June 27, 2007

Memorandum to File DCN VGCOL 107 From: Steve Kiser \mathcal{GL} Reviewed By: Pieter Depree \mathfrak{GR}

Subject:

ect: Report of SPT Energy – MACTEC Atlanta CME 550 ATV Hammer Serial No. 337153 Automatic Hammer WORK INSTRUCTION VGCOL 107 Vogtle Units 3 & 4 COL Project Burke County, Georgia MACTEC Project No. 6141-06-0286

Steve Kiser, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on February 7, 2007, during drilling of Boring B-1193 at the referenced site. The testing was performed from approximately 10:20 to 11:10 AM under sunny skies and a temperature of about 55 degrees Fahrenheit. The boring was drilled with personnel and equipment from the Atlanta office of MACTEC. The drilling equipment consisted of a CME 550 model ATV-mounted drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split tube sampler. Mud rotary drilling techniques were used to advance the boring below the depth at which groundwater was encountered at the time of energy testing. The drill rig operator during sampling was Mr. Robert Banks. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAK (Serial No. 1430), and calibrated accelerometers (Serial Nos. P5953 and P5094) and strain gages (Serial Nos. AW #144/1 and AW#144/2). An AW-sized steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod insert had a cross-sectional area of approximately 1.19 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

Calibration Records

The calibration records for all the above are filed in DCN VGCOL-14.

Calculations for EFV

The work was done in general accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA, and the data was interpreted by the PDA according to the Case Method equation. The maximum energy transmitted to the drill rod string (as measured at the location of the strain gages and accelerometers) was calculated by the PDA using the EFV method equation, as shown below:

 $EFV = \int F(t) * V(t) * dt$

Where: EFV = Transferred energy (EFV equation), or Energy of FV F(t) = Calculated force at time t V(t) = Calculated velocity at time t

The EFV method of energy calculation is recommended in ASTM Standard D4633-05. The EFV equation, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not used in the data reduction.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 266 foot-pounds to 307 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 76% to 88% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall weighted average energy transfer of the SPT system (for all the depth intervals tested) was 286.9 foot-pounds, with a weighted average ETR of 82.0%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page Page 5 Work Instruction – DCN VGCOL 107 – 1 Page Page 6 Record of SPT Energy Measurement – 1 Page Pages 7 - 15 PDIPLOT Output – 9 Pages

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

Vogtle Units 3 and 4 COL Project Burke County, Georgia MACTEC Project No. 6141-06-0286

Rig Serial No.	Rig Owner	Rig Operator	Boring No. Tested	Rod Size	Date Tested	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
227152						63.5 - 65.0	5 - 20 - 15	36	307	87.7%
337153 (CME 550	MACTEC	Robert Banks	P 1102	AW-J	2/7/2007	68.5 - 70.0	14 - 32 - 15	61	266	76.0%
ATV)	Atlanta	Robert Daliks	D-1193	AW-J	2///2007	73.5 - 75.0	7 - 10 - 13	31	297	84.9%
						78.5 - 80.0	8 - 9 - 11	29	295	84.3%
	Weighted Average for Rig:									82.0%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Work Instructions – SPT Energy MACTEC CME-550 (Banks) (Hammer #337153)

Vogtle COL Project Project No. 6141-06-0286

ан алана алана Т	С
Issued To: Steve Kiser	
Location: Vogtle COL Project Field Office	Date: 12/20/06
Issued By: Matthew F. Cooke, Site Coordinator	
Valid From: 12/20/06	To: 12/20/07

<u>**Task Description**</u>: Measurement of energy transferred to the drill string rods from a Standard Penetration Test (SPT) automatic hammer mounted on a drill rig. Testing will be performed using a Pile Driving Analyzer (PDA) model PAK at various depth intervals below a depth of approximately 10 feet below the ground surface for the above referenced rig drilling SPT borings at the Vogtle COL Site.

<u>Applicable Technical Procedures or Plans, or other reference</u>: ASTM D4633-05 Standard Test Method for Energy Measurement for Dynamic Penetrometers.

Specific Instructions (note attachments where necessary): Obtain energy measurements with the PDA at various depth intervals below a depth of about 10 feet below the ground surface in general accordance with ASTM D4633-05. Perform energy measurement testing for the above referenced drill rig.

<u>Report Format</u>: Written report documenting results of field testing in general accordance with ASTM D4633-05, to include completed Summary of Daily Observations and Testing, Record of SPT Energy Measurement sheet(s), and PDIPLOT output data.

Specific Quality Assurance Procedures Applicable: None

Hold Points or Witness Points: Direction to perform energy measurements received from the Site Coordinator.

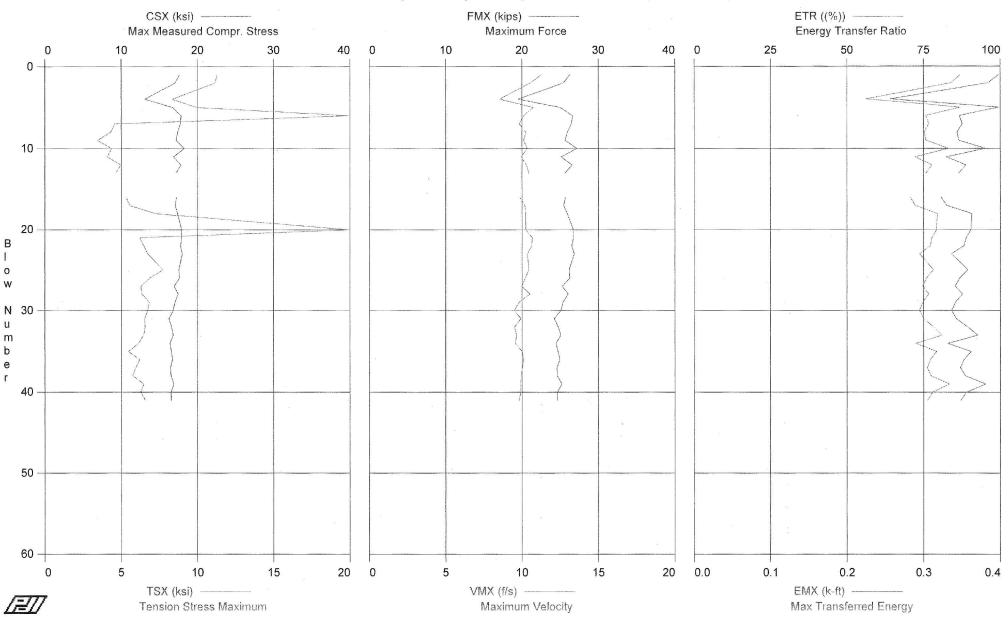
Records: All records generated shall be considered QA Records.

Reviewed and Approved By (Note: Only One Signature is Required to Issue):

Project Manager:	_ Date:
Project Principal:	Date:
Site Coordinator: 14440	Date: 12/20/06
No. of Pages:1	DCN:VGCOL 107

MACTEC

2801 YORKMONT ROAD, SUITE 100 D CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638


RECORD OF SPT ENERGY MEASUREMENT

	GENERAL INFORMATION		DRILL RIG DATA
PROJECT:	ALWR Vogtle COL Site	MAKE:	CME
LOCATION:	Waynesboro, Georgia	MODEL:	550 ATV
PROJECT NO .:	6141-06-0286	SERIAL NO .:	337153
DATE:	2-7-07	HAMMER TYPE:	AUTOMATIC
WEATHER:	SUNNY-NICE 55°	ROPE CONDITION:	N/A
INSPECTOR:	Steve Kiser	ROD SIZE:	AW-J
DRILLING COMPANY:	MACTEC ATLANTA	NO. OF SHEAVES:	N/A

DRILLING COMPANY:	Puncte	C MTLAN	111	Character Charles Connections		NO. OF SHE	AVEO.	IN/A			ann aite acted a tai a ta	Sector Contract Advan
	(1999) - Andrew Constanting Constanting	2010-01000 2000 2000 2000 2000 2000 2000		an a	BORING	DATA		an Angarata Kangalan sa sa Kasha ya ya		in teach for consistent way weather	na na na sana ana ana an	an a
BORING NUMBER:	B-11	193										
DEPTH DRILLED:	150'	PLANNER)									
TIME DRIVEN:		0 AM						9 (F)				
RIG OPERATOR:	ROBE	NT BANK	.5									
HAMMER OPERATOR:	N.	R										
PDA PAK SERIAL NO .:		14	30			14	30			14	30	
INSTR. ROD AREA:	4.	19 12										ورون ور مغاز الارد الدور و ور منابع معاليه
ACCEL. SERIAL NOS .:		3 185094	(*) 									
STRAIN SERIAL NOS .:	144	AW 1/2		-		guession and the second se		n an		uphi statusen austra eta eta eta eta eta eta eta eta eta et	a na kata kata kata kata kata kata kata	-
	SAMPLE	SPT	DEPTH	SPT	SAMPLE	SPT	DEPTH	SPT	SAMPLE	SPT	DEPTH	SPT
	DEPTH	N-VALUE	cont.	N-VALUE	DEPTH	N-VALUE	cont.	N-VALUE	DEPTH	N-VALUE	cont.	N-VALUE
	(feet)	(bpf)	(feet)	(bpf)	(feet)	(bpf)	(feet)	(bpf)	(feet)	(bpf)	(feet)	(bpf)
									ļ			
	63.5/65	5-20-15										
									l			
	68.5/20	14-32-15										
	at star											· · · · · ·
	73.5/75	7-10-13	5						<u> </u>		9-1	
	78.5/80	8-9-4									······································	
	13:3100	8-1-4									1964-1974-1974-1974-1974-1974-1974-1974-197	
				1								
	<u> </u>											
	 											
			Les de la companya d				<u></u>				19-19-19-19-19-19-19-19-19-19-19-19-19-1	
	 											
							16 Marte Loace and a familie a sur					
										. ,	tali da sete en este e	
χ.							Comparana Myter Sonan Ma					
							1991 (1992)					
											-	
REMARKS:					-					and a second		
					690 of 7	724						

MACTEC Engineering and Consulting, Inc. - Case Method Results

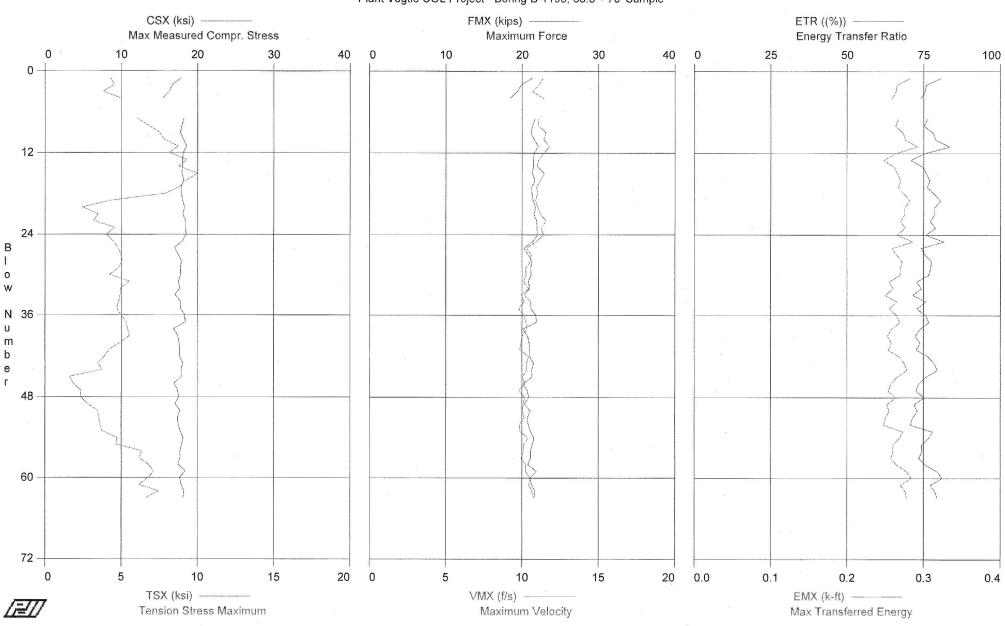
MACTEC Engineering and Consulting, Inc. Case Method Results

Page 1 of 1 PDIPLOT Ver. 2005.2 - Printed: 10-May-2007

Plant Vogtle COL Project - Boring B-1193; 63.5' - 65' Sample

Rig Serial No. 337153 (MACTEC Atlanta CME 550 ATV)

OP: S	εκ	, ,	•			3			Test date: 7-	Feb-2007
AR:	1.49 in^2						IIIS & AIRPOORD A S		SP: 0	.492 k/ft3
LE:	69.00 ft	9C							EM: 30,0	
	6,807.9 f/s									0.60
CSX:	Max Measured	d Compr. Stre	ess				72	BPM:	Blows per Minu	ute
TSX:	Tension Stres	s Maximum						EF2:	Energy of F^2	
FMX:	Maximum For	ce						ETR:	Energy Transfe	er Ratio
	Maximum Velo								Max Transferre	
	Final Displace	ment								
BL#	depth	CSX	TSX	FMX	VMX	DFN	BPM	EF2	ETR	EMX
	ft	ksi	ksi	kips	f/s	in	**	k-ft	(%)	k-ft
1	0.00	17.64	11.29	26	11.3	3.06	0.0	0.286	99.5	0.348
2	0.00	17.06	11.16	25	10.5	7.53	57.0	0.279	96.0	0.336
4	0.00	13.10	8.35	20	8.5	1.81	55.5	0.168	64.2	0.225
5	0.00	16.77	9.96	25	10.7	0.43	53.0	0.282	99.5	0.348
6	0.00	17.87	27.03	27	10.1	-6.71	56.0	0.267	86.7	0.303
7	0.00	17.76	4.58	26	9.8	1.25	54.4	0.257	87.6	0.307
8	0.00	17.41	4.31	26	10.3	0.54	55.4	0.254	86.0	0.301
9	0.00	17.21	3.45	26	10.1	0.86	54.7	0.238	86.5	0.303
10	0.00	18.26	4.37	27	10.4	1.13	54.9	0.265	95.2	0.333
11	0.00	16.86	4.09	25	9.9	1.59	55.5	0.225	82.4	0.289
12	0.00	17.83	4.97	27	10.3	0.98	54.8	0.256	88.8	0.311
13	0.00	17.18	4.63	26	10.5	0.88	55.0	0.247	86.5	0.303
16	0.00	17.24	5.32	26	9.9	0.20	54.7	0.237	80.8	0.283
17	0.00	17.08	5.56	25	10.2	0.20	54.9	0.241	82.5	0.289
18	0.00	17.40	7.25	26	10.2	1.64	55.5	0.255	90.8	0.318
20	0.00	17.94	27.62	27	10.3	-20.07	55.7	0.265	90.5	0.317
21	0.00	17.93	6.22	27	10.7	0.40	54.5	0.261	88.9	0.311
22	0.00	17.79	6.48	26	10.6	0.14	54.9	0.267	88.2	0.309
23	0.00	18.01	6.74	27	10.4	-0.42	54.9	0.269	84.2	0.295
25	0.00	17.56	7.74	26	10.4	1.28	54.4	0.253	89.4	0.313
26	0.00	17.64	6.86	26	10.2	0.61	54.6	0.255	86.8	0.304
27	0.00	16.95	6.30	25	10.0	0.89	53.9	0.235	85.3	0.299
28	0.00	17.48	6.35	26	10.5	0.97	55.0	0.248	87.8	0.307
29	0.00	17.03	6.86	25	9.8	1.45	55.9	0.240	85.4	0.299
30	0.00	16.84	6.73	25	9.5	1.15	54.4	0.241	84.2	0.295
31	0.00	16.24	6.54	24	9.9	0.26	53.5	0.255	85.7	0.300
32	0.00	16.60	6.57	25	9.5	0.90	54.9	0.249	89.4	0.313
33	0.00	16.83	6.48	25	9.6	1.19	55.4	0.250	92.7	0.324
34	0.00	16.41	6.15	24	9.6	0.73	54.2	0.239	82.9	0.290
35	0.00	16.59	5.48	25	10.0	0.93	55.3	0.246	90.5	0.317
36	0.00	16.73	6.20	25	10.1	0.82	54.5	0.251	88.2	0.309
37	0.00	16.48	5.97	25	10.0	1.16	54.7	0.241	87.0	0.305
38	0.00	16.53	5.75	25	9.9	1.51	54.4	0.239	88.7	0.310
39	0.00	16.92	6.48	25	9.9	1.34	55.5	0.254	95.3	0.334
40	0.00	16.52	6.28	25	9.9	1.33	54.6	0.242	89.0	0.312
41	0.00	16.55	6.58	25	9.8	1.24	53.6	0.247	87.1	0.305
	Average	17.06	7.57	25	10.1	0.37	54.9	0.250	87.8	0.307
				101	al number of	f blows analyz	260: 36			


Time Summary

Drive 44 seconds

10:24:11 AM - 10:24:55 AM (2/7/2007) BN 1 - 41

MACTEC Engineering and Consulting, Inc. - Case Method Results

Plant Vogtle COL Project - Boring B-1193; 68.5' - 70' Sample

MACTEC Engineering and Consulting, Inc. Case Method Results

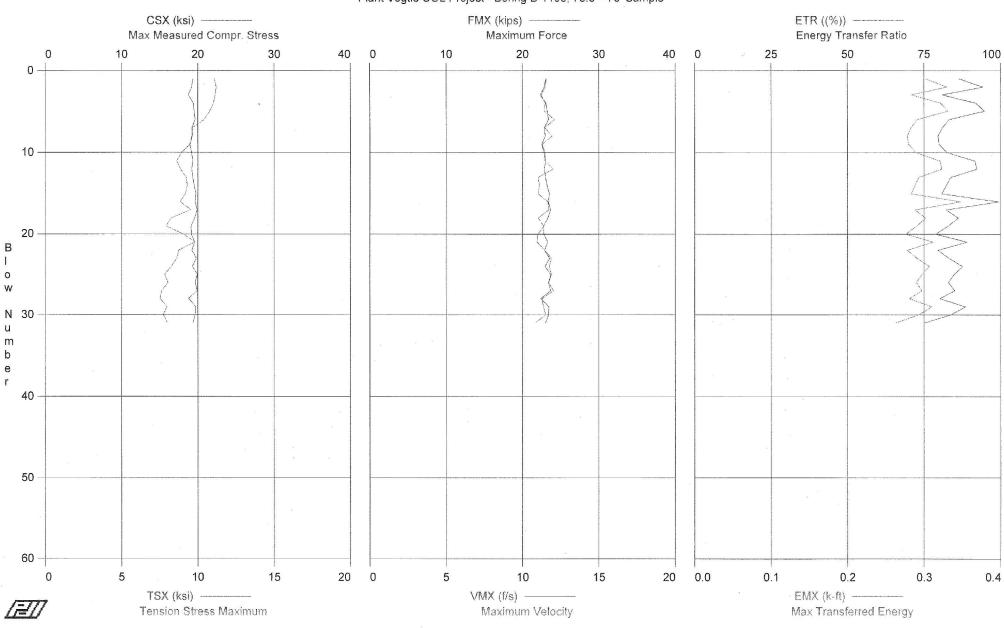
Page 1 of 2 PDIPLOT Ver. 2005.2 - Printed: 10-May-2007

Plant Vogtle COL Project - Boring B-1193; 68.5' - 70' Sample

Rig Serial No. 337153 (MACTEC Atlanta CME 550 ATV)

Plant Vogtle COL Pro OP: SEK	oject - Boring	B-1193; 68.5	' - 70' Sample	9	Rig Seria	al No. 33/15	3 (MACTEC	Test date: 7-	
AR: 1.19 in^2									.492 k/ft3
LE: 74.00 ft								EM: 30,0	
WS: 16,807.9 f/s								JC:	0.60
CSX: Max Measured	d Compr. Stre	SS						Blows per Minu	ute
TSX: Tension Stress	s Maximum							Energy of F^2	
FMX: Maximum For				×				Energy Transfe	
VMX: Maximum Velo							EMX: I	Max Transferre	ed Energy
DFN: Final Displace									
BL# depth	CSX	TSX	FMX	VMX	DFN	BPM	EF2	ETR	EMX
ft	ksi	ksi	kips	f/s	in	**	k-ft	(%)	k-ft
16,928,926.00	17.88	4.31	21	11.4	1.06	0.0	0.208	80.5	0.282
26,928,926.00 36,928,926.00	16.72 16.29	4.53 3.81	20 19	11.1 10.7	1.17	54.7 55.2	0.194 0.192	75.8 75.4	0.265 0.264
46,928,926.00	15.44	5.00	18	11.4	0.87	53.6	0.192	74.0	0.259
76,928,926.00	18.21	6.05	22	11.0	1.56	54.0	0.207	76.3	0.267
86,928,926.00	17.93	6.80	21	11.1	1.17	54.4	0.203	75.1	0.263
96,928,926.00	17.74	7.51	21	11.6	1.37	54.6	0.207	78.1	0.273
106,928,926.00	18.13	7.81	22	11.4	0.87	53.4	0.215	78.9	0.276
116,928,926.00	18.57	8.73	22	11.8	1.29	53.7	0.223	83.5	0.292
126,928,926.00	18.11	8.13	22	11.4	0.76	54.4	0.213	75.4	0.264
136,928,926.00	18.03	9.31	21	11.1	0.82	54.1	0.204	70.8	0.248
146,928,926.00 156,928,926.00	18.03 17.93	8.75 10.00	21 21	11.0 11.4	0.72	54.0 54.4	0.214 0.214	74.6 76.0	0.261 0.266
166.928.926.00	18.21	9.28	22		1.89	53.9	0.214	77.0	0.200
176,928,926.00	17.85	8.80	21	10.9	1.46	53.4	0.212	76.2	0.267
186,928,926.00	17.90	7.88	21	11.0	0.77	54.0	0.211	78.6	0.275
196,928,926.00	18.02	4.31	21	10.9	1.31	53.8	0.213	80.5	0.282
206,928,926.00	18.30	2.44	22	11.0	0.60	54.3	0.216	78.6	0.275
216,928,926.00	18.09	3.47	22	11.2	0.93	54.1	0.216	78.6	0.275
226,928,926.00	18.42	3.19	22	11.6	0.67	52.8 53.2	0.205	77.2 78.9	0.270 0.276
236,928,926.00 246,928,926.00	18.43 18.51	4.58 4.02	22 22	11.2 11.4	0.85 0.91	53.2 54.3	0.207	75.7	0.276
256,928,926.00	18.00	4.46	21	11.0	0.44	54.2	0.216	81.7	0.286
266,928,926.00	17.00	4.78	20	10.3	0.69	54.0	0.195	74.1	0.259
276,928,926.00	17.48	4.97	21	10.6	0.91	54.1	0.201	75.6	0.265
286,928,926.00	17.88	5.05	21	10.6	0.38	54.0	0.216	77.6	0.272
296,928,926.00	17.77	4.82	21	10.2	1.15	54.3	0.209	77.3	0.270
306,928,926.00	17.80 17.48	4.23 5.53	21 21	10.3 10.1	0.36 0.22	54.1 54.0	0.214 0.205	76.7 72.8	0.269 0.255
316,928,926.00 326,928,926.00	17.68	4.96	21	10.4	0.22	53.8	0.203	74.3	0.260
336,928,926.00	17.05	4.93	20	9.9	0.39	53.9	0.196	71.5	0.250
346,928,926.00	17.75	4.83	21	10.1	0.19	54.0	0.209	75.9	0.265
356,928,926.00	17.76	4.72	21	9.8	0.86	53.7	0.203	72.8	0.255
366,928,926.00	18.33	4.98	22	10.1	0.47	54.5	0.211	75.7	0.265
376,928,926.00	18.41	5.32 5.42	22 20	10.3 10.3	0.48 1.28	53.6 54.1	0.211 0.199	76.8 73.8	0.269 0.258
386,928,926.00 396,928,926.00	16.88 17.43	5.54	20	10.0	0.37	53.8	0.199	72.3	0.253
406,928,926.00	17.59	4.98	21	9.9	0.81	54.2	0.200	73.8	0.258
416,928,926.00	17.68	4.24	21	9.9	0.77	54.2	0.199	72.7	0.254
426,928,926.00	17.65	3.93	21	10.4	0.63	54.0	0.202	76.5	0.268
436,928,926.00	18.07	3.46	21	10.3	1.46	54.3	0.205	78.5	0.275
446,928,926.00	17.87	3.75	21	10.3	1.10	53.6	0.206	79.5	0.278
456,928,926.00	17.91	1.62	21	10.0	0.96	53.6	0.202	75.7	0.265
466,928,926.00 476,928,926.00	16.94 17.38	1.84 2.33	20 21	10.2 9.8	0.84 1.22	54.1 53.6	0.190 0.194	73.3 72.6	0.257 0.254
486,928,926.00	17.55	2.34	21	10.2	1.20	54.0	0.202	75.3	0.264
496,928,926.00	17.07	2.78	20	10.1	1.22	53.8	0.195	71.9	0.252
506,928,926.00	17.73	3.44	21	10.0	1.11	53.7	0.196	73.0	0.255
516,928,926.00	17.41	3.55	21	10.2	1.05	54.2	0.192	71.4	0.250
526,928,926.00	17.49	3.61	21	9.8	1.17	53.8	0.190	70.8	0.248
536,928,926.00	17.74	3.75	21	9.9	1.56	54.1	0.196	78.0	0.273
546,928,926.00	18.14 17.95	4.73 4.66	22 21	10.4 10.1	1.93 0.83	53.5 54.2	0.208	76.6 74.4	0.268 0.260
556,928,926.00 566,928,926.00	17.95	6.37	21	10.1	1.21	53.6	0.202	74.4	0.260
576,928,926.00	17.72	6.17	21	10.0	1.29	54.2	0.201	73.5	0.257
586,928,926.00	17.46	6.78	21	10.3	1.65	53.5	0.203	75.7	0.265
596,928,926.00	18.41	7.14	22	10.2	1.17	53.9	0.215	79.5	0.278
606,928,926.00	17.68	6.79	21	10.5	1.13	53.9	0.206	81.0	0.284
616,928,926.00	17.87	6.16	21	10.4	1.34	54.0	0.205	77.2	0.270
626,928,926.00	18.25	7.45	22 22	10.7	0.92 1.06	54.0 53.8	0.211	78.7 79.5	0.276 0.278
636,928,926.00	18.13	6.63 5.27	22	<u> </u>	0.96	<u>53.8</u> 54.0	0.206	79.5	0.278
Average	17.75	5.27		otal number of			0.200	70.0	0.200

Total number of blows analyzed: 61 694 of 724 Plant Vogtle COL Project - Boring B-1193; 68.5' - 70' Sample OP: SEK


Time Summary

Drive 1 minute 9 seconds

10:39:50 AM - 10:40:59 AM (2/7/2007) BN 1 - 63

MACTEC Engineering and Consulting, Inc. - Case Method Results

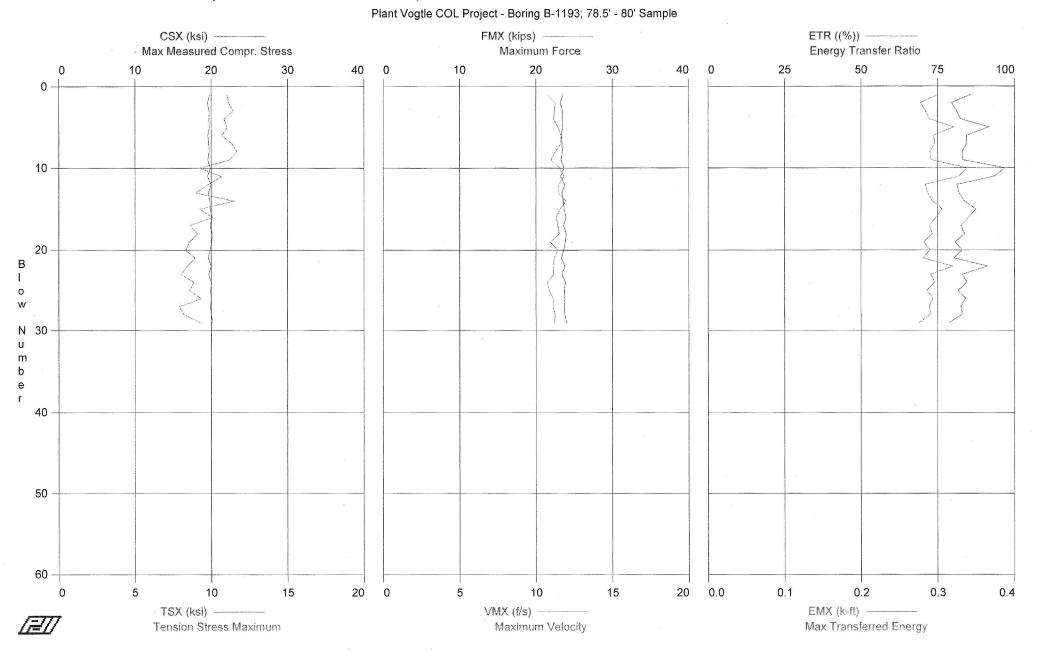
Plant Vogtle COL Project - Boring B-1193; 73.5' - 75' Sample

MACTEC Engineering and Consulting, Inc. Case Method Results Page 1 of 1 PDIPLOT Ver. 2005.2 - Printed: 10-May-2007

Plant Vogtle	COL	Project -	- Boring	B-1193;	73.5' -	75'	Sample
OD. CEK							

Rig Serial No. 337153 (MACTEC Atlanta CME 550 ATV)

OP: S	SEK	.,		re campi		r ng o o ne			Test date: 7-I	Feb-2007
AR:	1.19 in^2									.492 k/ft3
LE:	79.00 ft								EM: 30,0	
	16,807.9 f/s									0.60
	Max Measured	d Compr. Stre	ess					BPM BI	ows per Minu	
	Tension Stres								nergy of F^2	
	Maximum For								nergy Transfe	er Ratio
	Maximum Vel								ax Transferre	
	Final Displace									a Liioig)
BL#	depth	CSX	TSX	FMX	VMX	DFN	BPM	EF2	ETR	EMX
	ft	ksi	ksi	kips	f/s	in	**	k-ft	(%)	k-ft
1	0.00	19.36	11.10	23	11.6	1.70	0.0	0.233	86.4	0.302
2	0.00	19.20	11.21	23	11.5	2.13	54.1	0.229	94.3	0.330
3	0.00	18.77	11.14	22	11.2	2.00	54.6	0.218	80.9	0.283
4	0.00	19.39	11.02	23	11.5	2.91	54.3	0.229	92.0	0.322
5	0.00	19.52	10.78	23	11.4	2.83	54.3	0.235	94.7	0.331
6	0.00	19.68	10.42	23	12.1	1.96	54.3	0.230	83.2	0.291
7	0.00	19.22	9.66	23	11.4	1.95	54.9	0.225	81.0	0.283
8	0.00	19.30	9.60	23	11.9	1.68	54.0	0.218	79.6	0.278
9	0.00	18.95	9.50	23	11.3	2.62	53.9	0.214	79.9	0.280
10	0.00	19.16	8.95	23	11.5	2.00	53.5	0.220	82.5	0.289
11	0.00	19.37	8.62	23	11.5	2.70	54.9	0.224	91.6	0.321
12	0.00	19.21	8.86	23	12.0	3.40	54.2	0.221	92.2	0.323
13	0.00	19.35	9.22	23	. 11.0	4.65	53.7	0.220	83.7	0.293
14	0.00	19.50	9.32	23	11.1	2.06	53.9	0.226	82.2	0.288
15	0.00	19.75	9.19	24	11.0	1.33	53.9	0.231	80.8	0.283
16	0.00	19.64	8.84	23	11.7	2.29	54.3	0.239	99.4	0.348
17	0.00	19.91	9.55	24	11.7	2.47	54.3	0.230	82.2	0.288
18	0.00	19.59	8.26	23	11.0	2.19	53.5	0.228	86.2	0.302
19	0.00	19.12	7.91	23	11.4	1.73	54.4	0.216	82.8	0.290
20	0.00	19.14	9.06	23	11.0	1.78	54.0	0.221	78.7	0.276
21	0.00	19.59	9.82	23	10.9	3.88	54.2	0.217	89.1	0.312
22	0.00	19.23	8.75	23	11.5	2.46	54.6	0.213	79.5	0.278
23	0.00	19.80	8.62	24	11.9	1.55	53.8	0.222	83.2	0.291
24	0.00	19.29	8.27	23	11.8	1.43	53.9	0.230	87.6	0.307
25	0.00	19.93	7.82	24	11.9	1.32	54.3	0.228	84.8	0.297
26	0.00	19.66	8.05	23	11.7	1.93	54.2	0.226	83.0	0.290
27	0.00	19.92	7.64	24	12.0	1.29	53.7	0.222	85.0	0.297
28	0.00	18.81	7.52	22	11.3	1.44	54.3	0.210	80.2	0.281
29	0.00	19.70	7.98	23	11.4	1.55	54.4	0.227	88.5	0.310
30	0.00	19.66	7.74	23	11.5	0.76	54.0	0.227	83.7	0.293
31	0.00	19.36	8.02	23	10.9	1.51	53.8	0.212	75.2	0.263
	Average	19.42	9.11	23 _	11.5	2.11	54.1	0.224	85.0	0.297
				То	tal number of	blows analyz	zed: 31			


Time Summary

Drive

33 seconds

10:54:40 AM - 10:55:13 AM (2/7/2007) BN 1 - 31

MACTEC Engineering and Consulting, Inc. - Case Method Results

MACTEC Engineering and Consulting, Inc. Case Method Results

Page 1 of 1 PDIPLOT Ver. 2005.2 - Printed: 10-May-2007

1	Plant Vogtle C	COL Project -	Boring	B-1193;	78.5' -	80' Sample
	DD. CEV		-			

Rig Serial No. 337153 (MACTEC Atlanta CME 550 ATV)

OP: S	BEK							x	Test date: 7-	Feb-2007
AR:	1.19 in^2								SP: C	.492 k/ft3
LE:	84.00 ft								EM: 30,0	
WS: 1	16,807.9 f/s									0.60
CSX:	Max Measure	d Compr. Stre	ess					BPM:	Blows per Minu	
	Tension Stres							EF2:		
	Maximum For								Energy Transfe	er Ratio
VMX:	Maximum Vel	ocity						EMX:	Max Transferre	ed Energy
DFN:	Final Displace	ment								0,
BL#	depth	CSX	TSX	FMX	VMX	DFN	BPM	EF2	ETR	EMX
	, tt	ksi	ksi	kips	f/s	in	**	k-ft	(%)	k-ft
1	0.00	19.80	11.05	24	10.7	1.99	0.0	0.234	86.0	0.301
2	0.00	19.50	11.15	23	11.3	1.77	55.4	0.225	79.5	0.278
3	0.00	19.72	11.44	23	11.2	4.48	53.7	0.226	81.2	0.284
4	0.00	19.70	10.84	23	11.2	2.93	54.2	0.228	82.5	0.289
5	0.00	19.75	11.04	23	11.5	3.02	53.4	0.228	91.7	0.321
6	0.00	19.57	10.68	23	11.6	1.95	54.3	0.222	84.4	0.295
7	0.00	19.69	11.37	23	11.6	2.75	54.6	0.225	84.4	0.296
8	0.00	19.71	11.67	23	11.3	1.82	54.1	0.228	83.0	0.290
9	0.00	19.56	11.17	23	11.0	2.86	53.6	0.225	83.2	0.291
10	0.00	19.89	9.25	24	11.6	2.86	53.6	0.231	96.9	0.339
11	0.00	19.51	10.68	23	11.8	2.44	54.8	0.236	93.5	0.327
12	0.00	19.97	9.79	24	11.5	0.56	54.2	0.229	81.3	0.284
13	0.00	19.64	8.99	23	11.5	2.07	53.9	0.219	82.0	0.287
14	0.00	19.81	11.51	24	12.0	4.37	53.9	0.224	83.7	0.293
15	0.00	19.88	9.24	24	11.6	2.11	54.3	0.225	87.5	0.306
16	0.00	20.11	10.09	24	11.3	2.81	53.8	0.230	85.2	0.298
17	0.00	19.83	8.58	24	11.4	1.12	54.2	0.220	82.6	0.289
18	0.00	20.13	9.10	24	11.5	0.38	53.9	0.227	83.8	0.293
19	0.00	20.04	8.55	24	10.9	1.89	54.0	0.224	80.7	0.282
20	0.00	19.85	8.32	24	11.4	1.19	53.7	0.221	83.0	0.290
21	0.00	19.61	8.95	23	11.2	1.49	54.5	0.220	80.3	0.281
22	0.00	20.00	8.42	24	11.1	1.81	54.2	0.234	91.3	0.320
23	0.00	19.65	8.04	23	11.2	2.28	54.0	0.220	83.1	0.291
24	0.00	20.04	8.87	24	10.7	1.70	53.7	0.229	84.6	0.296
25	0.00	19.92	8.57	24	10.9	0.82	54.2	0.221	81.7	0.286
26	0.00	19.98	9.34	24	11.1	1.84	53.7	0.231	84.1	0.294
27	0.00	19.92	7.93	24	11.1	1.67	54.2	0.223	82.6	0.289
28 29	0.00	19.98	8.17	24	11.3	0.92	53.7	0.234	83.1	0.291
29	0.00	20.18	9.30	24	11.2	0.53	54.6	0.227	78.8	0.276
	Average	19.82	9.73	24	11.3	2.01	54.1	0.226	84.3	0.295

Time Summary

Drive 31 seconds

Total number of blows analyzed: 29

11:08:23 AM - 11:08:54 AM (2/7/2007) BN 1 - 29

June 27, 2007

Memorandum to File DCN VGCOL 154 From: Steve Kiser \mathcal{SU} Reviewed By: Pieter Depree $\beta \beta$

Subject:

 Report of SPT Energy – Gregg Drilling Fraste Track Hammer Serial No. XO2958 Automatic Hammer WORK INSTRUCTION VGCOL 154 Vogtle Units 3 & 4 COL Project Burke County, Georgia MACTEC Project No. 6141-06-0286

Steve Kiser, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on February 7, 2007, during drilling of Boring B-3014 at the referenced site. The testing was performed from approximately 4:25 to 5:05 PM under sunny skies with breezy conditions and a temperature of about 60 degrees Fahrenheit. The boring was drilled with personnel and equipment from Gregg Drilling. The drilling equipment consisted of a Fraste model track-mounted drill rig with an SPT automatic hammer. The drilling tools consisted of NW-J-sized drilling rods and a 2-foot long split tube sampler. Mud rotary drilling techniques were used to advance the boring below the depth at which groundwater was encountered at the time of energy testing. The drill rig operator during sampling was Mr. Marshall Burnett. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAK (Serial No. 1430), and calibrated accelerometers (Serial Nos. P5953 and P5094) and strain gages (Serial Nos. NW #146/1 and NW#146/2). An NW-sized steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod insert had a cross-sectional area of approximately 1.49 square inches and an outside diameter of approximately 2.625 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 2.625 and 2.25 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

Calibration Records

The calibration records for all the above are filed in DCN VGCOL-14.

Calculations for EFV

The work was done in general accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA, and the data was interpreted by the PDA according to the Case Method equation. The maximum energy transmitted to the drill rod string (as measured at the location of the strain gages and accelerometers) was calculated by the PDA using the EFV method equation, as shown below:

 $EFV = \int F(t) * V(t) * dt$

Where: EFV = Transferred energy (EFV equation), or Energy of FV F(t) = Calculated force at time t V(t) = Calculated velocity at time t

The EFV method of energy calculation is recommended in ASTM Standard D4633-05. The EFV equation, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not used in the data reduction.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 273 foot-pounds to 278 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 78% to 79% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall weighted average energy transfer of the SPT system (for all the depth intervals tested) was 276.0 foot-pounds, with a weighted average ETR of 78.9%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page Page 5 Work Instruction – DCN VGCOL 154 – 1 Page Page 6 Record of SPT Energy Measurement – 1 Page Pages 7 - 12 PDIPLOT Output – 6 Pages

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

Vogtle Units 3 and 4 COL Project Burke County, Georgia MACTEC Project No. 6141-06-0286

Rig Serial No.	Rig Owner	Rig Operator	Boring No. Tested	Rod Size	Date Tested	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
XO2958		Manah a 11				13.5 - 15.0	13 - 15 - 18	43	273	78.0%
(Fraste	Gregg Drilling	Marshall	B-3014	NW-J	2/7/2007	18.5 - 20.0	16 - 16 - 16	45	278	79.4%
Track)		Burnett				23.5 - 25.0	15 - 12 - 10	38	277	79.1%
							Weighted Ave	rage for Rig:	276.0	78.9%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Prenared By:	Date: 6-27-07	Checked By:	ININI-	Date:	7/31/07
Trepared Dy V W	Duit.	Checked Dy.	00 roc	Dute.	1 - 1 - 1

Work Instructions – SPT Energy Gregg Drilling FRASTE (Poole) (Hammer #XO2958) Vogtle COL Project

Project No. 6141-06-0286

Issued To:	Steve Kiser	1	 	

Location: Vogtle COL Project Field Office ____ Date: 1/17/07_____

Issued By: Matthew F. Cooke, Site Coordinator_

Valid From: 1/17/07______To: 1/17/08_____

Task Description: Measurement of energy transferred to the drill string rods from a Standard Penetration Test (SPT) automatic hammer mounted on a drill rig. Testing will be performed using a Pile Driving Analyzer (PDA) model PAK at various depth intervals below a depth of approximately 10 feet below the ground surface for the above referenced rig drilling SPT borings at the Vogtle COL Site.

Applicable Technical Procedures or Plans, or other reference: ASTM D4633-05 Standard Test Method for Energy Measurement for Dynamic Penetrometers.

<u>Specific Instructions</u> (note attachments where necessary): Obtain energy measurements with the PDA at various depth intervals below a depth of about 10 feet below the ground surface in general accordance with ASTM D4633-05. Perform energy measurement testing for the above referenced drill rig.

<u>Report Format</u>: Written report documenting results of field testing in general accordance with ASTM D4633-05, to include completed Summary of Daily Observations and Testing, Record of SPT Energy Measurement sheet(s), and PDIPLOT output data.

Specific Quality Assurance Procedures Applicable: None

Hold Points or Witness Points: Direction to perform energy measurements received from the Site Coordinator.

Records: All records generated shall be considered QA Records.

Reviewed and Approved By (Note: Only One Signature is Required to Issue):

Project Manager:	Date:
Project Principal:	Date:
Site Coordinator: 11110	Date: 1/17/07
No. of Pages:1	DCN:VGCOL 154