PAT-1 SAR Addendum Structural Analysis Overview for the NRC

David Harding

Lili Akin
Bob Kalan
Jason Petti

Sandia National Labs
June 11, 2009

Methodology

- The PAT-1 package has been certified by the NRC (since 1978) for air transport of 2 kg powdered PuO_{2}.
- SAR Addendum is to add solid metal to the contents list.
- The only new requirement is dynamic crush.
- NCT analyses establish the initial position of contents for accident simulations.
- The integrity of a thin eutectic barrier is shown to be maintained using an empirically-based analytical failure criterion called "Tearing Parameter".
- Staying below critical Tearing Parameter avoids even the initiation of a ductile tear in the Ti-6AI-4V eutectic barrier.

Requirements and Acceptance Criteria

- Overall Program-Defined Package Constraints:
- PAT-1 already meets all regulatory criteria (except dynamic crush) for the same mass with oxide contents.
- AQ-1 overpack to remain the same; same TB-1 provides containment throughout NCT, HAC, air transport environments.
- Total contents mass within TB-1 (fissile and structure) not to exceed $4.4 \mathrm{lb} ; 25$ watts heat generation.
- Contents subcritical; radiation limits on container.
- T-Ampoule is a eutectic barrier only (not for Pu containment) and maintains integrity.

Materials to be Shipped

- Electro-refined Pu bulk material
- Machined hollow cylinder form
- Pu metal samples of varying age
- Samples are typically in disc, strip, or cylinder form

- Pu-Be Composite samples
- Samples are machined into disc (or other) forms from extracted samples

TB-1 Containment Vessel

(Shown with T-Ampoule)

Attributes:

- PH13-8Mo stainless steel
- 12 fasteners
- Copper gasket and O-ring
- 25 watts decay heat
- $4.6 \mathrm{lbs}(2.1 \mathrm{~kg})$ content weight
- $41.6 \mathrm{lbs}(18.9 \mathrm{~kg})$ maximum gross weight
- Maximum $1080^{\circ} \mathbf{F}\left(582^{\circ} \mathrm{C}\right)$ during air accident fire test
- TB-1 design unchanged for plutonium metals transport

Focus on T-Ampoule

Attributes:

- Eutectic prevention barrier
- Titanium alloy (Ti-6Al-4V)
- 2-piece construction
- Machined from solid bar stock
- No welding processes
- Threaded closure bore seal w/ elastomeric O-ring
- Minimum 0.060" wall thickness
- Contents include bulk Pu metal and sample containers supported by titanium structure
- Maximum gross weight of 4.6 lbs (2.1 kg)

TB-1 and T-Ampoule PRONTO Model

?40,000 TB-1 :lements

Sandia National
Laboratories

Sample Containers (SC)

Attributes:

- Titanium alloy (Ti-6Al-4V)
- 2-piece construction
- Machined from solid bar stock
- No welding processes
- Threaded closure w/ elastomeric O-ring
- Minimum 0.060" wall thickness
- Provides convenience container for single or multiple samples
- Samples placed in tantalum foil

Sample Container Configuration

Attributes:

- 3 individual SC-1 per T-Ampoule
- Pu Metal Allowances:
- ≤ 174 grams per SC-1
- ≤ 522 grams for 3 SC-1
- 2 individual SC-2 per T-Ampoule
- Pu metal allowances:
- ≤ 338 grams per SC-2
- ≤ 676 grams for 2 SC-2
- Titanium legs and bowl end supports serve as a position control component

Three SC-1 Sample Containers in T-Ampoule

Sample Containers Cradle

Attributes:

- Sharp titanium legs and asymmetric edges can unfortunately cause localized stress risers in contact with TAmpoule
- Ti-6AI-4V construction (~0.061
- No welding

Three SC-1 Lumped Pu Contents Models

Two SC-2 Lumped Pu Contents Models

Note larger Pu cylinders with higher mass

Electro-Refined Plutonium Cylinder

Attributes:

- Hollow Pu cylindrical shape allows softer deformable configuration to mitigate impact stresses
- Allowable Pu mass is $\mathbf{8 3 1}$ and 731 grams
- Pu metal cylinder wrapped in tantalum foil, no other supports are required.

3 to $3.5 \mathrm{~kg}, 102 \mathrm{~mm}$ dia. $\times 13 \mathrm{~mm}$ wall $x 51 \mathrm{~mm}$ length

831 gm Hollow Cylinder

831 g ER Cylinder Models

LANL-Defined Composite Sample Configuration 1: Small Pu Cylinders

One configuration:
The individual cylinders (at 1.7 grams each) are combined into a single cylinder of 16.85 mm dia $\times 16.85 \mathrm{~mm}$ height weighing 60 grams using the strength of Be metal.
Up to 35 individual 1.7 gram cylinders (59.5 grams) could be packaged in each sample container.

LANL-Defined Composite Sample Configuration 2: Composite Disk

Two configurations:
a) $\mathbf{1 2} \mathbf{~ m m}$ dia $\times 6 \mathrm{~mm}$ thick (weighing $\mathbf{1 0 . 8} \mathrm{g}$ using Pu density) with beryllium metal strength.
b) b) $\mathbf{4 5} \mathbf{~ m m}$ dia $\times 2.37 \mathrm{~mm}$ thick (weighing 59.9 g using Pu density) with beryllium metal strength.
b)

LANL-Defined Composite Sample Configuration 3: Flat Composite Plate

Two Configurations:
a) 50 mm length $\times 6 \mathrm{~mm}$ thick $\times 12.5 \mathrm{~mm}$ wide composite plate (weighing 59.6 g using Pu density) with beryllium metal strength.
b) b) 30 mm length $\times 6 \mathrm{~mm}$ thick $\times 12.5 \mathrm{~mm}$ wide composite plate (weighing 35.8 g using Pu density) with beryllium metal strength.

LANL-Defined Composite Sample Configuration 4: Long Pu Cylinders

Two Configurations:

a) 8.9 mm dia $\times 60 \mathrm{~mm}$ length (weighing 59.3 grams using Pu density) with beryllium strength.
b) b) 7.62 mm dia $\times 26 \mathrm{~mm}$ length (weighing 18.9 grams using Pu density) with beryllium strength.

"Bounding" Composite

A single cylinder of 16.85 mm dia $\times 16.85 \mathrm{~mm}$ height weighing 60 grams (density of Pu) using the strength of Be metal.
This compact and strong shape maximizes net impact velocity and provides a conservatively sharp impact edge.
Cylinders always rotated to impact CGOC (sharpest).

Full Package Analysis: Overpack Calculation Has Been Validated with Certification Tests

FEA Model Conservatisms

- Always assume contents in most damage-inducing location/orientation (velocity/sharpness).
- Ignore Ta foil slight energy absorber/load spreader.
- Pu, Be assumed infinitely plastic.
- Be composite shape is bounding.
- ER cylinders assume strongest dimensions.
- Ductile crack propagation is not modeled; assume "failure" at ductile crack initiation.

Acceptance Criteria

- TB-1 containment vessel must
- be "essentially leak tight" in air transport accidents ($<\mathrm{A}_{2} / \mathrm{wk}$)
- meet thru-wall ASME stress limits for NCT and HAC
- NCT and HAC limits already accepted via certification tests
- HAC dynamic crush is new requirement since original SAR
- T-Ampoule eutectic barrier must maintain integrity.

Tearing Parameter Failure Criterion

- Over the last 40+ years, improvements to failure criteria have been made. The most successful criterion matching test data (including notched) very well is Tearing Parameter:

$$
T P=\int_{0}^{\bar{\varepsilon}_{p f}}\left\langle\frac{2 \sigma_{1}}{3\left(\sigma_{1}-\sigma_{H}\right)}\right\rangle^{4} d \bar{\varepsilon}_{p}
$$

- This ductile Tearing Parameter has been successfully used for many years at Sandia to simulate ductile failure.
- References: Bridgman, 1964; Brozzo, et al., 1972; Johnson \& Cook, 1985; Wellman, et al., 1993; Dawson, et. al., 1998; Bao \& Weirzbicki, 2003; Wellman, 2007.

Critical Tearing Parameter

- The critical value of TP is determined from the analysis of a tensile test to failure, for the Ti-6Al-4V T-Ampoule material.
- TP is evaluated using the computed stress state, with the EQPS at failure used as the upper integration limit.
- $\mathbf{T P}_{\text {crit }}=1.012$ for Ti-6Al-4V based on the tensile tests.
- TP can be computed for elements in the T-Ampoule and compared to the critical value of $\mathbf{1 . 0 1 2}$.

Analysis of Ti-6AI-4V Tensile Test

Sandia
National
Laboratories

Combined Model Results

- Example of Full Models for High Speed and HAC.
- Sample Runs (only 5 chosen out of total 53 analyses)
- High Speed 2 Amp (45 deg) Side Impact
- High Speed 831 g ER Cylinder Angled for End Impact
- High Speed 831 g ER Cylinder CGOC Impact
- Be Composite High Speed 3 Amp (45 deg) Side Impact
- HAC 2 Amp (45 deg) CGOC Impact
- In no case does the impact of the contents induce ductile tearing of the eutectic barrier.

Example of Full Models (Approximately 2,000,000 Elements)

HAC and NCT

High Speed

High Speed 2A (45 deg) Side Impact

0 Elements Exceed the Critical Tearing Parameter

Friction Variation

- Plus or minus 33\% on friction coefficient (from referenced 0.30) were analyzed for the 2 Ampoule side impact 45-degree rotated case:
- 0.40 dynamic friction yielded very similar results for both T-Ampoule Tearing Parameter and TB-1 EQPS
- 0.20 dynamic friction also yielded similar results for TB-1 EQPS, but much reduced T-Ampoule Tearing Parameter (peaking around <0.2 vs. 0.5)

Cylinder - 831 g (Angled End Impact)

0 Elements Exceed the Critical Tearing Parameter

Cylinder - 831 g (CGOC Impact)

0 Elements Exceed the Critical Tearing Parameter

Be Composite Cylinder (45 deg) Side Impact

Be Composite Cylinder (45 deg) Side Impact

Be Composite Cylinder (45 deg) Side Impact

Comparison Graph Tearing Parameter
Titanium Impact Test and High Speed 3A (45deg) Full Model
Composite Plugs and Side Impact

0 Elements Exceed the Critical Tearing Parameter

HAC - 2A (45 deg) CGOC Impact

No Elements Extend Beyond the B-W Locus
0 Elements Exceed ASME Stress Limits in the TB1

HAC - 2A (45 deg) CGOC Impact

0 Elements Exceed Thru-Thickness
ASME Stress Limits (107 ksi) in the TB1

HAC - 2A (45 deg) CGOC Impact

- No elements violate ASME thru-thickness allowables for HAC: $0.7 \mathrm{~S}_{\mathrm{u}}=107 \mathrm{ksi}$
- Similar results for end and side HAC dynamic crush impacts

Conclusions

- FEA results show that ductile tearing will NOT be initiated in the T-Ampoule eutectic barrier, based on the Tearing Parameter failure criterion
- No leakage or seal area (or any other visible) deformation occurred in the original PAT-1 certification tests, and based on analyses, none occur with the new metal contents (except minimal localized denting)
- Thru-thickness TB-1 stresses well below ASME allowables for dynamic crush
- The analyses performed provide sufficient evidence that the PAT- 1 container can safely transport the proposed solid metal contents

