

Figure D.13 Phase Plots Measured by SASW Testing with 18-ft Receiver Spacing (SC6_F_43.DAT)

Figure D.14 Phase Plots Measured by SASW Testing with 25-ft Receiver Spacing (G1_F_21.DAT)

Figure D.15 Phase Plots Measured by SASW Testing with 25-ft Receiver Spacing (G1_F_43.DAT)

Figure D.16 Phase Plots Measured by SASW Testing with 25-ft Receiver Spacing (G4_F_21.DAT)

Figure D.17 Phase Plots Measured by SASW Testing with 25-ft Receiver Spacing (G4_F_43.DAT)

Figure D.18 Phase Plots Measured by SASW Testing with 50-ft Receiver Spacing (G2_F_21.DAT)

Figure D.19 Phase Plots Measured by SASW Testing with 50-ft Receiver Spacing (G3_F_21.DAT)

Receiver Spacing (ft)	Masking Interval	Masking Start Frequency, Hz	Masking Stop Frequency, Hz	Number of Jumps	Filename	
1	1	0	246	1	SC2 F 21.DAT	
1	1	0	263	1		
1	2	591	800	-	$SC/_F_2I.DAT$	
2	1	0	139	1	SCI E 42 DAT	
Z	2	492	800	-	5C1_F_43.DAT	
2	1	0	156	1	SC2 E 42 DAT	
2	2	527	800	-	5C2_1_45.DA1	
2	1	0	141	1	SC7 F 43 DAT	
2	2	763	800	-	SC7_F_45.DAT	
2	1	0	142	1	SC8 E 43 DAT	
2	2	565	800	-	5C8_1_45.DA1	
	1	0	96	1		
3	2	118	141	1	SC3_F_21.DAT	
	3	367	800	-		
	1	0	59	1		
6	2	109	137	1	SC3_F_43.DAT	
	3	275	800	-		
	1	0	58	1		
6	2	117	136	1	SC4_F_43.DAT	
	3	322	800	-		
0	1	0	38.5	1	CCE E OLDAT	
9	2	160	400	-	5C5_F_21.DA1	
0	1	0	37.5	1		
9	2	108.5	400	-	5C0_F_21.DA1	
	1	0	27.5	1		
18	2	29	32	1	SC5_F_43.DAT	
	3	109	400	-		
	1	0	25.5	1		
18	2	27.5	31.5	1	SC6_F_43.DAT	
	3	118	400	-		
0.5	1	0	17	1		
25	2	91.5	100	-	GI_F_2I.DAT	

Table D.1 Tables of Masking Parameters Used on Data Collected during First Site Visit at Site C

Performed by <u>Liabei</u> Checked by <u>Jin-Cheng</u> Lin.

Receiver Spacing (ft)	Masking Interval	Masking Start Frequency, Hz	Masking Stop Frequency, Hz	Number of Jumps	Filename	
25	1	0	16.62	1	C1 E 42 DAT	
23	2	90.88	100 -		01_F_43.DA1	
and the state of t	1	0	14.88	1		
25	2	20	25.12 1		G4_F_21.DAT	
	3	70.88	100	-		
	1	0	16.38	1		
25	2	21.62	28.12 1		G4_F_43.DAT	
	3	88.88	100 -			
50	1	0	8.12	1	C2 E 21 DAT	
50	2 98		100	-	$G_{r_2I,DAI}$	
50	1	0	8.25	1	C2 E 21 DAT	
50	2	62.88	100	-	U3_F_21.DA1	

Table D.2Tables of Masking Parameters Used on Data Collected during First Site Visit
at Site C (Continued)

____ Checked by <u>Jin-Cheng</u> Lin. Yin-Cheng Lin Performed by_ Jiabei Yuan

Figure D.20 Experimental Dispersion Curve Measured during First Site Visit at Site C at Vogtle, GA; Linear Wavelength Axis

Figure D.21 Experimental Dispersion Curve Measured during First Site Visit at Site C at Vogtle, GA; Logarithmic Wavelength Axis

Figure D.22 Experimental and Theoretical Dispersion Curves from Site C in First Site Visit at Vogtle, GA; Linear Wavelength Axis

Wavelength (m)

Figure D.23 Experimental and Theoretical Dispersion Curves from Site C in First Site Visit at Vogtle, GA; Logarithmic Wavelength Axis

Figure D.24 Shear Wave Velocity Profile Determined at Site C during First Site Visit at Vogtle, GA

Table D.3	Profile Parame	eters Used	l to	Develop	Preliminary	Theoretical	Dispersion
	Curve at Site C	in the Fir	st Si	ite Visit at	Vogtle, GA		

Layer No.	Thickness, ft	Depth to Top of Layer, ft	S-Wave Velocity, ft/s	Assumed Poisson's Ratio	P-Wave Velocity, ft/s	Assumed Total Unit Weight, pcf
1	1	0.8	0.0	510	0.24	872
2	2	0.8	0.8	600	0.24	1026
3	3	2.0	1.6	700	0.24	1197
4	4	1.5	3.6	850	0.24	1453
5	5	2.3	5.1	950	0.24	1624
6	6	4.0	7.4	1050	0.24	1795
7	7	4.0	11.4	1150	0.24	1966
8	8	4.0	15.4	1250	0.24	2137
9	9	29.6	19.4	800	0.24	1368
10*	10	16.4	49.0	800	0.24	1368
$11^{*^{\#}}$	11	30.0	65.4	1900	0.42	5000
12*#	12	Half Space	95.4	2200	0.38	5000

* Layer below maximum depth of the V_S Profile.

Layer below water tatble.

Performed by Jin-Chang Lin Checked by K. H. Stokocky Yin-Cheng Lin Kenneth H. Stokoe, II

Appendix E

SASW Measurements of First Site Visit at Vogtle, GA Site Location: Site D

1. Data Sheet(s)	E.2
2. Phase Plots from SASW Tests	E.4
3. Table of Masking Parameters	E.10
4. Experimental Dispersion Curves	E.11
5. Matching the Experimental and Theoretical	
Dispersion Curves	E.12
6. Shear Wave Velocity Profile	E.13
7. Table of Profile Parameters	E.13

|--|

Page ____ of ____

Project	: Vogt	the	
Location	: <u>SD</u>	(SA # «	<u> </u>
Date/(Time)	1: Dec, 9,	1 2007 (:	~ :)
Personnel	: Stoke	, Minja	e, Yuan
Recorded b	y: Yu	an	and the second
Checked by	y:Mi	njae	107-000-100
R1 I.D. : R2 I.D. :	GEC	92003	Near Center
R3 I.D. :	GEE	92001	Far

Data Sheet #	: <u>SA # 4</u>
Disk # :	SA #4

Protection	Sketch								
	2								
1									

Distance (ft)		Impact		Impact	Pecord #	Freq. Range	Notos		
S - R1	R1 - R2	R2 - R3	Dire	ction	Source	Necola #	(Hz)	INOICES	
١	1	2	For	Rev	Email Hamps	201	0 ~ 800		
(1	2	For	Bar	~1	SD2	0 -800		
3	3	6	For	Rev	- 11	503	0-800		
3	S	6	FOR	Rev	11	SD4	0-800		
9	9	18	FOR	Rev	Medium	505	0-400		
9	9	18	For	Re	. 1	SD6	0-400		
	(2	Ð	Rev	Shall	SD7	0-800		
1	\backslash	2	For	Rev	11	SDS	0~800		
			For	Rev			~		
			For	Rev			n y		
			For	Rev			~		
		,	For	Rev			~		
			For	Rev			~		
			For	Rev			ne		
			For	Rev			20		
			For	Rev			~		

* Autosequence 3R_SASW saves F_2/1, C_2/1, F_4/3, C_4/3, Lin_1, Lin_2, Lin_4

* Autosequence 3R_SEWPSIN saves F_2/1, Var_2, F_4/3, Var_4, Lin_1, Lin_2, Lin_4

University of Texas at Austin

3 - Receiver SASW Data Sheet

Project : <u>Vogtle</u>
Location : $G(SA \# 7)$
Date/(Time) : Dec, 9,2007(: - :)
Personnel : Stokae, Minjae, Tuan
Recorded by : Yuan
Checked by : Minjae
R11.D.: GGC 92003
R21.D.: GEC 92002
R31.D.: GEC 92001

Di	Distance (ft) Impact		(ft) Impact Imp		t Impact Record		Freq. Range	Natae	
S - R1	R1 - R2	R2 - R3	Dire	ction	Source	Necola #	(Hz)	Notes	. 1
25	25	25	For	Rev	Buildozor	GI	0-100		When I
			For	Rev			~	-	1 reverse
60	50		FOD	Rev	~	GZ	0 ~ 100		arrectiv
			For	Rev			~		- watim i
50	50		For	Rev	11	G3	0~ 100		Geophine
			For	Rev			~		not
25	25	25	For	Rev	~	G4	0-100		Changed
			For	Rev			~		
			For	Rev			~		1/
			For	Rev			~		
			For	Rev			~		
	l l		For	Rev			~		-
*			For	Rev			-		1
			For	Rev			~		
			For	Rev			~		
			For	Rev			rie		1

* Autosequence 3R_SASW saves F_2/1, C_2/1, F_4/3, C_4/3, Lin_1, Lin_2, Lin_4

* Autosequence 3R_SEWPSIN saves F_2/1, Var_2, F_4/3, Var_4, Lin_1, Lin_2, Lin_4

University of Texas at Austin

Figure E.2 Phase Plots Measured by SASW Testing with 2-ft Receiver Spacing (SD2_F_43.DAT)

Figure E.3 Phase Plots Measured by SASW Testing with 2-ft Receiver Spacing (SD8_F_43.DAT)

Figure E.4 Phase Plots Measured by SASW Testing with 3-ft Receiver Spacing (SD3_F_21.DAT)

Figure E.5 Phase Plots Measured by SASW Testing with 3-ft Receiver Spacing (SD4_F_21.DAT)

Figure E.6 Phase Plots Measured by SASW Testing with 6-ft Receiver Spacing (SD4_F_43.DAT)

Figure E.7 Phase Plots Measured by SASW Testing with 9-ft Receiver Spacing (SD5_F_21.DAT)

Figure E.8 Phase Plots Measured by SASW Testing with 9-ft Receiver Spacing (SD6_F_21.DAT)

Figure E.9 Phase Plots Measured by SASW Testing with 18-ft Receiver Spacing (SD5_F_43.DAT)