R&D projects relating to SCC conducted by Aging and Material Reliability Evaluation Group of JNES

- To establish the precise integrity evaluation method of RPV pressure boundaries and internals.
- To prepare the SCC evaluation guides for the regulatory side and to make technical evaluation of the

non-governmental rules etc..

Title Evaluation Technology of Irradiation Assisted Stress Corrosion Cracking	Abbrevia -tion IASCC	Project Period (FY) 2000-2008	EWR -Evaluation of a fluence of IASCC susceptibility initiation in L-grade SSsIASCC crack growth data base in neutron irradiated L-grade SSsDevelopment of CGR disposition curves for BWR NWC and HWC (IASCC Evaluation Guide) PWR -SCC initiation data for baffle former bolts, BFB(<70dpa) and IASCC crack initiation diagram of BFB in primary PWR water	Components Core internals (stainless steel)
Evaluation Technology of Stress Corrosion Crack Growth of Nickel Based Alloy	NiSCC NSC	(Phase I) 2000-2005 (Phase II) 2005-2009	-Development of a lifetime evaluation method for BFB (IASCC Evaluation Guide) BWR & PWR -SCC crack growth data base in Ni-based alloy and its weldDevelopment of CGR disposition curves for BWR NWC and HWC and PWR -Improvement of integrity evaluation method considering the effects of residual stress distribution, welding conditions, weld hardening etc. on CGRsLarge scale mock-up test to verify the applicability of the SCC growth diagram to	Pressure boundaries, Shroud support (Ni-base alloy)
Evaluation of Intergranular Stress Corrosion Cracking of Nuclear Grade Stainless Steel	IGSCC ELC	(Phase i) 2003-2007 (Phase ii) 2008-2010	the actual plants. BWR -SCC crack growth data base in weld hardened region of L-grade stainless steels -Development of CGR disposition curves for BWR NWC and HWC -Expanding of CGR disposition curves to low K range below 15 MPa√m -Large scale mock-up test to verity the applicability of the SCC growth diagram to	PLR piping Core shroud (stainless steel)
Evaluation of Neutron Irradiation Effect on SCC Crack Growth Behavior of Austenitic Stainless Steel	ENI	2007–2013	the actual plants. BWR -Evaluation of the acceleration effect of low neutron irradiation (fluence/flux) on SCC crack propagation, especially a synergy effect of neutron irradiation and weld hardening -Improvement of SCC evaluation method in terms of neutron irradiation	Core shroud Top guide etc. (stainless steel)
Integrity Evaluation of IASCC	ΙΙΑ	2009-2016	BWR Verification of applicability of Laboratory data to actual core internalsEvaluation of irradiation environment -Evaluation of specimen size effect -Enhancement of the IASCC Evaluation Guide	Core Internals (Stainless Steel)