Design Calculation or Analysis Cover Sheet

Complete only applicable items.

BSC

1. QA: QA

2. Page 1

3. System 4. Document Identifier]	
Surface Nuclear Confinement HVAC System 050-M8C-VC00-00500-000-00B											
5. Titl	5. Title										
WHF	WHF Equipment Sizing and Selection Calculation (ITS) ENG. 20071031.0001										
6. Gro	pup	-									
	Engineering/Mechanical/HVAC										
7. Do	cument Status Designation										
		eliminary		Committed		Confirmed		Cancelled/S	Superseded		
8. No	tes/Comments										
Chan	Change bars are not shown due to editorial changes throughout the document.										
									Total Number of		
			Attach	ments					Pages		
None	;										
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								1	
	······································					······				1	
			DE	CORD OF REVIS					<u></u>	ł	
		4.1		13.		14.	1	5.	16.	1	
9. No.	10. Reason For Revision	11. Total # of Pgs.	12. Last Pg. #	Originator (Print/Sign/Date		Checker ht/Sign/Date)	E	o. GS ign/Date)	Approved/Accepted (Print/Sign/Date)		
00A	Initial Issue.	21	21	Gin C. Cababa 5-23-07		ndo Asuncion 5-23-07		Johnson 5-07	Hadi Jalali 5-27-07		
00B	Issued to update this calculation based on the current WHF Heating and Cooling Loa Calculation (Confinement Non ITS), 050- M8C-VC00-00400-000-00B (Trend ENG- FY07-085).	1 20	20	Gin C. Cababa GeoGraphic Control 10/50 10	150	ndo Asuncion 18		Johnson Wan 0/31/07	Hadi Jalali		

DISCLAIMER

The calculations contained in this document were developed by Bechtel SAIC Company, LLC (BSC) and are intended solely for the use of BSC in its work for the Yucca Mountain Project.

CONTENTS

Page

AC	CRONYMS AND ABBREVIATIONS	5
1.	PURPOSE	6
	REFERENCES2.1PROCEDURES/DIRECTIVES2.2DESIGN INPUTS2.3DESIGN CONSTRAINTS2.4DESIGN OUTPUTS	7 7 8
	ASSUMPTIONS	9
	METHODOLOGY14.1QUALITY ASSURANCE14.2USE OF SOFTWARE14.3DESCRIPTION OF CALCULATION APPROACH1	2 2
5.	LIST OF ATTACHMENTS	3
	BODY OF THE CALCULATION16.1 DETERMINATION OF EQUIPMENT QUANTITIES16.2 EQUIPMENT ARRANGEMENT1	4
7.	RESULTS AND CONCLUSIONS	6
AP	PENDIX A. AIRFLOW RATES1'	7
AP	PENDIX B. EQUIPMENT ARRANGEMENT & SELECTION	8

TABLES

7-1.	HEPA Filter Plenum Sizing	16
7-2.	Exhaust Fan Sizing	16

ACRONYMS AND ABBREVIATIONS

Acronyms

ALARA ASD	as low as is reasonably achievable adjustable speed drive
HEPA HVAC	high-efficiency particulate air (filter) heating, ventilation, and air-conditioning
ITS	important to safety
WHF	Wet Handling Facility
Abbreviations	3
cfm	cubic feet per minute
HP	horsepower
in. in. w.g.	inch or inches inches of water gauge

lbs pounds

1. PURPOSE

The purpose of this calculation is to determine envelope dimensions and select the quantities, weights, configuration, and motor horsepower (if applicable) for the following equipment supporting the Wet Handling Facility (WHF) heating, ventilation, and air-conditioning (HVAC) confinement important to safety (ITS) system:

- Exhaust high-efficiency particulate air (HEPA) filter plenum including the housing, plenum for the deluge system, roughing filter/demister, HEPA test sections, and HEPA filter banks
- Exhaust fans for Train A and Train B.

This calculation does not address any equipment clearance and service envelope requirements.

2. REFERENCES

2.1 **PROCEDURES/DIRECTIVES**

2.1.1 EG-PRO-3DP-G04B-00037, Rev. 09. *Calculations and Analyses*. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070717.0004.

2.2 DESIGN INPUTS

- 2.2.1 BSC (Bechtel SAIC Company) 2007. *Basis of Design for the TAD Canister-Based Repository Design Concept.* 000-3DR-MGR0-00300-000-001. Las Vegas, Nevada: Bechtel SAIC Company. ACCs: ENG.20071002.0042 and ENG.20071026.0033.
- 2.2.2 BSC 2007. Preliminary Preclosure Nuclear Safety Design Bases. 000-PSA-MGR0-01000-000-001. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20071015.0008.
- 2.2.3 ASHRAE (American Society of Heating, Refrigerating & Air-Conditioning Engineers) 2005. 2005 ASHRAE® Handbook, Fundamentals. Inch-Pound Edition. Atlanta, Georgia: American Society of Heating, Refrigerating and Air Conditioning Engineers. ISBN 1-931862-70-2.
- 2.2.4 BSC 2007. *WHF Heating and Cooling Load Calculation (Confinement Non ITS)*. 050-M8C-VC00-00400-000-00B. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20071027.0023.
- 2.2.5 BSC 2007. *WHF Air Pressure Drop Calculation (ITS)*. 050-M8C-VC00-00600-000-00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20070503.0009.
- 2.2.6 BSC 2007. Wet Handling Facility General Arrangement Ground Floor Plan. 050-P10-WH00-00102-000 REV 00A. ACC: ENG.20070703.0030.
- 2.2.7 Flanders/CSC Corporation 2004. General Products Bulletin. PB-2006-0103, Rev. 2. Bath, North Carolina: Flanders/CSC Corporation. TIC: 257744. (DIRS 175576)
- 2.2.8 Twin City Fan & Blower Company (n.d.). Twin City Commercial Products Binder. Minneapolis, Minnesota: Twin City Fan & Blower Company, A Twin City Fan Company. TIC: 257748. (DIRS 175551)
- 2.2.9 NEMA MG 1-2006, 2006. *Motors and Generators*. Rosslyn, Virginia: National Electrical Manufacturers Association. TIC: 258678. (DIRS 177612)
- 2.2.10 ANSI/ASHRAE/IESNA Std 90.1-2004. 2004. Energy Standard for Buildings Except Low-Rise Residential Buildings. I-P Edition. Atlanta, Georgia: American Society of Heating, Refrigerating and Air-Conditioning Engineers. ISSN 1041-2336.

- 2.2.11 AISC (American Institute of Steel Construction) 2005. *Steel Construction Manual.* 13th Edition. Chicago, Illinois: American Institute of Steel Construction. ISBN 1-56424-055-X.
- 2.2.12 BSC 2007. Project Design Criteria Document. 000-3DR-MGR0-00100-000-007. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20071016.0005.
- 2.2.13 Camfil Farr (n.d.). General Products Catalog. Riverdale, New Jersey: Camfil Farr. TIC 257752. (DIRS 175575)
- 2.2.14 BSC 2007. WHF Building Confinement Areas Air Leakage Calculation. 050-M8C-VC00-00100-000-00B. Las Vegas, Nevada: BSC SAIC Company. ACC. ENG. 20070924.0030.
- 2.3 DESIGN CONSTRAINTS

None

- **2.4 DESIGN OUTPUTS**
- 2.4.1 *Wet Handling Facility Composite Vent Flow Diagram HVAC Supply & ITS Exhaust.* Engineering drawing. 050-M50-VC00-00101-000.

3. ASSUMPTIONS

3.1 ASSUMPTIONS REQUIRING VERIFICATION

3.1.1 Exhaust HEPA Filter Plenum Dimensions and Weights

It is assumed that the exhaust HEPA filter plenum components dimensions and weights, as derived from Flanders/CSC (Reference 2.2.7, In Place Test Containment Housing, PB-2011-1099, p. 11, and PB-2001-0403, p. 17), are suitable for use as equipment/component information.

Rationale–The exhaust HEPA filter plenum component dimensions and weights from Flanders/CSC provide representative information of the typical vendor information used for similar components. This information will be used only for space envelope and weight determination. Approved vendors data will be used during the detailed engineering design phase and this calculation will be revised accordingly.

3.1.2 Exhaust Fan Dimensions and Weights

It is assumed that the exhaust fan dimensions and weights are derived from Twin City Fan & Blower (Reference 2.2.8, Sub-catalog Backward Inclined & Airfoil Fans, Bulletin 300-E, Model BC SWSI 445, Class III, pp. 15, 23, and 43), are suitable for use as equipment information.

Rationale–The exhaust fan dimensions and weights from Twin City Fan & Blower provide representative information of typical vendor information used for similar components. This information will be used only for space envelope and weight determination. Approved vendor data will be used during the detailed engineering design phase and this calculation will be revised accordingly.

3.1.3 Exhaust Fan Motor Dimensions and Weight

The exhaust fan motor dimensions and weight are assumed to be as shown in Appendix B, Section B-3, of this calculation.

Rationale–The exhaust fan motor dimensions and weight are derived from various motor manufacturers based on the NEMA MG 1-2006 (Reference 2.2.9, Part 13, p. 3) recommended motor frame for totally enclosed fan cooled, 1800 RPM motor. These dimensions and weight provide representative information of typical motor information used in similar application. The width and height include junction box and lifting lugs respectively. The weight includes 15% variation between motor manufacturers. Approved vendor data will be used during the detailed engineering phase and this calculation will be revised accordingly.

3.1.4 Total Pressure Drops for Exhaust Fans

The total pressure drops for the exhaust fans for the HVAC system serving the Confinement ITS areas of the WHF are assumed to be 14.6 in. w.g.

Rationale—The total pressure required for the exhaust fans previously discussed are taken from committed calculation *WHF Air Pressure Drop Calculation (ITS)* (Reference 2.2.5, Section 7). The fans' total pressure requirement will be verified during detail design based on the final approved calculation.

3.1.5 Fan, Motor, and Drive Efficiencies

The following efficiencies are assumed:

- Fan efficiency equal to 70%
- Premium motor (100 to 200 HP) efficiency equal to 95%
- Adjustable speed drive (ASD) losses to be negligible
- Belt drive efficiency equal to 95% (NA)
- Belt drive losses equal to 3% of fan power (NA).

Rationale–Fan motor efficiencies range from 80% to 95% (Reference 2.2.10, Table 10.8), fan efficiencies range from 50% to 70% and belt drive losses are 3% of fan power (Reference 2.2.3, pp. 30.30 and 30.31). Also, belt drive efficiencies typically range from 80% to 95%. The actual efficiencies and losses will be verified during the detailed design based upon vendor submittals.

3.1.6 Airflow Rates

The airflow rates at actual elevation for the HVAC system serving the Confinement ITS areas of the WHF are assumed to be as shown in *WHF Heating and Cooling Load Calculation (Confinement Non ITS)* (Reference 2.2.4).

Rationale–The airflow rates, as indicated in Appendix A, are taken from committed calculation *WHF Heating and Cooling Load Calculation (Confinement Non ITS)* (Reference 2.2.4, Table 4). The ITS exhaust system has two modes of operation: (1) Normal Non ITS Operation and (2) Emergency ITS Operation. The equipment sizing for the ITS exhaust system is based on Non ITS Normal Operation (38,910 cfm). The total capacity of system is the sum of the supply air requirement from the C2 non ITS cooling load and the in-leakage (confinement from the non ITS C2 areas). This non ITS airflow rate is much higher than the ITS leakage requirement of 15,100 cfm (Reference 2.2.14, p. 25) based on confinement. Normal Non ITS Operation airflow rate is used for conservatism. The airflow rates will be verified during detailed design based on the final approved calculation.

3.2 ASSUMPTIONS NOT REQUIRING VERIFICATION

3.2.1 Exhaust HEPA Filter Plenum Components

The exhaust HEPA filter plenum will contain the following components: inlet plenum, plenum for the deluge system, demister, roughing filter, inlet test section, HEPA filter bank, combination test section, HEPA filter bank, outlet test section, and discharge plenum.

Rationale-The standard components listed for this assumption are necessary for an exhaust HEPA filter plenum to be able to perform its intended function. Bag-in/bag-out is used to

replace the HEPA filters. The maximum capacity of the unit is selected based on space limitation and as low as is reasonably achievable (ALARA) consideration.

3.2.2 Exhaust HEPA Filter Plenum Size Dimensions

The exhaust HEPA filter plenum shall be sized for a maximum 3-filter unit high by 3-filter unit wide. Each filter is sized for a maximum flow of 1,500 cfm (Reference 2.2.12, Section 4.9.2.2.7).

Rationale–Bag-in/bag-out is used to replace the HEPA filters. To meet ALARA requirements (Reference 2.2.12, Sections 4.9.2.3.8 and 4.9.2.3.9), the height of the plenum is limited to 3-filter high to be able to replace the HEPA filters without the use of extra tools, such as ladders and scaffoldings. This will minimize the time spend by maintenance replacing the HEPA filters. The 3-filter unit high by 3-filter unit wide is the maximum arrangement for optimum space allocation for one side access. Units having more than 3-filters wide will require both sides of the unit for access.

3.2.3 Use of Adjustable Speed Drive

The exhaust fans will be sized to match the HEPA filter plenum capacity. The exhaust fans will be direct drive fans and will be provided with ASD.

Rationale–Matching fan airflows and HEPA filter plenum capacity is a logical and conservative approach. The ASDs are necessary to compensate for the increase in static pressure as the filters get dirty.

3.2.4 Air Density

The equipment selections for fans and motors are based on standard air conditions (sea level) with an air density of 0.075 lbs/ft^3 .

Rationale–This assumption is acceptable and does not require verification because the manufacturer performance data for fan and motor selection are based on standard air conditions. This assumption is bounding because the actual air density is less at a higher site elevation of 3,310 ft, using the density at sea level will result in higher, more conservative, total air pressure and motor brake horsepower requirements.

4. METHODOLOGY

4.1 QUALITY ASSURANCE

This calculation was prepared in accordance with EG-PRO-3DP-G04B-00037 (Reference 2.1.1). The surface nuclear confinement HVAC system serving this facility is classified as ITS per *Preliminary Preclosure Nuclear Safety Design Bases* (Reference 2.2.2, Appendix A, Table A-1, p. 61) and in *Basis of Design for the TAD Canister-Based Repository Design Concept* (Reference 2.2.1, Section 19.1.2). Therefore, the approved version is designated QA: QA.

4.2 USE OF SOFTWARE

This calculation was prepared using hand calculation and therefore computer software was not used.

4.3 DESCRIPTION OF CALCULATION APPROACH

The equipment sizing and selection calculation is completed by hand calculation using the following approach.

4.3.1 Exhaust HEPA Filter Plenum

- 1. Determine the amount of airflow that will be exhausted (Assumptions 3.1.6) from the confinement ITS zone.
- 2. Determine the quantity of filters required using the maximum flow per filter (Assumption 3.2.2).
- 3. Determine the size of filter units using the maximum plenum from Assumption 3.2.2 based on the space allocation of the room.
- 4. Select and size the equipment using applicable criteria and assumed vendor data.

4.3.2 Exhaust Fans

- 1. Obtain all design inputs and assumptions (see Assumptions 3.1.4, 3.1.5, and 3.1.6) for the confinement ITS zone.
- 2. Determine the quantity of fans required based on HEPA filter plenum capacity and space limitation of the room.
- 3. Determine the required HP of the exhaust fan by using the following formula (Reference 2.2.3, Chapter 30, p. 30.30): Add 15% to the calculated motor horsepower due to motor starting torque and use the next higher standard motor size.

$$P_A = 0.000157 \text{ Vp}$$
 (Eq. 1)

$$P_{\rm F} = P_{\rm A} / \eta_{\rm F} \tag{Eq. 2}$$

$$P_{\rm M} = (1+DL)P_{\rm F}/E_{\rm M}E_{\rm D} \tag{Eq. 3}$$

Substituting Equation 1 in Equation 2, $P_F = 0.000157 V p/\eta_F$ (Eq. 4)

Substituting Equation 4 in Equation 3,

$$P_M = (1+DL) \ 0.000157 \ Vp/\eta_F E_M E_D \tag{Eq. 5}$$

where

 P_M = power required at input to motor, HP P_A = air power, HP V = flow rate, cfm p = pressure, in. w.g. P_F = power required at the fan shaft, HP η_F = fan efficiency, dimensionless E_M = fan motor efficiency, dimensionless E_D = belt drive efficiency, dimensionless DL = drive loss, dimensionless 0.000157 = conversion factor at standard air conditions

For direct drive fans, $E_D = 1.0$, DL = 0

4. Select and size the equipment using applicable criteria and assumed vendor data.

5. LIST OF ATTACHMENTS

None

6. BODY OF THE CALCULATION

6.1 DETERMINATION OF EQUIPMENT QUANTITIES

6.1.1 Exhaust HEPA Filter Plenum

The exhaust filter plenums are ITS units and will serve the loading/unloading room, cask transfer machine maintenance and gas sampling, pool equipment room, pool basement, and cask preparation area. The filter plenums are provided to maintain confinement in these areas in case of a breach.

1. Exhaust Airflow

Airflow rates = 38,910 cfm (Assumption 3.1.6 and Appendix A).

2. Determination of Quantity of Filters Required

Each filter is sized for a maximum flow of 1,500 cfm (Assumption 3.2.2).

Quantity of Filters Required = 38,910 / 1500 = 25.94 filters.

3. Filter Housing Sizing

Maximum Filter Plenum size = 3-filter high by 3-filter wide (Assumption 3.2.2).

= 9 filters @ 13,500 cfm

Quantity of Filter Plenum = 25.94 / 9 = 2.88 (Use three filters: $3H \times 3W$)

Filter Plenum capacity = $3 \times 13,500 = 40,500$ cfm

The equipment arrangement shown in Appendix B, Section B-1, is developed using the dimensions from Appendix B, Section B-2. A second set of three filters 3 ft high by 3 ft wide is provided for redundancy (Reference 2.2.12, Section 4.9.2.2.14). One train is normally operating and the other is a standby.

6.1.2 Exhaust Fan

Exhaust Fan capacity = 40,500 cfm (Assumption 3.2.3). Due to space limitation in the mechanical equipment room, use one exhaust fan with a capacity of 40,500 cfm for each train (Train A and Train B). One train will be operating and the other as standby.

From Equation 5, the power required at input to the motor is calculated as follows:

$$P_M = (1+DL) \ 0.000157 \ Vp/\eta_F E_M E_D$$

where

 P_M = power required at input to motor, HP

V = flow rate = 40,500 cfm (Assumption 3.1.6 and Appendix A) p = pressure = 14.6 in. w.g. (Assumption 3.1.4) $\eta_F = \text{fan efficiency} = 0.70 \text{ (Assumption 3.1.5)}$ $E_M = \text{fan motor efficiency} = 0.95 \text{ (Assumption 3.1.5)}$ $E_D = \text{belt drive efficiency} = 1.0 \text{ (no losses, fan is direct drive)}$ DL = drive loss = 0 (fan is direct drive) $P_M = (1+0) * 0.000157 * (40,500) * (14.6) / [(0.70) * (0.95)]$

= 139.6 HP

 $139.6 \times 1.15 = 160.6 \text{ HP}$ (Use 200 HP)

Envelope sizing of the exhaust fan is provided in Appendix B, Section B-3.

6.2 EQUIPMENT ARRANGEMENT

For proposed equipment arrangement, see Appendix B, Section B-1

7. RESULTS AND CONCLUSIONS

The results of this calculation are presented in Tables 7-1 and 7-2. The configuration dimensions and weights are assumed in Appendix B, Sections B-1, B-2, and B-3. It is concluded that they are acceptable to meet the capacities required by the design inputs provided. Hence, they are suitable for use as the basis for equipment layout in the WHF general arrangement drawings.

	Filter Arrange-	Rated Flow,	Number	of Units	Plenum Dimension	Weight
Zone/Area	ment	cfm	Operating	Standby	L × W x H	lbs.
HEPA Filter Unit #1 (Train A)	3H × 2W	9,000	1	—	24'-6" × 7'-0" × 8'-6"	12,000
HEPA Filter Unit #2 (Train A)	3H × 3W	13,500	1	—	24'-6" × 7'-0" × 8'-6"	18,000
HEPA Filter Unit #3 (Train A)	3H × 3W	13,500	1	—	24'-6" × 7'-0" × 8'-6"	18,000
HEPA Filter Unit #5 (Train B)	3H × 2W	9,000	—	1	24'-6" × 7'-0" × 8'-6"	12,000
HEPA Filter Unit #6 (Train B)	3H × 3W	13,500	—	1	24'-6" × 7'-0" × 8'-6"	18,000
HEPA Filter Unit #7 (Train B)	3H × 3W	13,500	—	1	24'-6" × 7'-0" × 8'-6"	18,000

 Table 7-1.
 HEPA Filter Plenum Sizing

Table 7-2.Exhaust Fan Sizing

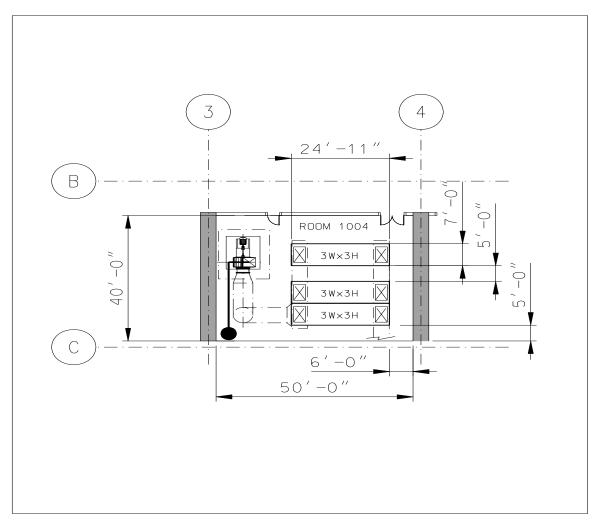
	Rated Flow,	Total Pressure	Number	of Units	Motor	Plenum Dimension	Weight
Zone/Area	cfm	in. w.g.	Operating	Standby	HP	LxWxH	lbs.
Secondary Confinement Exhaust Fan (Train A)	40,500	14.6	1	_	200	13'-1" × 8'-9" × 6'-10"	5,800
Secondary Confinement Exhaust Fan (Train B)	40,500	14.6	_	1	200	13'-1" × 8'-9" × 6'-10"	5,800

APPENDIX A. AIRFLOW RATES

The airflow rates are from calculation *WHF Heating and Cooling Load Calculation* (*Confinement Non ITS*) (Reference 2.2.4, Table 4 and Assumption 3.1.6)

Table A-1. Design Airflow

Room Number	Room Name	Required Exhaust (cfm)	Remarks		
1007	Loading Room	0	Breach area		
1008	Cask Unloading Room	0	Breach area		
1009	CTM Maintenance Room	0	Breach area		
1010	Gas Sampling Room	0	Breach area		
M001	HVAC/Pool Equipment Rm	1,880	Secondary confinement area		
1016 & 2008	Cask Preparation Room	9,155	Secondary confinement area		
1042A, B & C	Pool Pump Room	8,200	Secondary confinement area		
1043A, B & C	Pool Filter Room	1,775	Secondary confinement area		
1044A, B & C	Pool Ion Exchanger Room	1,500	Secondary confinement area		
1045A, B, C & D	Corridor	3,900	Secondary confinement area		
B001 to B009	Pool Basement Area	8,000	Secondary confinement area		
P002	Decon Pit	4,500	Secondary confinement area		
	Total	38,910 cfm			


Secondary Confinement /	Breach Areas
-------------------------	---------------------

NOTE: The above rooms are exhausted through the ITS HEPA filter exhaust system (Assumption 3.1.6).

APPENDIX B. EQUIPMENT ARRANGEMENT & SELECTION

B1 EQUIPMENT ARRANGEMENT

The room dimensions are from *Wet Handling Facility General Arrangement, Ground Floor Plan* (Reference 2.2.6).

- NOTES: 1. Exhaust HEPA Filter Plenum and the Exhaust Fan arrangement for the Train A in Room 1004 are similar to Train B in Room 1021.
 - 2. While the general arrangement drawing (Reference 2.2.6) shows four units, the correct quantity of three units should be incorporated into the next revision of the general arrangement.

B2 HEPA FILTER UNIT SELECTION

EXHAUST HEPA FILTER PLENUM

Rated Capacity = 13,500 cfm Arrangement : 3 Filters High x 3 Filter wide ⁽²⁾

Inlet Plenum with Door	Plenum Deluge	Dem ister	Roughing Filter	In let Test Section	Plenum	HEP A Filter Section	Combination Test Section	HEPA Filter Section	Outlet Test Section	Discharge Plenum	< Height		
←						Length				\longrightarrow		< Width	\rightarrow
Component Description ⁽⁸⁾ Inlet Plenum with door ⁽⁵⁾					(i	Length, Estimated Weight ⁽³⁾ (inch) per inch length (lbs)				(lbs)	(4)		
Plenum D								48 60 12 60				2,880 720	
Demister		ge						12		60		720	
Roughing	Filt							12 60			720		
Inlet Test		ctio	n ⁽¹⁾					28		60		1,680	
Plenum ⁽¹				(1)				12		60 60	720		
HEPA Filt						1)		25				1,500	
Combinat					on '	1)		28 6				1,680	
HEPA Filt								25 60				1,500	
Outlet Te								24 60				1,440	
Discharge	e Ple	enu	m ``	.,			_	63 289	or 24'-	60 1"		3,780	
									17,340 Use: 18,000				
For 3H x 3W Filter Arrangement:					nt:	Wi	dth ⁽¹⁾ =	= 8'-2"(incl = 6'-1 1" Us 24'-1" Use	e: 7'-0"	ase) Use: 8'-	6"		

Notes:

- 1 Dimensions and weights are based on Flanders/CSC (Assumption 3.1.1)
- 2 See Assumption 3.2.2
- 3 From Flanders/CSC In-Place Test Housing, PB-2011-1099 (Reference 2.2.7, page 32), for a 30" high by 75" wide by 20" deep housing, the weight of the section is 280 lbs. This equates 14.0 lbs per inch of length for 30" x 75" housing. By proportion, for a 3H x 3W (102" high by 84" wide) housing, weight per inch of length of this section is approximate 52.7 lbs. Round-up the weight of this housing to be 60 lb. per inch of length to include the media inside and the base channel.
- 4 Product of length x estimated weight per inch length.
- 5 Length of component to accommodate the attachment of the intake and exhaust ducts into/from the filter plenum of $3H \times 3W$.
- 6 From Camfil Farr General Products. Product Sheet 2408-0302 (Reference 2.2.13)
- 7 From Camfil Farr General Products. Product Sheet 2405-0302 (Reference 2.2.13)
- 8 See assumption 3.2.1

B3 EXHAUST FAN SELECTION

EXHAUST FAN AND MOTOR

Ft F (1)			.			
Exhaust Fan: ⁽¹⁾		acity		Dimensio		Weight,
	Airflow,	TSP,	Length	Width	Height	lbs
	cfm	in.wg.	inch	inch	inch	
	40,500	14.6	83	81	76	2,112
	ſ					
Fan Motor: ⁽²⁾	Moto	r Size		Dimensio		Weight,
			Length	Width	Height	lbs
	HP	Frame	inch	inch	inch	
	200	447T	50	34	27	2,070
			1			
1						
Length = Fan + Motor + 6" b		base + 6"	both side	es concre	ete pad	
= 83" + 50" + 12" + 1	2" =	157	Use:	13'-1"		
Width = Use the larger widt				base + 6'	both sic	les concrete pad
= 81" + 12" + 12" =	105"	Use:	8'-9"			
Height = Use height of fan +						
= 76" + 6" =	82"	Use:	6'-10"			
			001 1	40 5 11	6)	
Weight = Fan + Motor + Stee	•	•		10.5 IDS	per π.)	
= 2112 + 2070 + 630		4,812				
with 20% safety fac	ctor, Use:	201 008, C				
Notes: 1. Dimensions and	weight of	Exhaust	- 	sed on T		Fan & Blower
(Reference 2.2.8						i all à Diuwel
2. Dimensions and				-MA rom	mmond	ed motor frame
(Reference 2.2.9	•					
to unavailable di						
conservatism.					1.13 400	
3 Approximate we	iaht of ste	el based (lbs per f	not) on 6	" steel cl	nannel

3. Approximate weight of steel based (lbs per foot) on 6" steel channel (Reference 2.2.11, Page 1-40, Channels American Standard Dimensions and Properties).

ENG.20080729.0001

1. QA: Q/A

2. Page 1 of 1

3. Document Identifier: 050-M8C-VC00-00500-000	<u> </u>			4. Rev.: 00B	5. CACN: 001						
5.55-Mase-vector-toto 00B 001 6. Title:											
WHF Equipment Sizing and Select	tion Calculation (IT	S)									
7. Reason for Change: A typographical issue was discovered in the WHF Equipment Sizing and Selection Calculation (ITS), 050-M8C-VC00-00500-000- 00B. Section 7, Results and Conclusion, displayed the incorrect filter arrangement, rated flow (cfm), and weights (lbs.) for HEPA Filter Unit #1 (Train A) and HEPA Filter Unit #5 (Train B). This CACN will resolve CR 12425.											
8. Supersedes Change Notice:	Yes If, Yes,	CACN No.:			No						
9. Change Impact:											
Inputs Changed:	res 🛛 No]	Results Impacted:	Yes	No						
Assumptions Changed:	íes 🛛 No]	Design Impacted:	Yes	🖾 No						
10. Description of Change:											
 In Section 7, Results and Conclusion, Table 7-1, for HEPA Filter Unit #1 (Train A) change the following: The filter arrangement from "3H x 2W" to "3H x 3W" The rated airflow from, cfm, "9,000" to "13,500" The weight from, lbs., "12,000" to "18,000" In Section 7, Results and Conclusion, Table 7-1, for HEPA Filter Unit #5 (Train B) change the following: The filter arrangement from "3H x 2W" to "3H x 3W" In Section 7, Results and Conclusion, Table 7-1, for HEPA Filter Unit #5 (Train B) change the following: The filter arrangement from "3H x 2W" to "3H x 3W" The filter arrangement from "3H x 2W" to "3H x 3W" The rated airflow from, cfm, "9,000" to "13,500" The weight from, lbs., "12,000" to "18,000" 											
11.	F	REVIEWS A	ND APPROVAL								
Printed Name			Signature		Date						
11a. Originator: Luis Durani		Y	ith		07-29-2008						
11b. Checker:											
Gin Cababa 7.29-08											
11c. EGS: Namenan to Man 7 2 a ro											
Maurice LaFountain m. Lefont 110 7- 4-08											
11d. DEM: Hang Yang Providence 07-29-200											
11e. Design Authority											
Barbara Rusinko B R.C. SLOVIC PCKin 29 JULY 2008											

BSC

Complete only applicable items.