Fuel Cycle Information Exchange 2009

Closing the Nuclear Fuel Cycle

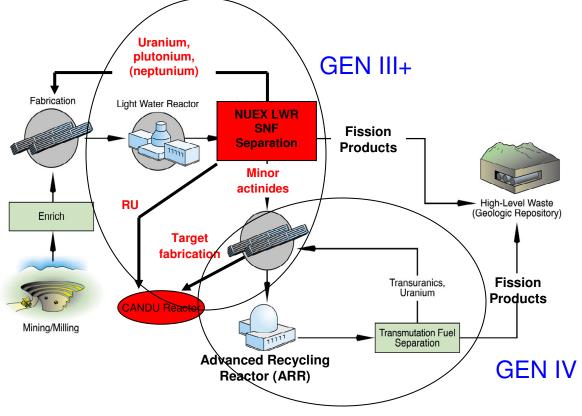
The EnergySolutions Perspective

Martin Wheeler June 25 2009

We're part of the solution

Introducing the Industry team

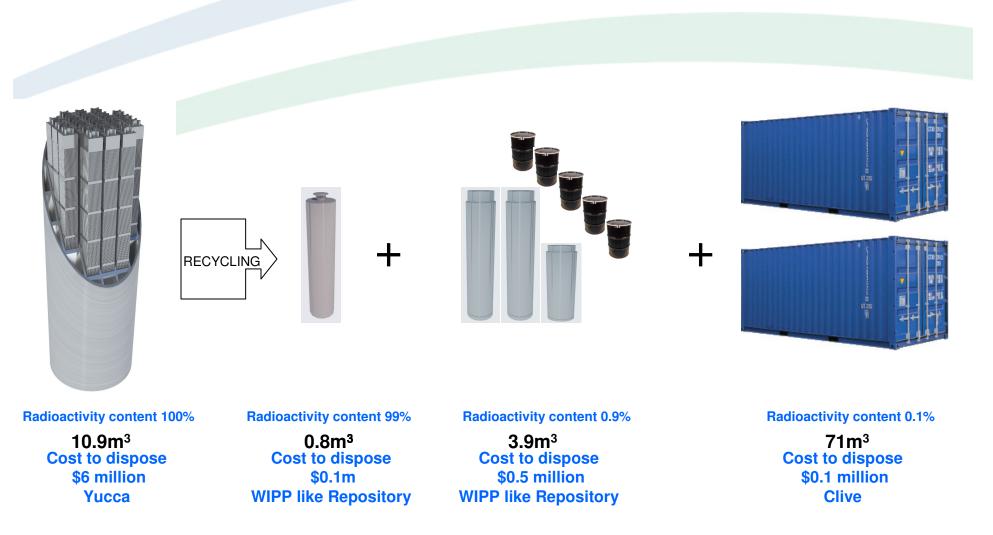
Why close the fuel cycle?



- Solves the nuclear waste disposal problem
 - Reduces amount, toxicity and heat of high level waste
 - Opens alternative repository options
 - Reduces need for multiple HLW repositories
 - Will lower future HLW disposal costs
- Provides additional waste confidence for nuclear new build to proceed
- Improves the security of US energy supplies
 - Recovers and recycles valuable nuclear materials

Our Approach

- Incremental approach to deployment of fuel cycle facilities
 - Gen III+ aqueous LWR Recycling first
 - Gen IV non-aqueous and Recycling Fast Reactors later
- Minimizes commercial risk and costs by using advanced processes on proven equipment


Our Approach

- Our near-term approach is **not** to use current processes but to advance them to Gen III+
- Advances in Business Management
 - New Government Entity to manage used fuel, nuclear waste fund and a new fund
 - Commercial funding of recycling not taxpayer dollars
- Advances in Waste Management
 - Vitrified high level waste suitable for disposal in different repository options
 - Volume reduction of all Low level waste (GTCC and Class A/B/C)
 - Tritium treatment/Solidification of Liquid Effluents targets zero discharge facility
 - Gaseous effluent treatment/capture (Kr, I, C-14) targets near-zero aerial discharge facility
- Advances in proliferation resistance
 - No pure plutonium is separated anywhere in the recycle facility
 - Mixed uranium/plutonium product is low attractiveness and is immediately recycled into new fuel
- But is this advanced enough?
- How will we know?

Wastes from Recycling

The wastes produced from recycling the nuclear fuel that has provided the **annual electricity needs for over 250,000 family homes**

- Prevent theft of nuclear material and technology
- Early detection of attempted diversion & theft
- Material should be low attractiveness
- Implement by incorporating "Safeguards by Design" early in project

Our Challenge

Understand the full spectrum of proliferation concerns

- Mixed Uranium/Plutonium product
- Separations Technology availability to others
- Security/terrorism challenge
- Safeguardability and nuclear accountancy
- Develop proliferation resistant system accordingly, for example
 - Separations carried out in Passive Secure Cells; No personnel access routes to separations equipment; High radiation fields inside cells prevent deliberate intruder access
 - State-of-the-art in-situ fissile material measurement systems Near Real Time Nuclear Accountancy
 - Gates, Guns and Guards to prevent and detect insider and outsider threats