)</b> | 7        | .090                         | 16            | 3                                       | 8.51                                  | Boron (mg/l) | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N.A.          | N.A.                                     |
|          |          | ан салана.<br>По са Колонија |               |                                         |                                       | TRC (ug/l)   | Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N.A.          | 190                                      |
|          |          |                              |               |                                         |                                       | BOD (mg/l)   | Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N.A.          | N.A.                                     |
|          |          |                              |               |                                         |                                       | O&G (mg/1)   | Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15            | 20                                       |
|          |          |                              |               |                                         |                                       | ALL SAMPLI   | ES ANALYZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D BY Ameren L | E Callaway                               |
|          |          |                              |               |                                         |                                       | Plant OPERA  | TIONS LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATORY USIN    | G                                        |
|          |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DER 10CSR 20  |                                          |
|          |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |
|          | <u> </u> |                              |               |                                         |                                       | SOURCES      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |
|          |          |                              |               |                                         |                                       |              | MONITOR T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A 3112 A      |                                          |
|          |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |
|          |          |                              |               |                                         |                                       |              | MONITOR T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                          |
|          |          |                              |               |                                         |                                       | 내 가지는 구성하지   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBLOWDOWN     |                                          |
|          |          |                              |               |                                         |                                       | A            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONITOR TANK   |                                          |
|          |          |                              |               | and the second                          |                                       | 5 = SEC. LI  | Q. WASTE M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ONITOR TANK   | .в.                                      |
|          |          |                              |               |                                         |                                       | 6 = LIQ. R/  | DWASTE DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SCHARGE TAN   | IK A                                     |
|          |          |                              |               |                                         |                                       | 7 = LIQ R/   | DWASTE DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHARGE TAN    | IK B                                     |
|          |          |                              | 1             |                                         |                                       | EB = EACH    | BATCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                          |
|          |          |                              |               |                                         | -                                     | Date         | BOD (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRC (ug/l)    | O&G (mg/                                 |
| na sera  |          |                              |               |                                         |                                       | 10           | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <10           | 3                                        |
|          |          |                              |               | 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <u></u>     |                                          |
|          |          |                              |               |                                         | · · · · · · · · · · · · · · · · · · · |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |
|          |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u>la se .</u><br>Cera esta              |
|          |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      | <u></u>                                  |
|          |          |                              |               |                                         |                                       | COMMENTS     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |
|          |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |
| 1        |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | an a |
|          |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |
|          |          |                              |               |                                         |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                          |
|          |          | • • .                        |               |                                         | • •                                   |              | 1. Sec. 1. Sec |               |                                          |

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_ PAGE \_ 2\_\_ OF \_ 4\_\_

### NPDES MONITORING REPORT

07/2008

### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |
|------|---------------|-----------------|---------------|
| 1    | 5.5           | 82              | 145           |
| 2    | 5.7           | . 82            | <50           |
| 3    | 5.0           | 81              | <50           |
| 4    | 5.3           | 80              | <50           |
| 5    | 4.7           | 80              | <50           |
| 6    | 5.2           | 82              | <50           |
| 7    | 5.4           | 84              | <50           |
| 8    | 5.6           | 85              | <50           |
| 9    | 4.8           | 84              | <50           |
| 10   | 75            | 84              | <50           |
| 11   | 4.6           | 94              | <50           |
| 12   | 4.9           | 86              | <50           |
| 13   | 5.8           | 84              | <50           |
| 14   | 5.3           | 84              | <50           |
| 15   | 7.1           | 85              | <50           |
| 16   | 4.7           | 85              | <50           |
| 17   | 6.2           | 86              | <50           |
| 18   | 5.2           | 87              | <50           |
| 19   | 4.7           | 88              | <50           |
| 20   | 4.9           | 88              | <50           |
| 21   | 1.4           | 92              | <50           |
| 22   | 3.1           |                 | <50           |
| 23   | 6.1           | 85              | <50           |
| 24   | 6.0           | 85              | <50           |
| 25   | 6.2           | 84              | <50           |
| 26   | 5.9           | 89              | -53           |
| 27   | 6.1           | 86              | 66            |
| 28   | 8.0           | 89              | <50           |
| 29   | 7.7           | 92              | <50           |
| 30   | 9.9           | 86              | <50           |
| 31   | 9.0           | 85              | <50           |

| DATE | 155<br>(mg/1) | TD\$<br>(mg/l) |
|------|---------------|----------------|
| . 7  | 50            | 868 (2)        |
| 14   | 38            | 1530           |
| 21   | 46            | 1964           |
| 28   | 100           | 1392           |

| DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/l) |
|------|-------------------|---------------|
| No   | Sample            | Required      |
|      |                   |               |

| PARAMETER               | FREQ.     | LI          | WITS         |
|-------------------------|-----------|-------------|--------------|
|                         |           | MO.<br>AVG. | DAILY<br>MAX |
| FLOW                    | CONT.     | N.A.        | N.A.         |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.         |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.         |
| OIL AND GREASE          | QRTLY(1)  | 15          | 20           |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.         |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F        |
| рН                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L     |

ALL SAMPLES ANALYZED BY America UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: <u>No pH excursions occurred this month.</u> (2) Back-up sample (920 ppm) done to confirm low number.

07/2008

### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE 3 OF 4

### NPDES MONITORING REPORT

### <u>OUTFALL 003</u> WATER TREATMENT PLANT NO DISCHARGE

### OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | BOD<br>(mg/l)                            | рН |
|------|---------------|---------------|------------------------------------------|----|
|      | No            | Sample        | Required                                 |    |
|      |               |               |                                          |    |
|      |               |               |                                          |    |
|      |               |               |                                          |    |
|      |               |               | an a |    |
| •    |               |               |                                          |    |

### SANITARY WASTE

| PARAMETER |           | LIM       | TS (mg/1)  |
|-----------|-----------|-----------|------------|
|           | FREQ.     | MO. AVG.  | WKLY. AVG. |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |
| TSS       | QRTLY (1) | 70        | 110        |
| BOD       | QRTLY(1)  | 45        | 65         |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

### OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and G<br>(mg/l) | COD<br>(mg/l) | pН |
|------|---------|---------------|---------------|-------------------|---------------|----|
|      |         | No            | Sample        | Required          |               |    |
|      |         |               |               |                   |               |    |
|      |         |               |               |                   |               |    |
|      |         |               |               | ,                 |               |    |
|      |         |               |               |                   |               |    |
|      |         |               |               |                   | 1             |    |

OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | O and G<br>(mg/l) | рH | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|----|---------------|
|      | No            | Sample        | Required          |    |               |
|      |               |               |                   |    |               |

### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ       | LIMITS   |            |  |
|-----------|------------|----------|------------|--|
|           |            | MO. AVG. | DAILY MAX. |  |
| FLOW      | QRTLY. (1) | N.A.     | N.A.       |  |
| TSS       | QRTLY (1)  | N.A.     | N.A.       |  |
| COD       | QRTLY (1)  | N.A.     | N.A.       |  |
| O and G   | QRTLY (1)  | 15       | 20         |  |
| pH        | QRTLY(I)   | >6.0     | >6.0       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |           |  |
|-----------|-----------|-----------|-----------|--|
| · ·       |           | MO. AVG.  | DAILY MAX |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.      |  |
| TSS       | QRTLY (1) | 30        | 100       |  |
| O and G   | QRTLY (1) | 15        | 20        |  |
| рН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |  |
| TRC       | ORTLY (I) | N.A.      | 190       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

### COMMENTS:

Outfall 016 TRC sample results on Attachment



07/2008

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_ PAGE \_\_4\_\_ OF \_\_4\_\_

### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

638 5408 (Pin#) Preparer (Pin#) Reviewer

Approved (Pin#

Plant Director

CA0320

01/11/05

Page 4 of 4

### ATTACHMENT 1 DATE: <u>07/08</u>

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml) |
|------|-------------|
| 1    | <50         |
| 2    | <50         |
| 3    | <50         |
| 9    | <50         |
| 11   | <50         |
| 15   | <50         |
| 16   | <50         |
| 17   | <50         |
| 23   | <50         |
| 24   | <50         |
| 29   | <50         |
| 30   | <50         |
| 31   | <50         |

I: CHEMSTRY ADMIN NPDES ATTACHMENT I WORKSHEET DOC

ATTACHMENT 1

#### **PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** 08/2008 PAGE 1\_ OF 4\_\_\_\_

### NPDES MONITORING REPORT

#### **RADWASTE SYSTEM** SOURCE DATE FLOW **TSS** Boron pН PARAMETER FREQ. (MGD) (mg/l) (mg/1) 6 6 .093 4 65 6.44 .090 6 8.00 8 7 24 14 6 .091 9 11 8.64 FLOW (MGD) 23 7 .093 1 27 8.39 pH (STD) 31 .091 13 28 6.14 6 TSS (mg/1) Boron (mg/i) TRC (ug/l) Monthly BOD (mg/l) Monthly O&G (mg/1) Monthly ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015 SOURCES 1 = WASTE MONITOR TANK A 2 = WASTE MONITOR TANK B 3 = STEAM GENERATOR BLOWDOWN 4 = SEC: LIQ. WASTE MONITOR TANK A 5 = SEC. LIQ. WASTE MONITOR TANK B 6 = LIQ. RADWASTE DISCHARGE TANK A 7 = LIQ. RADWASTE DISCHARGE TANK B EB = EACH BATCH Date BOD (mg/l) 2 6 COMMENTS: .

### **OUTFALL 001**

File C170.0005



LIMITS

DAILY

МАХ.

N.A.

6.0-9.0

45

N.A.

190

N.A.

20

O&G (mg/l)

2

MONTHLY

AVERAGE

N.A.

6.0-9.0

30

N.A.

N.A.

N.A.

15

TRC (ug/l)

20

EB

EB

EB

EB

08/2008

### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_ PAGE \_\_2\_\_OF \_\_4\_\_

13

### NPDES MONITORING REPORT

### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ugA) |
|------|---------------|-----------------|--------------|
| 1    | 6.7           | 89              | <50          |
| 2    | 4.4           | 88              | <50          |
| 3    | 4.7           | 90              | <50          |
| 4    | 4.5           | 98              | <50          |
| 5    | 2.5           | 98              | 86           |
| 6    | 4.0           | 90              | <50          |
| 7    | 5.0           | 90              | <50          |
| 8    | 4.1           | 86              | <50          |
| 9    | 5.3           | 89              | <50          |
| 10   | 3.3           | 90              | <50          |
| 11   | 6.2           | 86              | <50          |
| 12   | 4.6           | 88              | <50          |
| 13   | 5.5           | 87              | <50          |
| 14   | 5.7           | 88              | <50          |
| 15   | 5.6           | 84              | 178/53       |
| 16   | 4.9           | 82              | <50          |
| . 17 | 4.9           | 82              | 64           |
| 18   | 5.0           | 82              | <50          |
| 19   | 5.0           | 82              | <50          |
| 20   | 4.8           | 82              | 54           |
| 21   | 7.3           | 83              | 89           |
| 22   | 4.9           | 83              | 64           |
| 23   | 4.8           | 85              | 60           |
| 24   | 5.8           | . 83            | 63           |
| 25   | 4.8           | 83              | 64           |
| 26   | 5.8           | 82              | <50          |
| 27   | 7.0           | 83              | 56           |
| 28   | 5.0           | 85              | <50          |
| 29   | 2.9           | 83              | <50          |
| 30   | 4.3           | 83              | 61           |
| 31   | 4.4           | 83              | 59           |

| DATE | TSS<br>(mg/l) | TDS<br>(mg/1) |
|------|---------------|---------------|
| 4    | 48            | 1296          |
| 11   | 46            | 1800          |
| 18   | 33            | 2252          |
| 25   | 45            | 1876          |
|      |               |               |

| <u></u> |                   |               |
|---------|-------------------|---------------|
| DATE    | Sulfate<br>(mg/l) | 0&G<br>(mg/l) |
| 4       | 725               | 3             |
|         |                   |               |

| PARAMETER               | FREQ.     | LI          | MITS          |
|-------------------------|-----------|-------------|---------------|
|                         |           | MO.<br>AVG. | DAILY<br>MAX. |
| FLOW                    | CONT.     | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| OIL AND GREASE          | QRTLY (1) | 15          | 20            |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.          |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F         |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |

ALL SAMPLES ANALYZED BY American UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: No pH excursions occurred this month.

### File C170.0005



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE <u>3</u> OF <u>4</u>

08/2008

### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

### OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | BOD<br>(mg/1) | pН          |
|------|---------------|---------------|---------------|-------------|
| 13   | .0006         | 3             |               | 7.87        |
| 20   |               |               | <1            |             |
|      | ,. ··         |               | 1 E           | - · · · · · |
|      | •             |               |               |             |
|      |               |               |               |             |
|      |               |               |               |             |

### SANITARY WASTE

| PARAMETER |           | LIMITS (mg/l) |            |  |  |
|-----------|-----------|---------------|------------|--|--|
|           | FREQ.     | MO. AVG.      | WKLY. AVG. |  |  |
| FLOW      | QRTLY (1) | N.A.          | N.A        |  |  |
| TSS       | QRTLY (I) | 70            | 110        |  |  |
| BOD       | QRTLY (I) | 45            | 65         |  |  |
| pH        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

#### OUTFALL 002 INTAKE HEATER BLOWDOWN NO DISCHARGE

### OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and G<br>(mg/l) | COD<br>(mg/l) | ρĦ   |
|------|---------|---------------|---------------|-------------------|---------------|------|
| 13   | 10      | .029          | 59            | 2                 | 12            | 7.49 |
| 13   | 11      | .133          | 28            | 1                 | 12            | 7.88 |
| 27   | 12      | .010          | 28            | 1                 | .12           | 9.2  |
| 27   | 13      | .012          | 196           | 3                 | 12            | 7.95 |
| 13   | 14      | .048          | 17            | 1                 | 22            | 8.58 |
| 27   | 15      | .019          | 23            | 2.                | 18            | 9.32 |

### OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/l) | O and G<br>(mg/1) | рH   | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|------|---------------|
| 6    | 3.79          | 5             | 2                 | 7.88 | <50           |
|      |               |               |                   |      |               |

### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Amoren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.     | L        | MITS       |
|-----------|-----------|----------|------------|
|           |           | MO. AVG. | DAILY MAX. |
| FLOW      | QRTLY.(I) | N.A.     | N.A.       |
| TSS       | QRTLY (1) | N.A.     | N.A.       |
| COD       | QRTLY (1) | N.A.     | N.A.       |
| O and G   | QRTLY (1) | 15       | 20         |
| рH        | QRTLY(1)  | >6.0     | >6.0       |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

### COOLING TOWER BYPASS

| PARAMETER | FREQ      | L         | IMITS      |
|-----------|-----------|-----------|------------|
|           |           | MO. AVG.  | DAILY MAX. |
| FLOW      | QRTLY (I) | N.A.      | N.A.       |
| TSS       | QRTLY (1) | 30        | 100        |
| O and G   | QRTLY (1) | 15        | 20         |
| pН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |
| TRC       | QRTLY (1) | N.A.      | 190        |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: <u>Note that the discharge from the converted welland and</u> the flows reported herein are NOT discharged, as this Outfall (#007) is recycled to the head of the Water Treatment Plant for further treatment and reuse.

| Outfall 0 | 16 TRC s | imple resul                                                                                                     | ts on Attachment | L. |       |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------|------------------|----|-------|
|           |          |                                                                                                                 |                  |    |       |
| •         |          | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                  |    |       |
|           |          |                                                                                                                 | •                |    | · · · |

### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_ PAGE \_\_4\_\_ OF \_\_4\_\_

### NPDES MONITORING REPORT

08/2008

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

638

(Pin#)

Denise Schuth (12267)

4194 (Pin#) Approved

Plant Director

Page 4 of 4



### ATTACHMENT 1 DATE: \_\_\_\_\_08/08\_\_\_\_\_

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml) |
|------|-------------|
| 6    | <50         |
| 7    | 95          |
| 11   | <50         |
| 12   | <50         |
| 13   | <50         |
| 15   | <50         |
| 19   | <50         |
| 20   | <50         |
| 21   | 147         |
| 26   | <50         |
| 27   | <50         |
|      |             |
|      |             |

I:CHEMSTRY\ADMIN\NPDES\ATTACHMENT I WORKSHEET.DOC

ATTACHMENT 1

# PERMIT NO. MO-0098001 09/2008 REPORTING PERIOD (MO/YR) 09/2008 PAGE \_1\_OF \_4\_\_ 05/2008

NPDES MONITORING REPORT

### OUTFALL 001 RADWASTE SYSTEM

| DATE         | SOURCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FLOW<br>(MGD)                          | TSS<br>(mg/l)                         | Boron<br>(mg/l) | рН    | PARAME     | TER FREQ.      | Lli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MITS        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|-----------------|-------|------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .092                                   | 6                                     | 52              | 6.67  |            |                | MONTHLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| 10           | · 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .089                                   | 7                                     | 40              | 7.73  |            |                | AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAX.        |
| 18           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .093                                   | 2                                     | 31              | 6.22  | FLOW (M    | GD) EB         | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.A.        |
| 21           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .092                                   | 4                                     | 2               | 7.73  | pH (STD)   | EB             | 6.0-9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0-9.0     |
| 24           | 7 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .093                                   | 3                                     | 16              | 6.56  | TSS (mg/1  | ) EB           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45          |
| 25           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .091                                   | 2                                     | 35              | 7.45  | Boron (mg  | /l) EB         | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.A.        |
| 27           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .093                                   | · 5                                   | 28              | 6.45  | TRC (ug/I) | Monthly        | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190         |
| 30           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .091                                   | 2                                     | 13              | 6.54  | BOD (mg/   | l) Monthly     | N.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.A.        |
|              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                       |                 |       | Q&G (mg/   | 1) Monthly     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20          |
| _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                 |       | ALL SAM    | PLES ANALYZ    | D BY Ameren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UE Callaway |
|              | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                       |                 |       | Plant OPE  | RATIONS LABO   | RATORY USIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IG          |
| <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | · · · · · · · · · · · · · · · · · · · |                 | ····· | MÉTHOD     | S SPECIFIED UI | DER IOCSR 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -7.015      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                 |       |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <u> </u>                              | <u> </u>        |       | SOURCES    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                       | ļ               |       |            | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | L               |       |            | STE MONITOR    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                 | •     | 2 = WA     | STE MONITOR    | TANK B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | _               |       | 3 = STE    | AM GENERATO    | R BLOWDOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N           |
|              | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                       |                 |       | 4 = SEC    | LIQ. WASTE N   | IONITOR TAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K A         |
|              | A Contraction of the second se |                                        | · ·                                   |                 |       | 5 = SEC    | LIQ. WASTEN    | IONITOR TAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | КB          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                 |       | 6 = LIO    | RADWASTE D     | ISCHARGE TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NK A        |
| ·····        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | <u> </u>        |       |            | RADWASTE D     | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ······································ |                                       |                 | ····· |            | CH BATCH       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | <u> </u>        |       | Date       | BOD (mg/l)     | TRC (ug/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O&G (ாg∕    |
| · · · ·      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                 |       | 10         |                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·  |                                       |                 |       |            | •              | hand the second s | 2           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <b></b>                               |                 |       | 21         | <              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                 |       |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                 |       | COMMEN     | VTS:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·           |
| <u>.</u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                 |       |            | •              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>    |
|              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                       |                 |       |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| <del>`</del> | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                       | <u> </u>        |       |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                       | <b> </b>        |       |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |

CA-0320 01/11/05 1000 E

an ber fertig merfin fårer

 PERMIT NO. MO-0098001

 REPORTING PERIOD (MO/YR)
 09/2008

 PAGE
 2
 OF
 4

NPDES MONITORING REPORT

| DATE       | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |  |
|------------|---------------|-----------------|---------------|--|
| 1          | 5.4           | 86              | <50           |  |
| . 2        | 5.2           | 87              | 78            |  |
| 3          | 4.8           | 83              | 87            |  |
| <u>, 4</u> | 4.8           | 85              | <50           |  |
| 5          | 3.7           | 82              | <50           |  |
| 6          | 7.3           | 79              | <50           |  |
| 7          | 3.9           | 79              | .54           |  |
| 8          | 8.1           | 79              | <50           |  |
| 9          | 8.8           | 76              | <50           |  |
| 10         | 7.1           | 77              | <50           |  |
| 11         | 4.5           | 80              | <50           |  |
| 12         | 6.9           | 80              | <50           |  |
| 13         | 9.3           | 80              | <50           |  |
| 14         | 6.6           | 81              | <50           |  |
| 15         | 5.9           | 81              | <50           |  |
| 16         | 6.7           | 79              | <50           |  |
| 17         | 3.4           | 77              | <50           |  |
| 18 .       | 2.4           | 78              | 185           |  |
| 19         | 5.9           | 84              | <50           |  |
| 20         | 6.0           | 82              | <50           |  |
| 21         | 5.8           | 82              | <50           |  |
| 22         | 6.8           | 84              | <50           |  |
| 23         | 5.2           | 85              | <50           |  |
| 24         | 6.3           | 85              | <50           |  |
| 25         | 7.4           | 82              | <50           |  |
| 26         | 6.4           | 82              | <50           |  |
| 27         | 6.4           | 80              | <50           |  |
| 28         | 6.8           | 80              | <50           |  |
| 29         | 4.3           | 79              | <50           |  |
| 30         | 4.6           | 77              | 94            |  |

### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | TSS<br>(mg/1) | TDS<br>(mg/1) |
|------|---------------|---------------|
| 1    | 57            | 1724          |
| 8    | 66            | 1272          |
| 15   | 70            | 896 *         |
| 22   | 49            | 386 *         |
| 29   | 55            | 1180          |
|      |               |               |

|            | Sulfate<br>(mg/1) | 0&G<br>(mg/1) |
|------------|-------------------|---------------|
| DATE<br>No | Sample            | Required      |
|            |                   |               |

ЪÍ.

| PARAMETER               | FREQ.     | LI          | LIMITS        |  |  |
|-------------------------|-----------|-------------|---------------|--|--|
|                         |           | MO.<br>AVG. | DAILY<br>MAX. |  |  |
| FLOW                    | CONT.     | N.A.        | N.A.          |  |  |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |  |  |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.          |  |  |
| OIL AND GREASE          | QRTLY (I) | 15          | 20            |  |  |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.          |  |  |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F         |  |  |
| рН                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |  |  |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |  |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER IOCSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

| COMMENTS: | NopH  | excursions occurre  | d this month |  |
|-----------|-------|---------------------|--------------|--|
| · ·       | *Back | up analysis done to | venify       |  |



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE <u>3</u> OF <u>4</u>

09/2008

### NPDES MONITORING REPORT

### <u>OUTFALL 003</u> WATER TREATMENT PLANT NO DISCHARGE

### OUTFALL 007

| DATE   | FLOW<br>(MGD) | TSS<br>(mg/1)   | BOD<br>(mg/l) | рН           |
|--------|---------------|-----------------|---------------|--------------|
| 5 (*)  | -             | 34              | 15            | 7.46         |
| 30 (*) | -             | Not<br>captured | 22            | Not captured |
|        |               |                 |               |              |
|        |               |                 |               |              |
|        |               |                 |               |              |

| PARAMETER | · · · ·   | LIMITS (mg/1) |            |  |
|-----------|-----------|---------------|------------|--|
| • •       | FREQ.     | MO. AVG.      | WKLY. AVG. |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BOD       | QRTLY (1) | 45            | 65         |  |
| pH        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |

SANITARY WASTE

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

### <u>OUTFALL 009</u> INTAKE HEATER BLOWDOWN NO DISCHARGE

### OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/l) | COD<br>(mg/l) | рН |
|------|---------|---------------|---------------|-------------------|---------------|----|
|      |         | No            | Sample        | Required          |               |    |
|      |         |               |               |                   |               |    |

### OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | O and G<br>(mg/1) | pН | TRC<br>(ug/l) |   |
|------|---------------|---------------|-------------------|----|---------------|---|
|      | No            | Sample        | Required.         |    |               | J |
|      |               |               |                   |    |               |   |

### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.     | LIMITS   |           |  |
|-----------|-----------|----------|-----------|--|
| ·         |           | MO. AVG. | DAILY MAX |  |
| FLOW      | QRTLY.(I) | N.A.     | N.A.      |  |
| TSS       | QRTLY(1)  | N.A.     | N.A.      |  |
| COD       | QRTLY(1)  | N.A.     | N.A.      |  |
| O and G   | QRTLY (1) | 15       | 20        |  |
| pН        | QRTLY(1)  | >6.0     | >6.0      |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |  |
|-----------|-----------|-----------|------------|--|
|           |           | MO. AVG.  | DAILY MAX. |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.       |  |
| TSS       | QRTLY(1)  | 30        | 100        |  |
| O and G   | QRTLY(1)  | 15        | 20         |  |
| pH        | QRTLY(1)  | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC       | QRTLY (1) | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

treatment and reuse. Outfall # 016 TRC Results on Attachment 1

File C170.0005

### Page 3 of 4



. ≂‡ĭ

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE <u>4</u> OF <u>4</u>

### NPDES MONITORING REPORT

09/2008

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer

(12267) Reviewe

Approved Plant Manager

4

ł,

÷

Page 4 of 4



### ATTACHMENT 1 DATE: <u>09/2008</u>

| Date | TRC (ug/ml) |
|------|-------------|
| 2    | 107         |
| 3    | <50         |
| 4    | 82          |
| 8    | <50         |
| 9    | <50         |
| 10   | 115         |
| 11   | 189         |
| 16   | <50         |
| 17   | <50         |
| 18   | <50         |
| 26   | 125         |
| 30   | 87          |

### Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

н<u>а</u> 1 

1

N.

Ameren Services Environmental Services 314.554.3480 (Telephone) 314.554.4182 (Facsimile) ssweiss@ameren.com One Ameren Plaza 1901 Chouteau Avenue PO Box 66149 St. Louis, MO 63166-6149 314.621.3222

January 23, 2009

Department of Natural Resources Northeast Regional Office 1709 Prospect Drive Macon, Missouri 63552-2602

Re: Ameren UE Callaway Power Plant NPDES Permit No. MO-0098001 Fourth Quarter, 2008 NPDES Discharge Monitoring Reports (DMRs)



Dear Sir or Madam:

In accordance with requirements of the Union Electric Company, d/b/a Ameren UE Callaway Power Plant, NPDES Permit MO-0098001, please find enclosed the DMRs for the *Fourth Quarter 2008 (October, November, and December)*.

Please note, on November 23<sup>rd</sup>, the Total Residual Chlorine (TRC) permit limit was exceeded from Outfall 002 (Cooling Tower Blowdown). An NPDES Permit Exception Report was submitted to your office on November 25<sup>th</sup> notifying of the TRC limit violation.

Please call me at 314-554-3480 if you have any questions concerning the enclosed reports.

Sincerely,

Steven S. Weiss Environmental Scientist, NPDES DMR Coordinator Ameren Environmental Services Ameren Services as Affiliated Agent for Union Electric Company, d/b/a AmerenUE

Attachment

a subsidiary of Ameren Corporation

bcc: R.S. Boutelle (CA-460) JCP / SSW WQ3.1.2.1

# PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) 10/2008 PAGE 1 OF 4

### NPDES MONITORING REPORT

| DATE     | SOURCE         | FLOW<br>(MGD)                         | TSS<br>(mg/1) | Boron<br>(mg/1)                          | рН                                              |
|----------|----------------|---------------------------------------|---------------|------------------------------------------|-------------------------------------------------|
| 1        | 7              | .093                                  | 2             | 16                                       | 8.46                                            |
| 2        | 6              | .091                                  | 1             | 20                                       | 8.07                                            |
| 4        | 7              | .091                                  | <1            | 21                                       | 8.69                                            |
| 7        | 6              | .088                                  | 5             | 4                                        | 8.58                                            |
| 10       | 7              | .092                                  | 4             | 7                                        | 8.36                                            |
| 12       | 6              | .091                                  | 7             | 4                                        | 8.75                                            |
| 14       | 7              | .087                                  | 5             | 89                                       | 7.29                                            |
| 17       | 6              | .090                                  | 9             | 80                                       | .7.13                                           |
| 21       | 7              | .091                                  | 9             | 64                                       | 8.10                                            |
| 22       | 6              | .020                                  | 6             | 64                                       | 8.41                                            |
| 23       | 6              | .086                                  | 5             | 50                                       | 8.47                                            |
| 30       | 7              | .080                                  | 8             | 123                                      | 7.22                                            |
|          |                | .072                                  | 0             |                                          | 1.22                                            |
|          |                | <u></u>                               |               |                                          |                                                 |
|          |                | <u></u>                               |               |                                          | <u>en en e</u> |
| ·····    |                | <u></u>                               |               |                                          | <u>.</u>                                        |
| <u></u>  |                |                                       | <u></u>       |                                          | <u> </u>                                        |
|          |                | · · · ·                               |               |                                          |                                                 |
|          | and the second |                                       | 1             |                                          |                                                 |
|          |                |                                       |               |                                          |                                                 |
|          |                |                                       |               |                                          |                                                 |
| and the  |                |                                       |               |                                          |                                                 |
|          |                |                                       |               |                                          |                                                 |
|          |                |                                       |               |                                          |                                                 |
|          |                |                                       |               |                                          |                                                 |
|          |                |                                       |               | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                                 |
|          |                |                                       |               |                                          |                                                 |
|          |                | · · · · · · · · · · · · · · · · · · · |               |                                          |                                                 |
| <u> </u> |                |                                       | an fa         |                                          |                                                 |
|          |                |                                       |               |                                          | · · · ·                                         |
|          |                |                                       |               |                                          |                                                 |
|          |                |                                       |               | v                                        |                                                 |

### OUTFALL 001 RADWASTE SYSTEM

| PARAMETER    | FREQ.   | LIMITS             |              |  |
|--------------|---------|--------------------|--------------|--|
|              |         | MONTHLY<br>AVERAGE | DAILY<br>MAX |  |
| FLOW (MGD)   | EB      | Ń.A.               | N.A.         |  |
| pH (STD)     | EB      | 6.0-9.0            | 6.0-9.0      |  |
| TSS (mg/l)   | EB      | 30                 | 45           |  |
| Boron (mg/l) | EB      | N.A.               | N.A.         |  |
| TRC (ug/l)   | Monthly | Ň.A.               | 190          |  |
| BOD (mg/l)   | Monthly | N.A.               | N.A.         |  |
| O&G (mg/1)   | Monthly | 15                 | 20           |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING

METHODS SPECIFIED UNDER 10CSR 20-7.015

### OURCES

= WASTE MONITOR TANK A

- WASTE MONITOR TANK B

3 = STEAM GENERATOR BLOWDOWN

4 = SEC. LIQ. WASTE MONITOR TANK A

5 = SEC. LIQ. WASTE MONITOR TANK B

6 = LIQ. RADWASTE DISCHARGE TANK A

7 = LIQ. RADWASTE DISCHARGE TANK B

EB = EACH BATCH

| Date                | BOD (mg/l) | TRC (ug/l) | O&G (mg/l) |
|---------------------|------------|------------|------------|
| 1                   |            | 10         | 4          |
| 6                   | <1.0       |            |            |
|                     |            |            |            |
| COMMEN              | rs:        |            |            |
| , <del>talaga</del> |            |            | <u> </u>   |

File C170.0005

Page 1 of 4



#### **PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)** 10/2008 PAGE 2\_ OF 4\_

### NPDES MONITORING REPORT

### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l)  |
|------|---------------|-----------------|----------------|
| . 1  | 5.2           | 76              | <u>&lt;</u> 50 |
| 2    | 5.9           | • 77            | <50            |
| 3    | 6.3           | 76              | 59             |
| 4    | 5.6           | 77              | <50            |
| 5    | 6.0           | 77              | <50            |
| 6    | 4.4           | 80              | <50            |
| 7    | 4.2           | 83              | <50            |
| 8    | 6.5           | 76              | 50             |
| 9    | 8.7           | 79              | 58             |
| 10   | 8.5           | 79              | 67             |
| 11   | 7.5           | 70              | 50             |
| 12   | 8.8           | 74              | <50            |
| 13   | 12.9          | 74              | <50            |
| 14   | 9.8           | 73              | <50            |
| 15   | 10.3          | 73              | <50            |
| 16   | 9.3           | 72              | <50            |
| 17   | 10.5          | 67              | <50            |
| 18   | 8.8           | 64              | <50            |
| 19   | 9.3           | 68              | <50            |
| 20   | 10.0          | 69              | <50            |
| 21   | 10.1          | 63              | <50            |
| 22   | 9.0           | 64              | <50            |
| 23   | 9.2           | 60              | <50            |
| 24   | 9.8           | 67              | <50            |
| 25   | 3.2           | 59              | <50            |
| 26   | 0.1           | 57              | <50            |
| 27   | 0.5           | 55              | <50            |
| 28   | 0.5           | 57              | <50            |
| 29   | 0             | 55              | <50            |
| 30   | 1.7           | 63              | . <50          |
|      | 10.6          | 60              | <50            |

| DATE | TSS<br>(mg/1) | TDS<br>(mg/1) |
|------|---------------|---------------|
| 6    | 65            | 1804          |
| 13   | 26            | 760           |
| 20   | 2             | 376           |
| 29   | 13            | 572           |

| DATE | Sulfate<br>(mg/1) | 0&G<br>(mg/1) |
|------|-------------------|---------------|
| No   | Sample            | Required      |

| PARAMETER               | FREQ.     | LL          | MITS          |
|-------------------------|-----------|-------------|---------------|
|                         | . :       | MO.<br>AVG. | DAILY<br>MAX. |
| FLOW                    | CONT.     | N.A.        | N.A.          |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.          |
| OIL AND GREASE          | QRTLY (1) | 15          | 20            |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.          |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F         |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0     |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L      |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: \_\_\_\_\_No pH excursions occurred this month.

### File C170.0005



### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) <u>10/2008</u> PAGE <u>3</u> OF <u>4</u>

### NPDES MONITORING REPORT

#### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

### OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/1) | pН |
|------|---------------|---------------|---------------|----|
|      |               |               |               |    |
|      | No            | Sample        | Required      |    |
|      |               | - 14          |               |    |
|      |               |               | 1.4.2         |    |
|      |               |               |               |    |
|      |               |               |               |    |

### SANITARY WASTE

| PARAMETER |           | LIMITS (mg/l) |            |  |
|-----------|-----------|---------------|------------|--|
|           | FREQ.     | MO. AVG.      | WKLY. AVG. |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |
| TSS       | QRTLY (1) | 70            | 110        |  |
| BOD       | QRTLY (1) | 45            | 65         |  |
| pH        | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

### OUTFALL 009 INTAKE HEATER BLOWDOWN NO DISCHARGE

### OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/1) | COD<br>(mg/l) | рĤ |
|------|---------|---------------|---------------|-------------------|---------------|----|
|      | ·       |               |               |                   |               |    |
|      |         | No            | Sample        | Required          |               |    |
|      |         |               |               |                   |               |    |
|      |         |               |               |                   |               |    |
|      |         |               |               |                   |               |    |
|      |         |               |               |                   |               |    |

OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | 0 and G<br>(mg/l) | рН | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|----|---------------|
|      |               |               |                   |    |               |
|      | No            | Sample        | Required          |    |               |

### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | LIMITS   |           |  |
|-----------|------------|----------|-----------|--|
|           |            | MO. AVG. | DAILY MAX |  |
| FLOW      | QRTLY. (1) | N.A.     | N.A.      |  |
| TSS       | QRTLY (1)  | N.A.     | N.A.      |  |
| COD       | QRTLY (1)  | N.A.     | N.A.      |  |
| O and G   | QRTLY (1)  | 15       | 20        |  |
| pH        | QRTLY(1)   | >6.0     | >6.0      |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |           |  |
|-----------|-----------|-----------|-----------|--|
|           |           | MO. AVG.  | DAILY MAX |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.      |  |
| TSS       | QRTLY (1) | 30        | 100       |  |
| O and G   | QRTLY(1)  | 15        | 20        |  |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0 |  |
| TRC       | QRTLY(1)  | N.A.      | 190       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

COMMENTS: Note that the discharge from the converted wetland and the flows reported herein are NOT discharged, as Outfall (#007) is recycled to the head of the Water Treatment Plant for further treatment and reuse.

Outfall #016 TRC results on Attachment 1

### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

File C170.0005



10/2008

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_ PAGE \_\_\_\_ OF \_\_\_\_

### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Preparer (12214) ,(2119) ail Yan Reviewer Approved Plant Manager

Page 4 of 4



### ATTACHMENT 1 DATE: <u>10/2008</u>

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

| Date | TRC (ug/ml) |
|------|-------------|
| 6    | 50          |
| 7    | 165         |
| 8    | 135         |
| 10   | 50          |
|      |             |
|      |             |
|      |             |
|      |             |
|      |             |
|      |             |
|      |             |
|      | 5           |

I:\CHEMSTRY\ADMIN\NPDES\ATTACHMENT I WORKSHEET.DOC

ATTACHMENT 1

### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) PAGE 1\_OF 4\_ 11/2008

### NPDES MONITORING REPORT

### **OUTFALL 001** RADWASTE SYSTEM

| DATE                                                                                                            | SOURCE | FLOW<br>(MGD) | TSS<br>(mg/l) | Boron<br>(mg/l) | рН   | PARAMETI                                                                                                                                                                                                                                                          | R FREQ.     | <b>L</b>        |
|-----------------------------------------------------------------------------------------------------------------|--------|---------------|---------------|-----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| 3                                                                                                               | 6      | .089          | 12            | <u> </u>        | 7.62 |                                                                                                                                                                                                                                                                   |             | MONTHL          |
| 5                                                                                                               | 7      | .093          | 4             | 238             | 6.8  |                                                                                                                                                                                                                                                                   |             | AVERAG          |
| 7                                                                                                               | 6      | .081          | 3             | 83              | 6.93 | FLOW (MGI                                                                                                                                                                                                                                                         | ) EB        | N.A.            |
| 11                                                                                                              | 7      | .091          | 5             | 481             | 6.98 | pH (STD)                                                                                                                                                                                                                                                          | EB          | 6.0-9.0         |
| 12                                                                                                              | 6      | .092          | 2             | 759             | 6.42 | TSS (mg/1)                                                                                                                                                                                                                                                        | EB          | 30              |
| 13                                                                                                              | 7      | .092          | 2             | 422             | 7.42 | Boron (mg/l)                                                                                                                                                                                                                                                      | EB          | N.A.            |
| 16                                                                                                              | 6      | .092          | .4            | 326             | 7.86 | TRC (ug/l)                                                                                                                                                                                                                                                        | Monthly     | N.A.            |
| 20                                                                                                              | 7      | .093          | 15            | 75              | 8.03 | BOD (mg/l)                                                                                                                                                                                                                                                        | Monthly     | N.A.            |
| 22                                                                                                              | 6      | .093          | 10            | 87              | 8.99 | O&G (mg/1)                                                                                                                                                                                                                                                        | Monthly     | 15              |
| 25                                                                                                              | 7      | .090          | 11            | 18              | 7.91 | ALL SAMPL                                                                                                                                                                                                                                                         | ES ANALYZ   | D BY Ameren     |
|                                                                                                                 |        | .030          |               | 40              | 1.51 |                                                                                                                                                                                                                                                                   | TIONS LABO  |                 |
|                                                                                                                 |        |               |               |                 |      | 4                                                                                                                                                                                                                                                                 | PECIFIED UN |                 |
|                                                                                                                 |        |               |               |                 |      |                                                                                                                                                                                                                                                                   |             |                 |
|                                                                                                                 |        |               |               |                 |      | SOURCES                                                                                                                                                                                                                                                           |             |                 |
| 1990 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - |        |               |               |                 |      | 1 = WAST                                                                                                                                                                                                                                                          | E MONITOR ' | TANK A          |
|                                                                                                                 |        |               |               |                 |      | 2 = WAST                                                                                                                                                                                                                                                          | E MONITOR ' | TANK B          |
|                                                                                                                 |        |               |               |                 |      | 3 = STEAN                                                                                                                                                                                                                                                         | GENERATC    | R BLOWDOW       |
|                                                                                                                 |        |               |               |                 |      |                                                                                                                                                                                                                                                                   | IQ. WASTE M |                 |
|                                                                                                                 |        |               | <u> </u>      |                 |      | e a la construction de la construct                                                                                                                                                   | IQ. WASTE M |                 |
|                                                                                                                 |        |               |               |                 |      | gi i de la composición                                                                                                                                                  | ADWASTE D   | aya da da ƙasar |
|                                                                                                                 |        |               |               |                 |      |                                                                                                                                                                                                                                                                   | ADWASTE D   |                 |
|                                                                                                                 |        |               |               |                 |      | EB = EACH                                                                                                                                                                                                                                                         |             |                 |
|                                                                                                                 |        |               | <u></u>       |                 |      |                                                                                                                                                                                                                                                                   |             |                 |
|                                                                                                                 |        |               |               |                 |      | Date                                                                                                                                                                                                                                                              | BOD (mg/i)  | TRC (ug/l)      |
|                                                                                                                 |        |               |               |                 |      | 3                                                                                                                                                                                                                                                                 |             | <10             |
|                                                                                                                 |        |               |               |                 |      | 15                                                                                                                                                                                                                                                                | 2.0         |                 |
|                                                                                                                 |        |               |               |                 |      |                                                                                                                                                                                                                                                                   |             |                 |
|                                                                                                                 |        |               |               |                 |      |                                                                                                                                                                                                                                                                   |             |                 |
|                                                                                                                 |        |               | <u> </u>      |                 |      | ر است.<br>مراجع                                                                                                                                                                                                                                                   |             |                 |
|                                                                                                                 |        |               |               |                 |      | COMMENTS                                                                                                                                                                                                                                                          | li <u></u>  |                 |
|                                                                                                                 |        |               |               |                 |      | 2017 <u>- 1997 - 1997</u><br>2017 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1<br>2017 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |             | <u>.</u>        |
|                                                                                                                 |        |               |               |                 |      | d <del>at gant</del>                                                                                                                                                                                                                                              |             |                 |
|                                                                                                                 |        |               |               |                 |      |                                                                                                                                                                                                                                                                   | <u> </u>    | 397             |
|                                                                                                                 |        |               | <u></u>       |                 |      |                                                                                                                                                                                                                                                                   |             |                 |

| PARAMETER    | FREQ.              | LIMITS       |              |  |
|--------------|--------------------|--------------|--------------|--|
|              | MONTHLY<br>AVERAGE |              | DAILY<br>MAX |  |
| FLOW (MGD)   | EB                 | N.A.         | N.A.         |  |
| pH (STD)     | EB                 | 6.0-9.0      | 6.0-9.0      |  |
| TSS (mg/1)   | EB                 | 30           | 45           |  |
| Boron (mg/l) | EB                 | N.A.         | N.A.         |  |
| TRC (ug/l)   | Monthly            | N.A.         | 190          |  |
| BOD (mg/l)   | Monthly            | N.A.         | N.A.         |  |
| O&G (mg/1)   | Monthly            | 15           | 20           |  |
| ALL SAMPLES  | ANALYZEL           | BY Ameren UE | Callaway     |  |

neren UE Calla USING SR 20-7.015

DOWN

TANK A

TANK B

B TANK A

E TANK B

| •    | Date | BOD (mg/i) | TRC (ug/l)                               | O&G (mg/l) |
|------|------|------------|------------------------------------------|------------|
|      | 3    |            | <10                                      | 7          |
|      | 15   | 2.0        |                                          |            |
| 1.14 |      |            |                                          |            |
|      |      |            | an a |            |



### NPDES MONITORING REPORT

11/2008

### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |  |
|------|---------------|-----------------|---------------|--|
| 1    | 8.2           | 63              | <50           |  |
| 2    | 5.5           | 62              | <50           |  |
| 3    | 3.0           | 65              | <50           |  |
| . 4  | 0             | 62              | <50 *         |  |
| 5    | 0             | 64              | <50 *         |  |
| 6    | 0             | 66              | <50 •         |  |
| 7    | 0             | 61              | <50 *         |  |
| 8    | 0             | 64              | <50 .         |  |
| 9    | 4.2           | 57              | 79            |  |
| 10   | 5.8           | 60              | 177           |  |
| _11  | 4.8           | 64              | <50           |  |
| 12   | 4.7           | 63              | <50           |  |
| 13   | 8.7           | 66              | <50           |  |
| 14   | 6.6           | 72              | <50           |  |
| 15   | 5.5           | 65              | <50           |  |
| 16   | 6.0           | 62              | <50           |  |
| 17   | 7.2           | 62              | <50           |  |
| 18   | 5.2           | 60              | 70            |  |
| 19   | 0.7           | 62              | 108           |  |
| 20   | 1.0           | 63              | 101           |  |
| 21   | 6.4           | 59              | 70            |  |
| 22   | 5.0           | 58              | _51           |  |
| 23   | 3.3           | 61              | 237/50 (2)    |  |
| 24   | 4.4           | 60              | <50           |  |
| 25   | 4.4           | 60              | <50           |  |
| 26   | 4.0           | 60              | <50           |  |
| 27   | 5.6           | 60              | <50           |  |
| 28   | 5.6           | 60              | <50           |  |
| 29   | 5.6           | 58              | <50           |  |
| 30   | 5.5           |                 | <50           |  |
|      |               |                 |               |  |

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)

PAGE 2 OF 4

|            |     | TSS    | TDS    |
|------------|-----|--------|--------|
| <b>D</b> / | (TB | (mg/1) | (mg/1) |
| 6.14       | 3   | 7      | 500    |
|            | 10  | 34     | 792    |
|            | 17  | 52     | 1130   |
|            | 24  | 55     | 1946   |
|            | 1   |        |        |

|    |              |         | 1                 |     |            |               | <b>-</b> 1 |
|----|--------------|---------|-------------------|-----|------------|---------------|------------|
| D. | ATE          |         | Sulfate<br>(mg/l) |     | , <b>,</b> | 0&G<br>(mg/1) |            |
|    | 10           |         | 380               |     |            | 6             |            |
|    | $\sim -\phi$ | 1.1     |                   | 1 1 |            |               |            |
|    |              | <u></u> |                   | 1.1 |            |               |            |

| PARAMETER               | FREQ.     | LIMITS      |              |  |
|-------------------------|-----------|-------------|--------------|--|
|                         |           | MO.<br>AVG. | DAILY<br>MAX |  |
| FLOW                    | CONT.     | N.A.        | N.A.         |  |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.         |  |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.         |  |
| OIL AND GREASE          | QRTLY (1) | 15          | 20           |  |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.         |  |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F        |  |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |  |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L     |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

| *Dip samples                       | an a |
|------------------------------------|------------------------------------------|
|                                    |                                          |
| (2) NPDES exceedance of 237 ug/l T | RC. Five-day report                      |
| submitted,                         |                                          |

File C170.0005



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE \_3\_OF \_4\_\_

NPDES MONITORING REPORT

11/2008

### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

### OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/1)     | рН                       |
|------|---------------|---------------|-------------------|--------------------------|
| 18   | 0.018         | 5             | <1                | 7.43                     |
|      |               |               |                   |                          |
|      |               |               |                   |                          |
|      |               |               |                   |                          |
|      |               |               |                   |                          |
|      |               |               |                   |                          |
|      | DATE          | DATE (MGD)    | DATE (MGD) (mg/l) | DATE (MGD) (mg/1) (mg/1) |

### SANITARY WASTE

| PARAMETER |           | LIMITS (mg/1) |            |  |  |
|-----------|-----------|---------------|------------|--|--|
|           | FREQ.     | MO. AVG.      | WELY. AVG. |  |  |
| FLOW      | QRTLY (1) | N.A.          | N.A.       |  |  |
| TSS       | QRTLY (I) | 70            | 110        |  |  |
| BOD       | QRTLY (1) | 45            | 65         |  |  |
| pli       | QRTLY (1) | 6.0 - 9.0     | 6.0 - 9.0  |  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

### OUTFALL 002 INTAKE HEATER BLOWDOWN NO DISCHARGE

### OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and G<br>(mg/1) | CO<br>D<br>(mg/<br>D) | pН   |
|------|---------|---------------|---------------|-------------------|-----------------------|------|
| 14   | 10      | .015          | 107           | 3                 | 15                    | 8.12 |
| [4   | 11      | .066          | 24            | 2                 | 18                    | 8.2  |
| 14   | 12      | .005          | 8             | 4                 | 10                    | 8.91 |
| 14   | _15     | .010          | 0             | 2                 | 5                     | 8.24 |

### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.      | LIMITS   |            |  |
|-----------|------------|----------|------------|--|
|           |            | MO. AYG. | DAILY MAX. |  |
| FLOW      | QRTLY. (1) | N.A.     | N.A.       |  |
| TSS       | QRTLY (1)  | N.A.     | N.A.       |  |
| COD       | QRTLY (1)  | N.A.     | N.A.       |  |
| O and G   | QRTLY (1)  | 15       | 20         |  |
| pH        | QRTLY(1)   | >6.0     | >6.0       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

### OUTFALL 016

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | O and G<br>(mg/l) | pН   | TRC<br>(ug/l) |
|------|---------------|---------------|-------------------|------|---------------|
| 13   | 5.18          | 9             | 2                 | 7.82 | 93            |
|      |               |               |                   |      |               |

### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |            |  |
|-----------|-----------|-----------|------------|--|
|           |           | MO. AVG.  | DAILY MAX. |  |
| FLOW      | QRTLY (I) | N.A.      | N.A.       |  |
| TSS       | QRTLY (1) | 30        | 100        |  |
| Oand G    | QRTLY (1) | 15        | 20         |  |
| pH        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0  |  |
| TRC       | QRTLY (1) | N.A.      | 190        |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: <u>Note that the discharge from the converted wetland and</u> the flows reported herein are NOT discharged, as this Outfall (#007) is recycled to the head of the Water Treatment Plant for further treatment and reuse.

| No discharge noted on Outfall # 013 | <br> | * |         |        |
|-------------------------------------|------|---|---------|--------|
| No discharge noted on Outfall # 014 | 1.1  |   | 44      | 10<br> |
| 3                                   |      |   | 44. A T |        |

Outfall 016 TRC sample results on Attachment 1.

### OUTFALL 017

ULTIMATE HEAT SINK

No Discharge

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015

File C170.0005





### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_\_\_\_\_11/2008\_ PAGE \_\_4\_\_ OF \_\_4\_\_

### NPDES MONITORING REPORT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

122107 2119

1430 Approved (Pin#)

Plant Manager

Page 4 of 4

CA0320 01/11/05

| 1.00 | Á         | TTA | CHM          | EN    | <b>T</b> 1 |
|------|-----------|-----|--------------|-------|------------|
|      | ~         |     | 1            | 77.77 |            |
| DAJ  |           | 1.1 | <u>11/08</u> | 1.1   | <u></u> .  |
|      | 1 N N N N |     |              |       |            |

1

| Date |     | TRC (ug/ml) | · · ., |
|------|-----|-------------|--------|
| 10   | +   | <50         |        |
| 11   | 4.4 | <50         |        |
| 12   |     | 167         |        |
| 13   |     | 93          |        |
| 15   |     | <50         |        |
| 18   |     | <50         | 1.1.1  |
| 19   |     | <50         |        |
|      |     |             |        |
|      |     |             |        |
|      |     |             |        |
|      |     |             |        |
|      |     |             |        |
|      |     |             |        |

Cooling tower bypass after addition total residual chlorine (TRC) results (ug/ml).

I:CHEMSTRYADMININPDESIATTACHMENT 1 WORKSHEET.DOC

**ATTACHMENT 1** 

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR)\_\_\_\_\_12/2008 PAGE \_1\_\_OF \_4\_\_

NPDES MONITORING REPORT

### OUTFALL 001 RADWASTE SYSTEM

| DATE    | SOURCE   | FLOW<br>(MGD)                         | TSS<br>(mg/1)                         | Boron<br>(mg/1) | pH -                                  |          | PARAMETE              | R FREQ     | LI            | MITS        |
|---------|----------|---------------------------------------|---------------------------------------|-----------------|---------------------------------------|----------|-----------------------|------------|---------------|-------------|
| 3       | 6        | .093                                  |                                       | 89              | 8.88                                  |          |                       |            | MONTHLY       |             |
| 10      | 7        | .094                                  | 5                                     | 26              | 6.42                                  |          | 1. <u>1. 1.</u> 1. 1. | · ·        | AVERAGE       | MAX         |
| 13      | 6        | .092                                  | 4                                     | 131             | 6.07                                  | <u> </u> | FLOW (MGD             | ) EB       | N.A.          | N.A.        |
| 18      | 7        | .093                                  | 27                                    | 1               | 6.66                                  |          | pH (STD)              | EB         | 6.0-9.0       | 6.0-9.0     |
| 22      | 6        | .092                                  | 13                                    | 46              | 6.17                                  |          | TSS (mg/1)            | EB         | 30            | 45          |
| 25      | 7        | .092                                  | 18                                    | 76              | 6.55                                  |          | Boron (mg/l)          | EB         | N.A.          | N.A.        |
|         |          |                                       |                                       |                 |                                       | 7        | TRC (ug/l)            | Monthly    | N.A.          | 190         |
|         |          | · · · ·                               |                                       |                 | · · · · ·                             |          | BOD (mg/l)            | Monthly    | N.A.          | N.A.        |
|         | +        |                                       |                                       |                 | · · · · ·                             | 1        | 0&G (mg/1)            | Monthly    | 15            | 20          |
| <u></u> |          |                                       | · · · · ·                             |                 | <u> </u>                              | 4        | ALL SAMPLE            | SANALYZE   | D BY Ameren L | JE Callaway |
|         |          | <del></del>                           |                                       |                 |                                       | -        |                       |            | ATORY USIN    | -           |
|         | h        |                                       |                                       |                 |                                       | -        |                       |            | DER 10CSR 20  |             |
|         |          |                                       |                                       |                 |                                       | 4        | METHOD3 3             | ECIFIED ON | DER IUCSK20   | -7.015      |
|         |          |                                       |                                       |                 |                                       | -        | ·                     |            |               |             |
|         |          |                                       |                                       |                 |                                       |          | SOURCES               | •          |               |             |
|         |          |                                       |                                       |                 |                                       |          | I = WASTE             | MONITOR T  | ANK A         | *.          |
|         |          |                                       |                                       |                 | · · · · ·                             |          | 2 = WASTE             | MONITOR T  | ANK B         |             |
|         |          |                                       | 1                                     |                 | · · · · · · · · · · · · · · · · · · · | 1        | 3 = STEAM             | GENERATO   | R BLOWDOWN    | 4           |
|         | h        |                                       | · · · · · · · · · · · · · · · · · · · |                 |                                       | -        | 4 = SEC. LI           | Q. WASTE M | ONITOR TANK   | CA          |
|         |          |                                       |                                       |                 |                                       | 4        |                       |            | ONITOR TANK   |             |
|         | <b> </b> |                                       | · · · · · · · · · · · · · · · · · · · |                 |                                       | -        |                       | •          | SCHARGE TAL   |             |
|         |          | <u> </u>                              |                                       |                 |                                       | 4        | -                     |            | SCHARGE TAI   |             |
|         |          |                                       |                                       |                 |                                       | -        |                       |            |               | VN D        |
|         |          |                                       |                                       |                 |                                       | 4        | EB = EACH I           |            |               |             |
|         |          |                                       |                                       |                 |                                       | `        | Date 1                | SOD (mg/l) | TRC (ug/l)    | O&G (mg/l   |
|         |          |                                       |                                       |                 |                                       |          | 3                     | 220        | <10           | 4           |
|         |          |                                       |                                       |                 |                                       | 7        |                       |            |               |             |
|         |          |                                       |                                       |                 |                                       | 1        |                       |            |               |             |
|         |          | ······                                |                                       | · · · · · ·     | ······                                | 1        |                       |            |               |             |
|         |          | · · · · · · · · · · · · · · · · · · · |                                       |                 |                                       | 4.       | I                     | <u> </u>   | استيني        |             |
|         |          |                                       |                                       |                 |                                       | `        | COMMENTS              | <u></u>    | ·             |             |
|         |          |                                       |                                       |                 |                                       |          | <del></del>           |            |               |             |
|         |          | · · · · · · · · · · · · · · · · · · · |                                       |                 | Turun                                 | ٦.       |                       |            | · · · ·       | . <u>.</u>  |
|         |          |                                       |                                       |                 | · · · · · · · · · · · · · · · · · · · | 4        |                       |            |               |             |
|         |          |                                       |                                       | L               |                                       | _        |                       |            |               |             |
| _       |          |                                       |                                       | •               |                                       |          |                       |            |               |             |



PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_\_ PAGE \_\_2\_OF \_\_4\_\_

12/2008

### NPDES MONITORING REPORT

### OUTFALL 002 COOLING TOWER BLOWDOWN

| DATE   | FLOW<br>(MGD) | TEMP<br>(MAX 9F | TRC<br>(ug/l) |
|--------|---------------|-----------------|---------------|
| _1     | 5.7           | 87              | <50           |
| 2      | 5.6           | 58              | <50           |
| 3      | 7.3           | 59              | <50           |
| 4      | 5.5           | 57              | <50           |
| 5      | 5.3           | 57              | <50           |
| 6      | 5.3           | 57              | <50           |
| 7      | 5.5           | 57              | 84            |
| 8      | 5.3           | 58              | 182           |
| 9      | 5.4           | 59              | <50           |
| 10     | 5.3           | 57 -            | <50           |
| 11     | 5.0           | 56              | 86            |
| 12     | 5.3           | 57              | 104           |
| 13     | 4.8           | 59              | <50           |
| 14 :   | 6.6           | 61              | <50           |
| 15     | 3.6           | 55              | <50           |
| 16     | 3.9           | 54              | <50           |
| 17 .36 | 4.0           | 55              | <50           |
| 18     | 7.3           | 56              | 53            |
| 19     | 3.3           | 57              | 100           |
| 20     | 4.6           | 56              | 97            |
| 21     | 4.4           | 54              | 68            |
| 22     | 4.1           | 54              | <50           |
| 23     | 4.2           | 53              | 57            |
| 24     | 5.5           | 55              | <50           |
| 25     | 4.4           | 54              | 106           |
| 26     | 5.8           | 61              | <50           |
| 27     | 4.6           | 62              | <50           |
| 28     | 4.1           | 59              | <50           |
| 29     | 43            | 60              | <50           |
| 30     | 4.3           | 61              | <50           |
| 31     | 43            | 57              | <50           |

| DAT  | E       | TSS<br>(mg/]) | TDS<br>(mg/l) |
|------|---------|---------------|---------------|
| 1    |         | 60            | 1888          |
| 8    | 10<br>1 | 44            | 1644          |
| . 15 |         | 52            | 812           |
| 23   |         | 14            | 356           |
| 30   |         | 50            | 1414          |

| _  |      | - 2               |               |  |
|----|------|-------------------|---------------|--|
| ſ  | DATE | Suifate<br>(mg/l) | 0&G<br>(mg/l) |  |
| ٠Ē | No   | Sample            | Required      |  |
| Ē  |      |                   |               |  |

| PARAMETER               | FREQ.     | LI          | MITS         |  |
|-------------------------|-----------|-------------|--------------|--|
|                         | · · · ·   | MO.<br>AVG. | DAILY<br>MAX |  |
| FLOW                    | CONT.     | N.A.        | N.A.         |  |
| TOTAL SUSPENDED SOLIDS  | WKLY.     | N.A.        | N.A.         |  |
| TOTAL DISSOLVED SOLIDS  | WKLY.     | N.A.        | N.A.         |  |
| OIL AND GREASE          | QRTLY (1) | 15          | 20           |  |
| SULFATE                 | QRTLY.(1) | N.A.        | N.A.         |  |
| TEMPERATURE (MAXIMUM)   | DAILY     | 110°F       | 110°F        |  |
| pH                      | CONT.     | 6.0 - 9.0   | 6.0 - 9.0    |  |
| TOTAL RESIDUAL CHLORINE | DAILY     | N.A.        | 190 ug/L     |  |

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LAB USING METHODS SPECIFIED UNDER 10CSR20-7.015.

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

COMMENTS: No pH excursions occurred this month.

### PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE \_ 3\_ OF \_ 4\_

12/2008

### NPDES MONITORING REPORT

### OUTFALL 003 WATER TREATMENT PLANT NO DISCHARGE

### OUTFALL 007

| DATE | FLOW<br>(MGD) | TSS<br>(mg/1) | BOD<br>(mg/l) | pН                                    |
|------|---------------|---------------|---------------|---------------------------------------|
|      | No _          | Samples       | Required      |                                       |
|      |               |               |               |                                       |
|      |               | 1             |               | · · · · ·                             |
|      |               | 1             |               |                                       |
|      |               | <u></u>       |               | · · · · · · · · · · · · · · · · · · · |
|      |               | 1             |               |                                       |

### SANITARY WASTE

| PARAMETER |          | LIMITS (mg/1) |            |  |
|-----------|----------|---------------|------------|--|
|           | FREQ.    | MO. AVG.      | WELY. AVG. |  |
| FLOW      | QRTLY(1) | N.A.          | N.A.       |  |
| T\$S      | QRTLY(1) | 70            | 110        |  |
| BOD       | QRTLY(1) | 45            | 65         |  |
| рН        | QRTLY(I) | 6.0 - 9.0     | 6.0 - 9.0  |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER

### OUTFALL 009 INTAKE HEATER BLOWDOWN

### NO DISCHARGE

### OUTFALLS 010 - 015

| DATE | OUTFALL | FLOW<br>(MGD) | TSS<br>(mg/l) | 0 and G<br>(mg/l) | CO<br>D<br>(mg/<br>I) | рН |
|------|---------|---------------|---------------|-------------------|-----------------------|----|
|      |         | No            | Samples       | Required          |                       |    |
|      |         |               |               |                   |                       |    |
|      |         |               |               |                   |                       |    |
|      | <u></u> |               |               |                   |                       |    |

OUTFALL 016

755

(mg/1)

Samples

O and G

(mg/1) Required pН

TRC

(ug/l)

FLOW

(MGD)

No

### STORM WATER RUNOFF PONDS

| PARAMETER | FREQ.     | LIMITS   |            |  |
|-----------|-----------|----------|------------|--|
|           |           | MO. AVG. | DAILY MAX. |  |
| FLOW      | QRTLY.(1) | N.A.     | N.A.       |  |
| TSS       | QRTLY (1) | N.A.     | N.A.       |  |
| COD       | QRTLY(1)  | N.A.     | N.A.       |  |
| O and G   | QRTLY (1) | 15       | 20         |  |
| pH        | QRTLY(1)  | >6.0     | >6.0       |  |

(1) SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, NOVEMBER.

### COOLING TOWER BYPASS

| PARAMETER | FREQ      | LIMITS    |                                 |  |
|-----------|-----------|-----------|---------------------------------|--|
|           | ``'       | MO. AVG.  | DAILY MAX.<br>N.A.<br>100<br>20 |  |
| FLOW      | QRTLY (1) | N.A.      | N.A.                            |  |
| TSS       | QRTLY (1) | 30        | 100                             |  |
| O and O   | QRTLY (1) | 15        | 20                              |  |
| рН        | QRTLY (1) | 6.0 - 9.0 | 6.0 - 9.0                       |  |
| TRC       | QRTLY (1) | N.A.      | 190                             |  |

 SAMPLES SHALL BE TAKEN DURING THE MONTHS OF FEBRUARY, MAY, AUGUST, and NOVEMBER.

### OUTFALL 017

ULTIMATE HEAT SINK No Discharge

DATE

ALL SAMPLES ANALYZED BY Ameren UE Callaway Plant OPERATIONS LABORATORY USING METHODS SPECIFIED UNDER 10CSR 20-7.015 COMMENTS:

### File C170.0005

### Page 3 of 4

CA-0320 01/11/05

PERMIT NO. MO-0098001 REPORTING PERIOD (MO/YR) \_ PAGE \_4\_ OF \_4\_\_

### NPDES MONITORING REPORT

12/2008

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

mail 5408 Preparer Approved (Pin#) (Pin# Plant Manager

Page 4 of 4

CA0320 01/11/05