## ATTACHMENT (2)

CALCULATION NO. CA07018, REVISION NO. 00001, MAIN FEEDWATER PRESSURE INPUT UNCERTAINTY TO CALDON CHECKPLUS LEFM

## ATTACHMENT 1, CALCULATION COVER SHEET



# MAIN FEEDWATER PRESSURE INPUT UNCERTAINTY TO CALDON CHECKPLUS LEFM 

## For Calvert Cliffs Nuclear Power Plant <br> Units 1 \& 2

## Calculation No. CCN-IC-09002 Revision 1

Prepared By Hurst Technologies, Corp.

## Project: CCNAKT

Client: Constellation Nuclear<br>Calvert Cliffs Nuclear Power Plant 1650 Calvert Cliffs Parkway<br>Lusby, Maryland 20657-4702

| Prepared By: | Kirk R. Melson | Ruik R. Jrelain | Date: | 4/15/09 |
| :---: | :---: | :---: | :---: | :---: |
| Checked By: | R.A. Hunter | Rolut as zursteo | Date: | 4/15/09 |
| Reviewed By: | R.A. Hunter | Rolent as zurntes | Date: | 4/15/09 |
| Approved By: | W.G. Wellborn | LDD | Date: | 4/15/09 |

## TABLE OF CONTENTS

$1.0 \quad$ PURPOSE ..... 5
2.0 COMPONENT LISTING .....  .5
3.0 FIGURE ..... 6
4.0 METHOD OF ANALYSIS .....  6
5.0 DESIGN INPUTS ..... 7
6.0 ASSUMPTIONS ..... 16
7.0 REFERENCES ..... 17
8.0 IDENTIFICATION OF COMPUTER CODES ..... 17
9.0 CALCULATION ..... 18
10.0 CONCLUSIONS ..... 20
ATTACHMENTS ..... 21
Attachment 1 - Excerpt from Rosemount Product Data Sheet 00813-0100- 4001, Revision HA, March 2008 ..... [4 pages]
Attachment 2 - Specifications for Analog Devices Single-Channel Signal Conditioning Module 5B32, printed from the http://analog.com website on 4/9/2009, including email clarification, dated 4/13/2009
Attachment 3 - Excerpt from Burr-Brown Product Data Sheet PDS-1304B for ADS 78254 Channel, 16 -Bit Sampling CMOS A/D Converter, October 1997 ..... [3 pages]
Attachment 4-Burr-Brown Uncertainty Analysis for Model ADS7825 A/D Converter for 0-5 Volt Input ..... [4 pages]

## RECORD OF REVISIONS

| Rev. | Date | Pages Involved | Description | Originator |
| :---: | :---: | :---: | :--- | :---: |
| 0 | $02 / 02 / 09$ | All | Initial Issue | R.A. Hunter |
| 1 | $04 / 15 / 09$ | All | Revised to include the <br> uncertainties of the LEFM system, | K. R. Melson |
|  |  |  | to address the total uncertainty of <br> the digital indication. Changed the <br> approach for determination of |  |
|  |  |  | PMEb. Consolidated Assumptions <br> 6.1 and 6.5 into Assumption 6.1. |  |

### 1.0 PURPOSE

The purpose of this calculation is to determine the total loop uncertainty of Main Feedwater pressure digital indications for the Caldon CheckPlus LEFM and Plant Computer.

Uncertainties are calculated for normal operating (non-harsh) conditions only.

### 2.0 COMPONENT LISTING

This calculation applies to the following instruments:

## Main Feedwater Pressure Transmitters

| 1-PT-1131A, B | 1-PT-1141A, B |
| :--- | :--- |
| 2-PT-1131A, B | 2-PT-1141A, B |

I/E Converters

1I/E1C209A, B
2I/E2C209A, B
1I/E1C209E, F
2I/E2C209E, F

A/D Converters
1M/P1C209A1, B1
1M/P1C209A2, B2
2M/P2C209A1, B1 2M/P2C209A2, B2

## LEFM Electronic Unit

1CPU1C209A1, B1
1CPU1C209A2, B2
2CPU2C209A1, B1
2CPU2C209A2, B2

### 3.0 FIGURE



Note: The loop configuration is determined from Reference 7.9 and Assumption 6.9.

### 4.0 METHOD OF ANALYSIS

This calculation is performed in accordance with ES-028, Instrument Loop Uncertainty / Setpoint Methodology. This calculation utilizes the Square Root Sum of the Squares (SRSS) methodology when all variables are random, independent and normally distributed. Bias uncertainties are combined algebraically with random uncertainties.

This calculation determines device uncertainties for the Main Feedwater pressure transmitters, I/E converters, and A/D converters and then combines these uncertainties to determine the total loop uncertainty for the digital indication of the LEFM. The error in this digital indication is the same as in the plant computer, since the signal is passed to the plant computer via a digital link.

### 5.0 DESIGN INPUTS

### 5.1 MAIN FEEDWATER PRESSURE SENSOR CONSIDERATIONS (Subscript: s)

| TAG NUMBER: | 1(2)-PT-1131A, B | $[7.2]$ |
| :--- | :---: | :---: |
| MANUFACTURER: | 1(2)-PT-1141A, B |  |
| MODEL NUMBER: | Rosemount | $[7.2]$ |
| SPAN: | 3051 CG 5 | $[7.2]$ |
| UPPER RANGE LIMIT | 0 to 1300 psig | $[7.2]$ |
| (URL) | 2000 psig | $[7.1]$ |

5.1.1 Per References 7.1, the Reference Accuracy for Range Code 5 transmitters with a turn down ratio (ratio of URL to Span) of less than $10: 1$ is $\pm 0.065 \%$ Span. Per Reference 7.1, URL for these transmitters is 2000 psig. Per Reference 7.2, span for these transmitters is 1300 psig , yielding a turn down ratio of 1.54:1 (result of $2000 / 1300$ ). Therefore, the sensor Reference Accuracy ( $\mathrm{RA}_{s}$ ) is given as:

$$
R A_{S}= \pm 0.065 \% \text { Span }
$$

5.1.2 Per Reference 7.2, the setting tolerance for these sensors is $\pm 0.25 \%$ Span. Therefore, the Sensor Setting Tolerance ( $\mathrm{ST}_{\mathrm{S}}$ ) is:

$$
\mathrm{ST}_{\mathrm{S}}= \pm 0.250 \% \text { Span }
$$

5.1.3 For conservatism, and to provide flexibility in the choice of test equipment, the Sensor Measurement and Test Equipment Effect (MTE M $_{S}$ ) is set equal to the sensor setting tolerance $\left(\mathrm{ST}_{\mathrm{S}}\right)$. Therefore,

$$
\mathrm{MTE}_{S}= \pm 0.250 \% \text { Span }
$$

5.1.4 The Drift term $\left(\mathrm{DR}_{\mathrm{S}}\right)$ is given in Reference 7.1 as $\pm 0.125 \%$ URL for 5 years with temperature variation limited to within $\pm 50^{\circ} \mathrm{F}$, and up to 1000 psi line pressure. Reference 7.1 shows URL for range code 5 transmitters is 2000 psi. Per Reference 7.3, Turbine Building Maximum / Minimum design temperatures are $110^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$, respectively, ensuring that maximum temperature variation is bounded by $\pm 50^{\circ} \mathrm{F}$. Line pressure effects are only applicable to differential pressure transmitters. Therefore, the Sensor Drift $\left(\mathrm{DR}_{\mathrm{s}}\right)$ is given as:

$$
\begin{aligned}
& \mathrm{DR}_{\mathrm{S}}= \pm\left(\frac{0.125 \% \times 2000 \mathrm{psi}}{1300 \mathrm{psi}} \times 100 \% \text { Span } \times \frac{50^{\circ} \mathrm{F}}{50^{\circ} \mathrm{F}}\right) \% \text { Span } \\
& \mathrm{DR}_{\mathrm{S}}= \pm 0.192 \% \text { Span }
\end{aligned}
$$

5.1.5 Per Reference 7.1, the Sensor Temperature Effect $\left(\mathrm{TE}_{S}\right)$ is given as $\pm(0.0125 \%$ URL $+0.0625 \%$ Span $)$ per $50^{\circ} \mathrm{F}$ for Range Code 5. Per Reference 7.1, URL for range code 5 transmitters is 2000 psi. Per Reference 7.3, Turbine Building Minimum / Maximum design temperatures are $60^{\circ} \mathrm{F} / 110^{\circ} \mathrm{F}$, respectively. Using Minimum / Maximum temperatures for calibration temperature and normal operating temperature ensures that maximum temperature variation ( $\pm 50^{\circ} \mathrm{F}$ ) is considered in determination of TES. Therefore, the Sensor Temperature Effect ( $\mathrm{TE}_{\mathrm{S}}$ ) is given as:

$$
\begin{aligned}
& \mathrm{TE}_{\mathrm{S}}= \pm(0.0125 \% \mathrm{URL}+0.0625 \% \mathrm{Span}) \times \frac{50^{\circ} \mathrm{F}}{50^{\circ} \mathrm{F}} \\
& \mathrm{TE}_{\mathrm{S}}= \pm\left[\frac{0.0125 \% \times 2000 \mathrm{psi}}{1300 \mathrm{psi}}+0.0625 \% \mathrm{Span}\right] \times \frac{50^{\circ} \mathrm{F}}{50^{\circ} \mathrm{F}} \\
& \mathrm{TE}_{S}= \pm 0.082 \% \text { Span }
\end{aligned}
$$

5.1.6 Per Reference 7.1, Sensor Power Supply Effect (PSE ${ }_{\text {S }}$ ) is less than $\pm 0.005 \%$ Span per volt variation. Reference 7.4 states that, for DC power supplies, considering a 5 volt variation in power supply voltage is conservative. Therefore $\mathrm{PSE}_{S}$ is determined as follows:

$$
\mathrm{PSE}_{\mathrm{S}}= \pm \frac{0.005 \% \text { Span }}{\text { voltDC }} \mathrm{X} 5 \text { voltsDC }
$$

$$
\mathrm{PSE}_{S}= \pm 0.025 \% \text { Span }
$$

Per Reference 7.4, uncertainties less than $\pm 0.050 \%$ are considered negligible. Therefore,

$$
\mathrm{PSE}_{S}=\mathrm{N} / \mathrm{A}
$$

5.1.7 Per Reference 7.1, Sensor Vibration Effect (VEs) is negligible except at resonant frequencies. When at resonant frequencies, vibration effect is less than $\pm 0.1 \%$ of URL per g when tested between 15 and 2000 Hz in any axis relative to pipemounted process conditions. Per Assumption 6.2, vibration is bounded by 1 g at the test conditions described. Per Reference 7.1, URL for range code 5 transmitters addressed in this calculation is 2000 psi. Reference 7.2 shows calibrated span for these transmitters is 1300 psig. Therefore VE $_{S}$ is determined as follows:

$$
\mathrm{VE}_{\mathrm{S}}= \pm \frac{0.1 \% \mathrm{X} 2000 \mathrm{psi}}{1300 \mathrm{psi}}
$$

$$
\mathrm{VE}_{S}= \pm 0.154 \% \text { Span }
$$

5.1.8 Per Reference 7.1, Sensor RFI Effects (RFIS) is $\pm 0.1 \%$ Span from 20 to 1000 MHz and for field strength up to $30 \mathrm{~V} / \mathrm{m}$. Per Assumption 6.3, transmitters addressed in this calculation are not exposed to RFI conditions beyond the limits stated in the specification. Therefore:

$$
R F I_{S}= \pm 0.100 \% \text { Span }
$$

### 5.2 I/E CONVERTER CONSIDERATIONS (Subscript: $\mathrm{p}_{1}$ )

| TAG NUMBER: | 1I/E1C209A, B, E, F |  |
| :--- | :---: | :--- |
|  | 2I/E2C209A, B, E, F |  |
| MANUFACTURER: | Analog Devices |  |
| MODEL NUMBER: | 5 B 32 |  |
| SPAN: | 4 to 20 mAdc | $[7.1]$ |
| PROCESS SPAN: | $(0$ to 1300 psig$)$ | $[7.2]$ |
| OUTPUT SPAN: | $0-5 \mathrm{Vdc}$ | $[7.6]$ |

5.2.1 Per Reference 7.6, the initial accuracy at $+25^{\circ} \mathrm{C}$ for the $\mathrm{I} / \mathrm{E}$ Converters is $\pm 0.05 \%$ Span $\pm 0.05 \%$ of $I_{z}$. The nonlinearity is defined as $\pm 0.02 \%$ Span. The accuracy of the input resistance ( $20 \Omega$ ) is shown to be $\pm 0.1 \%$. The accuracy of the input resistance is converted to percent of span at the highest input reading. This calculation conservatively computes Reference Accuracy, based on the combination of all these terms, via addition. The Converter 1 Reference Accuracy ( $\mathrm{RA}_{\mathrm{P}_{1}}$ ) is computed as follows.

$$
\begin{aligned}
& \mathrm{ACC}_{\text {RES }}=\text { Accuracy of Input Re sis tance } \\
& \mathrm{ACC}_{\text {RES }}= \pm 0.1 \% \times\left(\frac{20 \mathrm{mAdc}}{(20 \mathrm{mAdc}-4 \mathrm{mAdc})}\right)= \pm 0.125 \% \text { Span } \\
& \mathrm{I}_{\mathrm{Z}}=4 \mathrm{mAdc} \\
& 0.05 \% \text { of } \mathrm{I}_{\mathrm{Z}}=0.0005 \times 4 \mathrm{mAdc} \times\left(\frac{100 \% \text { Span }}{(20 \mathrm{mAdc}-4 \mathrm{mAdc})}\right)=0.0125 \% \text { Span } \\
& \mathrm{A}_{I N T T}=\text { Initial Accuracy } \\
& \mathrm{A}_{I N T T}= \pm 0.05 \% \text { Span } \pm 0.05 \% \text { of } \mathrm{I}_{\mathrm{Z}}(\text { Conservatively Add }) \\
& \mathrm{A}_{I N T T}= \pm 0.05 \% \text { Span }+0.0125 \% \text { Span }= \pm 0.0625 \% \text { Span } \\
& \mathrm{RA}_{P 1}= \pm(0.0625+0.02+0.125) \\
& \mathrm{RA}_{P 1}= \pm 0.208 \% \text { Span }
\end{aligned}
$$

5.2.2 Per Reference 7.4, the setting tolerance for these converters is set equal to the Reference Accuracy, since MCDS sheets do not yet exist. Therefore, the Converter 1 Setting Tolerance ( $\mathrm{ST}_{\mathrm{P} 1}$ ) is:

$$
\mathrm{ST}_{\mathrm{PI}}= \pm 0.208 \% \text { Span }
$$

5.2.3 For conservatism, and to provide flexibility in the choice of test equipment, the Sensor Measurement and Test Equipment Effect ( $\mathrm{MTE}_{\mathrm{p}_{1}}$ ) is set equal to the Converter 1 Setting Tolerance ( $\mathrm{ST}_{\mathrm{P} 1}$ ). Therefore,

$$
\mathrm{MTE}_{\mathrm{Pl}}= \pm 0.208 \% \text { Span }
$$

5.2.4 Per Assumption 6.6, Reference 7.6 does not provide a time-dependent drift specification for the I/E converter, and no historical data is available for analysis. This device is a modern electronic module used for high accuracy situations; and drift should be near zero. Therefore, the drift term for these converters is conservatively set equal to the Reference Accuracy term. The Converter 1-Drift $\left(\mathrm{DR}_{\mathrm{P} 1}\right)$ is defined:

$$
\mathrm{DR}_{\mathrm{Pl}}= \pm 0.208 \% \text { Span }
$$

5.2.5 Per Reference 7.6, there are four (4) terms relating to temperature effect. This calculation conservatively computes temperature effect, based on the combination of all these terms, via addition. Note that the LEFM $V+$ cabinets are airconditioned and maintained within an approximate $10^{\circ} \mathrm{F}$ band, however, for conservatism, this calculation computes the $I / E$ converter temperature effect, based on room temperatures without air conditioning. Per Reference 7.3, Turbine Building Minimum / Maximum design temperatures are $60^{\circ} \mathrm{F} / 110^{\circ} \mathrm{F}$, respectively. Using Minimum / Maximum temperatures for calibration temperature and normal operating temperature ensures that maximum temperature variation ( $\pm 50^{\circ} \mathrm{F}$ ) is considered in determination of TE Pl . Therefore, the Converter 1 Temperature Effect ( $\mathrm{TE}_{\mathrm{P} 1}$ ) is computed as follows:

$$
\begin{aligned}
& \mathrm{TE}_{10}=\text { Input Offset vs. Temp } \\
& T E_{10}= \pm 0.0025 \% \text { of } \mathrm{Iz} /{ }^{\circ} \mathrm{C} \times\left(\frac{4 \mathrm{mAdc}}{(20 \mathrm{mAdc}-4 \mathrm{mAdc})}\right)= \pm 0.000625 \% \text { Span } /{ }^{\circ} \mathrm{C} \\
& T E_{o o}=\text { Output Offset vs. Temp } \\
& T E_{\text {oo }}= \pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \times\left(\frac{100 \% \text { Span }}{5 \mathrm{Vdc}}\right) \times\left(\frac{1 \mathrm{Vdc}}{1,000,000 \mu \mathrm{Vdc}}\right)= \pm 0.0004 \% \text { Span } /{ }^{\circ} \mathrm{C} \\
& T E_{G}=\text { Gain vs. Temp } \\
& T E_{G}= \pm 0.0025 \% \text { of Reading } /{ }^{\circ} \mathrm{C} \text { (Considered Applied as Input Specification) } \\
& T E_{G}= \pm 0.0025 \% \text { Span } /{ }^{\circ} \mathrm{C} \times\left(\frac{20 \mathrm{mAdc}}{(20 \mathrm{mAdc}-4 \mathrm{mAdc})}\right)= \pm 0.003125 \% \text { Span } /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{TE}_{\mathrm{SR}}=\text { Stability vs. Temp for Input Resistor } \\
& T E_{S R}= \pm 0.001 \% /{ }^{\circ} \mathrm{C} \times\left(\frac{20 \mathrm{mAdc}}{(20 \mathrm{mAdc}-4 \mathrm{mAdc})}\right)= \pm 0.00125 \% \text { Span } /{ }^{\circ} \mathrm{C} \\
& T E= \pm\left(T E_{1 O}+T E_{0 O}+T E_{G}+T E_{S R}\right) \\
& T E= \pm(0.000625+0.0004+0.003125+0.00125) \\
& T E_{P 1}= \pm 0.0054 \% \text { Span } /{ }^{\circ} \mathrm{C} \times\left(\frac{1^{\circ} \mathrm{C}}{1.8^{\circ} \mathrm{F}}\right) \times 50^{\circ} \mathrm{F} \\
& \mathrm{TE}_{\mathrm{PI}}= \pm 0.150 \% \text { Span }
\end{aligned}
$$

5.2.6 Per Reference 7.6, the Converter 1 Power Supply Effect ( PSE $_{P_{1}}$ ) is defined by power supply sensitivity of $\pm 2 \mu \mathrm{~V} / \mathrm{Vs} \%$, with a required power supply voltage of $5 \mathrm{Vdc} \pm 5 \%$. Conservatively using the worst case voltage variation specified for the module of $\pm 5 \%$ (Assumption 6.7), the PSE $_{\text {PI }}$ is determined as follows:

$$
\begin{aligned}
& \mathrm{PSE}_{\mathrm{P}_{1}}= \pm\left(\frac{2 \mu \mathrm{Vdc}}{\mathrm{~V}_{\mathrm{S}} \%}\right) \times 5 \% \times\left(\frac{1 \mathrm{Vdc}}{1,000,000 \mu \mathrm{Vdc}}\right) \times\left(\frac{100 \% \text { Span }}{5 \mathrm{Vdc}}\right) \\
& \text { PSE }_{\text {P1 }}= \pm 0.0002 \% \text { Span }
\end{aligned}
$$

Per Reference 7.4, uncertainties less than $\pm 0.050 \%$ Span are considered negligible. Therefore,

$$
\mathrm{PSE}_{\mathrm{Pl}}=\mathrm{N} / \mathrm{A}
$$

5.2.7 Per Reference 7.6, the Converter 1 RFI Effect $\left(\mathrm{RFI}_{\mathrm{PI}}\right)$ is defined by RFI Susceptibility, $\pm 0.5 \%$ Span error @ $400 \mathrm{MHz}, 5$ Watts, at 3 feet. Per Assumption 6.8, the converters addressed in this calculation are not exposed to RFI conditions beyond the limits stated in the specification. Therefore:

$$
\mathrm{RFI}_{\mathrm{Pl}}= \pm 0.500 \% \text { Span }
$$

### 5.3 A/D CONVERTER CONSIDERATIONS (Subscript: p2)

| TAG NUMBER: | 1M/P1C209A1, A2, B1, B2 |  |
| :--- | :---: | :--- |
|  | 2M/P2C209A1, A2, B1, B2 |  |
| MANUFACTURER: | Burr Brown |  |
| MODEL NUMBER: | ADS7825 |  |
| SPAN: | 0 to 5 Vdc |  |
| PROCESS SPAN: | $(0$ to 1300 psig $)$ | $[7.6]$ |

5.3.1 Reference 7.7 provides the uncertainty specifications for the Burr Brown A/D converters. However, Reference 7.8 is the accuracy analysis as provided by the vendor for these devices, when using an input span of 0 to 5 Vdc . The output of this analysis is the overall accuracy for the A/D converters. Per Reference 7.8, the overall uncertainty value is derived as $\pm 17.5 \mathrm{mVdc}$. The Overall Accuracy of the $\mathrm{A} / \mathrm{D}$ Converter $\left(\mathrm{ACC}_{\mathrm{P} 2}\right)$ is computed as follows.

$$
\begin{aligned}
& A C C_{P 2}= \pm 17.5 \mathrm{mVdc} \times\left(\frac{100 \% \mathrm{Span}}{5 \mathrm{Vdc}}\right) \times\left(\frac{1 \mathrm{Vdc}}{1000 \mathrm{mVdc}}\right) \\
& A C C_{P 2}= \pm 0.350 \% \text { Span }
\end{aligned}
$$

In order to ensure that adequate temperature effects, etc., have been considered, an extra degree of conservatism is added, and $\pm 0.400 \%$ Span will be used for the Total Device Uncertainty of the A/D Converter (TDUP2). (Note that the LEFM $\sqrt{ }+$ cabinets are air-conditioned and maintained within an approximate $10^{\circ} \mathrm{F}$ band, so additional temperature effect uncertainties should not be present outside the uncertainty analysis of Reference 7.8.)

$$
\mathrm{TDU}_{\mathrm{P} 2}= \pm 0.400 \% \text { Span }
$$

### 5.4 PROCESS MEASUREMENT EFFECT CONSIDERATIONS

Not all of the transmitters addressed in this calculation are installed (as of Revision 1 issue), making precise determination of PMEb impossible at this time. However, based on Assumption 6.1, an elevation difference of 30 feet can be used to quantify a bounding PMEb for use in this calculation. This process requires that transmitter calibration offsets be calculated and applied as stipulated on Reference 7.2. Per Assumption 6.4 this will be done prior to the initial calibration of each transmitter.

Reference 7.2 uses a conversion factor of $0.0361 \mathrm{psig} / \mathrm{inH}_{2} \mathrm{O}$ to calculate offset. Multiplying the conversion factor by $(12 \mathrm{in})^{3} / \mathrm{ft}^{3}$ yields the actual calibration density, $62.3808 \mathrm{lbm} / \mathrm{ft}^{3}$.

The following equation is used to calculate the PMEb due to sensing line density variations:

$$
\begin{equation*}
\mathrm{PMEb}=\left(\frac{\mathrm{h}\left(\rho_{\mathrm{N}}-\rho_{\mathrm{C}}\right)}{144}\right)\left(\frac{100 \% \mathrm{Span}}{1300 \mathrm{psi}}\right) \tag{EQ-1}
\end{equation*}
$$

where,
$\mathrm{h}=$ height of sensing line in feet ( 30 ft . per Assumption 6.1)
$1300 \mathrm{psi}=$ transmitter span
$\rho_{\mathrm{N}}=$ assumed sensing line fill fluid density during normal operation
$\rho_{\mathrm{C}}=$ assumed sensing line fill fluid density to determine bounding calibration offset

NOTE: The factor 144 is used to convert from $\mathrm{lbf} / \mathrm{ft}^{2}$ to $\mathrm{lbf} / \mathrm{in}^{2}$. At standard gravity, lbf may be replaced with lbm.

Per Reference 7.3, the design minimum temperature is $60^{\circ} \mathrm{F}$ and the design maximum temperature is $110^{\circ} \mathrm{F}$ in the area where the transmitters and sensing lines are located. To ensure the most conservative result, $60^{\circ} \mathrm{F}$ is considered calibration temperature and $110^{\circ} \mathrm{F}$ is the maximum temperature during normal conditions. A conservative process pressure of 1000 psia is used for density determinations.
$\rho_{\mathrm{N}} @ 110^{\circ} \mathrm{F} / 1000 \mathrm{psia}=62.04833 \mathrm{lbm} / \mathrm{ft}^{3}$
$\rho_{\mathrm{C}} @ 60^{\circ} \mathrm{F} / 1000 \mathrm{psia}=62.56809 \mathrm{lbm} / \mathrm{ft}^{3}$
Reference 7.5
Reference 7.5
Note that the calibration density determined above ( $62.3808 \mathrm{lbm} / \mathrm{ft}^{3}$ ) is bounded by these conservative densities $\rho_{\mathrm{N}}$, and $\rho_{\mathrm{C}}$.

Substituting values in Eq. 1 yields:

$$
\begin{aligned}
& \mathrm{PMEb}=\left(\frac{30(62.04833-62.56809)}{144}\right)\left(\frac{100 \% \mathrm{Span}}{1300 \mathrm{psi}}\right) \\
& \mathrm{PMEb}=-0.008 \% \mathrm{Span}
\end{aligned}
$$

Per Reference 7.4, uncertainties less than $\pm 0.050 \%$ Span are considered negligible. Therefore:

$$
\mathrm{PMEb}=\mathrm{N} / \mathrm{A} .
$$

### 6.0 ASSUMPTIONS

6.1 UNVERIFIED ASSUMPTION - It is assumed that a Unit 1 LEFM plant modification will be implemented using the same converters, transmitters, transmitter calibrations, and configurations as presented in this calculation. In addition it is assumed that the vertical distance between transmitter centerline and process tap for the Unit 1 transmitters will not exceed 30 feet.
6.2 It is assumed that pipe mounted process vibrations for the transmitters addressed in this calculations are limited to 1 g between 15 and 2000 Hz in any axis.
6.3 It is assumed that transmitter RFI at the location of all transmitters addressed in this calculation is limited to 20 to 1000 MHz , and field strength of $30 \mathrm{~V} / \mathrm{m}$.
6.4 It is assumed that transmitter head correction (calibration values offset) is calculated and applied as part of the initial calibration of each transmitter addressed in this calculation, in accordance with the procedure stipulated in Reference 7.2.
6.5 Not used
6.6 Reference 7.6 does not provide a time-dependent drift specification for the I/E converter, and no historical data is available for analysis. This device is a modern electronic module used for high accuracy situations; and drift should be near zero. Therefore, the drift term for these converters is conservatively set equal to the Reference Accuracy term.
6.7 It is assumed that the worst case power supply variation supplied to Converter 1 is $\pm 5 \%$ of the supply voltage. This is considered conservative, since this is the worst case power variation allowed by the device specifications.
6.8 It is assumed that Converter 1 RFI at the location of the Caldon hardware addressed in this calculation is limited to $400 \mathrm{MHz}, 5$ Watts, 3 feet from the © device.
6.9 The loop configuration is assumed to consist of the transmitter, I/E converter, and A/D converter, as presented in Section 3.0. This is based on the Unit 2 schematic drawings, Reference 7.9. It is assumed that this configuration will be as built for Units 1 and 2.

### 7.0 REFERENCES

7.1 Rosemount 3051 Product Data Sheet 00813-0100-4001, Rev. HA, March 2008 (excerpt included in this calculation as Attachment 1)
7.2 BGE Master Calibration Data Sheets (MCDS's):

COMPONENT - REVISION
1-PT-1131A $0^{*}$
1-PT-1131B $0^{*}$
1 -PT-1141A $0^{*}$
1-PT-1141B $0^{*}$
2-PT-1131A 0
2-PT-1131B 0
2-PT-1141A 0
2-PT-1141B 0
*Unit 1 MCDS's not yet produced (see Assumption 6.1). Initial issue for these new instruments will be Rev. 0 .
7.3 BG\&E Updated Final Safety Analysis Report, Table 9-18, Revision 38
7.4 Calvert Cliffs Engineering Standard ES-028, "Instrument Loop Uncertainty and Setpoint Methodology", Revision I
7.5 ASME Steam Tables, 1967
7.6 Specifications for Analog Devices Single-Channel Signal Conditioning Module 5B32, printed from the http://analog.com website on 4/9/2009, including email clarification, dated 4/13/2009 (Attachment 2)
7.7 Burr-Brown Product Data Sheet PDS-1304B for ADS7825 4 Channel, 16-Bit Sampling CMOS A/D Converter, October 1997 (Excerpt included as Attachment 3)
7.8 Burr-Brown Uncertainty Analysis for Model ADS7825 A/D Converter for 0-5 Volt Input (Attachment 4)
7.9 Cameron Drawing 9A-202B796, "Electronics Unit LEFM $\sqrt{ }+$ Schematic," Sheets 1 (Rev. 02), 8 (Rev. 02), 9 (Rev. 02), and 12 (Rev. 02)

### 8.0 IDENTIFICATION OF COMPUTER CODES

NONE

### 9.0 CALCULATION

This calculation determines the Total Device Uncertainty (TDU) and Segment Uncertainty (LU) for Main Feedwater Pressure transmitters that provide input to the LEFM.

### 9.1 TOTAL DEVICE UNCERTAINTIES

## Main Feedwater Pressure Transmitter Uncertainty

The normal uncertainties associated with the sensor $\left(\mathrm{TDU}_{\mathrm{S}}\right)$ are given as:

$$
\begin{aligned}
& \mathrm{TDU}_{\mathrm{S}}= \pm \sqrt{\mathrm{RA}_{\mathrm{S}}{ }^{2}+\mathrm{ST}_{\mathrm{S}}{ }^{2}+\mathrm{MTE}_{\mathrm{s}}{ }^{2}+\mathrm{DR}_{\mathrm{s}}{ }^{2}+\mathrm{TE}_{\mathrm{S}}+\mathrm{VE}_{\mathrm{S}}{ }^{2}+\mathrm{RFI}_{\mathrm{s}}{ }^{2}} \\
& \mathrm{TDU}_{\mathrm{S}}= \pm 0.454 \% \mathrm{Span}
\end{aligned}
$$

## I/E Converter Uncertainty

The normal uncertainties associated with the I/E converter (TDU $\mathrm{P}_{\mathrm{P} 1}$ ) are given as:
$T D U_{P I}= \pm \sqrt{R A_{P 1}{ }^{2}+S T_{P 1}{ }^{2}+M T E_{P 1}{ }^{2}+D R_{P 1}{ }^{2}+T E_{P 1}+R F I_{P 1}{ }^{2}}$
$\operatorname{TDU}_{P 1}= \pm 0.667 \%$ Span

## A/D Converter Uncertainty

The normal uncertainties associated with the A/D converter (TDU $\mathrm{P}_{\mathrm{P} 2}$ ) are directly provided in Section 5.3.1:
$\mathrm{TDU}_{\mathrm{P} 2}= \pm 0.400 \%$ Span

### 9.2 SEGMENT UNCERTAINTIES

The calibration procedures for this instrument loop have not been developed. Therefore, one segment is analyzed per device. Therefore loop segment uncertainty (LU) is equal to TDU. Accordingly, LU terms are presented below with results in \% Span units and in engineering units (psi), based on a calibrated span of 0 to 1300 psi .

Segment 1: Sensor
The segment uncertainty (LU1) is given as:
$\mathrm{LU}= \pm \mathrm{TDU}_{\mathrm{s}}$, therefore:
$\mathrm{LUl}= \pm 0.454 \%$ Span $= \pm 5.902 \mathrm{psi}$

## Segment 2: I/E Converter

The segment uncertainty (LU2) is given as:
$\mathrm{LU} 2= \pm \mathrm{TDU}_{\mathrm{P} 1}$, therefore:
$\mathrm{LU} 2= \pm 0.667 \%$ Span $= \pm 8.671 \mathrm{psi}$

## Segment 3: A/D Converter

The segment uncertainty (LU3) is given as:
$\mathrm{LU} 3= \pm \mathrm{TDU}_{\mathrm{P} 2}$, therefore:
LU3 $= \pm 0.400 \%$ Span $= \pm 5.200 \mathrm{psi}$

### 9.3 TOTAL LOOP UNCERTAINTY

The Total Loop Uncertainty for the Main Feedwater Pressure digital indication is computed from combining the Total Device Uncertainties from the transmitter, I/E converter and A/D converter. The TLU term is presented below with results in \% Span units and in engineering units (psi), based on a calibrated span of 0 to 1300 psi .
$T L U= \pm \sqrt{T D U S_{S}{ }^{2}+{T D U U_{P}}^{2}+{T D U U_{2}}^{2}}$
$\mathrm{TLU}= \pm 0.901 \%$ Span $= \pm 11.713 \mathrm{psi}$

### 10.0 CONCLUSIONS

The total device uncertainty ( $\mathrm{TDU}_{\mathrm{S}}$ ) and segment uncertainty (LU1) for the Main Feedwater Pressure transmitters are as follows:
$\mathrm{TDU}_{\mathrm{S}}= \pm 0.454 \%$ Span $= \pm 5.902 \mathrm{psi}$
LUl $= \pm 0.454 \%$ Span $= \pm 5.902 \mathrm{psi}$
The total device uncertainty (TDU ${ }_{\mathrm{P} 1}$ ) and segment uncertainty (LU2) for the Main Feedwater Pressure I/E converters are as follows:
$\mathrm{TDU}_{\mathrm{PI}}= \pm 0.667 \%$ Span $= \pm 8.671 \mathrm{psi}$
$\mathrm{LU} 2= \pm 0.667 \%$ Span $= \pm 8.671 \cdot \mathrm{psi}$
The total device uncertainty ( $\mathrm{TDU}_{\mathrm{P} 2}$ ) and segment uncertainty (LU3) for the Main Feedwater Pressure A/D converters are as follows:
$\mathrm{TDU}_{\mathrm{P} 2}= \pm 0.400 \%$ Span $= \pm 5.200 \mathrm{psi}$
LU3 $= \pm 0.400 \%$ Span $= \pm 5.200 \mathrm{psi}$
The total loop uncertainty (TLU) for the Main Feedwater Pressure digital indications on the Caldon LEFM $\sqrt{ }+$ system and the Plant Computer are as follows:
$\mathrm{TLU}= \pm 0.901 \% \mathrm{Span}= \pm 11.713 \mathrm{psi}$

## ATTACHMENTS

Attachment 1 - Excerpt from Rosemount 3051 Product Data Sheet 00813-0100-4001, Rev. HA, March 2008 ..... [4 pages]
Attachment 2 - Specifications for Analog Devices Single-Channel Signal Conditioning Module 5B32, printed from the http://analog.com website on 4/9/2009, including email clarification, dated 4/13/2009 ..... [5 pages]
Attachment 3 - Excerpt from Burr-Brown Product Data Sheet PDS-1304B for ADS7825 4 Channel, 16-Bit Sampling CMOS A/D Converter, October 1997 ..... [3 pages]
Attachment 4 - Burr-Brown Uncertainty Analysis for Model ADS7825 A/D Converter for 0-5 Volt Input ..... [4 pages]

## Specifications

## PERFORMANCE SPECIFICATIONS

Total Performance is based on combined errors of reference accuracy, ambient temperature effect, and static pressure effect
This product data sheet covers both HART and fieldbus protocols unless specified.
Conformance To Specification ( $\pm 3 \sigma$ (Sigma))
Technology leadership, advanced manufacturing techniques and statist cal process control ensure specification conformance to at least $\pm 3 \sigma$.
Reference Accuracy ${ }^{(1)}$




4

Product Data Sheet
00813-0100-4001, Rev HA
March 2008
Rosemount 3051


## Dynamic Performance



Line Pressure Effect per 1000 psi ( $6,9 \mathrm{MPa}$ )




## Mounting Position Effects

| Madels | Mounting Pashion Effects! | : | 4 |  |
| :---: | :---: | :---: | :---: | :---: |
| 3051 C |  |  |  |  |
| 305414 |  |  |  |  |
| 3051 L . | With liguid laver daphragm in vertcal pata, zero shith of up to $1 \mathrm{inH}_{3} \mathrm{O}$ ( 2.49 mbar) With daphragm in horzontal plane, zero shin of wo to $5 \mathrm{inH}_{2} \mathrm{O}(12.43$ nogr) plus oxtens on length on extended unts. All zero snits can be calibratad out. No span effect. |  |  |  |

## Vibration Effect

## All Models

Mrasurement eftect du to vitmtons it nalgition except at resonanca frequancies. Whon at rexamance frequencias, vibuation effect is :ess than $\pm 0.1 \%$ of URL per 0 when tested between 15 and 2000 Hz in any axs relative to ppe mountan process conditions.

Power Supply Effect

## All Models

Less than $\pm 0.005 \%$ of caibrated span per volt.
RFI Effects
All Models
$\pm 0.1 \%$ of span from 20 to 1000 MHz and for field strength up to 30
V m

Transient Protection (Option Code T1)

## All Modes:

Meets IEEE C62.41, Category B
6 kV orast $(0,5 \mathrm{ks}-100 \mathrm{kHz})$
3 kV crest ( $\mathrm{A} \times 20$ microseconcs $)$
6 kV crest $(1,2 \times 50$ microteconds $)$
Moets IEEE C37.90.1, Sung Withstand Capability
SWC 2.5 kV crest 1.25 k Hz wave form
General Spectrictions:
Response Time: < 1 nanosecond
Peak Siurge Current: 5000 amps to housing
Pesk Transient Voltage: 100 V de
coop Impedance: < 25 anms
Appicabta Standards: IECB1000-4-4.
IEC61000-4-5

## NOTE:

Calibrations at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ per ASME Z210.1 (ANSI)

Product Data Sheet
00813-0100-4001, Rev HA
March 2008
Rosemount 3051

## FUNCTIONAL SPECIFICATIONS

Range and Sensor Limits
TABLE 1. 3051CD, 3051CG, 3051L, and 3051H Range and Sensor Limits

| $\begin{aligned} & \stackrel{8}{\mathbf{B}_{1}^{(1)}} \end{aligned}$ | Minimum Span |  |  | $\begin{aligned} & 3051 \mathrm{Cl} \\ & \text { Cage } \end{aligned}$ | $\square$ |  | 3051H <br> Dtfiorantha | 3051H <br> Gagu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 30516 D^{(1)} \\ \operatorname{ce} 2 . H \end{gathered}$ | Upper (URL) | 3061 C <br> Difterental |  | 3051 L Differentiol | 30512 <br> Gage |  |  |
| 0 | $\begin{gathered} 0.1 \mathrm{inH}_{2} \mathrm{O} \\ \left(0.25 \mathrm{maar}^{2}\right. \end{gathered}$ | $\begin{gathered} 3.0 \text { inH }_{2} \mathrm{O} \\ 17.47 \mathrm{mban} \end{gathered}$ | $\begin{gathered} -3.0 \mathrm{inH}_{2} \mathrm{O} \\ (-7.47 \mathrm{mbar}) \end{gathered}$ | NA | NA | NA | NA | NA |
| $\stackrel{1}{\square}$ | $\begin{aligned} & 0.5 \mathrm{InH}_{2} \mathrm{O} \\ & \left(1.2 \mathrm{mbar}^{2}\right) \end{aligned}$ | $25 \mathrm{nH} \mathrm{O}^{2},-25 \mathrm{HH} \mathrm{O}$ <br> ( 223 mbar) -625 mban) |  | $\begin{aligned} & -25 \mathrm{nH}_{2} \mathrm{O} \\ & (-62.1 \mathrm{mbar}) \end{aligned}$ |  | NA NA <br> NA |  |  |
| 2 | $\begin{aligned} & 2.5 \mathrm{mH}_{2} \mathrm{O} \\ & \left(6.2 \mathrm{mbar}^{2}\right. \end{aligned}$ | $\begin{aligned} & 250 \mathrm{inH}_{2} \mathrm{O} \\ & (0.62 \text { bar) } \end{aligned}$ | $\begin{gathered} -2500_{0} \mathrm{H}_{2} \mathrm{O} \\ (-0.62 \text { hat }) \end{gathered}$ | $\begin{aligned} & -250 \mathrm{inH}_{2} \mathrm{O} \\ & (-0.62 \text { bar }) \end{aligned}$ | $\begin{gathered} -250 \mathrm{nH}_{2} \mathrm{O} \\ (-0.62 \mathrm{ba}) \end{gathered}$ | $\begin{aligned} & -250 \mathrm{nH}_{2} \mathrm{O} \\ & (-0.62 \text { bar }) \end{aligned}$ | $\begin{aligned} & -250 \mathrm{nH}_{2} \mathrm{O} \\ & (-0.62 \mathrm{bar}) \end{aligned}$ | $\begin{gathered} -250 \mathrm{inH}_{2} \mathrm{O} \\ (-0.62 \text { bat }) \end{gathered}$ |
|  | $\begin{aligned} & 10 \mathrm{inH} \mathrm{O}^{\circ} \\ & (24,9 \mathrm{mbar}) \end{aligned}$ | $\begin{aligned} & 1000 \ln 420 \quad-1000 i^{\circ} H_{2} \mathrm{O} \\ & (249 \mathrm{bar}) \quad(-249 \mathrm{bat}) \end{aligned}$ |  | $\begin{aligned} & 0.5 \mathrm{ps}\left(\mathrm{\theta},-1000 \mathrm{nH} \mathrm{H}_{2} \mathrm{O}\right. \\ & (34,5 \mathrm{mbar} \mathrm{abs})+(-2,49 \mathrm{bat} \end{aligned}$ |  | $\begin{gathered} 0.5 \mathrm{psa} \\ (34,5 \mathrm{mbarabs}) \end{gathered}$ | $\begin{aligned} & 1000 \mathrm{aH}_{2} \mathrm{O} \\ & (-2.49601) \quad 0 \mathrm{psla} \\ & (34 \mathrm{smbar} \mathrm{abs}) \end{aligned}$ |  |
| 4 | $\begin{gathered} 3 \mathrm{psi} \\ (0,20 \mathrm{bam}) \end{gathered}$ | $\begin{gathered} 300 \mathrm{psi} \\ (20,6 \mathrm{bar}) \end{gathered}$ | $\begin{gathered} -300 \mathrm{psi} \\ (-20.6 \mathrm{bar}) \end{gathered}$ | $\begin{gathered} 0.5 \text { paia } \\ (34.5 \text { mbay } 3 \mathrm{abs}) \end{gathered}$ | $\begin{gathered} -300 \mathrm{psi} \\ (-20,6 \mathrm{bat}) \end{gathered}$ | 0.5 psia ( 34.5 mbar abs) | $\begin{gathered} -300 \mathrm{ps} \\ (-20.6 \mathrm{bar}) \end{gathered}$ | 0.5 ps 居 (34.5 mbay abs) |
|  | $(1,38 \text { non }$ | $\begin{aligned} & 2000 \mathrm{ps}) \\ & (1378 \mathrm{Con}) \end{aligned}$ | $(-137,968 \mathrm{~b})$ | (34.5 mpargos) | NA | $\mathrm{NA}$ | $\begin{aligned} & -2060 \mathrm{P} \\ & (-137.9 \mathrm{ban} \end{aligned}$ | 0.5 nom ( 34.5 mbarabs ) |



TABLE 2. Range and Sensor Limits

(i) Assumes anmocspharic pressume of 14.7 psig .

5B32 Isolated Current Input | IOS Subsystems | Other | Analog Devices
Page 1 of 3
$D$ ANALOG
DEVICES

## 5B32 Isolated Current Input



Specifications

Functional Descripxion
 input. The module measures a process current irput signal d 4.20 mA or 0.20 mA by reading the valape across an external precision $20 \Omega$ resistor (suppied) and generating an output of $010+5 \mathrm{~V}$. Extra curtart convelsion


Note that the 5632 module circutry can withstand 240 V ems at the input screw- terminals, therebty shiencing compuer-side circuity from fieltrside overvatage conditions. in adotion, all 5832 Series modules are mik-and match and hot swappable, socen be inserted or removed from any sacket in the same backplane withou powering down the system


A chopper.stabilized input ampifier provides low din and stabie gain. At the amplfier innout, a stable, laser-timmed zero-scate mpur offset is subtracted rom the input signal to set the zero scale value for the $4-20 \mathrm{~mA}$ range. For user convenience, the zero can be optionaly faction- sef to meet custom needs. This alows suppre sslion of a zero-scale inpl value mary times larger inan the toda span for precise expandec-scale measurements
 rejection at 5080 Hz , enab ing accurate measurement of smal signals in high electicical noise.

Stgnal isotation by tran nformer couping uses a ptopdifary modulation techriouie for lineat, stable and refiatle perromance The differential inoul circull on the fieid side is fuly floating, eliminating the need for input grounding. A demaduracr on the computer side of the signal transformer recovers the orignal signal which is then nered and bufered to provice a lownoise, bw-mpedance cutputh signal. The outpu common must be kesuthin +3 voc of power common

Convenience Features




Figure i 5 se32 Funcional Block Dizaram


Figure 2.5832 Input fied d Connections

http://www.analog.com/en/other/ios-subsystems/products/cu_5b32_isolated_current_imput/... 4/9/2009









## Kirk Melson

| From: | "Kellogg, Jim" <jim,Kellogg@analog,com> |
| :--- | :--- |
| Date: | Monday, Aptil 13,20091150 AM |
| To: | "Kirk Melson" <kirk melson@excelservices com> |
| Subject: | RE: Specification Clarification for 5832 |

Hi Kirk,

You are correct about the input 0ffeet 5 pec. It should be $0.0025 \%$, not 0.0025 . For the 5332.01 module 1 get the following error terms ys. temperature

- Input oftset $0.0025 \%$ of $4 \mathrm{~mA} \rightarrow 0.1 u \mathrm{~A} /{ }^{\circ} \mathrm{C}$ or $0.00063 \% /{ }^{\circ} \mathrm{C}$
- Outpui Offget 2OUV/* $\mathrm{C} \rightarrow 0.064 u \mathrm{~A} / \mathrm{C}$ or $0.00040 \% /{ }^{\circ} \mathrm{C}$
- Gain TC $0.0025 \% /{ }^{\circ} \mathrm{C} \Rightarrow 0.5 \cup \mathrm{~A} /{ }^{\circ} \mathrm{C}$ or $0.003125 \% /{ }^{\circ} \mathrm{C}$

Total accuracy error vs, semp of $0.66414 \mathrm{~A}^{\circ} \mathrm{C}$ or $0.0041 \%{ }^{\circ} \mathrm{C}$

Sorry for the confusion on the datasheets, I hope this helps.

Regards
lim
From: Kirk Melson [mailto:kirk.melson@excelservices.com]
Sent: 2009-04-13 10:47
To: Kellogg, Jim
Subject: Fw: Specification Clarification for 5832
Jim,
Sorry, I got the email adcress wrong. Try this again. Could you call me when you get a chance? :
Kirkyn R. Melson
Excel Services Corporation
$(864) 962-5701$ Celf
$(864) 228-7100$ Alternate and Fax

Sent: Thursday April 09, 2009 5:50 PM
To: im kellogoanalog.com
Cc: Bob Hunter
Subject: Specification Clarification for 5B32
fim,
I just called a moment ago and got your voice mail. Since I would like an email response anyway, I decided to write this uo in an email.

I printed the 5 B32 specification from your website, and I marked it up to show where my question is. The specification in question is the Input Offset versus Temperature, which shows up in the table as 0.0025 of $\mathrm{iz} /$ degree C . The specifications above this are shown as percertages. I am wondering if this specification should say $0.0025 \%$ of 12 / degree $C$.

We are working with a Caldon Ultrasonic flowmeter system, and we need tight accuracy. The room temperature could change as much as 50 degrees $F$ in that room. We have a 4 to 20 mAdc signal coming in. If this specification is correct, I think I compute an error just due to this effect as:

Input Offset due to Temp $=(0.0025 \times 4 \mathrm{~mA}) \times(100 \%$ Span $/ 16 \mathrm{mAdc}) \times(1$ degree $\mathrm{C} / 1$ degree F$) \times 50$ degrees $F=1.74 \%$ Span.

This is a huge error for this module. If the specification actually should have a "\%" listed, the error goes to around $0.0174 \%$ Span, which is much more reasonable in my opinion.

Anyway, if you get just a minute, I would really appreciate your looking at this specification and clarifying it for me. I am in a bit of a time crunch on this one, so your quick attention would be greatly appreciated.

Thanks for your time and consideration.
Kirklyn R. Melson
Excel Services Corporation
(864)962-5701 Cell
(864)228-7100 Alternate and Fax


Sbacots

## SPECIFICATIONS

ELECTRICAL
$A 1 T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{q}_{S}=40 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{S 2}=\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} \pm 5 \%$, using extermal reference, CONTC $=0 \mathrm{~V}$. uniess otherwise specined.

| PARAMETER | CONDTIONS | ADS7825P, U |  |  | ADS7325PB, UB |  |  | UNTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | max | min | TYP | max |  |
| RESOLUTION |  |  |  | 16 |  |  | * ${ }^{(1)}$ | Ell |
| ANALOG INPUT Volloge Range Impadance Capactitance | Channer On or oft |  | $\begin{aligned} & \pm 10 \mathrm{~V} \\ & 45.7 \\ & 35 \end{aligned}$ |  |  | $\begin{aligned} & * \\ & * \\ & * \end{aligned}$ |  | $\begin{aligned} & \mathrm{v} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$ |
| THROUGHPUT SPEED <br> Converston Time <br> Acquisilion Time <br> Multiplexer Sattling Time <br> Complete Cycle (Acquire and Convert) <br> Complete Cycle (Acquire and Convert) <br> Throughput Rate | Includas Acquistion $\text { CONTC }=+5 V$ | 40 | $\begin{aligned} & 20 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ | * | $\begin{aligned} & * \\ & * \\ & * \end{aligned}$ | * | $\begin{aligned} & \mu s \\ & \mu \mathrm{~s} \\ & \mathrm{kHz} \end{aligned}$ |
| DC ACCURACY <br> Integral Line artiy Error <br> No Missing Codes <br> Transtiten Nolse ${ }^{(3)}$ <br> Fuli Scale Error ${ }^{(3)}$ <br> Fulli Scala Error Drin <br> Futl Scale Errora) <br> Full Scale Error Drift <br> Bipolar Zero Error <br> Bipolar Zero Error Drif ChanneHo-Channel Mismatch Powar Supply Sensthvily | Internal Reforence Intemal Reference $+4.75<V_{S}<+6.25$ | 15 | $\begin{gathered} 0.8 \\ \pm 7 \\ \pm 2 \\ \pm 2 \end{gathered}$ | $\pm 3$ <br> $\pm 0.5$ <br> 10.5 <br> $\$ 10$ <br> 10.1 <br> 18 | 16 |  | $\pm 2$ <br> 10.25 <br> 10.25 <br> * <br> $\pm 0.1$ <br> 炏 |  |
| ac accuracy <br> Spurious-Frae Dynamic Range ${ }^{(5)}$ <br> Tolal Harmonic Distortion <br> Signalto-(Noise +OIstorllen) <br> Signato-Noise <br> Channel Separation(6) <br> -3dB Bandwldth <br> Useabie Bandwldth() |  | $\begin{gathered} 90 \\ 83 \\ 83 \\ 100 \end{gathered}$ | $\begin{gathered} 120 \\ 2 \\ 90 \end{gathered}$ | -90 | 86 $\quad 86$ $*$ | $*$ $*$ $*$ | * | dB dB dB dB dB MHz kHz |
| SAMPLING DYNAMICS <br> Aperture Delay <br> Translent Responst ${ }^{\text {(T) }}$ <br> Ovarvoltage Recoverys) | FS Step |  | 40 5 1 |  |  | $*$ $*$ $*$ |  | $\begin{aligned} & \text { ns } \\ & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| REFERENCE <br> Internal Reference Voltage <br> Intamal Reference Source Current <br> (Must use extemal buffer) <br> External Referance Voltage Range <br> for Specified Linuartly <br> External Reference Current Drain | $\mathbf{V}_{\text {REF }}=+2.5 \mathrm{~V}$ | 2.48 <br> 2.3 | $\begin{gathered} 2.5 \\ 1 \\ 2.5 \end{gathered}$ | $\begin{aligned} & 2.52 \\ & 2.7 \\ & 100 \end{aligned}$ | * | $\begin{aligned} & * \\ & * \\ & * \end{aligned}$ | * | $\begin{gathered} V \\ \mu A \\ V \\ \mu A \end{gathered}$ |
| DIGTTAL INPUTS Logic Levels $V_{\mathrm{IL}}$ $\mathrm{V}_{\text {H }}$ $I_{11}$ $I_{11}$ |  | $\begin{aligned} & -0.3 \\ & +2.4 \end{aligned}$ |  | $\begin{gathered} +0 . \theta \\ v_{S}+0.3 \mathrm{~V} \\ \pm 10 \\ \pm 10 \end{gathered}$ | * |  | $*$ $*$ $*$ $*$ | $\begin{gathered} v \\ v \\ \mu A \\ \mu A \end{gathered}$ |
| DIGITAL OUTPUTS <br> Data Formal <br> Data Coding <br> $V_{0 L}$ <br> $V_{\mathrm{OH}}$ <br> Leakage Currant <br> Oulput Capachance |  | Parel Elna $+4$ | two by | $\begin{gathered} \text { Soriel } \\ \substack{\text { Sement } \\ +0.4 \\ \pm 5 \\ 15 \\ \hline \\ \hline} \end{gathered}$ | * | $\begin{aligned} & * \\ & * \end{aligned}$ | * | $\begin{gathered} V \\ V \\ \mathcal{M A} \\ \mathbf{P F} \end{gathered}$ |

The information proviced herein ts belleved to be raliable: however. BURR-BROWN essumes no responsibilly for Inaccuracies or omissions. EURR-BROWN
 autharize or warrant any BURR-BROWN product for use in life support devtces and/or systems.

2

## SPECIFICATIONS (CONT)

## electrical



| Parameter | CONDITIONS | ADS7825P, U |  |  | ADS7825PB, UB |  |  | UNTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | max | mtn | TYP | max |  |
| digital timing |  |  |  |  |  |  |  |  |
| Bus Access time | PAR $/ \overline{\text { SER }}=* 5 \mathrm{~V}$ |  |  | 83 |  |  | * | ns |
| Bus Relinquish Time | PAR/SER $=45 \mathrm{~V}$ |  |  | 83 |  |  | * | ns |
| Data Clock | PARSER $=0 V$ |  |  |  |  |  |  |  |
| Intomal Clock (Outpus ony when | Extantit Low | 0.5 |  | 1.5 | * |  | * | MHz |
| transm\|tiling data) |  |  |  |  |  |  |  |  |
| External Clock | EX TANT HIGH | 0.1 |  | 10 | * |  | * | MH2 |
| POWER SUPPLIES |  |  |  |  |  |  |  |  |
| $\mathrm{v}_{51}=\mathrm{v}_{52}=\mathrm{v}_{\mathrm{S}}$ |  | +4.75 | ${ }^{+6}$ | +5.25 | * | * |  | $v$ |
| Power Dissipation | $\mathrm{f}_{5}=40 \mathrm{KHz}$ |  |  | 50 |  |  | * | mw |
|  | PWRD HIGH |  | 50 |  |  | * |  | $\mu \mathrm{w}$ |
| TEMPERATURE RANGE |  |  |  |  |  |  |  |  |
| Spectriad Poriorm ance |  | $\rightarrow 0$ |  | +85 |  |  | * | ${ }^{\circ} \mathrm{C}$ |
| Storage |  | -65 |  | +150 | * |  | * | ${ }^{\circ} \mathrm{C}$ |
| Thermat Rasistance (ej) |  |  |  |  |  |  |  |  |
| Plastic DIP |  |  | 75 |  |  | * |  | ${ }^{\circ} \mathrm{CNW}$ |
| solc |  |  | 75 |  |  | * |  | ${ }^{\circ} \mathrm{CN}$ |

NOTES: (1) An asterik (*) specifies same value as grade to the lef. (2) LSB means Least Significant Bit, For the 16 -btt, $\pm 10 \mathrm{~V}$ Input ADS7825, one LSB is $305 \mu \mathrm{~V}$. (3) Typleal rms nolse at worst case transhions and temperatures. (4) Fuil scale error is the worst case of -Full Scale or FFull Scaie untrimmed deviation from ideal first and

 a All ecquistilon pertod after the step. (9) Recovers to specifled performence offer $2 \times$ FS input overvathage, and normal acquistlions can begin.

PACKAGEJORDERING INFORMATION

| Product | Package | package DRAWING number ${ }^{(1)}$ | temperature RANGE | MAXIMUM INTEORAL LINEARITY ERROR (LSE) | $\qquad$ <br> TO-_NOISE + DISTORTION) RATO (dab) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ADS7825P | Plastic Dip | 246 | $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ | $\pm 3$ | 日3 |
| ADS7825PB | Plastic Dip | 246 | $-40^{\circ} \mathrm{C}$ 10 $+65^{\circ} \mathrm{C}$ | $\pm 2$ | 96 |
| ADS7825U | soic | 217 | $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ | ${ }^{1}$ | 83 |
| ADS7825UE | solc | 217 | $-40^{\circ} \mathrm{C}$ 10 $+65^{\circ} \mathrm{C}$ | $\pm 2$ | 88 |

NOTE: (1) For delailed drawing and dimension lable, please see end of data sheat, or Appendix $C$ of Burr-Brown IC Data Book.

## ABSOLUTE MAXIMUM RATINGS



## ELECTROSTATIC <br> DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN CONFIGURATION


Ideal ADC Transfer Functions for the Positive Range of the Burr Brown ADS7825




Input voltage (Millivolts)

Transfer Functions Considering Only Offset Error and Full-Scale Error
Using the values from the ADS7825 data sheet: Vos $=+/-10 \mathrm{mV}\left(+/-33\right.$ LSBi where LSBi $\left.=20^{*} 2^{\wedge}(-16)\right)$ and FSE $=+/-10^{*} 0.25 / 100=+1-25 \mathrm{mV}(+/-82$ LSBi). Note 4 states that the full-scale error includes the offset error which leads me to believe that the full-scale error with offset zeroed out is $(82-33)^{*} \mathrm{LSBi}=$ $+/-49 \mathrm{LSB}$ ( since offset errors shift the ideal transfer function to the right or left). This means that there are two slopes for the worst case transfer functions which are slightly different from the slope of the ideal transfer function. This translates into slightly different values of LSB for the two cases: LSB1 for the slope corresponding to the -49 LSBI error; and, LSB2 for the slope corresponding to the +49 LSBi error given by:

$$
\begin{array}{ll}
\text { LSBI }:=\frac{10^{4}-49 \cdot \operatorname{LSB}}{32768} & \text { LSBI }=0.30472 \\
\text { LSB } 2:=\frac{10^{4}+49 \cdot \text { LSBi }}{32768} & \text { LSB } 2=0.30563
\end{array}
$$

Then the offsets can be added in to give the worst case transfer functions where the offset and gain errors add together so as to make the total error the greatest. These two straight lines are the envelope of the bundle of all possible straight lines which meet the offset and FSE of the part.

$$
\begin{aligned}
& v t 1_{n}:=-33 \cdot L S B i+L S B 1 \cdot n \\
& v t 2_{n}:=33 \cdot L S B i+L S B 2 \cdot n
\end{aligned}
$$



Transfer Functions in the Neighborhood of Zero

n


Input Voltage (Millivolts)


The worst case error at $n=16384$ (where $\mathrm{vti}=5000 \mathrm{mV}$ ) is $+/-17.5 \mathrm{mV}(+/-16.44 \mathrm{~L}$ SBi). In general, the worst case error at any voltage $V$ in mV is $+1-(\mathrm{Vt} 2-\mathrm{V})$ with vt 2 evaluated at $\mathrm{n}=(\mathrm{V} / 10000)^{*} 32768$.

