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ESTIMATED LONGEVITY OF REDUCING ENVIRONMENT IN GROUTED SYSTEMS 
FOR RADIOACTIVE WASTE DISPOSAL 

 
Scott PAINTER (Center for Nuclear Waste Regulatory Analyses) 

Roberto PABALAN (Center for Nuclear Waste Regulatory Analyses) 
 
 
Introduction 
 

A key factor determining the release and transport of redox-sensitive radioelements 
(e.g., technetium, selenium) from grouted, near-surface, low-activity waste disposal facilities at 
U.S. Department of Energy (DOE) sites is the redox potential of the cement-based material.  Published 
studies have shown that a reducing chemical environment mitigates the release and transport of 
redox-sensitive radioelements from grouted systems.  At DOE low-activity waste disposal sites, blast 
furnace slag is added to the grout formulation to impose an initially reducing chemical condition on 
the grouted system.  This effect has been ascribed to the release of sulfide species, predominantly as 
S2–, into the pore fluid upon hydration of the slag (Atkins and Glasser, 1992), which imposes a 
strongly reducing redox potential on the system.  There is significant uncertainty regarding the long-
term persistence of the reducing capabilities of the slag-bearing grout and its long-term effect on 
radionuclide release and transport.  The objective of this study is to estimate how long reducing 
conditions could persist in near-surface, slag-bearing grouted systems for radioactive waste disposal.  
The oxidant of most concern is oxygen—in the gas phase or dissolved in infiltrating water—which 
could react with the blast furnace slag and decrease the grout reductive capacity.   

 
Computational Approach 

 
The study used a numerical model representing oxygen transport in fractures and porous grout to 

assess the lifetime of reducing conditions for a range of hydrological conditions, fracturing scenarios, 
and grout parameter values.  The evolution of the oxygen concentration in the grout is represented by 
coupling one-dimensional advection-dispersion in the fracture with one-dimensional diffusion in the 
perpendicular direction representing diffusion into the porous grout.  Rather than model the detailed 
oxidation-reduction reactions, the approach of Kaplan, et al. (2005, 2007) was used.  In this approach, 
the oxidation-reduction reaction is written as an effective reaction that consumes oxygen (O2) and 
grout-reducing equivalents (R) and produces oxidized grout (RO2): 
 

O2 + R ⇔  RO2      (1) 
 
The oxygen conservation equation in the fractures is given by  
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where   

fφ   — fracture internal porosity (with a value of 1 for an open   

  fracture containing no sediment) 
Sl and Sg  — liquid and gas saturation in the fracture 
Cl and Cg  — liquid-phase and gas-phase oxygen concentration 

lΩ  and gΩ   — liquid-phase and gas-phase fluxes in the fracture 
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φψ — fracture-to-matrix oxygen transfer rate 

t   — time 
z   — vertical distance from the surface of the grouted system 
b  — fracture half-aperture  

 
The oxygen conservation equation in the matrix is given by 
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where 

φ   — matrix porosity 

gρ  — bulk density of the grout 

De  — effective diffusion coefficient in the matrix 
C′   — oxygen concentration in the matrix pore water 

k   — matrix saturated hydraulic conductivity 
R   — grout reductive capacity 
x   — coordinate in the direction perpendicular to the fracture 

 
Results 
 

The results of example calculations are shown in Figure 1, which illustrate the calculated oxygen 
concentrations versus depth along the fracture at different times for several different combinations of 
fracture aperture, fracture spacing, and fracture hydraulic conductivity (parameter values listed in 
Table 1).  These modeling cases include both open fractures and wide fractures filled with sediment.  
The results indicate that for a wide range of hydrological conditions, oxygen concentrations in 
through-going vertical fractures in grouted subsurface systems for radioactive waste disposal are 
maintained at or near the levels of the surrounding soil by a combination of gas-phase diffusion and 
liquid-phase advection.  This is because gas-phase oxygen diffusion in the fracture is fast compared 
with the rates of diffusive loss to the porous grout matrix.  In other words, grout oxidation is controlled 
by the diffusion rate in the grout.  For the long time frames of interest in performance assessments, 
transport processes in the fractures can easily resupply the fractures with oxygen from the surrounding 
soil.  Because diffusion in the pore space of intact grout material is the rate-limiting process for grout 
oxidation, detailed process-level models coupling fracture transport processes with matrix diffusion 
and chemical reactions can be avoided.  Simpler models coupling oxygen diffusion and grout 
oxidation reaction within the matrix can be used instead, with fractures representing internal boundary 
conditions with specified oxygen concentrations.  The conference poster will compare the results of 
these simpler models with those of the numerical model and also present sensitivity analyses to assess 
the relative importance of the diffusion coefficient, grout reductive capacity, and fracture spacing to 
rate of grout oxidation. 
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Table 1.  Model cases considered when assessing oxygen content in fractures (see Figure 1) 

Modeling  
Case 

Aperture  
(mm) 

Spacing  
(m) 

Fracture 
Hydraulic 

Conductivity 
Model 

Fracture 
Porosity 

 (-) 

Calculated 
Saturation in 

Fracture 
A 0.3 0.3 Cubic law  

η=0.1  
1.0 0.15 

B 0.1 0.3 Cubic law  
η=0.1 

1.0 0.28 

C 0.1 1.0 Cubic law  
η=0.1 

1.0 0.43 

D 0.1 2.0 Cubic law  
η=0.1 

1.0 0.57 

E 0.1 5.0 Cubic law  
η=0.1 

1.0 0.87 

F 10 5.0 Sediment filled, 
kf = 10-4 m/s 

0.25  0.31 

G 10 20 Sediment filled, 
kf = 10-4 m/s 

0.25 0.58 

H 10 5 Sediment filled, 
kf = 10-5 m/s 

0.25 0.80 

The following grout parameters taken from Kaplan, et al. (2005) are also used in the model: 
De = 1.58 ×10–5 m2/yr; R0 = 49.8 meq e–/kg; ρg = 1,700 kg/m3; φ = 0.46; and C0 = 1.0 × 103 meq e–/m3. 
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Figure 1.  Calculated oxygen concentration in through-going vertical fractures versus depth 
assuming a coupled advection/dispersion and matrix diffusion model.  The red, green, and 
blue curves are the results after 5, 10, and 100 years, respectively.  The green curves are 

hidden behind the blue curves in Figures 1(d) and 1(e).  The key point is that the 
oxygen concentration in the fracture stays very close to that of the surrounding soil 

(1.0 × 103 meq e−/m3).  Table 1 lists the parameters for the different cases. 
 


