

2.0 System Based Design Description of ITAAC

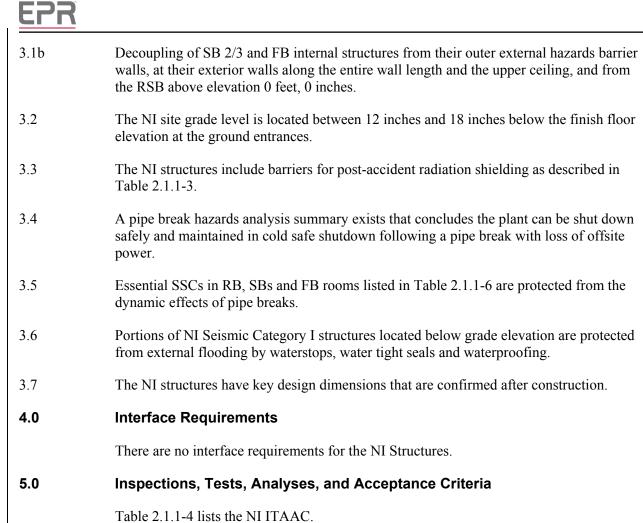
- 2.1 Structures
- 2.1.1 Nuclear Island

1.0 Description

The Nuclear Island (NI) consists of the structures supported by the NI Common Basemat and the NI Common Basemat itself. The NI includes the Reactor Building (RB), Safeguard Buildings (SB), Fuel Building (FB), Main Steam Valve Rooms, NI Foundation Common Basemat, Vent Stack, and Stair Towers. The physical arrangement of the NI structures is shown on Figure 2.1.1-1 and Figure 2.1.1-2. Information in tables and figures in this section are for information only with the exception of the specific features listed in the ITAAC for verification.

The NI foundation common basemat is a heavily reinforced concrete slab, approximately 360 ft x 360 ft x 10 ft thick, which supports NI structures including the RB, FB, and SBs. The NI foundation common basemat acts together with the Reactor Containment Building (RCB) to maintain an essentially leak-tight barrier against the uncontrolled release of radioactivity to the environment and to maintain containment design conditions important to safety so that they are not exceeded for as long as postulated accident conditions require. ITAAC for testing the essentially leak-tight barrier is addressed in Tier 1, Section 3.3.

Structures, systems and components (SSC) important to safety are designed and located to minimize the probability and effect of fires and explosions. This is done, in part, by compartmentalization of the plant into separate fire areas. Specifically, based on the hazards and the need for physical separation of SSC important to safety, the plant is segregated into separate fire areas by passive, fire-rated structural barriers (i.e., walls, floors, and ceilings).


A continuous structural barrier is formed around the RB, FB, and SB 2/3 structures as shown on Figure 2.1.1-2 and Figure 2.1.1-3. This barrier is designed to provide protection against design basis external hazards such as hurricanes and tornados, and certain beyond design basis events such as aircraft hazard and explosion pressure waves.

2.0 Arrangement

2.1 The as-installed basic configuration of the NI structures is as shown on Figure 2.1.1-1 and Figure 2.1.1-2.

3.0 Key Design Features

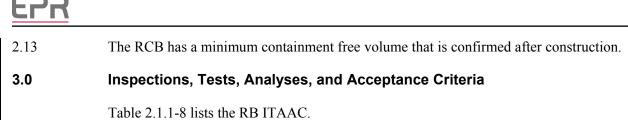
- 3.1 The basic configuration of the NI structures includes:
- 3.1a A continuous structural barrier;

2.1.1.1 Reactor Building

1.0 Description

The RB consists of the Reactor Shield Building (RSB), the Reactor Containment Building (RCB) and the RB internal structures. The RSB is a heavily reinforced Seismic Category I safety-related cylindrical concrete structure, with an outside diameter of approximately 186 feet by approximately 230 feet high, which completely encloses the RCB. The RSB is surrounded by SBs 1, 2, 3, and 4 and by the FB, which are Seismic Category I safety-related structures. The primary function of the RSB is to protect the RCB from missiles and loadings resulting from design basis external events such as hurricanes and tornados, and certain beyond design basis events such as aircraft hazard and explosion pressure waves. The RCB is a Seismic Category I safety-related cylindrical post-tensioned concrete structure, with an outside diameter of approximately 162 feet and a height of approximately 218 feet. It has an approximately 0.25 inch thick steel liner on its inside surface. The primary functions of the RCB are:

- To protect the safety-related SSC located within.
- To prevent the release of radiation during plant operations.
- To prevent the release of radiation and contamination in the event of accident conditions.
- To establish an essentially leak-tight barrier against the uncontrolled release of radioactivity.
- To accommodate the calculated pressure and temperature conditions resulting from any loss of coolant accident without exceeding the design leakage rate and with sufficient margin.


The Reactor Building Annulus (RBA) is the annular space between the RSB and the RCB. The annular space is approximately 5 feet, 11 inches wide between the faces of the concrete walls of the two buildings. The primary function of the RBA is to serve as an access area to allow the passage of personnel, piping, ventilation ducts, electrical cables, and other equipment between the RSB and the RCB.

The RCB design includes consideration for severe accident mitigation. Downward expansion of the lower head is limited by concrete support structures provided at the bottom of the reactor cavity. These structures preserve sufficient space for the outflow of core melt and the later formation of a molten pool in the reactor cavity. Installed barriers prevent water ingress into the core spreading area prior to the arrival of core melt, which could lead to steam explosion. Installed barriers prevent core melt relocation to the upper containment, which could lead to direct containment heating.

2.0 Key Design Features

2.1 Six rib support structures, provided at the bottom of the reactor cavity, as shown on Figure 2.1.1-9, limit lower reactor pressure vessel head deformation due to thermal expansion and creep during severe accident mitigation.

EPR	
2.2	As shown on Figure 2.1.1-4, a flooding barrier consisting of several walls is provided to prevent ingress of water into the core melt spreading area. This barrier includes a watertight door that provides entry to the venting shaft of the spreading area.
2.3	Core melt cannot relocate to the upper containment due to the existence of concrete barriers, as shown on Figure 2.1.1-9.
2.4	The RB structures are Seismic Category I and are designed and constructed to withstand design basis loads without loss of structural integrity and safety-related functions. The design basis loads are those loads associated with:
	• Normal plant operation (including dead loads, live loads, lateral earth pressure loads, equipment loads, hydrostatic, hydrodynamic, and temperature loads).
	• Internal events (including internal flood loads, accident pressure loads, accident thermal loads, accident pipe reactions, and pipe break loads, including reaction loads, jet impingement loads, and missile impact loads).
	• External events (including rain, snow, flood, tornado, tornado-generated missiles and earthquake).
2.5	The RCB, including the liner plate, maintains its pressure boundary integrity at the design pressure.
2.6	The RCB is post-tensioned, pre-stressed concrete structure.
2.7	The RBA is separated from the SBs and the FB by barriers, doors, dampers, and penetrations that have a minimum 3-hour fire rating as shown on Figure 2.1.1-20.
2.8	The following are provided for water flow to the in-containment refueling water storage tank (IRWST):
	• As shown on Figure 2.1.1-4, RCB rooms which are adjacent to the IRWST contain wall openings slightly above the floor to allow water flow into the IRWST.
	• As shown on Figure 2.1.1-5, RCB rooms which are directly above the IRWST, contain trapezoidal-shaped openings in the floor to allow water flow into the IRWST. The floor openings are protected by weirs and trash racks to provide a barrier against material transport into the IRWST.
2.9	RBA penetrations that contain high-energy pipelines, as described in Table 2.1.1 7, have guard pipes.
2.10	Essential equipment required for plant shutdown located in the RB and RBA is located above the internal flood level or is designed to withstand flooding.
2.11	The reactor pressure vessel, reactor coolant pumps, pressurizer, steam generators, and interconnecting RCS piping are insulated with reflective metallic insulation.
2.12	The RB structures have key design dimensions that are confirmed after construction.

2.1.1.2 Safeguard Buildings

1.0 Description

The SBs are reinforced concrete, Seismic Category I, safety-related structures located around the perimeter of the RSB. The SBs are arranged to accommodate four safeguard divisions. SB 4 and 1 are located adjacent to the RSB as shown on Figure 2.1.1-2. SBs 2 and 3 are contained in a single structure separated by a common wall and are located adjacent to the RSB as shown on Figure 2.1.1-15 and Figure 2.1.1-17, SBs 2 and 3 are decoupled from the external hazards barrier by a gap between the SBs external walls and their uppermost ceilings. The SBs and the RSB share the reinforced concrete cylindrical shell from the basemat to elevation 0 feet, 0 inches; above this elevation the structures are physically separated by a seismic gap.

The SBs 2 and 3 structure has overall dimensions of approximately 92 feet out from the RSB wall by 180 feet long by 140 feet high. The SB 1 structure has overall dimensions of approximately 87 feet out from the RSB wall by 100 feet long by 115 feet high. The SB 4 structure has dimensions of approximately 87 feet out from the RSB wall by 100 feet long by 150 feet high.

The primary function of the SBs is to provide physical separation between redundant divisions of safeguard equipment. The main control room (MCR) and the technical support center (TSC) are located within SBs 2 and 3 as shown on Figure 2.1.1-16. The remote shutdown station (RSS), which is separate from the MCR, is located within SB 3 as shown on Figure 2.1.1-15. Also located in the SBs are the reinforced concrete main steam valve rooms. Stair towers are provided between the different SBs and the SBs and FB.

2.0 Key Design Features

- 2.1 The SB structures are Seismic Category I and are designed and constructed to withstand design basis loads, as specified below, without loss of structural integrity and safety-related functions.
 - Normal plant operation (including dead loads, live loads, lateral earth pressure loads, equipment loads, hydrostatic, hydrodynamic, and temperature loads).
 - Internal events (including internal flood loads, accident pressure loads, accident thermal loads, accident pipe reactions, and pipe break loads, including reaction loads, jet impingement loads, and missile impact loads).
 - External events (including rain, snow, flood, tornado, tornado-generated missiles and earthquake).
- 2.2 The as-installed basic configuration of the NI structures separates the four SBs by an internal hazards separation barrier so that the impact of internal hazards, including fire, flood, high energy break and missile impact, is contained within the SB of hazard origination. Figure 2.1.1-20 through Figure 2.1.1-37 identify the internal hazards separation barrier.
- 2.3 The SB structures have key design dimensions that are confirmed after construction.

3.0 Inspections, Tests, Analyses, and Acceptance Criteria

Table 2.1.1-10 lists the SBs ITAAC.

2.1.1.3 Fuel Building

1.0 Description

The FB is a reinforced concrete, Seismic Category I, safety-related structure. It extends approximately 58 feet out from the RSB wall and is approximately 160 feet long by 140 feet high. The FB is located adjacent to the RSB at 180 degrees as shown on Figure 2.1.1-2. As shown on Figure 2.1.1-11 and Figure 2.1.1-12 the FB is decoupled from the external hazards barrier by a gap between the FB external wall and its uppermost ceiling. The FB and the RSB share the reinforced concrete cylindrical shell from the basemat to elevation 0 feet 0 inches; above this elevation the structures are physically separated by a seismic gap. The primary function of the FB is to house new and spent fuel and to provide radiation protection during normal operation by shielding areas of higher radiation from areas of lower radiation. The FB supports the vent stack, a steel structure approximately 12 feet, 6 inches in diameter by 100 feet high located on top of the stair tower between the FB and SB 4. Stair towers are provided between the different SBs and the FB. These stair towers provide personnel access among the various elevations of the NI and tie together the buildings around the periphery of the RSB.

2.0 Key Design Features

- 2.1 The FB structures are Seismic Category I and are designed and constructed to withstand design basis loads, as specified below, without loss of structural integrity and safety-related functions.
 - Normal plant operation (including dead loads, live loads, lateral earth pressure loads, equipment loads, hydrostatic, hydrodynamic, and temperature loads).
 - Internal events (including internal flood loads, accident pressure loads, accident thermal loads, accident pipe reactions, and pipe break loads, including reaction loads, jet impingement loads, and missile impact loads).
 - External events (including rain, snow, flood, tornado, tornado-generated missiles and earthquake).
- 2.2 The as-installed basic configuration of the NI structures provides internal separation between independent divisions within the FB and separates the FB from other NI structures by an internal hazards separation barrier so that the impact of internal hazards, including fire, flood, high line energy break and missile impact, is contained within the FB division of hazard origination. Figure 2.1.1-20 and Figure 2.1.1-38 through Figure 2.1.1-44 identify the internal hazards separation barrier.
- 2.3 To provide adequate radiological protection, the Spent Fuel Storage Pool (SFSP) has a minimum depth from the bottom of the SFSP to the spent pool operating floor that is confirmed after construction.

3.0 Inspections, Tests, Analyses, and Acceptance Criteria

Table 2.1.1-11 lists the FB ITAAC.

Label	Section Descriptions	Region	Floor Elevation or Elevation Range	Key Dimension ⁽¹⁾⁽²⁾
F1	RB Foundation Basemat	Refer to Figure 2.1.1-9. Top of slab for the RB basemat is located at nominal RB floor Elevation -20 ft.		10 ft – 9 15/16 in
F2	SB Foundation Basemat	Refer to Figure 2.1.1-14, Figure 2.1.1-17, and Figure 2.1.1-19.	Top of slab for the SB basemat is located at nominal SB floor Elevation -31 ft.	9 ft – 10 1/8 in
F3	FB Foundation Basemat	Refer to Figure 2.1.1-12.	Top of slab for the FB basemat is located at nominal FB floor Elevation -31 ft.	9 ft – 10 1/8 in

Table 2.1.1-1—Key Dimensions of Nuclear Island Structures

Notes:

- 1) The foundation basemat typical thickness does not apply in locations where the top of slab for rooms extend below nominal floor elevation -31 ft (such as tank rooms, sump rooms, elevator shafts and air shafts).
- 2) Concrete forming and placement tolerances for construction of the RCB shall conform to the requirements of ACI 359; however, where not specifically addressed in ACI 359 these tolerances shall conform to the requirements of ACI 349 and ACI 117. Concrete forming and placement tolerances for construction of other safety related structures shall conform to the requirements of ACI 349 and ACI 117.

TABLE 2.1.1-2—KEY DIMENSIONS OF NUCLEAR ISLAND FOUNDATION FOOTPRINT

Label	Section Descriptions	Region	Key Dimension	Tolerance
D1	Distance from North edge of SB 2/3 to South edge of FB foundation base slabs.	Refer to Figure 2.1.1-1	344 ft - 10 in.	+/- 12 in.
D2	Distance from West edge of SB 1 to East edge of SB 4 foundation base slabs.	Refer to Figure 2.1.1-1	362 ft - 6 in.	+/- 12 in.
D3	Distance from site grade to FB roof elevations.	Refer to Figure 2.1.1-12	112 ft - 6 ½ in.	+/- 12 in. (1)
D4	Distance from site grade to top of FB foundation elevations.	Refer to Figure 2.1.1-12	30 ft - 6 in.	
D5	Distance from site grade to SB 1 roof elevations.	Refer to Figure 2.1.1-14	97 ft - 1 ½ in.	+/- 12 in. (1)
D6	Distance from site grade to top of SB 1 foundation elevations.	Refer to Figure 2.1.1-14	27 ft - 2 ½ in.	
D7	Distance from site grade to SB 2/3 roof elevations.	Refer to Figure 2.1.1-17	95 ft - 6 in.	+/- 12 in. (1)
D8	Distance from site grade to top of SB 2/3 foundation elevations.	Refer to Figure 2.1.1-17	27 ft - 2 ½ in.	
D9	Distance from site grade to SB 4 roof elevations.	Refer to Figure 2.1.1-19	97 ft - 1 ½ in.	+/- 12 in. (1)
D10	Distance from site grade to top of SB 4 foundation elevations.	Refer to Figure 2.1.1-19	27 ft - 2 ½ in.	

Notes:

1) Tolerance specified is for the total dimension from top of foundation to top of roof elevation. The key dimensions individually are permitted to utilize up to the total tolerance specified provided the combined total tolerance for the two key dimensions does not exceed the tolerance specified.

NI Structure	From Room(s) [KKS]	To Room(s) [KKS]	Door ⁽¹⁾	Wall	Slab ⁽²⁾	Elevation(s)	Minimum Thickness (feet)
SB 1 ⁽⁴⁾	1UJH01 007	1UJH01 026		Х		-31 feet	1.9
	1UJH01 001	1UJH01 025		Х		-31 feet	1.9
	1UJH01 001	1UJH01 021	X	Х		-31 feet	1.9
	1UJH01 010	UFA01 002		Х		-31 feet	1.9
	1UJH01 011	UFA01 002	X	Х		-31 feet	1.9
	1UJH05 013	UFA05 003	X	Х		-16 feet	1.9
	1UJH05 013	1UJH01 026		Х		-16 feet	1.9
	1UJH05 008	1UJH01 026		Х		-16 feet	1.9
	1UJH05 005	1UJH05 025		Х		-16 feet	1.9
	1UJH05 001	1UJH05 021	X	Х		-16 feet	1.9
	1UJH10 001	_			X	+/- 0 feet	1.6
	1UJH10 004	_			X	+/- 0 feet	1.4
SB 2 ⁽⁴⁾	2UJH01 005	2UJH01 040	X	Х		-31 feet	1.9
	2UJH01 005	2UJH01 020		Х		-31 feet	1.9
	2UJH01 010	2UJH01 020		Х		-31 feet	1.9
	2UJH01 011	2UJH01 024		Х		-31 feet	1.9
	2UJH05 005	2UJH05 040		Х		-16 feet	1.9
	2UJH05 006	2UJH05 020		Х		-16 feet	1.9
	2UJH05 010	2UJH05 025		Х		-16 feet	1.9
	2UJH10 002	_			X	+/- 0 feet	1.4
	2UJH10 005	_			X	+/- 0 feet	1.4
	2UJH10 006	_			X	+/- 0 feet	1.8

Table 2.1.1-3—Radiation Barriers (5 Sheets)

NI Structure	From Room(s) [KKS]	To Room(s) [KKS]	Door ⁽¹⁾	Wall	Slab ⁽²⁾	Elevation(s)	Minimum Thickness (feet)
	2UJH10 007	_			X	+/- 0 feet	1.4
	2UJK31 034	_			Х	+69 feet	1.64
	2UJK31 035	_			X	+69 feet	1.64
SB 3 ⁽⁴⁾	3UJH01 005	3UJH01 040	X	Х		-31 feet	1.9
	3UJH01 005	3UJH01 020		Х		-31 feet	1.9
	3UJH01 010	3UJH01 020		Х		-31 feet	1.9
	3UJH01 011	3UJH01 024		Х		-31 feet	1.9
	3UJH05 005	3UJH05 040		Х		-16 feet	1.9
	3UJH05 006	3UJH05 020		Х		-16 feet	1.9
	3UJH05 010	3UJH05 025		Х		-16 feet	1.9
	3UJH10 002	_			X	+/- 0 feet	1.4
	3UJH10 005	_			X	+/- 0 feet	1.4
	3UJH10 006	_			X	+/- 0 feet	1.8
	3UJH10 007	_			X	+/- 0 feet	1.4
	3UJK31 034	_			X	+69 feet	1.64
	3UJK31 035	_			X	+69 feet	1.64
SB 4 ⁽⁴⁾	4UJH01 007	4UJH01 026		Х		-31 feet	1.9
	4UJH01 001	4UJH01 025		Х		-31 feet	1.9
	4UJH01 001	4UJH01 021	X	X		-31 feet	1.9
	4UJH01 010	UFA01 054		Х		-31 feet	1.9
	4UJH01 011	UFA01 051	X	Х		-31 feet	1.9
	4UJH05 013	UFA05 051	Х			-16 feet	1.9

Table 2.1.1-3—Radiation Barriers (5 Sheets)

NI Structure	From Room(s) [KKS]	To Room(s) [KKS]	Door ⁽¹⁾	Wall	Slab ⁽²⁾	Elevation(s)	Minimum Thickness (feet)
	4UJH05 006	4UJH05 026		Х		-16 feet	1.9
	4UJH05 005	4UJH05 025		Х		-16 feet	1.9
	4UJH05 005	4UJH05 021		Х		-16 feet	1.9
	4UJH05 001	4UJH05 021	Х	Х		-16 feet	1.9
	4UJH10 002	_			X	+/- 0 feet	1.4
	4UJH10 004	_			X	+/- 0 feet	1.4
FB	UFA13 017	UFA15 022		Х		+12 feet	4.5
	UFA13 057	UFA15 022		Х		+12 feet	4.5
	UFA15 022	_			X	+12 feet	5.8
	UFA18 015	UFA19 021		Х		+24 feet	3.4
	UFA18 062	UFA19 021		Х		+24 feet	3.4
	UFA17 017	UFA15 022		Х		+24 feet	4.5
	UFA18 062	UFA15 022		Х		+24 feet	4.0
	UFA17 025	UFA15 022		Х		+24 feet	4.5
	UFA17 057	UFA15 022		Х		+24 feet	4.5
	UFA17 057 ⁽⁴⁾	UFA17 084		Х		+24 feet	1.0
	UFA21 015	UFA19 021		Х		+36 feet	3.4
	UFA21 099	UFA19 021		Х		+36 feet	3.4
	UFA21 099	UFA15 022		X		+36 feet	4.0
	UFA21 017	UFA15 022		Х		+36 feet	4.1
	UFA21 057	UFA15 022		Х		+36 feet	4.5
	UFA21 084	UFA16 023		Х		+36 feet	4.9

Table 2.1.1-3—Radiation Barriers (5 Sheets)

NI Structure	From Room(s) [KKS]	To Room(s) [KKS]	Door ⁽¹⁾	Wall	Slab ⁽²⁾	Elevation(s)	Minimum Thickness (feet)
	UFA21 082	UFA16 023		Х		+36 feet	4.9
	UFA23 015	UFA19 021		Х		+49 feet	3.4
	UFA23 018	UFA19 021		Х		+49 feet	3.4
	UFA23 014	UFA19 021		Х		+49 feet	3.4
	UFA23 014	UFA15 022		Х		+49 feet	4.1
	UFA24 017	UFA15 022		Х		+49 feet	4.1
	UFA24 085	_			X	+49 feet	1.3
	UFA29 090	_			X	+64 feet	1.3
NAB	UKA03 012	UKA03 020		Х		-21 feet	2.3
	UKA03 093	UKA06 067		Х		-11 feet	2.6
	UKA06 091	UKA06 066		Х		-11 feet	2.6
	UKA06 063	UKA06 066		Х		-11 feet	2.6
	UKA06 070	UKA06 067		Х		-11 feet	2.6
	UKA06 036	UKA03 020	X	Х		-11 feet	2.6
	UKA06 012	UKA03 020		Х		-11 feet	2.3
	UKA10 096	UKA06 067		Х		+/- 0 feet	2.6
	UKA10 096	UKA06 066		Х		+/- 0 feet	2.6
	UKA10 036	UKA03 020		Х		+/- 0 feet	2.6
	UKA10 012	UKA03 020		Х		+/- 0 feet	2.3
	UKA10 036	UKA03 020		Х		+12 feet	2.6
	UKA13 012	UKA03 020		Х		+12 feet	2.3
	UKA25 012	UKA20 001		Х		+50 feet	1.0

NI Structure	From Room(s) [KKS]	To Room(s) [KKS]	Door ⁽¹⁾	Wall	Slab ⁽²⁾	Elevation(s)	Minimum Thickness (feet)
RWB	UKS01 020	UKS01 065		Х		-31 feet 6 inches	2.8
	UKS03 063	UKS01 065		Х		-21 feet 4 inches	2.8
	UKS10 092	_			Х	0 feet 0 inches	2.2
	UKS10 093	_			Х	0 feet 0 inches	2.2
	UKS10 091	_			Х	0 feet 0 inches	2.2
	UKS10 058	_			Х	0 feet 0 inches	2.0
RCB ⁽⁴⁾	NA ⁽³⁾	RBA		Х		(3)	3.0

Table 2.1.1-3—Radiation Barriers (5 Sheets)

Notes:

- 1) Doors have the same radiation attenuation ability as the walls in which they are placed.
- 2) These are floor slabs.
- 3) This barrier is the entire RCB peripheral wall, which is adjacent to the RBA.
- 4) Barriers for response to accident missions.

Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
2.1 The as-installed basic configuration of the NI structures is as shown on Figure 2.1.1-1, and Figure 2.1.1-2.	a. An inspection of the as- installed basic configuration of the NI structures will be performed.	 a. The as-installed basic configuration of the NI structures is as follows: The RCB peripheral wall and dome is within the RSB as shown on Figure 2.1.1-9. SBs 1 and 4 are adjacent to the RSB as shown on Figure 2.1.1-1 and Figure 2.1.1-1 and Figure 2.1.1-2. SBs 2 and 3 are adjacent to the RSB as shown on Figure 2.1.1-1 and Figure 2.1.1-2. The FB is adjacent to the RSB as shown on Figure 2.1.1-1 and Figure 2.1.1-2. The FB is adjacent to the RSB as shown on Figure 2.1.1-1 and Figure 2.1.1-2. The RSB cylindrical wall is thicker above the point where this wall meets the FB and SB structures roofs as shown on Figure 2.1.1-9. The vent stack is located on top of the FB stair tower as shown on Figure 2.1.1-2. The main steam valve rooms are located in SBs 1 and 4 as shown on Figure 2.1.1-2. The MCR, RSS, and TSC are located in the SBs 2 and 3, with the MCR and RSS separated, as shown on Figure 2.1.1-16.

Table 2.1.1-4—Nuclear Island ITAAC (3 Sheets)

(Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
3.1	 The basic configuration of the NI structures includes: a. A continuous external hazards barrier b. Decoupling of SB 2/3 and FB internal structures from their outer external hazards barrier walls, at their exterior walls, at their exterior walls along the entire wall length and the upper ceiling, and from the RSB above elevation 0 feet, 0 inches. 	An inspection of the as-installed basic configuration of the NI structures will be performed.	 The basic configuration of the NI structures has the following features: a. The RB, SB 2/3, and the FB share a common boundary exterior surface at the SBs and FB structures roofs and walls to form a continuous external surface for the RB, SB 2/3 and FB structures as shown on Figure 2.1.1-2 and Figure 2.1.1-3. b. SB 2/3 and the FB are decoupled from the external hazards barrier by a minimum of 3 inches at the external SBs and FB walls along their entire length and the upper ceiling, and from the RSB above the 0' 0" elevation as shown on Figure 2.1.1-12, Figure 2.1.1-15 and Figure 2.1.1-17.
3.2	The NI site grade level is located between 12 inches and 18 inches below finish floor elevation at ground entrances.	An inspection of the as- installed NI site grade level will be performed.	The as-installed NI site grade level is located between 12 inches and 18 inches below finish floor elevation at ground entrances.
3.3	The NI structures include barriers for post-accident radiation shielding as described in Table 2.1.1-3.	An inspection of the as-installed NI accident radiation barriers will be performed.	The as-installed NI structures barriers that provide post- accident radiation shielding are as described in Table 2.1.1-3.
3.4	A pipe break hazards analyses summary exists that concludes the plant can be shut down safely and maintained in cold safe shutdown following a pipe break with loss of offsite power.	A pipe break hazards analysis will be performed.	 A pipe break hazards analyses summary exists that concludes the plant can be shut down safely and maintained in cold safe shutdown following a pipe break with loss of offsite power and confirms whether: Piping stresses in the RCB penetration area are within allowable stress limits.

Table 2.1.1-4—Nuclear Island ITAAC (3 Sheets)

(Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
			• Pipe whip restraints and jet shield designs can mitigate pipe break loads.
			• Loads on safety-related SSCs are within design load limits.
			• SSCs are protected or qualified to withstand the environmental effects of postulated failures.
3.5	Essential SSCs in RCB, SBs and FB rooms listed in Table 2.1.1-6 are protected from the dynamic effects of pipe breaks.	a. An analysis of essential SSCs in the rooms listed in Table 2.1.1-6 will be performed to determine the protective features required for the dynamic effects of pipe breaks.	a. Essential SSCs in rooms listed in Table 2.1.1-6 are protected from the dynamic effects of pipe breaks.
		b. An inspection of as-installed features providing protection for essential systems and components from the effects of piping failures versus construction drawings of protective features identified in the analysis of part (a) will be performed.	b. Essential SSCs in rooms listed in Table 2.1.1-6 are protected from the dynamic effects of pipe breaks and the features providing protection conform to the construction drawings.
3.6	Portions of NI Seismic Category I structures located below grade elevation are protected from external flooding by waterstops, water tight seals and waterproofing.	An inspection of the NI Seismic Category I structures will be performed.	Portions of NI Seismic Category I structures located below grade elevation are protected from external flooding by waterstops, water tight seals and waterproofing.
3.7	The NI structures have key design dimensions that are confirmed after construction.	An inspection of key dimensions of the as-installed NI structures will be performed. During construction, deviations from the approved design will be analyzed for design basis loads.	Deviations from the key dimensions and tolerances specified in Table 2.1.1-1 and Table 2.1.1-2 are reconciled and the as-installed NI structures will withstand the design basis loads without loss of structural integrity and safety related functions.

Table 2.1.1-4—Nuclear Island ITAAC (3 Sheets)

Table 2.1.1-5—Key Dimensions	of Reactor Building Structures (2 Sheets)
······································	

Label Section Descriptions		Region	Floor Elevation or Elevation Range	Key Dimension ⁽¹⁾	
S1	Slab Supporting Steam Generators and Reactor Coolant Pumps.	Refer to Figure 2.1.1-5.	Nominal elevation +5 ft.	6 ft – 6 ¾ in.	
S2	Slab Supporting Steam Generators and Reactor Coolant Pumps.	Refer to Figure 2.1.1-5.	Figure 2.1.1-5.Nominal elevation +5 ft.		
W1	Steam Generator and Reactor Coolant Pump Typical Cavity Walls.	Refer to Figure 2.1.1-6.	From nominal elevations +17 ft to +29 ft.	3 ft – 11 1/4 in.	
W2	Steam Generator and Reactor Coolant Pump Typical Cavity Walls.	Refer to Figure 2.1.1-6.	From nominal elevations +17 ft to +29 ft.	3 ft – 3 3/8 in.	
S3	Slab Supporting Pressurizer.	Refer to Figure 2.1.1-7.	Nominal elevation +49 ft.	2 ft - 9 7/16 in.	
S4	Slab Supporting Pressurizer.	Refer to Figure 2.1.1-7.	Nominal elevation +49 ft.	1 ft – 7 11/16 in.	
W3	Pressurizer Typical Cavity Wall.	Refer to Figure 2.1.1-7	From nominal elevations +21 ft to +92 ft.	2 ft – 7 $\frac{1}{2}$ in.	
S5	Operating floor area.	Refer to Figure 2.1.1-8.	Nominal floor elevation +64 ft.	2 ft – 7 ½ in.	
S6	Operating floor area.	Refer to Figure 2.1.1-8.	Nominal floor elevation +64 ft.	3 ft – 3 3/8 in.	
S7	Operating floor area.	Refer to Figure 2.1.1-8.	Nominal floor elevation +64 ft.	4 ft – 3 3/16 in.	
W4	Steam Generator and Reactor Coolant Pump Typical Cavity Walls.	Refer to Figure 2.1.1-8.	From nominal elevations +52 ft to +64 ft.	3 ft – 3 3/8 in.	
W5	Steam Generator and Reactor Coolant Pump Typical Cavity Walls.	Refer to Figure 2.1.1-8.	From nominal elevations +52 ft to +64 ft.	3 ft – 3 3/8 in.	

		-		
Label	Section Descriptions	Region	Floor Elevation or Elevation Range	Key Dimension ⁽¹⁾
W6	RSB Wall above FB Roof Connection	Refer to Figure 2.1.1-9.	The FB roof is at top of slab nominal elevation +112 ft.	5 ft – 10 7/8 in.
W7	RSB Wall below FB Roof Connection	Refer to Figure 2.1.1-9.	The FB roof is at top of slab nominal elevation +112 ft.	4 ft – 3 3/16 in.
S8	FB Roof at RSB Wall Connection	Refer to Figure 2.1.1-9.	The FB roof is at top of slab nominal elevation +112 ft.	5 ft 10 7/8 in.
W8	RSB Wall above SB 2/3 Roof Connection	Refer to Figure 2.1.1-9.	The SB 2/3 roof is at top of slab nominal elevation +94 ft.	5 ft – 10 7/8 in.
W9	RSB Wall below SB 2/3 Roof Connection	Refer to Figure 2.1.1-9.	The SB 2/3 roof is at top of slab nominal elevation +94 ft.	4 ft – 3 3/16 in.
S9	SB 2/3 Roof at RSB Wall Connection	Refer to Figure 2.1.1-9.	The SB 2/3 roof is at top of slab nominal elevation +94 ft.	5 ft 10 7/8 in.
G1	RCB Wall to Foundation Gusset Connection.	Refer to Figure 2.1.1-9 and Figure 2.1.1-10.	From bottom of RB foundation base slab to nominal elevation -8 ft.	Varies as shown on Figure 2.1.1-10.

Table 2.1.1-5—Key Dimensions of Reactor Building Structures (2 Sheets)

Notes:

1) Concrete forming and placement tolerances for construction of the RCB shall conform to the requirements of ACI 359; however, where not specifically addressed in ACI 359 these tolerances shall conform to the requirements of ACI 349 and ACI 117. Concrete forming and placement tolerances for construction of other safety related structures shall conform to the requirements of ACI 349 and ACI 117.

Room No.	Essential SSC Targets Protected Against Dynamic Effects of Pipe Breaks	
UJA07 018	Concrete Floor Above IRWST	
UJA11 024	Electrical Conduits Assumed to Contain SR Cables	
UJA15 002	Electrical Conduits Assumed to Contain SR Cables	
UJA15 005	Electrical Conduits Assumed to Contain SR Cables	
UJA15 006	Electrical Conduits Assumed to Contain SR Cables	
UJA15 009	Electrical Conduits Assumed to Contain SR Cables	
UJA15 013	Concrete Floor Above Numerous SR Components	
UJA15 014	Concrete Floor Above Numerous SR Components	
UJA15 015	Concrete Floor Above Numerous SR Components	
UJA15 016	Concrete Floor Above Numerous SR Components	
UJA29 003	Steam Generator Cubicle Wall	
UJA29 004	Steam Generator Cubicle Wall	
UJA29 007	Steam Generator Cubicle Wall	
UJA29 008	Steam Generator Cubicle Wall	
1UJK26 030	Concrete Wall Isolating FW and MS Pipes	
2UJE34 003	MS Valve Room Concrete Wall	
4UJH01 027	Concrete Ceiling With Essential SW Above	
4UJK26 030	Concrete Wall Isolating FW and MS Pipes	
UFA01 035	Electrical Conduits Assumed to Contain SR Cables	
UFA01 085	Electrical Conduits Assumed to Contain SR Cables	

Table 2.1.1-6—Rooms With Jet Shields and/or Pipe Whip Restraints

KKS	Penetration	Description
JEW	JMK10BQ001	Chemical & Volume Control System - Seal return
JEW	JMK10BQ004	Chemical & Volume Control System - Seal injection
KBA	JMK10BQ002	CVCS - Charging
KBA	JMK10BQ003	CVCS - Letdown
KPL	JMK60BQ005	Gaseous Waste Processing System
KPL	JMK60BQ006	Gaseous Waste Processing System
LAB	JMK60BQ109	Feedwater to SG1
LAB	JMK70BQ207	Feedwater to SG2
LAB	JMK80BQ306	Feedwater to SG3
LAB	JMK90BQ409	Feedwater to SG4
LBA	JMK10BQ110	Main Steam Piping System - Main Steam 1
LBA	JMK20BQ208	Main Steam Piping System - Main Steam 2
LBA	JMK30BQ307	Main Steam Piping System - Main Steam 3
LBA	JMK40BQ410	Main Steam Piping System - Main Steam 4
LCA	JMK10BQ304	Main Condensate Piping System - Condensate to Blowdown Coolers
LCA	JMK10BQ305	Main Condensate Piping System - Condensate from Blowdown Coolers
LCQ	JMK60BQ019	Steam Generator Blowdown System
LCQ	JMK60BQ205	Steam Generator Blowdown System

Table 2.1.1-7—RBA Penetrations that Contain High Energy Pipelines

	Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
2.1	Six rib support structures are provided at the bottom of the reactor cavity as shown on Figure 2.1.1-9.	Inspection of the reactor vessel cavity will be performed.	Six rib support structures are provided at the bottom of the reactor cavity as shown on Figure 2.1.1-9.
2.2	As shown on Figure 2.1.1-4, a flooding barrier consisting of several walls is provided to prevent ingress of water into the core melt spreading area. This barrier includes a watertight door that provides entry to the venting shaft of the spreading area.	Inspection of the RCB will be performed.	The RCB provides a spreading area water ingression barrier consisting of flooding walls and a water- tight door as shown on Figure 2.1.1-4.
2.3	Core melt cannot relocate to upper containment due to the existence of concrete barriers as shown on Figure 2.1.1-9.	Inspection of the RCB will be performed.	Concrete barriers are located within the RCB as shown on Figure 2.1.1-9.
2.4	 The RB structures are Seismic Category I and are designed and constructed to withstand design basis loads, as specified below, without loss of structural integrity and safety related functions. Normal plant operation (including dead loads, live loads, lateral earth pressure loads, equipment loads, hydrostatic, hydrodynamic, and temperature loads). Internal events (including internal flood loads, accident pressure loads, accident thermal loads, accident thermal loads, including reactions, and pipe break loads, including reaction loads, action loads, and missile impact loads). 	 a. An analysis of the RB structures for the design basis loads will be performed. b. During construction, deviations from the approved design will be analyzed for design basis loads. 	 a. The design of the RB will withstand the design basis loads without loss of structural integrity and safety related functions. b. Deviations from the design during construction are reconciled.
	• External events (including rain, snow, flood, tornado, tornado, tornado,		

Table 2.1.1-8—Reactor Building ITAAC (5 Sheets)

	Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
	missiles and earthquake).		
2.5	The RCB, including liner plate, maintains its pressure boundary integrity at the design pressure.	a. An analysis of the RCB liner plate will be performed per ASME Code Section III design requirements.	a. ASME Code Section III stress reports exist and conclude that the RCB liner plate meets ASME Code Section III design requirements.
		 b. Inspections will be conducted on the RCB liner plate to verify installation as specified on the liner plate construction drawings. 	b. The RCB liner plate has been installed as specified on the liner plate construction drawings.
		c. A Structural Integrity Test of the RCB, including the liner plate, will be performed.	c. The RCB, including the liner plate, maintains its integrity at the design pressure of at least 62 psig.
2.6	The RCB is a post-tensioned, pre-stressed concrete structure.	Inspection of the RCB will be performed.	The RCB contains post- tensioning tendons for pre- stressing the concrete structure.

	Commitment Wording		Inspections, Tests, Analyses		Acceptance Criteria
2.7	The RBA is separated from the SBs and the FB by barriers, doors, dampers, and penetrations that have a minimum 3-hour fire rating, as indicated on Figure 2.1.1- 20.	a.	A fire protection analysis will be performed.	a.	Completion of fire protection analysis that indicates barriers, doors, dampers, and penetrations that separate the RBA from the SBs and FB have a minimum 3-hour fire rating.
		b.	Inspection of as-installed conditions of barriers, doors, dampers, and penetrations, which separate the RBA from the SBs and FB, versus construction drawings of barriers, doors, dampers and penetrations as determined in the part (a) analysis will be performed.	b.	The as-installed configuration of fire barriers, doors, dampers, and penetrations that separate the RBA from the SBs and FB agrees with the associated construction drawings.
		c.	Testing of dampers that separate the RBA from the SBs and FB will be performed.	c.	Dampers close.
		d.	A post-fire safe shutdown analysis will be performed.	d.	Completion of the post-fire safe shutdown analysis indicates that at least one success path comprised of the minimum set of SSC is available for safe shutdown.

	Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
2.8	 The following provisions are provided for water flow to the IRWST: As shown on Figure 2.1.1-4, RCB rooms which are adjacent to the IRWST contain wall openings slightly above the floor to allow water flow into the IRWST. As shown on Figure 2.1.1-5, RCB rooms which are directly above the IRWST, contain trapezoidal-shaped openings in the floor to allow water flow into the IRWST. The floor openings are protected by weirs and trash racks to provide a barrier against material transport into the IRWST. 	Inspection of the RCB will be performed.	 The as-installed RCB configuration includes the following provisions: As shown on Figure 2.1.1-4, the two rooms labeled Areas for MHSI, LHSI & SAHRS Pipe Penetrations contain wall openings slightly above the floor to allow water flow into the IRWST. As shown on Figure 2.1.1-5 the rooms labeled RCP Oil Collection Tank Areas for each loop contain trapezoidal-shaped openings in the floor and are provided with weirs and trash racks.
2.9	RBA penetrations that contain high-energy pipelines, as described in Table 2.1.1-7, have guard pipes.	Inspection of the RBA will be performed.	RBA penetrations that contain high-energy pipelines, as described in Table 2.1.1-7, have guard pipes.

	Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
2.10	Essential equipment required for plant shutdown located in the RB and RBA is located above the internal flood level or is designed to withstand flooding.	a. An internal flood analysis for the RB and RBA will be performed.	a. Completion of the internal flood analysis for the RB and RBA indicates essential equipment required for plant shutdown is located above the internal flood level or is designed to withstand flooding.
		b. A walkdown of the essential equipment in the RB and RBA required for plant shutdown will be performed.	b. Essential equipment in the RB and RBA required for plant shutdown is located above the internal flood level or is designed to withstand flooding.
2.11	The reactor pressure vessel, reactor coolant pumps, pressurizer, steam generators, and interconnecting RCS piping are insulated with reflective metallic insulation.	An inspection will be performed.	The reactor pressure vessel, reactor coolant pumps, pressurizer, steam generators, and interconnecting RCS piping are insulated with reflective metallic insulation.
2.12	The RB structures have key design dimensions that are confirmed after construction.	An inspection of key dimensions of the as-installed RB structures will be performed. During construction, deviations from the approved design will be analyzed for design basis loads.	Deviations from the key dimensions and tolerances specified in Table 2.1.1-5 are reconciled and the as-installed RB structures will withstand the design basis loads without loss of structural integrity and safety related functions.
2.13	The RCB has a minimum containment free volume that is confirmed after construction.	During construction, dimensional deviations from the RCB and RB internal structures concrete outline drawings will be analyzed for impact on the minimum containment free volume value.	The final RCB minimum containment free volume is greater than or equal to 2.755 $\times 10^6$ ft ³ after all volumetric changes resulting from dimensional deviations to the RCB and RB internal structures concrete outline drawings have been reconciled.

Table 2.1.1-8—Reactor Building	ITAAC (5 Sheets)
--------------------------------	------------------

Table 2.1.1-9—Key Dimensions of Safeguard Building Structures

Label	Section Descriptions	Region	Floor Elevation or Elevation Range	Key Dimension ⁽¹⁾
W10	External Walls Below Grade	Refer to Figure 2.1.1-13 and Figure 2.1.1-18.	From nominal elevations -31 ft to 0 ft	4 ft – 11 in.

Notes:

1) Concrete forming and placement tolerances for construction shall conform to the requirements of ACI 349 and ACI 117.

	Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
2.1	The SB structures are Seismic Category I and are designed and constructed to withstand design basis loads, as specified below, without loss of structural	 a. An analysis of the SB structures for the design basis loads will be performed. b. During construction 	 a. The design of the SB structures will withstand the design basis loads without loss of structural integrity and safety related functions. b. Deviations from the design
	 integrity and safety related functions. Normal plant operation (including dead loads, live loads, lateral earth pressure loads, equipment loads, hydrostatic, hydrodynamic, and temperature loads). Internal events (including internal flood loads, accident pressure loads, accident thermal loads, accident pipe reactions, and pipe break loads, including 	 b. During construction, deviations from the approved design will be analyzed for design basis loads. 	 b. Deviations from the design during construction are reconciled.
	reaction loads, jet impingement loads, and missile impact loads).		
	• External events (including rain, snow, flood, tornado, tornado- generated missiles and earthquake).		

Table 2.1.1-10—Safeguard Buildings ITAAC (3 Sheets)

	Commitment Wording		Inspections, Tests, Analyses		Acceptance Criteria
2.2	The as-installed basic configuration of the NI structures separates the four SBs by an internal hazards separation barrier so that the impact of internal hazards, including fire, flood, high energy line break and	a.	An inspection of the as- installed basic configuration of the SBs structures will be performed. During construction, deviations from the approved design will be analyzed for design basis internal hazards.	a.	The as-installed basic configuration of the SBs structures provides separation as indicated on Figure 2.1.1-20 through Figure 2.1.1-37.
	missile impact, is contained within the SB of hazard origination. Figure 2.1.1-20 through Figure 2.1.1-37 identify the internal hazards separation barrier.	b.	A fire protection analysis will be performed.	b.	Completion of fire protection analysis that indicates barriers, doors, dampers, and penetrations providing separation have a minimum 3-hour fire rating and mitigate the propagation of smoke to the extent that safe shutdown is not adversely affected.
		C.	Inspection of the as-installed conditions of barriers, doors, dampers and penetrations existing within the internal hazards protective barriers separating the four SBs will be performed.	C.	The as-installed configuration of fire barriers, doors, dampers and penetrations that separate the four SBs agrees with the associated construction drawings.
		d.	Testing of dampers that separate the four SBs will be performed.	d.	Dampers close.
		e.	A post-fire safe shutdown analysis will be performed.	e.	Completion of the post-fire safe shutdown analysis indicates that at least one success path comprised of the minimum set of SSC is available for safe shutdown.
		f.	An internal flooding analysis for the SBs will be performed.	f.	Completion of the internal flooding analysis for the SBs indicates that the impact of internal flooding is contained within the SB of origin.

Table 2.1.1-10—Safeguard Buildings ITAAC (3 Sheets)

Commitment Wording		Inspections, Tests, Analyses	Acceptance Criteria	
		g. A walkdown of the SB features identified in the internal flooding analysis in part (f) that maintain the impact of the internal flooding to the SB of origin will be performed.	g. The SB flood protection features that maintain the impact of internal flooding to the SB of origin are installed and agree with the associated construction drawings.	
2.3	The SB structures have key design dimensions that are confirmed after construction.	An inspection of key dimensions of the as-installed SB structures will be performed. During construction, deviations from the approved design will be analyzed for design basis loads.	The as-installed SB dimensions conform to the key dimensions specified in Table 2.1.1-9. Deviations from the approved design are reconciled.	

Table 2.1.1-10—Safeguard Buildings ITAAC (3 Sheets)

	Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
2.1	 The FB structure is Seismic Category I and is designed and constructed to withstand design basis loads, as specified below, without loss of structural integrity and safety related functions. Normal plant operation (including dead loads, live loads, lateral earth pressure loads, equipment loads, hydrostatic, hydrodynamic, and temperature loads). Internal events (including internal flood loads, accident pressure loads, accident pressure loads, accident pipe reactions, and pipe break loads, including reaction loads, jet impingement loads, and missile impact loads). External events (including rain, snow, flood, tornado, tornado- generated missiles and earthquake. 	 a. An analysis of the FB structure for the design basis loads will be performed. b. During construction, deviations from the approved design will be analyzed for design basis loads. 	 a. The design of the FB structures will withstand the design basis loads without loss of structural integrity and safety related functions. b. Deviations from the design during construction are reconciled.
2.2	The as-installed basic configuration of the NI structures provides internal separation between independent divisions within the FB and separates the FB from other NI structures by an internal hazards separation barrier	a. An inspection of the as- installed basic configuration of the FB and surrounding NI structures will be performed. During construction, deviations from the approved design will be analyzed for design basis internal hazards.	a. The as-installed basic configuration of the FB and surrounding NI structures provides separation as indicated on Figure 2.1.1-20 and Figure 2.1.1-38 through Figure 2.1.1-44.

Commitment Wording	Inspections, Tests, Analyses	Acceptance Criteria
so that the impact of internal hazards, including fire, flood, high line energy break and missile impact, is contained within the FB division of hazard origination. Figure 2.1.1-20 and Figure 2.1.1-38 through Figure 2.1.1-44 identify the internal hazards separation	b. A fire protection analysis will be performed.	 b. Completion of an analysis that indicates barriers, doors, dampers, and penetrations providing separation have a minimum 3-hour fire rating and mitigate the propagation of smoke to the extent that safe shutdown is not adversely affected.
barrier.	c. Inspection of the as-installed conditions of barriers, doors, dampers, and penetrations that separate the FB from other NI structures will be performed.	c. The as-installed configuration of barriers, doors, dampers, and penetrations providing separation agrees with the associated construction drawings.
	d. Testing of dampers that separate the FB from other NI structures will be performed.	d. Dampers close.
	e. A post-fire safe shutdown analysis will be performed.	e. Completion of the post-fire safe shutdown analysis indicates that at least one success path comprised of the minimum set of SSC is available for safe shutdown.
	f. An internal flooding analysis for the FB will be performed.	f. Completion of the internal flooding analysis for the FB indicates that the impact of internal flooding is contained within the FB division of origin.
	g. A walkdown of the FB features identified in the internal flooding analysis that maintain the impact of the internal flooding to the FB of origin will be performed.	g. The FB flood protection features that maintain the impact of internal flooding to the FB division of origin are installed and agree with the associated construction drawings.

Table 2.1.1-11—Fuel Building ITAAC (3 Sheets)

Commitment Wording		Inspections, Tests, Analyses	Acceptance Criteria	
2.3	To provide adequate radiological protection, the SFSP has a minimum depth from the bottom of the SFSP to the spent pool operating floor that is confirmed after construction.	An inspection of the SFSP will be performed.	The as-installed SFSP has a minimum depth of 47 feet, 2 inches as measured from the bottom of the SFSP to the spent fuel pool operating floor.	

Table 2.1.1-11—Fuel Building ITAAC (3 Sheets)