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is densely welded at Tram Ridge (Fridrich and others, 1999). 
It is locally exposed and also encountered in boreholes in 
the Crater Flat and Yucca Mountain areas (Carr, Byers, and 
Orkild, 1986). Regionally, the Tram Tuff extends as far west as 
the Grapevine Mountains and east beneath Jackass Flats (Carr, 
Byers, and Orkild, 1986). Hydrogeologic zones for the CFTA 
are mapped in figure B–22.

Belted Range Unit (BRU)

Rocks of the Belted Range Group constitute the Belted 
Range unit (BRU). The Belted Range Group is composed of 
the 13.7-Ma Grouse Canyon Tuff and associated pre-caldera 
lava flows and post-caldera lavas and tuffs of the Dead Horse 
Flat Formation (Sawyer and others, 1994). Belted Range 
Group rocks are interpreted to have erupted between 13.85 Ma 
and 13.5 Ma from the Grouse Canyon caldera, now buried in 
the SCCC. Syn- and post-collapse volcanic-rock units thicken 
toward the eastern margin of the caldera, on the basis of bore-
hole data and gravity inversion analysis (Ferguson and others, 
1994; Hildenbrand and others, 1999). Thick post-caldera 
rhyolitic lavas of the Dead Horse Flat Formation accumulated 
in the eastern and northeastern parts of the caldera (Laczniak 
and others, 1996, plate 4; McKee and others, 1999). Belted 
Range Group rocks are not present in the southern parts of the 
SWNVF, including Yucca Mountain.

Aquifers in the BRU include both thick post-caldera 
rhyolitic lavas of the Dead Horse Flat Formation and welded 
Grouse Canyon Tuff. The lavas are highly fractured and form 
the principal aquifer unit on the eastern part of Pahute Mesa 
(Blankennagel and Weir, 1973; Prothro and Drellack, 1997; 
Laczniak and others, 1996, plate 4). The 50-percent brittle 
rock area (fig. B–23) incorporates all of the thick intracaldera 
lava flows of the Dead Horse Flat Formation that dominate 
the deeper parts of the eastern one-half of the SCCC, plus 
the thickest welded intervals of Grouse Canyon Tuff that are 
proximal to the SCCC.

Older Volcanic-Rock Unit (OVU)

The older volcanic-rock unit (OVU) consists of 
Oligocene and early Miocene volcanic rocks that consist of ash-
flow tuff, ash-fall tuff, reworked tuff, tuff breccia, lava flows, 
and volcaniclastic rocks. The OVU may be subdivided into two 
general groups: (1) those volcanic rocks in and near, and per-
haps originating from, the SWNVF, and (2) volcanic rocks that 
originated from volcanic centers to the north of the SWNVF. 
Volcanic rocks associated with these two general groups are 
for the most part separated from each other. The older volcanic 
rocks of the NTS (almost entirely within the SWNVF) do not 
extend more than a few tens of kilometers north of the northern 
boundary of the NTS (Slate and others, 2000), whereas older 
volcanic rocks derived from outside the SWNVF are common  
to the north and northeast of the NTS but are known only in 
the extreme northeastern and northern parts of the NTS (Ekren 
and others, 1971; Workman, Menges, Page, Taylor, and others, 
2002).

Oligocene and lower Miocene volcanic rocks north of 
the NTS consist predominantly of partly to densely welded 
ash-flow tuffs that have an aggregate thickness of up to 
several hundred meters over large parts of western Lincoln 
County and central Nye County, Nev. (Ekren and others, 1971; 
Workman, Menges, Page, Taylor, and others, 2002). Region-
ally distributed, welded ash-flow tuffs include the Monotony 
Tuff, the Shingle Pass Tuff, the “Tuffs of Antelope Springs,” 
and the Tuff of White Blotch Springs. Proposed source areas 
for these units are volcanic centers to the north of the SWNVF 
that include known or inferred calderas in the Cactus Range, 
the Kawich Range, the Quinn Canyon Range, and the Mt. 
Helen area (Ekren and others, 1971; Best and others, 1989; 
McKee, 1996; Workman, Menges, Page, Ekren, and others, 
2002).

A locally thick section of 15.5- to 13.8-Ma pre-Belted 
Range Group volcanic rocks is associated with, and perhaps 
originated from, the SWNVF. These units are known from 
limited outcrops at the NTS and from boreholes in Pahute 
Mesa, Yucca and Frenchman Flats, and Yucca Mountain. 
Most of these units do not extend more than a few tens of 
kilometers north of the northern boundary of the NTS. Most 
of the pre-Belted Range Group volcanic-rock units are non-
welded to partly welded, with the exception of the densely 
welded Redrock Valley and Tub Spring Tuffs (Sawyer and 
others, 1995), and the nonwelded tuffs typically are devitrified 
and zeolitically altered (Drellack, 1997; Prothro and others, 
1999).

Because of the large number of volcanic-rock units 
that are included in this HGU, the OVU has widely vary-
ing material properties. The OVU may be subdivided into 
areas of potentially different material and hydrologic proper-
ties on the basis of geography and the presence of calderas 
(fig. B–24). OVU rocks north of the NTS form a series of 
regionally extensive ash-flow tuffs that are locally fractured 
volcanic-rock aquifers throughout a large part of southern 
Nye County (Plume and Carlton, 1988). OVU rocks to the 
north of the NTS can be divided into intracaldera and outflow 
components (fig. B–24), on the basis of caldera boundaries 
shown in Workman, Menges, Page, Ekren, and others (2002). 
This zonation is based on the presence of thick intracaldera 
accumulations of tuff and lavas, regardless of their correlation 
to specific ash-flow sheets.

In most places in the SWNVF, OVU rocks likely act 
as a confining unit because they generally are nonwelded to 
partially welded and zeolitic alteration is widespread (Sawyer 
and others, 1995; Drellack, 1997; Prothro and others, 1999). 
Lava flows and densely welded tuffs in this section can form 
fracture-flow aquifers but are generally too localized or too 
deep in the section to be significant. The OVU is important in 
Yucca and Frenchman Flats, where it separates the overlying 
fractured volcanic-rock aquifers from the underlying regional 
carbonate-rock aquifer. The OVU is saturated in much of the 
central part of Yucca Flat, and measured transmissivities are 
very low (IT Corporation, 1996b).
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Hydrogeologic Units Associated with Mesozoic, 
Paleozoic, and Late Proterozoic Sedimentary 
Rocks

The pre-Cenozoic sedimentary rocks of the DVRFS 
region are grouped into five HGUs: the sedimentary-rock 
confining unit (SCU), the upper carbonate-rock aquifer 
(UCA), the upper clastic-rock confining unit (UCCU), 
the lower carbonate-rock aquifer (LCA), and the lower 
clastic-rock confining unit (LCCU) (table B–2; fig. B–25). 
This usage is similar to that established by Winograd and 
Thordarson (1975), particularly for the vicinity of the NTS.

Sedimentary-Rock Confining Unit (SCU)
The sedimentary-rock confining unit (SCU) consists 

of unmetamorphosed Mesozoic cratonic sedimentary rocks 
in the eastern part of the DVRFS region (fig. B–25) and 
Mesozoic metasedimentary and metavolcanic rocks that are 
sparsely exposed in the western part of the DVRFS region. 
Local exposures of Mesozoic sedimentary rocks as young 
as the Lower Jurassic Aztec Sandstone crop out in the 
Las Vegas, Nev., area. Triassic rocks (Middle(?) and Lower 
Triassic Moenkopi Formation and Upper Triassic Chinle 
Formation) crop out in the Pahrump Valley and Spring 
Mountains area. These units consist of interbedded conglom-
erate, sandstone, siltstone, shale, calcareous shale, limestone, 
and gypsum. Mesozoic metasedimentary and metavolcanic 
rocks are exposed in the extreme southwestern part of the 
DVRFS region in the southern Panamint Mountains and 
Avawatz Mountains.

Hydraulic properties of the SCU vary according to 
grain size and sorting in the different units. Some of these 
rocks are regional aquifers on the Colorado Plateau east of 
the DVRFS region, but most exposures of the SCU either lie 
outside the boundary of the DVRFS region or are too small 
or shallow to have significance in the regional ground-water 
flow system.

Upper Carbonate-Rock Aquifer (UCA)
The upper carbonate-rock aquifer (UCA) includes 

Pennsylvanian and Mississippian limestone, dolomite, and 
calcareous shales in the vicinity of the NTS that are strati-
graphically above the Eleana Formation and Chainman 
Shale (Winograd and Thordarson, 1975; Laczniak and others, 
1996). Where the Eleana Formation and Chainman Shale 
are absent to the southeast of the NTS, the Pennsylvanian 
and Mississippian carbonate rocks are included in the lower 
carbonate-rock aquifer (LCA). The UCA exists primarily  
in the area of Yucca Flat (fig. B–25), where Pennsylvanian 
carbonate rocks are preserved in a syncline at Syncline  
Ridge. In general, the rocks of the UCA are of only local 
importance and are not significant in the regional flow  
system.

Upper Clastic-Rock Confining Unit (UCCU)
The upper clastic-rock confining unit (UCCU) is com-

posed of Upper Devonian through Mississippian synoro-
genic siliciclastic and carbonate rocks including the Eleana 
Formation and the Chainman Shale (Laczniak and others, 
1996). The Eleana Formation is present in parts of the west-
ern and northern part of the DVRFS region and consists of 
up to 2,000 m of siltstone, argillite, sandstone, conglomerate, 
and minor limestone deposited as turbidites and debris flows 
filling the Antler foredeep to the east of the Antler orogenic 
belt (Poole and others, 1961; Nilsen and Stewart, 1980; Poole, 
1981; Trexler and others, 1996). The Eleana Formation grades 
laterally into and is thrust eastward over the 1,200-m-thick 
Mississippian Chainman Shale in Yucca Flat and the northern 
part of Jackass Flats at the NTS (Trexler and others, 1996) 
(fig. B–25).

The Eleana-Chainman section is a locally important 
siliciclastic-rock confining unit in the vicinity of the NTS. 
Steep hydraulic gradients in the area of Yucca Flat are attrib-
uted to the low transmissivity values of the Eleana Forma-
tion (Winograd and Thordarson, 1975; D’Agnese and others, 
1997). Southeast of the NTS in the Spotted Range and in 
the Indian Springs Valley carbonate platform limestones of 
Mississippian age are less than 350 m thick (Poole and others, 
1961; Barnes and others, 1982). In the Cottonwood Mountains 
and the Last Chance Range in the western part of the DVRFS 
region, the Mississippian section is represented by carbon-
ate-dominated units such as the Tin Mountain limestone and 
the Perdido Group (Stevens and others, 1991; 1996). These 
Mississippian carbonate rocks that occur outside of the NTS 
vicinity are not designated as part of the UCCU but instead are 
considered part of the lower carbonate-rock aquifer (LCA).

Lower Carbonate-Rock Aquifer (LCA)

The lower to middle Paleozoic carbonate-rock succession 
forms the major regional carbonate-rock aquifer in the eastern 
two-thirds of the Great Basin (Winograd and Thordarson, 
1975; Bedinger and others, 1989a; Dettinger and others, 1995; 
Harrill and Prudic, 1998). As in previous regional analyses of 
ground-water flow in the southern Great Basin, these carbon-
ate rocks are treated as a single HGU, the lower carbonate-
rock aquifer (LCA) (Winograd and Thordarson, 1975; 
Laczniak and others, 1996).

The Paleozoic carbonate rocks of the LCA are widely dis-
tributed in the eastern part of the DVRFS region (fig. B–25). 
These rocks consist of a Middle Cambrian through Middle 
Devonian carbonate-dominated succession, about 4,500 m 
thick in this region, that includes dolomite, interbedded lime-
stone, and thin but persistent shale, quartzite, and calcareous 
clastic units (Burchfiel, 1964). The lower part of this carbon-
ate-rock section (Lower and Middle Cambrian Carrara Forma-
tion, Middle and Upper Cambrian Bonanza King Formation, 
Upper Cambrian Nopah Formation, Lower and Middle Ordo-
vician Pogonip Group) is exposed in most of the mountain 
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ranges in the central and southern parts of the DVRFS region 
(fig. B–25). In contrast to the Proterozoic siliciclastic rocks, 
thickness variations in this interval are generally small across 
much of the DVRFS region (fig. B–2) (Cornwall, 1972). In the 
northwestern part of the DVRFS region, the Middle Cambrian 
through Middle Devonian rocks are somewhat thicker and 
represent a somewhat deeper-water facies of shale and impure 
carbonate rocks, including the Campito Formation (Cornwall, 
1972; Burchfiel and others, 1982).

Southeast of the NTS, the LCA consists of 
Mississippian and Pennsylvanian carbonate rocks where 
the siliciclastic rocks of the UCCU do not separate the 
Paleozoic carbonate rocks into an upper and lower aquifer. 
The Bird Spring Formation is nearly 2,000 m thick in the 
central part of the Spring Mountains (Langenheim and Larson, 
1973; Burchfiel and others, 1974). In the west and northwest 
parts of the DVRFS region, predominantly carbonate rocks of 
Mississippian, Pennsylvanian, and Permian age are exposed 
in the Grapevine, Cottonwood, and Panamint Mountains 
(Workman, Menges, Page, Taylor, and others, 2002).

The LCA carbonate rocks have an aggregate thickness 
of as much as 8,000 m and are generally the most permeable 
rocks in the DVRFS region (Bedinger and others, 1989b; 
Belcher and others, 2001). Where hydraulically connected, 
they provide a path for interbasinal flow (Dettinger and Schae-
fer, 1996; D’Agnese and others, 1997; Harrill and Prudic, 
1998). Most of the springs in the area are associated with the 
carbonate rocks (Winograd and Thordarson, 1975). Compared 
to flow through secondary openings in the carbonate rocks 
of the LCA, intergranular flow is relatively insignificant. The 
large hydraulic conductivities reported for rocks of this unit 
primarily are because of fractures, faults, and solution chan-
nels (Winograd and Thordarson, 1975). Hydraulic tests of car-
bonate-rock aquifers throughout eastern and southern Nevada 
indicate that faults can increase the carbonate-rock transmis-
sivity by a factor of 25 or more (Dettinger and others, 1995). 
Areas affected by multiple deformational events are inferred to 
have potentially greater secondary fracture permeability.

Eleven hydrogeologic zones are defined for the LCA 
(fig. B–26, table B–6) on the basis of stratigraphic facies, 
inferred continuity of the aquifer, and degree of structural defor-
mation. As with previous maps, mapped zones do not imply the 
existence of each HGU throughout the zone; rather, they are 
a guide to which set of material properties applies where the 
HGU exists in the 3D HFM (Chapter E, this volume).

In the eastern part of the DVRFS region, shelf sequence 
rocks of the central carbonate corridor (Dettinger and others, 
1995) are differentiated from the basinal facies that exist in the 
extreme northwestern part of the region (Zone 9, fig. B–26A 
and table B–6). Outcrops of Paleozoic rocks are extremely 
sparse northwest of the NTS; in this region, the aquifer proper-
ties of the LCA are highly uncertain (Zone 10, fig. B–26A 
and table B–6). Paleozoic carbonate rocks are inferred to be 
absent or highly altered in the vicinity of the calderas of the 
SWNVF and exist only as tectonically dismembered blocks in 
a broad belt through the southern part of Death Valley (Zone 5, 
fig. B–26A and table B–6).

Rocks of the central carbonate corridor are subdivided 
on the basis of the inferred degree of structural disruption 
(fig. B–26B). The magnitude of Cenozoic extension was het-
erogeneous in the DVRFS region; regions of large-magnitude 
extension alternated with areas of lesser extension (Wernicke 
and others, 1984; Wernicke, 1992). Relatively undeformed sta-
ble blocks of the Sheep Range and Spring Mountains occupy 
the eastern part of the DVRFS region (Zone 1, fig. B–26B and 
table B–6). To the west of each of these blocks, the LCA is 
broken into a series of back-rotated, extended range blocks 
in the vicinity of the Desert Range and the Nopah Range 
(Zone 4, fig. B–26B and table B–6). Abundant normal faults in 
these extended blocks may provide potential flow pathways; 
however, structural thinning could limit the available thick-
ness of the carbonate aquifer (Dettinger and Schaefer, 1996). 
East of the NTS is a regional syncline (Zone 3, fig. B–26B and 
table B–6). Increased fracture permeability may exist along 
the axis of this fold. Much of the northeastern and central 
parts of the DVRFS region have been affected by basin-range 
faulting (Zone 8, fig. B–26B and table B–6). The degree of 
deformation and amount of extension in these areas is not as 
high as in the rotated, extended blocks to the southeast. In 
the western part of the DVRFS region, relatively large blocks 
have been displaced by extension and by movement on large 
regional strike-slip faults (Zone 7, fig. B–26B and table B–6). 
These blocks may be isolated from the regional carbonate 
aquifer (Dettinger and Schaefer, 1996) but may be of local 
importance.

Three additional types of deformation that potentially 
increase fracture-related permeability of the LCA are regional 
shear zones, oroflexural bending associated with regional 
strike-slip faults, and the presence of brittle detachments 
(fig. B–26C). In addition to major northwest-striking strike-
slip faults, the Walker Lane belt includes northeast-striking 
shear zones that are transverse to the main trend of the belt 
(Carr, 1984; Stewart, 1988; Stewart and Crowell, 1992). These 
zones (Zone 2, fig. B–26C and table B–6) are characterized 
by subparallel, northeast-striking faults that accommodate 
relatively small amounts of sinistral and normal offset across 
a broad regional zone. Two such zones in the DVRFS region 
are the Spotted Range–Mine Mountain shear zone in the 
southern part of the NTS (Carr, 1984; Stewart, 1988) and 
the Pahranagat shear zone along the eastern boundary of the 
DVRFS region (Jayko, 1990). Broad areas of oroflexural 
bending (Albers, 1967) associated with major northwest-
striking strike-slip faults have been defined by arcuate trends 
in the strike of tilted beds and fold axes (Burchfiel, 1965; 
Guth, 1981; Wernicke and others, 1984) (Zone 6, fig. B–26C 
and table B–6). In the vicinity of the LVVSZ, the clockwise 
bending appears to be related to the dextral slip and represents 
a broad zone of shear accommodated by crushing and local 
vertical axis rotation of blocks on the order of a few kilometers 
in lateral dimension (Nelson and Jones, 1987; Sonder and 
others, 1994). Local zones of potential enhanced permeability 
also are inferred in the upper plates of certain shallow-level, 
low-angle normal faults in the LCA (Zone 11, fig. B–26C and 
table B–6).
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Figure B–26. Hydrogeologic zones in the lower carbonate-rock aquifer (LCA). A, Based on facies and continuity. 
B, Addition of zones based on degree of structural disruption. C, Addition of zones based on deformation that potentially 
increases fracture permeability.—Continued
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Lower Clastic-Rock Confining Unit (LCCU)
The lower clastic-rock confining unit (LCCU) consists 

of Middle Proterozoic to Cambrian siliciclastic rocks and 
subordinate dolomite, and locally, their metamorphic equiva-
lents. Throughout much of the central part of the DVRFS 
region, Late Proterozoic to Lower Cambrian strata consist 
of a westward-thickening wedge of fine- to coarse-grained 
sandstone, conglomeratic sandstone, siltstone, and minor 
amounts of carbonate rock (Stewart, 1970). The stratigraphic 
section includes the Late Proterozoic Johnnie Formation and 
Stirling Quartzite, the Late Proterozoic to Lower Cambrian 
Wood Canyon Formation, the Lower Cambrian Zabriskie 
Quartzite (Stewart, 1970), and the lower one-third of the 
interbedded carbonate and quartzose rocks of the Lower and 
Middle Cambrian Carrara Formation (Palmer and Halley, 
1979). These rocks are exposed in the northwestern part of the 
Spring Mountains where they are about 3,000 m thick (Burch-
fiel, 1964; Stewart, 1970); in the Nopah Range, where the 
interval is up to 3,300 m thick, to the east of the NTS (Barnes 
and Christiansen, 1967; Reso, 1963); and in the Panamint 
Mountains west of Death Valley (Hunt and Mabey, 1966; 
Diehl, 1974; Wright and others, 1974) where they are about 
2,500 m thick; and in the Funeral Mountains (Labotka and 
others, 1980; Wernicke and others, 1986; Wright and Troxel, 
1993).  Strata of equivalent age to the east of the DVRFS 
region are only a few hundred meters thick, mostly Early 
Cambrian, and are similar to the cratonic sections exposed in 
the Grand Canyon (Rowland, 1987; Poole and others, 1992).

Stratigraphically underlying the rocks described above 
are the oldest sedimentary rocks in the DVRFS region, 
which are exposed in a relatively small area of the south-
ern part of the region. These consist of the Middle and Late 
Proterozoic carbonate and siliciclastic rocks of the Pahrump 

Group and the Late Proterozoic Noonday Dolomite. These 
rocks unconformably overlie the Early Proterozoic base-
ment gneiss and intrusive rocks and are as thick as 2,500 m 
in an east-west-trending trough that extends from southern 
Death Valley to the Kingston Range (Wright and others, 
1974). Pahrump Group rocks thin to the north, south, and east 
(Stewart, 1972; Wright and others, 1974). Abrupt stratigraphic 
pinch-outs and facies changes have been used to infer that 
these rocks were deposited in a fault-controlled, rift basin 
setting (Wright and others, 1974). The extent and thickness of 
Pahrump Group rocks throughout most of the DVRFS region 
are not known, however, because this stratigraphic unit is not 
exposed.

In the northwestern part of the DVRFS region, Late 
Proterozoic and Cambrian strata that correlate with those of 
the central part of the DVRFS region are thicker and finer 
grained and contain significant amounts of carbonate rocks. 
They consist of interbedded siltstone, shale, limestone, 
dolomite, and fine-grained quartzite (Nelson, 1962; Stewart, 
1970; Albers and Stewart, 1972). The stratigraphic section of 
this region includes the Late Proterozoic Wyman Formation, 
Reed Dolomite and Deep Spring Formation, and the Lower 
Cambrian Campito, Poleta, and Harkless Formations. These 
strata are considered to be the White-Inyo assemblage 
(Stewart, 1970). They contrast with their more quartzose cor-
relatives to the south—the Death Valley assemblage. Typical 
exposures are found in the White and Inyo Mountains and Last 
Chance Range in California (Nelson, 1962; McKee, 1985; 
Signor and Mount, 1986) and exposures in Esmeralda County, 
Nev. (McKee and Moiola, 1962; Stewart, 1970; Albers and 
Stewart, 1972; Nelson, 1978).

The LCCU has long been considered a major confin-
ing unit in the DVRFS region (Winograd and Thordarson, 
1975) and, along with the crystalline confining unit (XCU), 

Table B–6. Hydrogeologic zones for the lower carbonate-rock aquifer (LCA).

[SWNVF, southwestern Nevada volcanic field]

Zone Description
 1 Stable block: Relatively unextended and unfaulted blocks of the Spring Mountains and Sheep Range.
 2 Regional shear zone: Spotted Range–Mine Mountain and Pahranagat shear zones. High fault/fracture densities associated with 

numerous minor strike-slip faults.
 3 Regional syncline: Spotted Range syncline, a large regional fold; moderate fault/fracture density along axis of fold.
 4 Rotated range blocks: Highly extended, rotated range blocks. May be associated with detachment at depth. Moderate to high 

fault/fracture density.
 5 LCA not continuous: LCA is absent (near calderas of the SWNVF) or exists as tectonically dismembered blocks in areas of 

extreme extension. 
 6 Oroflexural bending: Associated with major strike-slip faults. High fault and fracture density associated with rotation of 

kilometer-scale (and smaller) blocks of LCA.
 7 Displaced blocks: Relatively intact blocks of carbonate rocks that are involved in regional extension. Mesozoic thrusts reactivated 

as normal faults; moderate fault/fracture density. May be associated with detachment at depth.
 8 Basin-range faulting: LCA that occurs in basin-range fault blocks. Low to moderate fault/fracture density.
 9 Basinal facies: Low matrix permeability as carbonate rocks transition to shale in the extreme northwest part of the DVRFS region.
 10 Uncertain: Aquifer properties of LCA highly uncertain.
 11 Brittle detachment: Upper plate of shallow-level brittle detachment faults. High fault/fracture density.
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represents the hydraulic basement for the DVRFS region 
(D’Agnese and others, 1997). The low hydraulic conduc-
tivity of the rock matrix permits negligible ground-water 
movement, but in many places the rocks are highly fractured 
and locally brecciated (Winograd and Thordarson, 1975). At 
shallow depths, the fractures and breccias can be conduits to 
flow, converting the clastic rocks into locally important shal-
low aquifers (D’Agnese and others, 1997).

The LCCU has been subdivided into six hydrogeo-
logic zones based on lithology and structural considerations 
(Sweetkind and White, 2001) (fig. B–27, table B–7). The 
main facies transition in the Late Proterozoic through Lower 
Cambrian stratigraphic section of the DVRFS region is from 
an eastern region dominated by thick intervals of coarse 
siliciclastic rocks interbedded with shale (Zone 2; fig. B–27 
and table B–7) to a more shale-dominated region with 
significant amounts of carbonate rocks (Zone 3; fig. B–27 
and table B–7). Rocks of the LCCU are metamorphosed to 
medium and high grades where present in the lower plates of 
major detachment faults in the Panamint and Funeral Moun-
tains (Labotka and others, 1980; Wernicke and others, 1986; 
Wright and Troxel, 1993) (Zone 5; fig. B–27 and table B–7). 
In the southernmost part of the DVRFS region, thick sections 
of Middle and Late Proterozoic carbonate rocks of the Pah-
rump Group are shallow enough that they could potentially 
be aquifers (Zone 4; fig. B–27 and table B–7).

Hydrogeologic Units Associated with 
Crystalline Metamorphic Rocks and Plutons

Intrusive-Rock Confining Unit (ICU)

The rocks of the intrusive-rock confining unit (ICU) 
include granodiorite, quartz monzonite, granite, and tonalite. 
Mesozoic and Cenozoic plutonic rocks in the DVRFS region 
are widely scattered, poorly exposed, and not abundant in the 
northeastern two-thirds of the DVRFS (fig. B–28). Plutonic 
rocks are much more common in the southwestern and west-
ern parts of the DVRFS region and include both plutons of 
the Mesozoic Sierran arc and synextensional plutons of the 
southern DVRFS region (Workman, Menges, Page, Ekren, 
and others, 2002).

Mesozoic granitic rocks include the Late Triassic to 
Early Jurassic quartz monzodioritic plutonic rocks under-
lying most of the Avawatz Mountains, Jurassic (mostly 
186–161 Ma) plutons mostly to the west of Death Valley, and 
Cretaceous (mostly 100–92 Ma) in the Panamint Mountains 
and Owlshead Mountains. Small exposures of Cretaceous 
plutonic rocks in the vicinity of the NTS include the Climax 
stock on the northern side of Yucca Flat, the Gold Meadows 
stock north of Rainier Mesa, and granitic rocks on the east-
ern flank of the southern Kawich Range.

Oligocene and Miocene plutonic rocks crop out locally 
in the vicinity of the NTS, some of which are associated 
with caldera-related volcanism ranging in age from 32 to 
11 Ma (Ekren and others, 1971; Cornwall, 1972; Ekren and 
others, 1977; Kleinhampl and Ziony, 1985; Slate and oth-
ers, 2000). To the north of the NTS, a subcaldera pluton has 
been inferred in the Quinn Canyon Range (Workman, Menges, 
Page, Ekren, and others, 2002). At the NTS, outcrops of 
Neogene plutonic rocks include those near Wahmonie Flat 
and small intrusive bodies mapped in the Calico Hills and 
near Timber Mountain (Maldonado, 1985; Potter, Dickerson, 
and others, 2002). Neogene plutonic rocks that are associated 
with extension crop out in the southern part of Death Valley 
(Wright and others, 1999). These rocks include the gabbro to 
diorite intrusive rocks in the Black Mountains (about 10.3 Ma, 
Holm and others, 1992), the granites of the Kingston Range 
(12.4 Ma, Fowler and Calzia, 1999), the Little Chief stock in 
the Panamint Mountains, and other Neogene plutons of the 
Greenwater Range and central Death Valley volcanic field 
(Wright and others, 1991).

The ICU unit acts mostly as a confining unit. Although 
small quantities of water may pass through these intrusive 
crystalline rocks, where fractures or weathered zones  
exist, the fractures are poorly connected, and these rocks gen-
erally impede ground-water flow (Winograd and Thordarson,  
1975).

Crystalline-Rock Confining Unit (XCU)

The crystalline-rock confining unit (XCU) consists of 
Early Proterozoic (about 1.7 Ga, Wright and Troxel, 1993) 
quartzofeldspathic schist, augen gneiss, granitic intrusive 
rocks, and metamorphosed Middle and Late Proterozoic 
sedimentary rocks. Early Proterozoic rocks are present in scat-
tered exposures in the southern and southwestern parts of the 
DVRFS region and are rarely exposed throughout most of the 
rest of the DVRFS region (fig. B–28). These rocks crop out in 
the central part of the Panamint Mountains (Labotka and oth-
ers, 1980), in the southern part of the Black Mountains (Holm 
and others, 1994), in the southern end of the Nopah Range, 
and in small exposures in the Funeral Mountains (Wright and 
Troxel, 1993) and the Bullfrog Hills (Hoisch and others, 1997) 
(fig. B–28). In many of these places, the Early Proterozoic 
crystalline rocks are in the lower plates of detachment faults. 
The Early Proterozoic crystalline rocks presumably form a 
continuous basement beneath most of the DVRFS region; they 
have been tectonically thickened and thinned and are locally 
invaded by younger plutons.

Ground water likely is present only locally in the XCU 
where the rock is fractured. Much of the XCU has gneissic or 
schistose foliation and lacks a continuous fracture network. 
Because the fractures are poorly connected, these rocks act 
mostly as confining units or barriers to flow (D’Agnese and 
others, 1997).
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Structural Factors Affecting  
Ground-Water Flow

The hydrogeologic effects of faulting in the DVRFS 
region result from either fault-caused juxtaposition of HGUs 
with contrasting hydrologic properties or from the physical 
characteristics of the fault zones themselves that may cause 
specific parts of the fault zone to act either as conduits or 
barriers to flow. Faults can have two effects on ground-water 
flow: direct effects associated with alterations to flow rates and 
ground-water velocities within the faulted zone, and indirect 
effects associated with alterations to the flow field in the area 
near the faulted zone (Black and others, 1987). Direct effects 
are related to (1) the physical characteristics of the fault-zone 
material or the material properties of the rock on either side of 
the fault that may cause specific parts of the zone to act either 
as conduits or as barriers to ground-water flow, (2) orientation 
of a fault with respect to the present stress field that affects 
dilatancy and possibly influences hydraulic conductivity along 
the fault zone, and (3) the recency of fault motion or associa-
tion with contemporary seismicity where active stresses main-
tain fault openings and enhance permeabilities. Indirect effects 
are related to (1) fault juxtaposition of HGUs with contrasting 
hydrologic properties that may cause ground-water discharge 
and other perturbations in the flow system, and (2) the orienta-
tion of the structure with respect to the flow field. Structural 
controls on ground-water flow in the DVRFS region have long 
been recognized (Blankennagel and Weir, 1973; Winograd 
and Thordarson, 1975; Dudley and Larsen, 1976; Laczniak 
and others, 1996; Dettinger and Schaefer, 1996; McKee and 
others, 1998). Matrix permeability is low for both the LCA 
(Winograd and Thordarson, 1975) and for the welded parts 
of the volcanic-rock aquifers (Blankennagel and Weir, 1973). 
As such, faults, shear zones, and fractures largely determine 
the secondary water-transmitting properties of these rocks 
(McKee, 1997; McKee and others, 1998).

Juxtaposition of Hydrogeologic Units

Fault juxtaposition of hydrogeologic units with contrast-
ing hydraulic and hydrologic properties may result in ground-
water discharge and other perturbations in the regional flow 
system. Regional flow of ground water in the LCA in the 
DVRFS region is greatly influenced by the structural posi-
tion of the relatively low permeability clastic-rock confining 
units (fig. B–29) (Winograd and Thordarson, 1975). Previous 
ground-water modeling studies (D’Agnese and others, 1997; 
IT Corporation, 1996a) have inferred that structurally elevated 
confining units divert ground-water flow in the central Funeral 
Mountains, the northwestern part of the Spring Mountains, 
and in the western part of Yucca Flat (fig. B–29). D’Agnese 
and others (1998) show that steep hydraulic gradients correlate 
in general with places where relatively low permeability rocks 
or structures are juxtaposed with aquifers.

The influence of structures and the juxtaposition of HGUs 
on a ground-water flow system emphasize the importance 
of subsurface geologic interpretation and the resulting depic-
tion in a 3D digital HFM (Chapter E, this volume). The two 
recent regional ground-water flow models (IT Corporation, 
1996a; D’Agnese and others, 1997) differ substantially in their 
subsurface structural geologic interpretation of the DVRFS 
region in terms of level of detail and structural style portrayed 
and internal consistency of the interpretations. The geologic 
framework in the YMP/HRMP model (D’Agnese and others, 
1997) was based on a regional geologic map compilation 
(Faunt and others, 1997) and on a set of regional geologic cross 
sections (Grose, 1983; Grose and Smith, 1989). The cross 
sections did not include interpretations of large-magnitude 
extension (Wernicke and others, 1988; Snow, 1992; Snow and 
Wernicke, 2000) and more recent interpretations of regional 
thrust correlation (Trexler and others, 1996; Cole and Cashman, 
1999). The DOE/NV-UGTA geologic framework model (IT 
Corporation, 1996b) incorporated recent interpretations of com-
pressional and extensional structures, but cross sections drawn 
by multiple authors led to some inconsistencies in the geologic 
interpretations. Further, the cross sections were not referenced 
to a regional geologic map to guide structural interpretations.

Table B–7. Hydrogeologic zones for the lower clastic-rock confining unit (LCCU).
Zone Description

1 LCCU is very thin (a few hundred meters) and is similar to the cratonic sedimentary interval exposed in the Grand Canyon. Fine-
grained siliciclastic rocks that generally act as a confining unit.  

2 LCCU forms a westward-thickening wedge (generally 2,000 to 3,000 m thick) of fine- to coarse-grained sandstone, siltstone, 
conglomeratic sandstone, shale, and minor amounts of carbonate rock. Generally low permeability but may form local aquifer 
where highly deformed and complexly fractured.

3 LCCU is a thick (greater than 3,000 m) section of interbedded siltstone, limestone, dolomite, and fine-grained sandstone. Gener-
ally finer grained and more poorly sorted than rocks in Zone 2; however, interbedded sandstones and carbonate rocks locally 
may act as aquifers.

4 LCCU includes rocks of the Pahrump Group, a locally thick accumulation of Middle and Late Proterozoic sedimentary rocks. 
The Pahrump Group includes a significant thickness of dolomite and locally might be important to ground-water flow.

5 LCCU exposed beneath regional detachment structures. In these exposures, metamorphic grade is high, and the rocks are foliated 
and are of relatively low permeability. Possibly the lowest permeability of the LCCU.

6 LCCU either missing or properties are completely unknown.
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The current HFM (Chapter E, this volume) incorporates 
data from an integrated series of geologic investigations to 
develop a subsurface structural geologic interpretation. A 
regional geologic map compilation (Workman, Menges, Page, 
Taylor, and others, 2002) was created using a regionally con-
sistent set of geologic map units and incorporating numerous 
sources of recent unpublished mapping. An accompanying 
regional tectonic map (Workman, Menges, Page, Ekren, and 
others, 2002) was created using regional magnetic and gravity 
compilations (Ponce and others, 2001; Ponce and Blakely, 
2001; Blakely and Ponce, 2001) to interpret buried structures. 
A derivative regional structural map (Potter, Sweetkind, and 
others, 2002) interpreted the hydrologic significance of the 
features on the tectonic map on the basis of the regional poten-
tiometric surface, springs, and structural evidence such as 
magnitude of fault offset. Subsurface geologic interpretation is 
depicted on 28 geologic cross sections (Sweetkind, Dickerson, 
and others, 2001) that were explicitly referenced to the geo-
logic and structural map compilations. Cross-section interpre-
tations used by the previous regional models were incorpo-
rated where appropriate.

Juxtaposition of Hydrogeologic Units by Thrust 
Faults

Thrust faults in the DVRFS region juxtapose hydrogeo-
logic units of contrasting hydrologic properties and complicate 
the ground-water flow patterns by serving as local barriers 
(Winograd and Thordarson, 1975; McKee and others, 1998). 
These thrust faults are capable of causing significant diver-
sion of ground-water flow or steep hydraulic gradients in the 
DVRFS region (Winograd and Thordarson, 1975; D’Agnese 
and others, 1998; Potter, Sweetkind, and others, 2002). The 
major thrust faults of the DVRFS region have stratigraphic 
offsets of several kilometers and horizontal displacements of 
up to several tens of kilometers based on offsets in regional 
facies trends (Fleck, 1970; Snow, 1992). This magnitude of 
stratigraphic offset typically results (for all thrusts except 
the frontal Keystone thrust and its equivalents; fig. B–5) 
in the juxtaposition of the older Late Proterozoic to Lower 
Cambrian siliciclastic-rock section in the upper plate against 
the younger Paleozoic Cambrian through Permian, predomi-
nantly carbonate-rock section in the lower plate (fig. B–30) 
(Armstrong, 1968; Fleck, 1970; Burchfiel and others, 1974). 
A complete description of thrust faults in the area is found in 
the tectonic map compilation of the DVRFS region (Workman, 
Menges, Page, Ekren, and others, 2002); thrust faults in the 
vicinity of the NTS are described by Cole and Cashman 
(1999). Structural reconstructions based on thrust correlation 
are summarized in Snow and Wernicke (2000).

To affect regional ground-water flow, thrust faults in the 
DVRFS region (fig. B–31) must have sufficient stratigraphic 
offset and along-strike continuity and be at an angle to the 
regional flow direction. Thrusts in the western part of the 
DVRFS region in the Funeral, Cottonwood, and Grapevine 

Mountains are generally subparallel to the regional northeast-
to-southwest flow direction and may not influence the flow 
field except to divert water locally (D’Agnese and others, 
1997). To the west of the Spring Mountains, several smaller 
thrusts are exposed in the rotated range blocks (Burchfiel and 
others, 1982, 1983; Snow and Wernicke, 2000). These thrusts 
exist in a tract of LCCU that generally separates Pahrump 
Valley from the Amargosa Desert, but the thrust plates are, 
in general, broken by normal faults and may be too discon-
tinuous to be regionally significant. The Spring Mountains 
preserve two major, regionally extensive thrust faults, the 
Keystone thrust to the east and the Wheeler Pass thrust to the 
west (Burchfiel and others, 1974). Although well exposed, 
these thrusts crop out in the highest part of the DVRFS region; 
therefore, the large amount of water available as potential 
recharge may overwhelm bedrock geologic controls from the 
thrusts (D’Agnese and others, 1998).

The Belted Range thrust is the most northwesterly 
thrust structure identified in the vicinity of the NTS and is 
almost completely buried beneath Cenozoic volcanic rocks 
(fig. B–32). Late Proterozoic to Cambrian siliciclastic rocks 
in the upper plate of the thrust, part of the LCCU, are exposed 
only locally at the NTS and are known from borehole data 
(Cole and Cashman, 1999). In a general sense, the Belted 
Range thrust and related imbricate thrusts in its footwall 
juxtapose siliciclastic-rock confining units of the LCCU and 
UCCU against the Paleozoic carbonate rocks of the LCA. The 
great permeability contrast between these units is thought to 
create an effective barrier to ground-water flow (Laczniak 
and others, 1996) and segregates flow systems in the volcanic 
rocks of the western part of the NTS from carbonate-rock 
flow systems of the eastern part of the NTS (fig. B–31). The 
steep hydraulic gradient along most of the western side of 
Yucca Flat appears to be related to the combined effects of the 
Belted Range thrust and its footwall imbricates (Winograd and 
Thordarson, 1975; D’Agnese and others, 1998). This thrust 
was not explicitly included in the geologic framework of the 
YMP/HRMP model (D’Agnese and others, 1997), and a zone 
of low hydraulic conductivity that approximated the trace 
of the thrust had to be added during model calibration. The 
Belted Range thrust was included explicitly in the geologic 
framework of the DOE/NV-UGTA model (IT Corporation, 
1996b) but was generalized as a vertical barrier in this flow 
model (IT Corporation, 1996a).

The Gass Peak thrust, along the eastern margin of the 
DVRFS region (fig. B–31), juxtaposes older siliciclastic 
Late Proterozoic Stirling Quartzite and Late Proterozoic 
to Lower Cambrian Wood Canyon Formation in its upper 
plate over highly folded and locally overturned younger 
Pennsylvanian and Permian carbonate-rock strata in the lower 
plate (Longwell and others, 1965; Guth, 1981). The thrust 
extends for at least 100 km along the eastern side of the Sheep 
Range and southward into the Las Vegas Range and may have 
greater than 30 km of horizontal displacement (Longwell and 
others, 1965; Guth, 1981). The siliciclastic rocks above the 
Gass Peak thrust may compartmentalize regional flow and 
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Figure B–30. Examples of thrust fault relations in the Death Valley regional ground-water flow system region.
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siliciclastic rocks 

Late Proterozoic and Lower Cambrian siliciclastic rocks of hydrogeologic unit LCCU are thrust over lower Paleozoic 
carbonate rocks of hydrogeologic unit LCA, which are themselves thrust over younger carbonate rocks. Red lines 
denote thrust faults with arrow on the upper plate. Black lines portray general attitude of bedding. Geology after 
Burchfiel and others (1983). Photograph by D.S. Sweetkind, U.S. Geological Survey.

In this photo, the Baxter thrust places older rocks included within hydrogeologic unit LCCU (units Zs, Czw, Cz, and Cc) 
over younger Paleozoic carbonate rocks of hydrogeologic unit LCA (units Cb and Cn). Red line denotes thrust fault, 
with barbs on upper plate. Cenozoic deformation has rotated the strata 25 to 40 degrees to the east, exposing the 
Paleozoic carbonate rocks that lie beneath the thrust. The thrust climbs upsection in both the hanging wall and the 
footwall, successively truncating younger units. Geology after Burchfiel and others (1983). White truck in wash at 
lower right for scale. Photograph by D.S. Sweetkind, U.S. Geological Survey.

A     View of north end of the Nopah Range, looking west-southwest

B     Baxter thrust fault, Resting Spring Range

Truck
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separate the DVRFS from the Colorado River flow system 
to the east (Eakin, 1966). However, Cenozoic normal faults 
to the west of the Sheep Range have disrupted the continu-
ity of the Gass Peak thrust (Guth, 1981, 1990; Wernicke and 
others, 1984) (fig. B–33). These faults are part of the Sheep 
Range detachment, a system of down-to-the-west normal 
faults that are inferred to flatten and converge at depth into a 
deep detachment zone, on the basis of significant rotation of 
bedding in the eastern part of the DVRFS region (Guth, 1981, 
1990; Wernicke and others, 1984). These listric faults disrupt 
the continuity of the upper plate of the Gass Peak thrust and 
potentially allow connection of the two regional flow sys-
tems (fig. B–33). Guth (1981) presents an alternative view in 
which upper plate LCCU units thicken rapidly westward and 
effectively prohibit hydraulic connection of carbonate rocks 
of the upper and lower plate. Structurally elevated LCCU 
in the Desert Range (fig. B–33) is interpreted as a structural 
duplex of the Gass Peak thrust plate (Caskey and Schweikert, 
1992) that has been subsequently disrupted by regional exten-
sion. This area forms a regional high of LCCU that diverts 
flow coming from the northeastern part of the DVRFS region 
(Dettinger and others, 1995; Dettinger and Schaefer, 1996).

The Specter Range thrust (fig. B–31) is a south-
east-vergent thrust exposed in the Specter Range just 
south of the southern border of the NTS (Burchfiel, 1965; 
Sargent and Stewart, 1971). The thrust fault places older Late 
Proterozoic Stirling Quartzite and Late Proterozoic to Lower 
Cambrian Wood Canyon Formation (LCCU) over younger 
folded Ordovician, Silurian, and Devonian, strata (LCA) in 
the footwall (Burchfiel, 1965). The Specter Range thrust fault 
climbs upsection and loses stratigraphic throw to the northeast, 
where it appears to die out beneath Mercury Valley (McKee 
and others, 1998; Cole and Cashman, 1999). Interpretation of 
the subsurface extent of this thrust (McKee and others, 1998) 
indicates that it is a barrier to ground-water flow and channels 
flow in the regional carbonate aquifer southwestward toward 
discharge sites at Ash Meadows.

Juxtaposition of Hydrogeologic Units by 
Detachment and Normal Faults

Structurally high LCCU and XCU hydrogeologic units 
in the southwest part of the DVRFS region are associated with 
areas of highly disrupted surface rocks that are underlain by 
gently dipping extensional detachments that commonly expose 
a metamorphic core in their lower plates. The ranges bound-
ing Death Valley (including the Panamint, Grapevine, Funeral, 
and Black Mountains) (fig. B–34) preserve major detachment 
faults that juxtapose lower plate, midcrustal, medium- and 
high-grade metamorphic rocks against unmetamorphosed 
upper-plate rocks across mylonite zones (Hamilton, 1988). 
The Grapevine and Funeral Mountains preserve the upper and 
lower plates, respectively, of the Boundary Canyon detach-
ment, a gently dipping fault that juxtaposes amphibolite-grade 
metamorphic rocks of the lower plate against the unmetamor-
phosed rocks of the upper plate across a mylonitic zone only a 

few meters thick (Hamilton, 1988; Wright and Troxel, 1993). 
A major system of gently inclined normal faults exposes 
midcrustal metamorphic rocks in the Black Mountains, to 
the east of Death Valley. Overlying these major, low-angle 
detachment faults are Cenozoic sedimentary and volcanic 
rocks (fig. B–35A) that are cut by abundant listric normal 
faults (Greene, 1997). The Panamint Mountains (fig. B–34) 
are bounded on the east, north, and west sides by extensional 
structures known as the Tucki Mountain detachment system 
(Wernicke and others, 1986; McKenna and Hodges, 1990; 
Andrew, 2000). Exposures of Proterozoic metamorphic and 
siliciclastic rocks in the Funeral and Black Mountains are 
associated with a steep hydraulic gradient along the east 
side of Death Valley (D’Agnese and others, 1997). Regional 
springs are present in Death Valley only in the northern part of 
the Grapevine Mountains and the southern part of the Funeral 
Mountains (Steinkampf and Werrell, 2001), where more per-
meable rocks allow ground-water flow; no regional springs are 
present where the confining units are exposed.

The Fluorspar Canyon–Bullfrog Hills detachment system 
(fig. B–35B) separates nonmetamorphosed Cenozoic volcanic 
strata in the upper plate from the pre-Cenozoic bedrock of 
the lower plate at Bare Mountain (Monsen and others, 1992; 
Fridrich and others, 1999). In the southern Bullfrog Hills, 
complexly faulted upper plate volcanic rocks are disrupted 
by listric normal faults that merge with the detachment zone, 
which consists of fault-bounded lenses of nonmetamorphosed 
Paleozoic strata (fig. B–35B) (Maldonado and Hausback, 
1990; Maldonado, 1990), all of which overlie a lower plate 
of amphibolite-grade metamorphic rocks (Hoisch and others, 
1997). This fault was not included in the geologic frame-
work of the YMP/HRMP model, and a zone of low hydraulic 
conductivity that approximated the fault was added during 
flow-model calibration (D’Agnese and others, 1997). Inverse 
models of gravity data (fig. B–35C) (Ponce and others, 2001) 
and recent geologic mapping (Monsen and others, 1992; 
Fridrich and others, 1999) show that Cenozoic volcanic rocks 
are thin and that pre-Cenozoic rocks lie at shallow depths 
throughout most of the southern part of the Bullfrog Hills. 
These data substantiate the existence of the detachment fault 
in the Bullfrog Hills.

Juxtaposition of contrasting HGUs along large-offset 
normal faults localizes substantial ground-water discharge 
at several places in the DVRFS region. Regional northeast-
to-southwest flowing ground water is likely diverted to the 
surface in the eastern Amargosa Desert, where the LCA is jux-
taposed against the low-permeability basin-fill materials across 
the Gravity fault (Winograd and Thordarson, 1975; Dudley 
and Larsen, 1976). At Oasis Valley, a cluster of springs is 
localized along the Hogback normal fault (Potter, Sweetkind, 
and others, 2002). These springs appear to be localized by the 
juxtaposition of permeable volcanic rocks on the east against 
LCCU on the west (Grauch and others, 1999; Fridrich and oth-
ers, 1999). As a result, westward-flowing ground water in the 
volcanic rocks is forced to the land surface when it contacts 
the LCCU. Several springs in the central part of the DVRFS 
region appear to be related to fault juxtaposition of contrasting 
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Figure B–34. Juxtaposition of hydrogeologic units by detachment faults in the Death Valley regional ground-
water flow system region.
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Figure B–35. Examples of detachment fault relations in the Death Valley regional ground-water flow system region.
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HGUs near the Furnace Creek fault zone (D’Agnese and oth-
ers, 1997; Steinkampf and Werrell, 2001). This strike-slip fault 
zone has a significant component of down-to-the-southwest 
displacement, juxtaposing the LCA (to the east) against the 
VSU units (to the west). Southwestward-flowing ground water 
that bears the chemical signature of regional flow in the LCA 
(Winograd and Thordarson, 1975; Steinkampf and Werrell, 
2001) is diverted to the land surface, most likely because of 
contrasting hydraulic conductivities across the fault zone. 
Contrasting water levels and water-chemistry data across faults 
in the Yucca Mountain–Crater Flat area provide evidence that 
some normal faults in the volcanic rocks impede ground-water 
flow (Luckey and others, 1996) and thus compartmentalize the 
flow system.

Implication of Alternative Interpretations on Magnitude  
of Regional Extension

Ground-water investigations of the DVRFS region have 
assumed a relatively continuous Paleozoic carbonate aqui-
fer throughout at least the eastern one-half of the DVRFS 
region (Winograd and Thordarson, 1975; Prudic and others, 
1995; Thomas and others, 1996; Laczniak and others, 1996; 
D’Agnese and others, 1997, 2002). The Paleozoic carbonate-
rock aquifer crops out extensively in the ranges throughout 
most of the eastern one-half of the DVRFS region; its presence 
beneath basin-fill sediments in the valleys, however, is subject 
to interpretation. Regional models of extension (Wernicke, 
1992; Snow and Wernicke, 2000) imply discontinuity between 
range blocks in the carbonate-rock section. Regional estimates 
of extension based on correlation of thrust faults indicate that 
many of the carbonate-rock mountain ranges of the DVRFS 
region lie in a zone of extreme crustal extension, implying 
that these ranges are thin slivers of crust that detached above 
a migrating flexure in highly thinned crust (Holm and others, 
1992; Wernicke, 1992). In this view, Proterozoic siliciclastic 
or crystalline rocks might be expected beneath basin-fill sedi-
ments in the valleys. In contrast, a number of interpretive geo-
logic cross sections of the region portray a relatively continu-
ous carbonate aquifer beneath basin-fill sediments throughout 
much of the DVRFS region (Grose, 1983; Grose and Smith, 
1989; Laczniak and others, 1996; Sweetkind, Dickerson, and 
others, 2001).

Pre-Cenozoic bedrock has been identified in boreholes 
in areas of the DVRFS region that have been interpreted to 
have been greatly extended (fig. B–36), although the bed-
rock beneath most of the basins has not been reached by 
drill holes. Paleozoic carbonate rocks have been identified 
in borehole UE–25 p#1 (USGS Site ID 364938116252101) 
to the east of Yucca Mountain (Carr and others, 1986) and 
in the northern part of the Amargosa Desert (Carr and oth-
ers, 1995; R.W Spengler, U.S. Geological Survey, written 
commun., 2002). Boreholes of Paleozoic bedrock in Yucca 
Flat are numerous enough to construct subsurface geologic 
maps of specific formations (Cole and others, 1997). Fur-
thermore, hydrochemical data indicate that a number of the 
major springs in the DVRFS region (fig. B–36) are probably 

sourced from water that flowed through the carbonate-rock 
aquifer (Winograd and Thordarson, 1975; Steinkampf and 
Werrell, 2001). These data indicate at a minimum that some, 
if not all, of the water from regional springs is flowing through 
a continuous carbonate-rock aquifer (Winograd and Pearson, 
1976). More information on the hydrochemistry and its 
implications for regional ground-water flow can be found in 
Chapter D (this volume).

Juxtaposition of Hydrogeologic Units at Caldera 
Boundaries

The structural and topographic margins of calderas in the 
SWNVF juxtapose intracaldera and outflow-facies volcanic 
rocks. Intracaldera rocks differ in their geometry and material 
properties from equivalent outflow facies in having greater 
thicknesses of welded material and more complex welding 
zonation, greater lithologic diversity including megabreccia 
and thick lava accumulations, and a greater degree of altera-
tion. Fracture patterns in intracaldera rocks tend to be more 
irregular than those of outflow tuffs (Blankennagel and Weir, 
1973), leading to a smaller number of connected flow paths. 
Outflow tuff sheets, although thinner than intracaldera tuff 
accumulations, have better connected fracture networks and 
there is less likelihood of significant alteration (Blankennagel 
and Weir, 1973). Few boreholes in the SWNVF are located 
such that the hydraulic significance of juxtaposition at caldera 
boundaries can be defined.

A caldera model with gently inwardly sloping topo-
graphic walls along with near-vertical ring faults defining the 
structural boundary of caldera subsidence (Lipman, 1984; 
Lipman 1997) was used as a conceptual basis for simulating 
all calderas within the SWNVF in the YMP/HRMP model 
(D’Agnese and others, 1997, p. 15). An alternative conceptual 
model for the buried calderas of the SCCC and TMCC was 
used in the geologic framework of the DOE/NV-UGTA model 
(IT Corporation, 1996b). The alternative model envisions a 
group of rectilinear fault-block basins formed by caldera col-
lapse localized by preexisting linear normal faults (Ferguson 
and others, 1994; Warren and others, 2000). An example of 
such a fault is the Thirsty Canyon lineament (corresponding 
to feature 14 of Grauch and others, 1999; their figure B–7 
and table B–4) that is interpreted from geophysical data to be 
a preexisting fault zone that was later exploited to form the 
straight northwestern boundaries (fig. B–13) of the SCCC 
and TMCC (Grauch and others, 1999). Numerous local fault 
blocks proposed for this alternative model (Ferguson and 
others, 1994; Warren and others, 2000) were not used in 
recent 3D geologic framework models of the Pahute Mesa 
area (McKee and others, 1999; McKee and others, 2001) 
because (1) the geophysical data are insufficient to detect the 
high-angle fault-block basins and (2) the geologic data from 
boreholes in the upper 900 m define small-offset, high-angle 
faults (McKee and others, 1999, 2001).
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Figure B–36. Greatly extended domains, faults, boreholes, and regional springs associated with the Paleozoic carbonate-
rock aquifer.
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Faults as Hydrogeologic Features

Many brittle fault zones contain a narrow core of fine-
grained, relatively low-permeability gouge that is the locus of 
fault displacement (Caine and others, 1996). In many cases, 
the core will have reduced permeability, relative to that of the 
original rock or the surrounding damage zone, as a result of 
progressive grain-size reduction, dissolution, reaction, and 
mineral precipitation (Caine and others, 1996). The core zone 
can be flanked by damage zones, a network of subsidiary 
small faults and fractures that enhance secondary permeability 
(Caine and others, 1996; Caine and Forster, 1999). Fault cores 
typically restrict fluid flow across the fault, while the damage 
zone may conduct ground-water flow parallel to the fault zone. 
In general, large-displacement faults are characterized by a 
continuous, relatively low permeability core zone (Chester and 
Logan, 1986).

Hydraulic Barriers

On the basis of characteristics of the potentiometric 
surface, the location of springs, and the location of the fault 
with respect to predominant northeast-to-southwest ground-
water flow in the DVRFS region, several of the large strike-
slip faults in the DVRFS region, including the LVVSZ, 
the Pahrump–Stewart Valley fault zone, and the Death 
Valley–Furnace Creek fault system (fig. B–7), are thought to 
be potential barriers to ground-water flow. The large strike-
slip faults in the southwestern part of the DVRFS region are 
generally buried beneath Cenozoic sediments, although traces 
of the faults are commonly defined by Quaternary fault scarps 
(Anderson and others, 1995; Piety, 1996). Geophysical investi-
gations of the LVVSZ (Langenheim and others, 2001) and the 
Pahrump–Stewart Valley fault zone (Blakely and others, 1998, 
1999) portray a structurally complex pre-Cenozoic surface 
adjacent to these faults consisting of steep-sided local depres-
sions and ridges that likely are fault-bounded (fig. B–37) and 
probably represent local compression and extension in the 
overall strike-slip environment (Wright, 1989).

The LVVSZ extends more than 100 km northwestward 
from its eastern end near Frenchman Mountain, on the east 
side of Las Vegas Valley (fig. B–7). The LVVSZ is a complex 
system of right-lateral faults with several fault strands and 
associated steep-sided pull-apart subbasins (Langenheim and 
others, 2001). Right-lateral offset of correlative features across 
the LVVSZ is estimated to be from 40 to 66 km (Stewart 
and others, 1968; Longwell, 1974); displacement is thought 
to have occurred between 14 and 8.5 Ma (Bohannon, 1984; 
Duebendorfer and Black, 1992). The LVVSZ appears to form 
a hydraulic barrier in the Indian Springs, Nev., area; spring 
discharge at Indian Springs (fig. B–36) may reflect upward 
flow of ground water against a low-permeability fault barrier 
(Winograd and Thordarson, 1975). The Pahrump–Stewart 
Valley fault zone (Stewart and others, 1968; Burchfiel and 
others, 1983; Stewart and Crowell, 1992) is a regionally 
extensive, right-lateral, strike-slip fault zone that roughly 

parallels the California-Nevada border through the Stewart and 
Pahrump Valleys. The fault zone may be as long as 150 km 
(Schweickert and Lahren, 1997; Blakely and others, 1998) and 
is estimated to have between 20 and 30 km of right-lateral off-
set based on offset of Proterozoic and Paleozoic rocks (Stewart 
and others, 1968), interpreted correlations of thrust sheets, and 
offsets in regional facies trends (Stevens and others, 1991). 
The faults are almost everywhere buried by Cenozoic rocks; 
part of the zone is exposed in the southern Montgomery 
Mountains (fig. B–38) (as defined by Burchfiel and others, 
1983).

The 250-km-long Death Valley–Furnace Creek fault sys-
tem consists of right-lateral strike-slip and normal faults that 
cross the entire western part of the DVRFS region (fig. B–7) 
(Stewart, 1988; Piety, 1996). The southern part of the system 
is a 50-km-long set of northwest-striking, predominantly right-
lateral faults that underlie southern Death Valley (Workman, 
Menges, Page, Ekren, and others, 2002). The central part of 
the system is a 60-km-long, north-northwest-trending, primar-
ily oblique normal-slip fault zone that forms the western range 
front of the Black Mountains (fig. B–6) (Piety, 1996). The 
northern part of this fault system is an active right-lateral fault 
zone (Piety, 1996) with a total cumulative right-lateral offset 
estimated at about 65 to 80 km (Stewart, 1967; Stewart and 
others, 1968; Snow and Wernicke, 1989). Springs in the north-
ern part of Death Valley may be localized along the northern 
Death Valley–Furnace Creek fault zone where upward flow 
of ground water is localized against a low-permeability fault 
barrier (Winograd and Thordarson, 1975; Potter, Sweetkind, 
and others, 2002).

Potter, Sweetkind, and others (2002) compiled the 
locations of principal faults and structural zones in the 
DVRFS region that may influence ground-water flow. A subset 
of the mapped faults in DVRFS region was chosen for pos-
sible inclusion as hydraulic barriers in the ground-water flow 
model (fig. B–39). Faults were chosen on the basis of their 
length, offset, type of slip, orientation, characteristics of the 
potentiometric surface, and the location of springs. The empha-
sis was on faults that may have special hydraulic characteristics 
that may require them to be treated as separate entities in the 
flow model. Juxtaposition of HGUs with different hydraulic 
properties was not a primary consideration as these relations are 
incorporated in the HFM (Chapter E, this volume). Structural 
features were classified based on a hierarchical approach for 
possible sequential inclusion into the flow model (table B–8). 
Initially, northwest-striking faults were separated from faults 
of other (primarily north-south) orientation (table B–8; fig. 
B–39). The northwest-striking faults typically are the large-
offset strike-slip faults that are oriented approximately per-
pendicular to the flow direction. These faults are interpreted 
as being the most likely structural barriers to regional ground-
water flow. Second-level subdivision of these faults consists of 
dividing the northwest-striking faults that involve the regional 
carbonate-rock aquifer from those that involve other, primar-
ily confining, units. Finally, local segments of strike-slip faults 
are subdivided; these segments of different orientation from 
the main fault trace correspond to releasing or restraining bends 
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Figure B–37. Interpreted geometry of strike-slip faults, Death Valley regional ground-water flow system region.

that may differ significantly in hydraulic conductivity from 
other parts of the fault (Potter, Sweetkind and others, 2002). 
North-south-striking normal faults were subdivided primarily 
on magnitude of offset, and then by distribution in the DVRFS 
region (table B–8; fig. B–39).

Hydraulic Conduits

Comparison of the location of large-offset structures 
with the regional potentiometric surface (Winograd and 
Thordarson, 1975; D’Agnese and others, 1998) and the results 
of recent ground-water flow models (IT Corporation, 1996a; 
D’Agnese and others, 1997) indicates that few of the indi-
vidual structures are hydraulic conduits on the regional scale. 
Rather than being associated with single faults, hydraulic 
conduits in the DVRFS region appear to be spatially associ-
ated with broad, northeast-striking zones that are transverse to 
the main trend of the Walker Lane belt (fig. B–7) (Carr, 1984; 

Stewart, 1988; Stewart and Crowell, 1992). These zones are 
characterized by active seismicity associated with subparallel, 
northeast-striking faults that accommodate relatively small 
amounts of sinistral and normal offset across a broad zone 
(Carr, 1984; Potter, Sweetkind, and others, 2002).

In the southern part of the NTS, the Spotted Range–Mine 
Mountain shear zone (Carr, 1984; Stewart, 1988) includes the 
Rock Valley, Cane Spring, and Mine Mountain faults (fig. B–7). 
These faults generally strike north-northeast, have demonstrated 
left-lateral offset of a few kilometers, have variable sense and 
amount of normal displacement (Frizzell and Shulters, 1990), 
and are associated with minor seismic events (Piety, 1996; 
Potter, Sweetkind, and others, 2002). These strike-slip faults are 
linked by north-striking normal faults that form local pull-apart 
basins and create complex map patterns in the south-central 
part of the Nevada Test Site (Maldonado, 1985; Frizzell and 
Shulters, 1990). Winograd and Pearson (1976) described a 
transmissive pathway or “megachannel” between Mercury 
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(A) Outcrop of a splay of the Pahrump-
Stewart Valley fault zone exposed east of 
Stewart Valley. Fault is in Late Proterozoic 
Sterling Quartzite, part of hydrogeologic unit 
LCCU. Fault core consists of 10 centimeters  
of foliated clay-rich fault gouge, surrounded 
by a zone of brecciated wall rock. Hammer is 
about 30 centimeters in length.

(B) Looking west from near locality shown in 
(A) across splay of the Pahrump-Stewart 
Valley fault zone to Stewart Valley. Fault zone 
has a northwest strike and is about 
250 meters wide. Fault zone consists of 
fault-bounded lenses of Late Proterozoic 
Stirling Quartzite; fault contacts are shown 
as black dashed lines.

Photographs by D.S. Sweetkind, U.S. 
Geological Survey.

A

B

Figure B–38. Examples of strike-slip faults east of Stewart Valley, Death Valley regional ground-water flow 
system region.
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Valley and Ash Meadows to explain the carbon-14 content 
of spring water at Ash Meadows. The Spotted Range–Mine 
Mountain shear zone (Carr, 1984; Stewart, 1988) is associ-
ated with a trough in the regional potentiometric surface, 
potentially indicating high transmissivity in the Paleozoic 
carbonate rocks (D’Agnese and others, 1998), and corre-
sponds in part to the “megachannel” defined by Winograd 
and Pearson (1976). Previous work (Winograd and Thor-
darson, 1975; D’Agnese and others, 1997; Faunt, 1997) 
indicates this area has greater permeability associated with 
highly fractured LCA.

Another zone of minor northeast-striking faults associ-
ated with active seismicity, has been inferred to exist in the 
Gold Mountain area (fig. B-7) northeast of the northern 
terminus of Death Valley (Albers and Stewart, 1972; Carr, 
1984; Potter, Sweetkind, and others, 2002). This region 
is characterized by highly jointed granite adjacent to the 
northern Death Valley–Furnace Creek strike-slip fault zone 
and, to the south, by closely spaced normal faults that cut 
both the Cenozoic volcanic rocks and the underlying Paleo-
zoic carbonate rocks (Potter, Sweetkind, and others, 2002). 
This zone corresponds spatially with spring discharge in the 
northern part of Death Valley; a region of greater transmis-
sivity was added to the YMP/HRMP flow model during 
calibration (D’Agnese and others, 1997) to simulate this 
zone.

Although not part of the Walker Lane belt, the 
Pahranagat shear zone is another northeast-trending system 
of left-lateral strike-slip faults at the northern end of the 
Sheep Range (fig. B–7) (Tschanz and Pampeyan, 1970; 
Jayko, 1990). The fault zone is about 13 km wide, extends 
for at least 40 km along strike, and consists of several 
steeply dipping fault strands with oblique left-lateral strike-
slip displacement.

Summary
Decades of study in the southern Great Basin have 

shown that the geologic framework, which is stratigraphi-
cally and structurally complex, is important in controlling 
ground-water flow. Flow within the regional carbonate-
rock aquifer and in more localized basin-fill and volcanic-
rock aquifers reflects structural and lithologic conditions 
that produce permeability variations. The hydrogeologic 
units (HGUs) in the Death Valley regional ground-water 
flow system (DVRFS) region generally include: Cenozoic 
basin-fill and playa deposits; as much as 2,000-m-thick 
sequence of Cenozoic lava flows, welded and nonwelded 
tuffs; Cenozoic and Mesozoic intrusive rocks; Mesozoic 
sedimentary and volcanic rocks; as much as 8,000-m-thick 
Paleozoic carbonate and siliciclastic rocks that are the prin-
cipal aquifer, and Paleozoic to Late Proterozoic siliclastic 
rocks and Proterozoic igneous and metamorphic rocks that 
are the primary regional confining units.

Table B–8. Hierarchical subdivision of faults designated as 
potential flow barriers in the DVRFS model.

[LCA, lower carbonate-rock aquifer; LVVSZ, Las Vegas Valley shear zone. 
Numbers in parentheses refer to locations shown on figure B–39]

Northwest-striking structures 
Faults mainly in LCA 

LVVSZ
Main trace of LVVSZ (1)
Indian Spring splay (2)

Pahrump–Stewart Valley and Highway 95 faults
Pahrump–Stewart Valley fault

Northwest-striking segments
Pahrump Valley area (3)
Ash Meadows area (4)
Amargosa Desert area (5)

North-striking segments
Stewart Valley (6)
Southern Gravity fault (7)

Highway 95 fault (8)
Faults in hydrogeologic unit other than LCA 

Death Valley–Furnace Creek fault zone, main trace
North-striking sections (central Death Valley) (9)
Northwest-striking sections 

Death Valley sections
Northern Death Valley section (10)
Southern Death Valley section (11)
Furnace Creek fault (12)

Grandview fault (13)
Sheephead fault (14)
Keane Wonder fault (15)

Death Valley–Furnace Creek fault zone, transition zones  
and bends

Eagle Mountain area (16)
Saratoga Springs area (17)
Furnace Creek Ranch area (18)

Major faults 
Major faults near Yucca Mountain

Bare Mountain fault (19)
Northern Gravity fault (20)

Other major north-striking faults
Western Spring Mountains fault (21)
Belted Range fault (22)

Minor faults 
Yucca Mountain or Yucca Flat areas

Minor faults near Yucca Mountain
Western Yucca Mountain faults

Solitario Canyon fault (23)
Windy Wash fault (24)

Crater Flat fault (25)
Paintbrush Canyon fault (26)

Minor faults near Yucca Flat
Carpetbag fault (27)
Yucca fault (28)

Pahute Mesa–Oasis Valley features
Thirsty Canyon lineament (29)
Hogback fault (30)
East Box Car fault (31)
Almendro fault (32)
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Ground-water flow is affected by faults with kilometers 
of offset that cause juxtaposition of aquifers and confining 
units; structural deformation; degree of welding; and facies 
transitions, lithologic features, and hydrothermal alteration 
that produce variations in permeability.

Based on characteristics of the potentiometric surface, the 
location of springs, and the location with respect to predomi-
nant northeast-to-southwest ground-water flow in the DVRFS 
region, the LVVSZ, the Pahrump–Stewart Valley fault zone, 
and the Death Valley–Furnace Creek fault system strike-slip 
faults are potential barriers to ground-water flow; broad, 
northeast-striking zones that are transverse to the main trend 
of the Walker Lane belt, but not individual faults, are hydraulic 
conduits.
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