

Department of Energy Office of Legacy Management

MAY 2 2 2009

Mike Fliegel U.S. Nuclear Regulatory Commission Mail Stop T7E18 Washington, DC 20555-0001

Subject: Transmittal of Data Validation Package for the Canonsburg, Pennsylvania, Disposal Site, October 2008

Dear Mr. Fliegel:

Enclosed for your review is the subject document that presents the results of the October 2008 sampling at the U.S. Department of Energy (DOE) Canonsburg, Pennsylvania, disposal site. Six ground water samples and three surface water samples were collected to demonstrate compliance with standards as set forth in the *Ground Water Compliance Action Plan for the Canonsburg, Pennsylvania, UMTRA Project Site*. Water levels were measured at each sampled well. Sampling and analysis was conducted as specified in *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites*.

The DOE monitors ground water and surface water at the Canonsburg site to demonstrate that uranium concentrations do not exceed U.S. Nuclear Regulatory Commission approved alternate concentration limits (ACL) of 1.0 milligram per liter (mg/L) in ground water and 0.01 mg/L at the point of exposure in Chartiers Creek. The ACL for uranium was not exceeded in point-of-compliance wells 0412, 0413, and 0414. The uranium concentration in well 0412 has decreased since the 2007 event when a notable increase was observed. Comparisons of the analytical results from Chartiers Creek downstream locations 0602 and 0603 to the results from the upstream location 0601 indicate negligible site-related impacts to water quality in Chartiers Creek. The uranium concentration did not exceed the ACL at any of the surface locations.

The results from this sampling event indicate that the alternate concentration limit for uranium was not exceeded either in the point-of-compliance wells or the point-of-exposure in Chartiers Creek. Moreover, site-related impacts to water quality in Chartiers Creek were deemed negligible. A detailed evaluation of the sample results is presented in the enclosed data validation package.

2597 B 3/4 مرما, Grand Junction, CO 81503	3600 Collins Ferry Road, Morgantown, WV 26505
1000 Independence Ave., S.W., Washington, DC 20585	11025 Dover St., Suite 1000, Westminster, CO 80021
10995 Hamilton-Cleves Highway, Harrison, OH 45030	955 Mound Road, Miamisburg, OH 45342
232 Energy Way, N. Las Vegas, NV 89030	
REPLY TO: Grand Junction Office	

Mr. Mike Fliegel

J

-2-

Please contact me at 240-252-8506 if you have any questions.

Sincerely,

Jack R Craigs

2009.05.22 09:41:42 -04'00'

Jack Craig Site Manager

Enclosure

cc w/enclosure:

S. Harper, Pennsylvania Dept. of Environmental Protection D. Shearer, Pennsylvania Dept. of Environmental Protection

cc w/o enclosure: M. Miller, Stoller (e) File: CAN 410.02 (Roberts)

1

Sampling Events-DVPs\Canonsburg DVP Canonsburg October 2008.doc

Data Validation Package

October 2008 Groundwater and Surface Water Sampling at the Canonsburg, Pennsylvania, Disposal Site

March 2009

Office of Legacy Management

Contents

Sampling Event Summary	1
Sample Location, Canonsburg, Pennsylvania, Disposal Site	2
Data Assessment Summary	
Water Sampling Field Activities Verification Checklist	
Laboratory Performance Assessment	
Sampling Quality Control Assessment	
Certification	•

Attachment 1—Assessment of Anomalous Data

Potential Outliers Report

Attachment 2—Data Presentation

Groundwater Quality Data Surface Water Quality Data Static Water Level Data Hydrograph Time-Concentration Graphs

Attachment 3—Sampling and Analysis Work Order

Attachment 4—Trip Report

This page intentionally left blank

A Strates 1996 B. 1.1.1. 3*

DVP—October 2008, Canonsburg, Pennsylvania RIN 08091855 Page ii

U.S. Department of Energy March 2009

Sampling Event Summary

Site:

Canonsburg, Pennsylvania, Disposal Site

Sampling Period: October 13, 2008

Six groundwater samples and three surface water samples were collected at the Canonsburg, Pennsylvania, Disposal Site to demonstrate compliance with standards as set forth in the *Ground Water Compliance Action Plan for the Canonsburg, Pennsylvania, UMTRA Project Site.* Water levels were measured at each sampled well. Sampling and analysis was conducted as specified in *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites.* One duplicate sample was collected from location 0424.


The U.S. Department of Energy monitors groundwater and surface water at the Canonsburg site to demonstrate that uranium concentrations do not exceed U.S. Nuclear Regulatory Commission-approved alternate concentration limits (ACL) of 1.0 milligram per liter (mg/L) in groundwater and 0.01 mg/L at the point of exposure in Chartiers Creek.

The ACL for uranium was not exceeded in point-of-compliance wells 0412, 0413, and 0414. The uranium concentration in well 0412 has decreased since the 2007 event when a notable increase was observed. Comparisons of the analytical results from Chartiers Creek downstream locations 0602 and 0603 to the results from the upstream location 0601 indicate negligible site-related impacts to water quality in Chartiers Creek. The uranium concentration did not exceed the ACL at any of the surface locations.

Michele Miller Site Lead, S.M. Stoller

Digitally signed by Michele L. Miller DN: cn=Michele L. Miller, c=us, o=u.s. government, ou=department of energy, public cas, people Date: 2009.03.17 14:08:45 -04'00'

Date

Sample Location Map, Canonsburg, Pennsylvania, Disposal Site

Ą

This page intentionally left blank

/

Water Sampling Field Activities Verification Checklist

Project	Project Canonsburg, Pennsylvania Pate(s) of Verification March 3, 2009		Date(s) of Water	r Sampling	October 13, 2008
Date(s) of	Verification	March 3, 2009	Name of Verifier	r .	Steve Donivan
•			Response (Yes, No, NA)	1 <u>1</u>	Comments
1. Is the SAF	the primary documer	t directing field procedures?	Yes	· ·	
List other	documents, SOPs, ins	tructions.		Work Order Letter d	ated September 11, 2008.
2. Were the	sampling locations spe	cified in the planning documents sampled?	Yes		· · · · · · · · · · · · · · · · · · ·
 Was a pre documents 		cted as specified in the above-named	No		ion was performed of September 24, 2008. eter calibration was performed on July 18,
4. Was an op	perational check of the	field equipment conducted daily?	Yes	A re-calibration was	noted at 08:40, October 13, 2008.
Did the op	erational checks meet	criteria?	NA	Operational check d	ata not available.
		alinity, temperature, specific conductance, neasurements taken as specified?	No	DO was measured, I	but not required.
6. Was the c	ategory of the well doo	cumented?	Yes	· · · · · · · · · · · · · · · · · · ·	
7. Were the f	ollowing conditions m	et when purging a Category I well:			
Was one p	oump/tubing volume p	urged prior to sampling?	Yes		·
Did the wa	ter level stabilize prior	to sampling?	Yes		
Did pH, sp sampling?		nd turbidity measurements stabilize prior to	Yes	Well 0412 turbidity w	vas > 10 NTU, sample was filtered.
Was the fl	ow rate less than 500	mL/min?	Yes		
	le pump was used, wa and sampling?	s there a 4-hour delay between pump	NA		

U.S. Department of Energy March 2009 Ń

	Response Comments /es, No, NA)	
Were the following conditions met when purging a Category II well:		
Was the flow rate less than 500 mL/min?	Yes	· · · · · · · · · · · · · · · · · · ·
Was one pump/tubing volume removed prior to sampling?	Yes	· · · · · ·
Were duplicates taken at a frequency of one per 20 samples?	Yes A duplicate sample was collected from loca	tion 0424.
D. Were equipment blanks taken at a frequency of one per 20 samples that were collected with nondedicated equipment?	NA Dedicated equipment was used to sample	all wells.
1. Were trip blanks prepared and included with each shipment of VOC samples? $_$	NA	•
2. Were QC samples assigned a fictitious site identification number?	Yes Location ID 2677 was used for the duplicat	e sample.
Was the true identity of the samples recorded on the Quality Assurance Sample Log or in the Field Data Collection System (FDCS) report?	Yes	•
3. Were samples collected in the containers specified?	Yes	
4. Were samples filtered and preserved as specified?	Yes	
5. Were the number and types of samples collected as specified?	Yes	
6. Were chain of custody records completed and was sample custody maintained?	Yes	
7. Are field data sheets signed and dated by both team members (hardcopies) or are dates present for the "Date Completed" fields (FDCS)?	Yes	
3. Was all other pertinent information documented on the field data sheets?	Yes	
9. Was the presence or absence of ice in the cooler documented at every sample location?	Yes	
D. Were water levels measured at the locations specified in the planning documents?	Yes	

Water Sampling Field Activities Verification Checklist (continued)

DVP—October 2008, Canonsburg, Pennsylvania RIN 08091855 Page 6

> U.S. Department of Energy March 2009

Laboratory Performance Assessment

General Information

Report Number (RIN):	08091855
Sample Event:	October 13, 2008
Site(s):	Canonsburg, Pennsylvania
Laboratory:	Paragon Analytics, Fort Collins, Colorado
Work Order No.:	0810156
Analysis:	Metals, Inorganics, and Radiochemistry
Validator:	Steve Donivan
Review Date:	November 14, 2008
	4

This validation was performed according to the *Environmental Procedures Catalog*, "Standard Practice for Validation of Laboratory Data," GT-9(P) Rev 1. The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. The analysis was successfully completed. The sample was prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Alkalinity	WCH-A-002	MCAWW 310.1	MCAWW 310.1
Calcium, Magnesium, Manganese, Potassium, Sodium	LMM-01	SW-846 3005A	SW-846 6010B
Chloride	MIS-A-039	SW-846 9056	SW-846 9056
Gross Alpha/Beta	GPC-A-001	EPA 900.0	EPA 900.0
Molybdenum, Uranium	LMM-02	SW-846 3005A	SW-846 6020
Sulfate	MIS-A-044	SW-846 9056	SW-846 9056

Sample Shipping/Receiving

Paragon Analytics, Fort Collins, Colorado, received 10 water samples on October 17, 2008, accompanied by a Chain of Custody (COC) form. The COC form was checked to confirm that all of the samples were listed on the form and that signatures and dates were present indicating sample relinquishment and receipt. The sample submittal had no errors or omissions. Copies of the air waybill labels were included with the sample receiving documentation.

Preservation and Holding Times

The sample shipments were received cool and intact with the temperature inside the iced coolers at 6.0 °C and 2.9 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Data Qualifier Summary

The analytical results were qualified as listed in Table 2.

Sample Number	Location	Analyte Flag		Reason
0810156-1	0406A	Gross Beta	J	Less than 3 times the MDC
0810156-2	0410	Gross Beta	J	Less than 3 times the MDC
0810156-2	0410	Uranium	U	Less than 5 times the method blank
0810156-5	0414B	Gross Alpha	J	Less than 3 times the MDC
0810156-5	0414B	Gross Beta	J	Less than 3 times the MDC
0810156-5	:: 0414B	Potassium	J	Serial dilution failure
0810156-6	0424	Gross Beta	J	Less than 3 times the MDC
0810156-6	0424	Sulfate	J	Poor field duplicate precision
0810156-6	0424	Uranium	U	Less than 5 times the method blank
0810156-10	0424 Duplicate	Gross Beta	J	Less than 3 times the MDC
0810156-10	0424 Duplicate	Uranium	υ	Less than 5 times the method blank

Tabla	2	Data	Qualifiar	Summarv
rable	Ζ.	Dala	Guaimer	Summary

Laboratory Instrument Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed correctly in accordance with the cited methods.

Method SW-846 6010B

Calibrations for calcium, magnesium, molybdenum, potassium, and sodium were performed on October 23, 2008, using one calibration standard. Blank calibration and laboratory spike standards were prepared from independent sources. Initial and continuing calibration verification (CCV) checks were made at the required frequency resulting in six CCVs. All calibration check results met the acceptance criteria. A reporting limit verification check was made at the required frequency to verify the linearity of the calibration curve near the practical quantitation limit. The check results were within the acceptance range.

Method SW-846 6020

Calibrations for molybdenum and uranium were performed October 28, 2008. The initial calibrations were performed using six calibration standards resulting in calibration curves with correlation coefficient (r^2) values greater than 0.995. The absolute values of the curve intercepts were less than 3 times the method detection limit (MDL). Calibration and laboratory spike standards were prepared from independent sources. Initial and CCV checks were made at the required frequency resulting in 12 CCVs. All initial and CCV results were within the acceptance

range with the exception of CCV1 for molybdenum. There were no samples associated with this CCV. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curves near the practical quantitation limit. The check results were within the acceptance range. The mass calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure. Internal standard recoveries were stable and within acceptance ranges.

Method SW-846 9056

Initial calibrations were performed for chloride and sulfate using five calibration standards on October 21, 2008. The resulting calibration curves had r^2 values greater than 0.995 and intercepts less than 3 times the MDL. Initial calibration and calibration check standards were prepared from independent sources. Initial and CCV checks were made at the required frequency resulting in eight CCVs. All initial and CCV results were within the acceptance range.

Radiochemical Analysis

Radiochemical results are qualified with a "J" flag (estimated) when the result is greater than the minimum detectable concentration (MDC), but less than 3 times the MDC. Radiochemical results are qualified with a "U" flag (not detected) when the result is greater than the MDC, but less than the two sigma total propagated uncertainty.

Gross Alpha/Beta

Plateau calibrations were performed on November 6, 2007. Alpha and beta attenuation calibrations were performed on November 8, 2007, covering a range of 0 to 204 milligrams (mg). All standards were counted to a minimum of 10,000 counts. All calibration and background checks met acceptance criteria. The residual mass was less than 100 mg for all samples.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. All initial and continuing calibration blank results were below the practical quantitation limits for calcium, magnesium, manganese, molybdenum, potassium, sodium, and uranium. In cases where blank concentration exceeds the instrument detection limit, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration. The method blank results for chloride and sulfate were below the method detection limits. The gross alpha and gross beta method blank results were below the MDC.

Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis

Serve Stars

ICP interference check samples ICSA and ICSAB were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results met the acceptance criteria.

U.S. Department of Energy March 2009

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) pairs were analyzed for all analytes as a measure of method performance in the sample matrix. Matrix spike data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike concentration. The MS/MSD recoveries met the acceptance criteria for all analytes evaluated.

Laboratory Replicate Analysis

The relative percent difference values for the laboratory replicate sample and matrix spike duplicate sample results for all non-radiochemical analytes were less than twenty percent and the relative error ratio for gross alpha and gross beta was less than 3.0, indicating acceptable laboratory precision.

Laboratory Control Samples (LCS)

LCS were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. The LCS results were acceptable for all analysis categories.

Metals Serial Dilution

Serial dilutions were performed during the metals analysis to monitor physical or chemical interferences that may exist in the sample matrix. Serial dilutions were prepared and analyzed for calcium, magnesium, manganese, potassium, and sodium. The acceptance criteria were met for all analytes with the exception of potassium. The associated potassium result is qualified with a "J" flag (estimated).

Detection Limits/Dilutions

Samples were diluted in a consistent and acceptable manner when required. The required detection limits were met for all analytes with the following exceptions. The required detection limits were not met for gross alpha and gross beta in some cases because of the elevated levels of dissolved solids in the samples. In all cases for these samples the gross alpha and gross beta results were greater than the detection limit. The total alkalinity reported detection limits were greater than the detection limit. All total alkalinity results were greater than the detection limit.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers.

Chromatography Peak Integration

The integration of analyte peaks was reviewed for all chloride and sulfate data. There were no manual integrations performed and all peak integrations were satisfactory.

Anion/Cation Balance

The anion/cation balance is used to determine if major ion concentrations have been quantified correctly. The total anions should balance with the total cations when expressed in milliequivalents per liter (meq/L). Table 3 shows the total anion and cation results from this event and the charge balance, which is a relative percent difference calculation. Typically, a charge balance difference of 10 percent is considered acceptable.

Site Code	Location	Cations (meq/L)	Anions (meq/L)	Charge Balance (%)
CAN01	0406A	17.85	18.68	2.2
CAN01	0410	11.28	10.07	5.7
CAN01	0412	36.37	32.31	5.9
CAN01	CAN01 0413		7.47	0.2
CAN01	0414B	7.60	6.80	5.6
CAN01	0424	8.35	13.02	8.4
CAN01	0601	12.38	11.91	1.9
CAN01	0602	12.38	11.68	.2.7
CAN01	0603	12.46	11.68	3.2

Table 3. Cation/Anion Balance

The charge balance value for all locations was less than 10 percent indicating acceptable data quality.

Electronic Data Deliverable (EDD) File

The EDD file arrived on November 12, 2008. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

RIN: 99031655 Lub Code: PAR Validator: Steve Dorivan Validation Date: 1/14/2008 Project: Canonokurg Analysis Type: ② Matala ③ General Chem ③ Rad	· .	SAMPLE MAN/ General Data					
# of Samples: 10 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody	RIN: 08091855 Lab Co	de: <u>PAR</u> Validator:	Steve Donivan	V	alidation Date:	11/14/2008	
Chain of Custody Sample Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters All analyses were completed within the applicable holding times. Image: Optic time in the optic of time in the applicable holding times. There are 11 detection limit failures. Image: Field/Trip Blanks Field/Trip Blanks	Project: Canonsburg	Analysis Typ	e: 🗹 Metals	General Chem	🗹 Rad	Organics	
Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Image: All analyses were completed within the applicable holding times. All analyses were completed within the applicable holding times. There are 11 detection fimit failures. Image: Field/Trip Blanks Field/Trip Blanks There are 11 detection fimit failures.	# of Samples: <u>10</u> Matrix:	WATER Requested A	nalysis Completed:	Yes			
Select Quality Parameters Image: Selec	Chain of Custody	·-···	- Sample				
Image: Molding Times All analyses were completed within the applicable holding times. Image: Detection Limits There are 11 detection limit failures. Image: Field/Trip Blanks There are 11 detection limit failures.	Present: <u>OK</u> Signed: <u>OK</u>	Dated: OK	integrity: <u>OK</u>	Preservation:	OK Temper	ature: <u>OK</u>	
Image: Molding Times All analyses were completed within the applicable holding times. Image: Detection Limits There are 11 detection limit failures. Image: Field/Trip Blanks There are 11 detection limit failures.		· · ·					
Image: Constraint of the constr		1 the second secon	within the applicable	holding times			
Field/Trip Blanks				in the second			
Field Duplicates There was 1 duplicate evaluated.							
	Field Duplicates	There was 1 duplicate evalua	ited.			•.	
	· · ·						
	. · · ·						
		· ·					
						.*	
	· · ·						
		×.					
		•					
	• • •						
				•			
		• .					
	· ·			•			
	· .						
		. · ·					
	· · · · ·				•		
		· ·					

DVP—October 2008, Canonsburg, Pennsylvania RIN 08091855 Page 12

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

N: 08091855 Lab Code: PAR

Non-Compliance Report: Detection Limits

/alidation Date: 11/14/2008

Ticket	Location	Lab Sample ID	Nethod Code	Lab Method	Analyte Name	Result	Qualifier	Reported Detection Limit	Required Detection Limit	Units
GKS 736	0406A	0810156-1	WCH-A-002	EPA310.1	TOTAL ALKALINITY AS CaCO3	700	İ.	50	10	MGA
GKS 738	0412	0810156-3	GPC-A-001	724R10	GROSS BETA	44.7		5.9	4 1.	DCiA
GKS 738	0412	0810156-3	GPC-A-001	724R10	GROSS ALPHA	152	1	28	2	DCIA
GKS 738	0412	0810156-3	WCH-A-002	EPA310.1	TOTAL ALKALINITY AS COCOS	650		50	10	MGA
GKS 739	heis	0810156-4	WCH-A-002	EPA310 1	TOTAL ALKALINITY AS CaCOS	500		20	10	MGA
31(0700		pe	- Hickey Con	2.7.0.10.7	1011272192111117000000		_1	r	10	<u>,</u>
GKS 740	04148	p810156-5	WCH-A-002	EPA310.1	TOTAL ALKALINITY AS COCOS	240	1	50	10	MGA.
GKS 741	0424	0810156-6	WCH-A-002	EPA310.1	TOTAL ALKALINITY AS CaCO3	430		50	10	MGA
SKS 742	0601	0810156-7	WCH-A-002	EPA310.1	TOTAL ALKALINITY AS CaCO3	130	1	20	10	MGA
GKS 743	0602	0810156-8	WCH-A-002	EPA310.1	TOTAL ALKALINITY AS CaCO3	130 -	1	20	10	MGA
3KS 744	0603	0810156-9	WCH-A-002	EPA310.1	TOTAL ALKALINITY AS CaCO3	120	1	20	10	MGA
SKS 745	2677	0810156-10	WCH-A-002	EPA310 1	TOTAL ALKALINITY AS CaCO3	420		50	10	MGA

U.S. Department of Energy March 2009

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM

Metals Data Validation Worksheet

RIN: 08091855 Matrix: Water Lab Code: <u>PAR</u> Site Code: <u>CAN01</u> Date

11/13/2008 Date Completed: 11/13/2008

Date Due: 11/14/2008

Analyte	Date Analyzed							Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
		Int,	R^2	ICV	CCV	ЮВ	CCB	Blank							
CALCIUM	10/23/2008	·		OK	OK	OK	OK	ОК	102.0	98.0	88.0	3.0	105.0	3.0	111.0
MAGNESIUM	10/23/2008			OK	ОК	ОК	OK	OK	106.0	104.0	102.0	2.0	107.0	2.0	105.0
MANGANESE	10/23/2008	, i i i i i i i i i i i i i i i i i i i		OK	OK	OK	OK	ОК	99.0	56.0	14.0	2.0	96.0	1.0	100.0
MOLYBDENUM	10/28/2008	0.0000	1.0000	OK	ОК	OK	OK	OK	96.0	97.0	97.0	0.0	111.0		114,0
POTASSIUM	10/23/2008			OK	ОК	ОК	OK	OK	96.0	100.0	100.0	0.0		25.0	86.0
SODIUM	10/23/2008			OK	OK.	OK	OK	OK	97.0	99.0	99.0	0.0		6.0	87.0
URANIUM	10/28/2008	0.0000	1.0000	OK	OK	OK	OK	OK	97.0	101.0	101.0	1.0	106.0	3.0	94.0

DVP—October 2008, Canonsburg, Pennsylvania RIN 08091855 Page 14

Page 1 of 1

93.7

0.22

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

RIN:	08091855	Lab Code:	Date Due: <u>11/14/2008</u>									
Matrix:	Water	Site Code:	CAN01	Date Completed: <u>11/13/2008</u>								
Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate				
Blank_Spike	GROSS ALPHA	10/31/2008		1	<u> </u>	97.6	<u>,</u>	·				
0410	GROSS ALPHA	11/01/2008						2.60				
Blank	GROSS ALPHA	11/01/2008	0.1120	U	[• .	:					

11/01/2008 -0.3290

U

10/31/2008

11/01/2008

U.S. Department of Energy March 2009

Blank_Spike

0410

Blank

GROSS BETA

GROSS BETA

GROSS BETA

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM

Wet Chemistry Data Validation Worksheet

RIN: 08091855

Lab Code: PAR Date Due: 11/14/2008

Aatrix:	Water	

Date Completed: 11/13/2008

Matrix: Water	Site Code: <u>CAND1</u> Date Completed: <u>11/13/2008</u>												
Analyte	Date Analyzed							Method	LCS	MS %R	MSD %R	DUP RPD	Serial Dil. %R
· ······		Int.	R^2	ICV	CCV	ICB	CCB	Blank					
CHLORIDE	10/27/2008	0.000	0.9998	OK	OK	OK	OK	OK	100.0				1
SULFATE	10/27/2008	0.000	0.9997	OK	OK	OK	OK	OK	102.0				1
SULFATE	10/29/2008	0.000	0.9997	OK	OK	OK	OK			107.0	105.0	2.00	1
TOTAL ALKALINITY AS CaC	10/23/2008		I	OK	OK	OK	OK	ОК	99.0			1.00	1

DVP—October 2008, Canonsburg, Pennsylvania RIN 08091855 Page 16

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

All monitor well sample results were qualified with an "F" flag in the database indicating the wells were purged and sampled using the low-flow sampling method. Additionally, sample results for wells 0406A, 0410, 0413, and 0414B were qualified with a "Q" flag indicating the data are qualitative because these wells are Category II based on turbidity and water level drawdown.

Equipment Blank Assessment

An equipment blank was not necessary because new pump-head tubing was used at each location.

Field Duplicate Assessment

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates which measure only laboratory performance. Duplicate samples were collected from location 0424. The non-radiochemical duplicate results met the U.S. Environmental Protection Agency recommended laboratory duplicate criteria of having a relative percent difference of less than 20 percent for results that are greater than 5 times the practical quantitation limit with the following exception. The sulfate relative percent difference value was greater than 20 percent. There were no errors noted during the review of the laboratory data. The sulfate result for location 0424 is qualified with a "J" flag because of the lower than expected precision. The gross alpha and gross beta duplicate results had relative error ratios less than three, demonstrating acceptable precision.

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Field Duplicates

RIN: 08091855 Lab Code: PAR Project: Canonsburg

Validation Date: 11/14/2008

Duplicate: 2677	Sample: 0	424							
	Sample-			T Duplicate-]			
Analyte	Result		Error	Result	Flag	Error	RPD	RER	Units
Bicarbonate	430			420			2.35		MGA
CALCIUM	110000			110000			0		UGAL
CARBONATE AS CaCO3	50	υ		50	U				MG/L
CHLORIDE	190	. *	•	180			5.41		MGAL
GROSS ALPHA	0.306	U	0.78	-0.282	U	0.902		1.0	pCi/L
GROSS BETA	4.92		1.59	2.73		1.42		2.0	pCi/L
MAGNESIUM	32000			32000			0		UG/L
MANGANESE	4700			5000			6.19		UG/L
MOLYBDENUM	0.8	В		0.44	8				UGAL
POTASSIUM	4300			4300			· 0		UG/L
SODIUM	110000			110000			0		UG/L
SULFATE	69			93			29.63		MG/L
TOTAL ALKALINITY AS CaCO3	430			420			2.35		MGA.
URANIUM	0.029	в		0.022	8				UGAL

DVP—October 2008, Canonsburg, Pennsylvania RIN 08091855 Page 18

U.S. Department of Energy March 2009

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

tee Don

<u>3- 16-2009</u> Date

Steve Donivan

Steve Donivan

Data Validation Lead:

Otere

2009 3 - 16 Date

U.S. Department of Energy March 2009 DVP-October 2008, Canonsburg, Pennsylvania RIN 08091855 Page 19

 \bigcirc

This page intentionally left blank

Attachment 1 Assessment of Anomalous Data

This page intentionally left blank

G.

Potential Outliers Report

5.15

This page intentionally left blank

Potential Outliers Report

Potential outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, are suspected of misrepresenting the population from which they were collected. Potential outliers may result from transcription errors, data-coding errors, or measurement system problems. However, outliers may also represent true extreme values of a distribution and indicate more variability in the population than was expected.

Statistical outlier tests give probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set.

There are three steps involved in identifying extreme values or outliers:

- 1. Identify extreme values that may be potential outliers by generating the Outliers Report using the Sample Management System from data in the SEEPro database. The application compares the new data set with historical data and lists the new data that fall outside the historical data range. A determination is also made if the data are normally distributed using the Shapiro-Wilk Test.
- 2. Apply the appropriate statistical test. Dixon's Extreme Value test is used to test for statistical outliers when the sample size is less than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data (case 1) and extreme values that are much larger than the rest of the data (case 2). This test is valid only if the data without the suspected outlier are normally distributed. Rosner's Test is a parametric test that is used to detect outliers for sample sizes of 25 or more. This test also assumes that the data without the suspected outliers are normally distributed.
- 3. Scientifically review statistical outliers and decide on their disposition.

The following potential outliers were identified. The chloride and magnesium concentrations for well 0410 were higher than the historical maximum. This is a Category II well as noted by the "Q" qualifier and variations in analyte concentrations are excepted. The chloride concentration for location 0602 was higher than the historical maximum. Chloride concentrations at this location have been trending upward since 2003.

This page intentionally left blank

l

Page 26

Data Validation Outliers Report - No Field Parameters

Laboratory: PARAGON (Fort Collins, CO)

RIN: 08091855

Comparison: All Historical Data

Report Date: 3/4/2009

				Cu	irrent		Historic		「「「「「「「」」	Historic	國際部分的	Start Roll	Nur	nber of	Normally	Statistical
			A		Qual			8 0.5 X.	lifiers		Qual		1	Points	Distributed	Outlier
Site Code	Location Code	Sample Date	Analyte	Result	Lab	Data	Result	Lab	Data	Result	Lab	Data	N	N Below Detect		
CAN01	0406A	10/13/2008	Calcium	260		FQ	250		FQ	194		F	6	0	Yes	No
CAN01	0406A	10/13/2008	Chloride	130	N	FQ	110		FQ	51.4		F	6	0	Yes	No
CAN01	0406A	10/13/2008	Magnesium	49		FQ	48		FQ	40.4		F	6	0	Yes	No
CAN01	0406A	10/13/2008	Manganese	1		FQ	4.43		F	1.8		FQ	6	0	Yes	No
CAN01	0406A	10/13/2008	Sodium	35		FQ	51		FQ	37.3		F	6	0	Yes	No
CAN01	0406A	10/13/2008	Sulfate	9.3		FQ	51.9		F	19.2		FQ	6	0	Yes	No
CAN01	0410	10/13/2008	Calcium	66		FQ	56.5	•	F	24.7		FQ	31	0	No	Yes
CAN01	0410	10/13/2008	Chloride	340		FQ	182		L	22		FQ	31	0	Yes (log)	Yes
CAN01	0410	10/13/2008	Magnesium	33		FQ	25		' FQ	11.4		FQ	. 31 .	0	Yes	Yes
CAN01	0410	10/13/2008	Sodium	92		FQ	74		FQJ	32.1		F	31	۰0	No	Yes
CAN01	0410	10/13/2008	Sulfate	66		FQ	171			72		FQ	30	0	No	No
CAN01	0412	10/13/2008	Chloride	17		F	84			20.8		F	37	. 0	No	No
CAN01	0413	10/13/2008	Sulfate	. 53 .		FQ	551		F	55		FQ	43	0	No	No
CAN01	0414B	10/13/2008	Alkalinity, Total (As CaCO3)	240	•	FQ	223		F	204		F	5	0	Yes	No
CAN01	0424	10/13/2008	Chloride	180		F	160	·	F	91		,F	20	0	Yes	· No
CAN01	0424	10/13/2008	Chloride	190		F	160		F	91		F	20	0	Yes	No
CAN01	0424	10/13/2008	Gross Beta	4.92		FJ	4.4			2.67	U	F	7	3	Yes	No -
CAN01	0424	10/13/2008	Manganese	4.7		F.	6.9	-		4.86		F	21	0	Yes	No
CAN01	0424	10/13/2008	Sodium	110	• •	F	160	Е	Ĵ	120		F	20	0	Yes	No
CAN01	0424	10/13/2008	Sulfate	69		FJ	230			89		F	20	0	Yes	No
CAN01	0424	10/13/2008	Uranium	0.000029	в	UF	0.001	U		0.00003 7	В	F	22	20	No	No .
CAN01	0424	10/13/2008	Uranium	0.000022	в	UF	0.001	U		0.00003 7	в	F	22	20	No	No

Data Validation Outliers Report - No Field Parameters

Laboratory: PARAGON (Fort Collins, CO) RIN: 08091855 Comparison: All Historical Data

Report Date: 3/4/2009

				Current Qualifiers	Historical Ma Q		num <i>lifier</i> s		nber of Points	Normally Distributed	Statistical Outlier
Site Code	Location Code	Sample Date	A	nalyte Result Lab Da	ta Result <i>La</i> i	b Data Result Lab	Data	N	N Below Detect		
CAN01	0601	10/13/2008	Chloride	140	134	31	RX	22	0	Yes	No
CAN01	0602	10/13/2008	Chloride	140	133	31	RX	25	0	Yes	Yes
CAN01	0603	10/13/2008	Chloride	150	133	39		18	, 0	Yes	No

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- > Result above upper detection limit.
- ·A TIC is a suspected aldol-condensation product.
- В Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- С Pesticide result confirmed by GC-MS.
- Analyte determined in diluted sample.
- Ď Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- н Holding time expired, value suspect.
- Increased detection limit due to required dilution.
- J Estimated
- Ν Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- Р > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- w Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- Low flow sampling method used. F
- L Less than 3 bore volumes purged prior to sampling.
- υ

- G Possible grout contamination, pH > 9.

J Estimated value.

R Unusable result.

- Parameter analyzed for but was not detected.
- Q Qualitative result due to sampling technique.
- X Location is undefined.

STATISTICAL TESTS:

The distribution of the data is tested for normality or lognormality using the Shapiro-Wilk Test Outliers are identified using Dixon's Test when there are 25 or fewer data points. Outliers are identified using Rosner's Test when there are 26 or more data points. See Data Quality Assessment: Statistical Methods for Practitioners, EPA QC/G-9S, February 2006.

Attachment 2 Data Presentation

This page intentionally left blank

Groundwater Quality Data

This page intentionally left blank

Groundwater Quality Data by Location (USEE100) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009 Location: 0406A WELL Replacement well for 0406.

Parameter	Units	Sarr Date	nple ID	Der (oth Rar Ft BLS	nge	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	0001	5	· -	15	50	U	FQ	#	50	
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	0001	5	-	15	700		FQ	#	50	
Bicarbonate	mg/L	10/13/2008	0001	5	- '	15	700		FQ	#	50	
Calcium	mg/L	10/13/2008	0001	5	-	15	260		FQ	#	0.014	
Chloride	mg/L	10/13/2008	0001	5	•	15	130	N	FQ	#	4	
Dissolved Oxygen	mg/L	10/13/2008	N001	5	-	15	0.75		FQ	#		
Gross Alpha	pCi/L	10/13/2008	0001	5	-	15	1.7	U	FQ	#	1.7	0.889
Gross Beta	ṗCi/L	10/13/2008	0001	5	-	15	5.31		FQJ	#	2.6	1.79
Magnesium	·mg/L	10/13/2008	0001	5	-	15 ·	49		FQ	#	0.0089	
Manganese	mg/L	10/13/2008	0001	5	-	15	· 1		FQ	#	0.0002	
Molybdenum	mg/L	10/13/2008	0001	5	-	15	0.001		FQ	#	0.0001	
Oxidation Reduction Potential	mV	10/13/2008	N001	5	-	15	61.3		FQ	#		
рН	s.u.	10/13/2008	N001	5	-	15	7.95		FQ	#		
Potassium	mg/L	10/13/2008	0001	5	-	15	5.9		FQ	#	0.026	
Sodium	mg/L	10/13/2008	0001	5	-	15	35		FQ	#	0.0018	
Specific Conductance	umhos /cm	10/13/2008	N001	5	-	15	1649	.*	FQ	#		
Sulfate	mg/L	10/13/2008	0001	5	-	15	9.3		FQ	#	1	
Temperature	с	10/13/2008	N001	5	-	15	15.76		FQ	#		
Turbidity	NTU	10/13/2008	N001	5	-	15	22		FQ	#	- -	
Uranium	mg/L	10/13/2008	0001	5	-	15	0.00078	-	FQ	#	0.0000045	

Groundwater Quality Data by Location (USEE100) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009 Location: 0410 WELL

· · ·			•					-				
Parameter	Units 🕅	San Date	nple ID	Dep (F	th Ra t BL	ange S)	Result		Qualifiers Data	QA	Detection	Uncertainty
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	0001	11.48	-	16.08	5	U ·	FQ	#	5	
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	0001	11.48	·-	16.08	16		FQ	· #	5	
Bicarbonate	mg/L	10/13/2008	0001	11.48	-	16.08	16		FQ	# .	5	
Calcium	mg/L	10/13/2008	0001	11.48	· -	16.08	66		FQ	#	0.014	
Chloride	mg/L	10/13/2008	0001	11.48	-	16.08	340		FQ	#	10	
Dissolved Oxygen	mg/L	10/13/2008	N001	11.48	-	16.08	2.76	•	FQ	#	······	
Gross Alpha	pCi/L	10/13/2008	0001	11.48	-	16.08	1.7	U	FQ	#	1.7	0.862
Gross Beta	pCi/L	10/13/2008	0001	11.48	-	16.08	3.15	-	FQJ	#	2.2	1.41
Magnesium	mg/L	10/13/2008	0001	11.48		16.08	33		FQ	#	0.0089	· · · · · · · · · · · · · · · · · · ·
Manganese	mg/L	10/13/2008	0001	11.48	-	16.08	3.5		FQ	#	0.0002	
Molybdenum	mg/L	10/13/2008	0001	11.48	-	16.08	0.0001	~ Ù	FQ	#	0.0001	
Oxidation Reduction Potential	mV	10/13/2008	N001	11.48	-	16.08	220.6		FQ	#		
рН	s.u.	10/13/2008	N001	11.48	-	16.08	5.7		FQ	#		
Potassium	mg/L	10/13/2008	0001	11.48	•	16.08	2.2		FQ	#	0.026	
Sodium	mg/L	10/13/2008	0001	11.48	· -	16.08	92		FQ	#	0.0018	
Specific Conductance	umhos /cm	10/13/2008	N001	. 11.48	-	16.08	1286		FQ	#		
Sulfate	mg/L	10/13/2008	0001	11.48	-	16.08	66		FQ	#	5	
Temperature	с	10/13/2008	N001	11.48	-	16.08	17.95		FQ	#	· ·	····· ,
Turbidity	NTU	10/13/2008	N001	11.48	-	16.08	14		FQ	#		
Uranium	mg/L	10/13/2008	0001	11.48	-	16.08	0.000021	В	UFQ	#	0.0000045	

Groundwater Quality Data by Location (USEE100) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009 Location: 0412 WELL

Parameter	Units	Saı Datê	mple	î ÎD		dDep (F	th Ra	ange S)		Result		Lab	Qualifiers Data	QA	Détection	Uncertainty
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008		0001	1	3.21	-	18.21		50		U	F	#	50	
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008		0001	1	3.21	-	18.21		650	-		F	#	50	
Bicarbonate	mg/L	10/13/2008		0001	1	3.21	-	18.21		650			F	#	50	
Calcium	mg/L	10/13/2008		0001	1	3.21	-	18.21		470			F	* #	0.014	
Chloride	mg/L	10/13/2008		0001	1	3.21	· _	-18.21	•	17			F	#	· 4	
Dissolved Oxygen	mg/L	10/13/2008		N001	- 1	3.21	-	18.21		0.84			F ·	#		
Gross Alpha	pĊi/L	10/13/2008		0001	1	3.21	-	18.21		152			F	#	2.8	25.2
Gross Beta	pCi/L	10/13/2008		0001	. 1	3.21	-	18.21		44.7			F	# ·	5.9	8.26
Magnesium	mg/L	10/13/2008		0001	1	3.21	-	18.21		81	-	· .	F	#	0.0089	
Manganese	mg/L	10/13/2008		0001	1	3.21	-	18.21		26	•		F	#	0.002	
Molybdenum	mg/L	10/13/2008		0001	1	3.21	-	18.21		0.00084		В	···· F	#	0.0001	
Oxidation Reduction Potential	∽mV	10/13/2008		N001	1	3.21	-	18.21		-32.1			F	#	·	
pH	s.u.	10/13/2008		N001	1	3.21	-	18.21		7.81			F	#		
Potassium	-mg/L	10/13/2008		0001	1	3.21 -	· <u>-</u>	18.21		4.3			F.	#	0.026	
Sodium	mg/L	10/13/2008		0001	1	3.21	- '	18.21		48	•		F	#	0.0018	• •
Specific Conductance	umhos /cm	10/13/2008		N001	· 1	3.21	• -	18.21	•	2742			F	#		
Sulfate	mg/L	10/13/2008		0001	· 1	3.21	` .	18.21		1100 -			··F:	# .	10	
Temperature	Ç	10/13/2008		N001	1	3.21	-	18.21		18.39			F	#		
Turbidity	NTU	10/13/2008		N001	1	3.21	-	18.21		25			F	#		
Uranium, (No. 2)	mg/L	10/13/2008		0001	. 1	3.21	-	18.21		0.17			F	#	0.000009	

Groundwater Quality Data by Location (USEE100) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009 Location: 0413 WELL

· · ·		•		· · ·						
Parameter	Units	Sam Date	ple ID	Depth (Ft B	Range ILS)	Result	Qualifiers Lab Data		Detection	Uncertainty
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	0001	6.05 -	11.05	20	U FQ	. # .	20	-
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	0001	6.05 -	11.05	300	FQ	#	20	
Bicarbonate	mg/L	10/13/2008	0001	6.05 -	11.05	300	FQ	#	20	
Calcium	mg/L	10/13/2008	0001	6.05	11.05	110	FQ	#	0.014	
Chloride	mg/L	. 10/13/2008 .	0001	6.05 -	11.05	14	FQ	#	1	
Dissolved Oxygen	mg/L	10/13/2008	N001	6.05 -	11.05	2.54	FQ	. #		
Gross Alpha	pCi/L	10/13/2008	0001	6.05 -	11.05	58	FQ	#	1.7	9.87
Gross Beta	pCi/L	10/13/2008	0001	6.05 -	11.05	27.2	FQ	#	2.8	4.79
Magnesium	mg/L	10/13/2008	0001	6.05 -	11.05	15	. FQ	#	0.0089	
Manganese	mg/L	10/13/2008	0001	6.05 -	11.05	2.4	FQ	#	0.0002	
Molybdenum	mg/L	10/13/2008	0001	6.05 -	11.05	0.002	FQ	#	0.0001	
Oxidation Reduction Potential	mV	10/13/2008	N001	6.05 -	11.05	60.7	FQ	#		
рН	s.u.	10/13/2008	N001	6.05 -	11.05	7.18	FQ	#		
Potassium	mg/L	10/13/2008	0001	6.05 -	11.05	3.7 .	FQ	#	0.026	
Sodium	.mg/L	10/13/2008	0001	6.05 -	11.05	15	FQ	#	0.0018	
Specific Conductance	umhos /cm	10/13/2008	N001	6.05 -	11.05	704	FQ	#		
Sulfate	mg/L	10/13/2008	0001	6.05 -	11.05	53	FQ	#	2.5	
Temperature	c	10/13/2008	N001	6.05 -	11.05	17.58	FQ	#		
Turbidity	NTU	10/13/2008	N001	6.05 -	11.05	60	FQ	#		
Uranium	mg/L	10/13/2008	0001	6.05 -	11.05	0.12	FQ	#	0.000009	
	and the second									

Groundwater Quality Data by Location (USEE100) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009

`

Location: 0414B WELL Replacement well for 0414A.

Parameter	Ünits	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	N001		50	U	FQ	#	50	 A MELLA CHERNELISEMENT
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	N001	-	240		FQ	# .	50	<u></u>
Bicarbonate	mg/L	10/13/2008	N001	•	240		FQ	#	50	
Calcium	mg/L	10/13/2008	N001	-	99		FQ	#	0.014	
Chloride	mg/L	10/13/2008	N001		11.		FQ	#	. 1	
Dissolved Oxygen	mg/L	10/13/2008	N001		3.13		FQ	#		
Gross Alpha	pCi/L	10/13/2008	N001	-	1.68		FQJ	#.	1.1	0.821
Gross Beta	pCi/L	10/13/2008	N001	-	2.84		FQJ	#	2.6	1.47
Magnesium	mg/L	10/13/2008	N001	-	18		FQ	#	0.0089	
Manganese	mg/L	10/13/2008	N001	-	8.2		FQ	. #	0.0002	
Molybdenum	mg/L	10/13/2008	N001	-	0.0011		FQ	#	0.0001	
Oxidation Reduction Potential	mV	10/13/2008	N001	-	-2.9		FQ	#		
рН	s.u.	10/13/2008	N001		7.69		FQ	#	• •	
Potassium	mg/L	10/13/2008	N001	··· • ~ ·	1.7	E	FQJ .	#	0.026	
Sodium	mg/L	10/13/2008	N001	•	7.8		FQ	#	0.0018	
Specific Conductance	umhos /cm	10/13/2008	N001	· · · · • • • • •	692		FQ	#		
Sulfate	mg/L	10/13/2008	N001	-	120		FQ.	#	. 2.5	
Temperature	С.	10/13/2008	N001		15.54		FQ	#		· · · ·
Turbidity	NTU	10/13/2008	N001	-	3		FQ	#		
Uranium	mg/L	10/13/2008	N001	- ··· · · · · · · · · · · · · · · · · ·	0.0018		FQ	#	0.0000045	• •.

.

Groundwater Quality Data by Location (USEE100) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009 Location: 0424 WELL

-

.

- .

	•			. 1			·				•	
Parameter	Units	Samp		Dep (F	th Ra	ange S)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertain
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	N001	7.58	-	12.58	50	U	F	#	50	
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	N002	7.58	-	12.58	50	U	F	#	50	
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	⁻ N001	7.58	-	12.58	430		F	#	50	
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	N002	7.58	-	12.58	420		F	#	50	
Bicarbonate	mg/L	10/13/2008	N001	7.58	·	12.58	430		F	#	50	· ·
Bicarbonate	mg/L	10/13/2008	N002	7.58		12.58	420		F	#	50	
Calcium	mg/L	10/13/2008	N001	7.58	-	12.58	110		F	#	0.014	
Calcium	mg/L	10/13/2008	N002	7.58	-	12.58	110		F	#	0.014	-
Chloride	mg/L	10/13/2008	N001	7.58	-	12.58	190		F	. #	2	
Chloride	mg/L	10/13/2008	N002	7.58	-	12.58	- 180	~	F	#	2	
Dissolved Oxygen	mg/L	10/13/2008	. N001	7.58	-	12.58	2.23		F	#		j.
Gross Alpha	pCi/L	10/13/2008	N001	7.58	-	12.58	1.3	U	F	#	1.3	.0.78
Gross Alpha	pCi/L	10/13/2008 -	N002	7.58	-	12.58	1.6	U	F	#	1.6	0.902
Gross Beta	pCi/L	10/13/2008	N001	7.58		12.58	4.92		FJ	#	2.2	1.59
Gross Beta	pCi/L	10/13/2008	N002	7.58	-	12.58	2.73		FJ	#	2.2	1.42
Magnesium	mg/L	10/13/2008	N001	7.58	-	12.58	32		F	#	0.0089	· .
Magnesium	mg/L	10/13/2008	N002	7.58	-	12.58	32		F	#	0.0089	-
Manganese	mg/L	10/13/2008	N001	7.58	•	12.58	4.7	-	F	#	0.0002	
Manganese	mg/L	10/13/2008	N002	7.58	-	12.58	5		F	#	0.0002	
Molybdenum	mg/L	10/13/2008	N001	7.58	-	12.58	0.0008	8	F	#	0.0001	
Molybdenum	mg/Ĺ	10/13/2008	N002	7.58	-	12.58	0.00044	В	F	#	0.0001	
				· · · ·						<u> </u>		

Groundwater Quality Data by Location (USEE100) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009 Location: 0424 WELL

Parameter	Units	Samr Date	le ID	Der (ange S)	Result	Lab	Qualifiers Data		Detection Limit	Uncertainty
Oxidation Reduction Potential	mV	10/13/2008	N001	7.58	-		-65.4		F	#		
pH ·····	s.u.	10/13/2008	N001	7.58	-	12.58	9.34		F	#		
Potassium	mg/L	10/13/2008	N001	7.58	-	12.58	4.3		F	· #	0.026	
Potassium	mg/L	10/13/2008	N002	7.58	•	12.58	4.3		F	#	0.026	
Sodium	mg/L	10/13/2008	N001	7.58	· -	12.58	110		F	#	0.0018	
Sodium	mg/L	10/13/2008	N002	7.58	-	12.58	110		F	#	0.0018	
Specific Conductance	umhos /cm	10/13/2008	N001	7.58	-	12.58	1612	•	F	#	•	
Sulfate	mg/L	10/13/2008	N001	7.58		12.58	69		FJ	#	5	
Sulfate	ˈmg/L	10/13/2008	N002	7.58	-	12.58	93		F	#	5	
Temperature	С.	10/13/2008	N001	7.58	-	12.58	14.23		F	#		
Turbidity	NTU	10/13/2008	N001	7.58	. .	12.58	. 8	x	F	#	· · · · · · · · · · · · · · · · · · ·	
Uranium	mg/L	10/13/2008	N001	7.58	-	12.58	0.000029	В	UF	#	0.0000045	
Uranium - s a s a s a s	mg/L	10/13/2008	N002	7.58	-	12.58	0.000022	В	UF	#	0.0000045	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

.

- Replicate analysis not within control limits. Result above upper detection limit.
- >

· ···· ···

A TIC is a suspected aldol-condensation product.

- Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank: в
- С Pesticide result confirmed by GC-MS.
- Analyte determined in diluted sample. D

Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS. Е

н Holding time expired, value suspect.

Increased detection limit due to required dilution. Т

Estimated ٠J

Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC). Ν

> 25% difference in detected pesticide or Aroclor concentrations between 2 columns. Р

υ Analytical result below detection limit.

w Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.

X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F
- Low flow sampling method used. Less than 3 bore volumes purged prior to sampling. Parameter analyzed for but was not detected. . L U

GPossible grout contamination, pH > 9.JEstimated value.QQualitative result due to sampling technique.RUnusable result.XLocation is undefined.R

. .

- QA QUALIFIER:
- Validated according to quality assurance guidelines. #

Surface Water Quality Data

This page intentionally left blank

Surface Water Quality Data by Location (USEE102) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009

Location: 0601 SURFACE LOCATION RESERVED MGILBERT, WQD, 4/24/89

Parameter	Units	Samp Date	le ID	Result	Qual		Detection Limit	Uncertainty
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	N001	20	U.	#	20	
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	N001	130		#	20	-
Bicarbonate	mg/L	10/13/2008	N001	120	-	#	20	
Calcium	mg/L	10/13/2008	N001	95		#	0.014	
Chloride	mg/L	10/13/2008	N001	140		#	2	
Dissolved Oxygen	mg/L	10/13/2008	N001	13.4		#		
Magnesium	mg/L	10/13/2008	N001	25		#	0.0089	
Manganese	mg/L	10/13/2008	N001	0.048		· #	0.0002	
Molybdenum	mg/L	10/13/2008	N001	0.061		#	0.0001	
Oxidation Reduction Potential	mV	10/13/2008	N001	105.6		#		
pĤ	s.u.	10/13/2008	N001	7.46		* #		
Potassium	mg/L	10/13/2008	N001	13		#	0.026	
Sodium	mg/L	10/13/2008	N001	110	-	#	0.0018	
Specific Conductance	umhos/cm	10/13/2008	N001	1270		#		
Sulfate	mg/L	10/13/2008	N001	280	<u></u> .	#	5	
Temperature	с	10/13/2008	N001	18		#		
Turbidity	NTU	10/13/2008	N001	7		. #		
Uranium	mg/L	10/13/2008	N001	0.00034	÷ .	#	0.0000045	

Surface Water Quality Data by Location (USEE102) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009 Location: 0602 SURFACE LOCATION RESERVED MGILBERT, WQD, 4/24/89

Parameter	Units	Sam Date	ple ID	Result	Quali Lab Dat		Detection	Uncertainty
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	N001	20	U	#	20	
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	N001	130	-	#	20	
Bicarbonate	mg/L	10/13/2008	N001	130		#	20	
Calcium	mg/L	10/13/2008	[′] N001	93		#	0.014	
Chloride	mg/L	10/13/2008	N001	140		#	2	
Dissolved Oxygen	mg/L	10/13/2008	N001	10.8		#		
Magnesium	mg/L	10/13/2008	N001	24		#	0.0089	· ·
Manganese	mg/L	10/13/2008	N001	0.045	•••==	#	0.0002	
Molybdenum	mg/L	10/13/2008	N001	0.064		#	0.0001	
Oxidation Reduction Potential	mV	10/13/2008	N001	56.7		#		
pH	s.u.	10/13/2008	N001	7.75	· ·	#		
Potassium	mg/L	10/13/2008	N001	13		#	0.026	
Sodium	mg/L	10/13/2008	N001	110		#	0.0018	
Specific Conductance	umhos/cm	10/13/2008	N001	1230		#		
Sulfate	mg/L	10/13/2008	N001	280		#	5	
Temperature	C	10/13/2008	N001	13.3		#		
Turbidity	NTU	10/13/2008	N001	6		#		
Jranium	mg/L	10/13/2008	N001	0.00037		#	0.0000045	· ···· ·

Surface Water Quality Data by Location (USEE102) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009 Location: 0603 SURFACE LOCATION WS CHARTIERS CREEK UDR CONRAIL OVPS

					· .	•		
Parameter	Ünits	Samı Date	ole, ID	Result	Qualifie Lab Data	rs QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (As CaCO3)	mg/L	10/13/2008	N001	20	U	#	20	
Alkalinity, Total (As CaCO3)	mg/L	10/13/2008	N001	120	•	#	20	• •
Bicarbonate	mg/L	10/13/2008	N001	110	-	#	20	
Calcium	mg/L	10/13/2008	N001	92	• •	#	0.014	
Chloride	mg/L	10/13/2008	N001	150		#	2	
Dissolved Oxygen	mg/L	10/13/2008	N001	14.48	· · ·	#		
Magnesium	mg/L	10/13/2008	N001	24	· · ·	#	0.0089	
Manganese	mg/L	10/13/2008	N001	0.041	·.	#	0.0002	
Molybdenum	mg/L	10/13/2008	N001	0.061	· · · · · · · · · · · · · · · · · · ·	#	0.0001	· .
Oxidation Reduction Potential	mV	10/13/2008	N001	115.6		#	· · · · · · · · · · · · · · · · · · ·	
pH the second second	s.u.	10/13/2008	N001	7.9	·. ·	#	· · ·	· · · · · · · · · · · · · · · · · · ·
Potassium	mg/L	10/13/2008	N001	13	- -	#	0.026	
Sodium	mg/L	10/13/2008	N001	110		#	0.0018	· · ·
Specific Conductance	umhos/cm	10/13/2008	N001 -	1281	- e	#	· · · · · · · · · · · · · · · · · · ·	
Sulfate	mg/L	10/13/2008	N001	280		#	5	-
Temperature	С	10/13/2008	N001	17.32	×	#		
Turbidity	NTU	10/13/2008	N001	5		#	· · · · ·	
Uranium	mg/L	10/13/2008	- N001	0.00038		#	0.0000045	

Page 45

N. . .

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- > Result above upper detection limit.
- TIC is a suspected aldol-condensation product.
- Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- Pesticide result confirmed by GC-MS.
- Analyte determined in diluted sample.
- ABCDE Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- н Holding time expired, value suspect.
- Increased detection limit due to required dilution. 1
- Estimated J

N P Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).

- > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- Ù Analytical result below detection limit.
- w Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- Laboratory defined qualifier, see case narrative. X,Y,Z

DATA QUALIFIERS:

- F Low flow sampling method used.
- Less than 3 bore volumes purged prior to sampling. L
- Ū Parameter analyzed for but was not detected.

QA QUALIFIER:

- Validated according to quality assurance guidelines. #
- G Possible grout contamination, pH > 9. Q Qualitative result due to sampling technique.
 - R Unusable result.

J Estimated value.

X Location is undefined.

- - Page 46

Static Water Level Data

This page intentionally left blank

STATIC WATER LEVELS (USEE700) FOR SITE CAN01, Canonsburg Disposal Site REPORT DATE: 3/4/2009

0406A 941.26 10/13/2008 10.85 930.41 0410 U 969.16 10/13/2008 12.42 956.74 0412 O 949.7 10/13/2008 15.97 933.73 0413 O 940.36 10/13/2008 9.41 930.95 0414B 943.65 10/13/2008 10.83 932.82	Location Code	Flow Code	Top of Casing Elevation (Ft)	Measurement Date Tim	Depth From Top of Casing (Ft)	Water Elevation (Ft)	Water Level Flag
0412 O 949.7 10/13/2008 15.97 933.73 0413 O 940.36 10/13/2008 9.41 930.95 0414B 943.65 10/13/2008 10.83 932.82				10/13/2008	10.85	930.41	
0413 O 940.36 10/13/2008 9.41 930.95 0414B 943.65 10/13/2008 10.83 932.82	0410	U	969.16	10/13/2008	12.42	956.74	
0414B 943.65 10/13/2008 10.83 932.82	0412	0	949.7	10/13/2008	15.97	933.73	
	0413	0	940.36	10/13/2008	9.41	930.95	
0424 C 942.25 10/13/2008 14.36 927.89	0414B	• • •	943.65	10/13/2008	10.83	932.82	
	0424	С	942.25	10/13/2008	14.36	927.89	

FLOW CODES: B BACKGROUND N UNKNOWN

ND C CROSS GRADIENT O ON SITE D DOWN GRADIENT F OFF SITE U UPGRADIENT

WATER LEVEL FLAGS: D Dry

F FLOWING

This page intentionally left blank

Hydrograph

23

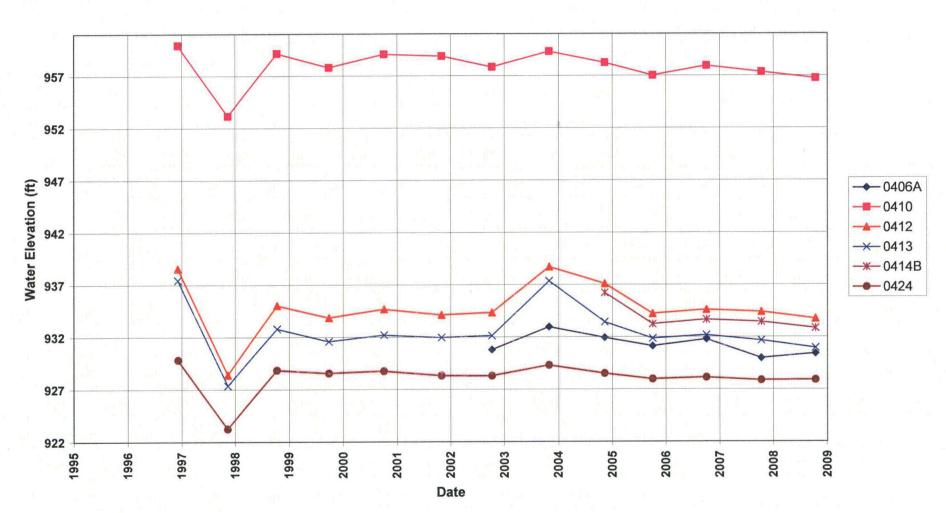
,

з.,

• • • •

• ;;

100.


. .

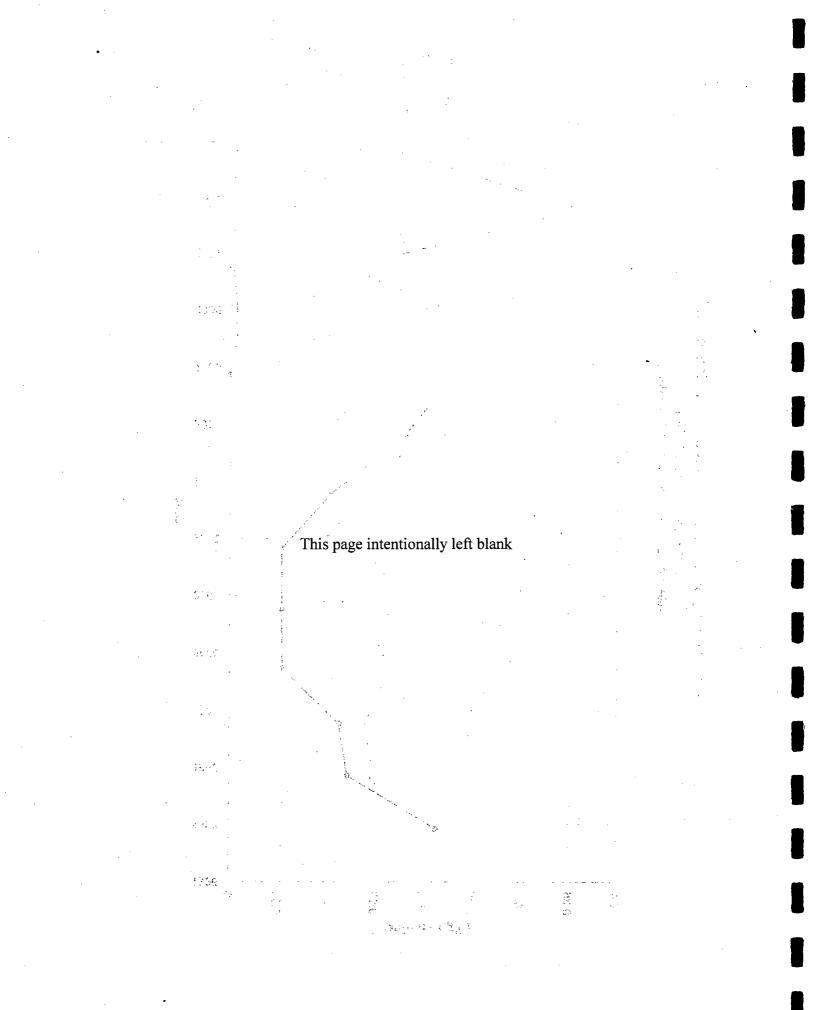
ų.

Ļ

6 %

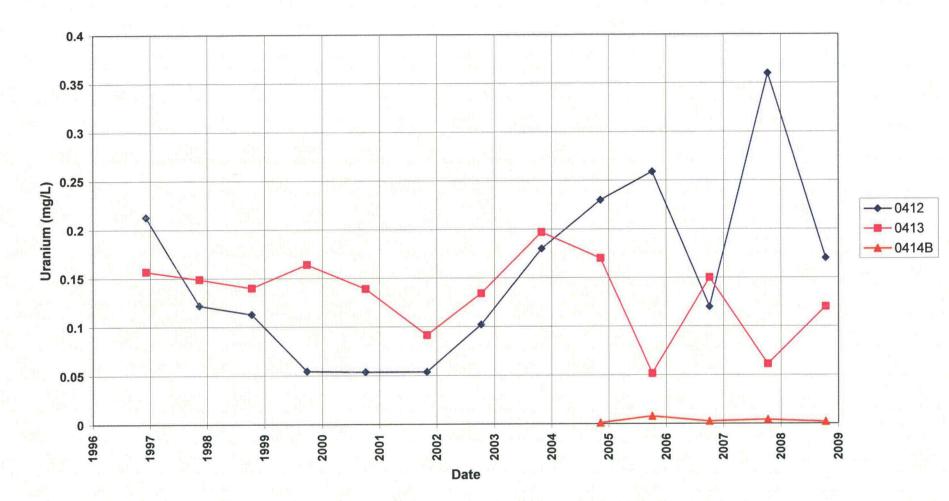
i

Canonsburg Disposal Site Hydrograph

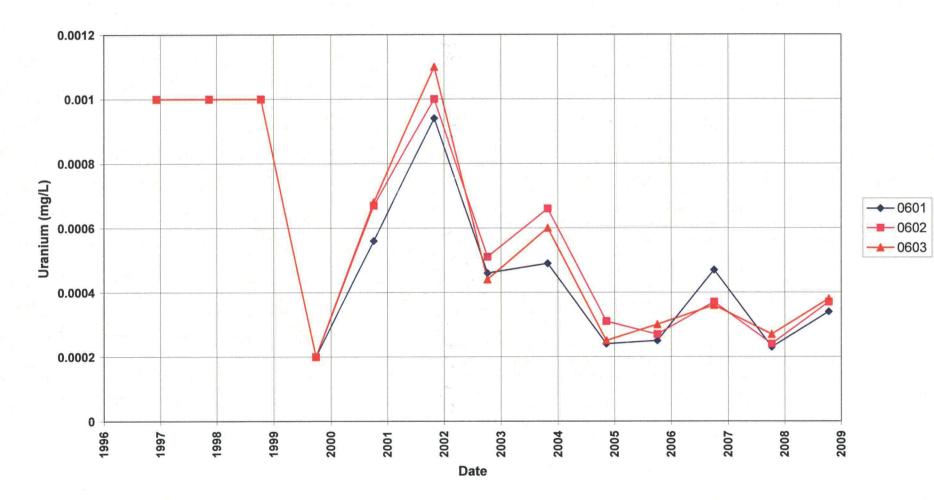

This page intentionally left blank

Time-Concentration Graphs

.


•1

.



Canonsburg Disposal Site Point of Compliance Wells Uranium Concentration

Alternate Concentration Limit = 1.0 mg/L

Canonsburg Disposal Site Surface Locations Uranium Concentration Alternate Concentration Limit = 0.01 mg/L

Page 58

ige 58

Attachment 3 Sampling and Analysis Work Order

4 A 7

- 140 Å

(2) A standard de la construcción de la

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} \int_{-$

a parte de la companya de la company La companya de la comp

्राह्मण्ड ते स्वतंत्र हे स्वतंत्र स्वतंत्र स्वतंत्र स्वतंत्र स्वतंत्र स्वतंत्र ते स्वतंत्र स्वतंत्र स्वतंत्र स्वतं स्वतंत्र स्वत तत्र स्वतंत्र स्वतंत्र स्वतंत्र स्वतंत्र स्वतंत्र स्वतंत्र तत्र तत्र तत्र स्वतंत्र स्वतं स्वतंत्र स्वतं

This page intentionally left blank which a set of the s

ાં છે. છે. છે. આવેલ્ડ ગામમાં પ્રાથમિક સાથે છે. ગામકાર કરેલા છે. આવેલ્ડ ગામકાર સાથે છે.

gainnealth an a suill guranna all a thaiseann cutharann a' an siù bhailleann

 γ_{22} $\delta\gamma_{23}$ γ_{33} $\delta\gamma_{34}$ $\delta\gamma_{35}$ $\delta\gamma_{35}$ $\delta\gamma_{35}$

यती साधुदी सालसी पिता क्यापता ता क्यापा क्यांतील से स्थार प्रियंत अने स्थान स्थान त्यापा के परिते हैं दिप्तर सम लोहों दिप्तराहा ती के स्थान स्थानकर समय प्रिया ता ती कर पर मुन्द्र स्थान साथ स्थान है ता हु प्रतीय ने ने क्या है स्थानुस्थान स्थान ने क्या होसी रहा पता के प्रात्म स्थानीय हो।

us (11 MPC TEC) service processing Conservice proved average

્યું નિર્ણય કરે છે. આ ઉપર કે પ્રચારિત વિદ્યુ પ્રચાર તેમને જીવ

So geberere "

ನ್ನಿಸುವಕ್ಕಿನಗೊಂಡಿಗೆ ಇದ್ದಿಕೊಂಡಿದ್ದು ಪ್ರವಿಧಿಕೊಂಡಿದ್ದರು. ಪ್ರಮುಖ ಸಂಸ್ಥೆ ಸಂಸ್ಥೆ ಸ್ಥಾನವರು ಪ್ರಶ್ನೆ ಸಂಪುಣವಾಗಿ ಪ್ರಶ್ನೇಶ ಸ್ಥೆ ಸಹಸ್ಯೆ ಸಂಸ್ಥೆ ಸ

Tesk Order LM(0)-S01 Carded Number 08-0746.

September 11, 2008

U.S. Department of Energy Office of Legacy Management ATUNidack R. Craig Site Manager 626 Cochrans Mill Road Physburgh, PA 15236-0940

<u>toller</u>

SUBJECT: Contract No. DI:-AM01-07EM00060, Staller October 2008 Environmental Sumpling at Canonsburg, Pennsylvania

Reference: Task Order LM00-501-02-103-402, Canonsburg Disposal Site

Dear Mr. Craig:

The purpose of this letter is to inform you of the upcoming sampling event at Canonsburg, Pennsylvania, Enclosed are the map and tables specifying sample kleations and analytes for routine monitoring. Water quality data will be collected from this site as part of the environmental sampling currently scheduled to begin the week of October 19, 2008.

The following lists show the wells (with zone of completion) and surface locations scheduled to the sampled during this event.

Monitor Wells* 406A.Um 410 Um 412.Um 413 Um 414B Nr 4242Um

*NOTE: Um = Unconsolidated materials, Nr - No recovery of data for classifying

Surface Locations* 601 602 603

All samples will be collected as directed in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Access agreements are being reviewed and are expected to be complete by the beginning of fieldwork.

If you have any questions, please call me at 513-738-3281.

Sincerely, Michele Miller

Project Manager

The S.M. Stoller Corporation 105

10395 Hamilton Cleves Highway Harrison, Oll 45030 (513) 648-5294

Fax: (513) 648-0252

Constituent Sampling Breakdown

Site	Canons	sburg			T
Analyte	Groundwate r	Surface Water	Required Detection Limit (mg/L)	Analytical Method	Line Item Code
Approx. No. Samples/yr	6	3			
Field Measurements					
Alkalinity	Х	Х		· •	
Dissolved Oxygen				· · ·	
Redox Potential	X	Х			
рН	Х	Х			
Specific Conductance	X	х			
Turbidity	Х				
Temperature	Х	Х			
Laboratory Measurements					
Aluminum					
Ammonia as N (NH3-N)					
Calcium	Х	Х	5	SW-846 6010	LMM-01
Chloride	X ,	X	0.5	SW-846 9056	MIS-A-039
Chromium		1 1. 5 7.			
Gross Alpha	X		2	EPA 900.0	GPC-A-001
Gross Beta	X	•.	4	EPA 900.0	GPC-A-001
Iron					
Lead				· ·	
Magnesium	Х	· X	5	SW-846 6010	LMM-01
Manganese	Х	Х	0.005	SW-846 6010	LMM-01
Molybdenum	Х	Х	0.003	SW-846 6020	LMM-02
Nickel					
Nickel-63					
Nitrate + Nitrite as N (NO3+NO2)-N			· .		
Potassium	Х	Х	1	SW-846 6010	LMM-01
Radium-226					
Radium-228					
Selenium					
Silica					
Sodium	X	Х	1	SW-846 6010	LMM-01
Strontium		· .			
Sulfate	X	Х	0.5	SW-846 9056	MIS-A-044
Sulfide					
Total Dissolved Solids					
Total Organic Carbon					
Uranium	X	Х	0.0001	SW-846 6020	LMM-02
Vanadium					
Zinc			-		
Total No. of Analytes	11	9		• • • • • • • • • • • • • • • • • • •	

Note: All analyte samples are considered unfiltered unless stated otherwise. All private well samples are to be unfiltered. The total number of analytes does not include field parameters.

Attachment 4 Trip Report

Page 63

· · · · ·

ŕ.,

÷.,

(3)

..

.....

 $\mathbb{R}^{\mathbb{R}}$

(1) 医疗力器检查性的现在分词。或是40.5

<u>253</u>.

of de la composition (1995) procession (1995) Composition (1995) Composition (1995)

32) 11

This page intentionally left blank "Standard This page intentionally left blank "Standard The Standard The St

in and the growned.	ren um um esta el um el		ntan strol a		an an an an an an an		and the second second	
는 작업/설립에 있는 것 한 친 활동자를 가지?	and the second sec	:		1.1	r (ang taka	e service de la companya de la compa	1 - 1 - 19 y	
	See States	• • • •	· · · ·			en e	12 N A 1 A 1	•
pi na					5.5			
	राज्य होते. स	i i			est est			-
			E S A					
19 (B)	2 ¹ 1				1 de 1	88 f. (b)		
Sec. 2	Carlos de carlos	•				042		
					the state of the s			•
						1000		
	Frys Frys	n an an Ar		1		1-80		•
	· · · · · · · · · · · · · · · · · · ·				·			•

eren bezen er Biller Billeren bangettas fan anbie tratter trenter linne Hispañik fanzammen anbiekter Billeren H Fonet er en 112 en en als sterken sterke engettar menet getteraam op de maar Berken aande anbiekt hekter sterke

toller

Memorandum

established 1959

DATE: November 11, 2008

TO: Michele Miller Ken Broberg Steve Donivan Wanda Sumner EDD Delivery

FROM: Karen Voisard

SUBJECT: Trip Report for Canonsburg, Pennsylvania October 2008 Annual Sampling

Date of Sampling Event: October 13 and 14th, 2008

Team Members: Jim Gore and Karen Voisard

Number of Locations Sampled: A total of nine locations were sampled (six monitoring wells and three surface water locations). One duplicate sample was collected from monitoring well 0424.

Locations Not Sampled/Reason: None

Location Specific Information: The following table includes the established well type identified for each sampled well location.

Ticket Number	Location	Sample Date	Well Type	Comments	Water Levels
GKS 736	0406A	10/13/08	CAT II	Sample filtered	10.85
GKS 741	0424	10/13/08	CATI	Duplicate collected	14.36
GKS 738	0412	10/13/08	CATI	Sample filtered	15.97
GKS 739	0413	10/13/08	CAT II	Sample filtered	9.41
GKS 740	0414B	10/13/08	CAT II	N/A	10.83
GKS 737	0410	10/13/08	Cat II	Sample filtered	12.42
GKS 742	0601	10/13/08	Surface water	. N/A	N/A
GKS 743	0602	10/13/08	Surface water	N/A	N/A
GKS 744	0603	10/13/08	Surface water	N/A	N/A

N/A = not applicable

Water Level Measurements: Water levels were measured at all sampled wells. Water level data are provided in the table above and represent depth to water measurements measured from top of well.

Sample Shipment: Samples were shipped overnight by FedEx to Paragon Analytics, Inc., on October 15, 2008.

Field Variance: None

Quality Control Sample Cross Reference: Following is the false identification assigned to the quality control sample:

False ID	True ID	Sample Type	Ticket Number
2677	0424	Duplicate	GKS 745

Requisition Numbers Assigned: All samples were assigned to requisition identification number (RIN) 08091855.

Well Maintenance: Several well maintenance issues were completed during this sampling round. The following table summarizes the well maintenance items completed and several items identified during the sampling event.

Well Number	Maintenance Completed	Maintenance Identified
0406A	 Primed and painted well. Tried to align holes for security rod. 	 Well needs labeled with "A" Annular seal needs raised above ground surface No weep hole Align holes for security rod
0412	 Sample tubing replaced Primed and painted well Replaced fence post 	Well not labeled
0413	 Replaced fence post Primed and painted well Replaced fence posts 	 Annular seal needs raised above ground surface Well is low to the ground and has no pad
0424	Painted well	 No well pad No weep hole May need bollards if property developed
0414B	Sample tubing replacedWell and bollards painted	Well needs labeled No weep hole
0410	No maintenance completed.	 Top of well riser is close to ground surface Wooden bollards are rotted Annular seal needs raised above ground surface No weep hole Well needs primed and painted

Equipment: All monitoring wells are equipped with dedicated downhole and pumphead tubing. All wells were sampled using a peristaltic pump.

Institutional Controls: All gates were appropriately closed and locked during the sampling event. Construction lock replaced on north side of site near well 0412.

V:\2008\08091855\08091855 DVP.doc