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IASCC Mechanisms

Theories suggested to explain detrimental effect of 
irradiation on SCC can be classified into 5 categories:

Solutes depletion or enrichment at grain boundaries 
caused by radiation-induced segregation (RIS).
Hardening and loss of ductility due to irradiation 
defects.
Localized plastic flow due to cleared dislocation 
channels.
Void swelling, Irradiation creep 
Corrosion potential change due to radiolysis (in-situ 
effect)
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NRC Research

NRC IASCC research focused on the following areas
Evaluate effectiveness of SCC mitigations
• Hydrogen Water Chemistry
• Grain Boundary Engineering

Evaluate CGR models for BWRs and PWRs
Evaluate the causes, mechanisms and effects of EAC on BWR 
internals
Effect of welding, thermal processes, and cold work on crack 
growth rates
Review and evaluation of EAC in vessel internal components and 
emerging aging degradation issues
Radiation embrittlement at relevant to PWR conditions
Radiation and thermal embrittlement of cast austenitic stainless 
steels
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Hydrogen Water Chemistry
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Hydrogen Water Chemistry
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K/size criterion:
Beff and (W - a) ≥ 2.5 (K/σeff)2

σeff was suggested to take:
• (σirr+ σnonirr)/2  - by P. Andresen
• (σirr+ σnonirr)/3  - by A. Jenssen

Those high CGRs in HWC are 
questionable
Need to resolve the apparent 
diminishing  benefit of HWC at high 
values of K



Corrosion Potential
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Andresen et al., 1994

6.30

6.35

6.40

6.45

6.50

6.55

6.60

6.65

6.70

-600

-400

-200

0

200

400

450 500 550 600 650 700 750

Crack Length

Pt Electrode
SS Electrode

C
ra

ck
 L

en
gt

h 
(m

m
)

E
le

ct
ro

ch
em

ic
al

 P
ot

en
tia

l [
m

V
 (S

H
E

)]

Time (h)

Type 304 SMA Weld HAZ (Heat 10285)
Test CGRIŠ18 (Spec.85-1A-TT)

Fluence 5.0 x 1020 n/cm2

289�C HighŠPurity Water

DO <30 ppb
Steel ECP -258 mV (SHE)

DO Å250 ppb
Steel ECP 185 mV (SHE)

H2O O2, H2O2, HO2, eaq
-, H, OH, H2

Concentration is proportional to (flux)1/2

Elevated corrosion potential, especially for intermediate DO level 

NUREG\CR-4667



8

0

200

400

600

800

1000

0 2 4 6 8 10

S
tre

ss
 (M

P
a)

Strain (%)

Strain rate = 3.31 x 10-7 s-1

Type 304 SS
(Halden, ~ 2 dpa)

GBE Results Type 304 SS

IG area fraction is slightly higher in GBE 304, but there is more IG areas in nonGBE 304. 
TG cracking is more severe in nonGBE 304.

GBE 304, 13% IG with 1 IG area

Type 304, 7% IG with 3 IG areas

SSRT



9

0

200

400

600

800

1000

0 2 4 6 8 10

S
tre

ss
 (M

P
a)

Strain (%)

Strain rate = 3.31 x 10-7 s-1

Type 304L SS
(Halden, ~ 2 dpa)
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IG area fraction is higher in GBE 304L, number of IG areas is the same in both materials. 
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With about ~65% CSL fraction (Σ≤29), GBE treatment does not appear to improve IG 
crack in Type 304 or 304L SSs
With about ~70% CSL fraction (Σ≤29), GBE treatment seems to suppress IG cracking 
and increase elongation in Alloy 690 at ≈2 dpa

GBE CSL (Σ≤29) fractions

GBE Results Summary
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Radiation Induced Segregation 
- Chromium
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Bruemmer, 1996
Was, 2007

Cr depletion is similar in both sensitized and irradiated SSs and, by analogy, RIS 
is suggested to play an important role in IASCC. 
Some experimental results seem suggest a less important role of Cr depletion



Radiation Induced Segregation 
- Carbon and Sulfur

NUREG/CR-6892
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GB at high
fluence

Ni, Si, P, C, S segregated  

Cr depleted

O diffuses fast along GB under
stress and irradiation.  Cr-Fe spinel
oxide grows along GB.

S is more soluble in metal than in spinel. 
Ni and S accumulate gradually at metal/ 
spinel boundary and at spinel tip.

Ni- and S-rich thin film and islands form.

Some S ions diffuse to 
metal/spinel boundary.

At high S concentration, Ni- and S-rich film and islands melt or is amorphized under
the influence of irradiation and stress.  Voids and cavities form, preferentially near
metal/spinel boundary and spinel tip.

S ions released into water

When voids, cavities, and molten film are in significant amounts, the metal/spinel
boundary loses strength, and crack tip advances along the boundary.

void cavities

Ni is inert, remains unoxidized.

When S-rich Ni film and islands are amorphized 
or melt, Ni-S polyhedral cage is destroyed, S is freed from
the cage and diffuses back into metal matrix.  Altered distribution of S
is observed when the tip is examined after discharge or test.  

(A)

(F)

(E)

(D)

(C)

(B)

Higher GB Cr produces thicker Cr oxide,
which slows O permeation and diffusion
along GB.  More O atoms diffuse when Cr
oxide is broken by twins.



Radiation Induced Segregation 
- Carbon and Sulfur

Small concentrations of Sulfur (within compositional specification) 
shown to be detrimental
Beneficial effect of Carbon
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HAZ Crack Growth Rate Testing
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Non-Irradiated HAZ Specimens
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Irradiated HAZ Specimens
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Irradiated HAZ Specimens
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Summary
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Irradiation effects that affect IASCC:
RIS (Cr, Ni, Mo, Si, S, P …)
Irradiation hardening and embrittlement
Deformation mode
Void swelling and irradiation creep (may be not at LWR temp.)
Radiolysis

Work in progress to address regulatory needs:
New irradiation to address synergistic effect of irradiation and
thermal aging
Verify dose limit for the onset of IASCC
Effects of fabrication processes
Measure fluence effects and determine saturation dose
Effects of material chemistry, Effects of irradiation condition



Gaps in Understanding of 
IASCC

Dose dependence of IASCC 
IASCC behavior under annealing 
Flux and temperature effects
In-situ vs. ex-situ behavior,   
Irradiation effect on crack initiation and early stage of 
growth 
The relation between the deformation mode and IASCC

SFE, twining and channeling deformation mode in highly 
irradiated materials
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Future Work
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Evaluate IASCC in PWR
Evaluate IASCC susceptibility in PWR environment as a function of fluence, material 
chemistry, and processing condition (e.g., SA or CW)
Void swelling behavior in austenitic SSs, 
Synergistic effects of thermal and radiation embrittlement of cast SSs  
Effectiveness of mitigation measures, e.g., GBE & low-S content

Technical Approach
SSRT tests (5, 10, 40 dpa BOR-60 specimens)

To evaluate IASCC susceptibility (IG fraction) in PWR environment
TEM disks (<40 dpa BOR-60 specimens)

To assess void swelling at doses and temperatures relevant to PWRs
CGR/JR tests (new Halden irr., 4 CIR specimens, GE specimens, Zorita or others )

To evaluate IASCC CGRs at PWR relevant condition
To evaluate synergistic effects of thermal and radiation embrittlement


