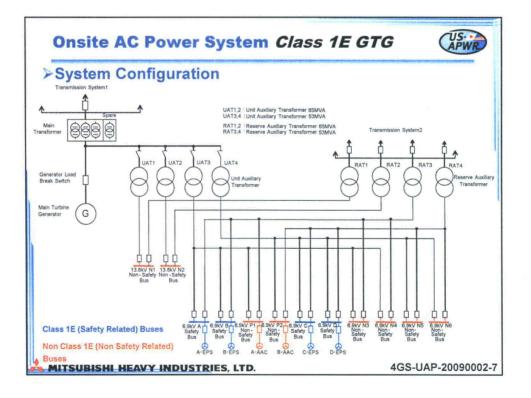
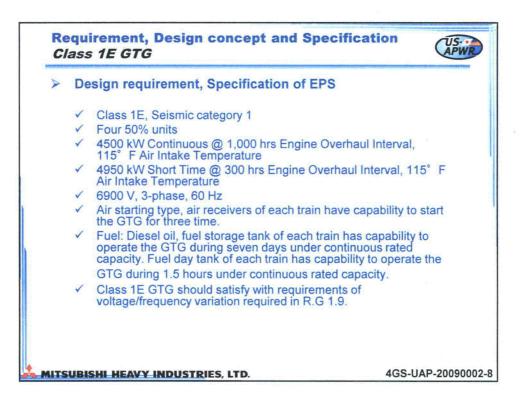
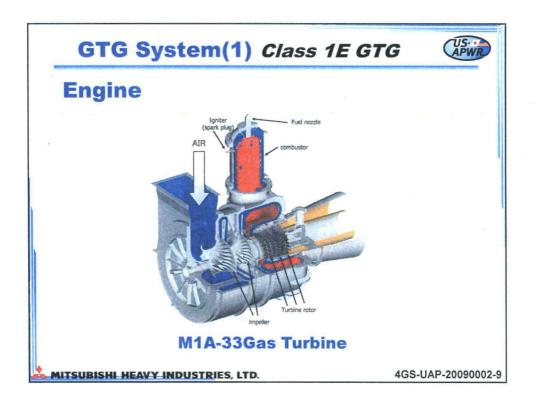


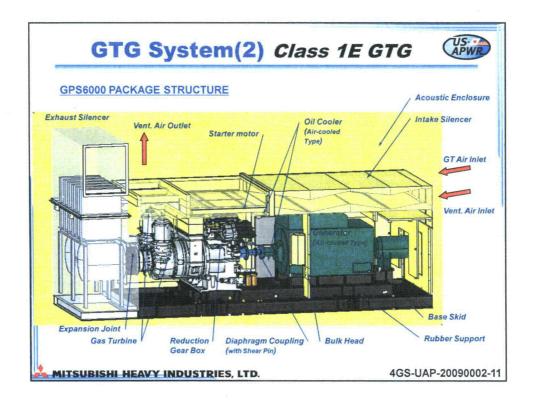
Presentation Summary	US CAPWR
<u>Class 1E GTG</u>	
> Introduction	
Background	
> GTG Advantages & Disadvantages	
Requirement, Design concept and Speci	ification
Onsite AC Power System	
Applicability for US mainly codes, stand	ards
Load Sequence	
Starting Capability	
➢ Reliability	
Supporting System of GTG	·
Control and Protection of GTG	
➢ GTG System	
Class 1E Qualification	
♦ <u>★</u>	4GS-UAP-20090002-1

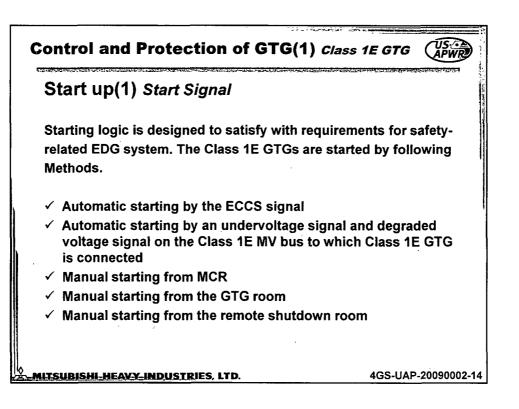


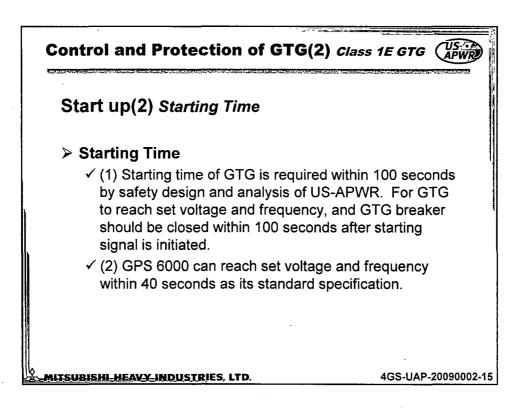

. ,	Gas Turbine Generator	Diesel Generator
Space	Compact	Large
Cooling Water	Not Required	Required
Periodic Maintenance	Required less than DG	Required
Reliability	Expected to be Better than DG	10 ⁻² (/d)
Starting Time	40 sec	10 sec

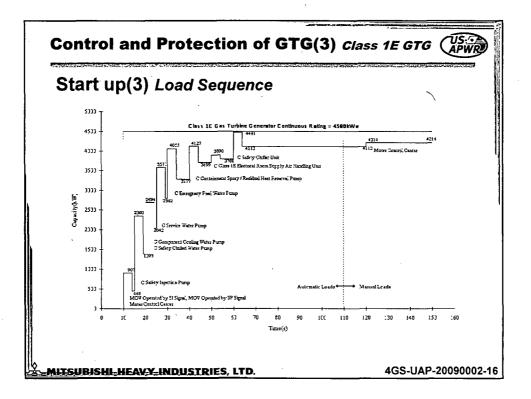

MITSUBISHI-HEAVY_INDUSTRIES, LTD.

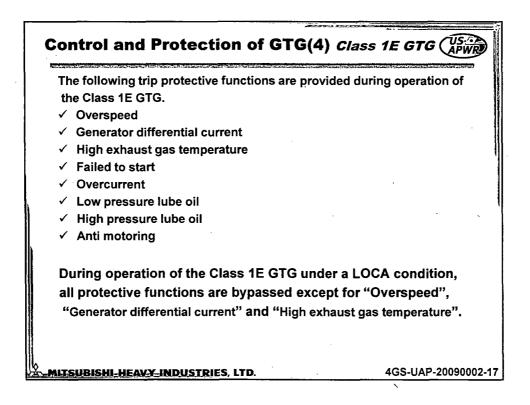
4GS-UAP-20090002-5

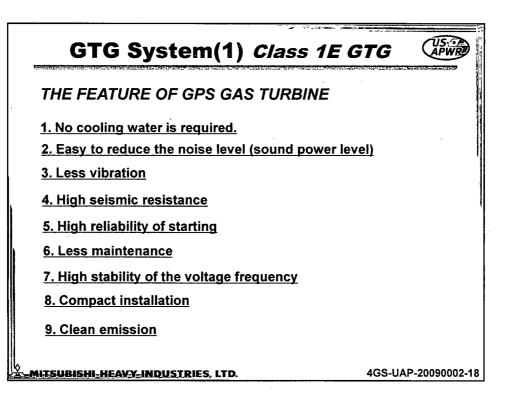

	Gas Turbine Generator	Diesel Generator
Noise level	High Freq levels are ease to silence	Noisy
Vibration	Very small levels, because the engine is not reciprocating	
Power Supply	Frequency variation is small	+/- 2% Frequency variation
Exhaust Gases	Low levels, since the combustion efficient is high	

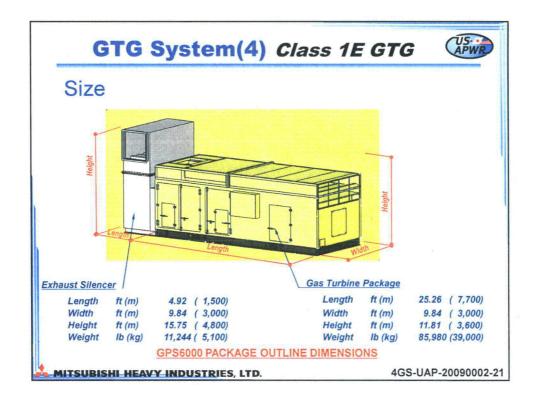


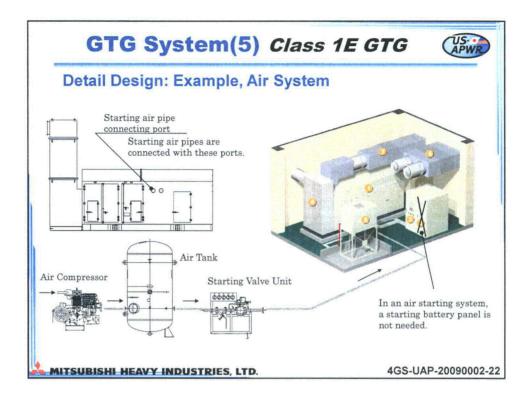


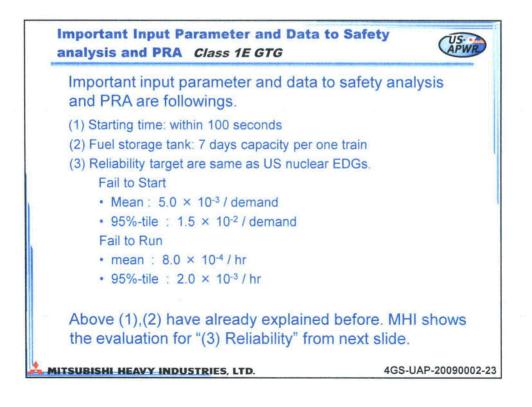


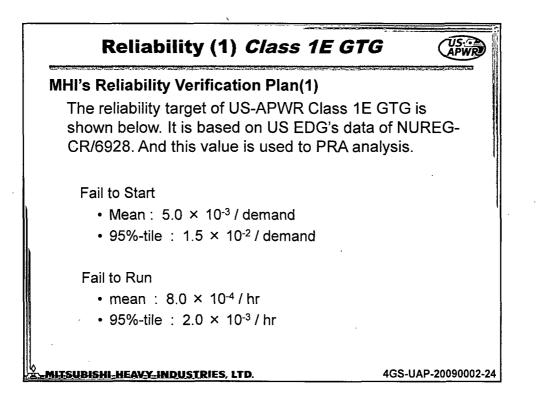

System	Diesel Generator System	Gas-Turbine Generator System
uel System		Fuel system of GTG is almost similar to DG's. Fuel system is designed based on requirement for safety-related EDG system.
ubricant System		Amount of consumption of lubricant oil is less than DG's. System is simpler than DG's and system components are fewer than DG's. Lubricant system is used for both engine and generator. Also pre-heat of lubricant oil is not needed.
Starting System	Compressed air rotates the engine directly.	Stating air system of GTG is almost similar to DG's. Air-motors rotate the GTG. Starting system is designed based on requirement for safety-related EDG system.
Cooling System	Water cooling, pre-heat is needed for quick start.	Water cooling is not needed. Self ventilation fan can cool engine and generator package.

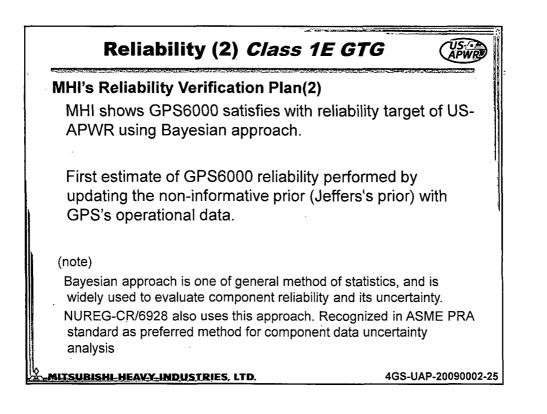

Supporting s	system of GTG (2)	
System	Diesel Generator System	Gas-Turbine Generator System
Inlet/Exhaust air system		Inlet/Exhaust air system consists of ducts, fan and exhauster. Inlet air is used for both combustion and ventilation. Vented air Is discharged, and exhaust is discharged via the exhauster/silencer.
1&C		✓ Governor and AVR control is similar to DG's. Monitoring parameters, protection signals are differ from DG's.
		✓ Control logic of GTG is designed special to GTG, and logic is installed in Class 1E control cabinet.
Auxiliary Power		Auxiliary power is designed almost similar to DG's.
		✓Pumps, fans are supplied power from Class 1E ac 480V plant power system.
		✓ Starting air valves, excitation of generator, control circuits are supplied power from Class 1E dc 125V plant power system.

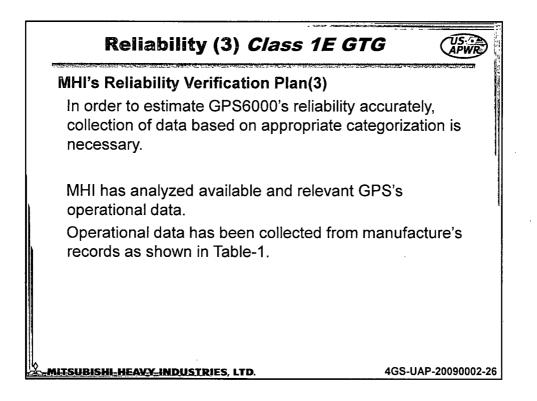


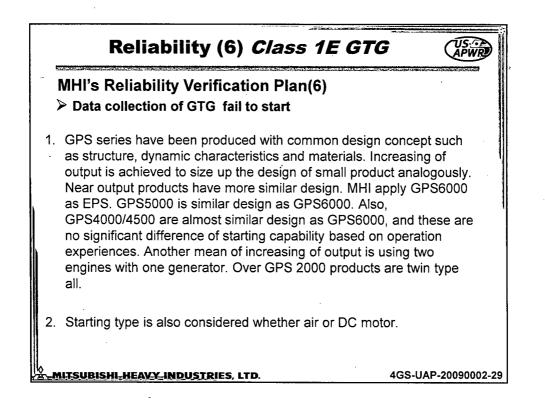


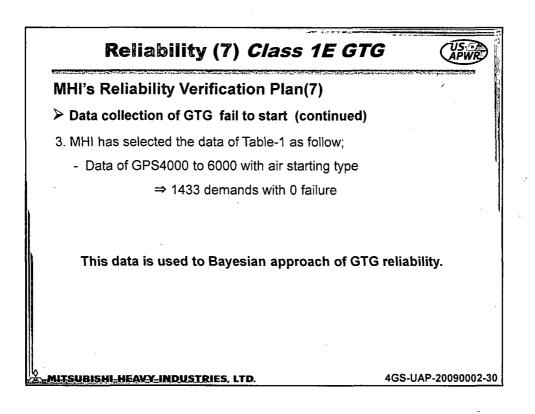

GPS6000 Standard Specificat	nn	a					
an Education of the management of the		Specification					
Electrical Output (at 104 ° F)	kW	4,800					
Allowable Ambient Temperature	° F	41 - 104					
Starting Time	Sec	Within 40.0					
Load Application Capacity	%	100.0					
Frequency Deviation (Transient / Steady State)	%	Within ±6.0 / ±0.3					
Euel Type		Kerosene / Diesel Oil / Heavy Oil					
Fuel Consumption (Kerosene / Diesel Oil / Heavy Oil)							
Noise Level at 1m from Package	dB(A)	85					
Noise Level at 1m from Exhaust Silencer Outlet	dB(A)	90					
Gas Turbine Intake Air Flow Rate	CFM	49,440					
Gas Turbine Exhaust Gas Flow Rate (at EGT 1103 °F)	CFM	135,255					
Ventilation Intake Air Flow Rate	CFM	31,783					

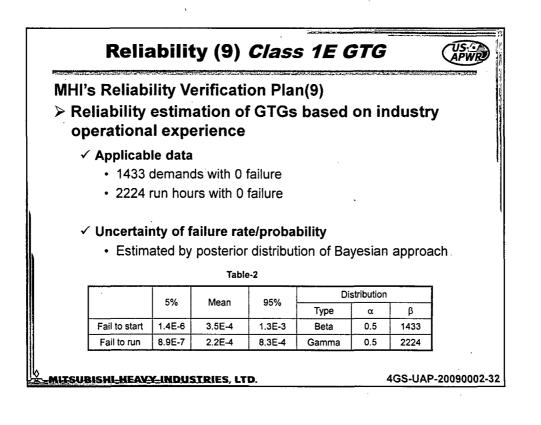

5/21/2009

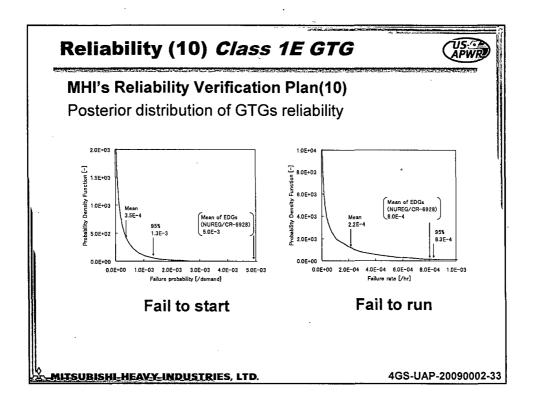

	j via:	ss 1E GTG			
M1T-33 Gas Turbine Standard S	pecificatio	<u>n</u>			
tem a litem a second second	Unit	Specification			
Turbine Model		Kawasaki M1T-33			
Engine Type		Heavy-duty, Single-shaft Simple Open Cycle			
Compressor Type		2-Stage Centrifugal			
Combustor Type		Single Can			
Turbine Type		3-Stage Axial			
Reduction Gear Box		Planetary + Parallel			
Turbine Speed	rpm	18,000			
Output Speed	rpm	1,500 / 1,800			
Rated Power Output (at 40 °C)	kW	5,200			
Dry Weight	Lb (kg)	29,762 (13,500)			
Recommended Lubricating Oil Type / Brand		Synthetic Oil Shell ASTO500 / Mobil Jet2 / Castrol AERO5000 / BP BPTO2380			
Lubricating Oil Tank Capacity	Gal	95.1			
Lubricating Oil Consumption	Gal / Hour	0.053			

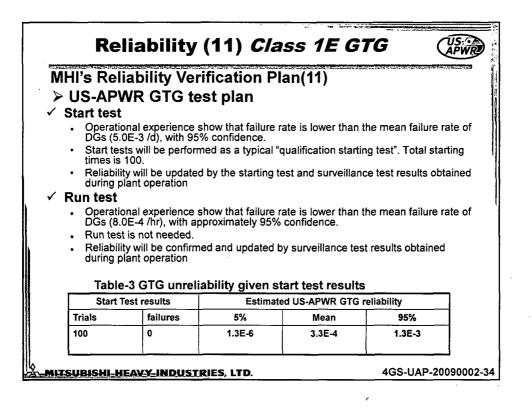


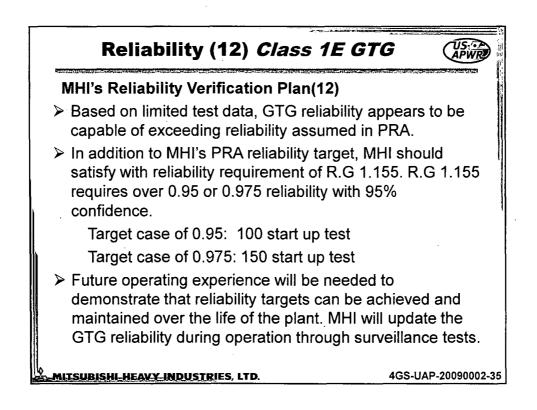


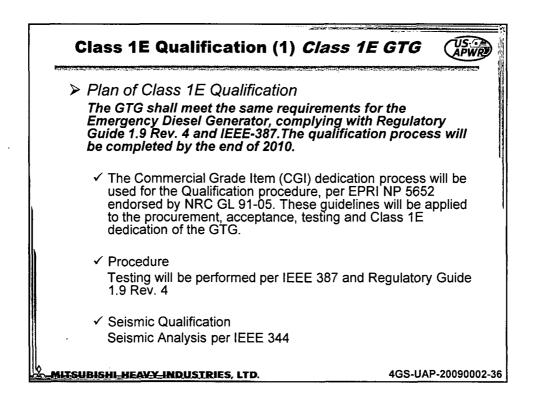


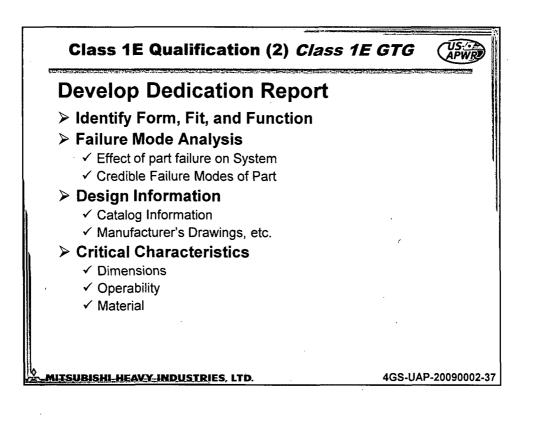

MHI	's Relial	bility Verifica	ation P	lan(4)				
Table-1(1/2)								
Product	Output(kVA)	Single engine or Twin engine	Fuel Type	Starting system	Failure/Number of starts	Failure/Operation hours		
1	2000	Twin	Heavy Oil	Air	0 /251 d	0 /98 hr		
2	2000	Twin	Heavy Oil	DC	0 /265 d	0 /75.4 hr		
3	2000	Twin	Diesel Oil	DC	0 /100 d	0 /71,3 hr		
4	2000	Twin	Kerosene	DC	0 /1053 d	0 /205 hr		
5	2500	Twin	Heavy Oil	Air	0 /383 d	0 /1129.8 hr		
6	2500	Twin	Heavy Oil	DC	0 /95 d	0 /16.4 hr		
7	4000	Twin	Heavy Oil	Air	0 /540 d	0 /982 hr		
8	4000	Twin	Heavy Oil	DC	0 /149 d	0 /96.8 hr		
9	4000	Twin	Diesel Oil	Air	0 /225 d	0 /156.4 hr		
10	4000	Twin	Diesel Oil	DC ,	0 /105 d	0 /50.8 hr		
11	4000	Twin	Kerosene	DC	0 /263 d	0 /109.6 hr		

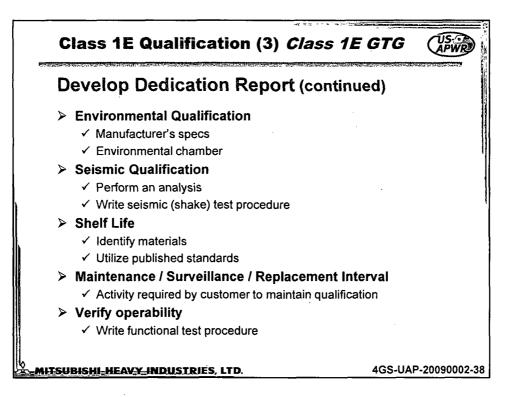

		liability (5	•	ss 1E		
		bility Verific				€πητιώμα≫ύ
		Tabl	e-1(2/2)			
Product	Output(kVA)	Single engine or Twin engine	Fuel Type	Starting system	Failure/Number of starts	Failure/Operation hours
12	4500	Twin	Heavy Oil	Air	0 /327 d	0 /125.1 hr
13	4500	Twin	Heavy Oil	DC	0 /130 d	0 /63.2 hr
14	4500	Twin	Diesel Oil	DC	0 /69 d	0 /80.3 hr
15	4500	Twin	Diesel Oil	DC	0 /147 d	0 /32.1 hr
16	4500	Twin	Kerosene	Àir	0 /341 d	0 /455.1 hr
17	4500	Twin	Kerosene	DC	0 /251 d	0 /68.0 hr
18	5000	Twin	Unidentified	DC	0 /48 d	Operation period
19	5000	Twin	Unidentified	DC	0 /48 d	of those products are short. These
20	6000	Twin	Unidentified	DC	0 /24 d	are not used for evaluation as
21	6000	Twin	Unidentified	DC	0 /24 d	conservative.
22	6000	Twin	Unidentified	DC	0 /13 d]
23	6000	Twin	Unidentified	DC	0 /13 d	
24	6000	Twin	Unidentified	DC	0 /12 d	1
25	6000	Twin	Unidentified	DC	0 /12 đ	
26	6000	Twin	Unidentified	DC	0 /6 d	1
27	6000	Twin	Unidentified	DC	0 /1 d	
MITSU	BISHLHE	AVY INDUSTRIES	, LTD.		4GS-	UAP-20090002-

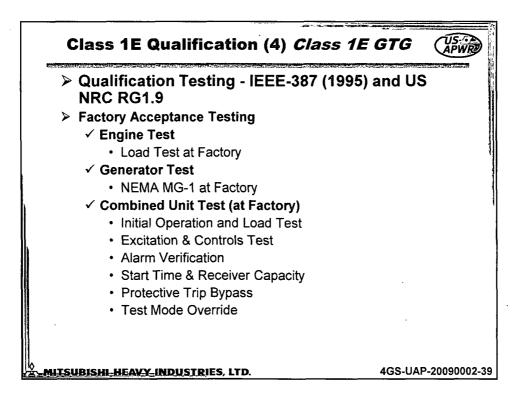


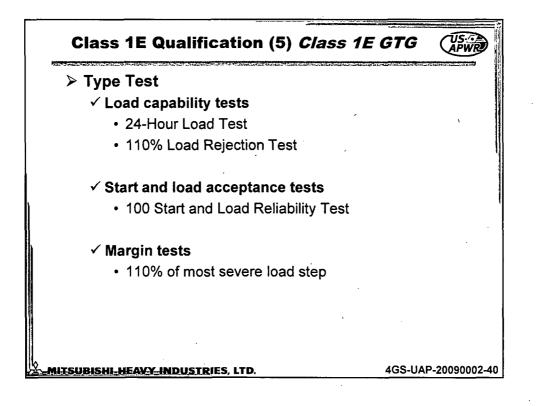


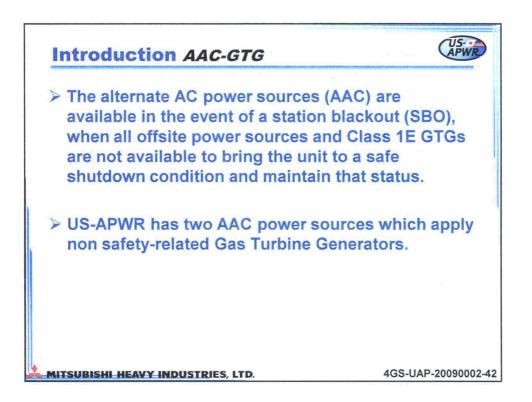


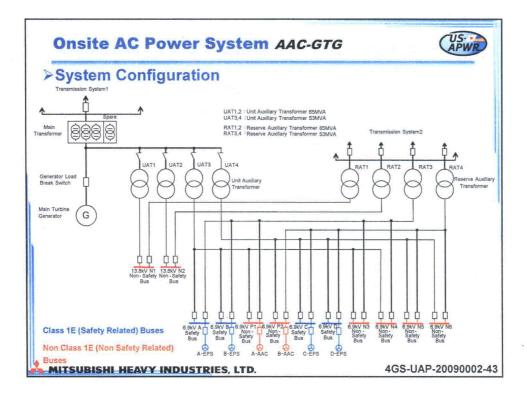




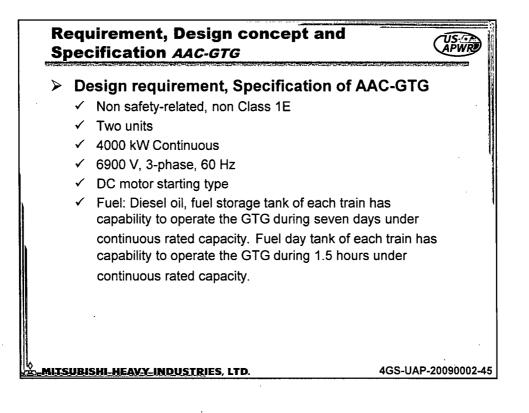




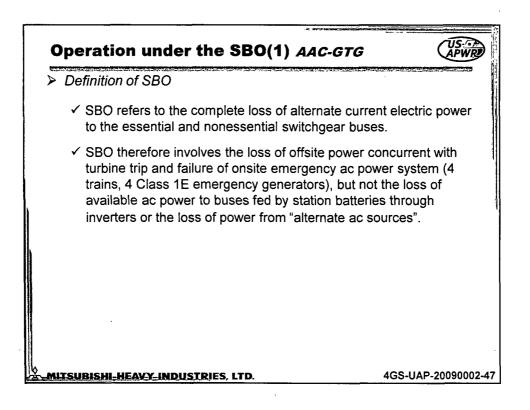


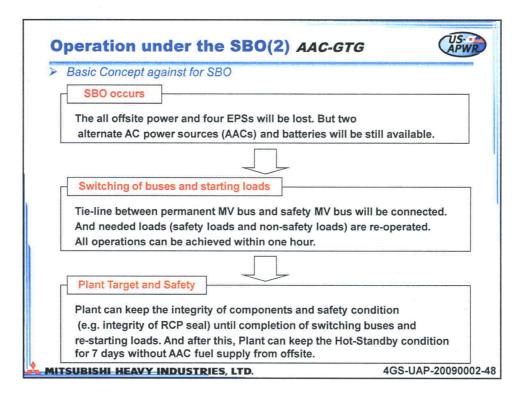


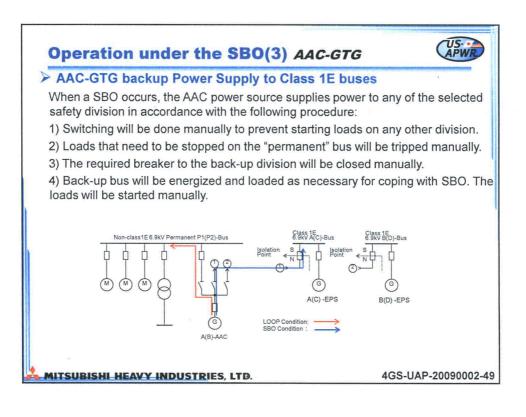

5/21/2009

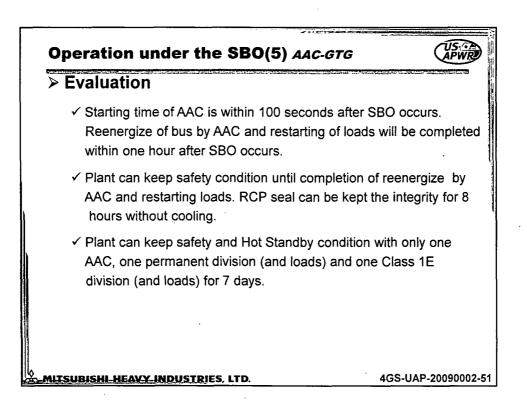


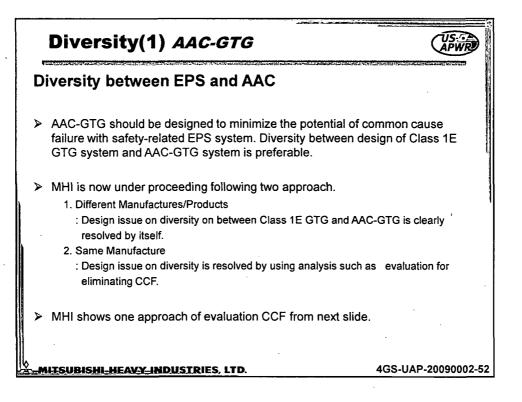
=.=.	2009			2010								20	11										
	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	Remarks
Manufacturing																							
		ļ	ļ	ļ	L		<u> </u>		_		•	Ш											
Seismic Analysis / Testing	\perp		L	Ļ	_						_				_								
Type Test																							IEEE 387 Section6.2
Start and load acceptance tests				1													_						
Margin tests				Ī													Π		•				
Load capability tests				Ī															•				
Miscellaneous test				[-				-				

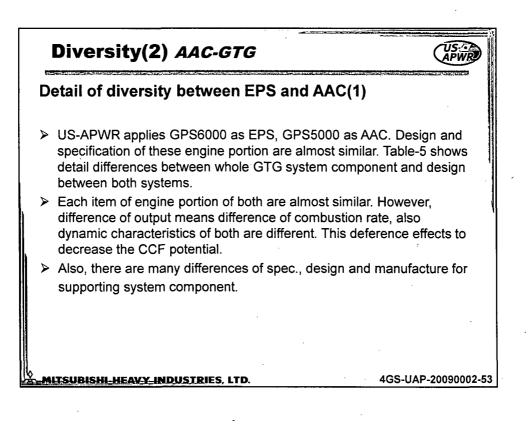




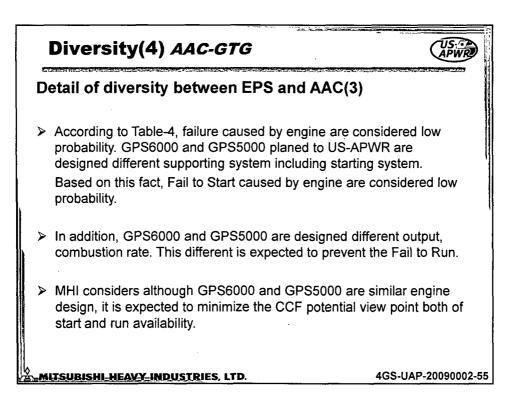



	uses for exclusive use fo on, non-safety loads req		ied via the
	Normal Operation	LOOP	SBO
Class 1E Buses	RAT	EPS	AAC
Non safety-related "Permanent" Buses	UAT	AAC	AAC (Only Required Loads)





Main Features
Boric Acid Pump (1 pump)
Charging Pump (1 pump)
Pressurizer Backup Heater (1 train)
Main Steam Relief Valve, Turbine Driven EFWP (1 pump)
Charging Pump (1 pump)
ESWP (1 pump), CCWP (1 pump) Containment Service Water Cooling Tower Fans (1 train) Chiller Unit, HVAC, Battery Charger, AAC supporting components, UP unit, Instrument and Control Cabinets etc.



5/21/2009

Di	Diversity(3) AAC-GTG						
Deta	ail of o	diversity between l	EPS and	AAC(2)			
al	most si	ned, design and specifi milar. However, NRC's i s the cause and portion	report (dis	cussed on "Reliability			
		g to NRC report, cause has been researched as	•	n of failures of FY19	98 to		
		Tabl	e-4	1			
		Fail to start Total: 116 failures	Fa	Fail to Run Total:65 failures			
	Lank	Portion	Lank	Portion			
	1	I&C : 34 failures	1	Cooling : 15 failures			
	2	Generator : 23 failures	2	Engine : 12 failures			
	3	Starting air : 13 failures	3	Fuel oil : 11 failures			
	4	Governor: 12 failures	4	I&C : 9 failures			
	5	Fuel oil: 10 failures	5	Lube oil : 8 failures			
	6	cooling: 10 failures	6	Generator : 6 failures			
	8	Engine: 4 failures					

Diversity(5) AAC-GTG					
		-	en EPS and AAC(4 e-5(1/3)		
Group	No	item	EPS	AAC	
	1	Туре	M1T-33	M1T-33A	
	2	Rated output (engine edge)	5200kW	4362kW	
	3	Combustor spec/material/size	Single CAN Type/heat-resistant alloy	Same as follows	
	4	Number of turbine blades /rows	1st row = 44 2nd row = 40 3rd row = 36	Same as follows	
	5	Turbine engine spec/material/size	3-Stage Axial / nickel-based heat-resisting alloys	Same as follows	
Engine	6	Compressor spec/material/size	2-Stage Centrifugal / titanium alloy	Same as follows	
í	7	Number of compressor blade rows	Total 54	Same as follows	
	8	Compressor compression ratio	10.23	10.08	
	9	Exhaust gas temperature	595 degree C	540 degree C	
	10	Exhaust gas flow	3830 m³/min	3650 m ³ /min	
	11	Gear spec/material/size	Planetary + Parallel	Same as follows	
	12	Change gear ratio	10:1	Same as follows	

etail o	f d	iversity between EP	S and AAC(5)	
		Table-5(2/3)		
Group	No	Item	EPS	AAC
	13	Starting Motor type	Air	DC motor
	14	Starting Motor quantity	4 .	8
	15	Starting Motor spec	Air Turbines x 4	40kW DC60V Motors x 8
	16	Main fuel pump (shaft driven) spec/quantity	screw type 23L/min @3.3MPa x 2	Potentially change manufacture
Supporting	17	Starting fuel pump (shaft driven) spec/quantity	Gear type x 2	Potentially change manufacture
system Equipment	18	Starting fuel pump (DC motor driven)	DC24V gear type x 2	Potentially change manufacture
nstalled on Engine	19	Fuel control valve spec/quantity	Electric type x 2	Potentially change manufacture
•	20	Main lube oil pump spec/quantity	Gear type x 2	Potentially change manufacture
	21	Pressure control valve spec/quantity	Plunger type x 2	Potentially change manufacture
	22	Ignition plug spec/quantity	surface gap type x 4	Potentially change manufacture
	23	Governor spec/quantity	Electric type x 2	Potentially change manufacture
Design	24	Designing/ manufacturing manual	Specified for MIT-33	Specified for MIT-33A
control, Engineering,	25	Quality control department	Base with ESI	Base (without ESI)
manufacturi ng	26	Manufacturing line	Base	Same with Base

Diversity(7) AAC-GTG						
Deta	il c	of diversity betwe		and AAC(6)		
Group	No	Item	EPS	AAC		
	27	Fuel oil transfer pump	Safety-related	Non safety-related, different manufacture, different spec.		
	28	Starting air valve	Safety-related	N/A		
	29	Fuel day tank	Safety-related	Non safety-related, different manufacture, different spec.		
	30	Fuel storage tank	Safety-related	Non safety-related, different manufacture, different spec.		
	31	Fuel system piping	Safety-related	Non safety-related, different manufacture, different spec.		
	32	Exhaust duct	Safety-related	Non safety-related, different manufacture, different spec.		
010	33	Inlet duct	Safety-related	Non safety-related, different manufacture, different spec.		
GTG system supporting component	34	Ventilation fan	Safety-related	Non safety-related, different manufacture, different spec.		
component	35	Generator	Class 1E	Non Class 1E, different manufacture, different spec.		
	36	Generator excitation circuit	Class 1E	Non Class 1E, different manufacture, different spec.		
	37	AVR	Class 1E	Non Class 1E		
	38	GTG control panel (hardwired)	Class 1E	Non Class 1E, different manufacture		
	, 3 9	GTG control panel (DDC)	Class 1E	Non Class 1E, different manufacture		
	40	AC power supply	Class 1E bus	Non Class 1E bus		
	41	DC power supply	Class 1E bus	Non Class 1E bus		