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1.0 INTRODUCTION

ta

> As part of 1mp1ementat10n of Extended Power Uprate (EPU) at Nine M11e Point Unit 2 (NMP2)
the effects of flow mduced v1brat10n (F IV) loads need to be con31dered in the structural analy51s
of the steam dryer. Thus an ASME Code [1] Section III analy51s has been performed to assess
the structural adequacy of the steam dryer. The analysis documented in this report has been
performed using the guidance of BWRVIP-182 [2], “Guidance for Demonstration of Steam
Dryer Integrity for Power Uprate.” The load and load combinations evaluated for the NMP2
steam dryer are considered using the NMP2 plant specific load combinations as well as those

provided in BWRVIP-181 [3], “Steam Dryer Repair Design Criteria.”
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2.0 DESIGN CRITERIA

This evaluation is performed using the guidance of ASME Code, Section III Core Shpport
Structures. As such, the rules of Subarticle NG-3200 Qf Section 111 of fhe ASME Code, 2001
Edition (with 2003 addenda) [1], are used. - |
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3.0 LOADS

3.1 Unit Load Cases -

Four static unit load cases were provided by Continuum Dynamics, Inc. (CDI)-[4]. They are:-
(1)  Unit pressure
(2) - Static acceleration in global x-direction -
- (3) - Static acceleration in global y-direction

(4) - Static acceleration in global z-direction.-
3.2 Flow Induced Vibration Load

In addition, a dynamic load case due to the flow induced vibration (FIV) was provided by
. CDI [4]. This load case is the acoustic loading from the steam line thoughvthe steam nozzles to

the outer hood of the steam dryer. This load case was performed as a harmonic analysis. The

results are only provided for the points of time corresponding to the maximum stress intensity

and the maximum alternating stress intensity range in the steam dryer.
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40 LOAD COMBINATIONS

Per Reference [3], the load combinations are divided into two basic categories, Mark I plants and
Mark II/IIT plants. NMP2 is a BWR-5 Mark II plant, thus, the load combinations contained in

Table 7-2 of Reference [3] are used as a guide since NMP2 has plant spéciﬁc documentation for
the steam dryer load combination. The detailed description of individual load cases and how the
load cases combined is documented in Reference [5]. The load combinations are summarized in
Table 4-1, along with the AP in Table 4-2, and scale factors for static acceleration loads in Table
4-3. Based on the review of different load cases and load combinations-in References [5] and

[6], Table 4-4 lists the load combinations that will be used in the ASME Code stress evaluation.
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Table 4-1: NMP2 Steam Dryer Load

Combinations

No. Load Combination Design Basis | Evaluation Basis
B-1 |NL + APy + [OBE® + FIV‘]” Upset Upset
B-2 |NL + APy + [SRV” + FIV*]" - Upset Upset
B-3 | NL + APy + [OBE” + SRV” + FIV“]"* Emergency Upset
C-1 |NL+ APy + [OBE® + SRV”+ FIV*]* rEmergency Emergency
C-2 | NL+APy+ [CHUG2 + SRV aps” + FIV?]" ~ Emergency Emergency
D-1 |NL + AP, + [SSEZ + APZ + FIVY]" Faulted Faulted
D-2 | NL + AP, + [CHUG" + SRV aps” + SSE*+ FIV’]" - Faulted Faulted
D-3 | NL + APy + [SSE® + SRV* + FIV]” Faulted Faulted
D-4 | NL + AP, + FIV Faulted Faulted
Notes:

NL = Normal loads (metal + water weighi)

APy = Normal delta pressure force -

APy = .Upset delta pressure force

AP, = Accident LOCA delta 'pressﬁre force

AP, = Interlock-delta pressure force

FIV = Flow induced vibration

OBE = Operating basis earthquake loads

SSE = Safe shutdown earthquake loads

SRV = Safety-relief valve discharge loads ‘

SRV sps = Loads induced by actuation: of safety-relief valves associated with the Automatic

Depressurization System ‘ '
AP = Annulps pressurization loads
CHUG = Chugging loads o
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Table 4-2: Delta Pressure Forces

Condition . . AP (psi)
 Normal Condition (APy) (:‘EI;E:‘ 0921386 |
Upset Qondition (APy) ?EIIJ)EP 007417 ,
Faulted Condition (AP, AP1)’ (;’EI;)TJ):: 46;

Notes:

1. CLTP = Current Licensed Thermal Power; EPU = Extended Power Uprate
2. Maximum of (AP,, APy)

Table 4-3: Dynamic Loads

Description Direction Load (g)
OBE Horizontal (X) 0.501
OBE Horizontal (Y) | 0.535 |
OBE Vertical |  0.186 ‘
SSE Horizontal (X) 0.767
SSE Horizontal (Y) 0.777
SSE Vertical 0.327
SRV Horizontal | - 0.071
SRV - Vertical 0.132 -
SRVaps Horizontal 0.004
SRV aps Vertical ' 0.128
CHUG Horizontal (X) 0.078
CHUG Horizontal (Y) 0.045
'CHUG | Vertical (Z) 0.182
AP Horizontal 0.580*1.6
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Table 4-4. NMP2 Steam Dryer Limiting Load Combinations

Case

Load Combination

Evaluation Basis

B-3 | NL + APy + [OBE® + SRV?+FIV?]® | Level B (Upset) '

D-1 | NL + AP, + [SSE? + AP? + FIV?]”

Level D (Faulted)

Note: 1. The fatigue evaluation does not include the FIV stresses. This load

combination is used to evaluate-the primary and primary + secondary stresses."
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50 ASSUMPTIONS S o .

The assumptions are:

(a) All matefiéls in the steam dryer are assumedftd be Type 304 stainless steel (A240,
Type 304). o

(b) The operating temperature is assumed to be 550°F.

(c) The design temperature is assumed to be 600°F.

(d) The vessel brackets are not included in the current ASME Code evaluation.

(e) The weld factor for fatigue evaluation is 1.8 for fillet welds and 1.0 for full
penetration welds.

(f) All welds are assumed to be fillet welds.

(g) The quality factor for the weld used in the Code stress evaluation is assumed to be
1.0.

(h) No expansion stress, Pe, is considered in the Code stréss evaluation, assuming the
thermal stress is insignificant. .

(i) The weight of steam is assumed to be negligible. |

(j) The water inside the skirt has no effect on the deadweight stress in the steam dryer.

(k) The scale factors for OBE include the effect of the added water mass inside the
skirt.

The design stress intensity (Sy,), yield strength, ultimate strength and Young's Modulus for
Type 304 stainless steel (A-240 Type 304) were obtained from Reference [7] and summarized
in Table 5-1 for different temperatures. Thé summary of stress intensity limits for different
service levels and stress categories are obtained from Reference [1] and presented in Table
5-2. The allowable stress intensity for each stress categories are presented in Table 5-3, where

Pn: primary membrane, Py: primary bending, Q: secondary and F: peak.
The material fatigue curves atvhigh cycles are presented in Figure 5-1 [1]. The digitized curves

are presented in Table 5-4 [1]. In addition, the guidelines to determine which fatigue curve to be

used in the Code evaluation are presented in Figure 5-2 [1]. .
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Table 5-1: Design Stress Intensities.and Young's Medulus (ksi) for Stainless Steel

(A240 Type:304)
| _20°F't0°100°F *| - 500°F* " 600°F | 550°F
Sm 20.0% 17.5 16.6 17.05-
Yield Strength 30.09. 194 [ | 184 189,
Tensile Strength 7500 - 634 |t 634 |t 634
Young's Modulus 283 x](_)_3£22\ .. 25.8x10° | "7253x10° 125.55x10°
Notes: v < : '
L. Interpolated between 500°F and 600°F ‘,
2. At 70°F DR "
s Table 5-2 Summary of Stress Inte;ns1ty lelts .
“Cate (;n’e's’ 2|, . Levels Aland B CLevelCTi x| .. . LevelD... ..
& (Design, Normal & Upset) |  (Emergency) (Faulted)
P, 1 S o 258 s by min of:2.4 S, and O.’Z.Sl‘1
Pm+P, T 158, 2258y VI NS
P +Pp+Q 3Sm VLRI - NS I “nfa
Py tPyt+Q+F S. n/a n/a
. Notes:
1. Level D uses Section 11T Appendix F criteria.
2. n/a: not applicable
Table 5-3: Allowable Stress Intensities (ksi)
Categories Levels Aand B Level C Level D
g (Design, Normal & Upset) | (Emergency) (Faulted)
P 16.67 24,97 min(39.84, 44.38) = 39.84
P, +Py 24.9 37.35% 59.07
P, +P,+QY 51.15%  n/a n/a
Po+Py+Q+F e ‘n/a n/a
Notes:
1. Used S, at 600°F for conservatism.
2. Used Sy, at 550°F, for bounding average temperature per Flgure NG-3221-1, Note (6).
3. See Figure 5-1 and Figure 5-2 and Table 5-4.
- 4. n/a: not applicable

5-2
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At oooo o Table 5-4: -Tabulated Values of Fatigue Cufves- -1+ w0 '«

“TABLE 1-9.2.2
“"TABULATED VALUES OF .S, ksi (MPa), FROM FIG, [-9.2.242 =~
Number uf : o , vy ; N o
[Note (3)] Sho. . CurveA . . ; Curve. B i CurveC _
lEb - ©. 282 (*194)‘ T 232 {194) 282 (194)_
U286 1 269088 . 228050 T2z8 (157
5E6 25.7(177) 198 (137) 18.4 (127 o
1E7 251 (173) 18.5 (128) l16.4 (113)
2E7 247 (LTO) 17.7° (122 7 TR 152 {108)
5E7 24.3 (168) 17.2 {119) 143199
1E8 : 24.1(166) 170017} 141 (97)
1E9 . .. 239 (165} o 16.8 {116} . 13.9 {98)
1E10 ‘zzg aea)tt T TUgeey 137 099)
ELL - 0 U 237183y, 0 U7 1650114 0 T T T13.67194) 0
NOTES: . il R Y A
1) Al notes on. F|g I 9 2 2 apply to these data : ' ‘
{2) Interpolatmn ‘between tabular values is permlssuble based upon data representation by straight Imes on
~ _log-log plot’ See Tahie 1-9.1, Note {2). .
(3) The number of cycles indicated shall be véad as follows: o ; C e
- 1E) = Ixm eg,sse-5xm or 5,000,000 co e e
AR}
¥ : i A . i
PR R
- . -
4
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Fig, 1-9.2.2 2001 SECTION III, DIVISION | — APPENDICES Table £-9.2.2

28 (193)

26 {179) < . e
\ T ]| Curve A
24 (165) \

22 (152) : \ :
20 {138) ‘\‘\

18 {124) \* i~ Curve B
™~

Value of S, ksi (MPa}

16 (110) . y 1T
L : curveC | 1uf L[]
14 {95) y :

12(83) ,
106 - 17 o 108 10° S 10"
Number of t%ycles, N

1

NOTE: B
E=283x 106 psi {195 000 MPa)

FIG. 1-9.22 DESIGN FATIGUE CURVES FOR AUSTENITIC STEELS, NICKEL-CHROMIUM-IRON ALLOY,
NICKEL—IRON CHROMIUM ALLOY AND NICKEL-COPPER ALLOY FOR Sz S 28.2:ksi (194 x 10° MPa), FOR
o 'i TEMPERATURES NOT EXCEEDING 800°F (427°C)
L " (For S, >28.2 ksi (194 x 10° MPa), use Fig. [-92.1)
- Table 1-9.2.2 Contains Tabulated Values for Accurate Interpolation of This Curve

Figure 5(-1: Design Fatigue'Curves
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Is stress location within three

i ~ No —  wall thicknessés of . - - Yesg —~ '
o . - the center line of the weld?
Y S . '
Elastic ~ 1 1s{P % Py+ Qlpange | Elastic
'far"\élysis? . i < 27.2 ksi (s 187 000 kPa)? analysis,
! LA L y : :
“  No Yes' “ . No
!neal:as'tizi Can 1s alternativng
. analysis ‘stress intensity S,
corrected for
applied
mean stress?
1 1
Yes No .
B Y
. E ISP+ Pb-‘f‘b)nan‘ge"
; T 1 £2722ksi
o .~ [£187 000 kPa)?
. SR -
No Yes
Y 1
Use\ Use
curve ) curve e
A 8

FIG. 1923 FLOW CHART FOR USE OF CURVES IN FIG. [-9.2.2

Figure 5-2: Flow Chart for Use of Fatigue Curves
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60  ASME CODE STRESS LIMITS EVALUATION
The individual load cases were combined with the appropriate scale factors for the two'load- -
combination cases as'shown in Table 4-4. The individual dynamic‘ load cases of OBE, SSE, and SRV

are first obtained from the square root of the sum of square (SRSS) from the three static accelerations in

the three global directions. .

OBE =,[OBE? +OBE: +OBE? " " *' ' G ey
SSE = \[SSE; +SSE} +SSE} . . . L (6-2)
SRV =[SRVZ+SRVE+SRVE =~ S 63y

where OBE; , SSE;, and SRV, = load case due to static acceleration exc,ita__tion in i,direction,

i=x,yorz.

After each load case is calculated, then the load case results combined by SRSS{dependi_ng"on the
load combinations to obtain the resultant stress components for combination“_s vwifth.the 'normal load

g
it

and the delta pressure force load cases.
The resultant load cases of OBE, SSE, and SRV are used in the final load combmatlons as shown in -
Table 4-4 for the ASME Code evaluation. The individual load cases are algebralcally summed -as
shown in Table 4-4 for the ASME Code evaluatlon The algebralc sum of the SRSS of OBE, SSE and

SRV is both posmve and negatlve to account for the fully reversible nature of these loadings.

The Code stress compliance evaluation was performed on a node by node basis for a simple and
direct evaluation. The intent of the Code is to evaluate the stress across a full section per Subarticle
NG-3217 and Table NG-3217-1, duplicated in Table 6-1. Therefore, if the stress in a component
evaluated on a node by node basis is higher than the required stress allowables; a section per ASME
Code guideline is selected through the highest stress location in the component for further

evaluation.
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The model is shown in Figure 6-1 [4]. The model consists of Shell63, Sohd186 Solid187 and Mass21
element types (Figures 6-4 to 6-7) [4]. The model for the unit pressure load case contains element types
Surf154 for the pressure inputs (Figure 6-6). It has 157,578 nodes and 122,269 elements (167,122
elements if the Surf154 element type is included).” The boundary conditions for the unit pressure load
case are shown in Figure 6-2. The steam dryer is constrained at the vessel bracket. in all three
translational directions. In addition, there are 18,453 constraint equations used in the model, Figure 6-
3. These constraint equations are used to couple different components of the steam dryer. The mass

elements in Figure 6-7 are inside the Vane Bank to account for the assembly inside the Vane Banks.

For the Code stress evaluation, the steam dryer is separated into different componerts. The -
definitions of these components are based on the functionality or proximity in the steam dryer. They
are:

Outer Hood, Figure 6-8

Middle Hood, Figure-6-9

Inside Hood, Figure 6-10

Gussets in Hoods, Figure 6-11

Side Plates, Figure 6-12

Vane Bank Base Plates, Figure 6-13

Vertical Plates Inside Vane Banks, Figure 6-14
Vane Banks, Figure 6-15 and Figure 6-16
Drain Pipes, Figure 6-17

10. Skirt, Figure 6-18

11. Drain Channels, Figure 6-19

12. Upper Support Ring, Figure 6-20

13. Lower Support Ring, Figure 6-21

14. Tie Bars, Figiire 6-22 :

15. Lifting Rods, Figure 6-23

16. Gussets Between Upper Support ng and Vane Bank Base Plates, Flgure 6-24

BRI E D

The vessel brackets, Figure 6-25, are not included in the component list for the Code or fatigue
evaluation because they are not considered as components in-the steam dryer, but instead

components in the reactor pressure vessel. -

6.1 - Individual Load Case Results

The results from the individual load cases are obtained from Reference [4]. Only the EPU condition

was considered in this evaluation.
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6.1.1 Unit Pressure

The unit pressure loadings on the steam dryer are presented in Figure 6-26. A 1 psi was applied inside
the steam dryer, except only at the bottom portion of the skirt. Inside the vane bank, a 0.5 psi was
applied to the top plates, side plates and the'base plates. The overall stress intensity factor distribution
is presented in Figure 6-27. The maximum stress intensity is about 16 ksi, Figure 6-27 (a). The
maximum stress location is at the end of the tie bar over the inner hoods, Figure 6-27 (b). The high

stress components are the middle and inside hoods.

6.1.2 Unit Acceleration in Global X-Direction

A1 g acceleration (386.09 in/sec’ [4]) was applied in the global +x-direction. - The global x-direction is
shown in Figure 6-4. The overall stress intensity distribution is.shown in Figure 6-28 (a). The
maximum stress intensity is about 40 ksi. Its location is in.oné ofithe vessel bracket, Figure 6-28 (b).
This maximum stress is highly localized in the vessel bracket. The stresses in the rest of the steam

dryer are much lower.

6.1.3 Unit Acceleration in Global Y-Direction

A 1 g acceleration was applied in the g’lobai' +y-ditection. The overall stress intensity distribution is
shown in Figure 6-29 (a). The maximum stress intensity is about 50 ksi. Its location is also at one of
the vessel brackeét, Figure 6-29 (b). Similar to the previous acceleration case, the stresses in the rest of

the steam dryer are lower.

6.1.4 Unit Acceleration in Global Z-Direction

A 1g acceleration was applied in the global +z direction. The overall stress intensity distribution is
shown in Figure 6-30 (a). The maximum stress intensity is about 13 ksi. Its location is also at one of

the vessel bracket, Figure 6-30 (b). This maximum stress is much lower compared to the other two

horizontal acceleration cases.

615 FIVLoads

Two sets of results were provided from FIV loads [4]. They are identified as:

(D TimeStress 49666 1075
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(2)  TimeStress 49670_1075.

These results correspond to the time of maximum stress intensity and the maximum stress intensity
range. The overall stress distributions are presented in Figure 6-31 and Figure 6-32. It is shown that
case TimeStress_49666 1075 has a higher overall stress intensity. This case is used in the load

combinations for the Code stress evaluation.

6.1.6 OBE, SSE, SRV and AP Load Cases
The overall stress distributions for the load cases of AP, AP,, OBE, SSE, SRV, and AP are presented in

Figure 6-33 through Figure 6-38, respectively. These load cases are combined or scaled according to
Equations (6-1) to (6-3) or Table 4-3. Only the stresses at the top surface of the shell element types are
shown. These load cases are used to perform the load combination, as identified in Table 3-4 for the

Code stress and.fatigue evaluations.
The load combinations were performed in ANSYS Revision 11.0 [8].

6.2 ASME Code Stress Evaluation, Load Combination Case B-3

To determine whether the steam dryer stresses meet the ASME Code allowable requirements, the steam
dryer is divided into major components as identified in Section 6.0. For each component, the stress
intensity plots are obtained for the mid, top and bottom surface of the shell elements to determine the
primary membrane stress intensity, P, and the primary membrane and bending stress intensity, Py+Py.
The results are interpreted from the stress plots based on the nodal basis. These nodal results are

readily intefpreted and conservative for the ASME Code stress evaluation.

The ASME Code stréés evaluation for the load combination Case B-3, é Level B (or upset) service
condition, is summarized in Table 6-2. Two conditions for this load case are considered: witlnlA(a)
positive and (b) negative of the dynamic loads: [OBE? + SRV? + FIV?]” in the load combinations. The
stress intensity distributions for all components are presented from Figure 6-39 thru Figure 6-54 using
the positive dynamic loads and from Figure 6-55 to\ Figure 6-70 using the negative dynamic loads and

summarized in Table 6-2. It is shown that all components are below the P, and P,+Py, allowables for
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the Level B (upset) service condition except the Pr, in the.component Gussets in Hood from Table 6-2

(a), with stress distribution shown in. Figure 6-71 (a).

Since it is assumed that the thermal expansion stress is insignificant, the stress category Py +Pp+Q is
thus the same as P +Py, in Table 6-2 (a) and (b)

For the component Gussets in Hood in Load Case B-1(a), the gusset with the maximum stress intensity
location is shown in Figure 6-71 (b). The location cjf the maxim‘um stress is at th)eh bgttom corner of the
gusset. . This:maximum }stressbi's very localized and édncentraﬁgzd ata siing'l,c node. As describé_d in Table
NG-3217-.1 , Table 6-1? fo; z.u}'y“she::ll in thé core suppoft structure, the 10cati§n for conéidqratiop,can‘ be
any séction aéross the entire shell, (i.g., component 'Any Shell prlHegg: ur‘)d,élfﬁ c;()lunﬁn he,ading 'Corei
Support S_.tmctur_e’).", Th_ercfore, a se\qtién across the gusset gt:g_ﬁe ,rﬁ;;)gbimgr{n_"s‘tre's‘s location is é_elec_te;_d_ as
shown in Figure 6-71 (b). A linearized stress is obtained for‘mémb'ra,ﬁé ar_1:d bgn_}dipg_s,t‘resseslfqr this .,
section. It is shown that the linearized Py, is 6.53 ksi and the lineériz;:d P.+Py is 10.1-7 ksi, Table 6-3.
They are below the P, and PritPy streSS;allqwables of 16.6 ks1 and 24.9 ksi, resggc‘giVely for Load Ca§§:
Bl - | | |
It should be noted thét in ’fable 6—;2, the P, Pm+Pb Top and Pm+Pb B‘ottorlnta?re the s‘amek, for the Upper
Support‘Ring,,LovAver S};pport,Ring gnd Tie Bars. It is due that solid elc;m@nts were »used i_n ‘these

components. The nodal stress is taken as both P, and Pp,+Ps,.

6.3 ASME Code Stress Evaluation, Load Combination Case D-1
The ASME Code stress evaluation for load combination Case D-1, a Level D (or faulted) service
condition, is summarized in Table 6-4 for both positive and negative dynamic load: [SSE? + AP? +
FIV?]* in the load combination. The stress intensity distributions for all components are presented
from Figure 6-72 to Figure 6-87 using the positive dynamic loads and Figure 6-88 to Figure 6-103

using the negative dynamic loads and summarized in Table 6-4.
In Table 6-4, it is shown that the components of middle hoods, insides hoods, gussets in‘hoods, vane

bank base pi’ates, vane '-banks and tie bars.are above the allowables either in P, or Pn+Py, based on the

results from:-nodal stresses.. When the stress results are interpreted by linearization of stress in a section
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through the maximum stress location and bending stress classified as secondary stress per NG-3213.0-
and Table NG-3217-1, most of the components have stresses within the Code stress allowable, Table - .
6-5, except gussets in hoods and tie bars. Further assessment of this high stress condition is presented

in the next section.

6.4 Reconciliation of Finite Element Model and Assessment of Code Evaluation

The ASME Code evaluation was performed based on finite element models and results in Reference
[4]. " Since then, a modification to the finite element model was incorporated [13]. The unit load cases
for the unit pressﬁr'e and the three unit acceleration were re-analyzed. Since the Code evaluation in’
Sections 6.2 and 6.3 was performed using the results from the model before the modification, this
section provides a reconciliation of the difference in the stress results from thesé two models to asséss

the applicability of the current Code e\ialiiation;is applicable.
The modifications to the finite element modél are described in Reference [1 3]:and summarized below:

1. Reinforcement strips were removed from the innermost hoods (the ones furthest from .
the MSLs). | ‘ o |
2. nyer support between MSL C and MSL D was shortened to account for the difference
in seismic block position. | ' o : '
3. The geometry of the supporting plates was changed in accordance with drawing number

158B8793.

Table 6-6 summarizes the maximum stress-intensitiesin the portion of the steam dryer above the upper
support ring for the four unit load cases for the model before the modification and after the -

modification. The differences in maximum stress intensities are from -14.30% to 41.86%.

In order to evaluate the effect of the model modification on the Code evaluation, the stress intensities
results in Tables 6-2 through 6-5 are adjusted by the average of the percentage difference in the last
column of Table 6-6." The use of average difference is-justified since the load combinations include -
these four unit load cases as they can cancel each other in the load combination due to acting in the

opposite direction. And these unit load cases were scaled by-the load factors shown in Table 4-2 to .
i
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obtain the resultant stress intensity. The average difference was calculated to:be 5.62 %. A scaled

factor of 1.06 was used.  The modified Code stress evaluation is presented in Table 6-7 to Table 6-10.

For load combination Case B-3, service level conditions A/B, all components remain below the Code

stress allowables.

For the Service Level D Code evaluation, the stresses in the same two components, gussets in hoods
and tie bars, are higher than the allowable by a maximum of about 30% on the P,,+Py, and 23% on the
P.. Depending on the location, the P, can be classified as secondary stress per NG-3213.9 such that thé
P, +Py, could be within the allowable. In addition, an acceptance criteria using elastic-plastic stress
analysis per Appendix F, Rule for Evaluation of Service Loadihgs with Level D Service Limits, of
Reference [1] can be performed to show the Code acceptance of the steam dryer. Since the applied
stresses do not significantly exceed the stress allowables, the use of elastic-plastic stress analysis should
be able to show that the stresses in these two components could easily satisfy the ASME Code

requirement.

6.5  Assessment of Indications in Upper Support Ring and Drain Channel

The baseline inspections [16] of the NMP2 steamn dryer identified steam dryer cracking consistent with
the BWR fleet operating history as described in Section 2.4 of BWRVIP-139 [18]. The indications that
require assessment relative to EPU service conditions are the indications located in the upper support
ring, the drain channel to skirt vertical weld, and in the tie bar to hood weld heat affect zone [16].
Indications in the anti-rotation tack welds associated with the tie rod cam nut washers and the lifting lug

have been identified as repair locations prior to EPU service.

A fracture mechanics evaluation of the observed indications was performed to determine if a repair is
required for these locations for EPU operating conditions [17]. The evaluation in Reference [17]
concluded that the reportable indications are expected to experience no significant crack growth during
EPU operating conditions. Since the indications are characterized as IGSCC they were evaluated
conservatively assuming further IGSCC growth using methods consistent with BWRVIP-14A [19]. The
BWRVIP-139 [18] inspection interval is one operating cycle. With this assumption the cracking results

in an insignificant change in the section thickness. The remaining ligaments in these components are
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sufficient to produce safety factors that are well above the mirimum requiréd code saféty factors for the
all service conditions including the limiting upset and faulted conditions with the EPUFIV load .

included.
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Table 6-1: Classification of Stress Intensities

’ L r . TABLE NG-3217-1 oy ¢
. . a7 CLASSIFICATION OF STRESS INTENSITIES FOR SOME TYPICAL CASES )
. . ) D . : Coye Discontinulty '
‘Core Support = ' Origin of . R Classifi- - =
. Structure | » Location Stress Type of Stress, catlon | Gross | Local
. Cylindrical or - Sheli plate remote from 1 Pressure ditference General membrane - - Pr Mo INe ~ -
. spherical sheil discontinuities ! Gradient through plate . Q Yes No
S ' : thickness BN -
B o . [ axiat thermat Membiane T ) Yes | No
. r: B . PR gradient Bendlng | © . 7.7 Q Yes INo ~
- " | aunction with head | | Pressure difference | Membrane Q Yes | No
. . , or flange - - i ' Bending . . Q Yes {No
b A : .
" .Any.shell or head | Any section across External load or General membiane averaged across - .
- Do . + entire shsl) moment, er ¢ full section, Stress camponent Pa Ho No
o R pressuse dliference ‘perpendicular to crass section.. .. |.. ..
N . c g g
* * b External load or - Bending across futi Wlon.’ Stress- *
- T moment ° component perpem_ﬂ:uhr_lo Cross | Pu fo No
gl o B . seclion : i’
s | Near nozate or gther External toad or Membrane [y Q Yes | Ho
. + |- opening © < moment, 00 | Bending L aQ Yes | Mo
- " - pressure difference | Peak (Rilol or corner) F Yes Yes
i - -
[ ‘Any location Temp. difference ' - | Membrane . ] Yes- | No
> ! . between shell and Bending Q Yes No
R : head AR .
" Dished heador . { Crown ! Pressure difference | Genéral membrane N Pn No (N0 I
_ conicat oo . Bending . Py No No
v . 7 g
P g + | Knuzktz of junction Pressure difference | Membrane ; @ |ves |Ho-
. r T - to shell . C BCMIM . 1@ Yes No
-, Fiat head Center regicn . Pressure difference | General membrane’ - P No No
. - R 1 . Bending x Py No No
Lo Junction to shell Pressure difference | Membrane T Q- Yes No )
k i . : ! R} | Bending Q@ |Yes'INo '
Perforated head or | Typical tigament in Pressure dlficrence or | General membrane (avg through Po Ne No
shelt a uniform patlern external load crass section? Py No No
Bending favg. thraugh width F Na Yes
' - of ligament, but gradient thiowgh | *
o s plate? . :
e, . ' Peak. . )
* ] Isolatad or atypical Pressure dlfference Membrane : 2 Yes [No'
' Ngament ok Bending ™ N L Yes | Yes
' v Peak . ; lF Yes | Yes
. . \ ETE [
tl o : ’ i ! . {Table K53217-1 cantinves on next page)

’
3

'

TABLE NG-3217-1{CONT'D)

. v . cod ,  CLASSIFICATION OF STRESS INTENSITIES-FOR SOME TYPICAL CASES R )
- A ’ ! o ' - . g - Discontinuily -
T "t " +Core Support Origin of RS Ao Classifi- .
) . Structure Lacation Stress - - Type of Slress cation” | Gross [-Local -
IO ’ Nozrle . .| Cross sectlon Pressure difference or | General membrane avg. across full | E Cle
i o W * perpendicular to external foad or section. Stress compo- Neo No . . D
' . ; — ,t A K noz2le axis * moment nent perpendicular to section, 4 RS Poeb et A'
[ ! Dy . External load or Bending across nozzle sectian No No I ‘o
! moment” - T . .
Y B A (e R
! . . Nozzie wall Pressure difference General membrane ', _ Pen o No : .
” ’ . tembrane : Q Yes No N
! ’ . ! Bending R e Yes | o ST
: T : ! Peak : F Yes Yes ' ,
s 5 1 : : s " s
o -Dlfferential expansion | Membrane ; Q Yes | No .
S & Jd0 7 : Bending 0 Q Yes |.Ho.. T
. N , ' { - Peak, Lt F Yes | Yes - S
! Lt Cladding Any ' Ditferential expansion | Membrand . F tves fves' T 1 g S
: : N . . e N Bending © o~ o f . F Yes Yes
L Any . Any L. Radiat thermal” Stress due to equivalent bending ) Yes | No R .
P ' 4 gradient through 1| poition o . F Yes | Yes [ R
: R * .o plate thickness(2)* | Stress cue to nonlinear)panlon N
An:y- . ‘Any . ’ Any . o Stress concentration (nolch effect), | 'F . | ves 'Yes
NOTES:

(1) Consideration must also be given to the possibility of wrinkling and excessive deformation in shells with large diameter-to-thickness ratio

{2) Consider the possibility of thermal stress ratchel o
(3) Equivalent linear stress Is defined as the linear stress disteidution which has the same net bending moment as the actual stress distribulion

" Report'No. 0800528.402.R0
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Table 6-2;: Code Evaluation for Load Combination B-3

© (a)with positive [OBE? + SRV + FIV?]™

Pn Swi | PmtPp(ksi) |1.5S8n | PntPptQ (ksi) | 3Sp
- Component (ksi) | (ksi) | Top | Bot | (ksi) | Top | Bot | (ksi)
Outer Hoods 2.09 16.6 869 | 3.87 | 249 | 8.69 | 3.87 | 51.15
Middle Hoods 4.87 16.6 | 11.40 | 1035 | 249 | 1140 | 10.35 | 51.15
Inside Hoods 5.34 166 | 12.18 | 11.18 | 24.9 | 12.18 | 11.18 | 51.15
Gussets in Hoods 17.15 16.6 | 17.23 | 17.24 | 249 | 17.23 | 17.24 | 51.15
Side Plates 4.70 16.6 | 4.78 | 4.62 | 249 | 478 | 4.62 | 51.15
Vane Bank Base Plates 591 16,6 | 1535 | 1264 | 249 | 1535 ] 12.64 | 51.15
Vertical Plates in Vane Banks 6.34 16.6 8.06 5.82 | 24.9 8.06 5.82 | 51.15
Vane Banks 9.10 16.6 | 1099 | 11.32 | 249 | 1099 | 11.32 | 51.15
Drain Pipes 2.01 16.6 | 269 | 366 | 249 | 2.69 | 3.66 | 51.15
Skirt 210 - | 16.6 | 437 | 6.19 | 249 | 437 | 6.19 | 51.15
Drain Channels 2.95 16.6 6.17 628 | 249 | 6.17 | 6.28 | 51.15
Upper Support Ring 8.93 16.6 8.93 893 | 249 | 8.93 8.93 | 51.15
Lower Support Ring 2.68 16.6 | 2.68 2.68 | 249 | 268 | 2.68 | 51.15
Tie Bars . 14.05 16.6 | 14.05 | 14.05 | 249 |-14.05 | 14.05 | 51.15
Lifting Rods - 6.04 16.6 | 5.66 | 11.15| 249 | 5.66 | 11.15 | 51.15
Gussets in Upper Support Ring 2.13 16.6 2.33 194 | 249 | 233 1.94 | 51.15
(b) with negative [OBE” + SRV? + FIV?]"
Pm Sm P +Py (ksi) 1.5Sm | PytPptQ (ksi) | 3Sy
Component (ksi) | (ksi) | Top | Bot | (ksi) | Top | Bot | (ksi)
Outer Hoods 5.47 16.6 | 6.24 848 | 249 | 6.24 | 8.48 | 51.15
Middle Hoods 4.84 16.6 | 11.67 | 10.27 | 249 | 11.67 | 10.27 | 51.15
Inside Hoods 5.29 16.6 | 12.89 | 1096 | 24.9 | 12.89 | 10.96 | 51.15
Gussets in Hoods -14.03 16.6 | 1433 {"13.74 | .24.9 | 14.33 | 13.74 | 51.15
Side Plates 10.16 16.6 | 11.65 | 922 | 249 | 11.65 | 9.22 | 51.15
Vane Bank Base Plates 3.36 | 166 | 12.16 | 15.84 | 24.9-| 1216 | 15.84 | 51.15
Vertical Plates in Vane Banks 5.36 16.6 | 634 .1 509 | 249 | 634 | 5.09 | 51.15
Vane Banks 13.14 | 16.6 | 13.16.] 13.13 | 249 | 13.16 | 13.13 | 51.15
Drain Pipes 1.26 16.6 | 2.82 | 245 | 249 | 2.82 | 2.45 | 51.15
Skirt 2.12 16.6 | 594 | 3.69 | 249 | 594 | 3.69 | 51.15
Drain Channels 2.91 16.6 | 630 | 6.04 | 249 | 630 | 6.04 | 51.15
Upper Support Ring 11.93 16,6 | 11.93 | 1193 | 249 | 11.93 | 11.93 | 51.15
Lower Support Ring 2.13 16.6 | 2.13 | 2,13 | 249 | 2.13 | 2.13 | 51.15
Tie Bars 12.52 | 16.6 | 12.52 | 12.52 | 24.9 | 12.52 | 12.52 | 51.15
Lifting Rods 6.30 166 | 624 | 1017 | 249 | 6.24 | 10.17 | 51.15
Gussets in Upper SupportRing. | 2.94 [-16.6 | 250 | 3.50 | 249 | 250 | 3.50 | 51.15
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Table 6-3: Linearized Stresses at Gusset Section across the Maximum’ Stress Location for Load
Corpbin_atipn Ca_selB-3.
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< Table 6-4:- Code Evaluation for Load’fCombinatiO’n‘ D-1

(a) with positive [SSE + AP? + FIV?]*

. Céihpé e + Pm | Min(2.48:,0.78y) | .. PutPy(ksi) '~ | 1.5 Py, Limit
S (ksi) (ksi) "v Top | Bottom (ksi)
Quter Hoods = .. : . 9.41 . 39.84:: . 15.60 12.68° 59.07
Middle Hoods : ~; '~ 3491 3984 | 78.26 69.22. 59.07
Inside Hoods 3795 | -~ -39.84 8547 - 75.14 59.07
Gussets in Hoods 118.11 39.84 119.12 | 119.30 59.07
Side Plates 28.34 39.84 3266 | 25.34 59.07
Vane Bank Base Plates 38.69 39.84 72.09 66.74 59.07
Vertical Plates in Vane Bank 37.28 39.84 47.58 37.24 59.07
Vane Banks 32.22 39.84 62.44 63.34 59.07
Drain Pipes 9.31 39.84 17.30 15.95 59.07
Skirt 9.91 39.84 25.62 31.86 59.07
Drain Channels 17.48 39.84 7.49 16.62 59.07
Upper Support Ring 34.16 39.84 34.16 34.16 59.07
Lower Support Ring 6.46 39.84 6.46 6.46 59.07
Tie Bars 77.73 39.84 77.73 77.73 59.07
Lifting Rods 13.48 39.84 17.03 31.90 59.07
Gussets in Upper Support Ring 12.90 39.84 14.20 11.66 59.07
(b) with negative [SSE> + AP? + FIV?]*
Pu Min(2.4Sm,,0.7Sy) PPy (ksi) 1.5 Py Limit
Component (ksi) (ksi) Top | Bottom | (ksi)
Outer Hoods 9.38 39.84 19.62 13.94 59.07
Middle Hoods 34.36 39.84 78.89 69.06 59.07
Inside Hoods 37.73 39.84 87.15 74.56 59.07
Gussets in Hoods 108.07 39.84 108.39 | 108.47 59.07
Side Plates 16.19 39.84 21.02 22.40 59.07
Vane Bank Base Plates 32.58 39.84 62.83 62.69 59.07
Vertical Plates in Vane Bank 35.85 39.84 43.35 36.83 59.07
Vane Banks 30.59 39.84 63.12 56.22 59.07
Drain Pipes 8.05 39.84 17.84 12.56 59.07
Skirt 8.55 39.84 29.94 22.12 59.07
Drain Channels 7.38 39.84 20.62 16.24 59.07
Upper Support Ring 22.11 39.84 22.11 22.11 59.07
Lower Support Ring 7.40 39.84 7.40 7.40 59.07
Tie Bars 77.11 39.84 77.11 77.11 59.07
Lifting Rods 14.50 39.84 23.56 17.88 59.07
Gussets in Upper Support Ring 14.64 39.84 12.76 16.98 59.07
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Table 6-5: Code Interpreted Stresses at the Maximum Stress Location for Level D
(a) with positive [SSE? + AP* + FIV?]”

‘Component e Location Pm (k'si)‘ Allg(\:iz;ble ' P(T(:gb Allg{vsvia)ble
Middle Hood" | n/a 34.91 39.84 . | 34.91 59.07
Inside Hood" n/a 37.95 39.84 37.95 59.07

Top 46.14 | 39.84 .65.86 59.07
‘Gusset in Hoods® Mid " 46.21 39.84 65.96 59.07
' Bot 46.28 39.84 |- 66.08 59.07
Vane Banks Base Plate!) | n/a 38.69 °39.84. 38.69 59.07
Vane Banks'" n/a 3222 39.84 32.22 59.07
Vertical 32.18 39.84 | 62.58 59.07
Tie Bars® -Horizontal 27.98 39,84 63.07 |. 59.07
: Diagonal 15.13 :39.84 - | 46.79 59.07

(b) with negative [SSE* + AP + FIVY” . .-

Component Location P (ksi) All_(cl)(vsvie;ble P('I“;Sb All(okv;/gble
Middle Hood" n/a 34.36 39.84 34.36 59.07
Inside Hood"" n/a 37.73 39.84 37.73 59.07

Top 40.80 39.84 55.97 59.07
Gusset in Hoods® Mid 40.81 39.84 56.24 59.07
. Bot 40.81 39.84 56.49 59.07
Vane Banks Base Plate!” | n/a 32.58 39.84 32.58 59.07
Vane Banks!"” n/a 30.59 39.84 29.09 59.07
Vertical 8.81 39.84 41.80 59.07
Tie Bars® Horizontal 31.67 39.84 72.23 59.07
Diagonal 12.78 39.84 38.29 59.07

Note:

(1) Bending stress is classified as Secondary Stress per NG-3213.9 and Table NG-3217-1.
(2) Linearized stress through maximum stress location is used.

Report No. 0800528.402.R0

@ Structural Integrity Associates, Inc.




Table 6-6: Comparison of Maximum Stress (ksi) Results due to Model Modification
Shell Before Model After Model .
Load Case Surface Modification Modification % Difference
Top 16.28 16.36 0.49
Unit Pressure Mid - 16.28 15.53 -4.61
Bottom 16.28 15.51 -4.73
X-direction Top 10.36 11.77 13.61
. . Mid 8.29 '11.76 41.86
Unit Acceleration Bottom 9,93 11.75 18.33
Y-direction - Top 25.99 22.25 -14.36
Mid 16.73 15.58 -6.87
Unit Acceleration Bottom 26.85 ~23.01 -14.30
Z-direction Top 6.81 -~ 8.36 22.76
Mid 6.09 7.20 18.23
Unit Acceleration Bottom 6.23 6.03 -3.21
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o . Table 6-7: Modiﬁéd Code Stress Evaluation for vLoad_ Cpmbination B-3
. (a) with positive [OBE? + SRV2+ FIVY]* -

: % - Pp Sm | PmtPy(ksi) 1.5Sm | Pu+PuptQ (ksi) | 3Sh

Component (ksi) | (ksi) |- Top - ( Bot | (ksi) | Top | Bot | (ksi)
Outer Hoods - : 2.22 16.6 |- 921 | 4.10 | 249 | 921 | '4.10 | 51.15
Middle Hoods . . : 5.16 | 16.6 | 12.08 | 10.97.1 24.9 | 12.08 |.10.97 | 51.15
Inside Hoods ~ = . 5.66 16.6 | 1291 | 11.85| 249 | 1291 | 11.85 | 51.15
Gussets in Hoods 18.18 16.6 | 18.26 | 18.27 | 24.9 | 18.26 | 18.27 | 51.15
Side Plates 4.98 16.6 5.07 4.90 | 24.9 507 | 490 | 51.15
Vane Bank Base Plates 6.26 16.6 | 16.27 | 13.40 | 24.9 | 16.27 | 13.40 | 51.15
Vertical Plates in Vane Banks 6.72 16.6 8.54 6.17 | 24.9 8.54 6.17 | 51.15
Vane Banks 9.65 16.6 | 11.65 | 12.00 | 24.9 | 11.65 | 12.00 | 51.15
Drain Pipes 2.13 16.6 2.85 3.88 | 249 | 2.85 3.88 | 51.15
Skirt 2.23 16.6 4.63 6.56 | 249 | 4.63 6.56 | 51.15
Drain Channels 3.13 16.6 | 6.54 6.66 | 249 | 6.54 | 6.66 | 51.15
Upper Support Ring 9.47 16.6 947 947 | 249 | 947 | 947 | 51.15
Lower Support Ring 2.84 16.6 | 2.84 2.84 | 249 | 284 | 2.84 | 51.15
Tie Bars 14.89 | 16.6 | 14.89 | 14.89 | 249 | 14.89 | 14.89 | 51.15
Lifting Rods 6.40 16.6 6.00 | 11.82 | 249 | 6.00 | 11.82 | 51.15
Gussets in Upper Support Ring 2.26 16.6 247 2.06 | 249 | 247 | 2.06 | 51.15

(b) with negative [OBE? + SRV2+ FIV2]"

. Pn Sm PPy (ksi 1.5S8; | PtPu+Q (ksi 3Sh
Component (ksi) | (ksi) | Top ( Bzyt (ksi) | Top §30t) (ksi)
Outer Hoods 5.80 16.6 6.61 898 | 24.9 6.61 898 | 51.15
Middle Hoods ] 5.13 16,6 | 12.37 | 10.89 | 249 | 12.37 | 10.89 | 51.15
Inside Hoods 5.61 16.6 | 13.66 | 11.62 | 249 | 13.66 | 11.62 | 51.15
Gussets in Hoods 14.87 16.6 | 15.19 | 14.56 | 249 | 15.19 | 14.56 | 51.15
Side Plates 10.77 16.6 | 1235 | 9.77 | 249 | 1235 | 9.77 | 51.15
Vane Bank Base Plates 3.56 16.6 | 12.89 | 16.79 | 249 | 12.89 | 16.79 | 51.15
Vertical Plates in Vane Banks 5.31 16.6 6.54 5.30 | 249 6.54 | 5.30 | 51.15
‘Vane Banks 13.93 16.6 | 13.95 | 13.92 | 24.9 | 13.95 | 13.92 | 51.15
Drain Pipes 1.34 16.6 2.99 2.60 | 24.9 2.99 | 2.60 | 51.15
Skirt 2.25 16.6 6.30 3.91 24.9 6.30 391 | 51.15
Drain Channels 3.08 16.6 6.68 6.40 | 24.9 6.68 6.40 | 51.15
Upper Support Ring 12.65 16,6 | 12.65 | 12.65| 249 | 12.65 | 12.65 | 51.15
Lower Support Ring 2.26 16.6 2.26 2.26 | 249 2.26 | 2.26 | 51.15
Tie Bars 13.27 16.,6 | 13.27 | 13.27 | 249 | 13.27 | 13.27 | 51.15
Lifting Rods 6.68 16.6 6.61 | 10.78 | 24.9 6.61 | 10.78 | 51.15
Gussets in Upper Support Ring 3.12 16.6 2.65 3.71 | 249 | 2.65 3.71 | 51.15
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Table 6-8: Modified Linearized Stresses at Gusset Section across the Maximum Stress Location for

"Surface

Load Combination Case B-3

P, (ksi) P, (ksi) P, +Py (ksi)
_Top 692 3.74 10.66
Mid 6.90 3.82 10.73
Bot 6.89 3.89 10.78
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Table 6-9: Modified Code Stress Evaluation for Load Combination D-1

. | (a) with positive [SSE + AP? + FIV?"
Component | Pm. |Min(2.45,,0.78:) | PutPp (ksi) 1.5 Py, Limit
, * (ksi) © o (ksi) " “Top .| Bottom (ksi)
Outer Hoods. < . - .- - 9.97 . 39.84 16.54 | 13.44 59.07
Middle Hoods' . - 3700 |  39.84 82.96 | 73.37 59.07
Inside Hoods : S 14023 | 0 39.84 90.60:| 79.65 | . 59.07
GussetsinHoods -~ ., .. 1125201 . 3984 [ 12627 12646 | - 59.07
Side Plates S 1 3004 |- 3984 .| 3462 | 26.86 59.07
Vane Bank Base Plates o 41.01 .. .39.84 ‘7642 | 70.74 | - 59.07
Vertical Plates in Vane Bank 3952 . 3984 | 5043 | 3947 59.07
Vane Banks 3415 . .. 39.84 | 6619 | 67.14 | :-.59.07 -
Drain Pipes | 9.87 |. 3984 | 18347 1691 | - 59.07
Skirt .~ . .| 1050 ] - 3984 | 2716 | 33.77 59.07
Drain-Channels -~ - = .| 794 |- 39.84. . | 18.53 17.62 |- :59.07
Upper Support Ring - S 3621 | 39.84+ | 36.21 36.21 59.07
Lower Support Ring ~ 6.85 39.84 6.85 6.85 59.07
Tie Bars | 8239 39.84 8239 | 8239 | . 59.07
Lifting Rods 14.29 39.84 .| 18.05 | 33.81 59.07

Gussets in Upper Support Ring - |.13.67 ~39.84 15.05 | 1236 59.07

,(B) with ﬂegative [SSE2 + AP2 + FIVz]‘/‘ '

. R Component ) Pn | Min(2:484,,0.7S) | © Pyut+Py(ksi) = | 1.5 Py Limit
- , R | (ksi) o (ksi) | . Top Bottom |.  (ksi)
Quter Hoods = 1994 39.84 | 20.80 14.78 | 59.07
Middle Hoods - - . : 3642 [ 39.84 -1 83.62 | 73.20- 59.07
Inside Hoods- . . 3999 | . 3984 - | 9238:| 79.03 59.07
GussetsinHoods -~ | 114.55° - 3984 - -| 114.89-] 11498 | = 59.07
| Side Plates L 17.16 |, -39.84 | -22.28 23.74 59.07
Vane Bank-Base Plates -~ - 34537 : - 39.84 " | 66.60 66.45 " 59.07
Vertical Plates in Vane Bank 38.00 | - 3984 v | 4595 39.04 _59.07
Vane Banks 32.43 39.84 66.91 59.59 59.07

Drain Pipes 8.53 39.84 18.91 13.31 59.07 .

Skirt .. " . 1:.9.06 |- 39.84.. | -31.74.] 2345 . "59.07
Drain Channels 7.82 |- 3984 - .| 21:86 [~ 17.21. | 59.07
Upper Support Ring : 23.44 ~39.84 23.44 23.44 59.07
Lower Support Ring - ‘ 7.84 39.84 7.84 7.84 59.07
Tie Bars 81.74 39.84 81.74 81.74 59.07
Lifting Rods 15.37 39.84 2497 | 18.95 59.07
Gussets in Upper Support Ring 15.52 39.84 13.53 | 18.00 59.07
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Table 6-10: Modified Code Interpreted Stresses at the Maximum Stress Location for Load

Comblnatron D-1

(a) with positive [SSE2 + AP2 + FIV?])”

Report No. 0800528.402.R0
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* Component . Locatrqn“._ Pin (ksi) | All((;{v:la;ble P(“l’(:gb : All((;(vsvia;ble,
Middle Hood"” n/a 37.00. 3984 | 37.00 | 59.07
| Inside Hood" n/a 4023 | 3984 | 4023 59.07 .

: Top 4891 39.84 69.81 59.07 .
Gusset in Hoods® Mid 4898 | 39.84 69.92 59.07
: R Bot 49.06 | 39.84 | 70.04 59.07
Vane Banks Base Plate!” | n/a - 41.01 | 39.84 41.01 '59.07
Vane Banks"" n/a 34.15 39.84 34.15 59.07
1 - Vertical 2512 | 39.84 | 66.25 59.07
Tie Bars?® Horizontal - | 34.11 | 39.84 66.33 ~59.07
- Diagonal | 16.04 39.84 49.60 59.07
~ (b) with negatlve [SSE* + AP2 +FIVY* S

Component Location | Py, (ksi) Allg{v:;ble P(Ili:gb All((;(v:gble
Middle Hood" n/a " 36.42 39.84 36.42 59.07
Inside Hood" n/a 39,99 39.84 39.99 | 59.07
| Top  43.25 39.84 59.33 - | - 59.07
Gusset in Hoods® Mid 4327 | 39.84 59.61 59.07
' - | Bot 4328 39.84 59.88 | 59.07
Vane Banks Base Plate!” | n/a - 34,54 39.84 34.53 59.07
Vane Banks!” - n/a - 30.84 39.84 30.84 59.07-
o Vertical 934 | 3984 4431 59.07 -
Tie Bars® Horizontal | 33.57 | 39.84 | 7656 | 59.07
o Diagonal - | 13.55 | 39.84 | 40.59 59.07

Note:

(1) Bending stress is classified as secondary stress per NG-3213.9 and Table NG- 3217- 1
@) Lmearlzed stress through maximum stress location is used.



ELEMENTS

. TYPE NUM

ANSYS 11.03P1

(a) without element edges

ELEMENTS ANSYS 11.08P1

(b) with element edges
Figure 6-1: NMP2 Steam Dryer Model
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ELEMENTS ANSYS 11.08P1

Figure 6-2: Steam Dryer Boundary Condition

1
ELEMENTS ANSYS 11.08P1

CE

Figure 6-3: Constraint Equations
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ELEMENTS&

. TYPE NUM

ANSYS 11.08P1

Figure 6-4: Solid Elements, Solid186 and Solid187

ELEMENT S ANSYS 11.08P1
TYPE NUM !

Figure 6-5: Shell Elements, Shell63
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ELEMENTS
TYPE NUM

ANSYS 11.08P1

Figure 6-6: Surface Elements, Surfl54

1
ELEMENTS

TYPE NUM

ANSYS 11.08pP1

Figure 6-7: Mass Elements, Mass21
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ELEMENTS
TYPE NUM

AN

JuL 3 2008
14:16:42

Figure 6-8: Outer Hood

ELEMENT3

TYPE NUM

AN

JUuL 3 2008
14:22:03
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1
ELEMENTSY AN
JUuL 3 2008
TYEE NUM 14:25:18
Figure 6-10: Inside Hood
1
ELEMENTS ANSYS 11.08P1
TYPE NUM
Figure 6-11: Gussets in Hoods .
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ELEMENTS ANSYS 11.08P1

11
il

TYPE NUM

Figure 6-12: Side Plates
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Figure 6-14: Vertical Plates Inside Vane Banks
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Figure 6-15: Vane Banks
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Figure 6-17: Drain Pipes
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Figure 6-18: Skirt
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Figure 6-19: Drain Channels
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Figure 6-22: Tie Bars
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Figure 6-23: Lifting Rods
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Figure 6-24: Gussets Between Upper Support Ring and Vane Bank Base Plates
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Figure 6-25: Vessel Brackets and Support Plates .
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Figure 6-26: Pressure Loadings
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Figure 6-27: Stress Intensity, Top Surface, due to Unit Pressure
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Figure 6-28: Stress Intensity Distribution, Top Surface, 1 g Acceleration in X-direction
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Figure 6-29: Stress Intensity Distribution, Top Surface, 1 g Static Acceleration in Y-direction
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Figure 6-30: Stress Intensity Distribution, Top Surface, 1 g Static Acceleration in Z-direction
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Figure 6-31: Stress Intensity Distribution, Top Surface, FIV Load - TimeStress 49666 1075
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(a) Overall Stress Distribution

(b) Maximum Stress Location

Figure 6-32: Stress Intensity Distribution, Top Surface, FIV Load - TimeStress 49670 1075
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(a) Overall Stress Distribution
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Figure 6-33: Stress Intensity Distribution, Top Surface, AP,, EPU
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Figure 6-34: Stress Intensity Distribution, Top Surface, AP,, EPU
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Figure 6-35: Stress Intensity Distribution, Top Surface, OBE
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Figure 6-36: Stress Intensity Distribution, Top Surface, SSE
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Figure 6-37: Stress Intensity Distribution, Top Surface, SRV
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Figure 6-38: Stress Intensity Distribution, Top Surface, AP

Report No. 0800528.402.R0 6-43 ﬁ Structural Integrity Associates, Inc.




MCDAL SCLUTICN
T
| y o T
i
|
i i
i 086 2168 A9

4907 1 ) ) i
545,563 gl 7789
Load Chser B-3

4330
4871

(a) Membrane Stress

DAL SCLOTTOR
ST ARG

4.288 2536

3869 24 364 5334
9842 2905 ] 67161 4688 o s

Lowd Cave B-3

(b) Py + Py, Stress, Top Surface (b) Py + Py, Stress, Top Surface

loxd Case B-3

431,953 w4
Load Case B

load Case B

¢), Pi + Py, Stress, Bottom Surface

V(c)’ P., + Py, Stress, Bottom Surface

Figure 6-39: Outer Hood, Stress Intensity, Figure 6-40: Middle Hood, Stress Intensity,
Case B-3(a) Case B-3(a)
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Figure 6-41: Inside Hood, Stress Intensity,
Case B-3(a)
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Figure 6-42: Gussets in Hoods, Stress
Intensity, Case B-3 (a)

ﬁ Structural Integrity Associates, Inc.



Al SXTITICN

- e ey
BCDAL SOLTTION
.IN'X WG

o, 1315 ) i 3 N
aid 5 657,902 1972 4600 5914
Load Case B-3

540,726 o © 2660

(a) Membrane Stress

DAL SCUTTIEN

3413 3 234
1708 5118 8529 11939
Lowt Case B-1

(B) P + Py Stress, Top Surface

HODAL SCLUTTON
SINT

ECTTCM
oMK

Load Case B3

(b) Py, + Py, Stress, Top Surface

Load Cx
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Figure 6-43: Sides Plates, Stress Intensity,
Case B-3(a)
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.('c) P, + Py, Stress, Bottom Surface

Figure 6-44: Vane Bank Base Plates, Stress

Intensity, Case B-3(a)
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Figure 6-45: Vane Bank Vertical Plates, Figure 6-46: Vane Banks, Stress Intensity,
Stress Intensity, Case B-3(a) Case B-3(a)
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Figure 6-47: Drain Pipes, Stress Intensity,
Case B-3(a)
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Figure 6-48: Skirt, Stress Intensity, Case B-
3(a)
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Figure 6-49: Drain Channels, Stress
Intensity, Case B-3(a)
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(a) Membrane Stress

: (c) P, + Py Stress, Bottom Surface

Figure 6-50: Upper Support Ring, Stress
Intensity, Case B-3(a)
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Figure 6-51: Lower Support Ring, Stress

Intensity, Case B-3 (a) Figure 6-52: Tie Bars, Stress Intensity, Case

B-3(a)
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) L(b) Pm + Py, Stress, Top Surface

| (c) Pm + Py Stress, Bottom Surface o (c) P, + Py Stress, Bottom Surface

Figure 6-53: Lifting Rods, Stress Intensity, Figure 6-54: Gussets in Upper Support
Case B-3(a) Ring, Stress Intensity, Case B-3(a)

Report No. 0800528.402.R0 6-51 ﬁ Structural Integrity Associates, Inc.




(¢) Py +Py Stress, Bottom Surface

(¢) P +Py Stress, Bottom Surface

Figure 6-55: Outer Hoods Stress Intensity Figure 6-56: Middle Hoods, Stress Intensity
Case B-3 (b) Case B-3 (b)
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(b) Py+Py, Stress, Top Surface - ( ) PPy, Stress, Top Surface

Laad ¢
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(¢) Py tPy Stress, Bottom Surface

Figure 6-57: Inside Hoods, Stress Intensity, Figure 6-58: Gussets in Hoods, Stress
Case B-3 (b) Intensity, Case B-3 (b)
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Figure 6-59: Side Plates, Stress Intensity,
Case B-3(b)
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Figure 6-60: Vane Bank Base Plates, Stress
Intensity, Case B-3(b)
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(c) Pu+Py, Stress, Bottom Surface (¢) PytPy Stress, Bottom Surface

Figure 6-61: Vane Bank Vertical Plates, Figure 6-62: Vane Bank, Stress Intensity,
Stress Intensity, Case B-3(b) Case B-3(b)
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Figure 6-63: Drain Pipes, Stress Intensity, Figure 6-64: Skirt, Stress Intensity,
Case B-3(b) Case B-3(b)
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Figure 6-65: Drain Channels, Stress Figure 6-66: Upper Support Ring, Stress
Intensity, Case B-3(b) Intensity, Case B-3(b)
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Figure 6-67: Lower Support Ring, Stress
Intensity, Case B-3(b)
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Figure 6-68: Tie Bars, Stress Intensity,
Case B-3 (b)
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Figure 6-69: Lifting Rods, Stress Intensity, Figure 6-70: Gussets in Upper Support
Case B-3(b) Ring, Stress Intensity, Case B-3(b)
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Figure 6-71: Gussets in Hoods with the Maximum Stress Intensity, Case B-3(a)
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Figure 6-72: Outer Hoods, Stress Intensity, Case
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Report No. 0800528.402.R0

Lo Case

//

153849 orey 14
o] 3379 AnE fivi

{c) Py ;WPb Stress, Bottom Surface

Figure 6-73: Middle Hoods, Stress Intensity,
Case D-1 (a)
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Figure 6-74: Inside Hoods, Stress Intensity, Case
D-1(a)
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Figure 6-75: Gussets in Hoods, Stress Intensity,
Case D-1(a)
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(<) Pr + Py Stress, Bottom Surface () Pu+ Py Stress, Bottom Surface
Figure 6-76: Side Plates, Stress Intensity, Case Figure 6-77: Vane Bank Base Plates, Stress
D-1(a) Intensity, Case D-1 (a)
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Figure 6-78: Vane Bank Vertical Plates, Stress
Intensity, Case D-1(a)
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Figure 6-79: Vane Banks, Stress Intensity, Case
D-1(a)
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Figure 6-80: Drain Pipes, Stress Intensity, Case Figure 6-81: Skirt, Stress Intensity, Case D-1(a)
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Figure 6-82: Drain Channels, Stress Intensity,
Case D-1 (a)
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Figure 6-83: Upper Support Ring, Stress
Intensity, Case D-1(a)
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Figure 6-84: Lower Support Ring, Stress
Intensity, Case D-1(a)
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Figure 6-85: Tie Bars, Stress Intensity, Case D-
1(a)
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Figure 6-86: Lifting Rods, Stress Intensity, Case Figure 6-87: Gussets in Upper Support Ring,
D-1 (a) Stress Intensity, Case D-1 (a)
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Figure 6-88: Outer Hoods, Stress Intensity,
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Figure 6-90: Inside Hoods, Stress Intensity, Case
D-1(b)
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Figure 6-91: Gussets Inside Hoods, Stress
Intensity, Case D-1(b)
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Figure 6-92: Side Plates, Stress Intensity, Case Figure 6-93: Vane Bank Base Plates, Stress
D-1(b) Intensity, Case D-1(b)
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Figure 6-94: Vane Bank Vertical Plates, Stress Figure 6-95: Vane Bank, Stress Intensity,
Intensity, Case D-1(b) Case D-1(b)
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Figure 6-96: Drain Pipes, Stress Intensity, Case Figure 6-97: Skirt, Stress Intensity, Case D-1(b)
D-1(b)
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Figure 6-98: Drain Channels, Stress Intensity, Figure 6-99: Upper Support Ring, Stress
Case D-1(b) Intensity, Case D-1(b)

Report No. 0800528.402.R0 6-74 ﬁ Structural Integrity Associates, Inc.



1e47 3291 4934
369 Q1

(¢) PutPy, Stress, Bottom Surface

Figure 6-100: Lower Support Ring, Stress
Intensity, Case D-1(b)
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Figure 6-102: Lifting Rods, Stress Intensity, Case
D-1(b)
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. 70" FATIGUE EVALUATION

The Code fatigue evaluation is only required for Levels A and B [1]. Calculation ofthe alternating stress, S,

follows NG-3216.2 [1] which states for varying principal stress direction:

“(b) Choose a point in time when the conditions are one of the extremes for the :
cycle (either maximum or minimum, algebraically) and identify the stress
components at this time by the subscripts i.

(c) Subtract each of the six stress components oy, oyj, etc., from the corresponding
stress components oy, Oy, etc., at each point in time during the cycle and call
the resulting component o, o/, etc.

(d) At each point in time during the cycle, calculate the principle stresses ', 6%,
0'3 derived from the six stress components 'y, 6"}, etc. |

(e) Determine the stress differences S';; = 0'1-6"2, S'23 = 6%-0'3, S'31 = 6’3 - ')
versus time for the complete cycle and find the largest al;solute magnitude of

any stress differences at any time. The alternating stress intensity S is one-
. half of this magnitude.”

To determine the maximum stress alternating stress, the loading combination is performed using ANSYS

[8] as follows:

for Case B-3: |
Om= (OBE + SRV)ax as in item (b) - (7-1)
Gn = (OBE + SRV)in as oy, oy, in item (¢) (7-2)
0\ =0p-0, - -+ asinitem (c) C . _ (7-3)

where: k, m, n = the six stress components t, 1, etc as identified in item (c)
(OBE+SRV),u, '
(OBE+SRV), ;1.
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The load combinations are subtracted algebraically between the maximum and minimum. Then the .
principle stresses, 0'; and the stress intensities, S';; where i = 1, 2, and 3, are computed in ANSYS [8] and

extracted for fatigue evaluation.
In the fatigue evaluation, the alternating stress intensities was calculated using maximum stress

intensities S'; from the top surface or the bottom surface of the shells along with the weld factor. The

alternating stress intensity, S, is calculated as follows:

- _ max(S)| 30x10°

a 7-4
i 5 E (7-4)
where: E=  Young's modulus in psi at temperature
F=  weld factor
S'i= as defined in'item (e) above
The fatigue curve to be used, depending on the location and the stress intensity, is depicted in the flow
chart in Figure 5-2. ' o .

As shown in Figure 1-9.2.3 [1], fatigué curve B can be used if the alternating stress intensity Sq is

corrected for applied mean stress as follows [9]:

Seq = ——_”S§ : o - (7-5)
] — Zmean
S u
where:
Seq = value of stress to be used in entering the fatigue curve to find the allowable
of number of cycles
Stean = adjusted value of mean stress
= S'mean if Sait + S'mean < Sy
= Sy - Sar if SairtS'mean > Sy and Sqir < Sy
=0 if Saic> Sy
S'ean = basic value of mean stress (calculated directly from loading cycle)
Su = ultimate tensile strength .
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As:shown in Table 4-4, Case B-3 is comprised of load cases NL, AP,, OBE, SRV, and FIV. Only OBE,
SRV, and FIV are alternating in nature. In the current evaluation, only the OBE and SRV loads are used in

the fatigue evaluation and the fatigue usage factor is calculated per NG-3222 4.

The number of events in OBE and SRV are obtained from Reference [12]. There are 10 occurrences for
OBE and 8 occurrences for SRV. It is assumed that each of these events has 100 fully reversed cycles in the

loadings for a total number of 1800 cycles. - .

The fatigue evaluation is performed for the load combinatioh Case B-3 (Level B service condition) due to
OBE and SRV load per the guidance in Section III, Subsection NG, parégraph NG-3216 and Appendix I[1].

To reduce the conservatism, the criteria for use of difference fatigue curves, Figure 5-2, per Appendix I,

" . Figure 1-9.2.3:0f Reference [1] is also considered. - This would allow the fatigue curves A or B to be used if

either the mean stress is considered, the Pi+Py+Q is less than 27.2 ksi or the location is away from the weld.

7.1  Stress Range and Mean Stress . - R

The alternating stress intensities are obtained from the SRSS of two load cases, OBE and SRV. The
maximum alternating stress intensity ranges:due to-these two load cases for all components are presented
from Figure 7-1 through Figure 7-16. The mean stress intensfty due to the NL and APu loads are presented
- from Figure 7-17 through Figure 7-32. The maximum altema:t‘ging: stress intensity ranges and mean stress

intensities in these figures were extracted to perform the fatigue evaluation.

7.2 Fatigue Evaluation

The results of fatigue evaluation, which includes the use of Equations (7-4) and (7-5), are summarized in
Table 7-1. The maximum alternating and mean stress intensify for each component is obtained from Figures
7-1 through 7-32. The Pi+Py,+Q for each component is obtained from Table 6-2. It should be noted that
these maximum alternating stress intensity amplitude, maximum mean stress intensity and the Pi+P,+Q can

be at different nodal locations. But these were used as if they are at the same nodal location.
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From References [10] and [11], it is shown that most of the welds in the steam dryer are fillet welds. Not all
the welds ‘are identified in these two references. For conservatism, it is assumed that all welds are fillet .
welds with'a weld factor of 1.8. In addition, it is assumied that all maximum alternating stress intensity

ranges are at or close to the weld locations (less than 3 inches from thé-'weld centerline per Appendix I of

Reference [1]).

Since the Pi+Py+Q range for all components are less than the 27.2 ksi requirements per Figure [-9.2.3 of
Section II, Appendix I [1], fatigue curve B in Figure 5-1 can'be used. Fatigue curve B has an endurance
limit of 16.5 ksi. For conservatism, fatigue curve C in Figure 5-1 was used to calculate the fatigue usage.
After accounting for the mean stress effect, the alternating stress amplitudes, Seq, in all steam dryer

- components are less than 16 ksi.

It is assumed that there are a total of 18 events for OBE and SRV. In each event, there are 100 cycles. The
* allowable cycles for each component were obtained and the fatigue usages were calculated. Although
fatigue curve B can be used, for conservatism, the fatigue usage was calculated using fatigue curve C. The

largest fatigue usage is 9.84x107 in the Vane Bank Base Plates. This fatigué usage is less than the Code
fatigue usage allowable of 1. .

7.3 Reconciliation of Finite Element Model on Fatigue Evaluation

As shown in Table 7-1, the fatigue usage using the results from the original model is very small, 9.84x107.
Even with the increase of 6% in the alternating stress ranges, the increase in the fatigue usage is not

significant and still under the allowable.

Report No. 0800528.402.R0 7-4 ﬁ Structural Integrity Associates, inc.



Table 7-1: Fatigue Evaluatio_h for Load Combination B-3

Max|S", |- _
Case B-3, OBE and SRV g Range (ksi) . Curve C

Component At Fillet WIdCl P+PgrQ S'mean  Top Bottom MaxiS'ylalt gRratic Weld Safksi) Fatigue Smean Seqlksi) Allowable  Fatigue

Weld Weld <3thk  (ksi) (ksi) (ksi) Factor Eq(7) Curve (ksi) Eq(e)  Ovele  Usage

Outer Hoods Yes Yes Yes 8.69 369 502 485 2.51 1.11 1.8 ° 5.00 B 3.69 5.31 1.00E+11 1.80E-08
Middle Hoods Yes Yes Yes 11.67 1153 369 278 1.85 111 1.8 .. 3.68 B 11.53 4.50 1.00E+11 1.80E-08
Inside Hoods Yes Yes Yes 12.89 1253 4.01 3.06 2.01 1.11 1.8 4.00 . B 12.53 4.98 1.00E+11 1.80E-08
Gussets in Hoods Yes Yes Yes 17.24 1444 636 6.15 3.18 1.11 1.8 6.34 B 1256 7.91 1.00E+11 1.80E-08
Side Plates Yes Yes Yes 11.65 7.63 417 3.80 2.09 1.11 1.8 4.16 B 7.63 4,73 1.00E+11 1.80E-08
Vane Bank Base Plates Yes Yes Yes 15.84 9.15 13.76 14.26 7.13 111 1.8 14.22 B 4,68 15.35 18286322 9.84E-05
Vertical Plates in Vane Banks Yes  Yes Yes 806 710 130 095 0.65 111 1.8 1.30 B 7.10 1.46 1.00E+11 1.80E-08
Vane Banks Yes Yes Yes 13.16 9.44 1132 11.13 5.66 1.11 1.8 11.28 B 7.62 12.83 1.00E+11 1.80E-08
Drain Pipes Yes Yes Yes 3.66 271 231 211 1.16 111 1.8 2.30 B 2.71 241 1.00E+11 1.80E-08
Skirt Yes Yes Yes 6.19 3.07 343 365 1.83 1.11 1.8 3.64 8 3.07 3.82 1.00E+11 1.80E-08
Drain Channels Yes Yes Yes 6.30 190 6.23 6.16 3.12 1.11 18 6.21 B 1.90 6.40 1.00E+11 1.80E-08
Upper Support Ring Yes Yes Yes 11.93 213 12.22 12.22 6.11 1.11 18 12.18 B 213 1261 1.00E+11 1.80€E-08
Lower Support Ring Yes Yes Yes 2.68 133 138 138 0.69 1.11 18 1.38 B 1.33 1.41 1.00E+11 1.80E-08
Tie Bars ' Yes Yes Yes 1405 11.78 3.46 3.46 1.73 1.11 18 3.45 B 11.78 4.24 1.00E+11 1.80E-08
Lifting Rods Yes Yes Yes 11.15 393 595 11.04 - 552 111 18 11.01 8 393 1173 1.00E+11 1.80E-08
Gussets in Upper Support Ring Yes  Yes Yes 3.50 1.52 1.48 2.06 1.03 1.11 1.8 2.05 B

152 210 1.00E+11 1.80E-08
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Figure 7-1: Outer Hoods, Alternating Stress
Intensity Range, Case B-3
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- (b) Bottom Surface

Figure 7-2: Middle Hoods, Alternating
Stress Intensity Range, Load Combination,
Case B-3
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Figure 7-3: Inside Hoods, Alternating Stress

: Figure 7-4: Gussets in Hoods, Alternating
Intensity Range, Case B-3

Stress Intensity Range, Case B-3
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Figure 7-5: Side Plates, Alternating Stress
Intensity Range, Case B-3
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Figure 7-6: Vane Bank Base Plates,
Alternating Stress Intensity Range, Case B-3
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Figure 7-7: Vane Bank Vertical Plates,

Alternating Stress Intensity Range, Case B-3 Figure 7-8: Vape Banks, Alternating Stress
Intensity Range, Case B-3
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Figure 7-9: Drain Pipes, Alternating Stress
Intensity Range, Case B-3
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(b) Bottom Surface

Figure 7-10: Skirt, Alternating Stress
Intensity Range, Case B-3
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Figure 7-11: Drain Channels, Alternating Figure 7-12: Upper Support Ring,
Stress Intensity Range, Case B-3 Alternating Stress Intensity Range, Case B-3
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Figure 7-13: Lower Support Ring, Figure 7-14: Tie Bars, Alternating Stress
Alternating Stress Intensity Range, Case B-3 Intensity Range, Case B-3
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Figure 7-15: Lifting Rods, Alternating Figure 7-16: Gussets in Upper Support
Stress Intensity Range, Case B-3 Ring, Alternating Stress Intensity Range,
Case B-3
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Figure 7-17: Outer Hoods, Mean Stress Figure 7-18: Middle Hoods, Mean Stress
Intensity, Case B-3 Intensity, Case B-3
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Figure 7-19: Inside Hoods, Mean Stress Figure 7-20: Gussets in Hoods, Mean Stress
Intensity, Case B-3 Intensity, Case B-3
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Figure 7-22: Vane Bank Base Plates, Mean

Figure 7-21: Side Plates, Mean Stress .
Stress Intensity, Case B-3

Intensity, Case B-3
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Figure 7-23: Vane Bank, Vertical Plates, Figure 7-24: Vane Banks, Mean Stress
Mean Stress Intensity, Case B-3 Intensity, Case B-3
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Figure 7-27: Drain Channels, Mean Stress Figure 7-28: Upper Support Ring, Mean
Intensity, Case B-3 Stress Intensity, Case B-3
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Figure 7-29: Lower Support Ring, Mean
Stress Intensity, Case B-3
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Figure 7-31: Lifting Rods, Mean Stress Figure 7-32: Gussets in Upper Support
Intensity, Case B-3 Ring, Mean Stress Intensity, Case B-3
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8.0 BUCKLING EVALUATION OF LIFTING RODS

In Reference [14], the critical component of the steam dryer is the lifting rods due to buckling
when the steam dryer lifts up and the lifting rods hit the stops in the top head. This section

describes the evaluation of buckling under the Level D condition for the lifting rods.

8.1 Technical Approach

The Codve'evaluation of the steam dryer was evaluated according to the rules of ASME Section
III, Subsection NG [1]. The only buckling evaluation, as described in Subsection NG, i§ only for
cylindrical shell, spherical shell or tubular product under external pressure. Since the buckling of
the steam dryer lifting rods is evaluated for the faulted condition, the rules of Appendix F of

Section III are used.

8.2  Design Inputs ‘

Each lifting rod is 3 inches in diameter and 82 inches long [4]. There are three gusset plates
providing lateral support along the length of each rod, Figure 6-1. The longest unbraced length

for each lifting rod is 32 inches.

The pressure difference for the faulted condition in the steam dryer is 6.3 psi for the CLTP and
4.8 psi for the EPU [4]. ' '

The typical material of the lifting rods is Type 304 stainless steel [5]. The operating temperature
for the steam dryer is 550°F [5]. The yield strength of the Type 304 stainless steel at operating

temperature is 18.9 ksi.

The weight of the steam dryer is 80,000 lbs [15]. The SSE load in the vertical direction is 0.327g
[5].
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. 8.3  Assumptions

The following assumptions are used in the evaluation:

1. The lifting rods are assumed to be a linear type support such that the criteria for linear -
type support in Appendix F, F-1334 could be used.

2. The loads on the lifting rods are assumed to be from the lifting of the steam dryer due to
the pressure differential across the steam dryer in the faulted condition.

3. The lifting load is uniformly distributed among the four lifting rods.

4. The buckling occurs assuming the lifting of the steam dryer hitting the dryer ;téps in the
reactor vessel top head. ,

5. The effect of the gap between the lifting rods and the stops is neglected, (i.e., the gap is
assumed to be closed).

6. The buckling load is assumed to be axially load only.

7. Elastic buckling is assumed.

. 8. Stresses resulting from constraint of free end displacerﬁent_ are considered as primary

stress. , -

9. Only the vertical load from SSE is assumed to cause buckiing in the lifting rods.

10. The gravity is assumed to have no effect on the lifting force.

8.4  Buckling Calculation

Per Appendix F, F-1334.3, maximum load in axially load compression members shall be limited

to:
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For 0 <A<l ‘ ' ' ‘

2
P -2
— = 4 _ . ' (8-1)
P, 1.11-054+0.174° - 0.284
For 1 <A<V2
2 ) ‘ .
P E(l - ﬂ_] (8-2)
For A>\2
P2 | | | B CE)
- P34 : :
where:
= maximum allowable load, 1b
Ag = area of gross section, in”

J [ﬁ)li - ®
: r oV E :

= modulus of elasticity, psi
= yield strength, psi

= effective length factor

- R » o

= unbraced length, in.

-

= radius of gyration, in.

8.5  Results of Analysis -

The total lifting load is calculated using the project horizontal area of the steam dryer and the
pressure differential for the CLTP and EPU. The projected horizontal area was calculated
conservatively using the outside diameter of the upper support ring, about 245 inches as
estimated from Reference [4]. The total lifting forces due to pressure differential are presented

in Table 8-1.
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Assuming the lifting load is evenly distributed among the four lifting rods, the load in each rod is
shown in Table 8-2. The axial load on each lifting rod.due to the SSE is 80,000*%0.327/4 = 6,540
1bs.

The compressive loads acting on each lifting rod due to different loading conditions are

summarizgd in Table 872. ‘

From Reference [4], it is shown that the lifting rods are braced at two, different elevations with -
the longest unbraced length of about 32 inches from the top of the support ring to the lowest .

bracing gusset.

The effective length factor, K, for a slender column can be ranged from 1 to a large number
depending on the end support conditions and material properties. Typically, the value of K is

from 1 to 5 for a solid circular column with different support conditions.

A parametric study was performed to obtain the allowable compressive load for a value of K
from 1 to.5. The allowable compressive loads were calculated using Equations (8-1) through (8-

3) depending on A. . For circular column, the radius of gyration is the same as the column radius.

The calculation results are summarized in Table 8-3 and Figure 8-1. Also, the compressive loads
due to the pressure differential from either CLTP or EPU and the SSE vertical acceleration are
also plotted in Figure 8-1. It is shown that the applied compressive loads do not exceed the

allowable until the K reaches 3.8.

From Reference [14], it is shown that the most critical condition was the buckling of lifting rods.
The design basis allowable load for the buckling of the faulted condition is 88.99 kips [14, page

2-19]. This design basis criterion is also plotted in Figure 8-1. It is shown that the compressive

loads due to CLTP/EPU are lower than the design criterion. Also, it also gives an indication that
an effective'length factor of 3 was probably used in Reference [14]. In addition, the applied

compressive load calculated in Reference [14] is 75.18 kips using an absolute sum of the load
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cases. This compressive load is comparable to the applied compressive loads, 80.79 kips for .
CLTP and 63.11 kips for EPU, obtained in this calculation. -

8.6 Discussions

A buckling evaluation of the lifting rods was performed for the faulted condition. The evaluation
was performed for the CLTP and EPU conditions. The loadings are due to the pressure
differential in the CLTP and EPU conditions, in addition to the vertical acceleration from the

SSE.

The evaluation was performed according to ASME B&PV Code Section 111, Appendix F. The
allowable compressive load was calculated using equations in F-1334.3. A parametri¢
evaluation was performed on the allowable compressive loads ‘as a function of effective léﬁgth

factor K.

It is shown that thé applied compressive loads in the lifting rods are less than the allowable ‘
coinpressive loads per Appendix F, F-1334.3 if the effective length factor is less than 3.8 for the

CLTP condition. For EPU condition, the applied compressive load is below the allowable

compressive load even beyond an effective length factor of 5. From the results presented in

Reference [5], the design basis buckling load corresponds to an effective length factor of 3.

Also, the applied compressive loads calculated per the CLTP and EPU pressure differential are

less than the design basis criteria for buckling presenied in Reference [15].
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Table 8-1: Total Lifting Force, Faulted Condition

Conditions Pressure Differential (psi) Lifting Force (Ibs)
CLTP 6.3 297004
EPU 4.8 226289

Table 8-2: Compressive Load on each Lifting Rod, Faulted Condition

Conditions Axial Load (kips)
CLTP 74.25
EPU 56.57
SSE, vertical g 6.54

Table 8-3: Allowable Load due to Axial Compression

Effective
Length Factor, 2 Allowable Load
K (Ibs)
1 0.1860 - 109722
2 0.3719 98826
3 0.5579 88427
4 0.7439 78805
5 0.9298 69962
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9.0 DISCUSSION AND CONCLUSIONS
A [ O e
An evaluation was performed for the NMP 2 steam dryer for EPU conditions. It includes an
ASME Code evaluation for stress-allowables and fatigue. . . ¢ © -~ . i oo o
o ,§., e . "}1":!” NI _V';“ Ce ) 3 : .‘; Ca ‘z"‘ff :
The evaluation was performed:per.the guidance on the demonstration of steam dryer integrity. for
plants implementing power uprate. The basic load combinations were provided inReference [5}:
The stress results for individual load cases used in the load combinations-are based on the four
unit load cases: one unit pressure and three unit static accelerations in the three global directions.
In addition, results from two points of time in the FIV transient were provided in Reference [4]

for use in the Code stress allowable and fatigue evaluation.

A review of the load combinations in Reference [5] shows that two load combination cases
identified as load Case B-3 for the Service Levels A and B and load Case D-1 for the service

Levels C and D are bounding.

The resultant stresses for these two load cases were obtained from the four unit load cases with
the appropriate scaling factors with the FIV loads. The alternating stress intensity ranges were

obtained from the difference between the two points of time in the FIV load transient.

The Code evaluation was performed per Subsection NG of ASME B&PV Code Section 111 [1].
The evaluation shows that the allowable requirements for all stress categories are met for all
service levels based on the nodal interpretation of the finite element results. The stress in the
gussets in the hoods and tie bars for the faulted load combination exceed the stress allowable,
Table 6-10. However, these components do not significantly exceed the stress allowable and
application of elastic-plastic stress analysis method would likely show that the stresses in these
two components satisfy the Appendix F rule for evaluation of service loadings with Level D
Service Limits. It is noted that the hood gusset location is dominated by the accident differential
pressure (AP, or AP;) loading and the EPU faulted differential pressure load is reduced
compared to that for the original licensed thermal power conditions. The overall conclusion is

that the hood gusset location remains within the original design basis margin for the faulted load
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case for the EPU condition. Using the stress for a sectlon through the component the stresses .

are within the ASME Code stress allowables for the Serv1ce Level B condltlon

The cumulative fatigue was evaluated per.the guidance in Section Il Appendix I of Reference.- -
[1]. With the consideration of mean stress effect, the P+P,+Q stress range limits and the
location of the. peak stress, it is shown that the maximum alternating stress amplitude;:Seq, in.all

steam dryer components are below the -endurance limit of fatigue curve B of 16.5 ksi. Even with

the more conservative fatigue Curve C; the fatigue usage.is very.small. . . ... .=
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