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INTRODUCTION 
 
The methods and assumptions contained in ASME Code Case N-284-1 were used in the buckling 
analysis of the drywell shell with local areas of corrosion. The NRC staff is questioning the 
application of these rules for a corroded shell.  
 
 
DISCUSSION 
 
The local buckling stress equations given in N-284-1 for spherical shells are a function of the 
applied stresses and the geometry of the sphere at any local area defined by Lc. The applied 
stresses are the average stresses over this local area and the thickness is the average thickness 
over this area. It would be quite conservative to use the minimum corroded thickness determined 
over a smaller area.  
 
Typically the stress-strain curve for a corroded plate will be similar to that of the uncorroded 
plate. This was confirmed by tests for the drywell. Because the buckling stresses are elastic, the 
actual contour of the shell in the corroded area is not a factor in the buckling analysis. The 
buckling of the shell as a whole is not very sensitive to local variations in the shell. This is 
apparent from axial compression tests conducted by Miller (1980) on a cylindrical shell with a 
large unreinforced opening. The opening corresponded to a 30 degree central angle which was 
the largest opening that had been considered at that time for a containment vessel. The capacity 
reduction factor was 0.29 for the shell with no opening and 0.22 for the shell with the opening. 
The size of the hole was 12.6 Rt . 
 
There is also conservatism in the capacity reduction factor given in ASME N-284-1 which will 
be explained below. The following allowable stress equation is given for a spherical shell. 
 
 σa = α σth/FS         (1) 
 
where σth is the theoretical buckling stress of a perfect sphere, α  is a capacity reduction factor 
that accounts for the effects of initial shape imperfections and FS is a factor of safety. The 
capacity reduction factor for a sphere with biaxial stresses where one stress is compressive and 
the other stress is tensile is not given in N-284-1. The factor used in the drywell analysis for this 
stress state was 
 
          (2)  pL1 α+α=α
 
where   α1L = α2L/0.6   
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α1L is the capacity reduction factor for a sphere under uniaxial compression and α2L is the 
capacity reduction factor for a sphere under equal biaxial compression. αp is the capacity 
reduction factor due to the effect of tensile stress in the orthogonal direction. σ2 is the tensile 
stress. The basis for Eq. 2 is given in Miller (1991). The factor αp was found to be independent of 
α1L. Equation 2 is now given in ASME Code Case 2286 which was approved July 17, 1998. A 
commentary on the Code Case is given in WRC Bulletin 462 (Miller 2001). 
 
The application of Eq. 2 in stability analysis provides additional conservatism when applied to 
the drywell shell. The capacity reduction factors are a function of the deviation from true shape 
measured over a distance Lc. The relationships between shape imperfections and reduction 
factors for a sphere are given in Miller (1983). 
 

tR42.2L 1c =          (3) 
 
where R1 is the local radius and t is the thickness of the shell at the area under investigation. 
 
The Code Cases assume any imperfection in a spherical shell is the maximum permitted by the 
ASME Code which is e/t = 1.0. The maximum e/t for the drywell is much less than 1.0 and 
therefore the buckling stresses will be higher than those given by the Code Case equations. The 
capacity factor corresponding to the drywell imperfections can be determined from the 
following. The corroded shell can be treated as an added out-of-roundness with 
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  tn = nominal thickness 
  tc = corroded thickness 
  
The relationship between R1 and the maximum deviation e/t of a spherical shell from the 
theoretical radius R, when measured over the arc length of Lc, can be determined from the 
approximate relationship   
 

R1 = (1 + 1.36 e/t) R         for   R/t >100    (5) 
 
The following values of α2L were determined as the lower bound of available tests which failed 
by elastic buckling (Miller, 1983). The e/t values varied from about 0.10 to 3.22.   
 
 α2L  = 0.70 - 1.75 e/t     if       e/t ≤ 0.2    (6a) 
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          if    0.2 <e/t < 3.2   (6b) 29.1)t/e(0326.009.0L2
−+=α

 
 α2L  = 0.097                                   if       e/t ≥ 3.2    (6c) 
 
The maximum e/t ratio permitted by the ASME Pressure Vessel Code is 1.0.  For this value α2L  
= 0.123 from Eq. 6b and Lc = 3 72. Rt  from Eqs. 3 and 5.  Code Case N-284-1 gives α2L  = 
0.124. The value for α1L = 0.207 for e/t = 1.0. As an example, if e/t = 0.8 rather than 1.0, the 
value of α1L = 0.222. 
 
 
CONCLUSION 
 
The capacity reduction factors given in ASME Code Case N-284-1 and the added factor given by 
Eq. 2 are applicable to both the corroded areas and the uncorroded areas of the drywell shell if 
the reduced thickness and local deviation from true shape as determined over the distance Lc are 
used to determine the factors. This statement is based on the assumption that the material 
properties in the corroded area are nearly the same as the uncorroded shell. 
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