ATTACHMENT (11)

TRANSNUCLEAR, INC. CALCULATION, "THERMAL ANALYSIS OF

NUHOMS® 32P+ DSC FOR VACUUM DRYING CONDITION,"

DOCUMENT NO. NUH32P+.0401

۰.

Λ		Form 3 2-1	Calculation No.:	NUH32P+.0401
	Calcul	Calculation Cover Sheet R		1
TRANSNUCLEAR INC.		' 3.2 (Revision 3)	Page: 1 of 19	· · · · ·
DCR NO (if applicable) : 10950-48	<u> </u>	PROJECT NAME: NUH	OMS [®] 32P+	
PROJECT NO: 10953		CLIENT: Calvert Cliffs	Nuclear Power F	Plant
CALCULATION TITLE:		L		
Thermal Analysis of N	NUHOMS	[®] 32P+ DSC for Vacu	um Drying Cond	itions
SUMMARY DESCRIPTION:		······································		
1) Calculation Summary				
This calculation evaluates the NUHO during vacuum drying operations usir regions.	MS [®] 32F ng ANSY	P+ DSC component a S model with fine 14	and fuel cladding x14 mesh in hor	temperatures nogenized fuel
2) Storage Media Description				
1 DVD				
	·			
If original issue, is licensing review per TI	P 3.5 requ אין	ired?	۵	
This calculation is issued in support of an	mendmen	t application subject to	NRC review.	
Software Utilized:				Version:
ANSYS				8.1
· ·				
Calculation is complete: Originator Name and Signature: Slava Guzeye		Pipee		8/15/08. Date:
Calculation has been checked for consist	ency, con	pleteness and correct	ness:	
Checker Name and Signature: Davy Qi	TA TA	E _		Date: 8/15/08
Calculation is approved for use:				1
Project Engineer Name and Signature: Peter S	hih P	Gh.N		8/15-1 5 8 Date:

۱

PROPRIETARY NOTICE This document, including the information contained herein and all associated attachments and enclosures, is the property of Transnuclear, Inc., It contains proprietary information and may not be furnished to others without the express written permission of Transnuclear, Inc. This document and any drawings and any copies that may have been made must be returned to Transnuclear, inc. upon request.

A AREVA TRANSNUCLEAR INC.		A EAR INC.	Calculation	Calculation No.: Revision No.: Page:	NUH32P- 1 2 of 19	+.0401
			REVISION SUMMARY			
REV.	DATE	DESCRIPTION		AFFEC PAG	TED ES	AFFECTED DISKS
0	8/3/08	Initial Issue		AI		All
1	8/12/03	Revision 1 o analysis resu helium backl drying. It also references fo criteria appli	nitial Issue Revision 1 of this calculation provides thermal analysis results of NUHOMS [®] 32P+ DSC for helium backfill conditions, which follow vacuum Irying. It also provides additional justification and eferences for conclusion about thermal cycling priteria applicability.			

ŀ

		Form	3.2-1	Calc. No.:	NUH	SZP+ 0	401
	I RANSNUCLEAR AN AREVA COMPANY	Calcul	ation	Rev. No.:		1	
	·····			Page:	3	of	1
		· · · ·	Contract				
		lable o	Content	•			
i	Purpose						
_	Assumptions and Cons	servatism		••••••••••••••••••••••			
5 1	Design Input				•••••	********	••••
•	4.1 Gas Thermal Cond	uctivity at Low p	ressure				. 1
5	References						1
5 7	Computations		•••••••	••••••			1. 1
	Nesuits	*****		***************************************			
, . ,	•						
				1	*		
		<i></i>		۰.	·		
	,						
		· .		·			
	•						
				- · ·			
				•			
		· .					
			,				
	•						
	•		. •				
	А.						
	:						

• •

a.

,

A	Form 3.2-1	Calc. No.:	NUH	32P+.0	401
TRANSNUCLEAR	Calculation	n Rev. No.:		1	
		Page:	4	of	19
	Table of Figures				
Figure 4-1 32P+ DSC Finite F	Ioment Model				٩
Figure 7-1 Maximum Fuel Cla	adding Temperature during	Vacuum Drving			16
Figure 7-2 32P+ DSC Compo	nent Temperature Distribut	ion at 110 Hours	of		
Vacuum Drying		, • • • • • • • • • • • • • • • • • • •			18
	Table of Tables				
Table 2-1 Air and Nitrogen Tl	nermal Conductivity Compa	arison			6
Table 6-1 ANSYS run summa	iry				14
Table 6-2 Associated files an	d macros				14
Table 7-1 Maximum Fuel Cla	dding Temperature during	/acuum Drying ar	ıd		
Helium Backfilli	ng Operations	Town out was for		*******	15
Vacuum DSC Cor	nponent and ruel cladding Conditions	remperatures to	ſ	s.	10
vacuum Drying			,		19

, t

A	Form 3.2-1	Calc. No.:	NUH32P+.0401			
	Calculation	Rev. No.:		1		
		Page:	5	of	19	

1 Purpose

Calculation [3] provides thermal analysis of NUHOMS[®] 32P DSC for vacuum drying operation using coarse (5x5 and 6x6) mesh in homogenized fuel regions, steady-state conditions, and fuel cladding temperature limit of 1058°F [2].

Thermal analysis [1] shows that using fine 14x14 mesh in homogenized fuel region is appropriate to predict DSC component and fuel cladding temperatures for normal and accident blocked vent storage operations.

This calculation uses 14x14 mesh from [1] for thermal analysis of NUHOMS[®] 32P+ DSC for vacuum drying conditions.

It also addresses thermal requirements of ISG-11 rev. 3 [5]. According to [5], the maximum fuel cladding temperature cannot exceed $T_{ISG limit}$ = 400°C (752°F) and maximum fuel cladding temperature difference during thermal cycling cannot exceed $\Delta T_{ISG limit}$ = 65°C (117°F).

A	Form 3.2-1	Calc. No.:	NUH32P+.0401				
	Calculation	Rev. No.:	.: 1				
		Page:	6	of	19		

2 Assumptions and Conservatism

All assumptions and conservatism discussed in [3] are applicable to this calculation. It is assumed that guidelines given in ISG-22 [6] will be satisfied since 32P+ DSC is designed to store intact fuel with no pinhole leaks and hairline cracks [4]. Therefore, use of air for blowdown is acceptable.

Helium or nitrogen can be used for blow-down the water from the DSC cavity.

Since helium thermal conductivity is much higher than air thermal conductivity, using helium for blow-down reduces maximum fuel cladding and DSC component temperatures compared to blow-down with air. Subsequent vacuum drying and helium backfilling occurs with a helium environment, which eliminates fuel cladding and DSC component temperature change since helium thermal conductivity does not change with pressure drop (See Section 4.1). Nitrogen can also be used for blow-down with negligible effect on maximum fuel cladding and DSC component temperatures due to insignificant difference in air and nitrogen thermal conductivity (See Table 2-1 below).

T	K _{air @ 0.1 bar} [3] ⁽¹⁾	K _{nitrogen} [12] ⁽²⁾	K _{air @ 0.1 bar} /K _{nitrogen}
°F	Btu/(hr-in-⁰F)	Btu/(hr-in-⁰F)	-
200	0.00150	0.00147	1.03
300	0.00169	0.00164	1.03
400	0.00187	0.00180	1.04
500	0.00204	0.00195	1.05
600	0.00221	0.00210	1.05
700	0.00236	0.00224	1.06
800	0.00251	0.00237	1.06

Table 2-1 Air and Nitrogen Thermal Conductivity Comparison

Thermal conductivity values are interpolated based on values from [12].
 Thermal conductivity values are interpolated based on values from [3].

A	Form 3.2-1	Calc. No.:	NUH32P+.0401				
	Calculation	Rev. No.:	1				
		Page:	7	of	19		

Vacuum drying procedure precludes any thermal cycling of fuel cladding. Backfilling the DSC with helium gas after first vacuum drying causes one-time temperature drop, which is not considered as a repeated thermal cycling in CoC 1030 application [14]. Re-evacuation of the DSC under helium atmosphere does not reduce the pressure sufficiently to decrease the thermal conductivity of helium. Therefore, evacuation and re-pressurizing the DSC under helium atmosphere proceed on a descending curve to the minimum steady-state temperatures, and does not include any thermal cycling. This clarification was accepted by NRC in Section 4.8 of SER [15] which states: "... DSC only undergoes a one time temperature drop during the backfilling of the DSC with helium gas. Because this is a one time event, the DSC does not undergo any thermal cycling".

It concludes that the limit of 65°C (117°F) considered for thermal cycling is not applicable for NUHOMS[®] 32P+ system.

A	Form 3.2-1	Calc. No.:	NUH32P+.0401				
	Calculation	Rev. No.:	1				
		Page:	8	of	19		

3 Design Input

Thermal properties listed in [3, 10] were used in this calculation, including effective properties of fuel assembly in air at low pressure (Since air is used for water blow-down prior to vacuum drying) and fuel assembly in helium. No additional properties are used in this calculation. The total decay heat load per 32P+ DSC is 21.12 kW [4].

The vacuum drying operation time starts from the beginning of the water blow-down from DSC.

Α	Form 3.2-1	Calc. No.:		NUH32P+.0401			
TRANSNUCLEAR AN AREVA COMPANY	Calculation	Rev. No.:		1			
		Page:	9	of	19		

4 Methodology

This analysis uses the NUHOMS[®] 32P+ DSC ANSYS refined finite element model developed in [1] (shown in Figure 4-1) for normal and accident storage conditions.

The boundary conditions for the vacuum drying discussed in [3] are applied to the refined model. Radiation super-element file was regenerated for refined model using ANSYS /AUX12 processor. No other changes are considered for this analysis.

A	A Form 3.2-1		NUH32P+.0401		
TRANSNUCLEAR AN AREVA COMPANY	Calculation	Rev. No.:	1		
		Page:	10 of 19		

4.1 Gas Thermal Conductivity at Low pressure

The thermal analysis of vacuum drying in air or helium case assumes that the thermal conductivity of these gases remains unchanged for lowest vacuum drying pressure of 3 Torr. There are two states that define the process of heat transfer by gas [8]:

viscous state, in which the totality of molecules is responsible for the heat transfer. The viscous state occurs as long as the pressure is higher than the range in which the molecular state occurs. Within the viscous state, the thermal conductivity of a gas is independent of pressure.

Molecular state, Heat conductivity in the molecular state is when the gas pressure is so low that the molecular mean free path is about equal or greater than the distance between the plates. The gas is no longer characterized by viscosity. The viscous state for conductivity is no longer valid and therefore the conductivity is found to be dependent on pressure. The process under these conditions is called free molecular conduction.

The pressure, at which the molecular mean free path is equal to the minimum distance between the surfaces within the NUHOMS[®] 32P+ DSC package is determined below. These data show that using the helium thermal conductivity at normal pressure is sufficient for this analysis.

Helium Thermal Conductivity at Low pressure

The thermal analysis of vacuum drying in helium case assumes that the helium thermal conductivity remains unchanged for lowest vacuum drying pressure of 3 Torr, and the helium conductivity at normal pressure can be used in this calculation to analyze the vacuum drying case. Following calculation show that using the helium thermal conductivity at normal pressure of 3 Torr is sufficient for this analysis.

The smallest gap used in the thermal model is 0.01 inches. The smallest gap is set equal to the mean free path to determine the minimum pressure, at which the molecular state occurs. According to [9] a mean free path of the molecules is:

$$L = \frac{k \cdot T}{\pi \cdot \sqrt{2} \cdot P \cdot d^2}, \text{ m (4-1)}$$

where $k = 1.380658 \cdot 10^{-23}$ J/K – Boltzmann constant,

P - pressure in Pa,

A	Form 3.2-1		NUH3	32P+.(0401
TRANSNUCLEAR AN AREVA COMPANY	Calculation	Rev. No.:	1		
	-	Page:	11	of	<u>⁄19</u>

T - temperature in K,

d - molecule diameter in m.

At standard conditions ($P = 100000 \text{ Pa} = 750.062 \text{ Torr and } T = 298.15 \text{ K} = 77^{\circ}\text{F}$) [9]:

$$L = \frac{9.27 \cdot 10^{-27}}{d^2}, \, \mathrm{m}$$
 (4-2)

For helium at $T = 25^{\circ}\text{C} = 77^{\circ}\text{F}$, $d_{He}=2.15 \cdot 10^{-10} \text{ m}$ [9] and therefore $L_{He} = 2.0 \cdot 10^{-7} \text{ m}$. The minimum internal pressure when free path is equal to the smallest gap can be calculated as:

$$p = \frac{k \cdot T}{\pi \cdot \sqrt{2} \cdot \delta \cdot d^2}, \text{ Pa}$$
(4-3)

where

 δ - smallest gap in the model (0.01 in = 0.000254 m) [10].

The formula (4-3) for $T = 752^{\circ}$ F (673 K) (conservatively assuming maximum DSC component temperature equals to fuel cladding maximum allowable temperature) returns the pressure value of p = 178.2 Pa = 1.34 Torr, which mean that for pressures above 1.34 Torr, heat transfer of the helium within the basket during vacuum drying can be characterized by the viscous state. The practical lowest vacuum drying pressure of 3 Torr is above this pressure and the conductivity of the helium during vacuum drying is not pressure dependent.

		Form 3.2-1	Calc. No.:	NUH32P+.()401
		Calculation	Rev. No.:	1	
			Page:	12 of	19
5	References				
	1. Calculation, Sensitivi	y Analysis of Homogenized Fuel R	egion, Transnu	clear, Inc.,	
	Calculation No. 1095	-84 Rev.1.			
	2. Topical Report for the	NUTECH Horizontal Storage Syst	em for Irradiate	d Nuclear Fi	uel,
	NUHOMS-24P, NUH	-002, Rev. 1A.			
	3. Calculation, Thermal	Analysis of Vacuum Drying, Transr	nuclear, Inc., Ca	alculation No	•
	1095-57 Rev. 0.				
	4. Specification, Design	Criteria for the NUHOMS [®] -32P Sto	orage System fo	or Calvert Cli	iff
	<i>Nuclear Plant</i> , Transi	nuclear Inc., Specification No. E-18	851 Rev. 7.		
	5. U.S. Nuclear Regul	atory Commission, Spent Fuel P	roject Office,	Interim Staf	f
	Guidance (ISG-11),	on Issue: "Cladding Considerations	s for the Transp	portation and	1
	Storage of Spent Fue	l," Revision 3, November 17, 2003.			
	6. U.S. Nuclear Regul	atory Commission, Spent Fuel P	roject Office,	Interim Staf	f
	Guidance-22: "Poten	tial Rod Splitting due to Exposure	to an Oxidizing	Atmosphere	•
	during Short-term Ca	sk Loading Operations in LWR or	Other Uranium	Oxide based	d
	Fuel," Revision 0, Ma	y 8, 2006.			
	7. On-line User's Manua	al for ANSYS, version 8.1.			
	8. Roth, A., Vacuum Te	chnology, 2 nd Edition, 1982.			
	9. David R. Lide, CRC	Handbook of Chemistry and Physi	ics, 83 rd edition	, 2002-2003	,
	CRC Press.				
	10. Calculation, Finite El	ement Model, Thermal Analysis, Tra	ansnuclear, Inc	., Calculatior	ו
	No. 1095-5 Rev. 0.	, ,			
	11. Bolz, R. E., G. L. Tu	e, CRC Handbook of Tables for A	pplied Enginee	ring Science	' 1
	2 nd Edition, 1973.	,			
	12.Roshenow, W. M., J	P. Hartnett, and Y. I. Cho, Han	dbook of Heat	Transfer, 3"	d
	Edition, 1998.				
	13. Calculation, NUHOM	S-32P, Transfer Thermal Analysis,	Transnuclear, I	nc., Calculat	tion
	No. 1095-6 Rev. 1.				
	14. NUHOMS [®] HD Syste	m Final Safety Analysis Report, Re	ev.1, Transnucle	ear Inc.	

	Form 3.2-1 Calculation	Calc. No.: Rev. No.:	NUH32P+.04	4(
		Page:	13 of	
15. Transnuclear Inc., NUHO Nuclear Fuel, Safety Eva	DMS [®] HD Horizontal Modul aluation Report, NRC Docke	ar Storage System f et No. 72-1030.	or Irradiated	
			-	
			· .	
	·			

.

A	Form 3.2-1	Calc. No.:	NUH32P+.0401		
	Calculation	Rev. No.:		1	
	·	Page:	14	of	19

6 Computations

The analysis is performed using ANSYS version 8.1 [7] running in Microsoft Windows XP Professional operating system. An ANSYS run summary and associated files used in the analysis are shown in Table 6-1 and Table 6-2.

Operating Conditions	Run Name	Date and Time	Platform
Vacuum drying	32P+vd	10/12/2006 15:56:16	P4 2.4 GHz
Helium Backfilling	32P+He_bkf	8/14/2008 9:56:06	P4 2.4 GHz

Table 6-1 ANSYS run summary

Table 6-2 Associated files and macros

Files and macros	Comments
32P+vd.inp, 32P+He_bkf	Input files
ACC48.db	Initial database file [1]
gap-rad.sub	Radiation super-element file

A	Form 3.2-1	Calc. No.:	NUH32P+.0401			
TRANSNUCLEAR AN AREVA COMPANY	Calculation	Rev. No.:		1		
		Page:	15	of	19	

7 Results

The maximum fuel cladding temperatures during vacuum drying (transient and steady-state results) and helium backfilling (steady-state results) computed by refined model are shown in Table 7-1.

Operating	Time	T _{fuel clad max}
conditions	(hr)	(°F)
Vacuum	0 ~	215
drying	5	284
	10	343
	15	394
	20	439
	25	479
	30	514
· ·	35	545
	40	572
	45	595
	50	615
	55	632
	· 60	647
	65	660
	70	672
	75	682
	80	691
	85	698
	90	705
	95	710
	100	715
	105	719
	110	722
. i	Steady-state	742
Helium backfilling	Steady-state	536

Table 7-1 Maximum Fuel Cladding Temperature during Vacuum Drying and Helium Backfilling Operations

Figure 7-1 provides history of maximum fuel cladding temperatures during vacuum drying operation.

As seen from Table 7-1 and Figure 7-1, the vacuum drying time have to be limited to 110 hours to provide maximum fuel cladding temperature of 722°F and 30°F margin to the fuel cladding temperature limit of 752°F provided in [5].

Figure 7-2 illustrates the resultant 32P+ DSC component and fuel region temperature distribution at 110 hours of vacuum drying.

As seen from Table 7-1, the helium backfill causes maximum fuel cladding temperature drop to 536°F, but this temperature is lower than one predicted for normal transfer operating condition, which is 742°F [13] (Note: By coincidence this value is equal to steady-state vacuum drying value shown in Table 7-2). The maximum drop in maximum fuel cladding temperature after helium backfill is 742°F - 536°F=206°F. As clarified in Section 2, this one time event is not a

		•	
A	Form 3.2-1	Calc. No.:	NUH32P+.0401
TRANSNUCLEAR AN AREVA COMPANY	Calculation	Rev. No.:	1 17 of 1
		raye.	
thermal cycling as describe concluding that the limit of 6	d in CoC 1030 SAR [14], this cla 55°C (117°F) required for therma	rification is approv I cycling in [5] is no	ed by SER [15] ot applicable for
32P+ system.			
			•
	•		
			·
	4 4		

. .

A	Form 3.2-1	Calc. No.:	NUH3	82P+,0	401
TRANSNUCLEAR AN AREVA COMPANY	Calculation	Rev. No.:		1	
		Page:	19	of	19

The maximum 32P+ DSC component and fuel cladding temperatures for vacuum drying conditions are summarized in Table 7-2.

Table 7-2 Maximum DSC Component and Fuel Cladding Temperatures for Vacuum Drying Conditions

	Transient Time=110 hours	Steady –State Time=∞
Component	(°F)	(°F)
Fuel Cladding	722	742
Fuel Compartments	689	708
Basket SS Bars	688	707
Basket Al Plates	684	702
Basket Rails	495	505
DSC shell	218	218

As seen from results listed in Table 7-2, the maximum fuel cladding temperature for vacuum drying satisfy the limit of 752°F provided in ISG-11 [5] at vacuum drying time limit of 110 hours and for steady-state conditions. Despite of this fact, 110 hours are selected as vacuum drying time limit to provide additional margin to maximum fuel cladding temperature during vacuum drying.