

Nondestructive Evaluation: Ultrasonic Equivalency Testing of Weld Inlaid Components

1016543

Nondestructive Evaluation: Ultrasonic Equivalency Testing of Weld Inlaid Components

1016543

Technical Update, April 2008

,

EPRI Project Manager

C. Latiolais

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

ORGANIZATION(S) THAT PREPARED THIS DOCUMENT

Electric Power Research Institute (EPRI)

AREVA NP, Inc.

WesDyne International, LLC

This is an EPRI Technical Update report. A Technical Update report is intended as an informal report of continuing research, a meeting, or a topical study. It is not a final EPRI technical report.

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2008 Electric Power Research Institute, Inc. All rights reserved.

CITATIONS

This document was prepared by

Electric Power Research Institute (EPRI) Nondestructive Evaluation (NDE) Program 1300 W.T. Harris Blvd. Charlotte, NC 28262

Principal Investigator C. Latiolais

AREVA NP, Inc. 155 Mill Ridge Road, MRR-1 Lynchburg, VA 24502

Principal Investigator C. Graves

WesDyne International, LLC P.O. Box 409 Madison, PA 15663

Principal Investigator A. Moreau

This document describes research sponsored by EPRI.

The publication is a corporate document that should be cited in the literature in the following manner:

Nondestructive Evaluation: Ultrasonic Equivalency Testing of Weld Inlaid Components. EPRI, Palo Alto, CA: 2008. 1016543.

PRODUCT DESCRIPTION

This report describes an investigation in which ultrasonic data were acquired by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix VIII, qualified procedures from both a Performance Demonstration Initiative (PDI) 601 series hot leg to reactor vessel mockup and a Pressurized Water Reactor Owners Group inlay test mockup containing similar crack-like flaws. The objective of this investigation was to determine the equivalency of using qualified techniques for the inspection of inlaid nozzle dissimilar metal welds from the inner surface of the nozzle.

Results and Findings

Experiments performed by AREVA NP and WesDyne International demonstrated that qualified techniques for inspecting inlaid nozzle dissimilar metal welds from the inner surface of the nozzle can be used to detect, characterize, and size the length and depth of axial and circumferential flaws. No procedural changes were required by either vendor during these demonstrations, and the qualified techniques worked as expected. The data, which are presented in this report, demonstrate that inlaid components can be examined reliably using the current Appendix VIII qualified inside surface procedures with no further demonstrations required for procedures, personnel, or equipment.

Challenges and Objective

The hot and cold leg primary nozzles in PWRs contain dissimilar metal weld configurations using Alloy 600 materials joining the ferritic reactor pressure vessel to the austenitic coolant piping. Because these welds are exposed to primary coolant water, they are susceptible to primary water stress corrosion cracking (PWSCC). As a result, the Electric Power Research Institute (EPRI) report 1010087, *Materials Reliability Program: Primary System Piping Butt Weld Inspection and Evaluation Guideline* (MRP-139), requires an increased inspection frequency on these components unless actions are taken to minimize the risk for PWSCC. In response to MRP-139, the weld inlay was designed to isolate the PWSCC-susceptible material from the primary environment.

The objective of this investigation was to determine the equivalency of using qualified techniques for the inspection of inlaid nozzle dissimilar metal welds from the inner surface of the nozzle. A demonstration of equivalency would allow the use of these techniques and associated procedures on inlay weld designs without the need for additional qualification activities.

Application, Value, and Use

Currently, 31 plants in the United States have the potential for PWSCC in their hot and cold leg primary nozzles and could benefit from inlay mitigation.

EPRI Perspective

ASME Section XI, Appendix VIII, currently identifies requirements for examination of structural weld inlay (corrosion-resistant clad) austenitic piping welds as "In Course of Preparation." Therefore, implementation of Appendix VIII qualified examination techniques might require utilities to submit one or more relief requests. EPRI, in conjunction with affected utilities, will develop guidelines for these relief requests as required. These guidelines, along with applicable safety evaluation reports, will be available at www.epriq.com.

Approach

An inlay test mockup was created that was identical to an existing PDI 601 series weld configuration. This mockup is a full-scale representation of a PWR hot leg to reactor pressure vessel DMW, including the safe-end and the safe-end-to-pipe connecting weld. Both the 601 and the inlay mockup were fabricated from actual dropouts taken from a cancelled PWR in order to ensure that materials and welding processes are typical of those found in an operating plant. The inlay material was applied using welding techniques and hardware developed by AREVA NP. In order to identify welding imperfections that might exist in the DMW, the inlay mockup was ultrasonically inspected by AREVA NP using a qualified Appendix VIII procedure before inlay material was applied.

AREVA NP and WesDyne International inspected the inlay mockup and used previously collected data on similar flaws in the 601 mockup for comparison. Data were collected following each vendor's applicable Appendix VIII qualified automated ultrasonic procedure. Both vendors had prior knowledge of the crack-like flaw locations and sizes for the inlay mockup. The ultrasonic scanning was conducted under the observation and guidance of EPRI PDI personnel to ensure procedural compliance. All scanning was performed from the inner diameter surface, with scanning in both axial and circumferential directions using qualified equipment.

Keywords

Inlay Dissimilar metal weld Mitigation Pressurized water reactor (PWR) Nozzles Ultrasonic examination

CONTENTS

1 INTRODUCTION	1-1
Objective	
Background	
2 EQUIVALENCY TESTING APPROACH	2-1
Mockup	2-1
Data Collection	2-1
3 RESULTS	3-1
4 SUMMARY	4-1
A WESDYNE REPORT	A-1
B AREVA NP REPORT	B-1

LIST OF FIGURES

Figure 2-1 Inlay mockup drawing: location of flaws	.2-2
Figure 2-2 Inlay mockup drawing: inspection data	.2-3
Figure 2-3 Inlay mockup drawing: location of embedded flaws	.2-4
Figure 2-4 Inlay mockup drawing: orientation of machined pockets and terraces	.2-5
Figure 3-1 Typical axial flaw image (AREVA) from 601 and 1 in. (2.54 cm) inlay mockup	.3-1
Figure 3-2 Typical ultrasonic image (WesDyne) from 601 block of circumferentially oriented flaws	.3 - 2
Figure 3-3 Typical ultrasonic image (WesDyne) from inlay mockup of circumferentially oriented flaws (opposite directions)	.3-5
Figure 3-4 Circumferential scan data (WesDyne) showing background noise increase with inlay thickness	.3-5

LIST OF TABLES

Table 3-1 WesDyne detection and sizing results	3-2
Table 3-2 AREVA detection and length sizing results	3-3
Table 3-3 AREVA depth sizing results	3-4

1 INTRODUCTION

Objective

This report documents the results of equivalency testing between Performance Demonstration Initiative (PDI) qualified ultrasonic inspection techniques applied to the Pressurized Water Reactor Owners Group inlay test mockup. This project was designed to evaluate the effectiveness of current automated ultrasonic procedures developed for inner surface inspection on inlaid welds without modification of essential variables. A demonstration of equivalency would allow the use of these techniques and associated procedures on inlay weld designs without the need for additional qualification activities.

Background

Primary water stress corrosion cracking (PWSCC) was first identified as a failure mechanism for Alloy 600 materials in reactor pressure vessels in the United States following the leakage event of a pressurizer heater sleeve at Calvert Cliffs Unit 2 in 1989. Since then, considerable research has been conducted on the environmental influences of this cracking phenomenon. PWSCC occurs in Alloy 600 materials that are directly exposed to the primary coolant water. The susceptibility and onset of cracking for a particular component is influenced by temperature, pressure, material residual stresses, water chemistry, and service life, with incidences in both BWRs and PWRs. The focus of this report is PWSCC and related inlay mitigation in PWRs, specifically the hot and cold leg primary nozzle dissimilar metal welds (DMWs). Currently, 31 plants in the United States have the potential for PWSCC in their hot and cold leg primary nozzles and could benefit from inlay mitigation.

The hot and cold leg primary nozzles in PWRs contain DMW configurations using Alloy 600 materials joining the ferritic reactor pressure vessel to the austenitic coolant piping. Because these welds are exposed to primary coolant water, susceptibility to PWSCC exists. As a result, the Electric Power Research Institute (EPRI) report 1010087, *Materials Reliability Program: Primary System Piping Butt Weld Inspection and Evaluation Guideline* (MRP-139), requires an increased inspection frequency on these components unless actions are taken to minimize the risk for PWSCC. In response to MRP-139, the weld inlay was designed to isolate the PWSCC-susceptible material from the primary environment.

Weld inlay is a process in which weld material is deposited onto the inner surface of the nozzle using remote, automated welding techniques. Although the inlay can provide additional structural support for the weldment, its primary function is to isolate the Alloy 600 material from the primary coolant water. Isolating the susceptible material allows the component's classification to change to Category A, as defined by MRP-139. As a result, the inspection frequency decreases to a 10-year in-service inspection cycle. In contrast, plants using a full structural overlay mitigation strategy still require increased inspection frequency under current guidelines because isolation of the susceptible material was not achieved.

Although an inlay mitigation process can decrease the frequency of inspection as required by MRP-139, it does not eliminate inspection requirements. Presently, ASME Section XI, Appendix VIII, Supplement 10, specifically excludes components with corrosion-resistant cladding from the scope of the qualification for procedures, personnel, and equipment. Therefore, no PDI-qualified technique currently exists that can be used to inspect inlaid DMWs. However, qualified examination procedures do exist that are applicable for hot and cold leg DMWs from the inside surface, but they apply only to unclad austenitic surfaces.

Before this investigation, the effect of inlay material on the ability to ultrasonically inspect a DMW using a qualified procedure was unknown. The primary focus of this project is to evaluate the capabilities of Appendix VIII, Supplement 10, qualified procedures used for examination of DMWs from the inside surface on an inlaid component. The data collected should clearly show the effect of inlay material on the ability to ultrasonically detect and size flaws that might develop later in the service life of an inlaid component. If equivalency is demonstrated, the need for additional qualification activities would be eliminated because currently available inspection procedures could be used.

2 EQUIVALENCY TESTING APPROACH

Mockup

An inlay test mockup was created that was identical to an existing PDI 601 series weld configuration. This mockup is a full-scale representation of a PWR hot leg to reactor pressure vessel DMW, including the safe-end and the safe-end-to-pipe connecting weld. Both the 601 and the inlay mockup were fabricated from actual dropouts taken from a cancelled PWR to ensure that materials and welding processes are typical of those found in an operating plant. The inlay material was applied using welding techniques and hardware developed by AREVA NP. In order to identify welding imperfections that might exist in the DMW, the inlay mockup was ultrasonically inspected by AREVA NP using a qualified Appendix VIII procedure before inlay material was applied.

(

The inlay test mockup has four 90° quadrants with varying inlay thicknesses that were blended smooth on the inner diameter surface. The first quadrant of the mockup was used for a baseline for noise comparison and had no weld inlay or flaws. The second and third quadrants have 0.20-in. and 0.07-in. (0.508-cm and 0.178-cm) thick inlays, respectively. In addition to the inlay, the three quadrants have the same set of four flaws identified as Flaws 1, 2, 3, and 12, which are identical to flaws found in the 601 practice mockup. In the fourth quadrant, an embedded flaw represents the partial removal and subsequent 1-in. (2.54-cm) deep inlay repair of a deep flaw. The flaws were implanted in the mockup using the same techniques used for the fabrication of the PDI 601 mockup. The flaws were generated using an electrodischarged machining technique, with the topography of the notch designed to simulate that of a crack. Figures 2-1 through 2-4 are drawings of the inlay mockup.

Data Collection

Two vendors were contracted to inspect the inlay mockup. Previously collected data on similar flaws in the 601 mockup were used as a comparative reference. All data were collected following each vendor's applicable Appendix VIII qualified automated ultrasonic procedure. The procedures used by the vendors were AREVA NP's 54-ISI-821-000, "ID Automated Ultrasonic Examination of Austenitic and Dissimilar Metal Piping Welds for Detection and Length Sizing," and 54-ISI-822-000, "ID Automated Ultrasonic Examination of Austenitic and Dissimilar Metal Piping Welds for Depth Sizing," and WesDyne's PDI-ISI-254-SE, "Field Inspection Procedure," Revision 2. Both vendors had prior knowledge of the crack-like flaw locations and sizes for the inlay mockup. The ultrasonic scanning was conducted under the observation and guidance of EPRI PDI personnel to ensure procedural compliance. All scanning was performed from the inner diameter surface, with scanning in both axial and circumferential directions using qualified equipment.

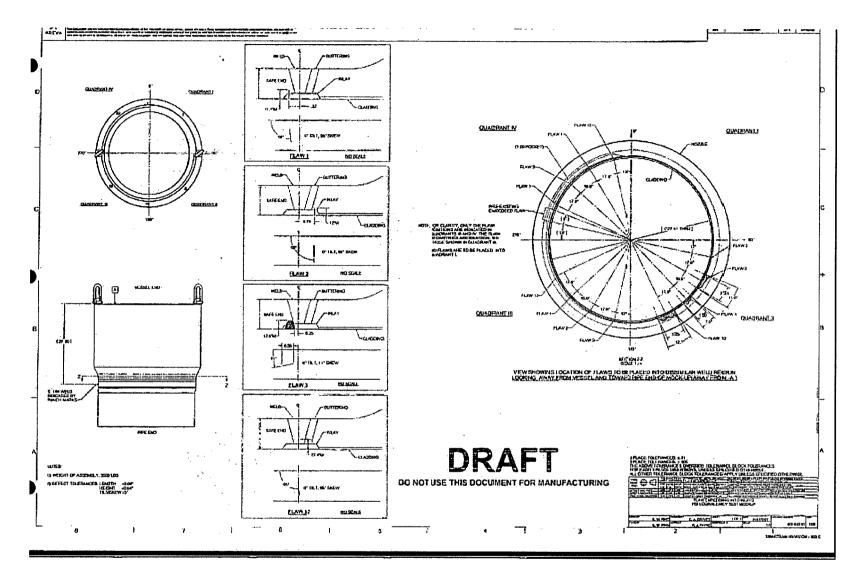


Figure 2-1 Inlay mockup drawing: location of flaws

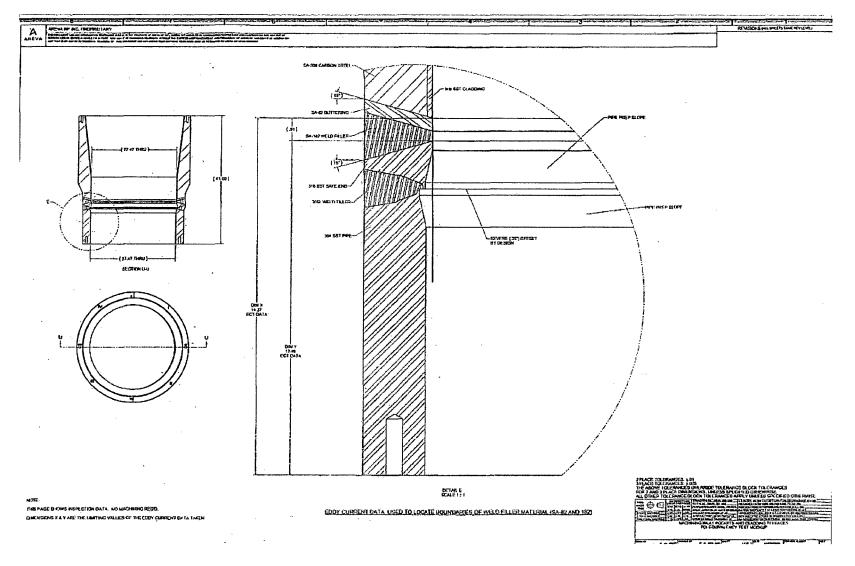


Figure 2-2 Inlay mockup drawing: inspection data

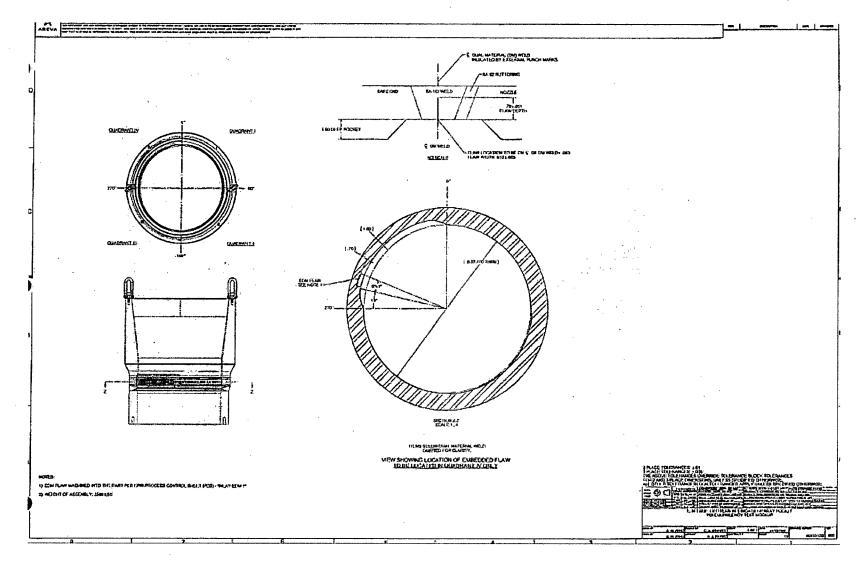


Figure 2-3 Inlay mockup drawing: location of embedded flaws

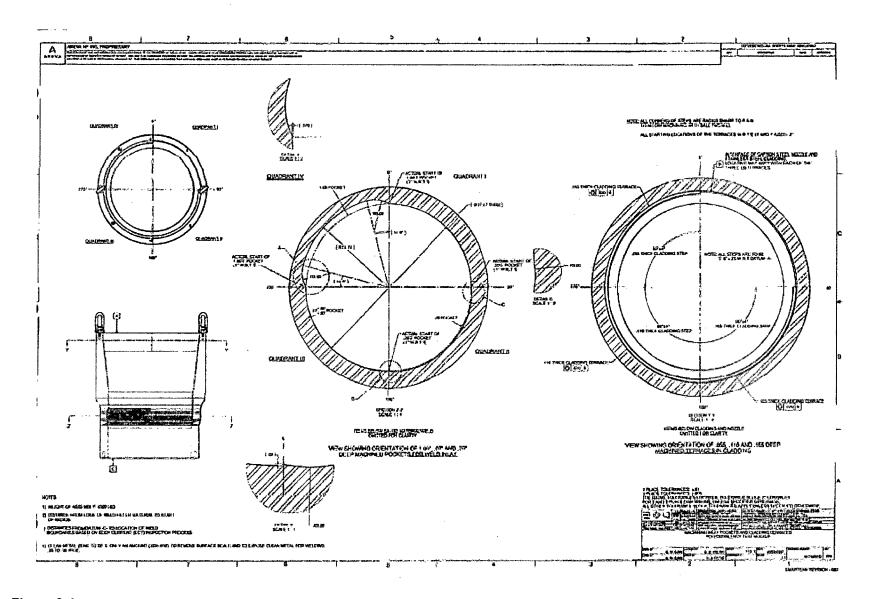


Figure 2-4 Inlay mockup drawing: orientation of machined pockets and terraces

3 RESULTS

Both vendors prepared inspection reports summarizing the flaw detection capabilities and sizing results for the four flaws using data collected from mockup 601 for comparison. Figures 3-1 and 3-2 show typical flaw images obtained from mockup 601. The inspection reports contain objective evidence in the form of data images and quantitative measurements to support the findings and conclusions. These reports are provided in Appendix A, WesDyne Report WDI-DFD-2009-QDP-001, and Appendix B, AREVA NP Report 51-9068587-000.

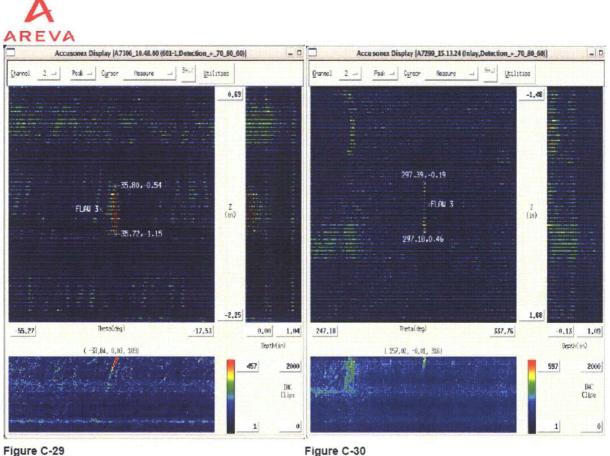
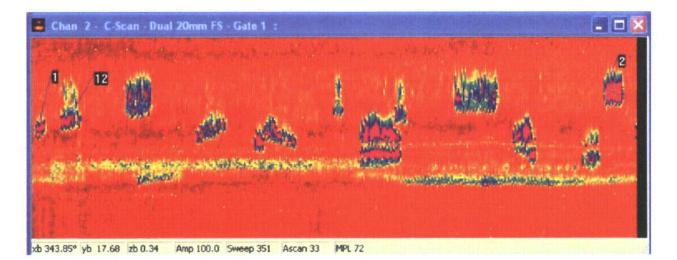



Figure C-29 601-1 Flaw 3: 80°L from Positive Direction Reference Flaw

Inlay Mockup Flaw 3-4: 80°L from Positive Direction Quadrant 4 – 1" Inlay

Figure 3-1 Typical axial flaw image (AREVA) from 601 and 1 in. (2.54 cm) inlay mockup

Figure 3-2

Typical ultrasonic image (WesDyne) from 601 block of circumferentially oriented flaws

Both vendors reported similar findings with respect to flaw detection, sizing, and relative noise levels within the areas of the inlay. Both vendors were able to detect, characterize, length size, and depth size all the implanted axial and circumferential flaws within the tolerances imposed by EPRI's PDI-qualified inspection procedures. Tables 3-1, 3-2, and 3-3 summarize the measurements obtained by each vendor on each flaw.

Table 3-1 WesDyne detection and sizing results

12 100000	PYNE		PROCEDURE COMPONENT ANALYST		PDI Supplement 2 10 Demonstration PDI -ISI-254-SE Rev. 2 Actual Flaw size to UT results of 601 block and inlay Block						
Indication	Actu	als	601 Si	zing		Inlay Sizing					
No.	Length	T/W	Length	T/W	Ind. No.	Length	T/W	COMMENTS			
1	1.80"	0.339"	1.875"	0.37"	1-Q2	1.75"	0.37"				
2	2.63"	0.350"	2.75"	0.39"	2-Q2	2.75"	0.34"				
3	* 0.60" ** 0.50"	0.374"	0.40"	0.44"	3-Q2	0.64"	0.40"				
12	3.05"	0.815"	3.25"	0.79"	12-Q2	3.00"	0.81"				
embed	2.23"	0.70"									
					1-Q3	1.75"	0.42"				
					2-Q3	2.375"	0.33"				
					3-Q3	0.64"	0.37"	iya yi ^{na} ata			
		-	1		12-Q3	2.875"	0.81"				
					1-Q4	1.625"	0.36"				
					2-Q4	2.625"	0.37"	in a final second s			
					3-Q4	0.72"	0.27"				
					12-Q4	3.125"	0.77"				
					embed	2.25"	0.71"				

1 in. = 2.54 cm

Table 3-2 **AREVA** detection and length sizing results Flaw detection and length sizing results for inlay mockup and mockup 601-1 comparisons

294.80

325.60

102.00

192.00

294.80

294.60

325.60

102.00

192.00

294.80

294.80

325.60

102.00

192.00

294.80 ND

Circumferential Flaws Measurements from the Nozzle Side Measurements from the Safe-end Side Measured Measured Measured Measured Flaw Measured Measured Measured Actual Actual Actual Actual Measured Actual Flaw Start Flaw End Flaw Start Flaw End Start Flaw End Flaw Mackup Quadrant Reference Flaw Flaw Center Flaw Flaw Length Flaw Length Start Position Position Position Position Position Length Variance Position Position Length Length Variance Location Length Length Length (deg.) Flaw # (deg.) (in.) (deg.) (deg.) (deq.) (deg) (deq.) (deq.) (in.) (deq.) (in.) (deg.) (deg.) (in.) (deq.) (in.) 10.40 343.40 338.20 348.60 -10.20 3.02 11.94 0.39 -22.02 -11.12 2.76 10.90 2 343.40 2.63 -22.14 601-1 N/A 1 0.00 1.80 7.10 0.00 -3.55 3 55 -2.77 4.03 1.72 6.80 -0.08 -3.34 4.18 1.90 7.52 11.75 23.85 24.79 11.82 24.15 3.12 12 17.80 3.05 12.10 17.80 12.26 3.17 12.53 0.12 12.33 2-2 29.80 2.63 11.00 119.80 114.30 125.30 116.82 128.22 2.74 11.40 0.11 117.18 127.81 2.55 10.63 90 7.50 136.40 132.65 140.15 135.38 142.42 1.69 7.04 -0.11 136.42 142.67 1,50 6.25 1-2 46.40 1.80 163.27 13.30 12-2 64.20 3.05 12.70 154.20 147.85 160.55 150.90 163.50 3.02 12.60 -0.03 149.97 3.19 11.00 209.80 204.30 215.30 207.44 218.07 2.55 10.63 -0.08 207.01 218.46 2.75 11.45 2-3 29.80 2.63 Inlay 180 1-3 46.40 1.60 7.50 226.40 222.65 230.15 225.36 232.82 1.79 7.46 -0.01 225.73 233.01 1.75 7.28 253.40 244.20 237.85 13.45 0.18 13.41 12-3 64.20 3.05 12.70 250.55 240.27 253.72 3.23 239.993.22 312.60 307.10 318.10 310.00 320.97 2.63 10.97 0.00 309.66 321.10 11.44 2-4 42.60 2.63 11.00 2.75 7.50 6.60 -0.22 328.48 334.61 1.47 6.13 1-4 59.20 1.80 329.20 325.45 332.95 328.49 335.09 1.58 270 356.04 12-4 77.00 3.05 12.70 347.00 340.65 353.35 342.86 355.37 3.00 2.51 -0.05 343.32 3.05 12.72 2.37 286.95 17.00 2.15 9.00 287.90 283.40 292.40 283.83 293.72 9.89 0 22 295.20 1.98 8.25 embedded Axial Flaws **Negative Beam Direction Measurements Positive Beam Direction Measurements** Measured Flaw Measured Measured Measured Actual Actual Actual Actual Measured Measured Measured Measured Flaw Start Flaw End Flaw Start Flaw End Start Flaw End Flaw Flaw Mackup Quadrant Reference Flaw Beam Center Flaw Flaw Length Length Position Position Position Position Position Position Length Start Location Length Angle Position Length Length Variance Length Variance (deg.) (in.) (in.) (in.) (deq.) (in.) (deg.) Flaw # (deg.) (in.) (deg.) (deg.) (deg.) (in.) (in.) (in.) (deg.) (in.) 325.60 325.60 325.60 -0.42 -0.94 0.52 0.00 -0.08 -0.64 -0.99 0.35 0.00 601-1 325.60 0.60 N/A 3 60L 102.00 102.00 102.00 0.01 0.41 0.40 0.00 90 3-2 12.00 0.60 60L ND ND 192.00 192.00 0.00 -0.10 0.22 0.50 0.00 Inlay 180 3-3 12.00 0.60 60L 192.00 -0.32 0.18 0.50 -0.28 0.56 0.55

ND

ND

-1.14

0.07

0.09

0.55

0.49

0.57

0.00

0.00

0.001

-0.05

-0.11

-0.03

-0.59

-0.42

-0.48

0.1

0.10

0.0

-0.08

-0.30

0.14

0.13

-0.05

0.1

0.12

-0.3

0.0

-0.11

-0.2

-0.2

-0.10

-0.06

0.0

-0.06

-0.1

0.05

0.00

0.00

0.00

0.00

0.00

0.01

-0.54

-0.43

-0.43

-0.19

-1.15

0.11

0.06

0.46

0.61

0.54

0.49

0.65

Note: ND means the flaw was not detected.

24.80

325.60

12.00

12.00

24.80

0.60

0.60

0.60

0.60

0.60

60L

80L

BOL

80L

80L

3-4

3

3-2

3-3

3-4

270

90

180

270

601-1

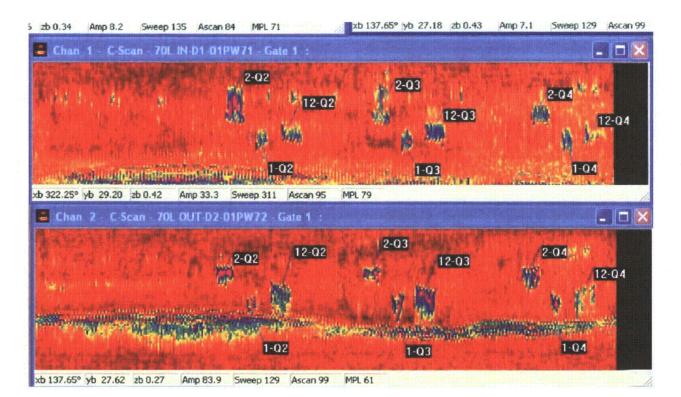

Inlay

Table 3-3 AREVA depth sizing results

	Circumfer	ential Flav	ws							UT Meas	urement
Mackup	Quadrant Start (deg.)	Flaw #	Reference Location (deg.)	Actual Flaw Length (in.)	Actual Flaw Length (deg.)	Actual Center Position (deg.)	Actual Flaw Start Position (deg.)	Actual Flaw End Position (deg.)	Actual Flaw Depth (in.)	Measured Flaw Depth (in.)	Depth Variance (in.)
and the second sec		2	343.40	2.63	10.40	343.40	338.20	348.60	0.350	0.290	-0.060
601-1	N/A	1	0.00	1.80	7.10	0.00	-3.55	3.55	0.339	0.390	0.05
ß		12	17.80	3.05	12.10	17.80	11.75	23.85	0.815	0.823	0.00
		2-2	29.80	2.63	11.00	119.80	114.30	125.30	0.350	0.355	0.00
	90	1-2	46.40	1.80	7.50	136.40	132.65	140.15	0.339	0.405	0.06
		12-2	64.20	3.05	12.70	154.20	147.85	160.55	0.815	0.850	0.03
Inlay		2-3	29.80	2.63	11.00	209.80	204.30	215.30	0.350	0.349	-0.00
	180	1-3	46.40	1.80	7.50	226.40	222.65	230.15	0.339	0.306	-0.03
<u> </u>		12-3	64.20	3.05	12.70	244.20	237.85	250.55	0.815	0.844	0.02
		2-4	42.60	2.63	11.00	312.60	307.10	318.10	0.350	0.343	-0.00
	270	1-4	59.20	1.80	7.50	329.20	325.45	332.95	0.339	0.319	-0.02
	2/0	12-4	77.00	3.05	12.70	347.00	340.65	353.35	0.815	0.876	0.06
		Embedded	17.00	2.15	9.00	287.00	283.40	292.40	0.701	0.728	0.02
	Axial Flav	ws		un an		an a Changling				UT Meas	urement
Mockup	Quadrant Start (deg.)	Flaw #	Reference Location (deg.)	Actual Flaw Length (in.)	Beam Angle (deg.)	Actual Center Position (deg.)	Actual Flaw Start Position (deg.)	Actual Flaw End Position (deg.)	Actual Flaw Depth (in.)	Measured Flaw Depth (in.)	Depth Variance (in.)
501-1	N/A	3	325.6	0.6	60L	325.6	325.6	325.6	0.374		0.08
	90	3-2	12	0.6	60L	102	102	102	0.374	and the second state of the second	-0.04
Inlay	180	3-3	12	0.6	60L	192	192	192	0.374		-0.05
ппау	270	3-4	24.8	0.6	60L	294.8	294.8	294.8	0.374		0.09

1 in. = 2.54 cm

Figures 3-1 and 3-3 show typical flaw images obtained from the inlay mockup. Although the procedures are not qualified for the detection and sizing of embedded flaws, the embedded flaw in quadrant four was also successfully detected and sized using procedurally acceptable search units and techniques. No procedural changes were required by either vendor during these demonstrations, and the qualified techniques worked as expected.

Figure 3-3

Typical ultrasonic image (WesDyne) from inlay mockup of circumferentially oriented flaws (opposite directions)

The procedures used for this investigation use high beam angles and are not designed to detect an inlay disbond condition. This report demonstrates technique equivalency of crack detection techniques; it does not address the detection of flaws contained in inlay material or at the inlay-to-parent material bond.

Both vendors observed an apparent increase in the noise level in the areas where the inlays were applied. This reference noise level increased as the thickness of the inlay material increased, with the largest reference noise level appearing in the fourth quadrant, where the 1 in. (2.54 cm) inlay material was located. Figure 3-4 is an ultrasonic image that shows the relative noise level of each quadrant.

Figure 3-4

Circumferential scan data (WesDyne) showing background noise increase with inlay thickness

Figure 3-4 clearly illustrates an increase in background noise level associated with the 1 in. (2.54 cm) inlay material when compared to the rest of the block. In the axially oriented flaws, the signal-to-noise ratio was more noticeably affected, but it was not at a level that would impact the results of the examination. This increase in noise generally made flaw depth sizing more difficult, but it had a lesser effect on detection capabilities. Although the precise cause of this noise is not known, it is assumed to be associated with the microstructure of the inlay material. Possible causes could be related to small discontinuities in the material or a preferred orientation of crystallographic grain structure and size that tends to scatter the sound energy as it passes through. Both vendors recommended further investigations to determine the origin of the noise and to determine whether the welding process could be modified to reduce or eliminate the noise.

4 SUMMARY

The objective of this project was to demonstrate the equivalency of existing ASME Section XI, Appendix VIII, Supplement 10 or 14, automated ultrasonic procedures on inlay weld configurations. This was demonstrated through a series of tests by two vendors in which a mockup representing inlays of various thicknesses was inspected using qualified procedures and probes. Both vendors were able to successfully detect, characterize, and length and depth size all the flaws in the inlay mockup without deviating from the procedurally qualified techniques. These experiments demonstrate that components inlaid in a process similar to that used to fabricate the inlay mockup can be examined reliably using the current Appendix VIII qualified inside surface procedures with no further demonstrations required, assuming the inlay material is properly bonded and free of flaws.

Although an increased noise level was noted in the areas where the inlay was applied, it did not affect the procedures' capabilities to detect, characterize, and size the flaws, and it had no effect on the examination. However, it is recommended that additional work be performed to determine whether the welding process can be modified to reduce or eliminate the source of this noise, which would enhance the effectiveness of the examination.

ASME Section XI, Appendix VIII, currently identifies requirements for examination of structural weld inlay (corrosion-resistant clad) austenitic piping welds as "In Course of Preparation." Therefore, implementation of Appendix VIII qualified examination techniques might require utilities to submit one or more relief requests. EPRI, in conjunction with affected utilities, will develop guidelines for these relief requests as required. These guidelines, along with applicable safety evaluation reports, will be available at www.epriq.com.

A WESDYNE REPORT

WesDyne report number WDI-DFD-2009-QDP-001, "Report Summary for Supplements 2 and 10 Flaw Comparisons between EPRI Block 601 and the Inlay Test Block," Revision 0, December 2007.

WDI-DFD-2009-QDP-001

DEMONSTRATION OF TECHNIQUE:

Report Summary for Supplements 2 and 10 Flaw Comparisons between EPRI Block 601 and the Inlay Test Block

Revision 0

December 2007

WesDyne International LLC P.O. BOX 409 I-70 EXIT 25A – Gate D Madison, PA. 15663 (800) 443-9622

WDI-DFD-2009-QDP-001

DEMONSTRATION OF TECHNIQUE:

Report Summary for Supplements 2 and 10 Flaw Comparisons between EPRI Block 601 and the Inlay Test Block

December 2007

Prepared b	oy:
------------	-----

Date: /- 3-01

Reviewed by:

Reviewed by:

M. Weatherly, Quality Assurance

ron AM

Approved by: D.

D. Kurek

Adamonis, VP Engineering

Date: /-3-08

Date: _ /- 3-08

Date: 1/3/08

WESDYNE INTERNATIONAL LLC P.O. BOX 409 1-70 EXIT 25A - GATE D MADISON, PA. 15663 (800) 443-9622

DEMONSTRATION OF TECHNIQUE:

Report Summary for Supplements 2 and 10 Flaw Comparisons between EPRI Block 601 and the Inlay Test Block

Table of Contents

EXECUTIVE SUMMARY

- ATTACHMENT 1: UT Probe Calibrations
- ATTACHMENT 2: Block 601 UT 70° Detection Results
- ATTACHMENT 3: Block 601 UT Sizing Results
- ATTACHMENT 4: Inlay Test Block UT 70° Detection Results
- ATTACHMENT 5: Inlay Test Block UT Sizing Results
- ATTACHMENT 6: 601 & Inlay Block Comparison Table
- ATTACHMENT 7: Inlay Block Noise Comparison Image
- ATTACHMENT 8: Inlay Block Test Plan
- ATTACHMENT 9: Inlay Block Drawing 8019331D

EXECUTIVE SUMMARY

1.0 INTRODUCTION

WesDyne International performed an open procedure demonstration by scanning an inlay test block using qualified procedure PDI-ISI-254-SE, Revision 2. The Inlay Test Block, (reference attachment 9) is a 360 degree welded replica of a primary loop piping DM and safe-end weld divided into four 90 degree segments. Three segments have protective stainless steel inlay applied in layers of varying thickness blended smooth to conform to the ID surface. The fourth segment represents a standard dissimilar metal safe end configuration without inlay. The Inlay Block segments contain a number of crack-like flaws oriented axially and circumferentially. The locations and sizes of the cracks were known to the exam team. Results from the inlay Test Block were compared to baseline data taken previously on PDI practice specimen 601, a standard DM safe end practice specimen containing crack indications. The purpose of the demonstration was to insure that procedures qualified for detection of flaws in primary piping DM welds (Section XI, Appendix VIII, Supplements 2 and 10), were capable of detecting and measuring flaws on primary piping DM welds mitigated by inlay without changing the essential variables of the qualified procedure.

All equipment, setup, scanning and data interpretation was performed between November 26 and Dec. 7, 2007 at the Westinghouse Waltz Mill Service Center. Processed data was also reviewed at EPRI after the initial assessment by WesDyne.

This demonstration was conducted as a controlled exercise under written instructions from a Program Plan developed by WesDyne using information supplied from EPRI and AREVA. Although not present for scanning, the Performance Demonstration Administrator (PDA) was fully informed about the progress of the project and the PDA provided guidance on the preparation of test results. In order to compare similar flaw data from non-inlay and inlay specimens, WesDyne used prior data taken on demonstration block 601 as a basis for comparison with data from the Inlay demonstration block. There are some crack sizes common to both specimens serving as a good basis for comparison.

All scanning was performed with the inlay mock-up immersed in a tank designed specifically for UT demonstrations with SUPREEM scanners. The test system was assembled in the essential configuration depicted in procedure PDI-ISI-254-SE, Revision 2. Examiners qualified to the procedure performed all relevant NDE tasks. The demonstration results were reviewed with Carl Latiolais of EPRI on December 7, at the EPRI NDE Center in Charlotte, NC.

2.0 EQUIPMENT DESCRIPTION

The ultrasonic test system used for this demonstration consisted of the following components:

- WesDyne PARAGON (Software Version Acq. 3.50 Proto. 2, Analysis, 6.3.0)
- SUPREEM ROSA 5 Scanner and associated hardware
- RD TECH Pulser/ Receiver
- Approved Transducers as defined in PDI-ISI-254-SE

The inlay test block was supplied by EPRI as part of this demonstration and is identified as 8019331D and is shown in Attachment 9.

2.0 EXAMINATION PROCESS

The following parts of the WesDyne Field Inspection Procedure, PDI-ISI-254-SE Rev. 2 were used in this demonstration:

- Calibration The UT system was calibrated in accordance with Sections 6.0 and 8.0 of PDI-ISI-254-SE Rev. 2. Examination sensitivity was established per table 6.4.1 and verified by using the histogram method set forth in Paragraph 9.2.
- Evaluation of Data The evaluation of data was performed in accordance with Section 9.0 of PDI-ISI-254-SE Rev. 2.
- Scanning was performed in both axial and circumferential directions. All scanning was performed at speeds less than 3 inches per second.

The scan boundaries, sled arrangement and test configuration are defined in the examinations were performed in accordance with the written Open Demonstration Test Plan found in Attachment 8.

3.0 SUMMARY OF RESULTS

• The demonstration was performed using procedure PDI-254-SE Rev. 2 to compare the flaws 1, 2, 3, & 12 of the EPRI practice block 601 to the EPRI replica inlay block which has three sets of virtually identical flaws. The three sets of flaws were positioned in three separate quadrants (2, 3 and 4) and are propagating through the inlay. Quadrant 1 is free from flaws and inlay and quadrant 4 has an additional embedded flaw. Varying thickness' of inlay material was place in each quadrant. Quadrant 2 has a 0.20"thick inlay, Quadrant 3 has a 0.07" thick inlay, and Quadrant 4 has a 1.0" thick inlay.

- Although all flaws were detected, through wall and length sized within tolerances of the qualification and procedure PDI-254-SE Rev 2, it should be noted that additional material noise was seen in the inlay areas that made it more difficult to discern sizing features (For a given flaw the signal to noise ratio was less in the EPRI block 601 when comparing the corresponding flaws in the inlayed areas). Flaws that were most affected by this elevated noise were circumferentially oriented flaw12 in quadrant 4, and axially orientated flaw 3 in all 3 quadrants. Each of the axially orientated flaws was sized using the 60° instead of the 45° which is not the optimum angle for through wall sizing but is allowed by procedure. It should also be noted that even though there was more material noise observed in the processed data, the flaws were seen and measured with the procedure and no changes in the essential variables or procedure instructions were necessary to accomplish the overall objective.
- The results including printouts of all flaws and noise issues are in the following attachments according to the table of contents.

4.0 **REFERENCES**

- 4.1 Open Demonstration Plan (PDI Inlay Test Mockup) Rev. 0 Dated 11-8-07
- 4.2 WesDyne Inspection Procedure, PDI-ISI-254-SE Rev. 2: *Remote Inservice Examination of Reactor Vessel Nozzle To Safe End, Nozzle to Pipe and Safe End to Pipe Welds.*

ATTACHMENT 1:

.

UT Probe Calibrations

SENSITIVITY CALIBRATION DATA SHEET # SE-DET

Utility:	Wesdy	ne	F	Plant:	Unit:	Outage:			
Procedu	re No:	PSI-ISI-254	-SE		Procedui	re Rev. No.:	2		
Applical	ble Weld	Numbers:							
Applicat	ble PAR	AGON UT Se	ssion(s):	Inlay SE-DET-Ax / Circ					

PARAGON Operator Signature:	Dal Nelson	Date:	11-30-07
UT Examiner Signature:	Dal Nelson	Date:	11-30-07

EQUIPI	MENT INF	ORMATIC	ON	_		
PARAGON SAP #: 104591		RPR S	SAP #:	104592		
PARAGON Acq. Software Release No:	3.5.0 Proto 2		GON Ana se No:	I. Software	e 6.3.0	
Calibration/Inspection Cable Types		No of				
	Calibr	ation	Insp	ection	Intermediate	
-	Cable #1	Cable #2	Cable #3	Cable #4	Connectors	
UT Probes to Underwater Connector	150'		150'	150'		
Underwater Connector to RPR	48″		48"	48"		
RPR to Remote CPU	40"		40"	40°		
UT Profile Probe Extension	N/A	N/A	6"			
Color	Blk		White	Black		

				UT P	ROBE	INFOR	MATIC	DN	· · · · · · · · · · · · · · · · · · ·		
Make	Serial Number	Mode	Measured Sound Beam Exit Point (in.)	Measured Angle (deg)	Center Freq (MHz)	Bandwidth (%)	No of Elements	Element Shape	Element Size (mm)	Focal Sound Path (mm)	Contour (mm)
КВ	01PW71	L	0	70	1.46	66	2	REC	7.6x14.2 (2)mm	20	N/A
KB	01PW72	L	0	70	1.40	60	2	REC	7.6x14.2 (2)mm	20	N/A
KB	01PW73	L	0	70	1.40	60	2	REC	7.6x14.2 (2)mm	20	N/A
KB	01PW74	L	0	70	1.46	66	2	REC	7.6x14.2 (2mm)	20	N/A
КВ	01PHLH	L	0	0	4.88	50	1	ROUND	.25"	.625	N/A

Page of

SENSITIVITY CALIBRATION DATA SHEET # SE-DET

				UT S	ENSITI		MEBASE	CALIBRA	TION							
Calib	ration Bl	ock:		Navship		Calib	ration Blo		103155		ck Temp:	70° F				
Them	nometer	S/N:	S/N: 105509 Couplant: Demin Essential Variable Settings per Appendix A, Figures A1-3 through A1-14:													
Wire #	Wire Color	RP Char (P/R	nnel	Probe	S/N	Prob Angle (deg	e Bias	Hole I.D.	Hole Amp %FSH	Gain (dB)	Exam. Gain (dB)	Measured Depth (in)				
1	Blk	1		01PW	71	70	35	Α	80	24	30	.247				
2	Blk							В	53			.417				
1	Blk	2		2		2		01PW72		70	33	Α	80	25	31	.247
2	Blk							В	54			.427				
1	Blk	3		01PHL	.H	0	182	ID	1.00	6	6	0				
2	Blk															
1	Blk	4	4 01		PW73 70		70	Α	80	25	31	,247				
. 2	Blk							В	50			.249				
1	Blk	5		01PW74		70	70	Α	80	24.5	30.5	.242				
2	Blk							В	50			.452				
<u>.</u>																
				CLAD EX	(AM				<u></u>							
1	Blk	1		01NVC	;9	0	41	Α	50	19.5	31.5	.222				
2	Blk			PDI-C	al			С	29			.804				

1

SENSITIVITY CALIBRATION DATA SHEET # SE-DET

				c	ALIBRATION	I VI	ERIFICA	TION				
Refer	ence Blo	ck:		B1	Refere	nce	Block	S/N:	103939	B	lock Temp:	70° F
Them	nometer	S/N:	-	105509	Coupla	int:		,,,,,,, _	Ul	traç	gel	
	itial Vari ation an			s per Appendi 2:	x A, Figures	A1·	-3 throu	gh A1-1	4, Sensitiv	ity	/Timebase	
UT Se	ssions:	T		lni	aySE-DET-A	x-C	alver / In	laySE-[DET-Circ-Ca	alve	er	_
				Cali	bration Veri	fica	tion – B	aseline	· _ · · · · · · · · · · · · · · · · · ·			
Wire #s	Wire Color	RF Chai (P/F	nnel	Probe S/N	Reflect ID	or	Amp (%FSF				Noise (dB or dB + %FSH)	Depth Position (in)
1-2	Blk	1		01PW71	1" Radius		80		6.5	*****	58	.664
1-2	Blk	2	?	01PW72	1" Radii	us	80		7.0		56.5	.673
1-2	Blk	4		01PW73	1" Radio	us	80		6.5		57	.779
1-2	Blk	Bik 5 01PW74 1*		1" Radii	us 80			6.5		53	.779	
				Cali	bration Veri	fica	tion – T	ransfer				
Wire #s	Wire Color	RP Chai (P/R	nnel	Probe S/N	Reflector ID		Amp. %FSH)	Gain (dB)	Noise (dB or dB + %FSH)	Depth Position (in)		EPP Sled Position
1-2	W	1		01PW71	1" Radius		81	7.0	56		.664	D1
3-4	W	2		01PW72	1" Radius		78	7.0	57		.664	D2
5-6	Ŵ	4		01PW73	1" Radius		79	6.0	58		.782	D3
7-8	W	5		01PW74	1" Radius		82	6.5	51		.774	D4
1											1	

SENSITIVITY CALIBRATION DATA SHEET # SE-Size-Circ

Utility:	Wesdy	ne	P	lant:	Unit:	Outage:	
Procedu	re No:	PSI-ISI-254	-SE		Procedur	e Rev. No.:	2
Applicat	le Weld	Numbers:					
Applicat		AGON UT Se	ssion(s):	Inlay SE-Siz	e-Circ		

PARAGON Operator Signature:	Dal Nelson	Date:	11-30-07
UT Examiner Signature:	Dal Nelson	Date:	11-30-07

	EQUIP		ORMATIC	ON			
PARAGON SAP #: 104591	[RPR \$	SAP #:	104592		
PARAGON Acq. Software R	elease No:	3.5.0 Proto 2		GON Ana se No:	I. Software	6.3.0	
Calibration/Inspection Cab	le Types		Cable Le	ength (ft.)		No of Intermediate	
	Γ	Calibr	ation	Insp	ection		
	Cable #1	Cable #2	Cable #3	Cable #4	Connectors		
UT Probes to Underwater Con	nnector	150'		150'	150'		
Underwater Connector to RPI	R	48"		48"	48"		
RPR to Remote CPU		40"		40"	40"		
UT Profile Probe Extension	N/A	N/A		11			
	Color	Blk		White	Black		

	UT PROBE INFORMATION										
Make	Serial Number	Mode	Measured Sound Beam Exit Point (In.)	Measured Angle (deg)	Center Freq (MHz)	Bandwidth (%)	No of Elements	Element Shape	Element Size (mm)	Focal Sound Path (mm)	Contour (mm)
КВ	01PWPV	L	0	45	1.89	58	2	REC	8.6x15.2 (2)mm	30	N/A
KB	01PWPT	L	0	45	1.89	58	2	REC	8.6x15.2 (2)mm	30	N/A
KB	01R157	L	0	60	1.95	62	2	REC	7.6x14.2 (2)mm	20	N/A
KB	01R158	L	0	60	1.95	62	2	REC	7.6x14.2 (2)mm	20	N/A
КВ	01PW9D	L	0	37	1.07	37	2	REC	16x29.2 (2)mm	80	736.6
КВ	01PW9F	L	0	37	1.07	37	2	REC	16x29.2 (2)mm	80	736.6
				-							

SENSITIVITY CALIBRATION DATA SHEET # SE-Size-Circ

				UTS	ENSITI		EBASE (CALIBRA	TION			
Calibr	ation Blo	ock:		Navship		Calibra	tion Blo	ck S/N:	103155	Blo	ck Temp:	70° F
Them	ometer	S/N:			Coupla	Couplant: Der			ial Variable Settings per dix A, Figures A1-3 through			L
Wire #	Wire Color	Cha	PR nnei R #)	Probe S	B/N	Probe Angle (deg)	Buffei Bias	I.D.	Hole Amp %FSH	Gain (dB)	Exam. Gain (dB)	Measured Depth (in)
1	Blk	1	1	01PWPV		45	57	D	80	21.5	31.5	0.98
2	Blk							В	80+3.5			0.49
1	Blk	2	2 01PWP		PT 45		57	D	80	21.5	31.5	0.98
2	Bik							В	80+4.5			0.50
1	Blk	3	3 01R157		7 60		58	В	80	27.5	37.5	0.49
2	Bik							D	30		_	1.0
1	Blk	4	4 01R15		60 60		58	В	80	26	36	0.40
2	Bik							D	27			1.0
1	Bik	Ę	5	01PW9	01PW9D		66	В	80	24	32	2.49
2	Blk							F	94			1.45
1	Blk	6	3	01PW	95	37	66	В	80	24	32	2.49
2	Blk	<u></u>						F	80			1.48
					······							, 214, 3 mm, ,

SENSITIVITY CALIBRATION DATA SHEET # SE-Size-Circ

				U	ALI	BRATION		ERIFICA					
Refer	ence Blo	ck:		B1				Block S	/N:	103939		lock Temp:	70° F
	nometer			105509		Coupla					trag	-	
	itial Vari ation an			s per Appendi 2:	х А,	Figures /	A1-	-3 throug	h A1-'	14, Sensitiv	ity.	/Timebase	
UT Se	ssions:					Inla	ayS	E-Size-C	irc-Cal	ver			
				Cal	ibra	tion Verif	ica	tion – Ba	seline)		n yilliyili da kafadan ku aka	a.
Wire #s	Wire Color	RP Char (P/R	nel	Probe S/N		Reflecto ID)r	Amp. (%FSH)	Gain (dB)		Noise (dB or dB + %FSH)	Depth Position (in)
1-2	Bik	1		01PWPV		1" Radiu	IS	80		4.0		62	0.709
1-2	Blk	2		01PWPT		1" Radiu		80		6.0		64	0.709
1-2	Bik	3		01R157		1" Radiu		80		9.0		70	0.515
1-2	Blk	4		01R158		1° Radiu	IS	80		10.0		70	0.515
1-2	Blk	5		01PW9D		2" Radiu	IS	82		4.5		40	1.62
1-2	Bik	6		01PW9F		2" Radiu	S	80		5.5		39	1.62
				Cal	ibra	tion Verif	ica	tion - Tr	ansfer				
Wire	Wire	RP	R	Probe S/N		eflector		Amp.	Gain	Noise	r	Depth	EPP Sled
#s	Color	Char (P/R	Inel			ID		%FSH)	(dB)	(dB or dB + %FSH)		osition (in)	Position
1-2	Blk	1		01PWPV		' Radius		81	4.5	64		0.709	S1
1-2	w	2		01PWPT	1'	'Radius		78	6.0	63		0.711	S2
3-4	Blk	3		01R157		' Radius		80	8.5	68		0.519	S3
3-4	W	4		01R158	1'	Radius		81	10.5	71		0.515	S4
5-6	Blk	5		01PW9D	2'	' Radius		84	5.0	42		1.64	S5
5-6	W	6		01PW9F	2'	Radius		81	5.0	40		1.62	S6
		0		Verification ()									

InlaySE-Size-Ax SENSITIVITY CALIBRATION DATA SHEET

	Wesdyne		Plant:	Unit:	Outage:	
Procedure No:	PDI-ISI-	254-SE		Procedu	re Rev. No.:	2
Applicable Wel	d Numbers:					
Applicable PAR	AGON UT Sessi	on(s):	InlaySE-Size	e-Ax		

PARAGON Operator Signature:	Dal Nelson	Date:	12-1-07
UT Examiner Signature:	Dal Nelson	Date:	12-1-07

	EQUIP	MENT INF	ORMATI	ON					
PARAGON SAP #:	104591		RPR	SAP #:					
PARAGON Acq. Softwa	are Release No:	3.5.0 Proto	1	AGON AI ase No:	nal. Softw	/are	6.3.0		
Calibration/Inspect	tion Cable Types	pes Cable Length (ft.)							
		Calibr	ation	Inspec	ction/ cal	Cable	Intermediate Connectors		
		Cable #1	Cable #2	Cable #3	Cable #4	Cable #5	Connectors		
UT Probes to Underwate	er Connector	150'	N/A	150'	150'	150'	0		
Underwater Connector to	o RPR	48"	N/A	48'	48	48"	0		
RPR to Remote CPU		40"	N/A	40"	40"	40"	0		
UT Profile Probe Extens	ion	N/A	N/A	N/A	N/A	6*	0		
<u></u>	Color	BLK	N/A	RED	WHITE	BLUE			

Make	Serial Number	Mode	Measured Sound Beam Exit Point (in.)	Messured Angle (deg)	Center Freq (MHz)	Bandwidth (%)	No of Elements	Element Shape	Element Size (mm)	Focal Sound Path (mm)	Contour (mm)				
КВ	01PWPR	L	0.0	45	1.89	58	2	Rect.	8.6 X 15.2	30mm	N/A				
КВ	01PWPW	L	0.0	45	1.89	58	2	Rect.	8.6 X 15.2	30mm	N/A				
КВ	01R154	L	0.0	60	1.95	62	2	Rect.	7.6 X 14.2	20mm	N/A				
КВ	01R155	L	0.0	60	1.95	62	2	Rect.	7.6 X 14.2	20mm	N/A				
КВ	01PYD0	L	0.0	45	1.46	66	2	Rect.	16 X 28.5	80mm	736mm				
КВ	01PYD1	L	0.0	45	1.46	66	2	Rect.	16 X 28.5	80mm	736mm				
KB	01PW9H	L	0.0	37	1.04	58	2	Rect.	16 X 29.2	80mm	737.6mm				
КВ	10PW9J	L	0.0	37	1.04	58	2	Rect.	16 X 29.2	80mm	737.6mm				
КВ	01PHLH	L	0.0	0	4.88	50	2	Rnd	.25*	.625*	Profile				

Page of

SENSITIVITY CALIBRATION DATA SHEET # InlaySE-Size-Ax

				UT S	ENSITI	/ITY/T	IME	BASE C	CALIBRA	TION			
Calib	ration Bl	ock:		NAVSHIP)	Cali	brati	on Blo	ck S/N:	103933 Block Temp:			70° F
Thern	nometer	S/N:	1	05509	Coupl	ant:	DE	MIN		al Variabl lix A, Figu 1 A1-14;			YES
Wire #	Wire Color	RP Char (P/R	n nei	Probe S	S/N	Prol Ang (deg	le	Buffer Bias	Hole I.D.	Hole Amp %FSH	Gain (dB)	Exam. Gain (dB)	Measured Depth (in)
1	BLK	1		01PWF	°R	45		55	D	80	22	32	0.98
2	BLK								В	80 +4			0.49
1	BLK	2		01PWP	w	45		56	D	80	22	32	0.98
2	BLK								В	80 +2.5			0.49
1	BLK	3		01R15	4	60		57	Α	80	26	36	1.0
2	BLK								В	36			0.51
1	BLK	4		01R15	5	60		54	A	80	24.5	34.5	1.0
2	BLK								В	33			0.51
1	BLK	5		01PYD	0	45		60	В	80	27	27	2.29
2	BLK								F	93			1.49
1	BLK	6		01PYD	1	45		60	В	80	27.5	27.5	2.40
2	BLK								F	98			1.50
1	BLK	7		01PW9	н	37		63	В	80	25	33	2.48
2	BLK								F	99			1.50
1	BLK	8		01PW9	Ŋ	37		61	В	80	24.5	32.5	2.48
2	BLK								F	99			1.49
1	BLK	9		01PHL	н	0		179	ID	100	6	6	0
2	BLK		}										

Form 12.1 PDI-ISI-254-SE. Rev. 2

SENSITIVITY CALIBRATION DATA SHEET #

InlaySE-Size-Ax

Refere	nce Bloc	:k :	ROMPAS	Re	ference	Block S/	N:	103939	Temp:	70°F
Thermo	ometer S	5/N:	105509	Co	ouplant:	:		ι	Jitragel	
		ble Setting Para. 6.5.2	s per Appendix :	A, Figu	res A1-:	3 through	A1-14	l, Sensit	ivity/Timebase	N/A
UT Sea	sions:	InlaySE-S	ize-Ax-Calver							
			Calib			ion - Base	eline			
Wire #s	Wire Color	RPR Channel (P/R #)	Probe S/N	Re	flector ID	Amp. (%FSH)		Bain dB)	Noise (dB or dB + %FSH)	Depth Position (in)
1+2	BLK	1	01PWPR	1"R	adius	80		4.5	64	0.706
1+2	BLK	2	01PWPW	1"R	adius	80		5.0	63	0.719
1+2	BLK	3	01R154	1 ' R	adius	80		7.0	70	0.508
1+2	BLK	4	01R 155	1"R	adius	. 80		6.5	68	0.517
1+2	BLK	5	01PYD0	2"R	adius	80	1	9.0	56	1.41
1+2	BLK	6	01PYD1	2"R	adius	78		8.0	62	1.41
1+2	BLK	7	01PW9H	2"R	adius	78		4.5	49	1.64
1+2	BLK	8	01PW9J	2"R	adius	82		3.5	39	1.64
			Calib	ration V	erificati	ion – Tran	efor			
Wire	Wire	RPR	Probe S/N	Refle			Gain	Noise	e Depth	EPP Slee
#8	Color	Chann el (P/R #)		ID	(%FSH)	(dB)	(dB o dB + %FSH	r Position (in)	Position
1-2	W	1	01PWPR	1'Radi		81	5.0	62	0.712	A1
3-4	W	2	01PWPW	1"Radi		79	5.0	64	0.720	A2
1-2	Blk	3	01R154	1'Radi		80	6.5	70	0.510	A3
3-4	Blk	4	01R155	1"Radi		81	7.0	66	0.520	A4
5-6	W	5	01PYD0	2"Radi		80	8.5	58	1.42	A5
7-8	W	6	01PYD1	2"Radi	us	80	8.0	61	1.42	A6
5-6	Blk	7	01PW9H	2"Radi		79	5.0	50	1.66	A7
7-8	Bik	8	01PW9J	2"Radi	us	81	4.0	40	1.64	A8

ł

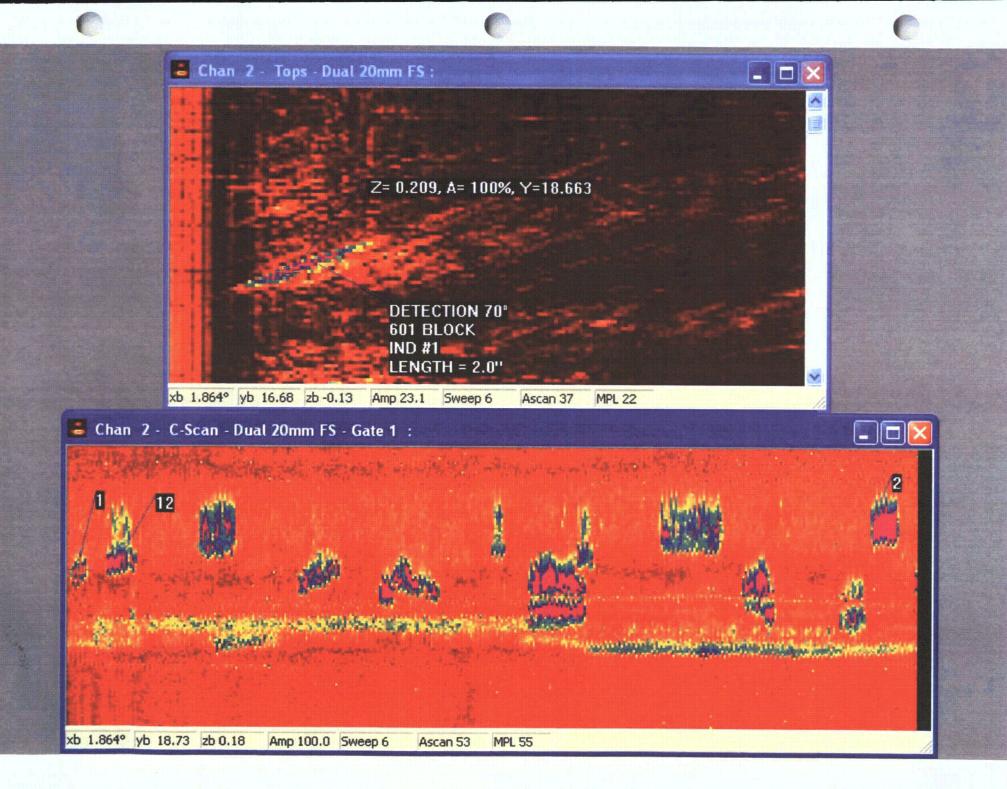
SENSITIVITY CALIBRATION DATA SHEET #

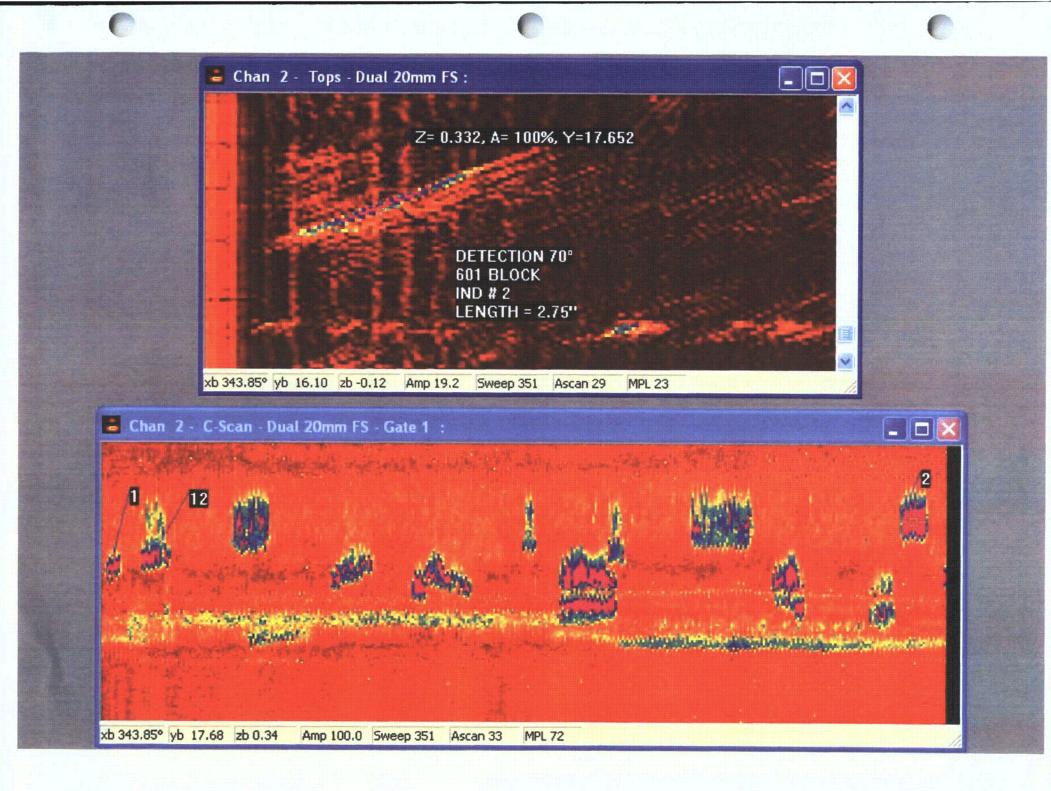
InlaySE-Size-Ax

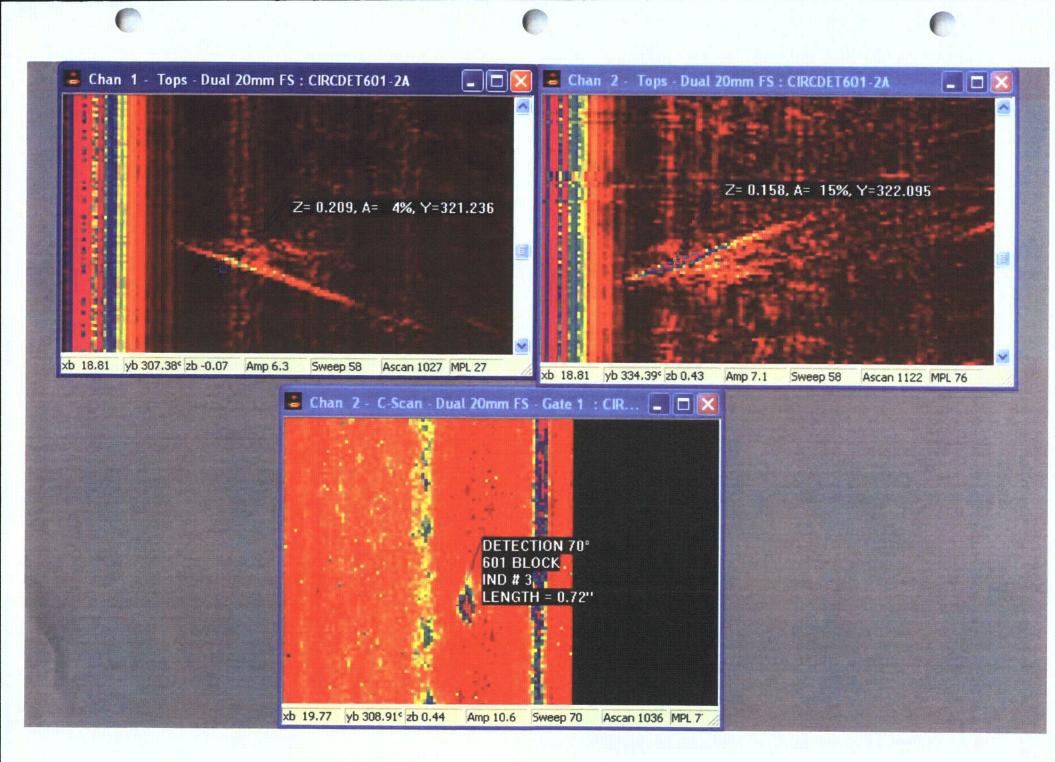
			SYSTEM	CHARACTERI	ZATION			
Block	Type:	SECON	DARY STD.	Block S/N:		NA	Block Temp:	87°F
Cou	plant:	DEMIN	WATER	A1-3 throug and Para. 6.	h A1-14, Se	ings per Append ensitivity/Timeba	ix A, Figures se Calibration	YES
UT Ses	sion:	· · · · · · · · · · · · · · · · · · ·		AxSy	/sChar			
		Sj	stem Characteriz	zation - Initial	05/20/07	1120		
Wire #s	Wire Color	RPR Channel (P/R #)	Probe S/N	Reflector ID	Amp.(% FSH)	Gain (dB)	Depth Po (In)	sition
1-2	White	1	014PMD	SLOT	79	25.5	1.124	ļ
5-6	Red	2	014PMF	SLOT	78	28.5	1.124	I
3-4	White	3	01DJ1D	SLOT	82	5.5	0.834	1
3-4	Red	4	01DJJK	SLOT	78	12.5	0.853)
5-6	White	5	012KWF	SLOT	82	18.5	1.04	
7-8	Red	6	012KWC	SLOT	80	17.0	1.04	
5-6	Biue	7	00WXDH	SLOT	80	16.0	0.91	
1-2	Blue	8	00WXDF	SLOT	78	14.5	0.93	
1-2	Red	9	00W97X	SLOT	82	24.5	1.16	
3-4	Blue	10	00W97W	SLOT	81	14.0	1.16	
	<u></u>	I	System Ch	aracterization -	- Interim*		L	
Wire #s	Wire Color	RPR Channel (P/R #)	Probe S/N	Reflector	Amp.(% FSH)	Gain (dB)	Depth Po (In)	sition
		S	ystem Characteria	zation Final	05/21/07	1831		
Wire #s	Wire Color	RPR Channel (P/R #)	Probe S/N	Reflector ID	Amp.(% FSH)	Gain (dB)	Depth Po (In)	sition
1-2	White	1	014PMD	SLOT	79	25.5	1.124	
5-6	Red	2	014PMF	SLOT	78	28.5	1.124	•
3-4	White	3	01DJ1D	SLOT	82	5.5	0.834	ļ
3-4	Red	4	01DJJK	SLOT	78	12.5	0.853	
5-6	White	5	012KWF	SLOT	82	18.5	1.04	
7-8	Red	6	012KWC	SLOT	80	17.0	1.04	
5-6	Biue	7	00WXDH	SLOT	80	16.0	0.91	
1-2	Blue	8	00WXDF	SLOT	78	14.5	0.93	
1-2	Red	9	00W97X	SLOT	82	24.5	1.16	

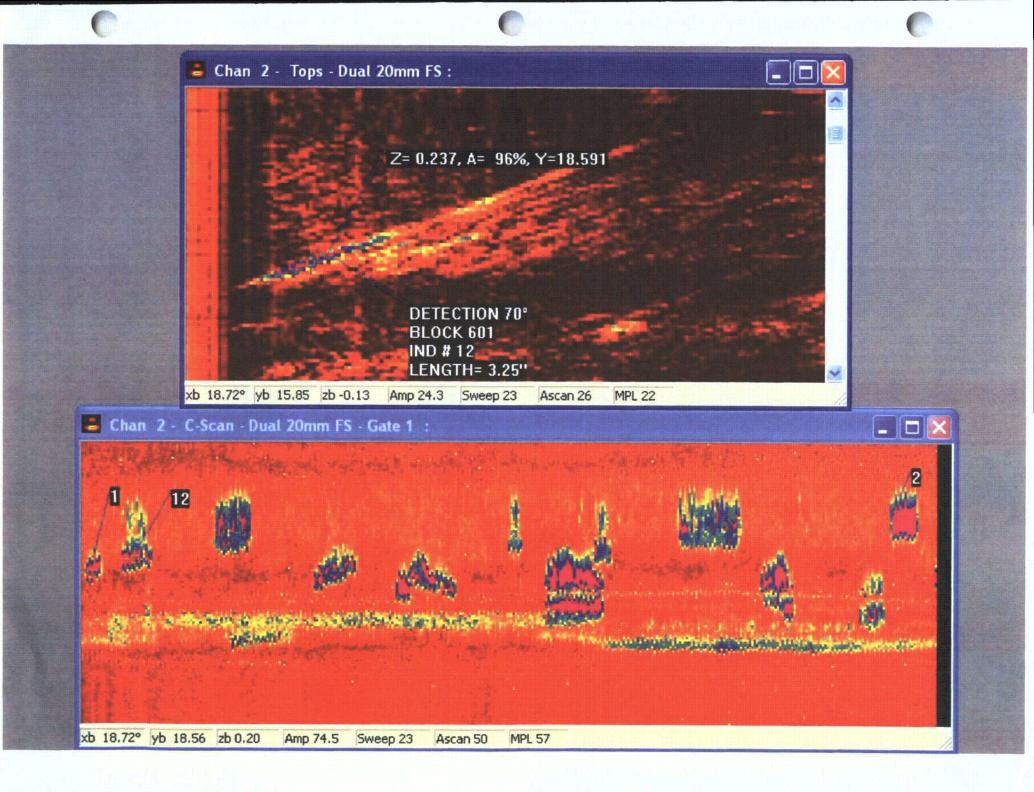
Form 12.1 PDI-ISI-254-SE. Rev. 2

SENSITIVITY CALIBRATION DATA SHEET # InlaySE-Size-Ax

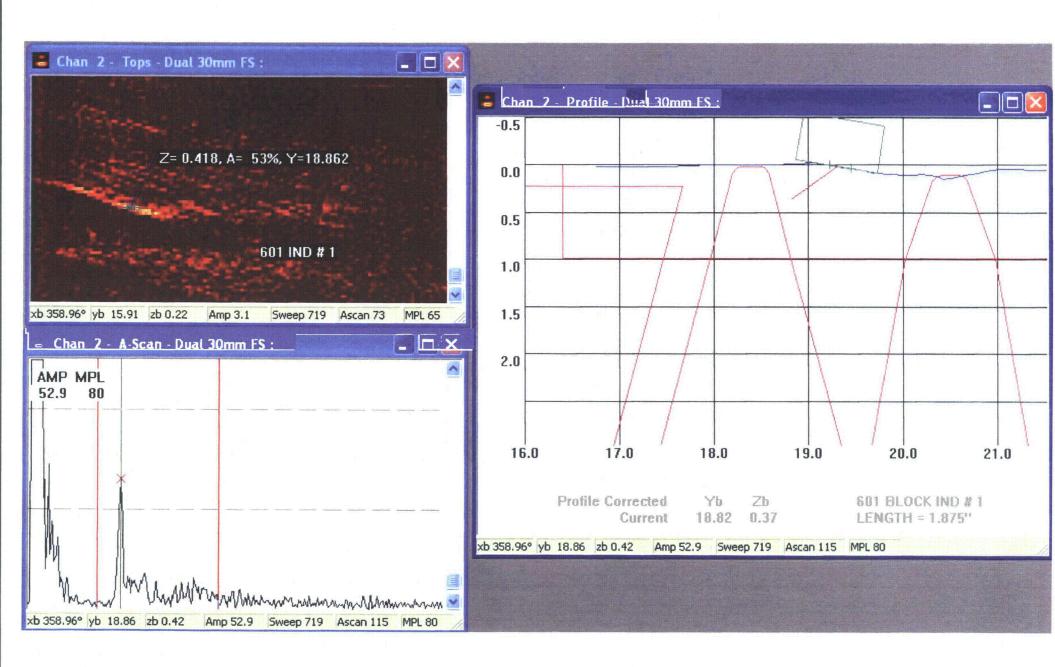

3-4	Blue	10	00W97W	SLOT	81	14.0	1.16
	• -	adding additional 'In	terim' checks to this fo	orm is permissible	ə.		

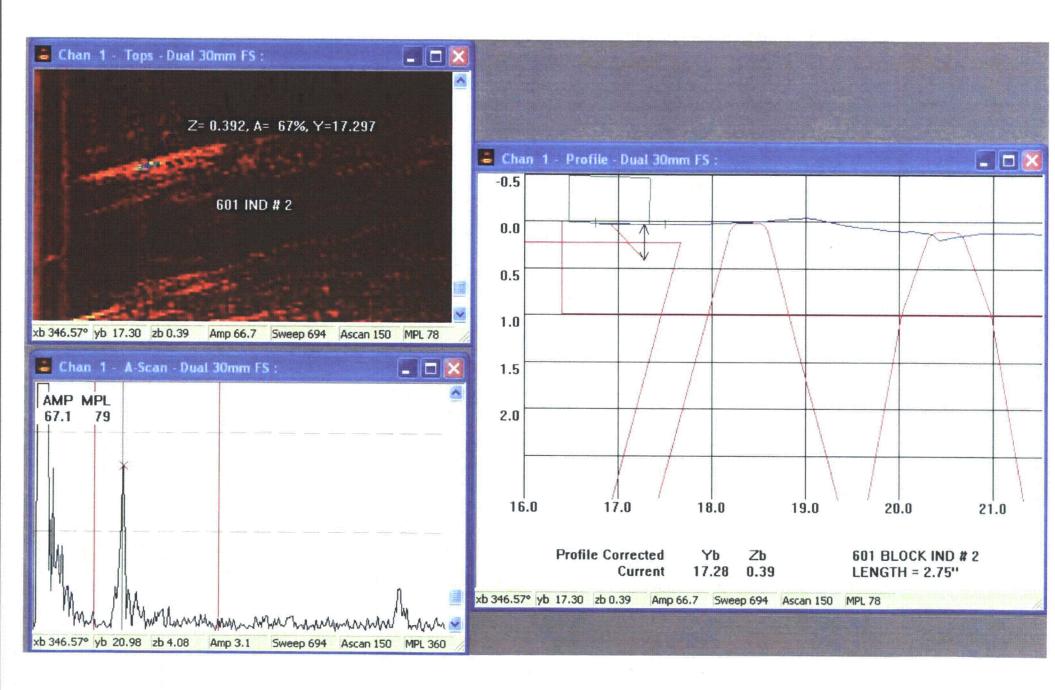

Form 12.1 PDI-ISI-254-SE. Rev. 2

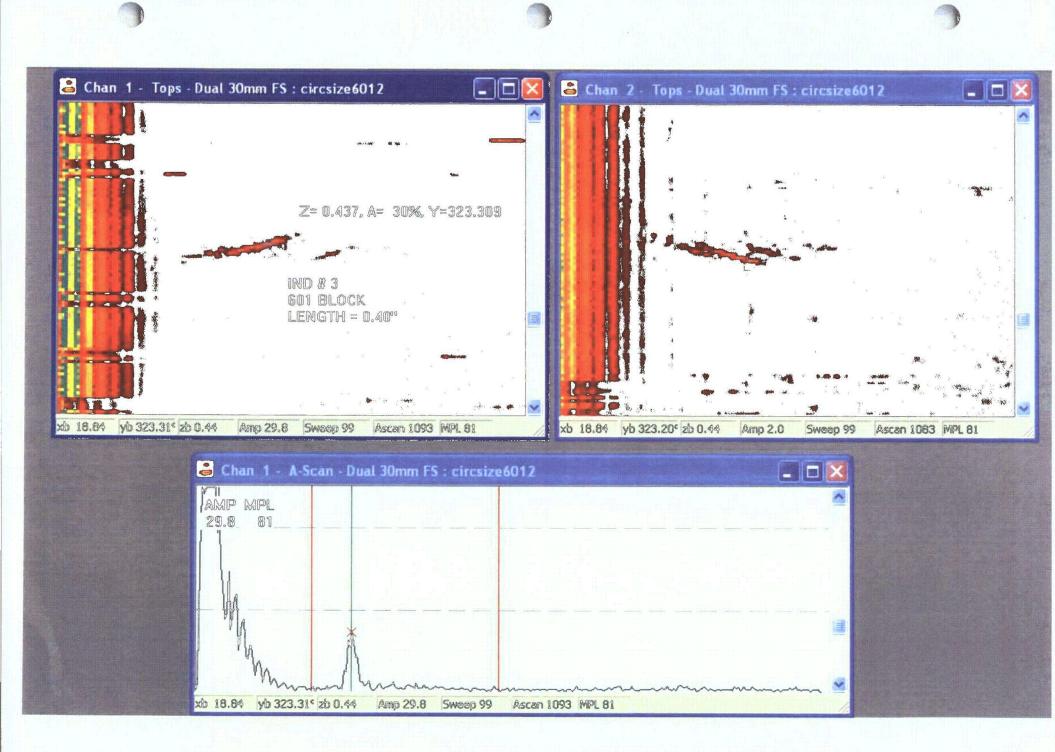

ATTACHMENT 2:

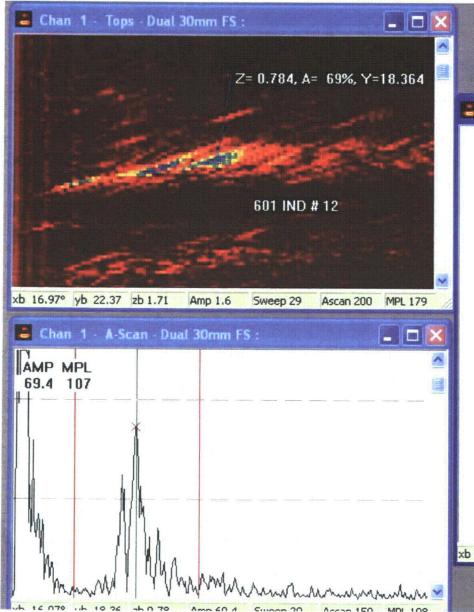

Block 601 UT 70° Detection Results

			SSMENT			PLANT PROCED COMPON ANALYS	OURE NENT	DI Suppler PDI -ISI-29 601 Detec		- -		
FILE NAME	INDICATION NO.	BEAM ANGLE	BEAM DIRECTION in, out, cw, ccw	MIN SWP#	MAX SWP #	TOTAL# SWPS	NIM 8X	XB MAX	CENTER LINE= XB MIN + XB MAX / 2	AVERAGE YB (average of two consecutive sweeps) for in out scan = distance from cl of vessel for cw ccw scan = theta	LENGTH PER PROCEDURE(L) (inches) (number of sweeps X increment value)	TOTAL THROUGH WALL BOTTOM TIP ZB (corrected from profilometry view)
AxDet-601-2	1.	70	IN/OUT	2	9	8	357.90°	4.84°	1.37°	18.80"	2.00"	detection onl
AxDet-601-2	2	70	IN/OUT	346	357	12	338.90°	349.80°	344.35°	17.55"	3.00"	detection on
CIRCDET601	3	70	cw/ccw	53	61	9	18.41"	19.05°	18.73"	322.00°	0.72"	detection onl
AxDet-601-2	12	70	IN/OUT	18	30	13	13.76°	25.65°	19.71°	18.50"	3.25"	detection on
1.11 <u>2</u>												

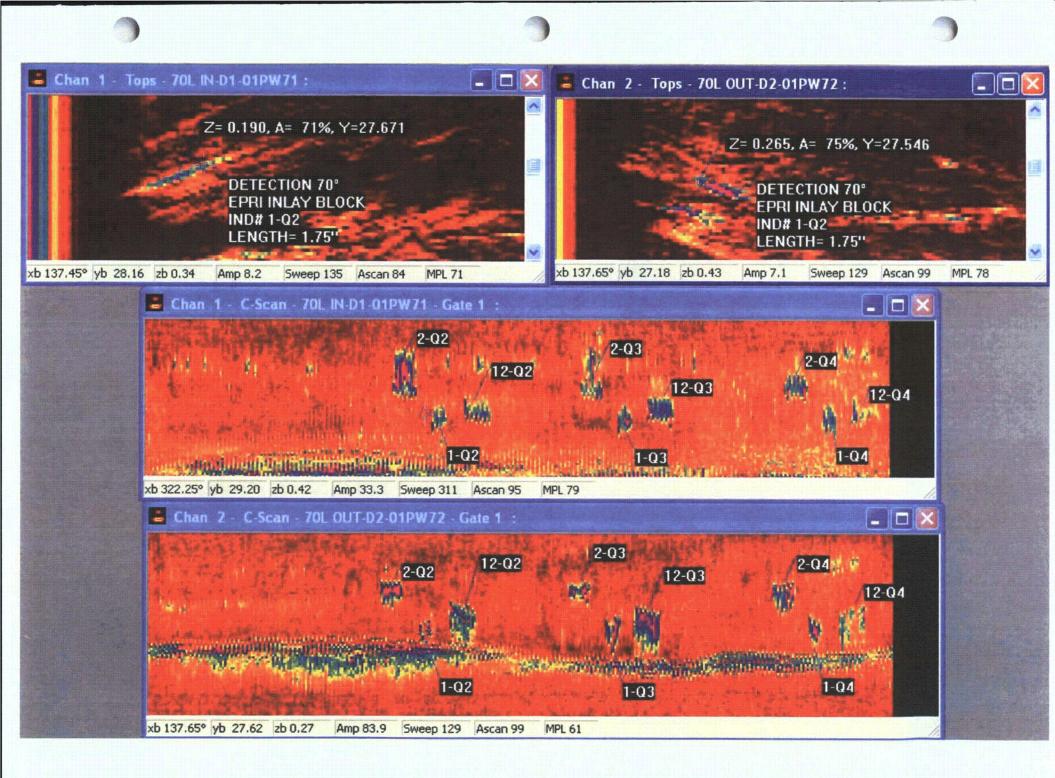


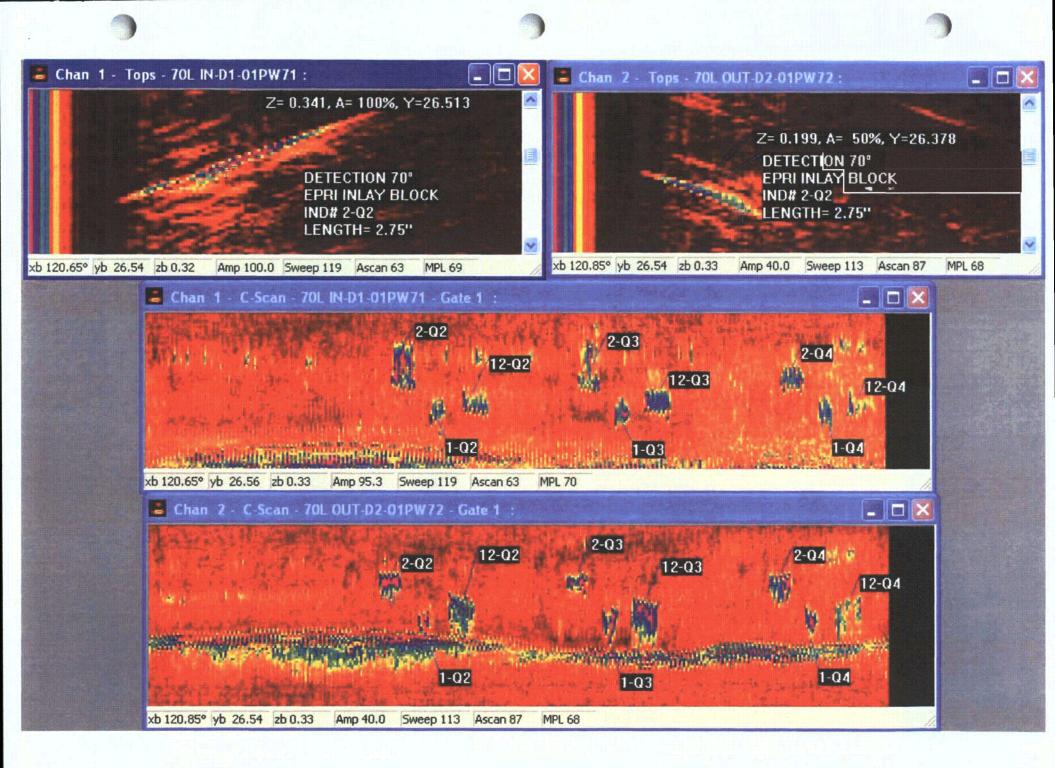


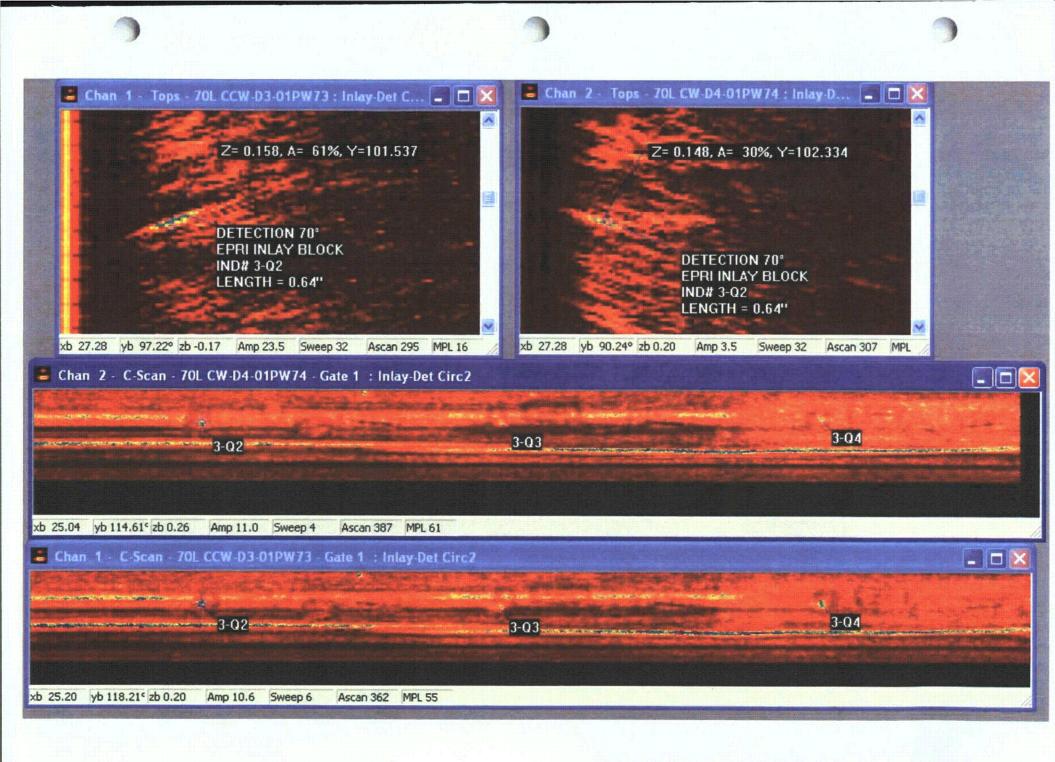

ATTACHMENT 3:

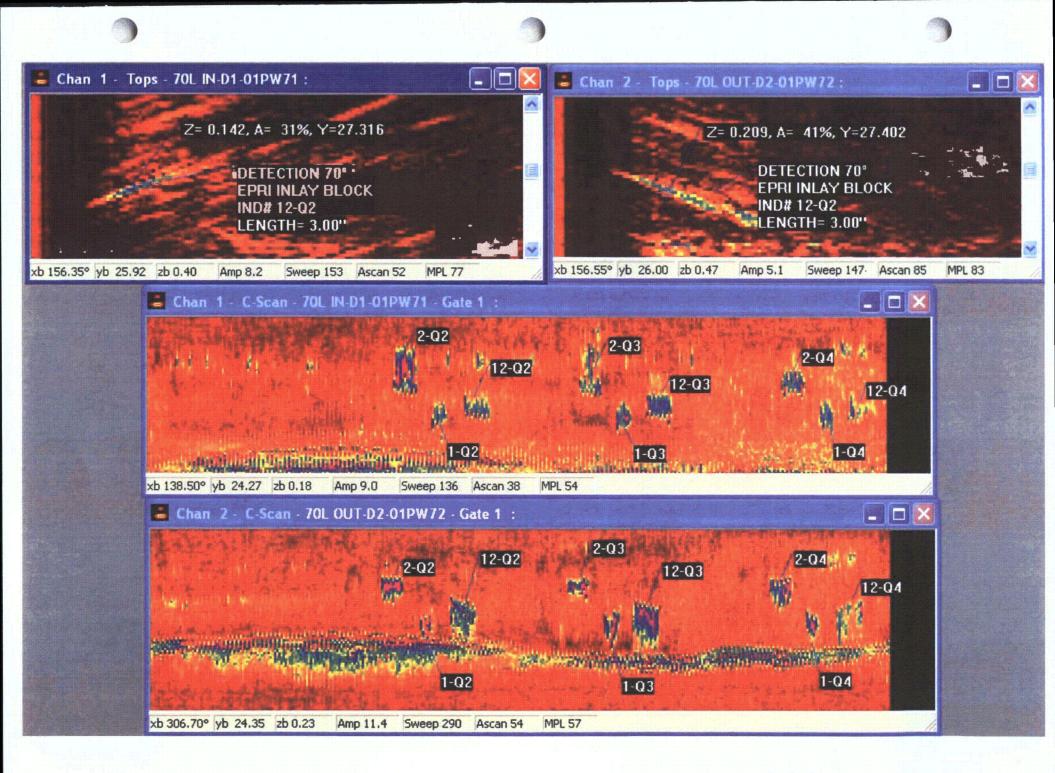

Block 601 UT Sizing Results

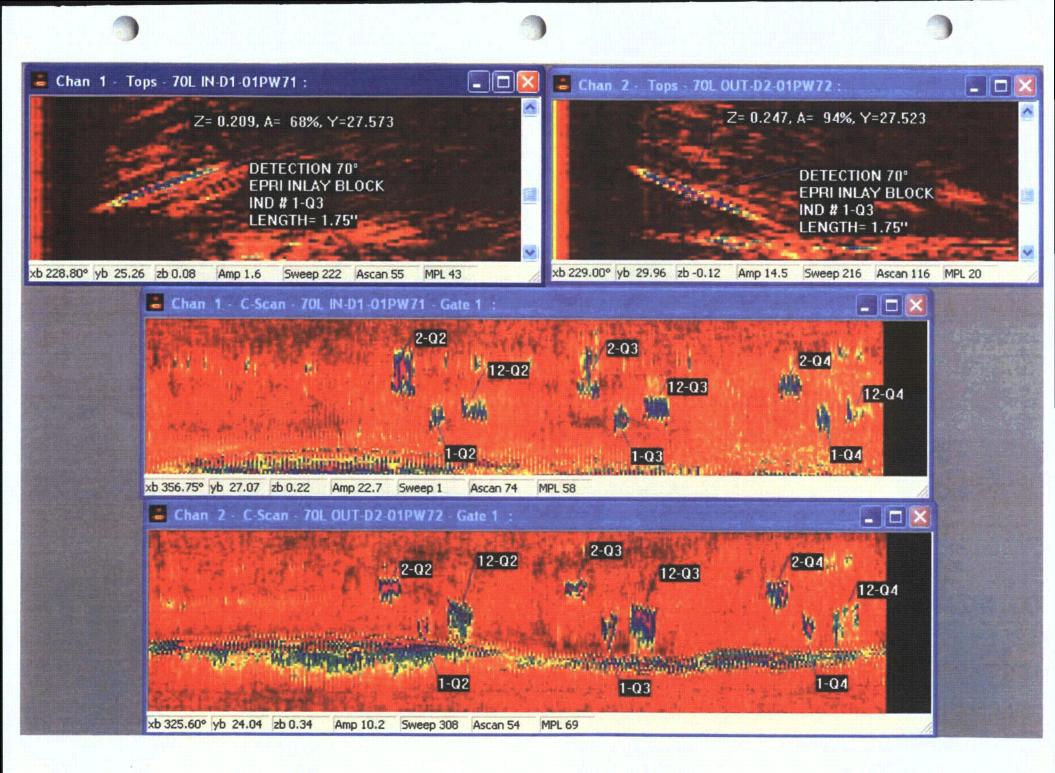
			SSMENT			PROCEDURE COMPONENT ANALYST		DI Suppler PDI -ISI-25 601 Sizing	54-SE Re	v. 2		
FILE NAME	INDICATION NO.	BEAM ANGLE	BEAM/ DIRECTION in, out, cw, ccw	#dMS NIW	MAX SWP #	TOTAL# SWPS	XB MIN	XB MAX	CENTER LINE= XB MIN + XB MAX / 2	AVERAGE YB (average of two consecutive sweeps) for in out scan = distance from cl of vessel for cw ccw scan = theta	LENGTH PER PROCEDURE(L) (inches) (number of sweeps X increment value)	TOTAL THROUGH WALL BOTTOM TIP ZB (corrected from profilometry view)
axsize601-pro	1	45	IN/OUT	715	3	15	356.98°	4.08°	0.53°	18.70"	1.875"	0.37"
axsize601-pro	2	45	IN/OUT	676	697	22	337.65°	348.06°	342.86°	17.35"	2.75"	0.39"
circsize6012	3	45	cw/ccw	96	100	5	18.60"	18.92"	18.76″	322.70°	0.40"	0.44"
axsize601-pro	12	45	IN/OUT	18	43	26	11.52°	23.91°	17.71°	18.20"	3.25"	0.79"
				-								
									•			




ATTACHMENT 4:


Inlay Block UT 70° Detection Results


			SSMENT			PLANT PE PROCEDURE COMPONENT ANALYST		DI Supplen PDI -ISI-29 Inlay Test	tion 5 7	- -		
FILE NAME	INDICATION NO.	BEAM ANGLE	BEAM/ DIRECTION in, out, cw, ccw	#dMS NIW	MAX SWP #	TOTAL# SWPS	NIM 8X	XB MAX	CENTER LINE= XB MIN + XB MAX / 2	AVERAGE YB (average of two consecutive sweeps) for in out scan = distance from cl of vessel for cw ccw scan = theta	LENGTH PER PROCEDURE(L) (inches) (number of sweeps X increment value)	TOTAL THROUGH WALL BOTTOM TIP ZB (corrected from profilometry view)
Inlay-Det-Ax2	1-Q2	70	IN/OUT	133	139	7	135.35°	141.65°	138.5°	27.60"	1.75"	detection only
Inlay-Det-Ax2	2-Q2	70	IN/OUT	115	125	11	116.45°	126.95°	121.70°	26.40"	2.75"	detection only
Inlay-Det-Circ2	3-Q2	70	cw/ccw	29	36	8	27.04"	27.6"	27.32"	101.70°	0.64"	detection only
Inlay-Det-Ax2	12-Q2	70	IN/OUT	148	159	12	151.10°	162.65°	156.88°	27.30"	3.00"	detection only
Inlay-Det-Ax2	1-Q3	70	IN/OUT	219	225	7	225.65°	231.95°	228.8°	27.60"	1.75"	detection only
Inlay-Det-Ax2	2-Q3	70	IN/OUT	194	204	11	205.90°	216.4°	211.15°	26.40"	2.75"	detection only
Inlay-Det-Circ2	3-Q3	70	cw/ccw	31	38	8	27.20"	27.76"	27.48"	193.5° ·	0.64"	detection only
Inlay-Det-Ax2	12-Q3	70	IN/OUT	225	236	12	. 238.45°	250°	244.23°	27.30"	3.00"	detection only
Inlay-Det-Ax2	1-Q4	70	IN/OUT	313	319	7	.323.35°	330.65°	327.0°	27.60"	1.75"	detection only
Inlay-Det-Ax2	2-Q4	70	IN/OUT	289	299	11	305.65°	316.16°	310.9°	26.40"	2.75"	detection only
Inlay-Det-Circ2	3-Q4	70	cwiccw	27	35	9	26.88"	27.52"	27.20"	293°	0.72"	detection only
Inlay-Det-Ax2	12-Q4	70	IN/OUT	320	331	12	338.2°	349.75°	343.98°	27.30"	3.00"	detection only


ſ

