

Telephone (856) 797-0900 Fax (856) 797-0909

Mr. John Goshen c/o Document Control Desk U. S. Nuclear Regulatory Commission Washington, DC 20555-0001

May 13, 2009

Subject:

Submittal of Proposed CoC and Technical Specifications for HI-STORM 100 System (100U License Amendment Request 1014-6), USNRC Docket 72-1014, TAC NO. L24085

Reference:

- [1] NRC Letter (Goshen) to Holtec (Morin) dated March 26, 2009, "Acceptance Review of Response to Second Request for Additional Information on HI-STORM 100U System, License Amendment Request 1014-6 (TAC. No. L24085)"
- [2] Holtec Letter 5014680, dated April 6, 2009 [3] Holtec Letter 5014674, dated January 16, 2009

Dear Mr. Goshen:

This submittal addresses the "Administrative Recommendations" section of the acceptance review of response to second request for additional information [1]. It was recommended to modify Amendment 7 to make it only applicable to the HI-STORM 100U System. Holtec requested that a continued dialogue exist on the subject prior to submittal of the amendment package to rulemaking [2]. Holtec does not agree with the Staff recommendations for the reasons noted below and requests Staff to consider the proposed changes to the Certificate of Compliance (CoC) and Technical Specifications (TS) provided with this letter.

Making Amendment 7 of CoC 72-1014 unique to 100U would create the following inconsistencies.

- License Amendment Request (LAR) 1014-6 also proposed changes to the HI-STORM System which were not only specific to the 100U design. An example of such a change is the reinstatement of decay heat limits for damaged fuel which were inadvertently removed from the CoC in Amendment #5 as noted in the response to request for additional information on this LAR [3].
- The final safety analysis report (FSAR) for the HI-STORM 100 System is contained in one document and much of the supporting analysis for the 100U design is dependent on the analysis performed on the aboveground system. While the discussion and results for

MMSJU/

Telephone (856) 797-0900 Fax (856) 797-0909

Mr. John Goshen c/o Document Control Desk U. S. Nuclear Regulatory Commission Washington, DC 20555-0001

the 100U design are contained in supplements to the individual chapters, they can not be a stand-alone document.

As an alternative method to that suggested by Staff, Holtec is proposing to create two new appendices to the CoC which mimic Appendices A and B but will only be applicable to the 100U design. These will be labeled "Appendix A-100U" and "Appendix B-100U" and will provide the user of the system a clear path to implementing the 100U at their site. The existing Appendix A and Appendix B will not be muddled with specific information related to the 100U and will remain essentially unchanged except for the generic changes requested during this LAR process. There will still be one CoC and it will clearly indicate the appropriate Appendices which apply for either an aboveground or underground system.

The method proposed keeps the HI-STORM 100 System consolidated with one FSAR and allows future amendments to address the aboveground, the underground, or both systems at once.

This submittal includes updated proposed CoC (Attachment 1), updated proposed Appendix A and B (Attachment 2), newly proposed Appendix A-100U and Appendix B-100U (Attachment 3), and a consolidated list of proposed changes requested in this LAR (Attachment 4).

Again, thank you for your continued effort toward timely approval of this amendment, any additional information requested will be promptly provided. Feel free to contact me if you have any questions at 856-797-0900 x687.

Sincerely,

Tammy Morin

Acting Licensing Manager

Holtec International

cc (letter only VIA EMAIL): Mr. Eric Benner, USNRC

Mr. Michael Scott, USNRC

Holtec Group 1

Attachment 1 to Holtec Letter 5014683

NRC FORM 651 (10-2004)

10 CFR 72

U.S. NUCLEAR REGULATORY COMMISSION

CERTIFICATE OF COMPLIANCE FOR SPENT FUEL STORAGE CASKS

Page

of

5

The U.S. Nuclear Regulatory Commission is issuing this Certificate of Compliance pursuant to Title 10 of the Code of Federal Regulations, Part 72, "Licensing Requirements for Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste" (10 CFR Part 72). This certificate is issued in accordance with 10 CFR 72.238, certifying that the storage design and contents described below meet the applicable safety standards set forth in 10 CFR Part 72, Subpart L, and on the basis of the Final Safety Analysis Report (FSAR) of the cask design. This certificate is conditional upon fulfilling the requirements of 10 CFR Part 72, as applicable, and the conditions specified below.

Certificate No.	Effective Date	Expiration Date	Docket No.	Amendment No.	Amendment Effective Date	Package Identification No.
1014	TBD	06/01/20	72-1014	TBD	TBD	USA/72-1014

Issued To: (Name/Address)

Holtec International Holtec Center 555 Lincoln Drive West Marlton, NJ 08053

Safety Analysis Report Title

Holtec International Final Safety Analysis Report for the HI-STORM 100 Cask System

CONDITIONS

This certificate is conditioned upon fulfilling the requirements of 10 CFR Part 72, as applicable, the attached Appendix A (Technical Specifications) and Appendix B (Approved Contents and Design Features) for aboveground systems or the attached Appendix A-100U (Technical Specifications) and Appendix B-100U (Approved Contents and Design Features) for underground systems; and the conditions specified below:

1. CASK

a. Model No.: HI-STORM 100 Cask System

The HI-STORM 100 Cask System (the cask) consists of the following components: (1) interchangeable multi-purpose canisters (MPCs), which contain the fuel; (2) a storage overpack (HI-STORM), which contains the MPC during storage; and (3) a transfer cask (HI-TRAC), which contains the MPC during loading, unloading and transfer operations. The cask stores up to 32 pressurized water reactor (PWR) fuel assemblies or 68 boiling water reactor (BWR) fuel assemblies.

b. Description

The HI-STORM 100 Cask System is certified as described in the Final Safety Analysis Report (FSAR) and in the U.S. Nuclear Regulatory Commission's (NRC) Safety Evaluation Report (SER) accompanying the Certificate of Compliance. The cask comprises three discrete components: the MPC, the HI-TRAC transfer cask, and the HI-STORM storage overpack.

The MPC is the confinement system for the stored fuel. It is a welded, cylindrical canister with a honeycombed fuel basket, a baseplate, a lid, a closure ring, and the canister shell. All MPC components that may come into contact with spent fuel pool water or the ambient environment are made entirely of stainless steel *or passivated aluminum/aluminum alloys such as the neutron absorbers*. except for the neutron absorbers, aluminum seals onvent and drain port caps, and aluminum heat conduction elements (AHCEs), which are installed in some early-vintage MPCs. The canister shell, baseplate, lid, vent and drain port cover plates, and closure ring are the main confinement boundary components. All confinement boundary components are made entirely of stainless steel. The honeycombed basket, which is equipped with neutron absorbers, provides criticality control.

NRC FORM 651A (10-2004) 10 CFR 72

U.S. NUCLEAR REGULATORY COMMISSION

CERTIFICATE OF COMPLIANCE FOR SPENT FUEL STORAGE CASKS

Supplemental Sheet

ISSION			
Certificate No.		1014	
Amendment N	TBD		
Page	2	of	5

1. b. Description (continued)

There are eight types of MPCs: the MPC-24, MPC-24E, MPC-32F, MPC-32F, MPC-68F, and MPC-68FF. The number suffix indicates the maximum number of fuel assemblies permitted to be loaded in the MPC. All eight MPC models have the same external diameter.

The HI-TRAC transfer cask provides shielding and structural protection of the MPC during loading, unloading, and movement of the MPC from the spent fuel pool to the storage overpack. The transfer cask is a multi-walled (carbon steel/lead/carbon steel) cylindrical vessel with a neutron shield jacket attached to the exterior. Two sizes of HI-TRAC transfer casks are available: the 125 ton HI-TRAC and the 100 ton HI-TRAC. The weight designation indicates the approximate maximum-weight of a loaded transfer cask during any loading, unloading or transfer operation. Both transfer cask sizes have identical cavity diameters. The 125 ton HI-TRAC transfer cask has thicker shielding and larger outer dimensions than the 100 ton HI-TRAC transfer cask.

The HI-STORM 100 or 100S storage overpack provides shielding and structural protection of the MPC during storage. The HI-STORM 100S is a variation of the HI-STORM 100 overpack design that includes a modified lid which incorporates the air outlet ducts into the lid, allowing the overpack body to be shortened. The overpack is a heavy-walled steel and concrete, cylindrical vessel. Its side wall consists of plain (un-reinforced) concrete that is enclosed between inner and outer carbon steel shells. The overpack has four air inlets at the bottom and four air outlets at the top to allow air to circulate naturally through the cavity to cool the MPC inside. The inner shell has supports attached to its interior surface to guide the MPC during insertion and removal, provide a medium to absorb impact loads, and allow cooling air to circulate through the overpack. A loaded MPC is stored within the HI-STORM 100 or 100S storage overpack in a vertical orientation. The HI-STORM 100A and 100SA are variants of the HI-STORM 100 family outfitted with an extended baseplate and gussets to enable the overpack to be anchored to the concrete storage pad in high seismic applications.

The HI-STORM 100U storage overpack is an underground storage system identified with the HI-STORM 100 Cask System. The HI-STORM 100U utilizes a storage design identified as an air-cooled vault or caisson. The HI-STORM 100U relies on vertical ventilation instead of conduction through the soil, while it is essentially a below-grade storage cavity. Air inlets and outlets allow air to circulate naturally through the cavity to cool the MPC inside. The subterranean steel structure is seal welded to prevent ingress of any groundwater from the surrounding subgrade and is placed on a stiff foundation. The surrounding subgrade and a top surface pad provide significant radiation shielding. A loaded MPC is stored within the HI-STORM 100U storage overpack in the vertical orientation.

2. OPERATING PROCEDURES

Written operating procedures shall be prepared for cask handling, loading, movement, surveillance, and maintenance. The user's site-specific written operating procedures shall be consistent with the technical basis described in Chapter 8 of the FSAR.

3. ACCEPTANCE TESTS AND MAINTENANCE PROGRAM

Written cask acceptance tests and maintenance program shall be prepared consistent with the technical basis described in Chapter 9 of the FSAR.

NRC FORM 651A (10-2004) 10 CFR 72

U.S. NUCLEAR REGULATORY COMMISSION

CERTIFICATE OF COMPLIANCE FOR SPENT FUEL STORAGE CASKS

Supplemental Sheet

11	ISSION					
	Certificate No. Amendment No.		1014 TBD			
	Page	3	of	5		

4. QUALITY ASSURANCE

Activities in the areas of design, purchase, fabrication, assembly, inspection, testing, operation, maintenance, repair, modification of structures, systems and components, and decommissioning that are important to safety shall be conducted in accordance with a Commission-approved quality assurance program which satisfies the applicable requirements of 10 CFR Part 72, Subpart G, and which is established, maintained, and executed with regard to the cask system.

5. HEAVY LOADS REQUIREMENTS

Each lift of an MPC, a HI-TRAC transfer cask, or any HI-STORM overpack must be made in accordance to the existing heavy loads requirements and procedures of the licensed facility at which the lift is made. A plant-specific regulatory review (under 10 CFR 50.59 or 10 CFR 72.48, if applicable) is required to show operational compliance with existing plant specific heavy loads requirements. Lifting operations outside of structures governed by 10 CFR Part 50 must be in accordance with Section 5.5 of Appendix A and/or Sections 3.4.6 and Section 3.5 of Appendix B to this certificate, as applicable.

6. APPROVED CONTENTS

Contents of the HI-STORM 100 Cask System must meet the fuel specifications given in Appendix B, for aboveground systems, or Appendix B-100U for underground systems, to this certificate.

7. DESIGN FEATURES

Features or characteristics for the site, cask, or ancillary equipment must be in accordance with Appendix B, for aboveground systems, or Appendix B-100U for underground systems, to this certificate.

8. CHANGES TO THE CERTIFICATE OF COMPLIANCE

The holder of this certificate who desires to make changes to the certificate, which includes Appendix A and Appendix A-100U (Technical Specifications) and Appendix B and Appendix B-100U (Approved Contents and Design Features), shall submit an application for amendment of the certificate.

9. SPECIAL REQUIREMENTS FOR FIRST SYSTEMS IN PLACE

The air mass flow rate through the cask system will be determined by direct measurements of air velocity in the overpack cooling passages for the first *underground* and aboveground HI-STORM Cask Systems placed into service by any user with a heat load equal to or greater than 20 kW. In the aboveground HI-STORM models (HI-STORM 100, 100S, etc.), the velocity will be measured in the annulus formed between the MPC shell and the overpack inner shell. In the underground HI-STORM model (HI-STORM 100U), the velocity will be measured in the vertical downcomer air passage. An analysis shall be performed that demonstrates the measurements validate the analytic methods and thermal performance predicted by the licensing-basis thermal models in Chapter 4 of the FSAR.

NRC FORM 651A (10-2004) 10 CFR 72

U.S. NUCLEAR REGULATORY COMMISSION

CERTIFICATE OF COMPLIANCE FOR SPENT FUEL STORAGE CASKS

Supplemental Sheet

SSION				
Certificate No	1014			
Amendment N	TBD			
Page	4	of	5	

9. SPECIAL REQUIREMENTS FOR FIRST SYSTEMS IN PLACE (continued)

Each first time user of a HI-STORM 100 Cask System Supplemental Cooling System (SCS) that uses components or a system that is not essentially identical to components or a system that has been previously tested, shall measure and record coolant temperatures for the inlet and outlet of cooling provided to the annulus between the HI-TRAC and MPC and the coolant flow rate. The user shall also record the MPC operating pressure and decay heat. An analysis shall be performed, using this information, that validates the thermal methods described in the FSAR which were used to determine the type and amount of supplemental cooling necessary.

Letter reports summarizing the results of each thermal validation test and SCS validation test and analysis shall be submitted to the NRC in accordance with 10 CFR 72.4. Cask users may satisfy these requirements by referencing validation test reports submitted to the NRC by other cask users.

10. PRE-OPERATIONAL TESTING AND TRAINING EXERCISE

A dry run training exercise of the loading, closure, handling, unloading, and transfer of the HI-STORM 100 Cask System shall be conducted by the licensee prior to the first use of the system to load spent fuel assemblies. The training exercise shall not be conducted with spent fuel in the MPC. The dry run may be performed in an alternate step sequence from the actual procedures, but all steps must be performed. The dry run shall include, but is not limited to the following:

- a. Moving the MPC and the transfer cask into the spent fuel pool or cask loading pool.
- b. Preparation of the HI-STORM 100 Cask System for fuel loading.
- c. Selection and verification of specific fuel assemblies to ensure type conformance.
- d. Loading specific assemblies and placing assemblies into the MPC (using a dummy fuel assembly), including appropriate independent verification.
- e. Remote installation of the MPC lid and removal of the MPC and transfer cask from the spent fuel pool or cask loading pool.
- f. MPC welding, NDE inspections, pressure testing, draining, moisture removal (by vacuum drying or forced helium dehydration, as applicable), and helium backfilling. (A mockup may be used for this dry-run exercise.)
- g. Operation of the Supplemental Cooling System, if applicable.
- h. Transfer cask upending/downending on the horizontal transfer trailer or other transfer device, as applicable to the site's cask handling arrangement.
- i. Transfer of the MPC from the transfer cask to the overpack.
- j. Placement of the HI-STORM 100 Cask System at the ISFSI, for aboveground systems only.
- k. HI-STORM 100 Cask System unloading, including flooding MPC cavity, removing MPC lid welds. (A mockup may be used for this dry-run exercise.)

Attachment 1 to Holtec Letter 5014683

NRC FORM 651A (10-2004) 10 CFR 72

11	•	MILICI		DECIN	ATODV	COMMISSION
u.	э.	NUCL	.EAR	REGUL	.AIURI	COMMISSION

CERTIFICATE OF COMPLIANCE FOR SPENT FUEL STORAGE CASKS

Supplemental Sheet

SSION				
Certificate No	1014			
Amendment N	TBD			
Page	5	of	5	

11. The NRC has approved an exemption request by the CoC applicant from the requirements of 10 CFR 72.236(f), to allow the Supplemental Cooling System to provide for decay heat removal in accordance with Section 3.1.4 of Appendix A.When the Supplemental Cooling System is in operation to provide for decay heat removal in accordance with Section 3.1.4 of Appendix A the licensee is exempt from the requirements of 10 CFR 72.236(f).

12. AUTHORIZATION

The HI-STORM 100 Cask System, which is authorized by this certificate, is hereby approved for general use by holders of 10 CFR Part 50 licenses for nuclear reactors at reactor sites under the general license issued pursuant to 10 CFR 72.210, subject to the conditions specified by 10 CFR 72.212, and the attached Appendix A and Appendix B. The HI-STORM 100 Cask System may be fabricated and used in accordance with any approved amendment to CoC No. 1014 listed in 10 CFR 72.214. Each of the licensed HI-STORM 100 System components (i.e., the MPC, overpack, and transfer cask), if fabricated in accordance with any of the approved CoC Amendments, may be used with one another provided an assessment is performed by the CoC holder that demonstrates design compatibility.

FOR THE U.S. NUCLEAR REGULATORY COMMISSION

TBD, Chief Licensing Section Division of Spent Fuel Storage and Transportation Office of Nuclear Material Safety and Safeguards Washington, DC 20555

Dated, TBD

Attachments:

- 1. Appendix A
- 2. Appendix B
- 3. Appendix A-100U
- 4. Appendix B-100U

CERTIFICATE OF COMPLIANCE NO. 1014 Amendment #7

APPENDIX A

TECHNICAL SPECIFICATIONS

FOR THE HI-STORM 100 CASK SYSTEM

Attachment 2 to Holtec Letter 5014683

TABLE OF CONTENTS

1.0 1.1	USE A	AND APPLICATIONDefinitions		
1.2		Logical Connectors	1.2-1	
1.3		Completion Times	1.3-1	
1.4		Frequency	1.4-1	
2.0			2.0-1	
3.0		ING CONDITION FOR OPERATION (LCO) APPLICABILITY		
3.0	SURV	EILLANCE REQUIREMENT (SR) APPLICABILITY	3.0-2	
3.1		SFSC INTEGRITY	3.1.1-1	
3.1.1		Multi-Purpose Canister (MPC)		
3.1.2		SFSC Heat Removal System		
3.1.3		MPC Cavity Reflooding		
3.1.4		Supplemental Cooling System	3.1.4-1	
3.2		SFSC RADIATION PROTECTION	3.2.1-1	
3.2.1		Deleted		
3.2.2		TRANSFER CASK SURFACE CONTAMINATION	3.2.2-1	
3.2.3		Deleted	3.2.3-1	
3.3	•	SFSC CRITICALITY CONTROL	3.3 <i>.1</i> -1	١
3.3.1		Boron Concentration	3.3.1-1	•
Table	3-1	MPC Cavity Drying Limits	3.4-1	
Table	3-2	MPC Helium Backfill Limits		
4.0	•••••	······································	4.0-1	
5.0 5.1 5.2	ADMII	NISTRATIVE CONTROLS Deleted Deleted Deleted	5.0-1	
5.3 5.4		Bolotod	E O 4	
5.5		Radioactive Effluent Control Program Cask Transport Evaluation Program		
5.6		Deleted		
5.7		Radiation Protection Program	5.0-5	
Table	5-1	TRANSFER CASK and OVERPACK Lifting Requirements	5.0-4 6	

1.0 USE AND APPLICATION

		_		_					
1	1 1	n	_	ш	n	ıtı	\sim	n	c

-----NOTE-----

The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.

Term

Definition

ACTIONS

ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion

Times.

FUEL BUILDING

The FUEL BUILDING is the site-specific power plant facility, governed by the regulations of 10CFR Part 50, where the loaded OVERPACK or TRANSFER CASK is transferred to or from the transporter.

LOADING OPERATIONS

LOADING OPERATIONS include all licensed activities on an OVERPACK or TRANSFER CASK while it is being loaded with fuel assemblies. LOADING OPERATIONS begin when the first fuel assembly is placed in the MPC and end when the OVERPACK or TRANSFER CASK is suspended from or secured on the transporter. LOADING OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK.

MULTI-PURPOSE CANISTER (MPC)

MPCs are the sealed spent nuclear fuel canisters which consist of a honeycombed fuel basket contained in a cylindrical canister shell which is welded to a baseplate, lid with welded port cover plates, and closure ring. The MPC provides the confinement boundary for the contained radioactive materials.

1.1 Definitions (continued)

OVERPACK	OVERPACKs are the casks which receive and contain the sealed MPCs for interim storage on the ISFSI. They provide gamma and neutron shielding, and provide for ventilated air flow to promote heat transfer from the MPC to the environs. The <i>term</i> OVERPACK <i>includes the VVM, but</i> does not include the TRANSFER CASK.
SPENT FUEL STORAGE CASKS (SFSCs)	SFSCs are containers approved for the storage of spent fuel assemblies at the ISFSI. The HI-STORM 100 SFSC System consists of the OVERPACK and its integral MPC.
STORAGE OPERATIONS	STORAGE OPERATIONS include all licensed activities that are performed at the ISFSI while an SFSC containing spent fuel is situated within the ISFSI perimeter. STORAGE OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK (or the reverse).
TRANSFER CASK	TRANSFER CASKs are containers designed to contain the MPC during and after loading of spent fuel assemblies and to transfer the MPC to or from the OVERPACK. The HI-STORM 100 System employs either the 125-Ton or the 100-Ton HI-TRAC TRANSFER CASK.
	(continued)

1.1 Definitions (continued)

TRANSPORT OPERATIONS

TRANSPORT OPERATIONS include all licensed performed on an OVERPACK or activities TRANSFER CASK loaded with one or more fuel assemblies when it is being moved after LOADING **OPERATIONS** or before UNLOADING OPERATIONS to and from the ISFSI. TRANSPORT OPERATIONS begin when the OVERPACK or TRANSFER CASK is first suspended from or secured on the transporter and end when the OVERPACK or TRANSFER CASK is at its destination and no longer secured on or suspended from the transporter. TRANSPORT OPERATIONS includes transfer of the MPC between the OVERPACK and the TRANSFER CASK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK (or the reverse).

UNLOADING OPERATIONS

UNLOADING OPERATIONS include all licensed activities on an SFSC to be unloaded of the fuel assemblies. contained UNLOADING OPERATIONS begin when the OVERPACK or TRANSFER CASK is no longer suspended from or secured on the transporter and end when the last fuel assembly is removed from the SFSC. UNLOADING OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is no longer supported from beneath by the OVERPACK and ends when the MPC is lowered onto the HI-TRAC bottom lid.

VERTICAL VENTILATED MODULE (VVM)

The VVM is a subterranean OVERPACK where the contained fuel assemblies are supported in a vertical orientation and where air flow through cooling passages aid in rejecting heat to the environment.

1.0 USE AND APPLICATION

1.2 Logical Connectors

PURPOSE

The purpose of this section is to explain the meaning of logical connectors.

Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings.

BACKGROUND

Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.

When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.

1.2

1.2 Logical Connectors

EXAMPLES

The following examples illustrate the use of logical connectors.

EXAMPLE 1.2-1

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. LCO not met.	A.1 VERIFY	
	<u>AND</u>	
	A.2 Restore	
	A.2 Restore	

In this example the logical connector <u>AND</u> is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.

1.2 Logical Connectors

EXAMPLES (continued)

EXAMPLE 1.2-2

ACTIONS

CONDITION	REQUIRED ACTION		COMPLETION TIME		
A. LCO not met.	A.1	Stop			
	<u>OR</u>				
	A.2.1	Verify	·		
	<u>AN</u>	<u>D</u>			
	A.2.2.1	Reduce			
		<u>OR</u>			
	A.2.2.2	Perform ,			
	<u>OR</u>				
	A.3	Remove			

This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector <u>OR</u> and the left justified placement. Any one of these three ACTIONS may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector <u>AND</u>. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.

1.0 USE AND APPLICATION

1.3 Completion Times

PURPOSE

The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.

BACKGROUND

Limiting Conditions for Operation (LCOs) specify the lowest functional capability or performance levels of equipment required for safe operation of the facility. The ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Times(s).

DESCRIPTION

The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the HI-STORM 100 System is in a specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the HI-STORM 100 System is not within the LCO Applicability.

Once a Condition has been entered, subsequent subsystems, components, or variables expressed in the Condition, discovered to be not within limits, will <u>not</u> result in separate entry into the Condition unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.

1.3 Completion Times (continued)

EXAMPLES

The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.

EXAMPLE 1.3-1

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
B. Required Action and associated	B.1 Perform Action B.1 AND	12 hours
Completion Time not met.	B.2 Perform Action B.2	36 hours

Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are to complete action B.1 within 12 hours <u>AND</u> complete action B.2 within 36 hours. A total of 12 hours is allowed for completing action B.1 and a total of 36 hours (not 48 hours) is allowed for completing action B.2 from the time that Condition B was entered. If action B.1 is completed within 6 hours, the time allowed for completing action B.2 is the next 30 hours because the total time allowed for completing action B.2 is 36 hours.

1.3 Completion Times (continued)

EXAMPLES (continued)

EXAMPLE 1.3-2

ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
Α.	One system not within limit.	A.1	Restore system to within limit.	7 days
B.	Required Action and associated Completion	B.1 AND	Complete action B.1.	12 hours
	Time not met.	B.2	Complete action B.2.	36 hours

When a system is determined not to meet the LCO, Condition A is entered. If the system is not restored within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the system is restored after Condition B is entered, Conditions A and B are exited, and therefore, the Required Actions of Condition B may be terminated.

1.3 Completion Times (continued)

EXAMPLES
(continued)

EXAMPLE 1.3-3

ACTIONS

-----NOTE-----

Separate Condition entry is allowed for each component.

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. LCO not met.	A.1 Restore compliance with LCO.	4 hours
B. Required Action and associated Completion	B.1 Complete action B.1. AND	6 hours
Time not met.	B.2 Complete action B.2.	12 hours

The Note above the ACTIONS table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each component, and Completion Times tracked on a per component basis. When a component is determined to not meet the LCO, Condition A is entered and its Completion Time starts. If subsequent components are determined to not meet the LCO, Condition A is entered for each component and separate Completion Times start and are tracked for each component.

1.3

1.3 Completion Times (continued)

IMMEDIATE COMPLETION	When "Immediately" is used as a Completion Time, the Required Action should be pursued without delay and in a controlled manner.
TIME	

1.0 USE AND APPLICATION

1.4 Frequency

PURPOSE	The purpose of this section is to define the proper use and application of Frequency requirements.
DESCRIPTION	Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Limiting Condition for Operation (LCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.
	The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR.
	Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.

1.4 Frequency (continued)

EXAMPLES

The following examples illustrate the various ways that Frequencies are specified.

EXAMPLE 1.4-1

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify pressure within limit	12 hours

Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment or variables are outside specified limits, or the facility is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the facility is in a condition specified in the Applicability of the LCO, the LCO is not met in accordance with SR 3.0.1.

If the interval as specified by SR 3.0.2 is exceeded while the facility is not in a condition specified in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the specified condition. Failure to do so would result in a violation of SR 3.0.4

1.4 Frequency (continued)

EXAMPLES (continued)

EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify flow is within limits.	Once within 12 hours prior to starting activity
	AND
	24 hours thereafter

Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time the example activity is to be performed, the Surveillance must be performed within 12 hours prior to starting the activity.

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the 25% extension allowed by SR 3.0.2.

"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If the specified activity is canceled or not performed, the measurement of both intervals stops. New intervals start upon preparing to restart the specified activity.

2.0

This section is intentionally left blank

3.0 LIMITING CONDITIONS FOR OPERATION (LCO) APPLICABILITY

	·
LCO 3.0.1	LCOs shall be met during specified conditions in the Applicability, except as provided in LCO 3.0.2.
LCO 3.0.2	Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5.
	If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.
LCO 3.0.3	Not applicable.
LCO 3.0.4	When an LCO is not met, entry into a specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in specified conditions in the Applicability that are required to comply with ACTIONS or that are related to the unloading of an SFSC.
LCO 3.0.5	Equipment removed from service or not in service in compliance with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate it meets the LCO or that other equipment meets the LCO. This is an exception to LCO 3.0.2 for the system returned to service under administrative control to perform the testing.

3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

SR 3.0.1 SRs shall be met during the specified conditions in the Applicab
for individual LCOs, unless otherwise stated in the SR. Failure meet a Surveillance, whether such failure is experienced during performance of the Surveillance or between performances of Surveillance, shall be failure to meet the LCO. Failure to perform Surveillance within the specified Frequency shall be failure to m the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on equipment or variables outside specified limits.
SR 3.0.2 The specified Frequency for each SR is met if the Surveillance performed within 1.25 times the interval specified in the Frequence as measured from the previous performance or as measured from the time a specified condition of the Frequency is met. For Frequencies specified as "once," the above interval extens does not apply. If a Completion Time requires periodic performance on a "once per" basis, the above Frequency extension applies each performance after the initial performance.
Exceptions to this Specification are stated in the individ Specifications.
SR 3.0.3 If it is discovered that a Surveillance was not performed within specified Frequency, then compliance with the requirement declare the LCO not met may be delayed, from the time of discoverup to 24 hours or up to the limit of the specified Frequent whichever is less. This delay period is permitted to all performance of the Surveillance.
If the Surveillance is not performed within the delay period, the Lemust immediately be declared not met, and the applica Condition(s) must be entered.
(contin

3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

SR 3.0.3 (continued)	When the Surveillance is performed within the delay period and the Surveillance is not met, the LCO must immediately be declared not net, and the applicable Condition(s) must be entered.	
SR 3.0.4	Entry into a specified condition in the Applicability of an LCO shall not be made unless the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into specified conditions in the Applicability that are required to comply with Actions or that are related to the unloading of an SFSC.	

3.1 SFSC INTEGRITY

3.1.1 Multi-Purpose Canister (MPC)

LCO 3.1.1 The MPC shall be dry and helium filled.

Table 3-1 provides decay heat and burnup limits for forced helium dehydration (FHD) and vacuum drying. FHD is not subject to time limits. Vacuum drying is subject to the following time limits, from the end of bulk water removal until the start of helium backfill:

MPC Total Decay Heat (Q)	Vacuum Drying Time Limit
Q ≤ 23 kW	None
23 kW < Q <u><</u> 28.74 kW	40 hours
Q > 28.74 kW	Not Permitted (see Table 3-1)

APPLICABILITY: During TRANSPORT OPERATIONS and STORAGE OPERATIONS.

ACTIONS

-----NOTES------

Separate Condition entry is allowed for each MPC.

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	MPC cavity vacuum drying pressure or demoisturizer exit gas temperature limit not met. A.1 Perform an engineering evaluation to determine the quantity of moisture left in the MPC. AND		7 days	
		A.2	Develop and initiate corrective actions necessary to return the MPC to compliance with Table 3-1.	30 days
B.	MPC cavity vacuum drying acceptance criteria not met during allowable time.	B.1	Backfill the MPC cavity with helium to a pressure of at least 0.5 atm.	6 hours

	CONDITION		REQUIRED ACTION	COMPLETION TIME
C.	MPC helium backfill limit not met.	C.1	Perform an engineering evaluation to determine the impact of helium differential.	72 hours
		AND		
		C.2.1	Develop and initiate corrective actions necessary to return the MPC to an analyzed condition by adding helium to or removing helium from the MPC.	14 days
	•		<u>OR</u>	
		C.2.2	Develop and initiate corrective actions necessary to demonstrate through analysis, using the models and methods from the HI-STORM FSAR, that all limits for cask components and contents will be met.	
D.	MPC helium leak rate limit for vent and drain port cover plate welds not met.	D.1	Perform an engineering evaluation to determine the impact of increased helium leak rate on heat removal capability and offsite dose.	24 hours
	•	AND		
		D.2	Develop and initiate corrective actions necessary to return the MPC to compliance with SR 3.1.1.3.	7 days

Multi-Purpose Canister (MPC) 3.1.1

	CONDITION		REQUIRED ACTION	COMPLETION TIME
E.	Required Actions and associated Completion Times not met.	E.1	Remove all fuel assemblies from the SFSC.	30 days

3.1.1

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.1.1	Verify that the MPC cavity has been dried in accordance with the applicable limits in Table 3-1, within the specified vacuum drying time limits as applicable.	Once, prior to TRANSPORT OPERATIONS
SR 3.1.1.2	Verify MPC helium backfill quantity is within the limit specified in Table 3-2 for the applicable MPC model. Re-performance of this surveillance is not required upon successful completion of Action C.2.2.	Once, prior to TRANSPORT OPERATIONS
SR 3.1.1.3	Verify that the helium leak rate through the MPC vent and drain port confinement welds meets the leaktight criteria of ANSI N14.5-1997.	Once, prior to TRANSPORT OPERATIONS

3.1.2

3.1 SFSC INTEGRITY

3.1.2 SFSC Heat Removal System

0					
LCO 3.1.2	The SFSC Heat Removal System shall be operable				
The SFSC Heat R vent areas are unbare met.	emoval System is operable when 50% or more of the inlet and outlet blocked and available for flow or when air temperature requirements				
	During STORAGE OPERATIONS.				
ACTIONS	NOTE				
Separate Condition entry is allowed for each SFSC.					

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	SFSC Heat Removal System operable, but partially (<50%) blocked.	A.1	Remove blockage.	N/A
B.	SFSC Heat Removal System inoperable.	B.1	Restore SFSC Heat Removal System to operable status.	8 hours

	CONDITION		REQUIRED ACTION	COMPLETION TIME
C.	Required Action B.1 and associated Completion Time not met.	C.1	Measure SFSC dose rates in accordance with the Radiation Protection Program.	Immediately and once per 12 hours thereafter
		<u>AND</u> C.2.1	Restore SFSC Heat Removal System to operable status.	64 hours (MPC heat <u><</u> 28.74 kW) 24 hours (MPC heat >28.74 kW)
		C.2.2	OR Transfer the MPC into a TRANSFER CASK.	64 hours (MPC heat ≤ 28.74 kW) 24 hours (MPC heat >28.74 kW)

SURVEILLANCE REQUIREMENTS

SURVEILLANCE

FREQUENCY

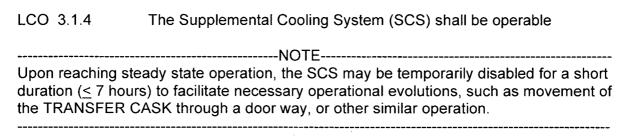
SR 3.1.2	Verify all OVERPACK inlets and outlets air ducts are free of blockage from solid debris or floodwater.	24 hours
	OR For OVERPACKS with installed temperature monitoring equipment, verify that the difference between the average OVERPACK air outlet temperature and ISFSI ambient temperature is ≤ 155°F for OVERPACKS containing PWR MPCs, ≤ 137°F for OVERPACKS containing BWR MPCs.	24 hours

3.1 SFSC INTEGRITY

3.1.3 MPC Cavity Reflooding

55 5 5a,	· · · · · · · · · · · · · · · · · · ·			
LCO 3.1.3	The MPC cavity pressure shall be < 100 psig			
	NOTE			
The LCO is only a	pplicable to wet UNLOADING OPERATIONS.			
	UNLOADING OPERATIONS prior to and during re-flooding.			
ACTIONS	NOTE			
Separate Condition entry is allowed for each MPC.				

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. MPC cavity press not within limit.	A.1 Stop re-flooding operations until MPC cavity pressure is within limit. AND	Immediately
	A.2 Ensure MPC vent port is not closed or blocked.	Immediately


Fuel Cool-Down 3.1.3

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
SR 3.1.3.1 Ensure via analysis or direct measurement MPC cavity pressure is within limit.	Once, prior to MPC re-flooding operations. AND Once every 1 hour thereafter when using direct measurement.

3.1 SFSC INTEGRITY

3.1.4 Supplemental Cooling System

APPLICABILITY: This LCO is applicable when the loaded MPC is in the TRANSFER CASK and:

a. Within 4 hours of the completion of MPC drying operations in accordance with LCO 3.1.1 or within 4 hours of transferring the MPC into the TRANSFER CASK if the MPC is to be unloaded

AND

b1. The MPC contains one or more fuel assemblies with an average burnup > 45,000 MWD/MTU

OR

b2. The MPC decay heat load exceeds 28.74 kW.

ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
A.	SFSC Supplemental Cooling System inoperable.	A.1	Restore SFSC Supplemental Cooling System to operable status.	7 days
B.	Required Action A.1 and associated Completion Time not met.	B.1	Remove all fuel assemblies from the SFSC.	30 days

Supplemental Cooling System 3.1.4

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.4.1	Verify Supplemental Cooling System is operable.	2 hours

3.2.1

3.2 SFSC RADIATION PROTECTION.

3.2.1 Deleted.

LCO 3.2.1

Deleted.

3.2.2

- 3.2 SFSC RADIATION PROTECTION.
- 3.2.2 TRANSFER CASK Surface Contamination.
- LCO 3.2.2 Removable contamination on the exterior surfaces of the TRANSFER CASK and accessible portions of the MPC shall each not exceed:
 - a. 1000 dpm/100 cm² from beta and gamma sources
 - b. 20 dpm/100 cm² from alpha sources.

This LCO is not applicable to the TRANSFER CASK if MPC transfer operations occur inside the FUEL BUILDING.			
APPLICABILITY: During TRANSPORT OPERATIONS.			
ACTIONSNOTE			
Separate Condition entry is allowed for each TRANSEER CASK			

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. TRANSFER CASK or MPC removable surface contamination limits not met.	A.1 Restore removable surface contamination to within limits.	7 days

TRANSFER CASK Surface Contamination 3.2.2

SURVEILLANCE REQUIREMENTS

,	SURVEILLANCE	FREQUENCY
SR 3.2.2.1		Once, prior to TRANSPORT OPERATIONS

..... Deleted 3.2.3

3.2 SFSC RADIATION PROTECTION.

3.2.3 Deleted.

LCO 3.2.3

Deleted.

3.3 SFSC CRITICALITY CONTROL

3.3.1 Boron Concentration

LCO 3.3.1

As required by CoC Appendix B, Table 2.1-2, the concentration of boron in the water in the MPC shall meet the following limits for the applicable MPC model and the most limiting fuel assembly array/class and classification to be stored in the MPC:

- a. MPC-24 with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and ≤ 5.0 wt% 235 U: ≥ 400 ppmb
- b. MPC-24E or MPC-24EF (all INTACT FUEL ASSEMBLIES) with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and ≤ 5.0 wt% 235 U: ≥ 300 ppmb
- c. Deleted.
- d. Deleted.
- e. MPC-24E or MPC-24EF (one or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS) with one or more fuel assemblies having an initial enrichment > 4.0 wt% 235 U and ≤ 5.0 wt% 235 U: ≥ 600 ppmb
- f. MPC-32/32F: Minimum soluble boron concentration as required by the table below[†].

			One or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS		
	Alliniacifue	L ASSEMBLIES			
Array/Class	Maximum Initial Enrichment ≤ 4.1 wt% ²³⁵ U (ppmb)	Maximum Initial Enrichment 5.0 wt% ²³⁵ U (ppmb)	Maximum Initial Enrichment ≤ 4.1 wt% ²³⁵ U (ppmb)	Maximum Initial Enrichment 5.0 wt% ²³⁵ U (ppmb)	
14x14A/B/C/D/E	1,300	1,900	1,500	2,300	
15x15A/B/C/G	1,800	2,500	1,900	2,700	
15x15D/E/F/H	1,900	2,600	2,100	2,900	
16x16A	1,400	2,000	1,500	2,300	
17x17A/B/C	1,900	2,600	2,100	2,900	

For maximum initial enrichments between 4.1 wt% and 5.0 wt% ²³⁵U, the minimum soluble boron concentration may be determined by linear interpolation between the minimum soluble boron concentrations at 4.1 wt% and 5.0 wt%.

APPLICABILITY:

During PWR fuel LOADING OPERATIONS with fuel and water in the MPC

AND

During PWR fuel UNLOADING OPERATIONS with fuel and water in the MPC.

ACTIONS

Separate Condition entry is allowed for each MPC.

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	Boron concentration not within limit.	A.1	Suspend LOADING OPERATIONS or UNLOADING OPERATIONS.	Immediately
		AND		·
		A.2	Suspend positive reactivity additions.	Immediately
		AND		
		A.3	Initiate action to restore boron concentration to within limit.	Immediately

SURVEILLANCE REQUIREMENTS

	FREQUENCY	
This surveillar submerged in	This surveillance is only required to be performed if the MPC is submerged in water or if water is to be added to, or recirculated through the MPC.	
SR 3.3.1.1	Verify boron concentration is within the applicable limit using two independent measurements.	AND Once per 48 hours thereafter.

Table 3-1 MPC Cavity Drying Limits

Fuel Burnup (MWD/MTU)	MPC Heat Load (kW)	Method of Moisture Removal (Notes 1 and 2)
All Assemblies ≤ 45,000	≤ 29 (MPC-24/24E/24EF) ≤ 26 (MPC-32/32F) ≤ 26 (MPC-68/68F/68FF)	VDS or FHD
All Assemblies ≤ 45,000	> 29 (MPC-24/24E/24EF) > 26 (MPC-32/32F) > 26 (MPC-68/68F/68FF)	FHD
One or more assemblies > 45,000	<u><</u> 36.9	FHD

Notes:

- 1. VDS means Vacuum Drying System. The acceptance criterion for VDS is MPC cavity pressure shall be ≤ 3 torr for ≥ 30 minutes.
- FHD means Forced Helium Dehydration System. The acceptance criterion for the FHD System is gas temperature exiting the demoisturizer shall be ≤ 21°F for ≥ 30 minutes or gas dew point exiting the MPC shall be ≤ 22.9°F for ≥ 30 minutes.
- 3. For total decay heat loads up to and including 20.88 kW for the MPC-24 and 21.52 kW for the MPC-68, vacuum drying of the MPC must be performed with the annular gap between the MPC and the HI-TRAC filled with water. For higher total decay heat loads in the MPC-24 and MPC-68 or for any decay heat load in an MPC-24E or MPC-32, the annular gap must be continuously flushed with water with sufficient flow to keep the exit water temperature below 125°F.

Table 3-2 MPC Helium Backfill Limits¹

MPC MODEL	LIMIT			
MPC-24/24E/24EF				
i. Cask Heat Load ≤ 27.77 kW (MPC-24) or ≤ 28.17 kW (MPC-24E/EF)	0.1212 +/-10% g-moles/l OR > 29.3 psig and < 48.5 psig			
ii. Cask Heat Load >27.77 kW (MPC-24) or > 28.17 kW (MPC-24E/EF)	≥ 45.5 psig and ≤ 48.5 psig			
MPC-68/68F/68FF				
i. Cask Heat Load < 28.19 kW	0.1218 +/-10% g-moles/I <u>OR</u> ≥ 29.3 psig and ≤ 48.5 psig			
ii. Cask Heat Load > 28.19 kW	≥ 45.5 psig and ≤ 48.5 psig			
MPC-32/32F				
i. Cask Heat Load ≤ 28.74 kW	≥ 29.3 psig and ≤ 48.5 psig			
ii. Cask Heat Load >28.74 kW	≥ 45.5 psig and ≤ 48.5 psig			

Helium used for backfill of MPC shall have a purity of ≥ 99.995%. Pressure range is at a reference temperature of 70°F

4.0

This section is intentionally left blank

The following programs shall be established, implemented and maintained.

- 5.1 Deleted.
- 5.2 Deleted.
- 5.3 Deleted.
- 5.4 Radioactive Effluent Control Program

This program implements the requirements of 10 CFR 72.44(d).

- a. The HI-STORM 100 Cask System does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required. Specification 3.1.1, Multi-Purpose Canister (MPC), provides assurance that there are not radioactive effluents from the SFSC.
- b. This program includes an environmental monitoring program. Each general license user may incorporate SFSC operations into their environmental monitoring programs for 10 CFR Part 50 operations.
- c. An annual report shall be submitted pursuant to 10 CFR 72.44(d)(3).

5.5 <u>Cask Transport Evaluation Program</u>

This program provides a means for evaluating various transport configurations and transport route conditions to ensure that the design basis drop limits are met. For lifting of the loaded TRANSFER CASK or OVERPACK using devices which are integral to a structure governed by 10 CFR Part 50 regulations, 10 CFR 50 requirements apply. This program is not applicable when the TRANSFER CASK or OVERPACK is in the FUEL BUILDING or is being handled by a device providing support from underneath (i.e., on a rail car, heavy haul trailer, air pads, etc...) or is being handled by a device designed in accordance with the increased safety factors of ANSI N14.6 and/or having redundant drop protection.

Pursuant to 10 CFR 72.212, this program shall evaluate the site-specific transport route conditions.

- a. For free-standing OVERPACKS and the TRANSFER CASK, the following requirements apply:
 - 1. The lift height above the transport route surface(s) shall not exceed the limits in Table 5-1 except as provided for in Specification 5.5.a.2. Also, if applying the limits in Table 5-1, the program shall ensure that the transport route conditions (i.e., surface hardness and pad thickness) are equivalent to or less limiting than either Set A or Set B in HI-STORM FSAR Table 2.2.9.
 - 2. For site-specific transport route surfaces that are not bounded by either the Set A or Set B parameters of FSAR Table 2.2.9, tThe program may determine lift heights by analysis based on the site-specific conditions to ensure that the impact loading due to design basis drop events does not exceed 45 g's at the top of the MPC fuel basket. These alternative analyses shall be commensurate with the drop analyses described in the Final Safety Analysis Report for the HI-STORM 100 Cask System. The program shall ensure that these alternative analyses are documented and controlled.

5.5 Cask Transport Evaluation Program (continued)

- 3. The TRANSFER CASK or OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONStransportation between the FUEL BUILDING and the CTF and/or ISFSI pad, provided the lifting device is designed in accordance with ANSI N14.6 and has redundant drop protection features.
- 4. The TRANSFER CASK and MPC, when loaded with spent fuel, may be lifted to those heights necessary to perform cask handling operations, including MPC transfer, provided the lifts are made with structures and components designed in accordance with the criteria specified in Section 3.5 of Appendix B to Certificate of Compliance No. 1014, as applicable.
- b. For the transport of OVERPACKS to be anchored to the ISFSI pad, the following requirements apply:
 - 1. Except as provided in 5.5.b.2, user shall determine allowable OVERPACK lift height limit(s) above the transport route surface(s) based on site-specific transport route conditions. The lift heights shall be determined by evaluation or analysis, based on limiting the design basis cask deceleration during a postulated drop event to ≤ 45 g's at the top of the MPC fuel basket. Evaluations and/or analyses shall be performed using methodologies consistent with those in the HI-STORM 100 FSAR.
 - The OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONS transportation between the FUEL BUILDING and the CTF and/or ISFSI pad provided the lifting device is designed in accordance with ANSI N14.6 and has redundant drop protection features.

5.5 <u>Cask Transport Evaluation Program (continued)</u>

Table 5-1

TRANSFER CASK and Free-Standing OVERPACK Lifting Requirements

ITEM	ORIENTATION	LIFTING HEIGHT LIMIT (in.)
TRANSFER CASK	Horizontal	42 (Notes 1 and 2)
TRANSFER CASK	Vertical	None Established (Note 2)
OVERPACK	Horizontal	Not Permitted
OVERPACK	Vertical	11 (Note 3)

Notes:

- To be measured from the lowest point on the TRANSFER CASK (i.e., the bottom edge of the cask/lid assemblage)
- 2. See Technical Specification 5.5.a.3 and 4
- 3. See Technical Specification 5.5.a.3.

5.6 Deleted.

5.7 Radiation Protection Program

- 5.7.1 Each cask user shall ensure that the Part 50 radiation protection program appropriately addresses dry storage cask loading and unloading, as well as ISFSI operations, including transport of the loaded OVERPACK or TRANSFER CASK outside of facilities governed by 10 CFR Part 50. The radiation protection program shall include appropriate controls for direct radiation and contamination, ensuring compliance with applicable regulations, and implementing actions to maintain personnel occupational exposures As Low As Reasonably Achievable (ALARA). The actions and criteria to be included in the program are provided below.
- 5.7.2 As part of its evaluation pursuant to 10 CFR 72.212(b)(2)(i)(C), the licensee shall perform an analysis to confirm that the dose limits of 10 CFR 72.104(a) will be satisfied under the actual site conditions and ISFSI configuration, considering the planned number of casks to be deployed and the cask contents.
- 5.7.3 Based on the analysis performed pursuant to Section 5.7.2, the licensee shall establish individual cask surface dose rate limits for the HI-TRAC TRANSFER CASK and the HI-STORM OVERPACK to be used at the site. Total (neutron plus gamma) dose rate limits shall be established at the following locations:
 - a. The top of the TRANSFER CASK and the OVERPACK.
 - b. The side of the TRANSFER CASK and OVERPACK
 - c. The inlet and outlet ducts on the OVERPACK
- 5.7.4 Notwithstanding the limits established in Section 5.7.3, the measured dose rates on a loaded OVERPACK shall not exceed the following values:
 - a. 30 mrem/hr (gamma + neutron) on the top of the OVERPACK
 - b. 300 mrem/hr (gamma + neutron) on the side of the OVERPACK, excluding inlet and outlet ducts
- 5.7.5 The licensee shall measure the TRANSFER CASK and OVERPACK surface neutron and gamma dose rates as described in Section 5.7.8 for comparison against the limits established in Section 5.7.3 or Section 5.7.4, whichever are lower.

- 5.7 Radiation Protection Program (cont'd)
 - 5.7.6 If the measured surface dose rates exceed the lower of the two limits established in Section 5.7.3 or Section 5.7.4, the licensee shall:
 - a. Administratively verify that the correct contents were loaded in the correct fuel storage cell locations.
 - b. Perform a written evaluation to verify whether placement of the asloaded an OVERPACK at the ISFSI containing the as-loaded MPC will cause the dose limits of 10 CFR 72.104 to be exceeded.
 - c. Perform a written evaluation within 30 days to determine why the surface dose rate limits were exceeded.
 - 5.7.7 If the evaluation performed pursuant to Section 5.7.6 shows that the dose limits of 10 CFR 72.104 will be exceeded, the MPC shall not be placed into storage *or*, in the case of the OVERPACK loaded at the ISFSI, the MPC shall be removed from storage until appropriate corrective action is taken to ensure the dose limits are not exceeded.
 - 5.7.8 TRANSFER CASK and OVERPACK surface dose rates shall be measured at approximately the following locations:
 - a. A minimum of four (4) dose rate measurements shall be taken on the side of the TRANSFER CASK approximately at the cask mid-height plane. The measurement locations shall be approximately 90 degrees apart around the circumference of the cask. Dose rates shall be measured between the radial ribs of the water jacket.
 - b. A minimum of four (4) TRANSFER CASK top lid dose rates shall be measured at locations approximately half way between the edge of the hole in the top lid and the outer edge of the top lid, 90 degrees apart around the circumference of the top lid.
 - c. A minimum of twelve (12) dose rate measurements shall be taken on the side of the OVERPACK in three sets of four measurements. One measurement set shall be taken approximately at the cask mid-height plane, 90 degrees apart around the circumference of the cask. The second and third measurement sets shall be taken approximately 60 inches above and below the mid-height plane, respectively, also 90 degrees apart around the circumference of the cask.

5.7 Radiation Protection Program (cont'd)

- d. A minimum of five (5) dose rate measurements shall be taken on the top of the OVERPACK. One dose rate measurement shall be taken at approximately the center of the lid and four measurements shall be taken at locations on the top concrete shield, approximately half way between the center and the edge of the top concrete shield, 90 degrees apart around the circumference of the lid.
- e. A dose rate measurement shall be taken on contact at the surface of each inlet and outlet vent duct screen of the OVERPACK.

CERTIFICATE OF COMPLIANCE NO. 1014 Amendment #7

APPENDIX B

APPROVED CONTENTS AND DESIGN FEATURES
FOR THE HI-STORM 100 CASK SYSTEM

Attachment 2 to Holtec Letter 5014683

TABLE OF CONTENTS

1.0 [DEFINIT	IONS	1-1
2.0 A	APPRO\	'ED CONTENTS	2-1
3.0 [DESIGN	FEATURES	3-1
3.1	Site		3-1
3.2	Desigi	Features Important for Criticality Control	3-1
3.3	Codes	and Standards	3-2
3.4	Site S	pecific Parameters and Analyses	3-13
3.5	Cask	Fransfer Facility (CTF)	3-17
3.6	Force	Helium Dehydration System	3-20
3.7	Supple	emental Cooling System	3-22
3.8	Comb	ustible Gas Monitoring During MPC Lid Welding	3-24
3.9	Not Us	sed	•
3.10	Not Us	sed	
3.11	Preve	nting Oxidation of Fuel	3-25
		List of ASME Code Alternatives for HI-STORM 100 System	3-4
Table	e 3-2	Load Combinations and Service Condition Definitions for the	
		CTF Structure	3-19

	De		

NOTE
The defined terms of this section appear in capitalized type and are applicable
throughout these Technical Specifications and Bases.

Torm	Definition		
Term CASK TRANSFER FACILITY	Definition A CASK TRANSFER FACILITY is an aboveground or		
	A CASK TRANSFER FACILITY is an aboveground or		
(CTF)	underground system used during the transfer of a		
	loaded MPC between a transfer cask and a storage		
	OVERPACK. The CASK TRANSFER FACILITY		
	includes the following components and equipment: (1)		
	a Cask Transfer Structure used to stabilize the		
	OVERPACK, TRANSFER CASK and/or MPC during		
	lifts involving spent fuel not bounded by the		
·	regulations of 10 CFR Part 50, and (2) Either a		
	stationary lifting device or a mobile lifting device used		
	in concert with the stationary structure to lift the		
DAMA OF DELICITION OF THE LANGE MELLY	OVERPACK, TRANSFER CASK, and/or MPC.		
DAMAGED FUEL ASSEMBLY	DAMAGED FUEL ASSEMBLIES are fuel assemblies		
	with known or suspected cladding defects, as		
	determined by a review of records, greater than		
	pinhole leaks or hairline cracks, empty fuel rod		
	locations that are not filled with dummy fuel rods,		
	missing structural components such as grid spacers,		
	whose structural integrity has been impaired such that		
	geometric rearrangement of fuel or gross failure of the		
	cladding is expected based on engineering		
	evaluations, or that cannot be handled by normal		
	means. Fuel assemblies that cannot be handled by		
	normal means due to fuel cladding damage are		
DAMA OF DELIFI	considered FUEL DEBRIS.		
DAMAGED FUEL	DFCs are specially designed enclosures for		
CONTAINER (DFC)	DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS		
·	which permit gaseous and liquid media to escape		
	while minimizing dispersal of gross particulates. DFCs		
	authorized for use in the HI-STORM 100 System are		
	as follows:		
	Holtec Dresden Unit 1/Humboldt Bay design Transmission Dresden Unit 1 design		
	2. Transnuclear Dresden Unit 1 design		
	Holtec Generic BWR design Holtes Generic BWR design		
	4. Holtec Generic PWR design		

1.0 Definitions (continued)

1.0 Definitions (continued)	
FUEL DEBRIS	FUEL DEBRIS is ruptured fuel rods, severed rods,
	loose fuel pellets, containers or structures that are
	supporting these loose fuel assembly parts, or fuel
	assemblies with known or suspected defects which
	cannot be handled by normal means due to fuel
	cladding damage.
INTACT FUEL ASSEMBLY	INTACT FUEL ASSEMBLIES are fuel assemblies
	without known or suspected cladding defects greater
	than pinhole leaks or hairline cracks and which can be
	handled by normal means. Fuel assemblies without
	fuel rods in fuel rod locations shall not be classified as
	INTACT FUEL ASSEMBLIES unless dummy fuel rods
	are used to displace an amount of water greater than
	or equal to that displaced by the fuel rod(s).
LOADING OPERATIONS	LOADING OPERATIONS include all licensed activities
	on an OVERPACK or TRANSFER CASK while it is
·	being loaded with fuel assemblies. LOADING
	OPERATIONS begin when the first fuel assembly is
	placed in the MPC and end when the OVERPACK or
	TRANSFER CASK is suspended from or secured on
	the transporter. LOADING OPERATIONS does not
	included MPC transfer between the TRANSFER CASK
	and the OVERPACK, which begins when the MPC is
	lifted off the HI-TRAC bottom lid and ends when the
	MPC is supported from beneath by the OVERPACK.
MINIMUM ENRICHMENT	MINIMUM ENRICHMENT is the minimum assembly
	average enrichment. Natural uranium blankets are not
	considered in determining minimum enrichment.
MULTI-PURPOSE CANISTER	MPCs are the sealed spent nuclear fuel canisters
(MPC)	which consist of a honeycombed fuel basket contained
()	in a cylindrical canister shell which is welded to a
	baseplate, lid with welded port cover plates, and
	closure ring. The MPC provides the confinement
	boundary for the contained radioactive materials.
NON-FUEL HARDWARE	NON-FUEL HARDWARE is defined as Burnable
	Poison Rod Assemblies (BPRAs), Thimble Plug
	Devices (TPDs), Control Rod Assemblies (CRAs),
	Axial Power Shaping Rods (APSRs), Wet Annular
	Burnable Absorbers (WABAs), Rod Cluster Control
	Assemblies (RCCAs), Control Element Assemblies
	(CEAs), Neutron Source Assemblies (NSAs), water
	displacement guide tube plugs, orifice rod assemblies,
	and vibration suppressor inserts, and components of
·	these devices such as individual rods.
	mese devices such as mulvidual 1005.

1.0 Definitions (continued)

OVERPACK	OVERPACKs are the casks which receive and contain the sealed MPCs for interim storage on the ISFSI. They provide gamma and neutron shielding, and provide for ventilated air flow to promote heat transfer from the MPC to the environs. The <i>term</i> OVERPACK <i>includes the VVM, but</i> does not include the TRANSFER CASK.
PLANAR-AVERAGE INITIAL ENRICHMENT	PLANAR AVERAGE INITIAL ENRICHMENT is the average of the distributed fuel rod initial enrichments within a given axial plane of the assembly lattice.
SPENT FUEL STORAGE CASKS (SFSCs)	An SFSC is a container approved for the storage of spent fuel assemblies at the ISFSI. The HI-STORM 100 SFSC System consists of the OVERPACK and its integral MPC.
TRANSFER CASK	TRANSFER CASKs are containers designed to contain the MPC during and after loading of spent fuel assemblies and to transfer the MPC to or from the OVERPACK. The HI-STORM 100 System employs either the 125-Ton or the 100-Ton HI-TRAC TRANSFER CASK.
TRANSPORT OPERATIONS	TRANSPORT OPERATIONS include all licensed activities performed on an OVERPACK or TRANSFER CASK loaded with one or more fuel assemblies when it is being moved after LOADING OPERATIONS or before UNLOADING OPERATIONS to and from the ISFSI. TRANSPORT OPERATIONS begin when the OVERPACK or TRANSFER CASK is first suspended from or secured on the transporter and end when the OVERPACK or TRANSFER CASK is at its destination and no longer secured on or suspended from the transporter. TRANSPORT OPERATIONS include transfer of the MPC between the OVERPACK and the TRANSFER CASK which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK (or the reverse).

1.0 Definitions (continued)

	-
UNLOADING OPERATIONS	UNLOADING OPERATIONS include all licensed activities on an SFSC to be unloaded of the contained fuel assemblies. UNLOADING OPERATIONS begin when the OVERPACK or TRANSFER CASK is no longer suspended from or secured on the transporter and end when the last fuel assembly is removed from the SFSC. UNLOADING OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK which begins when the MPC is no longer supported from beneath by the OVERPACK and ends when the MPC is lowered onto the HI-TRAC bottom lid.
VERTICAL VENTILATED MODULE (VVM)	The VVM is a subterranean OVERPACK where the contained fuel assemblies are supported in a vertical orientation and where air flow through cooling passages aid in rejecting heat to the environment.
ZR	ZR means any zirconium-based fuel cladding or fuel channel material authorized for use in a commercial nuclear power plant reactor.

2.0 APPROVED CONTENTS

2.1 Fuel Specifications and Loading Conditions

2.1.1 Fuel To Be Stored In The HI-STORM 100 SFSC System

- a. INTACT FUEL ASSEMBLIES, DAMAGED FUEL ASSEMBLIES, FUEL DEBRIS, and NON-FUEL HARDWARE meeting the limits specified in Table 2.1-1 and other referenced tables may be stored in the HI-STORM 100 SFSC System.
- b. For MPCs partially loaded with stainless steel clad fuel assemblies, all remaining fuel assemblies in the MPC shall meet the decay heat generation limit for the stainless steel clad fuel assemblies.
- c. For MPCs partially loaded with array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A fuel assemblies, all remaining ZR clad INTACT FUEL ASSEMBLIES in the MPC shall meet the decay heat generation limits for the 6x6A, 6x6B, 6x6C, 7x7A and 8x8A fuel assemblies.
- d. All BWR fuel assemblies may be stored with or without ZR channels with the exception of array/class 10x10D and 10x10E fuel assemblies, which may be stored with or without ZR or stainless steel channels.

2.1.2 Uniform Fuel Loading

Any authorized fuel assembly may be stored in any fuel storage location, subject to other restrictions related to DAMAGED FUEL, FUEL DEBRIS, and NON-FUEL HARDWARE specified in the CoC.

2.0 Approved Contents

2.1 Fuel Specifications and Loading Conditions (cont'd)

2.1.3 Regionalized Fuel Loading

Users may choose to store fuel using regionalized loading in lieu of uniform loading to allow higher heat emitting fuel assemblies to be stored than would otherwise be able to be stored using uniform loading. Regionalized loading is limited to those fuel assemblies with ZR cladding. Figures 2.1-1 through 2.1-4 define the regions for the MPC-24, MPC-24E, MPC-24EF, MPC-32, MPC-32F, MPC-68, and MPC-68FF models, respectively¹. Fuel assembly burnup, decay heat, and cooling time limits for regionalized loading are specified in Section 2.4.2. Fuel assemblies used in regionalized loading shall meet all other applicable limits specified in Tables 2.1-1 through 2.1-3.

2.2 Violations

If any Fuel Specifications or Loading Conditions of 2.1 are violated, the following actions shall be completed:

- 2.2.1 The affected fuel assemblies shall be placed in a safe condition.
- 2.2.2 Within 24 hours, notify the NRC Operations Center.
- 2.2.3 Within 30 days, submit a special report which describes the cause of the violation, and actions taken to restore compliance and prevent recurrence.

2.3 Not Used

These figures are only intended to distinguish the fuel loading regions. Other details of the basket design are illustrative and may not reflect the actual basket design details. The design drawings should be consulted for basket design details.

LEGEND:

REGION 1:

REGION 2:

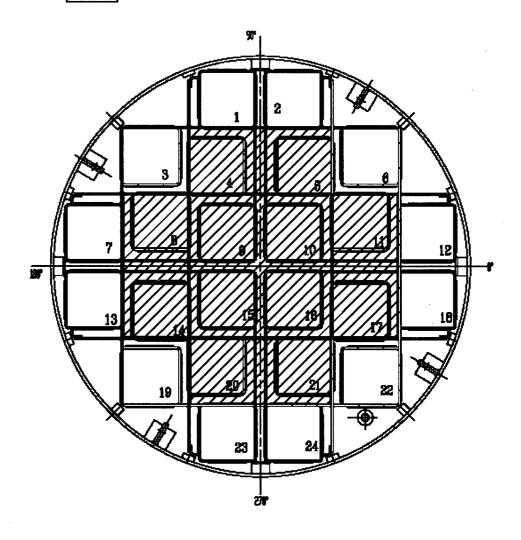


Figure 2.1-1
Fuel Loading Regions - MPC-24

LEGEND:

REGION 1:

REGION 2:

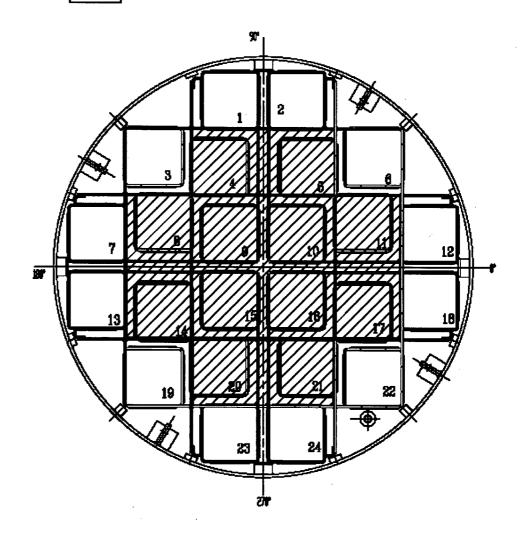


Figure 2.1-2
Fuel Loading Regions - MPC-24E/24EF

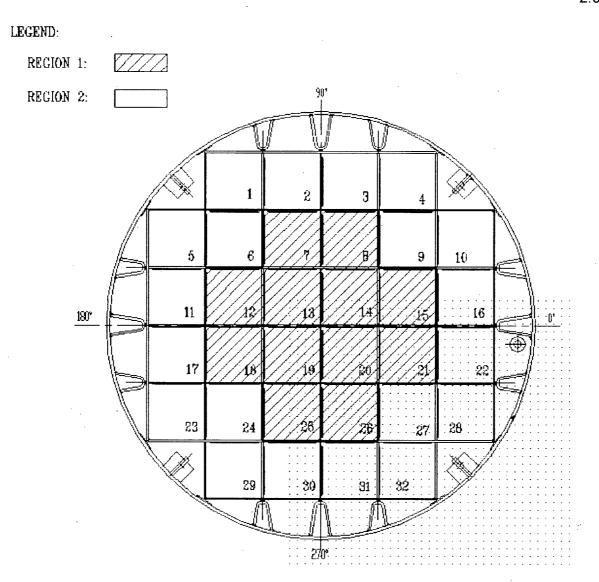


Figure 2.1-3
Fuel Loading Regions - MPC-32/32F

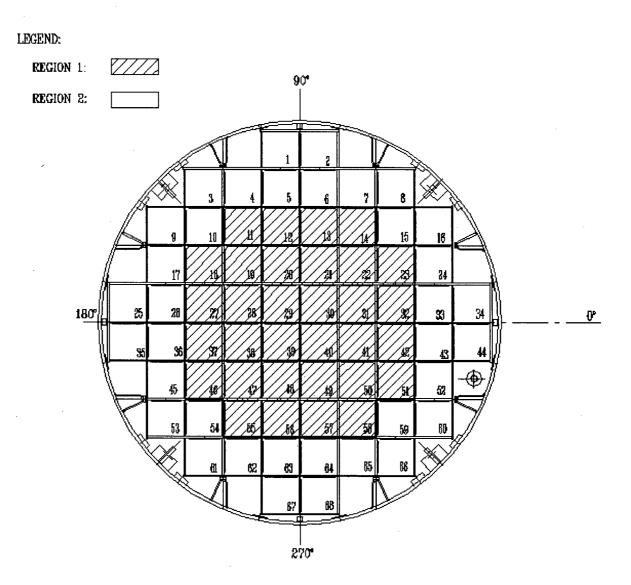


Figure 2.1-4
Fuel Loading Regions - MPC-68/68FF

Table 2:1-1 (page 1 of 24) Fuel Assembly Limits

I. MPC MODEL: MPC-24

A. Allowable Contents

1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-2 for the applicable fuel

assembly array/class.

b. Initial Enrichment:

As specified in Table 2.1-2 for the applicable fuel assembly array/class.

c. Post-irradiation Cooling Time and Average Burnup Per Assembly:

i. Array/Classes

14x14D,14x14E, and

Cooling time ≥ 8 years and an average burnup ≤ 40,000 MWD/MTU.

15x15G

ii. All Other Array/Classes

Cooling time and average burnup as

specified in Section 2.4.

ii. NON-FUEL HARDWARE

As specified in Table 2.1-8.

Table 2.1-1 (page 2 of 24) Fuel Assembly Limits

- I. MPC MODEL: MPC-24 (continued)
 - A. Allowable Contents (continued)
 - d. Decay Heat Per Fuel Storage Location:

i. Array/Classes 14x14D, 14x14E, and 15x15G ≤ 710 Watts

ii. All Other Array/Classes

As specified in Section 2.4.

e. Fuel Assembly Length:

≤ 176.8 inches (nominal design)

f. Fuel Assembly Width:

≤ 8.54 inches (nominal design)

g. Fuel Assembly Weight:

≤ 1720 lbs (including NON-FUEL HARDWARE) for assemblies that do not require fuel spacers, otherwise ≤ 1680 lbs (including NON-FUEL HARDWARE)

- B. Quantity per MPC: Up to 24 fuel assemblies.
- C. Deleted.
- D. DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS are not authorized for loading into the MPC-24.
- E: One NSA is authorized for loading into the MPC-24.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts with or without ITTRs, may be stored in any fuel storage location. Fuel assemblies containing APSRs or NSAs may only be loaded in fuel storage locations 9, 10, 15, and/or 16. Fuel assemblies containing CRAs, RCCAs, CEAs may only be stored in fuel storage locations 4, 5, 8 11, 14 17, 20 and/or 21 (see Figure 2.1-1). These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 3 of 24) **Fuel Assembly Limits**

II. MPC MODEL: MPC-68F

A. Allowable Contents

1. Uranium oxide, BWR INTACT FUEL ASSEMBLIES, with or without ZR channels. Uranium oxide BWR INTACT FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array class 6x6A, 6x6C, 7x7A or 8x8A, and meet the following specifications:

a. Cladding Type:

b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

c. Initial Maximum Rod Enrichment:

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

d. Post-irradiation Cooling Time and Average Burnup Per Assembly:

Cooling time ≥ 18 years and an average

burnup $\leq 30,000 \text{ MWD/MTU}$.

e. Decay Heat Per Assembly

≤ 115 Watts

f. Fuel Assembly Length:

≤ 135.0 inches (nominal design)

g. Fuel Assembly Width:

≤ 4.70 inches (nominal design)

h. Fuel Assembly Weight:

≤ 400 lbs, including channels

Table 2.1-1 (page 4 of 24) Fuel Assembly Limits

- II. MPC MODEL: MPC-68F (continued)
 - A. Allowable Contents (continued)
 - 2. Uranium oxide, BWR DAMAGED FUEL ASSEMBLIES, with or without ZR channels, placed in DAMAGED FUEL CONTAINERS. Uranium oxide BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A, and meet the following specifications:

a.	Cladd	lina T	vpe:

ZR

b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

c. Initial Maximum Rod Enrichment:

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

Post-irradiation Cooling Time and Average Burnup Per Assembly:

Cooling time ≥ 18 years and an average burnup ≤ 30,000 MWD/MTU.

e. Decay Heat Per Assembly:

≤ 115 Watts

f. Fuel Assembly Length:

≤ 135.0 inches (nominal design)

g. Fuel Assembly Width:

≤ 4.70 inches (nominal design)

h. Fuel Assembly Weight:

≤ 550 lbs, including channels and DFC

Table 2.1-1 (page 5 of 24) **Fuel Assembly Limits**

II. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

Uranium oxide, BWR FUEL DEBRIS, with or without ZR channels, placed in DAMAGED FUEL CONTAINERS. The original fuel assemblies for the uranium oxide BWR FUEL DEBRIS shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A, and meet the following specifications:

a. Cladding Type:

ZR

b. Maximum PLANAR-AVERAGE **INITIAL ENRICHMENT:**

As specified in Table 2.1-3 for the applicable original fuel assembly array/class.

c. Initial Maximum Rod Enrichment:

As specified in Table 2.1-3 for the applicable original fuel assembly array/class.

d. Post-irradiation Cooling Time and Average Burnup Per Assembly

Cooling time ≥ 18 years and an average burnup ≤ 30,000 MWD/MTU for the original fuel assembly.

e. Decay Heat Per Assembly

≤ 115 Watts

f. Original Fuel Assembly Length

≤ 135.0 inches (nominal design)

g. Original Fuel Assembly Width

≤ 4.70 inches (nominal design)

h. Fuel Debris Weight

≤ 550 lbs, including channels and DFC

Table 2.1-1 (page 6 of 24) Fuel Assembly Limits

- II. MPC MODEL: MPC-68F (continued)
 - A. Allowable Contents (continued)
 - 4. Mixed oxide (MOX), BWR INTACT FUEL ASSEMBLIES, with or without ZR channels. MOX BWR INTACT FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:

ZR

b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:

As specified in Table 2.1-3 for fuel assembly array/class 6x6B.

c. Initial Maximum Rod Enrichment:

As specified in Table 2.1-3 for fuel assembly array/class 6x6B.

d. Post-irradiation Cooling Time and Average Burnup Per Assembly:

Cooling time ≥ 18 years and an average burnup ≤ 30,000 MWD/MTIHM.

e. Decay Heat Per Assembly

≤ 115 Watts

f. Fuel Assembly Length:

≤ 135.0 inches (nominal design)

g. Fuel Assembly Width:

.≤ 4.70 inches (nominal design)

h. Fuel Assembly Weight:

≤ 400 lbs, including channels

Table 2.1-1 (page 7 of 24) **Fuel Assembly Limits**

II. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

Mixed oxide (MOX), BWR DAMAGED FUEL ASSEMBLIES, with or without ZR channels, placed in DAMAGED FUEL CONTAINERS. MOX BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:

ZR

b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:

As specified in Table 2.1-3 for fuel assembly array/class 6x6B.

c. Initial Maximum Rod Enrichment:

As specified in Table 2.1-3 for fuel assembly array/class 6x6B.

d. Post-irradiation Cooling Time and Average Burnup Per Assembly:

Cooling time ≥ 18 years and an average burnup ≤ 30,000 MWD/MTIHM.

e. Decay Heat Per Assembly

≤ 115 Watts

f. Fuel Assembly Length:

≤ 135.0 inches (nominal design)

g. Fuel Assembly Width:

≤ 4.70 inches (nominal design)

h. Fuel Assembly Weight:

≤ 550 lbs, including channels and DFC

Table 2.1-1 (page 8 of 24) **Fuel Assembly Limits**

- II. MPC MODEL: MPC-68F (continued)
 - A. Allowable Contents (continued)
 - Mixed Oxide (MOX), BWR FUEL DEBRIS, with or without ZR channels, placed in DAMAGED FUEL CONTAINERS. The original fuel assemblies for the MOX BWR FUEL DEBRIS shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:

ZR

b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:

As specified in Table 2.1-3 for original fuel assembly array/class 6x6B.

c. Initial Maximum Rod Enrichment:

As specified in Table 2.1-3 for original fuel assembly array/class 6x6B.

d. Post-irradiation Cooling Time and Average Burnup Per Assembly:

Cooling time ≥ 18 years and an average burnup ≤ 30,000 MWD/MTIHM for the original fuel assembly.

e. Decay Heat Per Assembly

≤ 115 Watts

f. Original Fuel Assembly Length:

≤ 135.0 inches (nominal design)

g. Original Fuel Assembly Width:

≤ 4.70 inches (nominal design)

h. Fuel Debris Weight:

≤ 550 lbs, including channels and DFC

Table 2.1-1 (page 9 of 24) **Fuel Assembly Limits**

II. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

7. Thoria rods (ThO₂ and UO₂) placed in Dresden Unit 1 Thoria Rod Canisters and meeting the following specifications:

a. Cladding Type:

ZR

b. Composition:

98.2 wt.% ThO₂, 1.8 wt. % UO₂ with an enrichment of 93.5 wt. % ²³⁵U.

c. Number of Rods Per Thoria Rod Canister:

≤ 18

d. Decay Heat Per Thoria Rod

Canister:

≤ 115 Watts

e. Post-irradiation Fuel Cooling Time and Average Burnup Per Thoria

Rod Canister:

A fuel post-irradiation cooling time ≥ 18 years and an average burnup ≤ 16,000 MWD/MTIHM.

f. Initial Heavy Metal Weight:

≤ 27 kg/canister

g. Fuel Cladding O.D.:

≥ 0.412 inches

h. Fuel Cladding I.D.:

≤ 0.362 inches

i. Fuel Pellet O.D.:

≤ 0.358 inches

j. Active Fuel Length:

≤ 111 inches

k. Canister Weight:

≤ 550 lbs, including fuel

Table 2.1-1 (page 10 of 24) Fuel Assembly Limits

- II. MPC MODEL: MPC-68F (continued)
 - B. Quantity per MPC (up to a total of 68 assemblies): (All fuel assemblies must be array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A):

Up to four (4) DFCs containing uranium oxide BWR FUEL DEBRIS or MOX BWR FUEL DEBRIS. The remaining MPC-68F fuel storage locations may be filled with fuel assemblies of the following type, as applicable:

- 1. Uranium oxide BWR INTACT FUEL ASSEMBLIES:
- 2. MOX BWR INTACT FUEL ASSEMBLIES;
- 3. Uranium oxide BWR DAMAGED FUEL ASSEMBLIES placed in DFCs;
- 4. MOX BWR DAMAGED FUEL ASSEMBLIES placed in DFCs; or
- 5. Up to one (1) Dresden Unit 1 Thoria Rod Canister.
- C. Fuel assemblies with stainless steel channels are not authorized for loading in the MPC-68F.
- D. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68F. The Antimony-Beryllium source material shall be in a water rod location.

Table 2.1-1 (page 11 of 24) Fuel Assembly Limits

- III. MPC MODEL: MPC-68 and MPC-68FF
 - A. Allowable Contents
 - 1. Uranium oxide or MOX BWR INTACT FUEL ASSEMBLIES listed in Table 2.1-3, with or without channels and meeting the following specifications:

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-3 for the applicable fuel

assembly array/class

b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

c. Initial Maximum Rod Enrichment

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

 e. d. Post-irradiation Cooling Time and Average Burnup Per Assembly

i. Array/Classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A

Cooling time ≥ 18 years and an average

burnup \leq 30,000 MWD/MTU

(or MTUWD/MTIHM).

ii. Array/Class 8x8F

Cooling time ≥ 10 years and an average

burnup ≤ 27,500 MWD/MTU.

iii. Array/Classes 10x10D

and 10x10E

Cooling time ≥ 10 years and an average

burnup ≤ 22,500 MWD/MTU.

iv. All Other Array/Classes

As specified in Section 2.4.

Table 2.1-1 (page 12 of 24) Fuel Assembly Limits

III. MPC MODEL: MPC-68 and MPC-68FF (continued)

A. Allowable Contents (continued)

e. Decay Heat Per Assembly

i. Array/Classes 6x6A, 6X6bB, 6x6C, 7x7A, and 8x8A ≤ 115 Watts

ii. Array/Class 8x8F

≤ 183.5 Watts

iii. Array/Classes 10x10D and 10x10E

≤ 95 Watts

iv. All Other Array/Classes

As specified in Section 2.4.

f. Fuel Assembly Length

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 135.0 inches (nominal design)

ii. All Other Array/Classes

≤ 176.5 inches (nominal design)

g. Fuel Assembly Width

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 4.70 inches (nominal design)

ii. All Other Array/Classes

≤ 5.85 inches (nominal design)

h. Fuel Assembly Weight

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 550400 lbs, including channels

ii. All Other Array/Classes

≤ 730 lbs, including channels

Table 2.1-1 (page 13 of 24) Fuel Assembly Limits

- III. MPC MODEL: MPC-68 and MPC-68FF (continued)
 - A. Allowable Contents (continued)
 - Uranium oxide or MOX BWR DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, with or without channels, placed in DAMAGED FUEL CONTAINERS. Uranium oxide and MOX BWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-3, and meet the following specifications:
 - a. Cladding Type:

ZR or Stainless Steel (SS) in accordance with Table 2.1-3 for the applicable fuel assembly array/class.

- b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:
 - i. Array/Classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A.

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

ii. All Other Array Classes

 \leq 4.0 wt.% ²³⁵U.

c. Initial Maximum Rod Enrichment

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

- d. Post-irradiation Cooling Time and Average Burnup Per Assembly:
 - i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

Cooling time ≥ 18 years and an average

burnup ≤ 30,000 MWD/MTU

(or MWD/MTIHM).

ii. Array/Class 8x8F

Cooling time ≥ 10 years and an average

burnup ≤ 27,500 MWD/MTU.

iii. Array/Class 10x10D and

10x10E

Cooling time ≥ 10 years and an average

burnup ≤ 22,500 MWD/MTU.

iv. All Other Array/Classes

As specified in Section 2.4.

Table 2.1-1 (page 14 of 24) Fuel Assembly Limits

III. MPC MODEL: MPC-68 and MPC-68FF (continued)

A. Allowable Contents (continued)

e. Decay Heat Per Assembly

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 115 Watts

ii. Array/Class 8x8F

≤ 183.5 Watts

iii. Array/Classes 10x10D and 10x10E

≤ 95 Watts

iv. All Other Array/Classes

As specified in Section 2.4.

f. Fuel Assembly Length

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 135.0 inches (nominal design)

ii. All Other Array/Classes

≤ 176.5 inches (nominal design)

g. Fuel Assembly Width

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 4.70 inches (nominal design)

ii. All Other Array/Classes

≤ 5.85 inches (nominal design)

h. Fuel Assembly Weight

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 550 lbs, including channels and DFC

ii. All Other Array/Classes

≤ 730 lbs, including channels and DFC

Table 2.1-1 (page 15 of 24) Fuel Assembly limits

- III. MPC MODEL: MPC-68 and MPC-68FF (continued)
 - A. Allowable Contents (continued)
 - 3. Thoria rods (ThO₂ and UO₂) placed in Dresden Unit 1 Thoria Rod Canisters and meeting the following specifications:

a. Cladding type	ZR
b. Composition	98.2 wt.% ThO ₂ , 1.8 wt.% UO ₂ with an enrichment of 93.5 wt.% ²³⁵ U.
c. Number of Rods per Thoria Rod Canister:	≤ 18
d. Decay Heat Per Thoria Rod Canister:	≤ 115 Watts
e. Post-irradiation Fuel Cooling Time and Average Burnup per Thoria Rod Canister:	A fuel post-irradiation cooling time ≥ 18 years and an average burnup ≤16,000 MWD/MTIHM
f. Initial Heavy Metal Weight:	≤ 27 kg/canister
g. Fuel Cladding O.D.:	≥ 0.412 inches
h. Fuel Cladding I.D.:	≤ 0.362 inches
i. Fuel Pellet O.D.:	≤ 0.358 inches
j. Active Fuel Length:	≤ 111 inches
k. Canister Weight:	≤ 550 lbs, including fuel

Table 2.1-1 (page 16 of 24) Fuel Assembly Limits

- III. MPC MODEL: MPC-68 and MPC-68FF (continued)
 - B. Quantity per MPC (up to a total of 68 assemblies)
 - 1. For fuel assembly array/classes 6x6A, 6X6B, 6x6C, 7x7A, or 8x8A, up to 68 BWR INTACT FUEL ASSEMBLIES and/or DAMAGED FUEL ASSEMBLIES. Up to eight (8) DFCs containing FUEL DEBRIS from these array/classes may be stored.
 - 2. For all other array/classes, up to sixteen (16) DFCs containing BWR DAMAGED FUEL ASSEMBLIES and/or up to eight (8) DFCs containing FUEL DEBRIS. DFCs shall be located only in fuel storage locations 1, 2, 3, 8, 9, 16, 25, 34, 35, 44, 53, 60, 61, 66, 67, and/or 68. The remaining fuel storage locations may be filled with fuel assemblies of the following type:
 - Uranium Oxide BWR INTACT FUEL ASSEMBLIES; or
 - ii. MOX BWR INTACT FUEL ASSEMBLIES.
 - 3. Up to one (1) Dresden Unit 1 Thoria Rod Canister
 - C. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading. The Antimony-Beryllium source material shall be in a water rod location.
 - D. Array/Class 10x10D and 10x10E fuel assemblies in stainless steel channels must be stored in fuel storage locations 19 22, 28 31, 38 -41, and/or 47 50 (see Figure 2.1-4).

Table 2.1-1 (page 17 of 24) Fuel Assembly Limits

- IV. MPC MODEL: MPC-24E and MPC-24EF
 - A. Allowable Contents
 - Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-2 for the applicable fuel

assembly array/class

b. Initial Enrichment:

As specified in Table 2.1-2 for the applicable fuel assembly array/class.

c. Post-irradiation Cooling Time and Average Burnup Per Assembly:

i. Array/Classes 14x14D,

Cooling time ≥ 8 years and an average

14x14E, and 15x15G

burnup $\leq 40,000 \text{ MWD/MTU}$.

ii. All Other Array/Classes

As specified in Section 2.4.

iii. NON-FUEL HARDWARE

As specified in Table 2.1-8.

Table 2.1-1 (page 18 of 24) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E and MPC-24EF (continued)

A. Allowable Contents (continued)

d. Decay Heat Per Fuel Storage Location:

i. Array/Classes 14x14D, 14x14E, and 15x15G

≤ 710 Watts.

ii. All other Array/Classes

As specified in Section 2.4.

e. Fuel Assembly Length:

≤ 176.8 inches (nominal design)

f. Fuel Assembly Width:

≤ 8.54 inches (nominal design)

g. Fuel Assembly Weight:

≤ 1,720 lbs (including NON-FUEL

HARDWARE and DFC) for assemblies

that do not require fuel spacers,

otherwise,

≤ 1,680 lbs (including NON-FUEL

HARDWARE and DFC)

Table 2.1-1 (page 19 of 24) Fuel Assembly Limits

- IV. MPC MODEL: MPC-24E and MPC-24EF (continued)
 - A. Allowable Contents (continued)
 - 2. Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-2 for the applicable fuel

assembly array/class

b. Initial Enrichment:

As specified in Table 2.1-2 for the applicable fuel assembly array/class.

c. Post-irradiation Cooling Time and Average Burnup Per Assembly:

i. Array/Classes 14x14D, 14x14E, and 15x15G

Cooling time ≥ 8 years and an average

burnup ≤ 40,000 MWD/MTU.

ii. All Other Array/Classes

As specified in Section 2.4.

iii. NON-FUEL HARDWARE

As specified in Table 2.1-8.

Table 2.1-1 (page 20 of 24) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E and MPC-24EF (continued)

A. Allowable Contents (continued)

d Decay Heat Per Fuel Storage Location:

i. Array/Classes 14x14D, 14x14E, and 15x15G ≤ 710 Watts.

ii. All Other Array/Classes

As specified in Section 2.4.

e. Fuel Assembly Length

≤ 176.8 inches (nominal design)

f. Fuel Assembly Width

≤ 8.54 inches (nominal design)

g. Fuel Assembly Weight

≤ 1,720 lbs (including NON-FUEL HARDWARE and DFC) for assemblies that do not require fuel spacers, otherwise, ≤ 1,680 lbs (including NON-

FUEL HARDWARE and DFC)

- B. Quantity per MPC: Up to four (4) DAMAGED FUEL ASSEMBLIES and/or FUEL DEBRIS in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 3, 6, 19 and/or 22. The remaining fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- C. One NSA is permitted for loading.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts with or without ITTRs, may be stored in any fuel storage location. Fuel assemblies containing APSRs or NSAs may only be loaded in fuel storage locations 9, 10, 15, and/or 16 (see Figure 2.1-2). Fuel assemblies containing CRAs, RCCAs, or CEAs may only be stored in fuel storage locations 4, 5, 8 11, 14 17, 20 and/or 21 (see Figure 2.1-2). These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 21 of 24) Fuel Assembly Limits

V. MPC MODEL: MPC-32 and MPC-32F

A. Allowable Contents

 Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-2 for the applicable fuel

assembly array/class

b. Initial Enrichment:

As specified in Table 2.1-2 for the applicable fuel assembly array/class.

c. Post-irradiation Cooling Time and Average Burnup Per Assembly:

i. Array/Classes 14x14D,

14x14E, and 15x15G

Cooling time \geq 9 years and an average burnup \leq 30,000 MWD/MTU or cooling time \geq 20 years and an average burnup

≤ 40,000 MWD/MTU.

ii. All Other Array/Classes

As specified in Section 2.4.

iii. NON-FUEL HARDWARE

As specified in Table 2.1-8.

Table 2.1-1 (page 22 of 24) Fuel Assembly Limits

- V. MPC MODEL: MPC-32 and MPC-32F (cont'd)
 - A. Allowable Contents (cont'd)
 - d. Decay Heat Per Fuel Storage Location:
 - i. Array/Classes 14x14D, 14x14E, and 15x15G

≤ 500 Watts.

ii. All Other Array/Classes

As specified in Section 2.4.

e. Fuel Assembly Length

≤ 176.8 inches (nominal design)

f. Fuel Assembly Width

≤ 8.54 inches (nominal design)

g. Fuel Assembly Weight

≤ 1,720 lbs (including NON-FUEL HARDWARE-and-DFC) for assemblies

that do not require fuel spacers,

otherwise, ≤ 1,680 lbs (including NON-

FUEL HARDWARE and DFC)

Table 2.1-1 (page 23 of 24) Fuel Assembly Limits

V. MPC MODEL: MPC-32 and MPC-32F (cont'd)

A. Allowable Contents (cont'd)-

 Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-2 for the applicable fuel

assembly array/class

b. Initial Enrichment:

As specified in Table 2.1-2 for the applicable fuel assembly array/class.

c. Post-irradiation Cooling Time and Average Burnup Per Assembly:

i. Array/Classes 14x14D, 14x14E, and 15x15G Cooling time \geq 9 years and an average burnup \leq 30,000 MWD/MTU or cooling time \geq 20 years and an average burnup

≤ 40,000 MWD/MTU.

ii. All Other Array/Classes

As specified in Section 2.4.

iii. NON-FUEL HARDWARE

As specified in Table 2.1-8.

Table 2.1-1 (page 24 of 24) Fuel Assembly Limits

- V. MPC MODEL: MPC-32 and MPC-32F (cont'd)
 - A. Allowable Contents (cont'd)
 - d. Decay Heat Per Fuel Storage Location:

i. Array/Classes 14x14D, 14x14E, and 15x15G ≤ 500 Watts.

ii. All Other Array/Classes

As specified in Section 2.34.

e. Fuel Assembly Length

≤ 176.8 inches (nominal design)

f. Fuel Assembly Width

≤ 8.54 inches (nominal design)

g. Fuel Assembly Weight

≤ 1,720 lbs (including NON-FUEL HARDWARE and DFC) for assemblies that do not require fuel spacers, otherwise, ≤ 1,680 lbs (including NON-FUEL HARDWARE and DFC)

- B. Quantity per MPC: Up to eight (8) DAMAGED FUEL ASSEMBLIES and/or FUEL DEBRIS in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 1, 4, 5, 10, 23, 28, 29, and/or 32. The remaining fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- C. One NSA is permitted for loading.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts, with or without ITTRs, may be stored in any fuel storage location. Fuel assemblies containing NSAs may only be loaded in fuel storage locations 13, 14, 19 and/or 20 (see Figure 2.1-3). Fuel assemblies containing CRAs, RCCAs, CEAs or APSRs may only be loaded in fuel storage locations 7, 8, 12-15, 18-21, 25 and/or 26 (see Figure 2.1-3). These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-2 (page 1 of 4)
PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly		EMBLY CHAP			
Array/Class	14x14A	14x14B	14x14C	14x14D	14x14E
Clad Material	ZR	ZR	ZR	SS	SS
Design Initial U (kg/assy.) (Note 3)	≤ 365	≤ 412	≤ 438	≤ 400	≤ 206
Initial Enrichment (MPC-24, 24E and 24EF without soluble boron	≤ 4.6 (24)	≤ 4.6 (24)	≤ 4.6 (24)	≤ 4.0 (24)	≤ 5.0 (24)
credit) (wt % ²³⁵ U) (Note 7)	≤ 5.0 (24E/24EF)				
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % 235U)	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0
No. of Fuel Rod Locations	179	179	176	180	173
Fuel Rod Clad O.D. (in.)	≥ 0.400	≥ 0.417	≥ 0.440	≥ 0.422	≥ 0.3415
Fuel Rod Clad I.D. (in.)	≤ 0.3514	≤ 0.3734	≤ 0.3880	≤ 0.3890	≤ 0.3175
Fuel Pellet Dia. (in.)(Note 8)	≤ 0.3444	≤ 0.3659	≤ 0.3805	≤ 0.3835	≤ 0.3130
Fuel Rod Pitch (in.)	≤ 0.556	≤ 0.556	≤ 0.580	≤ 0.556	Note 6
Active Fuel Length (in.)	≤ 150	≤ 150	≤ 150	≤ 144	≤ 102
No. of Guide and/or Instrument Tubes	17	17	5 (Note 4)	16	0
Guide/Instrument Tube Thickness (in.)	≥ 0.017	≥ 0.017	≥ 0.038	≥ 0.0145	N/A

Table 2.1-2 (page 2 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly				<u> </u>	, in the second	
Array/Class	15x15A	15x15B	15x15C	15x15D	15x15E	15x15F
Clad Material	ZR	ZR	ZR [.]	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u><</u> 473	<u>≤</u> 473	<u>≤</u> 473	<u>≤</u> 495	<u><</u> 495	<u><</u> 495
Initial Enrichment (MPC-24, 24E and 24EF without soluble boron	<u><</u> 4.1 (24)	≤ 4.1 (24)	≤ 4.1 (24)	<u>≤</u> 4.1 (24)	<u>≤</u> 4.1 (24)	<u>≤</u> 4.1 (24)
credit) (wt % ²³⁵ U) (Note 7)	≤ 4.5 (24E/24EF)	≤ 4.5 (24E/24EF)	≤ 4.5 (24E/24EF)	≤ 4.5 (24E/24EF)	≤ 4.5 (24E/24EF)	≤ 4.5 (24E/24EF)
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5)(wt % ²³⁵ U)	<u>≤</u> 5.0	<u><</u> 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0
No. of Fuel Rod Locations	204	204	204	208	208	208
Fuel Rod Clad O.D. (in.)	<u>≥</u> 0.418	<u>></u> 0.420	<u>≥</u> 0.417	<u>></u> 0.430	<u>></u> 0.428	<u>></u> 0.428
Fuel Rod Clad I.D. (in.)	. <u>≤</u> 0.3660	<u><</u> 0.3736	<u><</u> 0.3640	≤ 0.3800	<u><</u> 0.3790	≤ 0.3820
Fuel Pellet Dia. (in.) (Note 8)	≤ 0.3580	<u><</u> 0.3671	<u><</u> 0.3570	<u><</u> 0.3735	<u><</u> 0.3707	≤ 0.3742
Fuel Rod Pitch (in.)	<u><</u> 0.550	<u><</u> 0.563	≤ 0.563	<u><</u> 0.568	<u><</u> 0.568	≤ 0.568
Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 150
No. of Guide and/or Instrument Tubes	21	21	21	17	·17	17
Guide/Instrument Tube Thickness (in.)	<u>≥</u> 0.0165	<u>≥</u> 0.015	<u>≥</u> 0.0165	<u>≥</u> 0.0150	<u>≥</u> 0.0140	<u>≥</u> 0.0140

2.0

Table 2.1-2 (page 3 of 4)
PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

PVVR FUEL ASSENIBLT CHARACTERISTICS (Note 1)						
Fuel Assembly Array/ Class	15x15G	15x15H	16x16A	17x17A	17x17B	17x17C
Clad Material	SS	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.)(Note 3)	<u>≤</u> 420	<u><</u> 495	<u><</u> 448	<u>≤</u> 433	<u><</u> 474	<u><</u> 480
Initial Enrichment (MPC-24, 24E, and 24EF without soluble boron	≤ 4.0 (24)	≤ 3.8 (24)	≤ 4.6 (24)	≤ 4.0 (24)	≤ 4.0 (24)	≤ 4.0 (24)
credit)(wt % ²³⁵ U) (Note 7)	≤ 4.5 (24E/24EF)	≤ 4.2 (24E/24EF)	≤ 5.0 (24E/24EF)	≤ 4.4 (24E/24EF)	≤ 4.4 (24E/24EF)	≤ 4.4 (24E/24EF)
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	<u>≤</u> 5.0	<u><</u> 5.0	<u><</u> 5.0	≤ 5.0	<u><</u> 5.0	≤ 5.0
No. of Fuel Rod Locations	204	208	236	264	264	264
Fuel Rod Clad O.D. (in.)	<u>≥</u> 0.422	<u>≥</u> 0.414	≥ 0.382	<u>></u> 0.360	≥ 0.372	≥ 0.377
Fuel Rod Clad I.D. (in.)	≤ 0.3890	≤ 0.3700	<u><</u> 0.3350	<u><</u> 0.3150	<u><</u> 0.3310	≤ 0.3330
Fuel Pellet Dia. (in.) (Note 8)	<u><</u> 0.3825	≤ 0.3622	≤ 0.3255	≤ 0.3088	≤ 0.3232	≤ 0.3252
Fuel Rod Pitch (in.)	≤ 0.563	<u><</u> 0.568	≤ 0.506	≤ 0.496	<u><</u> 0.496	≤ 0.502
Active Fuel Length (in.)	<u><</u> 144	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 150	≤ 150
No. of Guide and/or Instrument Tubes	21	17	5 (Note 4)	25	25	25
Guide/Instrument Tube Thickness (in.)	<u>≥</u> 0.0145	<u>≥</u> 0.0140	≥ 0.0350	<u>≥</u> 0.016	≥ 0.014	≥ 0.020

Table 2.1-2 (page 4 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. Deleted.
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each PWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 2.0 percent for comparison with users' fuel records to account for manufacturer's tolerances.
- 4. Each guide tube replaces four fuel rods.
- 5. Soluble boron concentration per LCO 3.3.1.
- 6. This fuel assembly array/class includes only the Indian Point Unit 1 fuel assembly. This fuel assembly has two pitches in different sectors of the assembly. These pitches are 0.441 inches and 0.453 inches.
- 7. For those MPCs loaded with both INTACT FUEL ASSEMBLIES and DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, the maximum initial enrichment of the INTACT FUEL ASSEMBLIES, DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS is 4.0 wt.% ²³⁵U.
- 8. Annular fuel pellets are allowed in the top and bottom 12" of the active fuel length.

Table 2.1-3 (page 1 of 5)
BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

DVVR FUEL ASSEMBLY CHARACTERISTICS (Note 1)						
Fuel Assembly Array/Class	6x6A	6x6B	6x6C	7x7A	7x7B	8x8A
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 110	<u><</u> 110	<u>≤</u> 110	≤ 100	<u><</u> 198	<u>≤</u> 120
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% 235U) (Note 14)	≤ 2.7	≤ 2.7 for the UO ₂ rods. See Note 4 for MOX rods	<u>≤</u> 2.7	≤ 2.7	≤ 4.2	≤ 2.7
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 4.0	≤ 4.0	≤ 4.0	≤ 5.5	≤ 5.0	≤ 4.0
No. of Fuel Rod Locations	35 or 36	35 or 36 (up to 9 MOX rods)	36	49	49	63 or 64
Fuel Rod Clad O.D. (in.)	≥ 0.5550	<u>></u> 0.5625	<u>></u> 0.5630	≥ 0.4860	≥ 0.5630	<u>></u> 0.4120
Fuel Rod Clad I.D. (in.)	≤ 0.5105	<u><</u> 0.4945	<u><</u> 0.4990	≤ 0.4204	<u><</u> 0.4990	≤ 0.3620
Fuel Pellet Dia. (in.)	≤ 0.4980	<u><</u> 0.4820	<u><</u> 0.4880	≤ 0.4110	<u><</u> 0.4910	≤ 0.3580
Fuel Rod Pitch (in.)	<u>≤</u> 0.710	≤ 0.710	<u><</u> 0.740	≤ 0.631	≤ 0.738	≤ 0.523
Active Fuel Length (in.)	≤ 120	<u><</u> 120	<u><</u> 77.5	≤ 80	<u><</u> 150	≤ 120
No. of Water Rods (Note 11)	1 or 0	1 or 0	0	0	0	1 or 0
Water Rod Thickness (in.)	> 0	> 0	N/A	N/A	N/A	<u>≥</u> 0
Channel Thickness (in.)	≤ 0.060	≤ 0.060	<u><</u> 0.060	≤ 0.060	≤ 0.120	≤ 0.100

Table 2.1-3 (2 of 5)
BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

BVVR FUEL ASSEMBLT CHARACTERISTICS (NOTE 1)						
Fuel Assembly Array/Class	8x8B	8x8C	8x8D	8x8E	8x8F	9x9A
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u><</u> 192	· ≤ 190	≤ 190	< 190	<u>≤</u> 191	≤ 180
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u>≤</u> 4.2	≤ 4.2	<u><</u> 4.2	≤ 4.2	≤ 4.0	≤ 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 5.0	≤ 5.0	≤ 5.0	<u>≤</u> 5.0	≤ 5.0	<u>≤</u> 5.0
No. of Fuel Rod Locations	63 or 64	62	60 or 61	59	64	74/66 (Note 5)
Fuel Rod Clad O.D. (in.)	<u>≥</u> 0.4840	≥ 0.4830	≥ 0.4830	≥ 0.4930	<u>></u> 0.4576	<u>></u> 0.4400
Fuel Rod Clad I.D. (in.)	<u><</u> 0.4295	≤ 0.4250	≤ 0.4230	<u><</u> 0.4250	≤ 0.3996	<u><</u> 0.3840
Fuel Pellet Dia. (in.)	<u><</u> 0.4195	≤ 0.4160	≤ 0.4140	<u><</u> 0.4160	≤ 0.3913	≤ 0.3760
Fuel Rod Pitch (in.)	<u><</u> 0.642	≤ 0.641	≤ 0.640	≤ 0.640	· <u><</u> 0.609	<u><</u> 0.566
Design Active Fuel Length (in.)	<u>≤</u> 150	≤ 150	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 150
No. of Water Rods (Note 11)	1 or 0	2	1 - 4 (Note 7)	5	N/A (Note 12)	2
Water Rod Thickness (in.)	≥ 0.034	> 0.00	> 0.00	≥ 0.034	≥ 0.0315	> 0.00
Channel Thickness (in.)	<u><</u> 0.120	<u>≤</u> 0.120	. <u><</u> 0.120	≤ 0.100	≤ 0.055	<u><</u> 0.120

Table 2.1-3 (page 3 of 5)
BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

BVVR FUEL ASSEMBLY CHARACTERISTICS (Note 1)						
Fuel Assembly Array/Class	9x9B	9x9C	9x9D	9x9E (Note 13)	9x9F (Note 13)	9x9G
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.)(Note 3)	<u><</u> 180	<u><</u> 182	<u><</u> 182	<u><</u> 183	<u><</u> 183	<u><</u> 164
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	≤ 4.2	≤ 4.2	≤ 4.2	≤ 4.0	≤ 4.0	≤ 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0
No. of Fuel Rod Locations	72	80	79	76	76	72
Fuel Rod Clad O.D. (in.)	≥ 0.4330	≥ 0.4230	≥ 0.4240	≥ 0.4170	≥ 0.4430	≥ 0.4240
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3810	<u><</u> 0.3640	<u><</u> 0.3640	≤ 0.3640	<u><</u> 0.3860	<u><</u> 0.3640
Fuel Pellet Dia. (in.)	≤ 0.3740	≤ 0.3565	≤ 0.3565	≤ 0.3530	<u>≤</u> 0.3745	≤ 0.3565
Fuel Rod Pitch (in.)	<u><</u> 0.572	<u><</u> 0.572	≤ 0.572	≤ 0.572	<u><</u> 0.572	≤ 0.572
Design Active Fuel Length (in.)	<u>≤</u> 150	≤ 150	<u><</u> 150	<u><</u> 150	≤ 150	<u><</u> 150
No. of Water Rods (Note 11)	1 (Note 6)	1	2	5	5	1 (Note 6)
Water Rod Thickness (in.)	> 0.00	≥ 0.020	≥ 0.0300	≥ 0.0120	≥ 0.0120	≥ 0.0320
Channel Thickness (in.)	≤ 0.120	<u><</u> 0.100	≤ 0.100	≤ 0.120	≤ 0.120	≤ 0.120

Table 2.1-3 (page 4 of 5)
BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array/Class	10x10A	10x10B	10x10C	10x10D	10x10E
Clad Material	ZR	ZR	ZR	SS	SS
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 188	<u><</u> 188	<u><</u> 179	<u><</u> 125	<u><</u> 125
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	≤ 4.2	≤ 4.2	<u>≤</u> 4.2	<u>≤</u> 4.0	≤ 4.0
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0
No. of Fuel Rod Locations	92/78 (Note 8)	91/83 (Note 9)	96	100	96
Fuel Rod Clad O.D. (in.)	<u>></u> 0.4040	<u>≥</u> 0.3957	<u>≥</u> 0.3780	<u>></u> 0.3960	≥ 0.3940
Fuel Rod Clad I.D. (in.)	≤ 0.3520	<u>≤</u> 0.3480	<u><</u> 0.3294	≤ 0.3560	<u><</u> 0.3500
Fuel Pellet Dia. (in.)	≤ 0.3455	≤ 0.3420	≤ 0.3224	≤ 0.3500	≤ 0.3430
Fuel Rod Pitch (in.)	≤ 0.510	<u>≤</u> 0.510	<u><</u> 0.488	≤ 0.565	≤ 0.557
Design Active Fuel Length (in.)	≤ 150	<u><</u> 150	≤ 150	≤ 83	<u><</u> 83 _.
No. of Water Rods (Note 11)	2	1 (Note 6)	5 (Note 10)	0	4
Water Rod Thickness (in.)	≥ 0.0300	> 0.00	≥ 0.031	N/A	<u>≥</u> 0.022
Channel Thickness (in.)	≤ 0.120	<u>≤</u> 0.120	<u><</u> 0.055	≤ 0.080	≤ 0.080

Table 2.1-3 (page 5 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- Deleted.
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 1.5 percent for comparison with users' fuel records to account for manufacturer tolerances.
- 4. ≤ 0.635 wt. % 235 U and ≤ 1.578 wt. % total fissile plutonium (239 Pu and 241 Pu), (wt. % of total fuel weight, i.e., UO₂ plus PuO₂).
- 5. This assembly class contains 74 total rods; 66 full length rods and 8 partial length rods.
- 6. Square, replacing nine fuel rods.
- 7. Variable.
- 8. This assembly contains 92 total fuel rods; 78 full length rods and 14 partial length rods.
- 9. This assembly class contains 91 total fuel rods; 83 full length rods and 8 partial length rods.
- 10. One diamond-shaped water rod replacing the four center fuel rods and four rectangular water rods dividing the assembly into four quadrants.
- 11. These rods may also be sealed at both ends and contain Zr material in lieu of water.
- 12. This assembly is known as "QUAD+." It has four rectangular water cross segments dividing the assembly into four quadrants.
- 13. For the SPC 9x9-5 fuel assembly, each fuel rod must meet either the 9x9E or the 9x9F set of limits for clad O.D., clad I.D., and pellet diameter.
- 14. For those MPCs loaded with both INTACT FUEL ASSEMBLIES and DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, the maximum PLANAR AVERAGE INITIAL ENRICHMENT for the INTACT FUEL ASSEMBLIES is limited to 3.7 wt.% ²³⁵U, as applicable.

Table 2.1-8

NON-FUEL HARDWARE COOLING AND AVERAGE BURNUP (Notes 1, 2, and 3, and 8)

Post- irradiation Cooling Time (years)	INSERTS (Note 4) BURNUP (MWD/MTU)	NSA or GUIDE TUBE HARDWARE (Note 5) BURNUP (MWD/MTU)	CONTROL COMPONENT (Note 6) BURNUP (MWD/MTU)	APSR BURNUP (MWD/MTU)
≥ 3	<u><</u> 24,635	NA (Note 7)	NA	NA
<u>≥</u> 4	≤ 30,000	<u>≤</u> 20,000	NA	NA
<u>≥</u> 5	<u>≤</u> 36,748	<u>≤</u> 25,000	<u><</u> 630,000	≤ 45,000
<u>≥</u> 6	<u>≤</u> 44,102	<u><</u> 30,000	·	≤ 54,500
<u>≥</u> 7	<u>≤</u> 52,900	<u><</u> 40,000	-	<u><</u> 68,000
≥ 8	<u><</u> 60,000	<u>≤</u> 45,000	-	≤ 83,000
<u>≥</u> 9	-	<u>≤</u> 50,000	4	≤ 111,000
<u>≥</u> 10	. -	<u><</u> 60,000	- :	≤ 180,000
<u>≥</u> 11	. .	<u>≤</u> 75,000	-	≤ 630,000
<u>≥</u> 12	· -	<u><</u> 90,000	-	-
<u>≥</u> 13	-	<u><</u> 180,000	· -	
<u>≥</u> 14	-	<u><</u> 630,000	-	-

Notes: 1. Burnups for NON-FUEL HARDWARE are to be determined based on the burnup and uranium mass of the fuel assemblies in which the component was inserted during reactor

operation.

2. Linear interpolation between points is permitted, except that NSA or Guide Tube Hardware and APSR burnups > 180,000 MWD/MTU and \leq 630,000 MWD/MTU must be cooled \geq 14 years and \geq 11 years, respectively.

- 3. Applicable to uniform loading and regionalized loading.
- 4. Includes Burnable Poison Rod Assemblies (BPRAs), Wet Annular Burnable Absorbers (WABAs), and vibration suppressor inserts.
- 5. Includes Thimble Plug Devices (TPDs), water displacement guide tube plugs, and orifice rod assemblies.
- 6. Includes Control Rod Assemblies (CRAs), Control Element Assemblies (CEAs), and Rod Cluster Control Assemblies (RCCAs).
- 7. NA means not authorized for loading at this cooling time.
- 8. Non-fuel hardware burnup and cooling times are not applicable to ITTRs since they are installed post irradiation.

2.4 Decay Heat, Burnup, and Cooling Time Limits for ZR-Clad Fuel

This section provides the limits on ZR-clad fuel assembly decay heat, burnup, and cooling time for storage in the HI-STORM 100 System. The method to calculate the limits and verify compliance, including examples, is provided in Chapter 12 of the HI-STORM 100 FSAR.

2.4.1 Uniform Fuel Loading Decay Heat Limits for ZR-clad fuel

Table 2.4-1 provides the maximum allowable decay heat per fuel storage location for ZR-clad fuel in uniform fuel loading for each MPC model.

Table 2.4-1

Maximum Allowable Decay Heat per Fuel Storage Location

(Uniform Loading, ZR-Clad)

MPC Model	Decay Heat per Fuel Storage Location (kW)			
Intact	Fuel Assemblies			
MPC-24	<u><</u> 1.416			
MPC-24E/24EF	<u><</u> 1.416			
MPC-32/32F	<u>≤</u> 1.062			
MPC-68/68FF	<u>≤</u> 0.500			
Damaged Fuel A	ssemblies and Fuel Debris			
MPC-24E/24EF	<u><</u> 1.114			
MPC-32/32F	<u>≤</u> 0.718			
MPC-68/68FF	≤ 0.393			

2.4.2 Regionalized Fuel Loading Decay Heat Limits for ZR-Clad Fuel (Intact Fuel only)

The maximum allowable decay heat per fuel storage location for fuel in regionalized loading is determined using the following equations:

$$Q(X) = 2 \times Q_0 / (1 + X^y)$$

$$y = 0.23 / X^{0.1}$$

$$q_2 = Q(X) / (n_1 x X + n_2)$$

$$q_1 = q_2 \times X$$

Where:

 Q_0 = Maximum uniform storage MPC decay heat (34 kW)

X = Inner region to outer region assembly decay heat ratio(0.5 $\leq X \leq$ 3)

 n_1 = Number of storage locations in inner region from Table 2.4-2.

 n_2 = Number of storage locations in outer region from Table 2.4-2.

Table 2.4-2
Fuel Storage Regions per MPC

MPC Model	Number of Storage Locations in Inner Region (Region 1)	Number of Storage Locations in Outer Region (Region 2)	
MPC-24 and MPC-24E/EF	12	12	
MPC- 32/32F	12	20	
MPC-68/68FF	32	36	

2.4.3 Burnup Limits as a Function of Cooling Time for ZR-Clad Fuel

The maximum allowable fuel assembly average burnup varies with the following parameters:

- · Minimum fuel assembly cooling time
- Maximum fuel assembly decay heat
- Minimum fuel assembly average enrichment

The maximum allowable ZR-clad fuel assembly average burnup for a given MINIMUM ENRICHMENT is calculated as described below for minimum cooling times between 3 and 20 years using the maximum permissible decay heat determined in Section 2.4.1 or 2.4.2. Different fuel assembly average burnup limits may be calculated for different minimum enrichments (by individual fuel assembly) for use in choosing the fuel assemblies to be loaded into a given MPC.

- 2.4.3.1 Choose a fuel assembly minimum enrichment, E₂₃₅.
- 2.4.3.2 Calculate the maximum allowable fuel assembly average burnup for a minimum cooling time between 3 and 20 years using the equation below.

Bu =
$$(A \times q) + (B \times q^2) + (C \times q^3) + [D \times (E_{235})^2] + (E \times q \times E_{235}) + (F \times q^2 \times E_{235}) + G$$

Where:

- Bu = Maximum allowable average burnup per fuel assembly (MWD/MTU)
- q = Maximum allowable decay heat per fuel storage location determined in Section 2.4.1 or 2.4.2 (kW)
- E_{235} =Minimum fuel assembly average enrichment (wt. % 235 U) (e.g., for 4.05 wt.%, use 4.05)
- A through G = Coefficients from Tables 2.4-3 and 2.4-4 for the applicable fuel assembly array/class and minimum cooling time
- 2.4.3.3 Calculated burnup limits shall be rounded down to the nearest integer.
- 2.4.3.4 Calculated burnup limits greater than 68,200 MWD/MTU for PWR fuel and 65,000 MWD/MTU for BWR must be reduced to be equal to these values.
- 2.4.3.5 Linear interpolation of calculated burnups between cooling times for a given fuel assembly maximum decay heat and minimum enrichment is permitted. For example, the allowable burnup for a

2.0

- cooling time of 4.5 years may be interpolated between those burnups calculated for 4 year and 5 years.
- 2.4.3.6 Each ZR-clad fuel assembly to be stored must have a MINIMUM ENRICHMENT greater than or equal to the value used in Step 2.4.3.2.
- 2.4.4 When complying with the maximum fuel storage location decay heat limits, users must account for the decay heat from both the fuel assembly and any NON-FUEL HARDWARE, as applicable for the particular fuel storage location, to ensure the decay heat emitted by all contents in a storage location does not exceed the limit.

Table 2.4-3 (Page 1 of 8)

Cooling			Arra	y/Class 14x	14A		
Time (years)	Α	В	С	D	E	F	G
≥ 3	19311.5	275.367	-59.0252	-139.41	2851.12	-451.845	-615.413
≥ 4	33865.9	-5473.03	851.121	-132.739	3408.58	-656.479	-609.523
<u>≥</u> 5	46686.2	-13226.9	2588.39	-150.149	3871.87	-806.533	-90.2065
<u>≥</u> 6	56328.9	-20443.2	4547.38	-176.815	4299.19	-927.358	603.192
≥ 7	64136	-27137.5	6628.18	-200.933	4669.22	-1018.94	797.162
≥ 8	71744.1	-34290.3	9036.9	-214.249	4886.95	-1037.59	508.703
<u>≥</u> 9	77262	-39724.2	11061	-228.2	5141.35	-1102.05	338.294
<u>≥</u> 10	82939.8	-45575.6	13320.2	-233.691	5266.25	-1095.94	-73.3159
<u>≥</u> 11	86541	-49289.6	14921.7	-242.092	5444.54	-1141.6	-83.0603
≥ 12	91383	-54456.7	17107	-242.881	5528.7	-1149.2	-547.579
≥ 13	95877.6	-59404.7	19268	-240.36	5524.35	-1094.72	-933.64
<u>≥</u> 14	97648.3	-61091.6	20261.7	-244.234	5654.56	-1151.47	-749.836
<u>≥</u> 15	102533	-66651.5	22799.7	-240.858	5647.05	-1120.32	-1293.34
<u>≥</u> 16	106216	-70753.8	24830.1	-237.04	5647.63	-1099.12	-1583.89
<u>≥</u> 17	109863	-75005	27038	-234.299	5652.45	-1080.98	-1862.07
<u>≥</u> 18	111460	-76482.3	28076.5	-234.426	5703.52	-1104.39	-1695.77
<u>≥</u> 19	114916	-80339.6	30126.5	-229.73	5663.21	-1065.48	-1941.83
<u>≥</u> 20	119592	-86161.5	33258.2	-227.256	5700.49	-1100.21	-2474.01

Table 2.4-3 (Page 2 of 8)

Cooling			Arra	y/Class 14x	14B		
Time (years)	. A	В	С	D	E	F	G
<u>≥</u> 3	18036.1	63.7639	-24.7251	-130.732	2449.87	-347.748	-858.192
<u>></u> 4	30303.4	-4304.2	598.79	-118.757	2853.18	-486.453	-459.902
<u>≥</u> 5	40779.6	-9922.93	1722.83	-138.174	3255.69	-608.267	245.251
<u>≥</u> 6	48806.7	-15248.9	3021.47	-158.69	3570.24	-689.876	833.917
<u>></u> 7	55070.5	-19934.6	4325.62	-179.964	3870.33	-765.849	1203.89
<u>≥</u> 8	60619.6	-24346	5649.29	-189.701	4042.23	-795.324	1158.12
<u>≥</u> 9	64605.7	-27677.1	6778.12	-205.459	4292.35	-877.966	1169.88
<u>≥</u> 10	69083.8	-31509.4	8072.42	-206.157	4358.01	-875.041	856.449
<u>≥</u> 11	72663.2	-34663.9	9228.96	-209.199	4442.68	-889.512	671.567
<u>≥</u> 12 `	74808.9	-36367	9948.88	-214.344	4571.29	-942.418	765.261
<u>≥</u> 13	78340.3	-39541.1	11173.8	-212.8	4615.06	-957.833	410.807
<u>≥</u> 14	81274.8	-42172.3	12259.9	-209.758	4626.13	-958.016	190.59
<u>≥</u> 15	83961.4	-44624.5	13329.1	-207.697	4632.16	-952.876	20.8575
<u>≥</u> 16	84968.5	-44982.1	13615.8	-207.171	4683.41	-992.162	247.54
<u>≥</u> 17	87721.6	-47543.1	14781.4	-203.373	4674.3	-988.577	37.9689
<u>≥</u> 18	90562.9	-50100.4	15940.4	-198.649	4651.64	-982.459	-247.421
<u>></u> 19	93011.6	-52316.6	17049.9	-194.964	4644.76	-994.63	-413.021
≥ 20	95567.8	-54566.6	18124	-190.22	4593.92	-963.412	-551.983

Table 2.4-3 (Page 3 of 8)

Cooling			Arra	y/Class 14x	14C		
Time (years)	Α	В	С	D	E	F	G
≥ 3	18263.7	174.161	-57.6694	-138.112	2539.74	-369.764	-1372.33
<u>≥</u> 4	30514.5	-4291.52	562.37	-124.944	2869.17	-481.139	-889.883
<u>≥</u> 5	41338	-10325.7	1752.96	-141.247	3146.48	-535.709	-248.078
<u>≥</u> 6	48969.7	-15421.3	2966.33	-163.574	3429.74	-587.225	429.331
<u>≥</u> 7	55384.6	-20228.9	4261.47	-180.846	3654.55	-617.255	599.251
≥ 8	60240.2	-24093.2	5418.86	-199.974	3893.72	-663.995	693.934
<u>≥</u> 9	64729	-27745.7	6545.45	-205.385	3986.06	-650.124	512.528
<u>≥</u> 10	68413.7	-30942.2	7651.29	-216.408	4174.71	-702.931	380.431
<u>≥</u> 11	71870.6	-33906.7	8692.81	-218.813	4248.28	-704.458	160.645
<u>≥</u> 12	74918.4	-36522	9660.01	-218.248	4283.68	-696.498	-29.0682
<u>≥</u> 13	77348.3	-38613.7	10501.8	-220.644	4348.23	-702.266	-118.646
<u>≥</u> 14	79817.1	-40661.8	11331.2	-218.711	4382.32	-710.578	-236.123
<u>≥</u> 15	82354.2	-42858.3	12257.3	-215.835	4405.89	-718.805	-431.051
<u>≥</u> 16	84787.2	-44994.5	13185.9	-213.386	4410.99	-711.437	-572.104
<u>≥</u> 17	87084.6	-46866.1	14004.8	-206.788	4360.3	-679.542	-724.721
<u>≥</u> 18	88083.1	-47387.1	14393.4	-208.681	4420.85	-709.311	-534.454
<u>≥</u> 19	90783.6	-49760.6	15462.7	-203.649	4403.3	-705.741	-773.066
≥ 20	93212	-51753.3	16401.5	-197.232	4361.65	-692.925	-964.628

Table 2.4-3 (Page 4 of 8)

Cooling			Array/	Class 15x15	A/B/C		·
Time (years)	Α	В	С	D	E	F	G
≥ 3	15037.3	108.689	-18.8378	-127.422	2050.02	-242.828	-580.66
≥ 4	25506.6	-2994.03	356.834	-116.45	2430.25	-350.901	-356.378
≥ 5	34788.8	-7173.07	1065.9	-124.785	2712.23	-424.681	267.705
<u>></u> 6	41948.6	-11225.3	1912.12	-145.727	3003.29	-489.538	852.112
≥ 7	47524.9	-14770.9	2755.16	-165.889	3253.9	-542.7	1146.96
<u>></u> 8	52596.9	-18348.8	3699.72	-177.17	3415.69	-567.012	1021.41
<u>></u> 9	56055.4	-20837.1	4430.93	-192.168	3625.93	-623.325	1058.61
≥ 10	59611.3	-23402.1	5179.52	-195.105	3699.18	-626.448	868.517
≥ 11	62765.3	-25766.5	5924.71	-195.57	3749.91	-627.139	667.124
≥ 12	65664.4	-28004.8	6670.75	-195.08	3788.33	-628.904	410.783
≥ 13	67281.7	-29116.7	7120.59	-202.817	3929.38	-688.738	492.309
<u>≥</u> 14	69961.4	-31158.6	7834.02	-197.988	3917.29	-677.565	266.561
≥ 15	72146	-32795.7	8453.67	-195.083	3931.47	-681.037	99.0606
≥ 16	74142.6	-34244.8	9023.57	-190.645	3905.54	-663.682	10.8885
≥ 17	76411.4	-36026.3	9729.98	-188.874	3911.21	-663.449	-151.805
<u>≥</u> 18	77091	-36088	9884.09	-188.554	3965.08	-708.55	59.3839
<u>≥</u> 19	79194.5	-37566.4	10477.5	-181.656	3906.93	-682.4	-117.952
≥ 20	81600.4	-39464.5	11281.9	-175.182	3869.49	-677.179	-367.705

Table 2.4-3 (Page 5 of 8)

Cooling			Array/C	Class 15x15[D/E/F/H		
Time (years)	Α	В	·C	D	E	F	G
≥ 3	14376.7	102.205	-20.6279	-126.017	1903.36	-210.883	-493.065
<u>≥</u> 4	24351.4	-2686.57	297.975	-110.819	2233.78	-301.615	-152.713
<u>≥</u> 5	33518.4	-6711.35	958.544	-122.85	2522.7	-371.286	392.608
≥ 6	40377	-10472.4	1718.53	-144.535	2793.29	-426.436	951.528
<u>≥</u> 7	46105.8	-13996.2	2515.32	-157.827	2962.46	-445.314	1100.56
≥ 8	50219.7	-16677.7	3198.3	-175.057	3176.74	-492.727	1223.62
<u>></u> 9	54281.2	-19555.6	3983.47	-181.703	3279.03	-499.997	1034.55
<u>≥</u> 10	56761.6	-21287.3	4525.98	-195.045	3470.41	-559.074	1103.3
<u>≥</u> 11	59820	-23445.2	5165.43	-194.997	3518.23	-561.422	862.68
<u>≥</u> 12	62287.2	-25164.6	5709.9	-194.771	3552.69	-561.466	680.488
<u>≥</u> 13	64799	-27023.7	6335.16	-192.121	3570.41	-561.326	469.583
<u>≥</u> 14	66938.7	-28593.1	6892.63	-194.226	3632.92	-583.997	319.867
<u>≥</u> 15	68116.5	-29148.6	7140.09	-192.545	3670.39	-607.278	395.344
<u>≥</u> 16	70154.9	-30570.1	7662.91	-187.366	3649.14	-597.205	232.318
<u>≥</u> 17	72042.5	-31867.6	8169.01	-183.453	3646.92	-603.907	96.0388
<u>≥</u> 18	73719.8	-32926.1	8596.12	-177.896	3614.57	-592.868	46.6774
<u>≥</u> 19	75183.1	-33727.4	8949.64	-172.386	3581.13	-586.347	3.57256
≥ 20	77306.1	-35449	9690.02	-173.784	3636.87	-626.321	-205.513

Table 2.4-3 (Page 6 of 8)

Cooling			Arra	y/Class 16X	16A		
Time (years)	А	В	С	D	E	F	G
<u>≥</u> 3	16226.8	143.714	-32.4809	-136.707	2255.33	-291.683	-699.947
<u>≥</u> 4	27844.2	-3590.69	444.838	-124.301	2644.09	-411.598	-381,106
<u>≥</u> 5	38191.5	-8678.48	1361.58	-132.855	2910.45	-473.183	224.473
<u>≥</u> 6	46382.2	-13819.6	2511.32	-158.262	3216.92	-532.337	706.656
<u>≥</u> 7	52692.3	-18289	3657.18	-179.765	3488.3	-583.133	908.839
≥ 8	57758.7	-22133.7	4736.88	-199.014	3717.42	-618.83	944.903
≥ 9	62363.3	-25798.7	5841.18	-207.025	3844.38	-625.741	734.928
<u>≥</u> 10	66659.1	-29416.3	6993.31	-216.458	3981.97	-642.641	389.366
<u>≥</u> 11	69262.7	-31452.7	7724.66	-220.836	4107.55	-681.043	407.121
<u>≥</u> 12	72631.5	-34291.9	8704.8	-219.929	4131.5	-662.513	100.093
<u>≥</u> 13	75375.3	-36589.3	9555.88	-217.994	4143.15	-644.014	-62.3294
<u>≥</u> 14	78178.7	-39097.1	10532	-221.923	4226.28	-667.012	-317.743
<u>≥</u> 15	79706.3	-40104	10993.3	-218.751	4242.12	-670.665	-205.579
≥ 16	82392.6	-42418.9	11940.7	-216.278	4274.09	-689.236	-479.752
<u>≥</u> 17	84521.8	-44150.5	12683.3	-212.056	4245.99	-665.418	-558.901
<u>≥</u> 18	86777.1	-45984.8	13479	-204.867	4180.8	-621.805	-716.366
≥ 19	89179.7	-48109.8	14434.5	-206.484	4230.03	-648.557	-902.1
<u>≥</u> 20	90141.7	-48401.4	14702.6	-203.284	4245.54	-670.655	-734.604

Table 2.4-3 (Page 7 of 8)

Cooling			Arra	ay/Class 17x	17A		
Time (years)	А	В	C	D	Е	· F	G
≥ 3	15985.1	3.53963	-9.04955	-128.835	2149.5	-260.415	-262.997
≥ 4	27532.9	-3494.41	428.199	-119.504	2603.01	-390.91	-140:319
≥ 5	38481.2	-8870.98	1411.03	-139.279	3008.46	-492.881	388.377
≥ 6	47410.9	-14479.6	2679.08	-162.13	3335.48	-557.777	702.164
≥ 7	54596.8	-19703.2	4043.46	-181.339	3586.06	-587.634	804.05
≥ 8	60146.1	-24003.4	5271.54	-201.262	3830.32	-621.706	848.454
≥ 9	65006.3	-27951	6479.04	-210.753	3977.69	-627.805	615.84
≥ 10	69216	-31614.7	7712.58	-222.423	4173.4	-672.33	387.879
≥ 11	73001.3	-34871.1	8824.44	-225.128	4238.28	-657.259	101.654
≥ 12	76326.1	-37795.9	9887.35	-226.731	4298.11	-647.55	-122.236
≥ 13	78859.9	-40058.9	10797.1	-231.798	4402.14	-669.982	-203.383
≥ 14	82201.3	-43032.5	11934.1	-228.162	4417.99	-661.61	-561.969
≥ 15	84950	-45544.6	12972.4	-225.369	4417.84	-637.422	-771.254
≥ 16	87511.8	-47720	13857.7	-219.255	4365.24	-585:655	-907.775
≥ 17	90496.4	-50728.9	15186	-223.019	4446.51	-613.378	-1200.94
≥ 18	91392.5	-51002.4	15461.4	-220.272	4475.28	-636.398	-1003.81
· <u>></u> 19	94343.9	-53670.8	16631.6	-214.045	4441.31	-616.201	-1310.01
<u>≥</u> 20	96562.9	-55591.2	17553.4	-209.917	4397.67	-573.199	-1380.64

Table 2.4-3 (Page 8 of 8)

Cooling			Array	ı/Class 17x1	7B/C		
Time (years)	Α	В	С	D	E	F	G
≥ 3	14738	47.5402	-13.8187	-127.895	1946.58	-219.289	-389.029
<u>≥</u> 4	25285.2	-3011.92	350.116	-115.75	2316.89	-319.23	-220.413
<u>></u> 5	34589.6	-7130.34	1037.26	-128.673	2627.27	-394.58	459.642
≥ 6	42056.2	-11353.7	1908.68	-150.234	2897.38	-444.316	923.971
≥ 7	47977.6	-15204.8	2827.4	-173.349	3178.25	-504.16	1138.82
≥ 8	52924	-18547.6	3671.08	-183.025	3298.64	-501.278	1064.68
≥ 9	56465.5	-21139.4	4435.67	-200.386	3538	-569.712	1078.78
<u>≥</u> 10	60190.9	-23872.7	5224.31	-203.233	3602.88	-562.312	805.336
<u>≥</u> 11	63482.1	-26431.1	6035.79	-205.096	3668.84	-566.889	536.011
≥ 12	66095	-28311.8	6637.72	-204.367	3692.68	-555.305	372.223
<u>≥</u> 13	67757.4	-29474.4	7094.08	-211.649	3826.42	-606.886	437.412
<u>≥</u> 14	70403.7	-31517.4	7807.15	-207.668	3828.69	-601.081	183.09
≥ 1 <u>5</u>	72506.5	-33036.1	8372.59	-203.428	3823.38	-594.995	47.5175
<u>></u> 16	74625.2	-34620.5	8974.32	-199.003	3798.57	-573.098	-95.0221
<u>≥</u> 17	76549	-35952.6	9498.14	-193.459	3766.52	-556.928	-190.662
<u>≥</u> 18	77871.9	-36785.5	9916.91	-195.592	3837.65	-599.45	-152.261
<u>≥</u> 19	79834.8	-38191.6	10501.9	-190.83	3812.46	-589.635	-286.847
<u>≥ 2</u> 0	81975.5	-39777.2	11174.5	-185.767	3795.78	-595.664	-475.978

Table 2.4-4 (Page 1 of 10)

Cooling			Ar	ray/Class 7x	7B		
Time	Α	В	С	D	E	F	G
(years) ≥ 3	26409.1	28347.5	-16858	-147.076	5636.32	-1606.75	1177.88
<u>> 4</u>	61967.8	-6618.31	-4131.96	-113.949	6122.77	-2042.85	-96.7439
≥ 5	91601.1	-49298.3	17826.5	-132.045	6823.14	-2418.49	-185.189
<u>≥</u> 6	111369	-80890.1	35713.8	-150.262	7288.51	-2471.1	86.6363
<u>≥</u> 7	126904	-108669	53338.1	-167.764	7650.57	-2340.78	150.403
≥ 8	139181	-132294	69852.5	-187.317	8098.66	-2336.13	97.5285
<u>≥</u> 9	150334	-154490	86148.1	-193.899	8232.84	-2040.37	-123.029
≥ 10	159897	-173614	100819	-194.156	8254,99	-1708.32	-373.605
<u>≥</u> 11	166931	-186860	111502	-193.776	8251.55	-1393.91	-543.677
<u>≥</u> 12	173691	-201687	125166	-202.578	8626.84	-1642.3	-650.814
≥ 13	180312	-215406	137518	-201.041	8642.19	-1469.45	-810.024
<u>≥</u> 14	185927	-227005	148721	-197.938	8607.6	-1225.95	-892.876
<u>></u> 15	191151	-236120	156781	-191.625	8451.86	-846.27	-1019.4
<u>></u> 16	195761	-244598	165372	-187.043	8359.19	-572.561	-1068.19
<u>≥</u> 17	200791	-256573	179816	-197.26	8914.28	-1393.37	-1218.63
<u>></u> 18	206068	-266136	188841	-187.191	8569.56	-730.898	-1363.79
<u>></u> 19	210187	-273609	197794	-182.151	8488.23	-584.727	-1335.59
≥ 20	213731	-278120	203074	-175.864	8395.63	-457.304	-1364.38

Table 2.4-4 (Page 2 of 10)

Cooling		•	Δr	ray/Class 8x	8R		
Time (years)	Α .	В	С	D D	E	F	G
≥ 3	28219.6	28963.7	-17616.2	-147.68	5887.41	-1730.96	1048.21
≥ 4	66061.8	-10742.4	-1961.82	-123.066	6565.54	-2356.05	-298.005
≥ 5	95790.7	-53401.7	19836.7	-134.584	7145.41	-2637.09	-298.858
<u>≥</u> 6	117477	-90055.9	41383.9	-154.758	7613.43	-2612.69	-64.9921
≥ 7	134090	-120643	60983	-168.675	7809	-2183:3	-40.8885
≥ 8	148186	-149181	81418.7	-185.726	8190.07	-2040.31	-260.773
≥ 9	159082	-172081	99175.2	-197.185	8450.86	-1792.04	-381.705
<u>≥</u> 10	168816	-191389	113810	-195.613	8359.87	-1244.22	-613.594
<u>≥</u> 11	177221	-210599	131099	-208.3	8810	-1466.49	-819.773
≥ 12	183929	-224384	143405	-207.497	8841.33	-1227.71	-929.708
. ≥ 13	191093	-240384	158327	-204.95	8760.17	-811.708	-1154.76
<u>≥</u> 14	196787	-252211	169664	-204.574	8810.95	-610.928	-1208.97
<u>≥</u> 15	203345	-267656	186057	-208.962	9078.41	-828.954	-1383.76
<u>≥</u> 16	207973	-276838	196071	-204.592	9024.17	-640.808	-1436.43
<u>≥</u> 17	213891	-290411	211145	-202.169	9024.19	-482.1	-1595.28
<u>≥</u> 18	217483	-294066	214600	-194.243	8859.35	-244.684	-1529.61
<u>≥</u> 19	220504	-297897	219704	-190.161	8794.97	-10.9863	-1433.86
<u>≥</u> 20	227821	-318395	245322	-194.682	9060.96	-350.308	-1741.16

Table 2.4-4 (Page 3 of 10)

Cooling			Array	//Class 8x80	C/D/E		
Time (years)	Α	В	С	D	E	F	G
≥ 3	28592.7	28691.5	-17773.6	-149.418	5969.45	-1746.07	1063.62
<u>≥</u> 4	66720.8	-12115.7	-1154	-128.444	6787.16	-2529.99	-302.155
≥ 5	96929.1	-55827.5	21140.3	-136.228	7259.19	-2685.06	-334.328
≥ 6	118190	-92000.2	42602.5	-162.204	7907.46	-2853.42	-47.5465
≥ 7	135120	-123437	62827.1	-172.397	8059.72	-2385.81	-75.0053
≥ 8	149162	-152986	84543.1	-195.458	8559.11	-2306.54	-183.595
≥ 9	161041	-177511	103020	-200.087	8632.84	-1864.4	-433.081
<u>≥</u> 10	171754	-201468	122929	-209.799	8952.06	-1802.86	-755.742
<u>≥</u> 11	179364	-217723	137000	-215.803	9142.37	-1664.82	-847.268
≥ 12	186090	-232150	150255	-216.033	9218.36	-1441.92	-975.817
<u>≥</u> 13	193571	-249160	165997	-213.204	9146.99	-1011.13	-1119.47
<u>≥</u> 14	200034	-263671	180359	-210.559	9107.54	-694.626	-1312.55
<u>≥</u> 15	205581	-275904	193585	-216.242	9446.57	-1040.65	-1428.13
<u>≥</u> 16	212015	-290101	207594	-210.036	9212.93	-428.321	-1590.7
≥ 17	216775	-299399	218278	-204.611	9187.86	-398.353	-1657.6
≥ 18	220653	-306719	227133	-202.498	9186.34	-181.672	-1611.86
≥ 19	224859	-314004	235956	-193.902	8990.14	145.151	-1604.71
≥ 20	228541	-320787	245449	-200.727	9310.87	-230.252	-1570.18

Table 2.4-4 (Page 4 of 10)

Cooling			Arı	ray/Class 9x	9A		
Time (years)	Α	В	C	D	Е	F	G
≥ 3	30538.7	28463.2	-18105.5	-150.039	6226.92	-1876.69	1034.06
<u>></u> 4	71040.1	-16692.2	1164.15	-128.241	7105.27	-2728.58	-414.09
<u>≥</u> 5	100888	-60277.7	24150.1	-142.541	7896.11	-3272.86	-232.197
≥ 6	124846	-102954	50350.8	-161.849	8350.16	-3163.44	-91.1396
<u>≥</u> 7	143516	-140615	76456.5	-185.538	8833.04	-2949.38	-104.802
≥ 8	158218	-171718	99788.2	-196.315	9048.88	-2529.26	-259.929
≥ 9	172226	-204312	126620	-214.214	9511.56	-2459.19	-624.954
<u>></u> 10	182700	-227938	146736	-215.793	9555.41	-1959.92	-830.943
<u>></u> 11	190734	-246174	163557	-218.071	9649.43	-1647.5	-935.021
<u>≥</u> 12	199997	-269577	186406	-223.975	9884.92	-1534.34	-1235.27
<u>≥</u> 13	207414	-287446	204723	-228.808	10131.7	-1614.49	-1358.61
<u>></u> 14	215263	-306131	223440	-220.919	9928.27	-988.276	-1638.05
<u>≥</u> 15	221920	-321612	239503	-217.949	9839.02	-554.709	-1784.04
<u>≥</u> 16	226532	-331778	252234	-216.189	9893.43	-442.149	-1754.72
<u>≥</u> 17	232959	-348593	272609	-219.907	10126.3	-663.84	-1915.3
<u>≥</u> 18	240810	-369085	296809	-219.729	10294.6	-859.302	-2218.87
<u>≥</u> 19	244637	-375057	304456	-210.997	10077.8	-425.446	-2127.83
≥ 20	248112	-379262	309391	-204.191	9863.67	100.27	2059.39

Table 2.4-4 (Page 5 of 10)

Cooling		Array/Class 9x9B							
Time (years)	А	В	С	D	E	F	G		
≥ 3	30613.2	28985.3	-18371	-151.117	6321.55	-1881.28	988.92		
<u>≥</u> 4	71346.6	-15922.9	631.132	-128.876	7232.47	-2810.64	-471.737		
<u>≥</u> 5	102131	-60654.1	23762.7	-140.748	7881.6	-3156.38	-417.979		
≥ 6	127187	-105842	51525.2	-162.228	8307.4	-2913.08	-342.13		
≥ 7	146853	-145834	79,146.5	-185.192	8718.74	-2529.57	-484.885		
≥ 8	162013	-178244	103205	-197.825	8896.39	-1921.58	-584.013		
<u>≥</u> 9	176764	-212856	131577	-215.41	9328.18	-1737.12	-1041.11		
<u>≥</u> 10	186900	-235819	151238	-218.98	9388.08	-1179.87	-1202.83		
<u>≥</u> 11	196178	-257688	171031	-220.323	9408.47	-638.53	-1385.16		
≥ 12	205366	-280266	192775	-223.715	9592.12	-472.261	-1661.6		
<u>≥</u> 13	215012	-306103	218866	-231.821	9853.37	-361.449	-1985.56		
<u>≥</u> 14	222368	-324558	238655	-228.062	9834.57	3.47358	-2178.84		
<u>≥</u> 15	226705	-332738	247316	-224.659	9696.59	632.172	-2090.75		
≥ 16	233846	-349835	265676	-221.533	9649.93	913.747	-2243.34		
<u>≥</u> 17	243979	-379622	300077	-222.351	9792.17	1011.04	-2753.36		
<u>≥</u> 18	247774	-386203	308873	-220.306	9791.37	1164.58	-2612.25		
<u>≥</u> 19	254041	-401906	327901	-213.96	9645.47	1664.94	-2786.2		
<u>≥</u> 20	256003	-402034	330566	-215.242	9850.42	1359.46	-2550.06		

Table 2.4-4 (Page 6 of 10)

Cooling		Array/Class 9x9C/D						
Time (years)	Α	В	С	D	E	F	G	
<u>≥</u> 3	30051.6	29548.7	-18614.2	-148.276	6148.44	-1810.34	1006	
<u>></u> 4	70472.7	-14696.6	-233.567	-127.728	7008.69	-2634.22	-444.373	
<u>≥</u> 5	101298	-59638.9	23065.2	-138.523	7627.57	-2958.03	-377.965	
≥6	125546	-102740	49217.4	-160.811	8096.34	-2798.88	-259.767	
<u>≥</u> 7	143887	-139261	74100.4	-184.302	8550.86	-2517.19	-275.151	
<u>></u> 8	159633	-172741	98641.4	-194.351	8636.89	-1838.81	-486.731	
≥ 9	173517	-204709	124803	-212.604	9151.98	-1853.27	-887.137	
<u>></u> 10	182895	-225481	142362	-218.251	9262.59	-1408.25	-978.356	
<u>></u> 11	192530	-247839	162173	-217.381	9213.58	-818.676	-1222.12	
<u>≥</u> 12	201127	-268201	181030	-215.552	9147.44	-232.221	-1481.55	
<u>≥</u> 13	209538	-289761	203291	-225.092	9588.12	-574.227	-1749.35	
<u>≥</u> 14	216798	-306958	220468	-222.578	9518.22	-69.9307	-1919.71	
<u>≥</u> 15	223515	-323254	237933	-217.398	9366.52	475.506	-2012.93	
<u>≥</u> 16	228796	-334529	250541	-215.004	9369.33	662.325	-2122.75	
<u>≥</u> 17	237256	-356311	273419	-206.483	9029.55	1551.3	-2367.96	
<u>≥</u> 18	242778	-369493	290354	-215.557	9600.71	659.297	-2589.32	
<u>></u> 19	246704	-377971	302630	-210.768	9509.41	1025.34	-2476.06	
≥ 20	249944	-382059	308281	-205.495	9362.63	1389.71	-2350.49	

Table 2.4-4 (Page 7 of 10)

Cooling		Array/Class 9x9E/F							
· Time (yea <u>rs)</u>	Α	В	С	D	E	F	G		
≥ 3	30284.3	26949.5	-16926.4	-147.914	6017.02	-1854.81	1026.15		
<u>></u> 4	69727.4	-17117.2	1982.33	-127.983	6874.68	-2673.01	-359.962		
≥ 5	98438.9	-58492	23382.2	-138.712	7513.55	-3038.23	-112.641		
<u>≥</u> 6	119765	-95024.1	45261	-159.669	8074.25	-3129.49	221.182		
<u>≥</u> 7	136740	-128219	67940.1	-182.439	8595.68	-3098.17	315.544		
<u>≥</u> 8	150745	-156607	88691.5	-193.941	8908.73	-2947.64	142.072		
<u>></u> 9	162915	-182667	109134	-198.37	8999.11	-2531	-93.4908		
<u>></u> 10	174000	-208668	131543	-210.777	9365.52	-2511.74	-445.876		
<u>≥ 1</u> 1	181524	-224252	145280	-212.407	9489.67	-2387.49	-544.123		
<u>≥ 1</u> 2	188946	-240952	160787	-210.65	9478.1	-2029.94	-652.339		
≥ 13	193762	-250900	171363	-215.798	9742.31	-2179.24	-608.636		
<u>≥ 1</u> 4	203288	-275191	196115	-218.113	9992.5	-2437.71	-1065.92		
<u>≥</u> 15	208108	-284395	205221	-213.956	9857.25	-1970.65	-1082.94		
<u>≥</u> 16	215093	-301828	224757	-209.736	9789.58	-1718.37	-1303.35		
<u>≥</u> 17	220056	-310906	234180	-201.494	9541.73	-1230.42	-1284.15		
<u>> 18</u>	224545	-320969	247724	-206.807	9892.97	-1790.61	-1381.9		
<u>> 1</u> 9	226901	-322168	250395	-204.073	9902.14	-1748.78	-1253.22		
<u>≥</u> 20	235561	-345414	276856	-198.306	9720.78	-1284.14	-1569.18		

Table 2.4-4 (Page 8 of 10)

Cooling			Arı	ay/Class 9x	9G		
Time (years)	Α	В	С	D	E.	F	G
≥ 3	35158.5	26918.5	-17976.7	-149.915	6787.19	-2154.29	836.894
<u>></u> 4	77137.2	-19760.1	2371.28	-130.934	8015.43	-3512.38	-455.424
<u>></u> 5	113405	-77931.2	35511.2	-150.637	8932.55	-4099.48	-629.806
<u>≥</u> 6	139938	-128700	68698.3	-173.799	9451.22	-3847.83	-455.905
≥ 7	164267	-183309	109526	-193.952	9737.91	-3046.84	-737.992
<u>></u> 8	182646	-227630	146275	-210.936	10092.3	-2489.3	-1066.96
<u>≥</u> 9	199309	-270496	184230	-218.617	10124.3	-1453.81	-1381.41
<u>≥</u> 10	213186	-308612	221699	-235.828	10703.2	-1483.31	-1821.73
<u>≥</u> 11	225587	-342892	256242	-236.112	10658.5	-612.076	-2134.65
<u>></u> 12	235725	-370471	285195	-234.378	10604.9	118.591	-2417.89
. <u>≥</u> 13	247043	-404028	323049	-245.79	11158.2	-281.813	-2869.82
<u>> 14</u>	253649	-421134	342682	-243.142	11082.3	400.019	-2903.88
≥ 15	262750	-448593	376340	-245.435	11241.2	581.355	-3125.07
≥ 16	270816	-470846	402249	-236.294	10845.4	1791.46	-3293.07
<u>≥</u> 17	279840	-500272	441964	-241.324	11222.6	1455.84	-3528.25
≥ 18	284533	-511287	458538	-240.905	11367.2	1459.68	-3520.94
<u>≥</u> 19	295787	-545885	501824	-235.685	11188.2	2082.21	-3954.2
<u>≥</u> 20	300209	-556936	519174	-229.539	10956	2942.09	-3872.87

Table 2.4-4 (Page 9 of 10)

Cooling	Array/Class 10x10A/B							
Time (years)	A	В	· C	D	E	F	G	
≥ 3	29285.4	27562.2	-16985	-148.415	5960.56	-1810.79	1001.45	
<u>≥</u> 4	67844.9	-14383	395.619	-127.723	6754.56	-2547.96	-369.267	
<u>≥</u> 5	96660.5	-55383.8	21180.4	-137.17	7296.6	-2793.58	-192.85	
≥ 6	118098	-91995	42958	-162.985	7931.44	-2940.84	60.9197	
≥ 7	135115	-123721	63588.9	-171.747	8060.23	-2485.59	73.6219	
<u>≥</u> 8	148721	-151690	84143.9	-190.26	8515.81	-2444.25	-63.4649	
≥ 9	160770	-177397	104069	-197.534	8673.6	-2101.25	-331.046	
<u>≥</u> 10	170331	-198419	121817	-213.692	9178.33	-2351.54	-472.844	
<u>></u> 11	179130	-217799	138652	-209.75	9095.43	-1842.88	-705.254	
<u>≥</u> 12	186070	-232389	151792	-208.946	9104.52	-1565.11	-822.73	
<u>≥</u> 13	192407	-246005	164928	-209.696	9234.7	-1541.54	-979.245	
<u>≥</u> 14	200493	-265596	183851	-207.639	9159.83	-1095.72	-1240.61	
<u>≥</u> 15	205594	-276161	195760	-213.491	9564.23	-1672.22	-1333.64	
<u>≥</u> 16	209386	-282942	204110	-209.322	9515.83	-1506.86	-1286.82	
<u>≥</u> 17	214972	-295149	217095	-202.445	9292.34	-893.6	-1364.97	
≥ 18	219312	-302748	225826	-198.667	9272.27	-878.536	-1379.58	
≥ 19	223481	-310663	235908	-194.825	9252.9	-785.066	-1379.62	
≥ 20	227628	-319115	247597	-199.194	9509.02	-1135.23	-1386.19	

Table 2.4-4 (Page 10 of 10)

Cooling			Arra	ıy/Class 10x	10C		
Time (years)	Α	В	С	D	E	F	G
≥ 3	31425.3	27358.9	-17413.3	-152.096	6367.53	-1967.91	925.763
<u>≥</u> 4	71804	-16964.1	1000.4	-129.299	7227.18	-2806.44	-416.92
<u>≥</u> 5	102685	-62383.3	24971.2	-142.316	7961	-3290.98	-354.784
<u>≥</u> 6	126962	-105802	51444.6	-164.283	8421.44	-3104.21	-186.615
≥ 7	146284	-145608	79275.5	-188.967	8927.23	-2859.08	-251.163
≥ 8	162748	-181259	105859	-199.122	9052.91	-2206.31	-554.124
≥ 9	176612	-214183	133261	-217.56	9492.17	-1999.28	-860.669
<u>≥</u> 10	187756	-239944	155315	-219.56	9532.45	-1470.9	-1113.42
<u>≥</u> 11	196580	-260941	174536	-222.457	9591.64	-944.473	-1225.79
≥ 12	208017	-291492	204805	-233.488	10058.3	-1217.01	-1749.84
<u>≥</u> 13 .	214920	-307772	221158	-234.747	10137.1	-897.23	-1868.04
<u>≥</u> 14	222562	-326471	240234	-228.569	9929.34	-183.47	-2016.12
≥ 15	228844	-342382	258347	-226.944	9936.76	117.061	-2106.05
<u>≥</u> 16	233907	-353008	270390	-223.179	9910.72	360.39	-2105.23
<u>≥</u> 17	244153	-383017	304819	-227.266	10103.2	380.393	-2633.23
<u>≥</u> 18	249240	-395456	321452	-226.989	10284.1	169.947	-2623.67
≥ 19	254343	-406555	335240	-220.569	10070.5	764.689	-2640.2
≥ 20	260202	-421069	354249	-216.255	10069.9	854.497	-2732.77

3.0 DESIGN FEATURES

3.1 Site

3.1.1 Site Location

The HI-STORM 100 Cask System is authorized for general use by 10 CFR Part 50 license holders at various site locations under the provisions of 10 CFR 72, Subpart K.

3.2 Design Features Important for Criticality Control

3.2.1 MPC-24

- 1. Flux trap size: ≥ 1.09 in.
- 2. 10 B loading in the neutron absorbers: ≥ 0.0267 g/cm² (Boral) and ≥ 0.0223 g/cm² (METAMIC)

3.2.2 MPC-68 and MPC-68FF

- 1. Fuel cell pitch: \geq 6.43 in.
- 2. 10 B loading in the neutron absorbers: ≥ 0.0372 g/cm2 (Boral) and ≥ 0.0310 g/cm2 (METAMIC)

3.2.3 MPC-68F

- 1. Fuel cell pitch: ≥ 6.43 in.
- 2. ¹⁰B loading in the Boral neutron absorbers: ≥ 0.01 g/cm²

3.2.4 MPC-24E and MPC-24EF

- 1. Flux trap size:
 - i. Cells 3, 6, 19, and 22: ≥ 0.776 inch
 - ii. All Other Cells: ≥ 1.076 inches
- 2. 10 B loading in the neutron absorbers: ≥ 0.0372 g/cm² (Boral) and ≥ 0.0310 g/cm² (METAMIC)

3.2.5 MPC-32 and MPC-32F

- 1. Fuel cell pitch: ≥ 9.158 inches
- 2. 10 B loading in the neutron absorbers: ≥ 0.0372 g/cm² (Boral) and ≥ 0.0310 g/cm² (METAMIC)

DESIGN FEATURES

- 3.2 Design features Important for Criticality Control (cont'd)
 - 3.2.6 Fuel spacers shall be sized to ensure that the active fuel region of intact fuel assemblies remains within the neutron poison region of the MPC basket with water in the MPC.
 - 3.2.7 The B₄C content in METAMIC shall be \leq 33.0 wt.%.
 - 3.2.8 Neutron Absorber Tests

Section 9.1.5.3 of the HI-STORM 100 FSAR is hereby incorporated by reference into the HI-STORM 100 CoC. The minimum ¹⁰B for the neutron absorber shall meet the minimum requirements for each MPC model specified in Sections 3.2.1 through 3.2.5 above.

3.3 Codes and Standards

The American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code), 1995 Edition with Addenda through 1997, is the governing Code for the HI-STORM 100 System MPCs, OVERPACKs, and TRANSFER CASKs, as clarified in Specification 3.3.1 below, except for Code Sections V and IX. The latest effective editions of ASME Code Sections V and IX, including addenda, may be used for activities governed by those sections, provided a written reconciliation of the later edition against the 1995 Edition, including addenda, is performed by the certificate holder. American Concrete Institute (ACI) 349-85 is the governing Code for plain concrete as clarified in Appendix 1.D of the Final Safety Analysis Report for the HI-STORM 100 Cask System.

3.3.1 Alternatives to Codes, Standards, and Criteria

Table 3-1 lists approved alternatives to the ASME Code for the design of the MPCs, OVERPACKs, and TRANSFER CASKs of the HI-STORM 100 Cask System.

3.3.2 Construction/Fabrication Alternatives to Codes, Standards, and Criteria

Proposed alternatives to the ASME Code, Section III, 1995 Edition with Addenda through 1997 including modifications to the alternatives allowed by Specification 3.3.1 may be used on a case-specific basis when authorized by the Director of the Office of Nuclear Material Safety and Safeguards or designee. The request for such alternative should demonstrate that:

1. The proposed alternatives would provide an acceptable level of quality and safety, or

DESIGN FEATURES

- 3.3.2 <u>Construction/Fabrication Alternatives to Codes, Standards, and Criteria</u> (cont'd)
 - 2. Compliance with the specified requirements of the ASME Code, Section III, 1995 Edition with Addenda through 1997, would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.

Requests for alternatives shall be submitted in accordance with 10 CFR 72.4.

DESIGN FEATURES

L	Table 3-1 (page 1 of 9) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM							
Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures					
MPC, MPC basket assembly, HI-STORM OVERPACK steel structure, and HI- TRAC TRANSFER CASK steel structure	Subsection	General Requirements. Requires preparation of a Design Specification, Design Report, Overpressure Protection Report, Certification of Construction Report, Data Report, and other administrative controls for an ASME Code stamped vessel.	Because the MPC, OVERPACK, and TRANSFER CASK are not ASME Code stamped vessels, none of the specifications, reports, certificates, or other general requirements specified by NCA are required. In lieu of a Design Specification and Design Report, the HI-STORM FSAR includes the design criteria, service conditions, and load combinations for the design and operation of the HI-STORM 100 System as well as the results of the stress analyses to demonstrate that applicable Code stress limits are met. Additionally, the fabricator is not required to have an ASME-certified QA program. All important-to-safety activities are governed by the NRC-approved Holtec QA program. Because the cask components are not certified to the Code, the terms "Certificate Holder" and "Inspector" are not germane to the manufacturing of NRC-certified cask components. To eliminate ambiguity, the responsibilities assigned to the Certificate Holder in the various articles of Subsections NB, NG, and NF of the Code, as applicable, shall be interpreted to apply to the NRC Certificate of Compliance (CoC) holder (and by extension, to the component fabricator) if the requirement must be fulfilled. The Code term "Inspector" means the QA/QC personnel of the CoC holder and its vendors assigned to oversee and inspect the manufacturing process.					
MPC	NB-1100	Statement of requirements for Code stamping of components.	MPC enclosure vessel is designed and will be fabricated in accordance with ASME Code, Section III, Subsection NB to the maximum practical extent, but Code stamping is not required.					

L	Table 3-1 (page 2 of 9) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM							
Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures					
MPC basket supports and lift lugs	NB-1130	NB-1132.2(d) requires that the first connecting weld of a nonpressure-retaining structural attachment to a component shall be considered part of the component unless the weld is more than 2t from the pressure-retaining portion of the component, where t is the nominal thickness of the pressure-retaining material. NB-1132.2(e) requires that the first connecting weld of a welded nonstructural attachment to a component shall conform to NB-4430 if the connecting weld is within 2t from the pressure-retaining portion of the component.	The MPC basket supports (nonpressure-retaining structural attachments) and lift lugs (nonstructural attachments (relative to the function of lifting a loaded MPC) that are used exclusively for lifting an empty MPC) are welded to the inside of the pressure-retaining MPC shell, but are not designed in accordance with Subsection NB. The basket supports and associated attachment welds are designed to satisfy the stress limits of Subsection NG and the lift lugs and associated attachment welds are designed to satisfy the stress limits of Subsection NF, as a minimum. These attachments and their welds are shown by analysis to meet the respective stress limits for their service conditions. Likewise, non-structural items, such as shield plugs, spacers, etc. if used, can be attached to pressure-retaining parts in the same manner.					
MPC	NB-2000	Requires materials to be supplied by ASME-approved material supplier.	Materials will be supplied by Holtec-approved suppliers with Certified Material Test Reports (CMTRs) in accordance with NB-2000 requirements.					

•		Table 3-1 (page 3 of 9)	
LIST O	ASME	CODE ALTERNATIVES FOR HI-STORM 100	CASK SYSTEM

Component		,	
	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
basket N	NB-3100 NG-3100 NF-3100	Provides requirements for determining design loading conditions, such as pressure, temperature, and mechanical loads	These requirements are not applicable. The HI-STORM FSAR, serving as the Design Specification, establishes the service conditions and load combinations for the storage system.
MPC N	NB-3350	NB-3352.3 requires, for Category C joints, that the minimum dimensions of the welds and throat thickness shall be as shown in Figure NB-4243-1.	Due to MPC basket-to-shell interface requirements, the MPC shell-to-baseplate weld joint design (designated Category C) does not include a reinforcing fillet weld or a bevel in the MPC baseplate, which makes it different than any of the representative configurations depicted in Figure NB-4243-1. The transverse thickness of this weld is equal to the thickness of the adjoining shell (1/2 inch). The weld is designed as a full penetration weld that receives VT and RT or UT, as well as final surface PT examinations. Because the MPC shell design thickness is considerably larger than the minimum thickness required by the Code, a reinforcing fillet weld that would intrude into the MPC cavity space is not included. Not including this fillet weld provides for a higher quality radiographic examination of the full penetration weld. From the standpoint of stress analysis, the fillet weld serves to reduce the local bending stress (secondary stress) produced by the gross structural discontinuity defined by the flat plate/shell junction. In the MPC design, the shell

LI	ST OF ASME CO	Table 3-1 (pa DE ALTERNATIVES	ge 4 of 9) FOR HI-STORM 100 CASK SYSTEM
Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
MPC, MPC Basket Assembly, HI-STORM OVERPACK steel structure, and HI- TRAC TRANSFER CASK steel structure	NB-4120 NG-4120 NF-4120	NB-4121.2, NG-4121.2, and NF-4121.2 provide requirements for repetition of tensile or impact tests for material subjected to heat treatment during fabrication or installation.	In-shop operations of short duration that apply heat to a component, such as plasma cutting of plate stock, welding, machining, coating, and pouring of lead are not, unless explicitly stated by the Code, defined as heat treatment operations. For the steel parts in the HI-STORM 100 System components, the duration for which a part exceeds the off-normal temperature limit defined in Chapter 2 of the FSAR shall be limited to 24 hours in a particular manufacturing process (such as the HI-TRAC lead pouring process).
MPC, MPC basket assembly, HI-STORM OVERPACK steel structure, and HI- TRAC TRANSFER CASK steel structure	NB-4220 NF-4220	Requires certain forming tolerances to be met for cylindrical, conical, or spherical shells of a vessel.	The cylindricity measurements on the rolled shells are not specifically recorded in the shop travelers, as would be the case for a Codestamped pressure vessel. Rather, the requirements on inter-component clearances (such as the MPC-to-TRANSFER CASK) are guaranteed through fixture-controlled manufacturing. The fabrication specification and shop procedures ensure that all dimensional design objectives, including intercomponent annular clearances are satisfied. The dimensions required to be met in fabrication are chosen to meet the functional requirements of the dry storage components. Thus, although the post-forming Code cylindricity requirements are not evaluated for compliance directly, they are indirectly satisfied (actually exceeded) in the final manufactured components.
MPC Lid and Closure Ring Welds	NB-4243	Full penetration welds required for Category C Joints (flat head to main shell per NB- 3352.3).	MPC lid and closure ring are not full penetration welds. They are welded independently to provide a redundant seal. Additionally, a weld efficiency factor of 0.45 has been applied to the analyses of these welds.

LI	Table 3-1 (page 5 of 9) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM							
Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures					
MPC Lid to Shell Weld	NB-5230	Radiographic (RT) or ultrasonic (UT) examination required	Only UT or multi-layer liquid penetrant (PT) examination is permitted. If PT alone is used, at a minimum, it will include the root and final weld layers and each approximately 3/8 inch of weld depth.					
MPC Closure Ring, Vent and Drain Cover Plate Welds	NB-5230	Radiographic (RT) or ultrasonic (UT) examination required	Root (if more than one weld pass is required) and final liquid penetrant examination to be performed in accordance with NB-5245. The closure ring provides independent redundant closure for vent and drain cover plates.					
MPC Enclosure Vessel and Lid	NB-6111	All completed pressure retaining systems shall be pressure tested.	The MPC enclosure vessel is seal welded in the field following fuel assembly loading. The MPC enclosure vessel shall then be pressure tested as defined in Chapter 9. Accessibility for leakage inspections precludes a Code compliant pressure test. All MPC enclosure vessel welds (except closure ring and vent/drain cover plate) are inspected by volumetric examination, except the MPC lid-to-shell weld shall be verified by volumetric or multi-layer PT examination. If PT alone is used, at a minimum, it must include the root and final layers and each approximately 3/8 inch of weld depth. For either UT or PT, the maximum undetectable flaw size must be demonstrated to be less than the critical flaw size. The critical flaw size must be determined in accordance with ASME Section XI methods. The critical flaw size shall not cause the primary stress limits of NB-3000 to be exceeded. The inspection results, including relevant findings (indications), shall be made a permanent part of the user's records by video, photographic, or other means which provide an equivalent retrievable record of weld integrity. The video or photographic records should be taken during the final interpretation period described in ASME Section V, Article 6, T-676. The vent/drain cover plate and the closure ring welds are confirmed by liquid penetrant examination. The inspection of the weld must be performed by qualified personnel and shall meet the acceptance requirements of ASME					

Table 3-1 (page 6 of 9) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM					
Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures		
MPC Enclosure Vessel	NB-7000	Vessels are required to have overpressure protection	No overpressure protection is provided. The function of the MPC enclosure vessel is to contain the radioactive contents under normal, off-normal, and accident conditions. The MPC vessel is designed to withstand maximum internal pressure considering 100% fuel rod failure and maximum accident temperatures.		
MPC Enclosure Vessel	NB-8000	States requirements for nameplates, stamping and reports per NCA-8000.	The HI-STORM100 System is to be marked and identified in accordance with 10CFR71 and 10CFR72 requirements. Code stamping is not required. QA data package to be in accordance with Holtec approved QA program.		
MPC Basket Assembly	NG-2000	Requires materials to be supplied by ASME-approved material supplier.	Materials will be supplied by Holtec-approved supplier with CMTRs in accordance with NG-2000 requirements.		

Table 3-1 (page 7 of 9) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM				
Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures	
MPC basket assembly	NG-4420	NG-4427(a) allows a fillet weld in any single continuous weld to be less than the specified fillet weld dimension by not more than 1/16 inch, provided that the total undersize portion of the weld does not exceed 10 percent of the length of the weld. Individual undersize weld portions shall not exceed 2 inches in length.	Modify the Code requirement (intended for core support structures) with the following text prepared to accord with the geometry and stress analysis imperatives for the fuel basket: For the longitudinal MPC basket fillet welds, the following criteria apply: 1) The specified fillet weld throat dimension must be maintained over at least 92 percent of the total weld length. All regions of undersized weld must be less than 3 inches long and separated from each other by at least 9 inches. 2) Areas of undercuts and porosity beyond that allowed by the applicable ASME Code shall not exceed 1/2 inch in weld length. The total length of undercut and porosity over any 1-foot length shall not exceed 2 inches. 3) The total weld length in which items (1) and (2) apply shall not exceed a total of 10 percent of the overall weld length. The limited access of the MPC basket panel longitudinal fillet welds makes it difficult to perform effective repairs of these welds and creates the potential for causing additional damage to the basket assembly (e.g., to the neutron absorber and its sheathing) if repairs are attempted. The acceptance criteria provided in the foregoing have been established to comport with the objectives of the basket design and preserve the margins demonstrated in the supporting stress analysis. From the structural standpoint, the weld acceptance criteria are established to ensure that any departure from the ideal, continuous fillet weld seam would not alter the primary bending stresses on which the design of the fuel baskets is predicated. Stated differently, the permitted weld discontinuities are limited in size to ensure that they remain classifiable as local stress elevators ("peak stress", F, in the ASME Code for which specific stress intensity limits do not apply).	
MPC Basket Assembly	NG-8000	States requirements for nameplates, stamping and reports per NCA-8000.	The HI-STORM100 System is to be marked and identified in accordance with 10CFR71 and 10CFR72 requirements. Code stamping is not required. The MPC basket data package to be in accordance with Holtec approved QA program.	
OVERPACK Steel Structure	NF-2000	Requires materials to be supplied by ASME-approved material supplier.	Materials will be supplied by Holtec-approved supplier with CMTRs in accordance with NF-2000 requirements.	

Table 3-1 (page 8 of 9) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM					
Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures		
TRANSFER CASK Steel Structure	NF-2000	Requires materials to be supplied by ASME-approved material supplier.	Materials will be supplied by Holtec-approved supplier with CMTRs in accordance with NF-2000 requirements.		
OVERPACK Baseplate and Lid Top Plate	NF-4441	Requires special examinations or requirements for welds where a primary member of thickness 1 inch or greater is loaded to transmit loads in the through thickness direction.	The margins of safety in these welds under loads experienced during lifting operations or accident conditions are quite large. The OVERPACK baseplate welds to the inner shell, pedestal shell, and radial plates are only loaded during lifting conditions and have large safety factors during lifting. Likewise, the top lid plate to lid shell weld has a large structural margin under the inertia loads imposed during a non-mechanistic tipover event.		
OVERPACK Steel Structure	NF-3256 NF-3266	Provides requirements for welded joints.	Welds for which no structural credit is taken are identified as "Non-NF" welds in the design drawings. These non-structural welds are specified in accordance with the pre-qualified welds of AWS D1.1. These welds shall be made by welders and weld procedures qualified in accordance with AWS D1.1 or ASME Section IX.		
			Welds for which structural credit is taken in the safety analyses shall meet the stress limits for NF-3256.2, but are not required to meet the joint configuration requirements specified in these Code articles. The geometry of the joint designs in the cask structures are based on the fabricability and accessibility of the joint, not generally contemplated by this Code section governing supports.		

Table 3-1 (page 9 of 9) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM					
Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures		
HI-STORM OVERPACK and HI- TRAC TRANSFER CASK	NF-3320 NF-4720	NF-3324.6 and NF-4720 provide requirements for bolting	These Code requirements are applicable to linear structures wherein bolted joints carry axial, shear, as well as rotational (torsional) loads. The OVERPACK and TRANSFER CASK bolted connections in the structural load path are qualified by design based on the design loadings defined in the FSAR. Bolted joints in these components see no shear or torsional loads under normal storage conditions. Larger clearances between bolts and holes may be necessary to ensure shear interfaces located elsewhere in the structure engage prior to the bolts experiencing shear loadings (which occur only during side impact scenarios). Bolted joints that are subject to shear loads in accident conditions are qualified by appropriate stress analysis. Larger bolt-to-hole clearances help ensure more efficient operations in making these bolted connections, thereby minimizing time spent by operations personnel in a radiation area. Additionally, larger bolt-to-hole clearances allow interchangeability of the lids from one particular fabricated cask to another.		

3.4 Site-Specific Parameters and Analyses

Site-specific parameters and analyses that will require verification by the system user are, as a minimum, as follows:

- 1. The temperature of 80° F is the maximum average yearly temperature.
- 2. The allowed temperature extremes, averaged over a 3-day period, shall be greater than -40° F and less than 125° F.
- 3. a. For storage in freestanding OVERPACKs, the resultant horizontal acceleration (vectorial sum of two horizontal Zero Period Accelerations (ZPAs) at a three-dimensional seismic site), G_H, and vertical ZPA, G_V, on the top surface of the ISFSI pad, expressed as fractions of 'g', shall satisfy the following inequality:

$$G_H + \mu G_V \leq \mu$$

where μ is either the Coulomb friction coefficient for the cask/ISFSI pad interface or the ratio r/h, where 'r' is the radius of the cask and 'h' is the height of the cask center-of-gravity above the ISFSI pad surface. The above inequality must be met for both definitions of μ , but only applies to ISFSIs where the casks are deployed in a freestanding configuration. Unless demonstrated by appropriate testing that a higher coefficient of friction value is appropriate for a specific ISFSI, the value used shall be 0.53. If acceleration time-histories on the ISFSI pad surface are available, G_H and G_V may be the coincident values of the instantaneous net horizontal and vertical accelerations. If instantaneous accelerations are used, the inequality shall be evaluated at each time step in the acceleration time history over the total duration of the seismic event.

If this static equilibrium based inequality cannot be met, a dynamic analysis of the cask/ISFSI pad assemblage with appropriate recognition of soil/structure interaction effects shall be performed to ensure that the casks will not tip over or undergo excessive sliding under the site's Design Basis Earthquake.

- 3.4 Site-Specific Parameters and Analyses (continued)
 - b. For free-standing casks, under environmental conditions that may degrade the pad/cask interface friction (such as due to icing) the response of the casks under the site's Design Basis Earthquake shall be established using the best estimate of the friction coefficient in an appropriate analysis model. The analysis should demonstrate that the earthquake will not result in cask tipover or cause a cask to fall off the pad. In addition, impact between casks should be precluded, or should be considered an accident for which the maximum g-load experienced by the stored fuel shall be limited to 45 g's.
 - c. For those ISFSI sites with design basis seismic acceleration values that may overturn or cause excessive sliding of free-standing casks, the HI-STORM 100 System OVERPACKs shall be anchored to the ISFSI pad. The site seismic characteristics and the anchorage system shall meet the following requirements:
 - i. The site acceleration response spectra at the top of the ISFSI pad shall have ZPAs that meet the following inequalities:

 $G_{H} \le 2.12$

AND

 $G_V \le 1.5$

Where:

 G_H is the vectorial sum of the two horizontal ZPAs at a three-dimensional seismic site (or the horizontal ZPA at a two-dimensional site) and G_V is the vertical ZPA.

ii. Each HI-STORM 100 dry storage cask shall be anchored with twenty-eight (28), 2-inch diameter studs and compatible nuts of material suitable for the expected ISFSI environment. The studs shall meet the following requirements:

Yield Strength at Ambient Temperature: ≥ 80 ksi

Ultimate Strength at Ambient Temperature: ≥ 125 ksi

Initial Tensile Pre-Stress: ≥ 55 ksi AND ≤ 65 ksi

3.4 Site-Specific Parameters and Analyses (continued)

NOTE:

The above anchorage specifications are required for the seismic spectra defined in item 3.4.3.c.i. Users may use fewer studs or those of different diameter to account for site-specific seismic spectra less severe than those specified above. The embedment design shall comply with Appendix B of ACI-349-97. A later edition of this Code may be used, provided a written reconciliation is performed.

- iii. Embedment Concrete Compressive Strength: ≥ 4,000 psi at 28 days
- 4. The analyzed flood condition of 15 fps water velocity and a height of 125 feet of water (full submergence of the loaded cask) are not exceeded.
- 5. The potential for fire and explosion while handling a loaded OVERPACK or TRANSFER CASK shall be addressed, based on site-specific considerations. The user shall demonstrate that the site-specific potential for fire is bounded by the fire conditions analyzed by the License Holder, or an analysis of the site-specific fire considerations shall be performed. This includes the condition that the on-site transporter fuel tank will contain no more than 50 gallons of diesel fuel while handling a loaded OVERPACK or TRANSFER CASK.
- 6. a. For freestanding casks, the ISFSI pad shall be verified by analysis to limit cask deceleration during design basis drop and non-mechanistic tip-over events to ≤ 45 g's at the top of the MPC fuel basket. Analyses shall be performed using methodologies consistent with those described in the HI-STORM 100 FSAR. A restriction on the lift and/or drop height above the ISFSI pad-is not required to be established if the cask is lifted with a device designed in accordance with ANSI N14.6 and hasving redundant drop protection features.
 - b. For anchored casks, the ISFSI pad shall be designed to meet the embedment requirements of the anchorage design. A cask tip-over event for an anchored cask is not credible. The ISFSI pad shall be verified by analysis to limit cask deceleration during a design basis drop event to ≤ 45 g's at the top of the MPC fuel basket, except as provided for in this paragraph below. Analyses shall be performed using methodologies consistent with those described in the HI-STORM 100 FSAR. A restriction on the lift and/or drop height-above the ISFSI pad is not required to be established if the cask is lifted with a device designed in accordance with ANSI N14.6 and hasving redundant drop protection features.

- 3.4 Site-Specific Parameters and Analyses (continued)
 - 7. In cases where engineered features (i.e., berms and shield walls) are used to ensure that the requirements of 10CFR72.104(a) are met, such features are to be considered important to safety and must be evaluated to determine the applicable quality assurance category.
 - 8. LOADING OPERATIONS, TRANSPORT OPERATIONS, and UNLOADING OPERATIONS shall only be conducted with working area ambient temperatures ≥ 0° F.
 - 9. For those users whose site-specific design basis includes an event or events (e.g., flood) that result in the blockage of any OVERPACK inlet or outlet air ducts for an extended period of time (i.e, longer than the total Completion Time of LCO 3.1.2), an analysis or evaluation may be performed to demonstrate adequate heat removal is available for the duration of the event. Adequate heat removal is defined as fuel cladding temperatures remaining below the short term temperature limit. If the analysis or evaluation is not performed, or if fuel cladding temperature limits are unable to be demonstrated by analysis or evaluation to remain below the short term temperature limit for the duration of the event, provisions shall be established to provide alternate means of cooling to accomplish this objective.
 - 10. Users shall establish procedural and/or mechanical barriers to ensure that during LOADING OPERATIONS and UNLOADING OPERATIONS, either the fuel cladding is covered by water, or the MPC is filled with an inert gas.

3.5 Cask Transfer Facility (CTF)

3.5.1 TRANSFER CASK and MPC Lifters

The CTF used to transfer a loaded TRANSFER CASK and/or MPC outside of the 10 CFR 50 radiological control boundary can be an aboveground structure that complies with the provisions of 3.5.2 below or an underground cavity that complies with the provisions of 3.5.3 below.

Lifting of a loaded TRANSFER CASK and MPC using devices that are not integral to structures governed by 10 CFR Part 50 shall be performed with a CTF that is designed, operated, fabricated, tested, inspected, and maintained in accordance with the guidelines of NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants" ,as applicable, and the below clarifications. The CTF Structure requirements below do not apply to heavy loads bounded by the regulations of 10 CFR Part 50, to the loading of an aboveground OVERPACK in a belowground restraint system which permits MPC transfer near grade level and does not require an aboveground CTF, or to the loading of an underground OVERPACK.

3.5.2 CTF Structure Requirements

3.5.2.1 Cask Transfer Station and Stationary Lifting Devices

- The metal weldment structure of the CTF structure shall be designed to comply with the stress limits of ASME Section III, Subsection NF, Class 3 for linear structures. The applicable loads, load combinations, and associated service condition definitions are provided in Table 3-2. All compression loaded members shall satisfy the buckling criteria of ASME Section III, Subsection NF.
- 2. If a portion of the CTF structure is constructed of reinforced concrete, then the factored load combinations set forth in ACI-318 (89) for the loads defined in Table 3-2 shall apply.
- The TRANSFER CASK and MPC lifting device used with the CTF shall be designed, fabricated, operated, tested, inspected and maintained in accordance with NUREG-0612, Section 5.1.
- 4. The CTF shall be designed, constructed, and evaluated to ensure that if the MPC is dropped during inter-cask transfer operations, its confinement boundary would not be breached. This requirement applies to CTFs with either stationary or mobile lifting devices.

3.5 Cask Transfer Facility (CTF) (continued)

3.5.2.2 <u>Mobile Lift Devices</u>

If a mobile lifting device is used as the lifting device, in lieu of a stationary lifting device, it shall meet the guidelines of NUREG-0612, Section 5.1, with the following clarifications:

- Mobile lifting devices shall have a minimum safety factor of two over the allowable load table for the lifting device in accordance with the guidance of NUREG-0612, Section 5.1.6(1)(a) and shall be capable of stopping and holding the load during a Design Basis Earthquake (DBE) event.
- 2. Mobile lifting devices shall conform to meet the requirements of ANSI B30.5, "Mobile and Locomotive Cranes," in lieu of the requirements of ANSI B30.2, "Overhead and Gantry Cranes."
- 3. Mobile cranes are not required to meet the requirements of NUREG-0612, Section 5.1.6(2) for new cranes.
- 4. Horizontal movements of the TRANSFER CASK and MPC using a mobile crane are prohibited.

3.5.3 Underground CTF Requirements

An underground CTF shall comply with the following requirements:

- 1. The bottom foundation pad shall have an equal or greater flexural and shear strength than the top ISFSI pad.
- 2. The bottom foundation pad shall have design features to prevent sideways or tip-over of the staged equipment.
- 3. The lifting device(s) used to lift the TRANSFER CASK and/or MPC at the underground CTF shall be designed, operated, fabricated, tested, inspected, and maintained in accordance with guidelines of NUREG-0612, Section 5.1.6.

The Vertical Ventilated Module (VVM) in HI-STORM 100U is an underground CTF since it meets the above requirements (the Top Surface Pad is interpreted as the ISFSI pad and the bottom foundation pad is interpreted as the SUPPORT FOUNDATION).

3.5 Cask Transfer Facility (CTF)(continued)

Table 3-2

Load Combinations and Service Condition Definitions for the CTF Structure (Note 1)

Load Combination	ASME III Service Condition for Definition of Allowable Stress	Comment
D* D+S	Level A	All primary load bearing members must satisfy Level A stress limits
D + M + W' (Note 2)		
D+F	Level D	Factor of safety against
D+E		overturning shall be ≥ 1.1
D+Y		

D = Dead load

D* = Apparent dead load

S = Snow and ice load for the CTF site

M = Tornado missile load for the CTF site

W' = Tornado wind load for the CTF site

F = Flood load for the CTF site

E = Seismic load for the CTF site

Y = Tsunami load for the CTF site

Notes:

- 1. The reinforced concrete portion of the CTF structure shall also meet the factored combinations of loads set forth in ACI-318(89).
- 2. Tornado missile load may be reduced or eliminated based on a PRA for the CTF site.

3.6 Forced Helium Dehydration System

3.6.1 System Description

Use of the a Forced Helium Dehydration (FHD) system, (a closed-loop system) is an alternative to vacuum drying the MPC for moderate burnup fuel (≤ 45,000 MWD/MTU) and mandatory for drying MPCs containing one or more high burnup fuel assemblies. The FHD system shall be designed for normal operation (i.e., excluding startup and shutdown ramps) in accordance with the criteria in Section 3.6.2.

3.6.2 Design Criteria

- 3.6.2.1 The temperature of the helium gas in the MPC shall be at least 15°F higher than the saturation temperature at coincident pressure.
- 3.6.2.2 The pressure in the MPC cavity space shall be ≤ 60.3 psig (75 psia).
- 3.6.2.3 The hourly recirculation rate of helium shall be ≥ 10 times the nominal helium mass backfilled into the MPC for fuel storage operations.
- 3.6.2.4 The partial pressure of the water vapor in the MPC cavity will not exceed 3 torr. The limit is met if the gas temperature at the demoisturizer outlet is verified by measurement to remain ≤ 21°F for a period of 30 minutes or if the dew point of the gas exiting the MPC is verified by measurement to remain ≤ 22.9°F for ≥ 30 minutes.
- 3.6.2.5 The condensing module shall be designed to de-vaporize the recirculating helium gas to a dew point ≤ 120°F.
- 3.6.2.6 The demoisturizing module shall be configured to be introduced into its helium conditioning function after the condensing module has been operated for the required length of time to assure that the bulk moisture vaporization in the MPC (defined as Phase 1 in FSAR Appendix 2.B) has been completed.
- 3.6.2.7 The helium circulator shall be sized to effect the minimum flow rate of circulation required by these design criteria.
- 3.6.2.8 The pre-heater module shall be engineered to ensure that the temperature of the helium gas in the MPC meets these design criteria.

- 3.6 Forced Helium Dehydration System (continued)
 - 3.6.3 Fuel Cladding Temperature

A steady-state thermal analysis of the MPC under the forced helium flow scenario shall be performed using the methodology described in HI-STORM 100 FSAR Section 4.4, with due recognition of the forced convection process during FHD system operation. This analysis shall demonstrate that the peak temperature of the fuel cladding under the most adverse condition of FHD system operation, is below the peak cladding temperature limit for normal conditions of storage for the applicable fuel type (PWR or BWR) and cooling time at the start of dry storage.

3.6.4 Pressure Monitoring During FHD Malfunction

During an FHD malfunction event, described in HI-STORM 100 FSAR Section 11.1 as a loss of helium circulation, the system pressure must be monitored to ensure that the conditions listed therein are met.

3.7 Supplemental Cooling System

3.7.1 System Description

The SCS is a water circulation system for cooling the MPC inside the HI-TRAC transfer cask during on-site transport. Use of the Supplemental Cooling System (SCS) is required for post-backfill HI-TRAC operations of an MPC containing one or more high burnup (> 45,000 MWD/MTU) fuel assemblies. The SCS shall be designed for normal operation (i.e., excluding startup and shutdown ramps) in accordance with the criteria in Section 3.7.2.

3.7.2 Design Criteria

- 3.7.2.1 Not Used.
- 3.7.2.2 If water is used as the coolant, the system shall be sized to limit the coolant temperature to below 180°F under steady-state conditions for the design basis heat load at an ambient air temperature of 100°F. Any electric motors shall have a backup power supply for uninterrupted operation.
- 3.7.2.3 The system shall utilize a contamination-free fluid medium in contact with the external surfaces of the MPC and inside surfaces of the HI -TRAC transfer cask to minimize corrosion.
- 3.7.2.4 All passive components such as tubular heat exchangers, manually operated valves and fittings shall be designed to applicable standards (TEMA, ANSI).
- 3.7.2.5 The heat dissipation capacity of the SCS shall be equal to or greater than the minimum necessary to ensure that the peak cladding temperature is below 400°C (752°F). All heat transfer surfaces in heat exchangers shall be assumed to be fouled to the maximum limits specified in a widely used heat exchange equipment standard such as the Standards of Tubular Exchanger Manufacturers Association
- 3.7.2.6 The coolant utilized to extract heat from the MPC shall be high purity water or air. Antifreeze may be used to prevent water from freezing if warranted by operating conditions.

- 3.7 Supplemental Cooling System (continued)
 - 3.7.2.7 All pressure boundaries (as defined in the ASME Boiler and Pressure Vessel Code, Section VIII Division 1) shall have pressure ratings that are greater than the maximum system operating pressure by at least 15 psi.
 - 3.7.2.8 All ASME Code components shall comply with Section VIII Division 1 of the ASME Boiler and Pressure Vessel Code.
 - 3.7.2.9 All gasketed and packed joints shall have a minimum design pressure rating of the pump shut-off pressure plus 15 psi.

3.8 Combustible Gas Monitoring During MPC Lid Welding and Cutting

During MPC lid-to-shell welding *and cutting* operations, combustible gas monitoring of the space under the MPC lid is required, to ensure that there is no combustible mixture present—in the welding area.

- 3.9 Not Used
- 3.10 Not Used
- 3.11 Preventing Oxidation of Fuel

During loading and unloading operations, the fuel shall be either maintained underwater or in an inert atmosphere.

CERTIFICATE OF COMPLIANCE NO. 1014 Amendment #7

APPENDIX A-100U

TECHNICAL SPECIFICATIONS

FOR THE HI-STORM 100 CASK SYSTEM (100U)

Attachment 3 to Holtec Letter 5014683

TABL	E OF CONTENTS	
1.0 1.1 1.2 1.3 1.4	USE AND APPLICATION Definitions Logical Connectors Completion Times Frequency	1.1-1 1.2-1 1.3-1
2.0	NOT USED	2.0-1
3.0 3.0	LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITYSURVEILLANCE REQUIREMENT (SR) APPLICABILITY	
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	SFSC INTEGRITY	3.1.1-1 3.1.2-1 3.1.3-1 3.1.4-1
3.2 3.2.1 3.2.2 3.2.3	SFSC RADIATION PROTECTION Not Used TRANSFER CASK SURFACE CONTAMINATION Not Used	3.2.1-1 3.2.2-1
3.3 3.3.1	SFSC CRITICALITY CONTROL Boron Concentration	
Table Table	, , ,	
4.0		4.0-1
5.0 5.1 5.2 5.3	ADMINISTRATIVE CONTROLS Not Used Not Used Not Used	5.0-1
5.4 5.5 5.6 5.7	Radioactive Effluent Control ProgramCask Transport Evaluation ProgramNot Used Radiation Protection Program	5.0-2
J. r Table	· ·	

1.0 USE AND APPLICATION

1.1 Definitions

-----NOTE------

The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.

<u>Term</u>

Definition

ACTIONS

ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion

Times.

FUEL BUILDING

The FUEL BUILDING is the site-specific power plant facility, governed by the regulations of 10CFR Part 50, where the loaded OVERPACK or TRANSFER CASK

is transferred to or from the transporter.

LOADING OPERATIONS

LOADING OPERATIONS include all licensed activities on an OVERPACK or TRANSFER CASK while it is being loaded with fuel assemblies. LOADING OPERATIONS begin when the first fuel assembly is placed in the MPC and end when the OVERPACK or TRANSFER CASK is suspended from or secured on the transporter. LOADING OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK.

MULTI-PURPOSE CANISTER (MPC)

MPCs are the sealed spent nuclear fuel canisters which consist of a honeycombed fuel basket contained in a cylindrical canister shell which is welded to a baseplate, lid with welded port cover plates, and closure ring. The MPC provides the confinement boundary for the contained radioactive materials.

1.1 Definitions (continued)

OVERPACK	OVERPACKs are the casks which receive and contain the sealed MPCs for interim storage on the ISFSI. They provide gamma and neutron shielding, and provide for ventilated air flow to promote heat transfer from the MPC to the environs. The term OVERPACK includes the VVM, but does not include the TRANSFER CASK.
SPENT FUEL STORAGE CASKS (SFSCs)	SFSCs are containers approved for the storage of spent fuel assemblies at the ISFSI. The HI-STORM 100 SFSC System consists of the OVERPACK and its integral MPC.
STORAGE OPERATIONS	STORAGE OPERATIONS include all licensed activities that are performed at the ISFSI while an SFSC containing spent fuel is situated within the ISFSI perimeter. STORAGE OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK (or the reverse).
SUPPORT FOUNDATION	The SUPPORT FOUNDATION is a reinforced concrete pad that supports the weight of a VVM in an underground storage facility.
TRANSFER CASK	TRANSFER CASKs are containers designed to contain the MPC during and after loading of spent fuel assemblies and to transfer the MPC to or from the OVERPACK. The HI-STORM 100 System employs either the 125-Ton or the 100-Ton HI-TRAC TRANSFER CASK.
	(continued)

1.1 Definitions (continued)

TRANSPORT OPERATIONS

TRANSPORT OPERATIONS include all licensed performed on an OVERPACK activities TRANSFER CASK loaded with one or more fuel assemblies when it is being moved after LOADING **OPERATIONS** before or UNLOADING OPERATIONS to and from the ISFSI. TRANSPORT OPERATIONS begin when the OVERPACK or TRANSFER CASK is first suspended from or secured on the transporter and end when the OVERPACK or TRANSFER CASK is at its destination and no longer secured on or suspended from the transporter. TRANSPORT OPERATIONS includes transfer of the MPC between the OVERPACK and the TRANSFER CASK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK (or the reverse).

UNLOADING OPERATIONS

UNLOADING OPERATIONS include all licensed activities on an SFSC to be unloaded of the fuel assemblies. contained UNLOADING OPERATIONS begin when the OVERPACK or TRANSFER CASK is no longer suspended from or secured on the transporter and end when the last fuel assembly is removed from the SFSC. UNLOADING OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is no longer supported from beneath by the OVERPACK and ends when the MPC is lowered onto the HI-TRAC bottom lid.

VERTICAL VENTILATED MODULE (VVM)

The VVM is a subterranean OVERPACK where the contained fuel assemblies are supported in a vertical orientation and where air flow through cooling passages aid in rejecting heat to the environment.

1.0 USE AND APPLICATION

1.2 Logical Connectors

PURPOSE

The purpose of this section is to explain the meaning of logical connectors.

Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings.

BACKGROUND

Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.

When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.

1.2 Logical Connectors

EXAMPLES

The following examples illustrate the use of logical connectors.

EXAMPLE 1.2-1

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. LCO not met.	A.1 VERIFY	
	<u>AND</u>	
	A.2 Restore	

In this example the logical connector <u>AND</u> is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.

1.2 Logical Connectors

EXAMPLES (continued)

EXAMPLE 1.2-2

ACTIONS

CONDITION	REQU	JIRED ACTION	COMPLETION TIME
A. LCO not met.	A.1	Stop	
	<u>OR</u>		
	A.2.1	Verify	
	AN	<u>D</u>	
	A.2.2.1	Reduce	
		<u>OR</u>	
	A.2.2.2	Perform	
	<u>OR</u>		
	A.3	Remove	

This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector <u>OR</u> and the left justified placement. Any one of these three ACTIONS may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector <u>AND</u>. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.

1.0 USE AND APPLICATION

1.3 Completion Times

PURPOSE

The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.

BACKGROUND

Limiting Conditions for Operation (LCOs) specify the lowest functional capability or performance levels of equipment required for safe operation of the facility. The ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Times(s).

DESCRIPTION

The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the HI-STORM 100 System is in a specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the HI-STORM 100 System is not within the LCO Applicability.

Once a Condition has been entered, subsequent subsystems, components, or variables expressed in the Condition, discovered to be not within limits, will <u>not</u> result in separate entry into the Condition unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.

1.3 Completion Times (continued)

EXAMPLES

The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.

EXAMPLE 1.3-1

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
B. Required Action and associated	B.1 Perform Action B.1 AND	12 hours
Completion Time not met.	B.2 Perform Action B.2	36 hours

Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are to complete action B.1 within 12 hours <u>AND</u> complete action B.2 within 36 hours. A total of 12 hours is allowed for completing action B.1 and a total of 36 hours (not 48 hours) is allowed for completing action B.2 from the time that Condition B was entered. If action B.1 is completed within 6 hours, the time allowed for completing action B.2 is the next 30 hours because the total time allowed for completing action B.2 is 36 hours.

1.3 Completion Times (continued)

EXAMPLES (continued)

EXAMPLE 1.3-2

ACTIONS

	CONDITION	REQUIRED ACTION		COMPLETION TIME
A .	One system not within limit.	A.1	Restore system to within limit.	7 days
В.	Required Action and associated Completion	B.1 <u>AND</u>	Complete action B.1.	12 hours
	Time not met.	B.2	Complete action B.2.	36 hours

When a system is determined not to meet the LCO, Condition A is entered. If the system is not restored within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the system is restored after Condition B is entered, Conditions A and B are exited, and therefore, the Required Actions of Condition B may be terminated.

1.3 Completion Times (continued)

EXAMPLES (continued)

EXAMPLE 1.3-3

ACTIONS

---NOTE-----

Separate Condition entry is allowed for each component.

	CONDITION	REQUIRED ACTION		COMPLETION TIME
A.	LCO not met.	A.1	Restore compliance with LCO.	4 hours
В.	Required Action and associated Completion Time not met.	B.1 <u>AND</u>	Complete action B.1.	6 hours
		B.2	Complete action B.2.	12 hours

The Note above the ACTIONS table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each component, and Completion Times tracked on a per component basis. When a component is determined to not meet the LCO, Condition A is entered and its Completion Time starts. If subsequent components are determined to not meet the LCO, Condition A is entered for each component and separate Completion Times start and are tracked for each component.

IMMEDIATE COMPLETION TIME When "Immediately" is used as a Completion Time, the Required Action should be pursued without delay and in a controlled manner.

1.0 USE AND APPLICATION

1.4 Frequency

PURPOSE

The purpose of this section is to define the proper use and application of Frequency requirements.

DESCRIPTION

Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Limiting Condition for Operation (LCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.

The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR.

Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.

1.4 Frequency (continued)

EXAMPLES

The following examples illustrate the various ways that Frequencies are specified.

EXAMPLE 1.4-1

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify pressure within limit	12 hours

Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment or variables are outside specified limits, or the facility is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the facility is in a condition specified in the Applicability of the LCO, the LCO is not met in accordance with SR 3.0.1.

If the interval as specified by SR 3.0.2 is exceeded while the facility is not in a condition specified in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the specified condition. Failure to do so would result in a violation of SR 3.0.4

1.4 Frequency (continued)

EXAMPLES (continued)

EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify flow is within limits.	Once within 12 hours prior to starting activity
	AND
	24 hours thereafter

Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time the example activity is to be performed, the Surveillance must be performed within 12 hours prior to starting the activity.

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the 25% extension allowed by SR 3.0.2.

"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If the specified activity is canceled or not performed, the measurement of both intervals stops. New intervals start upon preparing to restart the specified activity.

2.0

This section is intentionally left blank

3.0 LIMITING CONDITIONS FOR OPERATION (LCO) APPLICABILITY

LCOs shall be met during specified conditions in the Applicability, except as provided in LCO 3.0.2.
Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5.
If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.
Not applicable.
When an LCO is not met, entry into a specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in specified conditions in the Applicability that are required to comply with ACTIONS or that are related to the unloading of an SFSC.
Equipment removed from service or not in service in compliance with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate it meets the LCO or that other equipment meets the LCO. This is an exception to LCO 3.0.2 for the system returned to service under administrative control to perform the testing.

20	SURVEILLANCE	DECLUDEMENT	CD)	ADDI ICADII ITV
3.0	SURVEILLANCE	REQUIRENIENT	(SK) /	APPLICABILITY

SR 3.0.1	SRs shall be met during the specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be failure to meet the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on equipment or variables outside specified limits.
SR 3.0.2	The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met. For Frequencies specified as "once," the above interval extension does not apply. If a Completion Time requires periodic performance on a "once per" basis, the above Frequency extension applies to each performance after the initial performance.
	Exceptions to this Specification are stated in the individual Specifications.
SR 3.0.3	If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified Frequency, whichever is less. This delay period is permitted to allow performance of the Surveillance.
	If the Surveillance is not performed within the delay period, the LCC must immediately be declared not met, and the applicable Condition(s) must be entered.

3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

SR 3.0.3 (continued)	When the Surveillance is performed within the delay period and the Surveillance is not met, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.				
SR 3.0.4	Entry into a specified condition in the Applicability of an LCO shall not be made unless the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into specified conditions in the Applicability that are required to comply with Actions or that are related to the unloading of an SFSC.				

3.1 SFSC INTEGRITY

3.1.1 Multi-Purpose Canister (MPC)

LCO 3.1.1 The MPC shall be dry and helium filled.

Table 3-1 provides decay heat and burnup limits for forced helium dehydration (FHD) and vacuum drying. FHD is not subject to time limits. Vacuum drying is subject to the following time limits, from the end of bulk water removal until the start of helium backfill:

MPC Total Decay Heat (Q)	Vacuum Drying Time Limit
Q ≤ 23 kW	None
23 kW < Q ≤28.74 kW	40 hours
Q > 28.74 kW	Not Permitted (see Table 3-1)

APPLICABILITY: During TRANSPORT OPERATIONS and STORAGE OPERATIONS.

ACTIONS

-----NOTES------

Separate Condition entry is allowed for each MPC.

	CONDITION		REQUIRED ACTION	COMPLETION TIME
<i>A.</i>	MPC cavity vacuum drying pressure or demoisturizer exit gas temperature limit not met.	A.1	Perform an engineering evaluation to determine the quantity of moisture left in the MPC.	7 days
	mot.	ANE	2	
		A.2	Develop and initiate corrective actions necessary to return the MPC to compliance with Table 3-1.	30 days
B.	MPC cavity vacuum drying acceptance criteria not met during allowable time.	B.1	Backfill the MPC cavity with helium to a pressure of at least 0.5 atm.	6 hours

POSC	Camble: (IVII C)
	3.1.1

	CONDITION	REQUIRED ACTION	COMPLETION TIME
C.	MPC helium backfill limit not met.	C.1 Perform an engineering evaluation to determine the impact of helium differential.	72 hours
		AND C.2.1 Develop and initiate corrective actions necessary to return the MPC to an analyzed condition by adding helium to or removing helium from the MPC. OR	14 days
		C.2.2 Develop and initiate corrective actions necessary to demonstrate through analysis, using the models and methods from the HI-STORM FSAR, that all limits for cask components and contents will be met.	
D.	MPC helium leak rate limit for vent and drain port cover plate welds not met.	D.1 Perform an engineering evaluation to determine the impact of increased helium leak rate on heat removal capability and offsite dose.	24 hours
		<u>AND</u>	
		D.2 Develop and initiate corrective actions necessary to return the MPC to compliance with SR 3.1.1.3.	7 days

3.1.1

CONDITION		REQUIRED ACTION		COMPLETION TIME
E.	Required Actions and associated Completion Times not met.	E.1	Remove all fuel assemblies from the SFSC.	30 days

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.1.1	Verify that the MPC cavity has been dried in accordance with the applicable limits in Table 3-1, within the specified vacuum drying time limits as applicable.	Once, prior to TRANSPORT OPERATIONS
SR 3.1.1.2	Verify MPC helium backfill quantity is within the limit specified in Table 3-2 for the applicable MPC model. Re-performance of this surveillance is not required upon successful completion of Action C.2.2.	Once, prior to TRANSPORT OPERATIONS
SR 3.1.1.3	Verify that the helium leak rate through the MPC vent and drain port confinement welds meets the leaktight criteria of ANSI N14.5-1997.	Once, prior to TRANSPORT OPERATIONS

3.1.2

3.1 SFSC INTEGRITY

3.1.2 SFSC Heat Removal System

LCO 3.1.2 The SFSC Heat Rer	moval System shall be operable
-----------------------------	--------------------------------

The SFSC Heat Removal System is operable when 50% or more of the inlet and outlet vent areas are unblocked and available for flow or when air temperature requirements are met.

APPLICABILITY: During STORAGE OPERATIONS.

ACTIONS

-----NOTE-----

Separate Condition entry is allowed for each SFSC.

CONDITION		REQUIRED ACTION		COMPLETION TIME
A	SFSC Heat Removal System operable, but partially (<50%) blocked.	A.1	Remove blockage.	N/A
В.	SFSC Heat Removal System inoperable.	B.1	Restore SFSC Heat Removal System to operable status.	8 hours

				·
	CONDITION		REQUIRED ACTION	COMPLETION TIME
C.	Required Action B.1 and associated Completion Time not met.	C.1	Measure SFSC dose rates in accordance with the Radiation Protection Program.	Immediately and once per 12 hours thereafter
		<u>AND</u>		
		C.2.1	Restore SFSC Heat Removal System to operable status.	16 hours
			<u>OR</u>	
		C.2.2	? Transfer the MPC into a TRANSFER CASK.	16 hours

SURVEILLANCE REQUIREMENTS

SURVEILLANCE

FREQUENCY

SR 3.1.2	Verify all VVM inlets and outlets are free of blockage from solid debris or floodwater.	16 hours
	<u>OR</u>	
	For VVMs with installed temperature monitoring equipment, verify that the difference between the average VVM air outlet temperature and ISFSI ambient temperature is ≤ 85°F for VVMs containing PWR MPCs and ≤ 93°F for VVMs containing BWR MPCs.	16 hours

3	1	SFSC	11	V7	F	GR	17	ΓΥ
v.	,	0,00		v ,	-	\circ , \cdot	,,	•

3.1.3 MPC Cavity Reflooding

LCO 3.1.3 The MPC cavity pressure shall be < 100 psig

The LCO is only applicable to wet UNLOADING OPERATIONS.

APPLICABILITY: UNLOADING OPERATIONS prior to and during re-flooding.

ACTIONS

--NOTE-

Separate Condition entry is allowed for each MPC.

CONDITION	REQUIRED ACTION	COMPLETION TIME
B. MPC cavity pressure not within limit.	A.1 Stop re-flooding operations until MPC cavity pressure is within limit. AND	Immediately
	A.2 Ensure MPC vent port is not closed or blocked.	Immediately

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.3.1	SR 3.1.3.1 Ensure via analysis or direct measurement that MPC cavity pressure is within limit.	
,		AND
		Once every 1 hour thereafter when using direct measurement.

3.1 SFSC INTEGRITY

3.1.4 Supplemental Cooling System

LCO 3.1.4 The Supplemental Cooling System (SCS) shall be operable

------NOTE------

Upon reaching steady state operation, the SCS may be temporarily disabled for a short duration (≤ 7 hours) to facilitate necessary operational evolutions, such as movement of the TRANSFER CASK through a door way, or other similar operation.

APPLICABILITY: This LCO is applicable when the loaded MPC is in the TRANSFER CASK and:

a. Within 4 hours of the completion of MPC drying operations in accordance with LCO 3.1.1 or within 4 hours of transferring the MPC into the TRANSFER CASK if the MPC is to be unloaded

<u>AND</u>

b1. The MPC contains one or more fuel assemblies with an average burnup > 45,000 MWD/MTU

<u>OR</u>

b2. The MPC decay heat load exceeds 28.74 kW.

ACTIONS:

CONDITION		REQUIRED ACTION		COMPLETION TIME
<i>A</i> .	SFSC Supplemental Cooling System inoperable.	A.1	Restore SFSC Supplemental Cooling System to operable status.	7 days
B.	Required Action A.1 and associated Completion Time not met.	B.1	Remove all fuel assemblies from the SFSC.	30 days

SURVEILLANCE REQUIREMENTS

	FREQUENCY	
SR 3.1.4.1	Verify Supplemental Cooling System is operable.	2 hours

3.1 SFSC INTEGRITY

3.1.5 Impressed Current Cathodic Protection System (ICCPS)

LCO 3.1.5 The ICCPS shall be maintained operative

APPLICABILITY: During STORAGE OPERATIONS for any ISFSI that uses an ICCPS for corrosion mitigation.

-----NOTE-------Separate condition entry is allowed for each ICCPS at a particular ISFSI site.

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
C.	ICCPS inoperable after initial startup period.	A.1	Restore ICCPS to operable status	6 months
		<u>OR</u>		
		A.2	Perform engineering evaluation to determine that the affected VVM's will maintain adequate integrity for at least 4 more years.	1 year
B.	ICCPS 70% operable status not met.	B.1	Perform engineering evaluation to determine that the affected VVM's will maintain adequate integrity for at least 3 more years.	1 year
		<u>OR</u>		
-	·	B.2	Perform repairs necessary to re-establish integrity of the affected VVM's	3 years
C.	Required Actions and associated Completion Times not met.	C.1	Transfer MPC's from affected VVM's to unaffected VVM's or other approved overpacks.	3 years

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY	
SR 3.1.5.1	Verify the ICCPS is operable 1 year after installation of the first VVM and remains operable after initial startup. The ICCPS may be shutdown temporarily as	Once within 1 year	
	necessary for power outages, repair or preventive maintenance and testing, or system modifications after which the system should be returned to	<u>AND</u>	
	operable status as soon as practicable. This surveillance requirement is suspended for one year after action A.2 has been met		
SR 3.1.5.2	Verify the ICCPS has been operable for at least 70% of the time after initial startup. The verification	Once within 10 years	
	shall not be performed prior to 8 years from the time of initial startup. If the integrity of the VVM has previously been re-established per ACTION B.2, then the initial startup period may be reset. This	<u>AND</u>	
surveillance is no longer applicable upon initiation o ACTION C.1.		Every 5 years thereafter	

Not Used 3.2.1

3.2 SFSC RADIATION PROTECTION.

3.2.1 Not Used.

LCO 3.2.1

Not Used.

3.2.2

3.2 SFSC RADIATION PROTECTION.

3.2.2 TRANSFER CASK Surface Contamination.

LCO 3.2.2 Removable contamination on the exterior surfaces of the TRANSFER CASK and accessible portions of the MPC shall each not exceed:

- a. 1000 dpm/100 cm² from beta and gamma sources
- b. 20 dpm/100 cm² from alpha sources.

NOTF	
This LCO is not applicable to the TRANSFER CASK if MPC transfer operation	ons occur
inside the FUEL BUILDING.	

APPLICABILITY: During TRANSPORT OPERATIONS.

ACTIONS

Condition and in allowed for each TRANSFER CASK

Separate Condition entry is allowed for each TRANSFER CASK.

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. TRANSFER CASK or MPC removable surface contamination limits not met.	A.1 Restore removable surface contamination to within limits.	7 days

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.2.2.1	Verify that the removable contamination on the exterior surfaces of the TRANSFER CASK and accessible portions of the MPC containing fuel is within limits.	Once, prior to TRANSPORT OPERATIONS

3.2 SFSC RADIATION PROTECTION.

3.2.3 Not Used.

LCO 3.2.3

Not Used.

3.3 SFSC CRITICALITY CONTROL

3.3.1 Boron Concentration

LCO 3.3.1

As required by CoC Appendix B, Table 2.1-2, the concentration of boron in the water in the MPC shall meet the following limits for the applicable MPC model and the most limiting fuel assembly array/class and classification to be stored in the MPC:

- a. MPC-24 with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and ≤ 5.0 wt% ²³⁵U: ≥ 400 ppmb
- b. MPC-24E or MPC-24EF (all INTACT FUEL ASSEMBLIES) with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and < 5.0 wt% ²³⁵U: > 300 ppmb
- c. Not Used.
- d. Not Used.
- e. MPC-24E or MPC-24EF (one or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS) with one or more fuel assemblies having an initial enrichment > 4.0 wt% 235 U and ≤ 5.0 wt% 235 U: ≥ 600 ppmb
- f. MPC-32/32F: Minimum soluble boron concentration as required by the table below[†].

	All INTACT FUE	II INTACT FUEL ASSEMBLIES		One or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS		
Array/Class	Maximum Initial Enrichment ≤ 4.1 wt% ²³⁵ U (ppmb)	Maximum Initial Enrichment 5.0 wt% ²³⁵ U (ppmb)	Maximum Initial Enrichment ≤ 4.1 wt% ²³⁵ U (ppmb)	Maximum Initial Enrichment 5.0 wt% ²³⁵ U (ppmb)		
14x14A/B/C/D/E	1,300	1,900	1,500	2,300		
15x15A/B/C/G	1,800	2,500	1,900	2,700		
15x15D/E/F/H	1,900	2,600	2,100	2,900		
16x16A	1,400	2,000	1,500	2,300		
17x17A/B/C	1,900	2,600	2,100	2,900		

For maximum initial enrichments between 4.1 wt% and 5.0 wt% ²³⁵U, the minimum soluble boron concentration may be determined by linear interpolation between the minimum soluble boron concentrations at 4.1 wt% and 5.0 wt%.

APPLICABILITY:

During PWR fuel LOADING OPERATIONS with fuel and water in

the MPC

<u>AND</u>

During PWR fuel UNLOADING OPERATIONS with fuel and water

in the MPC.

Δ	\mathbf{C}	τ	10	Ν	2
$\overline{}$	\sim		_	ľV	-

-----NOTE-----

Separate Condition entry is allowed for each MPC.

	CONDITION		REQUIRED ACTION	COMPLETION TIME
<i>A</i> .	Boron concentration not within limit.	A.1	Suspend LOADING OPERATIONS or UNLOADING OPERATIONS.	Immediately
		<u>AND</u>		
		A.2	Suspend positive reactivity additions.	Immediately
		<u>AND</u>		
		A.3	Initiate action to restore boron concentration to within limit.	Immediately

SURVEILLANCE REQUIREMENTS

SURVEILLANCE		FREQUENCY
This surveillar	water or if water is to be added to, or recirculated	Once, within 4 hours prior to entering the Applicability of this LCO.
SR 3.3.1.1	Verify boron concentration is within the applicable limit using two independent measurements.	AND Once per 48 hours thereafter.

Table 3-1 MPC Cavity Drying Limits

Fuel Burnup (MWD/MTU)	MPC Heat Load (kW)	Method of Moisture Removal (Notes 1 and 2)
All Assemblies < 45,000	≤ 29 (MPC-24/24E/24EF) ≤ 26 (MPC-32/32F) ≤ 26 (MPC-68/68F/68FF)	VDS or FHD
All Assemblies ≤ 45,000	> 29 (MPC-24/24E/24EF) > 26 (MPC-32/32F) > 26 (MPC-68/68F/68FF)	FHD
One or more assemblies > 45,000	≤ 36.9	FHD

Notes:

- 1. VDS means Vacuum Drying System. The acceptance criterion for VDS is MPC cavity pressure shall be ≤ 3 torr for ≥ 30 minutes.
- FHD means Forced Helium Dehydration System. The acceptance criterion for the FHD System is gas temperature exiting the demoisturizer shall be ≤ 21°F for ≥ 30 minutes or gas dew point exiting the MPC shall be ≤ 22.9°F for ≥ 30 minutes.
- 3. For total decay heat loads up to and including 20.88 kW for the MPC-24 and 21.52 kW for the MPC-68, vacuum drying of the MPC must be performed with the annular gap between the MPC and the HI-TRAC filled with water. For higher total decay heat loads in the MPC-24 and MPC-68 or for any decay heat load in an MPC-24E or MPC-32, the annular gap must be continuously flushed with water with sufficient flow to keep the exit water temperature below 125°F.

Table 3-2 MPC Helium Backfill Limits¹

MPC MODEL	LIMIT
MPC-24/24E/24EF	,
 i. Cask Heat Load ≤ 27.77 kW (MPC-24) or ≤ 28.17 kW (MPC-24E/EF) 	0.1212 +/-10% g-moles/l <u>OR</u> ≥ 29.3 psig and ≤ 48.5 psig
ii. Cask Heat Load >27.77 kW (MPC-24) or > 28.17 kW (MPC-24E/EF)	≥ 45.5 psig and ≤ 48.5 psig
MPC-68/68F/68FF	
i. Cask Heat Load ≤ 28.19 kW	0.1218 +/-10% g-moles/l <u>OR</u> ≥ 29.3 psig and ≤ 48.5 psig
ii. Cask Heat Load > 28.19 kW	≥ 45.5 psig and ≤ 48.5 psig
MPC-32/32F	
i. Cask Heat Load ≤ 28.74 kW	≥ 29.3 psig and ≤ 48.5 psig
ii. Cask Heat Load >28.74 kW	≥ 45.5 psig and < 48.5 psig

Helium used for backfill of MPC shall have a purity of \geq 99.995%. Pressure range is at a reference temperature of 70°F

4.0

This section is intentionally left blank

The following programs shall be established, implemented and maintained.

- 5.1 Not Used.
- 5.2 Not Used.
- 5.3 Not Used.
- 5.4 Radioactive Effluent Control Program

This program implements the requirements of 10 CFR 72.44(d).

- a. The HI-STORM 100 Cask System does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required. Specification 3.1.1, Multi-Purpose Canister (MPC), provides assurance that there are not radioactive effluents from the SFSC.
- b. This program includes an environmental monitoring program. Each general license user may incorporate SFSC operations into their environmental monitoring programs for 10 CFR Part 50 operations.
- c. An annual report shall be submitted pursuant to 10 CFR 72.44(d)(3).

5.5 <u>Cask Transport Evaluation Program</u>

This program provides a means for evaluating various transport configurations and transport route conditions to ensure that the design basis drop limits are met. For lifting of the loaded TRANSFER CASK or OVERPACK using devices which are integral to a structure governed by 10 CFR Part 50 regulations, 10 CFR 50 requirements apply. This program is not applicable when the TRANSFER CASK or OVERPACK is in the FUEL BUILDING or is being handled by a device providing support from underneath (i.e., on a rail car, heavy haul trailer, air pads, etc...) or is being handled by a device designed in accordance with the increased safety factors of ANSI N14.6 and/or having redundant drop protection.

Pursuant to 10 CFR 72.212, this program shall evaluate the site-specific transport route conditions.

- a. For the TRANSFER CASK, the following requirements apply:
 - 1. The lift height above the transport route surface(s) shall not exceed the limits in Table 5-1 except as provided for in Specification 5.5.a.2. Also, if applying the limits in Table 5-1, the program shall ensure that the transport route conditions (i.e., surface hardness and pad thickness) are equivalent to or less limiting than either Set A or Set B in HI-STORM FSAR Table 2.2.9.
 - 2. For site-specific transport route surfaces that are not bounded by either the Set A or Set B parameters of FSAR Table 2.2.9, tThe program may determine lift heights by analysis based on the site-specific conditions to ensure that the impact loading due to design basis drop events does not exceed 45 g's at the top of the MPC fuel basket. These alternative analyses shall be commensurate with the drop analyses described in the Final Safety Analysis Report for the HI-STORM 100 Cask System. The program shall ensure that these alternative analyses are documented and controlled.

5.5 <u>Cask Transport Evaluation Program (continued)</u>

- 3. The TRANSFER CASK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONStransportation between the FUEL BUILDING and the CTF and/or ISFSI pad, provided the lifting device is designed in accordance with ANSI N14.6 and has redundant drop protection features.
- 4. The TRANSFER CASK and MPC, when loaded with spent fuel, may be lifted to those heights necessary to perform cask handling operations, including MPC transfer, provided the lifts are made with structures and components designed in accordance with the criteria specified in Section 3.5 of Appendix B to Certificate of Compliance No. 1014, as applicable.

Table 5-1

TRANSFER CASK Lifting Requirements

ITEM	ORIENTATION	LIFTING HEIGHT LIMIT (in.)
TRANSFER CASK	Horizontal	42 (Notes 1 and 2)
TRANSFER CASK	Vertical	None Established (Note 2)

Notes:

- 1. To be measured from the lowest point on the TRANSFER CASK (i.e., the bottom edge of the cask/lid assemblage)
- 2. See Technical Specification 5.5.a.3 and 4

5.6 Not Used.

5.7 Radiation Protection Program

- 5.7.1 Each cask user shall ensure that the Part 50 radiation protection program appropriately addresses dry storage cask loading and unloading, as well as ISFSI operations, including transport of the loaded OVERPACK or TRANSFER CASK outside of facilities governed by 10 CFR Part 50. The radiation protection program shall include appropriate controls for direct radiation and contamination, ensuring compliance with applicable regulations, and implementing actions to maintain personnel occupational exposures As Low As Reasonably Achievable (ALARA). The actions and criteria to be included in the program are provided below.
- 5.7.2 As part of its evaluation pursuant to 10 CFR 72.212(b)(2)(i)(C), the licensee shall perform an analysis to confirm that the dose limits of 10 CFR 72.104(a) will be satisfied under the actual site conditions and ISFSI configuration, considering the planned number of casks to be deployed and the cask contents.
- 5.7.3 Based on the analysis performed pursuant to Section 5.7.2, the licensee shall establish individual cask surface dose rate limits for the HI-TRAC TRANSFER CASK and the HI-STORM VVM to be used at the site. Total (neutron plus gamma) dose rate limits shall be established at the following locations:
 - a. The top of the TRANSFER CASK and the VVM.
 - b. The side of the TRANSFER CASK
 - c. The outlet vent on the VVM
- 5.7.4 Notwithstanding the limits established in Section 5.7.3, the measured dose rates on a loaded VVM shall not exceed 30 mrem/hr (gamma+neutron) on the top of the VVM
- 5.7.5 The licensee shall measure the TRANSFER CASK and VVM surface neutron and gamma dose rates as described in Section 5.7.8 for comparison against the limits established in Section 5.7.3 or Section 5.7.4, whichever are lower.

5.7 Radiation Protection Program (cont'd)

- 5.7.6 If the measured surface dose rates exceed the lower of the two limits established in Section 5.7.3 or Section 5.7.4, the licensee shall:
 - a. Administratively verify that the correct contents were loaded in the correct fuel storage cell locations.
 - b. Perform a written evaluation to verify whether placement of the asloaded a VVM at the ISFSI containing the asloaded MPC will cause the dose limits of 10 CFR 72.104 to be exceeded.
 - c. Perform a written evaluation within 30 days to determine why the surface dose rate limits were exceeded.
- 5.7.7 If the evaluation performed pursuant to Section 5.7.6 shows that the dose limits of 10 CFR 72.104 will be exceeded, the MPC shall not be placed into storage or the MPC shall be removed from storage until appropriate corrective action is taken to ensure the dose limits are not exceeded.
- 5.7.8 TRANSFER CASK and VVM surface dose rates shall be measured at approximately the following locations:
 - a. A minimum of four (4) dose rate measurements shall be taken on the side of the TRANSFER CASK approximately at the cask mid-height plane. The measurement locations shall be approximately 90 degrees apart around the circumference of the cask. Dose rates shall be measured between the radial ribs of the water jacket.
 - b. A minimum of four (4) TRANSFER CASK top lid dose rates shall be measured at locations approximately half way between the edge of the hole in the top lid and the outer edge of the top lid, 90 degrees apart around the circumference of the top lid.
 - c. A minimum of four (4) dose rate measurements shall be taken on the top of the VVM. These measurements shall be taken approximately 90 degrees apart around the circumference of the lid, approximately 18 inches radially inward from the edge of the lid.

5.7 Radiation Protection Program (cont'd)

- d. A minimum of four (4) dose rate measurements shall be taken adjacent to the outlet vent screen of the VVM, approximately 90 degrees apart.
- 5.7.9 The "Radiation Protection Space" (RPS) is a prismatic subgrade buffer zone surrounding a loaded VVM. The RPS boundary is located at a minimum of fourteen (14) feet from the centerline of a loaded VVM located on the periphery of an operating ISFSI, and at a minimum of twenty-one (21) feet from the centerline of a loaded VVM not located on the periphery. The RPS boundary shall not be encroached upon during any site construction activity. The jurisdictional boundary of the RPS extends from the top surface of the foundation pad to the top of the VVM interface pad and the top surface pad. The ISFSI design shall ensure that there is no significant loss of shielding in the RPS due to a credible accident or an extreme environment event during construction involving excavation adjacent to the RPS boundary.

CERTIFICATE OF COMPLIANCE NO. 1014 Amendment #7

APPENDIX B-100U

APPROVED CONTENTS AND DESIGN FEATURES
FOR THE HI-STORM 100 CASK SYSTEM (100U)

Attachment 3 to Holtec Letter 5014683

TABLE OF CONTENTS

1.0 D	EFINIT	IONS	1-1
2.0 A	PPROV	/ED CONTENTS	2-1
3.0 D	ESIGN	FEATURES	3-1
3.1	Site		3-1
3.2	Desigr	Features Important for Criticality Control	
3.3	Codes	and Standards	3-2
3.4	Site S _l	pecific Parameters and Analyses	3-7
3.5	Cask	Transfer Facility (CTF)	3-10
3.6		d Helium Dehydration System	
3.7		emental Cooling System	
3.8	Combi	ustible Gas Monitoring During MPC Lid Welding and Cutting	3-17
3.9	Corros	sion Mitigation Measures	3-18
3.10	Period	ic Corrosion Inspections for Underground Systems	3-19
3.11	Prevei	nting Oxidation of Fuel	3-20
Table	3-1	Not Used	3-4
Table	3-2	Applicable Code Paragraphs for Underground OVERPACKs	3-5
Table	3-3	Values of Principal Design Parameters for the Underground Overpack ISFSI	3-8
Table	21	Load Combinations and Service Condition Definitions for the	3-8
ı avit	J- 4	CTF Structure	3-12

1.0	Definitions
	NOTF
	e defined terms of this section appear in capitalized type and are applicable
thro	oughout these Technical Specifications and Bases.

T	D-5:-::::
Term	<u>Definition</u>
CASK TRANSFER FACILITY	A CASK TRANSFER FACILITY is an aboveground or
(CTF)	underground system used during the transfer of a
	loaded MPC between a transfer cask and a storage
·	OVERPACK. The CASK TRANSFER FACILITY
	includes the following components and equipment: (1)
	a Cask Transfer Structure used to stabilize the
	OVERPACK, TRANSFER CASK and/or MPC during
	lifts involving spent fuel not bounded by the
,	regulations of 10 CFR Part 50, and (2) Either a
	stationary lifting device or a mobile lifting device used
	in concert with the stationary structure to lift the
	OVERPACK, TRANSFER CASK, and/or MPC.
DAMAGED FUEL ASSEMBLY	DAMAGED FUEL ASSEMBLIES are fuel assemblies
	with known or suspected cladding defects, as
	determined by a review of records, greater than
	pinhole leaks or hairline cracks, empty fuel rod
	locations that are not filled with dummy fuel rods,
	missing structural components such as grid spacers,
	whose structural integrity has been impaired such that
	geometric rearrangement of fuel or gross failure of the
	cladding is expected based on engineering
	evaluations, or that cannot be handled by normal
	means. Fuel assemblies that cannot be handled by
·	normal means due to fuel cladding damage are
	considered FUEL DEBRIS.
DAMAGED FUEL	DFCs are specially designed enclosures for
CONTAINER (DFC)	DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS
	which permit gaseous and liquid media to escape
	while minimizing dispersal of gross particulates. DFCs
	authorized for use in the HI-STORM 100 System are
	as follows:
	1. Holtec Dresden Unit 1/Humboldt Bay design
	2. Transnuclear Dresden Unit 1 design
	3. Holtec Generic BWR design
	4. Holtec Generic PWR design

1	0

1.0 Definitions (continued)	
FUEL DEBRIS	FUEL DEBRIS is ruptured fuel rods, severed rods,
	loose fuel pellets, containers or structures that are
	supporting these loose fuel assembly parts, or fuel
	assemblies with known or suspected defects which
	cannot be handled by normal means due to fuel
,	cladding damage.
INTACT FUEL ASSEMBLY	INTACT FUEL ASSEMBLIES are fuel assemblies
	without known or suspected cladding defects greater
	than pinhole leaks or hairline cracks and which can be
	handled by normal means. Fuel assemblies without
	fuel rods in fuel rod locations shall not be classified as
	INTACT FUEL ASSEMBLIES unless dummy fuel rods
	are used to displace an amount of water greater than
	or equal to that displaced by the fuel rod(s).
LOADING OPERATIONS	LOADING OPERATIONS include all licensed activities
	on an OVERPACK or TRANSFER CASK while it is
	being loaded with fuel assemblies. LOADING
	OPERATIONS begin when the first fuel assembly is
	placed in the MPC and end when the OVERPACK or
	TRANSFER CASK is suspended from or secured on
	the transporter. LOADING OPERATIONS does not
	include MPC transfer between the TRANSFER CASK
	and the OVERPACK, which begins when the MPC is
,	lifted off the HI-TRAC bottom lid and ends when the
	MPC is supported from beneath by the OVERPACK.
MINIMUM ENRICHMENT	MINIMUM ENRICHMENT is the minimum assembly
•	average enrichment. Natural uranium blankets are not
	considered in determining minimum enrichment.
MULTI-PURPOSE CANISTER	MPCs are the sealed spent nuclear fuel canisters
(MPC)	which consist of a honeycombed fuel basket contained
, ,	in a cylindrical canister shell which is welded to a
	baseplate, lid with welded port cover plates, and
	closure ring. The MPC provides the confinement
	boundary for the contained radioactive materials.
NON-FUEL HARDWARE	NON-FUEL HARDWARE is defined as Burnable
	Poison Rod Assemblies (BPRAs), Thimble Plug
	Devices (TPDs), Control Rod Assemblies (CRAs),
	Axial Power Shaping Rods (APSRs), Wet Annular
	Burnable Absorbers (WABAs), Rod Cluster Control
	Assemblies (RCCAs), Control Element Assemblies
	(CEAs), Neutron Source Assemblies (NSAs), water
	displacement guide tube plugs, orifice rod assemblies,
	instrument tube tie-rods (ITTRs), and vibration
	suppressor inserts, and components of these devices
	such as individual rods.

1.0 Definitions (continued)

OVERPACK PLANAR-AVERAGE INITIAL	OVERPACKs are the casks which receive and contain the sealed MPCs for interim storage on the ISFSI. They provide gamma and neutron shielding, and provide for ventilated air flow to promote heat transfer from the MPC to the environs. The term OVERPACK includes the VVM, but does not include the TRANSFER CASK. PLANAR AVERAGE INITIAL ENRICHMENT is the
ENRICHMENT	average of the distributed fuel rod initial enrichments within a given axial plane of the assembly lattice.
SPENT FUEL STORAGE CASKS (SFSCs)	An SFSC is a container approved for the storage of spent fuel assemblies at the ISFSI. The HI-STORM 100 SFSC System consists of the OVERPACK and its integral MPC.
TRANSFER CASK	TRANSFER CASKs are containers designed to contain the MPC during and after loading of spent fuel assemblies and to transfer the MPC to or from the OVERPACK. The HI-STORM 100 System employs either the 125-Ton or the 100-Ton HI-TRAC TRANSFER CASK.
TRANSPORT OPERATIONS	TRANSPORT OPERATIONS include all licensed activities performed on an OVERPACK or TRANSFER CASK loaded with one or more fuel assemblies when it is being moved after LOADING OPERATIONS or before UNLOADING OPERATIONS. TRANSPORT OPERATIONS begin when the OVERPACK or TRANSFER CASK is first suspended from or secured on the transporter and end when the OVERPACK or TRANSFER CASK is at its destination and no longer secured on or suspended from the transporter. TRANSPORT OPERATIONS include transfer of the MPC between the OVERPACK and the TRANSFER CASK which begins when the MPC is lifted off the HITRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK (or the reverse).

1.0 Definitions (continued)

UNLOADING OPERATIONS	UNLOADING OPERATIONS include all licensed activities on an SFSC to be unloaded of the contained fuel assemblies. UNLOADING OPERATIONS begin when the OVERPACK or TRANSFER CASK is no longer suspended from or secured on the transporter and end when the last fuel assembly is removed from the SFSC. UNLOADING OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK which begins when the MPC is no longer supported from beneath by the OVERPACK and ends when the MPC is lowered onto the HI-TRAC bottom lid.
ZR	ZR means any zirconium-based fuel cladding or fuel channel material authorized for use in a commercial nuclear power plant reactor.

2.0 APPROVED CONTENTS

2.1 Fuel Specifications and Loading Conditions

2.1.1 Fuel To Be Stored In The HI-STORM SFSC System Model 100U

- a. INTACT FUEL ASSEMBLIES, and NON-FUEL HARDWARE meeting the limits specified in Table 2.1-1 and other referenced tables may be stored.
- b. For MPCs partially loaded with stainless steel clad fuel assemblies, all remaining fuel assemblies in the MPC shall meet the decay heat generation limit for the stainless steel clad fuel assemblies.
- c. For MPCs partially loaded with array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A fuel assemblies, all remaining ZR clad INTACT FUEL ASSEMBLIES in the MPC shall meet the decay heat generation limits for the 6x6A, 6x6B, 6x6C, 7x7A and 8x8A fuel assemblies.
- d. All BWR fuel assemblies may be stored with or without ZR channels with the exception of array/class 10x10D and 10x10E fuel assemblies, which may be stored with or without ZR or stainless steel channels.

2.1.2 Uniform Fuel Loading

Any authorized fuel assembly may be stored in any fuel storage location, subject to other restrictions related to NON-FUEL HARDWARE specified in the CoC.

2.0 Approved Contents

2.1 Fuel Specifications and Loading Conditions (cont'd)

2.1.3 Regionalized Fuel Loading

Users may choose to store fuel using regionalized loading in lieu of uniform loading to allow higher heat emitting fuel assemblies to be stored than would otherwise be able to be stored using uniform loading. Regionalized loading is limited to those fuel assemblies with ZR cladding. Figures 2.1-1 through 2.1-4 define the regions for the MPC-24, MPC-24E, MPC-32, MPC-68 models, respectively¹. Fuel assembly burnup, decay heat, and cooling time limits for regionalized loading are specified in Section 2.4.2. Fuel assemblies used in regionalized loading shall meet all other applicable limits specified in Tables 2.1-1 through 2.1-3.

2.2 Violations

If any Fuel Specifications or Loading Conditions of 2.1 are violated, the following actions shall be completed:

- 2.2.1 The affected fuel assemblies shall be placed in a safe condition.
- 2.2.2 Within 24 hours, notify the NRC Operations Center.
- 2.2.3 Within 30 days, submit a special report which describes the cause of the violation, and actions taken to restore compliance and prevent recurrence.

These figures are only intended to distinguish the fuel loading regions. Other details of the basket design are illustrative and may not reflect the actual basket design details. The design drawings should be consulted for basket design details.

LEGEND:

REGION 1:

REGION 2:

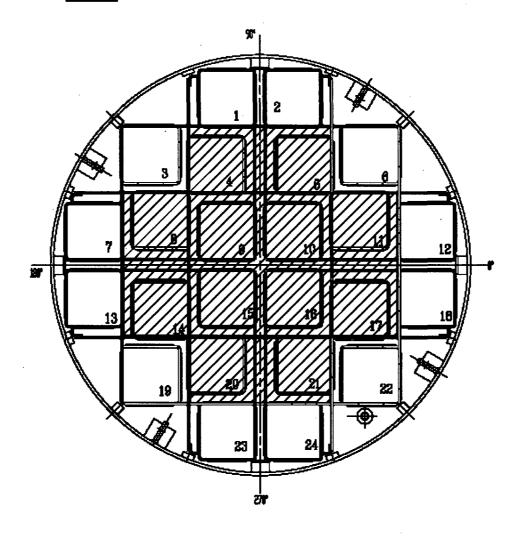


Figure 2.1-1
Fuel Loading Regions - MPC-24

LEGEND:

REGION 1:

REGION 2:

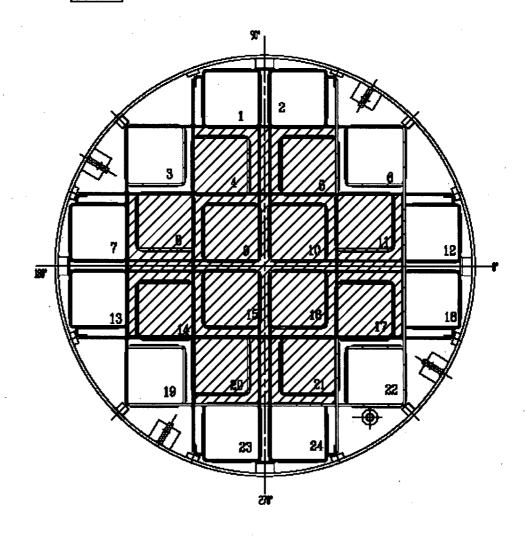


Figure 2.1-2
Fuel Loading Regions - MPC-24E

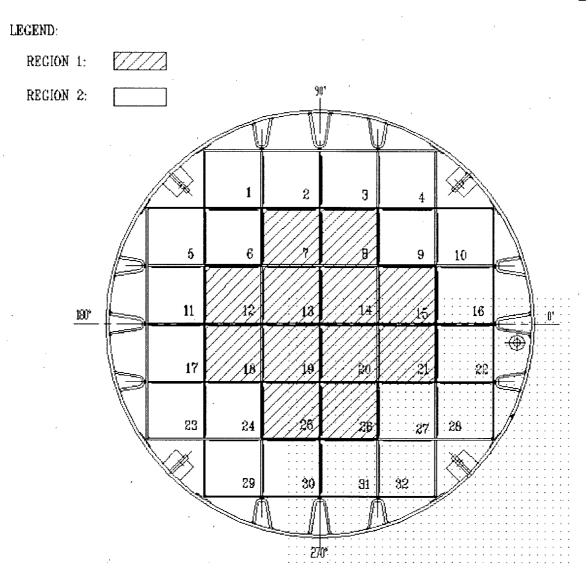


Figure 2.1-3
Fuel Loading Regions - MPC-32

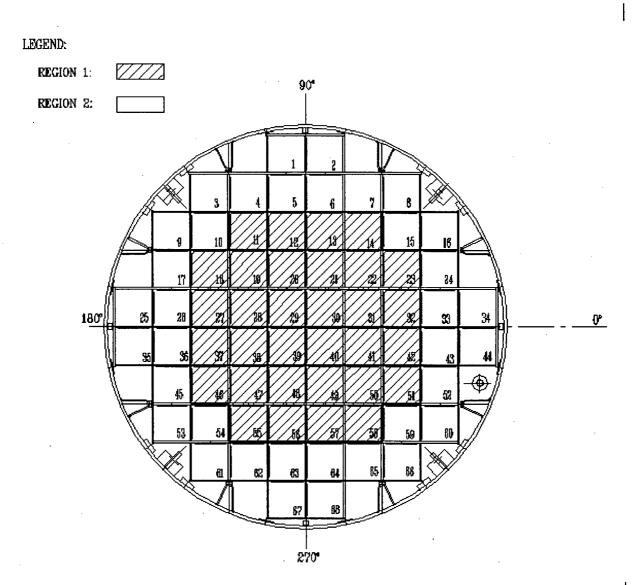


Figure 2.1-4 Fuel Loading Regions - MPC-68

Table 2.1-1 (page 1 of 8) Fuel Assembly Limits

I. MPC MODEL: MPC-24

A. Allowable Contents

1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-2 for the applicable fuel

assembly array/class.

b. Initial Enrichment:

As specified in Table 2.1-2 for the applicable fuel assembly array/class.

c. Post-irradiation Cooling Time and Average Burnup Per Assembly:

i. Array/Classes

14x14D,14x14E, and

15x15G

Cooling time ≥ 8 years and an average

burnup ≤ 40,000 MWD/MTU.

ii. All Other Array/Classes

Cooling time and average burnup as

specified in Section 2.4.

ii. NON-FUEL HARDWARE

As specified in Table 2.1-4.

Table 2.1-1 (page 2 of 8) Fuel Assembly Limits

- I. MPC MODEL: MPC-24 (continued)
 - A. Allowable Contents (continued)
 - d. Decay Heat Per Fuel Storage Location:

i. Array/Classes 14x14D, 14x14E, and 15x15G ≤ 710 Watts

ii. All Other Array/Classes

As specified in Section 2.4.

e. Fuel Assembly Length:

≤ 176.8 inches (nominal design)

f. Fuel Assembly Width:

≤ 8.54 inches (nominal design)

g. Fuel Assembly Weight:

≤ 1720 lbs (including NON-FUEL HARDWARE) for assemblies that do not require fuel spacers, otherwise ≤ 1680 lbs (including NON-FUEL HARDWARE)

- B. Quantity per MPC: Up to 24 fuel assemblies.
- C. One NSA is authorized for loading into the MPC-24.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts, with or without ITTRs, may be stored in any fuel storage location. Fuel assemblies containing APSRs or NSAs may only be loaded in fuel storage locations 9, 10, 15, and/or 16. Fuel assemblies containing CRAs, RCCAs, CEAs may only be stored in fuel storage locations 4, 5, 8 11, 14 17, 20 and/or 21 (see Figure 2.1-1). These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 3 of 8) Fuel Assembly Limits

- II. MPC MODEL: MPC-68
 - A. Allowable Contents
 - 1. Uranium oxide or MOX BWR INTACT FUEL ASSEMBLIES listed in Table 2.1-3, with or without channels and meeting the following specifications:

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-3 for the applicable fuel

assembly array/class

b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

c. Initial Maximum Rod Enrichment

As specified in Table 2.1-3 for the applicable fuel assembly array/class.

d. Post-irradiation Cooling Time and Average Burnup Per Assembly

i. Array/Classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A

Cooling time ≥ 18 years and an average

burnup ≤ 30,000 *MWD/MTU*

(or MWD/MTIHM).

ii. Array/Class 8x8F

Cooling time ≥ 10 years and an average

 $burnup \le 27,500 \ MWD/MTU$.

iii. Array/Classes 10x10D

and 10x10E

Cooling time ≥ 10 years and an average

burnup ≤ 22,500 MWD/MTU.

iv. All Other Array/Classes

As specified in Section 2.4.

Table 2.1-1 (page 4 of 8) Fuel Assembly Limits

III. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

e. Decay Heat Per Assembly

i. Array/Classes 6x6A, 6X6B, ≤ 115 Watts 6x6C, 7x7A, and 8x8A

ii. Array/Class 8x8F

≤ 183.5 Watts

iii. Array/Classes 10x10D and 10x10E

≤ 95 Watts

iv. All Other Array/Classes

As specified in Section 2.4.

f. Fuel Assembly Length

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 135.0 inches (nominal design)

ii. All Other Array/Classes

≤ 176.5 inches (nominal design)

g. Fuel Assembly Width

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A

≤ 4.70 inches (nominal design)

ii. All Other Array/Classes

≤ 5.85 inches (nominal design)

h. Fuel Assembly Weight

i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A ≤ 400 lbs, including channels

ii. All Other Array/Classes

≤ 730 lbs, including channels

B. Quantity per MPC: Up to 68 fuel assemblies.

Table 2.1-1 (page 5 of 8) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E

A. Allowable Contents

1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-2 for the applicable fuel

assembly array/class

b. Initial Enrichment:

As specified in Table 2.1-2 for the applicable fuel assembly array/class.

c. Post-irradiation Cooling Time and Average Burnup Per Assembly:

i. Array/Classes 14x14D,

Cooling time ≥ 8 years and an average

14x14E, and 15x15G

burnup ≤ 40,000 *MWD/MTU*.

ii. All Other Array/Classes

As specified in Section 2.4.

iii. NON-FUEL HARDWARE

As specified in Table 2.1-4.

Table 2.1-1 (page 6 of 8) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E (continued)

A. Allowable Contents (continued)

d. Decay Heat Per Fuel Storage Location:

i. Array/Classes 14x14D, 14x14E, and 15x15G ≤ 710 Watts.

ii. All other Array/Classes

As specified in Section 2.4.

e. Fuel Assembly Length:

≤ 176.8 inches (nominal design)

f. Fuel Assembly Width:

≤ 8.54 inches (nominal design)

g. Fuel Assembly Weight:

≤ 1,720 lbs (including NON-FUEL

HARDWARE) for assemblies that do not

require fuel spacers, otherwise, ≤ 1,680 lbs (including NON-FUEL

HARDWARE)

B. Quantity per MPC: Up to 24 fuel assemblies.

C. One NSA is permitted for loading.

Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts, with or without ITTRs, may be stored in any fuel storage location. Fuel assemblies containing APSRs or NSAs may only be loaded in fuel storage locations 9, 10, 15, and/or 16 (see Figure 2.1-2). Fuel assemblies containing CRAs, RCCAs, or CEAs may only be stored in fuel storage locations 4, 5, 8 - 11, 14 - 17, 20 and/or 21 (see Figure 2.1-2). These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 7 of 8) Fuel Assembly Limits

V. MPC MODEL: MPC-32

A. Allowable Contents

1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:

ZR or Stainless Steel (SS) as specified in

Table 2.1-2 for the applicable fuel

assembly array/class

b. Initial Enrichment:

As specified in Table 2.1-2 for the applicable fuel assembly array/class.

c. Post-irradiation Cooling Time and Average Burnup Per Assembly:

i. Array/Classes 14x14D,

14x14E, and 15x15G

Cooling time \geq 9 years and an average burnup \leq 30,000 MWD/MTU or cooling time \geq 20 years and an average burnup

≤ 40,000 MWD/MTU.

ii. All Other Array/Classes

As specified in Section 2.4.

iii. NON-FUEL HARDWARE

As specified in Table 2.1-4.

Table 2.1-1 (page 8 of 8) Fuel Assembly Limits

- V. MPC MODEL: MPC-32 (continued)
 - A. Allowable Contents (continued)
 - d. Decay Heat Per Fuel Storage Location:

i. Array/Classes 14x14D, 14x14E, and 15x15G ≤ 500 Watts.

ii. All Other Array/Classes

As specified in Section 2.4.

e. Fuel Assembly Length

≤ 176.8 inches (nominal design)

f. Fuel Assembly Width

≤ 8.54 inches (nominal design)

g. Fuel Assembly Weight

≤ 1,720 lbs (including NON-FUEL HARDWARE) for assemblies that do not require fuel spacers, otherwise, ≤ 1,680 lbs (including NON-FUEL HARDWARE)

- B. Quantity per MPC: Up to 32 fuel assemblies.
- C. One NSA is permitted for loading.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts, with or without ITTRs, may be stored in any fuel storage location. Fuel assemblies containing NSAs may only be loaded in fuel storage locations 13, 14, 19 and/or 20 (see Figure 2.1-3). Fuel assemblies containing CRAs, RCCAs, CEAs or APSRs may only be loaded in fuel storage locations 7, 8, 12-15, 18-21, 25 and/or 26 (see Figure 2.1-3). These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-2 (page 1 of 4)
PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)						
Fuel Assembly Array/Class	14x14A	14x14B	14x14B 14x14C		14x14E	
Clad Material	ZR	ZR	ZR	SS	SS	
Design Initial U (kg/assy.) (Note 3)	≤ 365	≤ 412	≤.438	≤ 400	≤ 206	
Initial Enrichment (MPC-24, 24E and 24EF without soluble boron credit) (wt % ²³⁵ U)	≤ 4.6 (24) ≤ 5.0	≤ 4.6 (24) ≤ 4.6 (24) ≤ 5.0 ≤ 5.0		≤ 4.0 (24) ≤ 5.0	≤ 5.0 (24) ≤ 5.0	
(Note 7)	(24E/24EF)	(24E/24EF)	(24E/24EF)	(24E/24EF)	(24E/24EF)	
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	
No. of Fuel Rod Locations	179	179	176	180	173	
Fuel Rod Clad O.D. (in.)	≥ 0.400	≥ 0.417	≥ 0.440	≥ 0.422	≥ 0.3415	
Fuel Rod Clad I.D. (in.)	≤ 0.3514	≤ 0.3734	≤ 0.3880	≤ 0.3890	≤ 0.3175	
Fuel Pellet Dia. (in.)(Note 8)	≤ 0.3444	≤ 0.3659	≤ 0.3805	≤ 0.3835	≤ 0.3130	
Fuel Rod Pitch (in.)	≤ 0.556	≤ 0.556	≤ 0.580	≤ 0.556	Note 6	
Active Fuel Length (in.)	≤ 150	≤ 150	≤ 150	≤ 144	≤ 102	
No. of Guide and/or Instrument Tubes	17	17	5 (Note 4)	16	0	
Guide/Instrument Tube Thickness (in.)	≥ 0.017	≥ 0.017	≥ 0.038	≥ 0.0145	N/A	

Table 2.1-2 (page 2 of 4)
PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)						
Fuel Assembly Array/Class	15x15A	15x15B	15x15C	15x15D	15x15E	15x15F
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 473	<u>≤</u> 473	<u>≤</u> 473	<u>≤</u> 495	<u>≤</u> 495	<u><</u> 495
Initial Enrichment (MPC-24, 24E and 24EF without soluble boron	≤ 4.1 (24)	≤ 4.1 (24)	≤ 4.1 (24)	≤ 4.1 (24)	≤ 4.1 (24)	<u><</u> 4.1 (24)
credit) (wt % ²³⁵ U) (Note 7)	≤ 4.5 (24E/24EF)					
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5)(wt % ²³⁵ U)	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0
No. of Fuel Rod Locations	204	204	204	208	208	208
Fuel Rod Clad O.D. (in.)	<u>≥</u> 0.418	≥ 0.420	≥ 0.417	≥ 0.430	≥ 0.428	≥ 0.428
Fuel Rod Clad I.D. (in.)	≤ 0.3660	≤ 0.3736	≤ 0.3640	≤ 0.3800	<u><</u> 0.3790	≤ 0.3820
Fuel Pellet Dia. (in.) (Note 8)	≤ 0.3580	<u><</u> 0.3671	≤ 0.3570	≤ 0.3735	≤ 0.3707	≤ 0.3742
Fuel Rod Pitch (in.)	≤ 0.550	≤ 0.563	<u><</u> 0.563	<u><</u> 0.568	≤ 0.568	≤ 0.568
Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u>≤</u> 150 .	<u><</u> 150	≤ 150	≤ 150
No. of Guide and/or Instrument Tubes	21	21	21	17	17	17
Guide/Instrument Tube Thickness (in.)	<u>≥</u> 0.0165	≥ 0.015	≥ 0.0165	≥ 0.0150	≥ 0.0140	<u>≥</u> 0.0140

Table 2.1-2 (page 3 of 4)
PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array/ Class	15x15G	15x15H	16x16A	17x17A	17x17B	17x17C
Clad Material	SS	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.)(Note 3)	<u>≤</u> 420	<u><</u> 495	<u>≤</u> 448	<u>≤</u> 433	<u>≤</u> 474	≤ 480
Initial Enrichment (MPC-24, 24E, and 24EF without soluble boron	≤ 4.0 (24)···	≤ 3.8 (24)	≤ 4.6 (24)	≤ 4.0 (24)	≤ 4.0 (24)	≤ 4.0 (24)
credit)(wt % ²³⁵ U) (Note 7)	≤ 4.5 (24E/24EF)	≤ 4.2 (24E/24EF)	≤ 5.0 (24E/24EF)	≤ 4.4 (24E/24EF)	≤ 4.4 (24E/24EF)	≤ 4.4 (24E/24EF)
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	≤ 5.0	` <u>≤</u> 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0
No. of Fuel Rod Locations	204	208	236	264	264	264
Fuel Rod Clad O.D. (in.)	≥ 0.422	≥ 0.414	≥ 0.382	≥ 0.360	≥ 0.372	≥ 0.377
Fuel Rod Clad I.D. (in.)	≤ 0.3890	≤ 0.3700	≤ 0.3350	≤ 0.3150	≤ 0.3310	≤ 0.3330
Fuel Pellet Dia. (in.) (Note 8)	≤ 0.3825	<u><</u> 0.3622	≤ 0.3255	≤ 0.3088	≤ 0.3232	≤ 0.3252
Fuel Rod Pitch (in.)	≤ 0.563	≤ 0.568	≤ 0.506	<u>< 0.496</u>	≤ 0.496	≤ 0.502
Active Fuel Length (in.)	<u>< 144</u>	<u><</u> 150	<u><</u> 150	≤ 150	≤ 150	≤ 150
No. of Guide and/or Instrument Tubes	21	17	5 (Note 4)	25	25	25
Guide/Instrument Tube Thickness (in.)	≥ 0.0145	≥ 0.0140	≥ 0.0350	<u>≥</u> 0.016	≥ 0.014	≥ 0.020

Table 2.1-2 (page 4 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. Deleted.
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each PWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 2.0 percent for comparison with users' fuel records to account for manufacturer's tolerances.
- 4. Each guide tube replaces four fuel rods.
- 5. Soluble boron concentration per LCO 3.3.1.
- 6. This fuel assembly array/class includes only the Indian Point Unit 1 fuel assembly. This fuel assembly has two pitches in different sectors of the assembly. These pitches are 0.441 inches and 0.453 inches.
- 7. Annular fuel pellets are allowed in the top and bottom 12" of the active fuel length.

Table 2.1-3 (page 1 of 5)
BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array/Class	6x6A	6x6B	6x6C	7x7A	7x7B	8x8A
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 110	<u>≤</u> 110	<u>≤</u> 110	≤ 100	<u><</u> 198	≤ 120
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	≤ 2.7	≤ 2.7 for the UO₂ rods. See Note 4 for MOX rods	≤ 2.7	≤ 2.7	<u><</u> 4.2	≤ 2.7
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	≤ 4.0	≤ 4.0	≤ 4.0	≤ 5.5	≤ 5.0	≤ 4.0
No. of Fuel Rod Locations	35 or 36	35 or 36 (up to 9 MOX rods)	36	49	49	63 or 64
Fuel Rod Clad O.D. (in.)	≥ 0.5550	≥ 0.5625	≥ 0.5630	<u>≥</u> 0.4860	≥ 0.5630	≥ 0.4120
Fuel Rod Clad I.D. (in.)	≤ 0.5105	<u><</u> 0.4945	<u><</u> 0.4990	<u><</u> 0.4204	≤ 0.4990	≤ 0.3620
Fuel Pellet Dia. (in.)	≤ 0.4980	≤ 0.4820	<u><</u> 0.4880	<u><</u> 0.4110	≤ 0.4910	≤ 0.3580
Fuel Rod Pitch (in.)	≤ 0.710	<u>≤</u> 0.710	≤ 0.740	≤ 0.631	≤ 0.738	≤ 0.523
Active Fuel Length (in.)	≤ 120	≤ 120	≤ 77.5	≤ 80	<u><</u> 150	≤ 120
No. of Water Rods (Note 11)	1 or 0	1 or 0	0	0	0	1 or 0
Water Rod Thickness (in.)	> 0	> 0	N/A	N/A	N/A	≥ 0
Channel Thickness (in.)	≤ 0.060	≤ 0.060	≤ 0.060	≤ 0.060	≤ 0.120	≤ 0.100

Table 2.1-3 (2 of 5)
BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)									
Fuel Assembly Array/Class	8x8B	8x8C	8x8D	8x8E	8x8F	9x9A			
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR			
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 192	<u><</u> 190	<u><</u> 190	< 190	<u><</u> 191	<u><</u> 180			
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	≤ 4.2	<u>≤</u> 4.2	≤ 4.2	≤ 4.2	≤ 4.0	≤ 4.2			
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0			
No. of Fuel Rod Locations	63 or 64	62	60 or 61	59	64	74/66 (Note 5)			
Fuel Rod Clad O.D. (in.)	≥ 0.4840	<u>≥</u> 0.4830	≥ 0.4830	≥ 0.4930	≥ 0.4576	≥ 0.4400			
Fuel Rod Clad I.D. (in.)	≤ 0.4295	≤ 0.4250	≤ 0.4230	≤ 0.4250	≤ 0.3996	≤ 0.3840			
Fuel Pellet Dia. (in.)	<u><</u> 0.4195	<u><</u> 0.4160	<u><</u> 0.4140	<u><</u> 0.4160	<u><</u> 0.3913	≤ 0.3760			
Fuel Rod Pitch (in.)	≤ 0.642	≤ 0.641	≤ 0.640	≤ 0.640	≤ 0.609	<u><</u> 0.566			
Design Active Fuel Length (in.)	≤ 150	≤ 150	<u><</u> 150	<u><</u> 150	≤ 150	<u><</u> 150			
No. of Water Rods (Note 11)	1 or 0	2	1 - 4 (Note 7)	5	N/A (Note 12)	2			
Water Rod Thickness (in.)	≥ 0.034	> 0.00	> 0.00	≥ 0.034	≥ 0.0315	> 0.00			
Channel Thickness (in.)	≤ 0.120	≤ 0.120	≤ 0.120	≤ 0.100	≤ 0.055	≤ 0.120			

Table 2.1-3 (page 3 of 5)
BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)									
Fuel Assembly Array/Class	9x9B	9x9C	9x9D	9x9E (Note 13)	9x9F (Note 13)	9x9G			
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR			
Design Initial U (kg/assy.)(Note 3)	≤ 180	<u><</u> 182	<u><</u> 182	≤ 183	<u><</u> 183	≤ 164			
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	< 4.2 ≤ 4.2	≤ 4.2	≤ 4.2	≤ 4.0	≤ 4.0	<u><</u> 4.2			
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0			
No. of Fuel Rod Locations	72	80	79	76	76	72			
Fuel Rod Clad O.D. (in.)	≥ 0.4330	<u>></u> 0.4230	≥ 0.4240	≥ 0.4170	≥ 0.4430	≥ 0.4240			
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3810	<u><</u> 0.3640	≤ 0.3640	≤ 0.3640	≤ 0.3860	≤ 0.3640			
Fuel Pellet Dia. (in.)	<u>< 0.3740</u>	≤ 0.3565	≤ 0.3565	≤ 0.3530	≤ 0.3745	≤ 0.3565			
Fuel Rod Pitch (in.)	≤ 0.572	<u><</u> 0.572	≤ 0.572	≤ 0.572	≤ 0.572	≤ 0.572			
Design Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	≤ 150	<u><</u> 150	<u><</u> 150	≤ 150			
No. of Water Rods (Note 11)	1 (Note 6)	1	2	5	5	1 (Note 6)			
Water Rod Thickness (in.)	> 0.00	≥ 0.020	≥ 0.0300	≥ 0.0120	≥ 0.0120	≥ 0.0320			
Channel Thickness (in.)	≤ 0.120	≤ 0.100	≤ 0.100	≤ 0.120	≤ 0.120	≤ 0.120			

Table 2.1-3 (page 4 of 5)
BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array/Class	10x10A	10x10B	10x10C	10x10D	10x10E
Clad Material	ZR	ZR	ZR	SS	SS
Design Initial U (kg/assy.) (Note 3)	<u><</u> 188	<u><</u> 188	<u><</u> 179	≤ 125	<u><</u> 125
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u>≤</u> 4.2	≤ 4.2	≤ 4.2	≤ 4.0	≤ 4.0
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	<u><</u> 5.0
No. of Fuel Rod Locations	92/78 (Note 8)	91/83 (Note 9)	96	100	96
Fuel Rod Clad O.D. (in.)	≥ 0.4040	≥ 0.3957	≥ 0.3780	≥ 0.3960	≥ 0.3940
Fuel Rod Clad I.D. (in.)	≤ 0.3520	<u><</u> 0.3480	≤ 0.3294	≤ 0.3560	≤ 0.3500
Fuel Pellet Dia. (in.)	≤ 0.3455	<u><</u> 0.3420	≤ 0.3224	≤ 0.3500	≤ 0.3430
Fuel Rod Pitch (in.)	≤ 0.510	<u><</u> 0.510	<u><</u> 0.488	≤ 0.565	≤ 0.557
Design Active Fuel Length (in.)	<u>< 150</u>	<u><</u> 150	<u><</u> 150	<u><</u> 83	<u><</u> 83
No. of Water Rods (Note 11)	2	1 (Note 6)	5 (Note 10)	, 0	4
Water Rod Thickness (in.)	≥ 0.0300	> 0.00	· <u>></u> 0.031	N/A	≥ 0.022
Channel Thickness (in.)	≤ 0.120	<u>≤</u> 0.120	≤ 0.055	≤ 0.080	≤ 0.080

Table 2.1-3 (page 5 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. Deleted.
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 1.5 percent for comparison with users' fuel records to account for manufacturer tolerances.
- 4. ≤ 0.635 wt. % 235 U and ≤ 1.578 wt. % total fissile plutonium (239 Pu and 241 Pu), (wt. % of total fuel weight, i.e., UO₂ plus PuO₂).
- 5. This assembly class contains 74 total rods; 66 full length rods and 8 partial length rods.
- 6. Square, replacing nine fuel rods.
- 7. Variable.
- 8. This assembly contains 92 total fuel rods; 78 full length rods and 14 partial length rods.
- 9. This assembly class contains 91 total fuel rods; 83 full length rods and 8 partial length rods.
- 10. One diamond-shaped water rod replacing the four center fuel rods and four rectangular water rods dividing the assembly into four quadrants.
- 11. These rods may also be sealed at both ends and contain Zr material in lieu of water.
- 12. This assembly is known as "QUAD+." It has four rectangular water cross segments dividing the assembly into four quadrants.
- 13. For the SPC 9x9-5 fuel assembly, each fuel rod must meet either the 9x9E or the 9x9F set of limits for clad O.D., clad I.D., and pellet diameter.

Table 2.1-4
NON-FUEL HARDWARE COOLING AND AVERAGE BURNUP (Notes 1, 2, 3, and 8)

Post- irradiation Cooling Time (years)	INSERTS (Note 4) BURNUP (MWD/MTU)	NSA or GUIDE TUBE HARDWARE (Note 5) BURNUP (MWD/MTU)	CONTROL COMPONENT (Note 6) BURNUP (MWD/MTU)	APSR BURNUP (MWD/MTU)
<u>≥</u> 3	≤ 24,635	NA (Note 7)	NA	NA
<u>></u> 4	≤ 30,000	≤ 20,000	NA	NA
≥ 5	≤ 36,748	≤ 25,000	<i>≤</i> 630,000	<i>≤</i> 45,000
≥ 6	<i>≤</i> 44,102	<i>≤</i> 30,000	-	<i>≤</i> 54,500
≥.7	<i>≤</i> 52,900	<i>≤</i> 40,000	-	≤ 68,000
≥ 8	≤ 60,000	<i>≤</i> 45,000	-	≤ 83,000
≥ 9	-	<i>≤</i> 50,000	-	<u><</u> 111,000
≥ 10	-	<u>≤</u> 60,000	-	<u>≤</u> 180,000
<u>≥</u> 11		≤ 75,000	· -	<u>≤</u> 630,000
<u>≥</u> 12	-	<i>≤</i> 90,000	-	-
<u>≥</u> 13	-	≤ 180,000	-	-
<u>≥</u> 14	-	≤ 630,000	-	-

- Notes: 1. Burnups for NON-FUEL HARDWARE are to be determined based on the burnup and uranium mass of the fuel assemblies in which the component was inserted during reactor operation.
 - 2. Linear interpolation between points is permitted, except that NSA or Guide Tube Hardware and APSR burnups > 180,000 MWD/MTU and \leq 630,000 MWD/MTU must be cooled \geq 14 years and \geq 11 years, respectively.
 - 3. Applicable to uniform loading and regionalized loading.
 - 4. Includes Burnable Poison Rod Assemblies (BPRAs), Wet Annular Burnable Absorbers (WABAs), and vibration suppressor inserts.
 - 5. Includes Thimble Plug Devices (TPDs), water displacement guide tube plugs, and orifice rod assemblies.
 - 6. Includes Control Rod Assemblies (CRAs), Control Element Assemblies (CEAs), and Rod Cluster Control Assemblies (RCCAs).
 - 7. NA means not authorized for loading at this cooling time.
 - 8. Non-fuel hardware burnup and cooling times are not applicable to ITTRs since they are installed post irradiation.

2.4 Decay Heat, Burnup, and Cooling Time Limits for ZR-Clad Fuel

This section provides the limits on ZR-clad fuel assembly decay heat, burnup, and cooling time for storage in the HI-STORM 100 System Model 100U. The method to calculate the limits and verify compliance, including examples, is provided in Chapter 12 of the HI-STORM 100 FSAR.

2.4.1 Uniform Fuel Loading Decay Heat Limits for ZR-clad fuel

Table 2.4-1 provides the maximum allowable decay heat per fuel storage location for ZR-clad fuel in uniform fuel loading for each MPC model.

Table 2.4-1

Maximum Allowable Decay Heat per Fuel Storage Location

(Uniform Loading, ZR-Clad)

MPC Model	Decay Heat per Fuel Storage Location (kW)
MPC-24	≤ 1.266
MPC-24E	<u>< 1.266</u>
MPC-32	≤ 0.949
MPC-68	≤ 0.447

2.4.2 Regionalized Fuel Loading Decay Heat Limits for ZR-Clad Fuel

The maximum allowable decay heat per fuel storage location for fuel in regionalized loading is determined using the following equations:

$$Q(X) = 2 \times \alpha \times Q_0 / (1 + X^y)$$

$$y = 0.23 / X^{0.1}$$

$$q_2 = Q(X) / (n_1 x X + n_2)$$

$$q_1 = q_2 \times X$$

Where:

 Q_0 = Maximum uniform storage MPC decay heat (34 kW)

α= Penalty Factor (0.894)

X = Inner region to outer region assembly decay heat ratio $(0.5 \le X \le 3)$

 n_1 = Number of storage locations in inner region from Table 2.4-2.

 n_2 = Number of storage locations in outer region from Table 2.4-2.

Table 2.4-2
Fuel Storage Regions per MPC

MPC Model	Number of Storage Locations in Inner Region (Region 1)	Number of Storage Locations in Outer Region (Region 2)
MPC-24 and MPC-24E	12	12
MPC-32	12	20
MPC-68	32	36

2.4.3 Burnup Limits as a Function of Cooling Time for ZR-Clad Fuel

The maximum allowable fuel assembly average burnup varies with the following parameters:

- Minimum fuel assembly cooling time
- Maximum fuel assembly decay heat
- Minimum fuel assembly average enrichment

The maximum allowable ZR-clad fuel assembly average burnup for a given MINIMUM ENRICHMENT is calculated as described below for minimum cooling times between 3 and 20 years using the maximum permissible decay heat determined in Section 2.4.1 or 2.4.2. Different fuel assembly average burnup limits may be calculated for different minimum enrichments (by individual fuel assembly) for use in choosing the fuel assemblies to be loaded into a given MPC.

- 2.4.3.1 Choose a fuel assembly minimum enrichment, E₂₃₅.
- 2.4.3.2 Calculate the maximum allowable fuel assembly average burnup for a minimum cooling time between 3 and 20 years using the equation below.

$$Bu = (A \times q) + (B \times q^2) + (C \times q^3) + [D \times (E_{235})^2] + (E \times q \times E_{235}) + (F \times q^2 \times E_{235}) + G$$

Where:

- Bu = Maximum allowable average burnup per fuel assembly (MWD/MTU)
- q = Maximum allowable decay heat per fuel storage location determined in Section 2.4.1 or 2.4.2 (kW)
- E_{235} =Minimum fuel assembly average enrichment (wt. % ²³⁵U) (e.g., for 4.05 wt.%, use 4.05)
- A through G = Coefficients from Tables 2.4-3 and 2.4-4 for the applicable fuel assembly array/class and minimum cooling time
- 2.4.3.3 Calculated burnup limits shall be rounded down to the nearest integer.
- 2.4.3.4 Calculated burnup limits greater than 68,200 MWD/MTU for PWR fuel and 65,000 MWD/MTU for BWR must be reduced to be equal to these values.
- 2.4.3.5 Linear interpolation of calculated burnups between cooling times for a given fuel assembly maximum decay heat and minimum enrichment is permitted. For example, the allowable burnup for a

- cooling time of 4.5 years may be interpolated between those burnups calculated for 4 year and 5 years.
- 2.4.3.6 Each ZR-clad fuel assembly to be stored must have a MINIMUM ENRICHMENT greater than or equal to the value used in Step 2.4.3.2.
- 2.4.4 When complying with the maximum fuel storage location decay heat limits, users must account for the decay heat from both the fuel assembly and any NON-FUEL HARDWARE, as applicable for the particular fuel storage location, to ensure the decay heat emitted by all contents in a storage location does not exceed the limit.

Table 2.4-3 (Page 1 of 8)

PWR Fuel Assembly Cooling Time-Dependent Coefficients
(ZR-Clad Fuel)

Cooling			Arra	ay/Class 14x	14A		
Time (years)	А	В	С	D	Ε	F	G
≥ 3	19311.5	275.367	-59.0252	-139.41	2851.12	-451.845	-615.413
≥ 4	33865.9	-5473.03	851.121	-132.739	3408.58	-656.479	-609.523
≥ 5	46686.2	-13226.9	2588.39	-150.149	3871.87	-806.533	-90.2065
<u>≥</u> 6	56328.9	-20443.2	4547.38	-176.815	4299.19	-927.358	603.192
≥ 7	64136	-27137.5	6628.18	-200.933	4669.22	-1018.94	797.162
≥ 8	71744.1	-34290.3	9036.9	-214.249	4886.95	-1037.59	508.703
≥ 9	77262	-39724.2	11061	-228.2	5141.35	-1102.05	338.294
· ≥ 10	82939.8	-45575.6	13320.2	-233.691	5266.25	-1095.94	-73.3159
<u>≥</u> 11	86541	-49289.6	14921.7	-242.092	5444.54	-1141.6	-83.0603
<u>≥</u> 12	91383	-54456.7	17107	-242.881	5528.7	-1149.2	-547.579
<u>≥</u> 13	95877.6	-59404.7	19268	-240.36	5524.35	-1094.72	-933.64
<u>≥ 14</u>	97648.3	-61091.6	20261.7	-244.234	5654.56	-1151.47	-749.836
≥ 15	102533	-66651.5	22799.7	-240.858	5647.05	-1120.32	-1293.34
≥ 16	106216	-70753.8	24830.1	-237.04	5647.63	-1099.12	-1583.89
<u>≥ 17</u>	109863	-75005	27038	-234.299	5652.45	-1080.98	-1862.07
≥ 18	111460	-76482.3	28076.5	-234.426	5703.52	-1104.39	-1695.77
<u>> 19</u>	114916	-80339.6	30126.5	-229.73	5663.21	-1065.48	-1941.83
<u>≥</u> 20	119592	-86161.5	33258.2	-227.256	5700.49	-1100.21	-2474.01

Table 2.4-3 (Page 2 of 8)

PWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Arra	y/Class 14x	14B		
Time (years)	Α	В	С	D	Е	F	G
<u>≥</u> 3	18036.1	63.7639	-24.7251	-130.732	2449.87	-347.748	-858.192
<u>></u> 4	30303.4	-4304.2	598.79	-118.757	2853.18	-486.453	-459.902
<u>≥</u> 5	40779.6	-9922.93	1722.83	-138.174	3255.69	-608.267	245.251
<u>≥</u> 6	48806.7	-15248.9	3021.47	-158.69	3570.24	-689.876	833.917
<u>≥</u> 7	55070.5	-19934.6	4325.62	-179.964	3870.33	-765.849	1203.89
<u>≥</u> 8	60619.6	-24346	5649.29	-189.701	4042.23	-795.324	1158.12
<u>≥</u> 9	64605.7	-27677.1	6778.12	-205.459	4292.35	-877.966	1169.88
≥ 10	69083.8	-31509.4	8072.42	-206.157	4358.01	-875.041	856.449
<u>≥</u> 11	72663.2	-34663.9	9228.96	-209.199	4442.68	-889.512	671.567
<u>≥</u> 12	74808.9	-36367	9948.88	-214.344	4571.29	-942.418	765.261
≥ 13	78340.3	-39541.1.	11173.8	-212.8	4615.06	-957.833	410.807
<u>≥</u> 14	81274.8	-42172.3	12259.9	-209.758	4626.13	-958.016	190.59
<u>></u> 15	83961.4	-44624.5	13329.1	-207.697	.4632.16	-952.876	20.8575
<u>≥</u> 16	84968.5	-44982.1	13615.8	-207.171	4683.41	-992.162	247.54
<u>≥</u> 17	87721.6	-47543.1	14781.4	-203.373	4674.3	-988.577	37.9689
<u>≥ 18</u>	90562.9	-50100.4	15940.4	-198.649	4651.64	-982.459	-247.421
≥ 19	93011.6	-52316.6	17049.9	-194.964	4644.76	-994.63	-413.021
≥ 20	95567.8	-54566.6	18124	-190.22	4593.92	-963.412	-551.983

Table 2.4-3 (Page 3 of 8)

PWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Arra	y/Class 14x	14C		
Time (years)	Α	В	С	D	Ε	F	G
≥ 3	18263.7	174.161	-57.6694	-138.112	2539.74	-369.764	-1372.33
<u>≥</u> 4	30514.5	-4291.52	562.37	-124.944	2869.17	-481.139	-889.883
≥ 5	41338	-10325.7	1752.96	-141.247	3146.48	-535.709	-248.078
<u>≥</u> 6	48969.7	-15421.3	2966.33	-163.574	3429.74	-587.225	429.331
<u>≥</u> 7	55384.6	-20228.9	4261.47	-180.846	3654.55	-617.255	599.251
≥ 8	60240.2	-24093.2	5418.86	-199.974	3893.72	-663.995	693.934
≥ 9	64729	-27745.7	6545.45	-205.385°	3986.06	-650.124	512.528
<u>≥</u> 10	68413.7	-30942.2	7651.29	-216.408	4174.71	-702.931	380.431
<u>> 11</u>	71870.6	-33906.7	8692.81	-218.813	4248.28	-704.458	160.645
<u>≥</u> 12	74918.4	-36522	9660.01	-218.248	4283.68	-696.498	-29.0682
≥ 13	77348.3	-38613.7	10501.8	-220.644	4348.23	-702.266	-118.646
<u>≥ 14</u>	79817.1	-40661.8	11331.2	-218.711	4382.32	-710.578	-236.123
<u>≥</u> 15	82354.2	-42858.3	12257.3	-215.835	4405.89	-718.805	-431.051
≥ 16	84787.2	-44994.5	13185.9	-213.386	4410.99	-711.437	-572.104
<u>≥</u> 17	87084.6	-46866.1	14004.8	-206.788	4360.3	-679.542	-724.721
<u>≥</u> 18	88083.1	-47387.1	14393.4	-208.681	4420.85	-709.311	-534.454
<u>> 19</u>	90783.6	-49760.6	15462.7	-203.649	4403.3	-705.741	-773.066
<u>≥</u> 20	93212	-51753.3	16401.5	-197.232	4361.65	-692.925	-964.628

Table 2.4-3 (Page 4 of 8)

PWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Array/	Class 15x15	SA/B/C		· · · · · · · · · · · · · · · · · · ·
Time (years)	А	В	С	D	Е	F	G
≥ 3	15037.3	108.689	-18.8378	-127.422	2050.02	-242.828	-580.66
≥ 4	25506.6	-2994.03	356.834	-116.45	2430.25	-350.901	-356.378
≥ 5	34788.8	-7173.07	1065.9	-124.785	2712.23	-424.681	267.705
≥ 6	41948.6	-11225.3	1912.12	-145.727	3003.29	-489.538	852.112
≥ 7	47524.9	-14770.9	2755.16	-165.889	3253.9	-542.7	1146.96
≥ 8	52596.9	-18348.8	3699.72	-177.17	3415.69	-567.012	1021.41
<u>></u> 9	56055.4	-20837.1	4430.93	-192.168	3625.93	-623.325	1058.61
<u>≥</u> 10	59611.3	-23402.1	5179.52	-195.105	3699.18	-626.448	868.517
<u>≥</u> 11	62765.3	-25766.5	5924.71	-195.57	3749.91	-627.139	667.124
<u>≥</u> 12	65664.4	-28004.8	6670.75	-195.08	3788.33	-628.904	410.783
<u>≥</u> 13	67281.7	-29116.7	- 7120.59	-202.817	3929.38	-688.738	492.309
<u>> 14</u>	69961.4	-31158.6	7834.02	-197.988	3917.29	-677.565	266.561
<u>≥</u> 15	72146	-32795.7	8453.67	-195.083	3931.47	-681.037	99.0606
<u>≥</u> 16	74142.6	-34244.8	9023.57	-190.645	3905.54	-663.682	10.8885
<u>≥</u> 17	76411.4	-36026.3	9729.98	-188.874	3911.21	-663.449	-151.805
<u>≥</u> 18	77091	-36088	9884.09	-188.554	3965.08	-708.55	59.3839
<u>≥</u> 19	79194.5	-37566.4	10477.5	-181.656	3906.93	-682.4	-117.952
<u>≥</u> 20	81600.4	-39464.5	11281.9	-175.182	3869.49	-677.179	-367.705

Table 2.4-3 (Page 5 of 8)

PWR Fuel Assembly Cooling Time-Dependent Coefficients
(ZR-Clad Fuel)

Cooling			Array/C	Class 15x15L	D/E/F/H		
Time (years)	Α	В	С	D	Ε	F	G
<u>≥</u> 3	14376.7	102.205	-20.6279	-126.017	1903.36	-210.883	-493.065
≥ 4	24351.4	-2686.57	297.975	-110.819	2233.78	-301.615	-152.713
≥ 5	33518.4	-6711.35	958.544	-122.85	2522.7	-371.286	392.608
≥ 6	40377	-10472.4	1718.53	-144.535	2793.29	-426.436	951.528
≥ 7	46105.8	-13996.2	2515.32	-157.827	2962.46	-445.314	1100.56
≥ 8	50219.7	-16677.7	3198.3	-175.057	3176.74	-492.727	1223.62
≥ 9	54281.2	-19555.6	3983.47	-181.703	3279.03	-499.997	1034.55
<u>≥</u> 10	56761.6	-21287.3	4525.98	-195.045	3470.41	-559.074	1103.3
<u>≥</u> 11	59820	-23445.2	5165.43	-194.997	3518.23	-561.422	862.68
· ≥ 12	62287.2	-25164.6	5709.9	-194.771	3552.69	-561.466	680.488
≥ 13	64799	-27023.7	6335.16	-192.121	3570.41	-561.326	469.583
<u>≥ 14</u>	66938.7	-28593.1	6892.63	-194.226	3632.92	-583.997	319.867
<u>≥</u> 15	68116.5	-29148.6	7140.09	-192.545	3670.39	-607.278	395.344
≥ 16	70154.9	-30570.1	7662.91	-187.366	3649.14	-597.205	232.318
<u>≥ 17</u>	72042.5	-31867.6	8169.01	-183.453	3646.92	-603.907	96.0388
<u>≥</u> 18	73719.8	-32926.1	8596.12	-177.896	3614.57	-592.868	46.6774
<u>≥</u> 19	75183.1	-33727.4	8949.64	-172.386	3581.13	-586.347	3.57256
≥ 20	77306.1	-35449	9690.02	-173.784	3636.87	-626.321	-205.513

Table 2.4-3 (Page 6 of 8) PWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Arra	y/Class 16X			
Time (years)	А	В	С	D	E	F	G
<u>≥</u> 3	16226.8	143.714	-32.4809	-136.707	2255.33	-291.683	-699.947
<u>≥</u> 4	27844.2	-3590.69	444.838	-124.301	2644.09	-411.598	-381.106
<u>≥</u> 5	38191.5	-8678.48	1361.58	-132.855	2910.45	-473.183	224.473
≥ 6	46382.2	-13819.6	2511.32	-158.262	3216.92	-532.337	706.656
<u>≥</u> 7	52692.3	-18289	3657.18	-179.765	3488.3	-583.133	908.839
<u>≥</u> 8	57758.7	-22133.7	4736.88	-199.014	3717.42	-618.83	944.903
≥ 9	62363.3	-25798.7	5841.18	-207.025	3844.38	-625.741	734.928
<u>≥</u> 10	66659.1	-29416.3	6993.31	-216.458	3981.97	-642.641	389.366
<u>≥</u> 11	69262.7	-31452.7	7724.66	-220.836	4.107.55	-681.043	407.121
<u>≥</u> 12	72631.5	-34291.9	8704.8	-219.929	4131.5	-662.513	100.093
<u>≥</u> 13	75375.3	-36589.3	9555.88	-217.994	4143.15	-644.014	-62.3294
<u>≥</u> 14	78178.7	-39097.1	10532	-221.923	4226.28	-667.012	-317.743
<u>≥</u> 15	79706.3	-40104	10993.3	-218.751	4242.12	-670.665	-205.579
<u>≥</u> 16	82392.6	-42418.9	11940.7	-216.278	4274.09	-689.236	-479.752
<u>></u> 17	84521.8	-44150.5	12683.3	-212.056	4245.99	-665.418	-558.901
<u>≥</u> 18	86777.1	-45984.8	13479	-204.867	4180.8	-621.805	-716.366
<u>≥</u> 19	89179.7	-48109.8	14434.5	-206.484	4230.03	-648.557	-902.1
<u>≥</u> 20	90141.7	-48401.4	14702.6	-203.284	4245.54	-670.655	-734.604

Table 2.4-3 (Page 7 of 8) PWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Arra	ay/Class 17x	17A		
Time (years)	Α	В	С	D	Ε	F	G
<u>≥</u> 3	15985.1	3.53963	-9.04955	-128.835	2149.5	-260.415	-262.997
≥ 4	27532.9	-3494.41	428.199	-119.504	2603.01	-390.91	-140.319
≥ 5	38481.2	-8870.98	1411.03	-139.279	3008.46	-492.881	388.377
≥ 6	47410.9	-14479.6	2679.08	-162.13	3335.48	-557.777	702.164
≥ 7	54596.8	-19703.2	4043.46	-181.339	3586.06	-587.634	804.05
≥ 8	60146.1	-24003.4	5271.54	-201.262	3830.32	-621.706	848.454
≥ 9	65006.3	-27951	6479.04	-210.753	3977.69	-627.805	615.84
≥ 10	69216	-31614.7	7712.58	-222.423	4173.4	-672.33	387.879
<u>≥</u> 11	73001.3	-34871.1	8824.44	-225.128	4238.28	-657.259	101.654
<u>≥</u> 12	76326.1	-37795.9	9887.35	-226.731	4298.11	-647.55	-122.236
<u>≥</u> 13	78859.9	-40058.9	10797.1	-231.798	4402.14	-669.982	-203.383
<u>≥</u> 14	82201.3	-43032.5	11934.1	-228.162	4417.99	-661.61	-561.969
<u>></u> 15	84950	-45544.6	12972.4	-225.369	4417.84	-637.422	-771.254
<u>≥</u> 16	87511.8	-47720	13857.7	-219.255	4365.24	-585.655	-907.775
<u>≥</u> 17	90496.4	-50728.9	15186	-223.019	4446.51	-613.378	-1200.94
<u>≥</u> 18	91392.5	-51002.4	15461.4	-220.272	4475.28	-636.398	-1003.81
<u>≥</u> 19	94343.9	-53670.8	16631.6	-214.045	4441.31	-616.201	-1310.01
≥ 20	96562.9	-55591.2	17553.4	-209.917	4397.67	-573.199	-1380.64

Table 2.4-3 (Page 8 of 8)

PWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Array	//Class 17x1	7B/C		
Time (years)	Α	В	С	D	Ε	F	G
<u>≥</u> 3	14738	47.5402	-13.8187	-127.895	1946.58	-219.289	-389.029
<u>></u> 4	25285.2	-3011.92	350.116	-115.75	2316.89	-319.23	-220.413
<u>≥</u> 5	34589.6	-7130.34	1037.26	-128.673	2627.27	-394.58	459.642
<u>≥</u> 6	42056.2	-11353.7	1908.68	-150.234	2897.38	-444.316	923.971
<u>≥</u> 7	47977.6	-15204.8	2827.4	-173.349	3178.25	-504.16	1138.82
≥ 8	52924	-18547.6	3671.08	-183.025	3298.64	-501.278	1064.68
<u>≥</u> 9	56465.5	-21139.4	4435.67	-200.386	3538	-569.712	1078.78
≥ 10	60190.9	-23872.7	5224.31	-203.233	3602.88	-562.312	805.336
<u>> 11</u>	63482.1	-26431.1	6035.79	-205.096	3668.84	-566.889	536.011
<u>≥</u> 12	66095	-28311.8	6637.72	-204.367	3692.68	-555.305	372.223
<u>≥</u> 13	67757.4	-29474.4	7094.08	-211.649	3826.42	-606.886	437.412
<u>≥</u> 14	70403.7	-31517.4	7807.15	-207.668	3828.69	-601.081	183.09
<u>≥</u> 15	72506.5	-33036.1	8372.59	-203.428	3823.38	-594.995	47.5175
<u>≥</u> 16	74625.2	-34620.5	8974.32	-199.003	3798.57	-573.098	-95.0221
<u>≥</u> 17	76549	-35952.6	9498.14	-193.459	3766.52	-556.928	-190.662
<u>≥</u> 18	77871.9	-36785.5	9916.91	-195.592	3837.65	-599.45	-152.261
<u>></u> 19	79834.8	-38191.6	10501.9	-190.83	3812.46	-589.635	-286.847
≥ 20	81975.5	-39777.2	11174.5	-185.767	3795.78	-595.664	-475.978

Table 2.4-4 (Page 1 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			An	ray/Class 7x	7B		*
Time (years)	А	В	Ċ	D	. E	F	G
≥ 3	26409.1	28347.5	-16858	-147.076	5636.32	-1606.75	1177.88
≥ 4	61967.8	-6618.31	-4131.96	-113.949	6122.77	-2042.85	-96.7439
≥ 5	91601.1	-49298.3	17826.5	-132.045	6823.14	-2418.49	-185.189
≥ 6	111369	-80890.1	35713.8	-150.262	7288.51	-2471.1	86.6363
≥ 7	126904	-108669	53338.1	-167.764	7650.57	-2340.78	150.403
≥ 8	139181	-132294	69852.5	-187.317	8098.66	-2336.13	97.5285
<u>≥</u> 9	150334	-154490	86148.1	-193 899	8232.84	-2040:37	-123.029
≥ 10	159897	-173614	100819	-194.156	8254.99	-1708.32	-373.605
≥ 11	166931	-186860	111502	-193.776	8251.55	-1393.91	-543.677
≥ 12	173691	-201687	125166	-202.578	8626.84	-1642.3	-650.814
≥ 13	180312	-215406	137518	-201.041	8642.19	-1469.45	-810.024
≥ 14	185927	-227005	148721	-197.938	8607.6	-1225.95	-892.876
≥ 15	191151	-236120	156781	-191.625	8451.86	-846.27	-1019.4
≥ 16	195761	-244598	165372	-187.043	8359.19	-572.561	-1068.19
<u>≥ 17</u>	200791	-256573	179816	-197.26	8914.28	-1393.37	-1218.63
≥ 18	206068	-266136	188841	-187.191	8569.56	-730.898	-1363.79
≥ 19	210187	-273609	197794	-182.151	8488.23	-584.727	-1335.59
≥ 20	213731	-278120	203074	-175.864	8395.63	-457.304	-1364.38

Table 2.4-4 (Page 2 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Arı	ray/Class 8x	8B		
Time (years)	Α	В	С	D	Ε	F	G
≥ 3	28219.6	28963.7	-17616.2	-147.68	5887.41	-1730.96	1048.21
≥ 4	66061.8	-10742.4	-1961.82	-123.066	6565.54	-2356.05	-298.005
≥ 5	95790.7	-53401.7	19836.7	-134.584	7145.41	-2637.09	-298.858
≥ 6	117477	-90055.9	41383.9	-154.758	7613.43	-2612.69	-64.9921
≥ 7	134090	-120643	60983	-168.675	7809	-2183.3	-40.8885
≥ 8	148186	-149181	81418.7	-185.726	8190.07	-2040.31	-260.773
≥ 9	159082	-172081	99175.2	-197185	8450.86	-1792.04	-381.705
≥ 10	168816	-191389	113810	-195.613	8359.87	-1244.22	-613.594
≥ 11	177221	-210599	131099	-208.3	8810	-1466.49	-819.773
≥ 12	183929	-224384	143405	-207.497	8841.33	-1227.71	-929.708
≥ 13	191093	-240384	158327	-204.95	8760.17	-811.708	-1154.76
<u>≥</u> 14	196787	-252211	169664	-204.574	8810.95	-610.928	-1208.97
≥ 15	203345	-267656	186057	-208.962	9078.41	-828.954	-1383.76
≥ 16	207973	-276838	196071	-204.592	9024.17	-640.808	-1436.43
≥ 17	213891	-290411	211145	-202.169	9024.19	-482.1	-1595.28
≥ 18	217483	-294066	214600	-194.243	8859.35	-244.684	-1529.61
≥ 19	220504	-297897	219704	-190.161	8794.97	-10.9863	-1433.86
≥ 20	227821	-318395	245322	-194.682	9060.96	-350.308	-1741.16

Table 2.4-4 (Page 3 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Array	//Class 8x8C	C/D/E		
Time (years)	Α	В	С	D	E	F	G
≥ 3	28592.7	28691.5	-17773.6	-149.418	5969.45	-1746.07	1063.62
≥ 4	66720.8	-12115.7	-1154	-128.444	6787.16	-2529.99	-302.155
<u>≥</u> 5	96929.1	-55827.5	21140.3	-136.228	7259.19	-2685.06	-334.328
≥ 6	118190	-92000.2	42602.5	-162.204	7907.46	-2853.42	-47.5465
<u>≥</u> 7	135120	-123437	62827.1	-172.397	8059.72	-2385.81	-75.0053
≥ 8	149162	-152986	84543.1	-195.458	8559.11	-2306.54	-183.595
≥ 9	161041	-177511	103020	-200.087	8632:84	-1864.4	-433.081
≥ 10	171754	-201468	122929	-209.799	8952.06	-1802.86	-755.742
<u>≥</u> 11	179364	-217723	137000	-215.803	9142.37	-1664.82	-847.268
≥ 12	186090	-232150	150255	-216.033	9218.36	-1441.92	-975.817
≥ 13	193571	-249160	165997	-213.204	9146.99	-1011.13	-1119.47
<u>≥</u> 14	200034	-263671	180359	-210.559	9107.54	-694.626	-1312.55
≥ 15	205581	-275904	193585	-216.242	9446.57	-1040.65	-1428.13
≥ 16	212015	-290101	207594	-210.036	9212.93	-428.321	-1590.7
<u>≥</u> 17	216775	-299399	218278	-204.611	9187.86	-398.353	-1657.6
≥ 18	220653	-306719	227133	-202.498	9186.34	-181.672	-1611.86
<u>≥</u> 19	224859	-314004	235956	-193.902	8990.14	145.151	-1604.71
≥ 20	228541	-320787	245449	-200.727	9310.87	-230.252	-1570.18

Table 2.4-4 (Page 4 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling	Array/Class 9x9A							
Time (years)	Α	В	С	: D	E	F	G	
≥ 3	30538.7	28463.2	-18105.5	-150.039	6226.92	-1876.69	1034.06	
<u>≥</u> 4	71040.1	-16692.2	1164.15	-128.241	7105.27	-2728.58	-414.09	
<u>≥</u> 5	100888	-60277.7	24150.1	-142.541	7896.11	-3272.86	-232.197	
≥ 6	124846	-102954	50350.8	-161.849	8350.16	-3163.44	-91.1396	
≥ 7	143516	-140615	76456.5	-185.538	8833.04	-2949.38	-104.802	
<u>≥</u> 8	158218	-171718	99788.2	-196.315	9048.88	-2529.26	-259.929	
<u>></u> 9	172226	-204312	126620	-214.214	9511.56	-2459.19	-624.954	
<u>≥</u> 10	182700	-227938	146736	-215.793	9555.41	-1959.92	-830.943	
<u>≥</u> 11	190734	-246174	163557	-218.071	9649.43	-1647.5	-935.021	
<u>≥ 12</u>	199997	-269577	186406	-223.975	9884.92	-1534.34	-1235.27	
≥ 13	207414	-287446	204723	-228.808	10131.7	-1614.49	-1358.61	
≥ 14	215263	-306131	223440	-220.919	9928.27	-988.276	-1638.05	
<u>≥</u> 15	221920	-321612	239503	-217.949	9839.02	-554.709	-1784.04	
≥ 16	226532	-331778	252234	-216.189	9893.43	-442.149	-1754.72	
≥ 17 ·	232959	-348593	272609	-219.907	10126.3	-663.84	-1915.3	
<u>≥</u> 18	240810	-369085	296809	-219.729	10294.6	-859.302	-2218.87	
<u>≥</u> 19	244637	-375057	304456	-210.997	10077.8	-425.446	-2127.83	
≥ 20	248112	-379262	309391	-204.191	9863.67	100.27	-2059.39	

Table 2.4-4 (Page 5 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling		Array/Class 9x9B								
Time (years)	Ą	B	С	D	E	F	G			
≥ 3	30613.2	28985.3	-18371	-151.117	6321.55	-1881.28	988.92			
<u>≥</u> 4	71346.6	-15922.9	631.132	-128.876	7232.47	-2810.64	-471.737			
≥ 5	102131	-60654.1	23762.7	-140.748	7881.6	-3156.38	-417.979			
≥ 6	127187	-105842	51525.2	-162.228	8307.4	-2913.08	-342.13			
<u>≥</u> 7	146853	-145834	79146.5	-185.192	8718.74	-2529.57	-484.885			
≥ 8	162013	-178244	103205	-197.825	8896.39	-1921.58	-584.013			
· ≥ 9	176764	-212856	131577	-215.41	9328.18	-1737.12	-1041.11			
≥ 10	186900	-235819	151238	-218.98	9388.08	-1179.87	-1202.83			
<u>≥</u> 11	196178	-257688	171031	-220.323	9408.47	-638.53	-1385.16			
<u>≥</u> 12	205366	-280266	192775	-223.715	9592.12	-472.261	-1661.6			
≥ 13	215012	-306103	218866	-231.821	9853.37	-361.449	-1985.56			
<u>≥</u> 14	222368	-324558	238655	-228.062	9834.57	3.47358	-2178.84			
<u>≥</u> 15	226705	-332738	247316	-224.659	9696.59	632.172	-2090.75			
<u>≥</u> 16	233846	-349835	265676	-221.533	9649.93	913.747	-2243.34			
≥ 17	243979	-379622	300077	-222.351	9792.17	1011.04	-2753.36			
<u>≥</u> 18	247774	-386203	308873	-220.306	9791.37	1164.58	-2612.25			
<u>≥</u> 19	254041	-401906	327901	-213.96	9645.47	1664.94	-2786.2			
≥ 20	256003	-402034	330566	-215.242	9850.42	1359.46	-2550.06			

Table 2.4-4 (Page 6 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Arra	y/Class 9x9	C/D		
Time (years)	Α	В	С	D	E	F	G
<u>≥</u> 3	30051.6	29548.7	-18614.2	-148.276	6148.44	-1810.34	1006
<u>></u> 4	70472.7	-14696.6	-233.567	-127.728	7008.69	-2634.22	-444.373
≥ 5	101298	-59638.9	23065.2	-138.523	7627.57	-2958.03	-377.965
≥ 6	125546	-102740	49217.4	-160.811	8096.34	-2798.88	-259.767
<u>≥</u> 7	143887	-139261	74100.4	-184.302	8550.86	-2517.19	-275.151
<u>></u> 8	159633	-172741	98641.4	-194.351	8636.89	-1838.81	-486.731
≥ 9	173517	-204709	124803	-212.604	9151.98	-1853.27	-887.137
≥ 10	182895	-225481	142362	-218.251	9262.59	-1408.25	-978.356
<u>> 11</u>	192530	-247839	162173	-217.381	9213.58	-818.676	-1222.12
<u>≥</u> 12	201127	-268201	181030	-215.552	9147.44	-232.221	-1481.55
≥ 13	209538	-289761	203291	-225.092	9588.12	-574.227	-1749.35
<u>≥ 14</u>	216798	-306958	220468	-222.578	9518.22	-69.9307	-1919.71
≥ 15	223515	-323254	237933	-217.398	9366.52	475.506	-2012.93
<u>≥ 16</u>	228796	-334529	250541	-215.004	9369.33	662.325	-2122.75
<u>≥</u> 17	237256	-356311	273419	-206.483	9029.55	1551.3	-2367.96
<u>≥ 18</u>	242778	-369493	290354	-215.557	9600.71	659.297	-2589.32
<u>≥</u> 19	246704	-377971	302630	-210.768	9509.41	1025.34	-2476.06
≥ 20	249944	-382059	308281	-205.495	9362.63	1389.71	-2350.49

Table 2.4-4 (Page 7 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling	-		Arra	ay/Class 9x9	E/F		
Time (years)	Α	В	С	D	E	F	G
<u>≥</u> 3	30284.3	26949.5	-16926.4	-147.914	6017.02	-1854.81	1026.15
<u>></u> 4	69727.4	-17117.2	1982.33	-127.983	6874.68	-2673.01	-359.962
≥ 5	98438.9	-58492	23382.2	-138.712	7513.55	-3038.23	-112.641
≥ 6	119765	-95024.1	45261	-159.669	8074.25	-3129.49	221.182
≥ 7	136740	-128219	67940.1	-182.439	8595.68	-3098.17	315.544
≥ 8	150745	-156607	88691.5	-193.941	8908.73	-2947.64	142.072
<u>></u> 9	162915	-182667	109134	-198.37	8999.11	-2531	-93.4908
≥ 10	174000	-208668	131543	-210.777	9365.52	-2511.74	-445.876
<u>≥ 11</u>	181524	-224252	145280	-212.407	9489.67	-2387.49	-544.123
<u>≥</u> 12	188946	-240952	160787	-210.65	9478.1	-2029.94	-652.339
≥ 13	193762	-250900	171363	-215.798	9742.31	-2179.24	-608.636
<u>≥ 14</u>	203288	-275191	196115	-218.113	9992.5	-2437.71	-1065.92
<u>≥</u> 15	208108	-284395	205221	-213.956	9857.25	-1970.65	-1082.94
<u>≥</u> 16	215093	-301828	224757	-209.736	9789.58	-1718.37	-1303.35
<u>≥</u> 17	220056	-310906	234180	-201.494	9541.73	-1230.42	-1284.15
<u>≥ 18</u>	224545	-320969	247724	-206.807	9892.97	-1790.61	-1381.9
<u>> 19</u>	226901	-322168	250395	-204.073	9902.14	-1748.78	-1253.22
<u>≥</u> 20	235561	-345414	276856	-198.306	9720.78	-1284.14	-1569.18

Table 2.4-4 (Page 8 of 10) BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling			Arı	ray/Class 9x	9G		
Time (years)	Α	В	· C	D	E	F	G
≥ 3	35158.5	26918.5	-17976.7	-149.915	6787.19	-2154.29	836.894
<u>></u> 4	77137.2	-19760.1	2371.28	-130.934	8015.43	-3512.38	-455.424
<u>≥</u> 5	113405	-77931.2	35511.2	-150.637	8932.55	-4099.48	-629.806
<u>≥</u> 6	139938	-128700	68698.3	-173.799	9451.22	-3847.83	-455.905
≥ 7	164267	-183309	109526	-193.952	9737.91	-3046.84	-737.992
<u>≥</u> 8	182646	-227630	146275	-210.936	10092.3	-2489.3	-1066.96
<u>></u> 9	199309	-270496	184230	-218.617	10124.3	-1453.81	-1381.41
≥ 10	213186	-308612	221699	-235.828	10703.2	-1483.31	-1821.73
<u>> 11</u>	225587	-342892	256242	-236.112	10658.5	-612.076	-2134.65
<u>> 12</u>	235725	-370471	285195	-234.378	10604.9	118.591	-2417.89
≥ 13	247043	-404028	323049	-245.79	11158.2	-281.813	-2869.82
<u>≥</u> 14	253649	-421134	342682	-243.142	11082.3	400.019	-2903.88
<u>≥</u> 15	262750	-448593	376340	-245.435	11241.2	581.355	-3125.07
≥ 16	270816	-470846	402249	-236.294	10845.4	1791.46	-3293.07
<u>≥</u> 17	279840	-500272	441964	-241.324	11222.6	1455.84	-3528.25
<u>≥ 18</u>	284533	-511287	458538	-240.905	11367.2	1459.68	-3520.94
<u>≥ 19</u>	295787	-545885	501824	-235.685	11188.2	2082.21	-3954.2
≥ 20	300209	-556936	519174	-229.539	10956	2942.09	-3872.87

Table 2.4-4 (Page 9 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling	· · · · · · · · · · · · · · · · · · ·						
Time (years)	Α	В	С	D	· E	F	G
≥ 3	29285.4	27562.2	-16985	-148.415	5960.56	-1810.79	1001.45
≥ 4	67844.9	-14383	395.619	-127.723	6754.56	-2547.96	-369.267
≥ 5	96660.5	-55383.8	21180.4	-137.17	7296.6	-2793.58	-192.85
≥ 6	118098	-91995	42958	-162.985	7931.44	-2940.84	60.9197
≥ 7	135115	-123721	63588.9	-171.747	8060.23	-2485.59	73.6219
<u>> 8</u>	148721	-151690	84143.9	-190.26	8515.81	-2444.25	-63.4649
<u>≥</u> 9	160770	-177397	104069	-197.534	8673.6	-2101.25	-331.046
≥ 10	170331	-198419	121817	-213.692	9178.33	-2351.54	-472.844
<u>≥</u> 11	179130	-217799	138652	-209.75	9095.43	-1842.88	-705.254
<u>≥</u> 12	186070	-232389	151792	-208.946	9104.52	-1565.11	-822.73
≥ 13	192407	-246005	164928	-209.696	9234.7	-1541.54	-979.245
<u>≥</u> 14	200493	-265596	183851	-207.639	9159.83	-1095.72	-1240.61
≥ 15	205594	-276161	195760	-213.491	9564.23	-1672.22	-1333.64
≥ 16	209386	-282942	204110	-209.322	9515.83	-1506.86	-1286.82
<u>≥</u> 17	214972	-295149	217095	-202.445	9292.34	-893.6	-1364.97
≥ 18	219312	-302748	225826	-198.667	9272.27	-878.536	-1379.58
<u>></u> 19	223481	-310663	235908	-194.825	9252.9	-785.066	-1379.62
≥ 20	227628	-319115	247597	-199.194	9509.02	-1135.23	-1386.19

Table 2.4-4 (Page 10 of 10)

BWR Fuel Assembly Cooling Time-Dependent Coefficients (ZR-Clad Fuel)

Cooling	Array/Class 10x10C						
Time (years)	Α	В	С	D	E	F	G
≥ 3	31425.3	27358.9	-17413.3	-152.096	6367.53	-1967.91	925.763
<u>≥</u> 4	71804	-16964.1	1000.4	-129.299	7227.18	-2806.44	-416.92
≥ 5	102685	-62383.3	24971.2	-142.316	7961	-3290.98	-354.784
≥ 6	126962	-105802	51444.6	-164.283	8421.44	-3104.21	-186.615
≥ 7	146284	-145608	79275.5	-188.967	8927.23	-2859.08	-251.163
≥ 8	162748	-181259	105859	-199.122	9052.91	-2206.31	-554.124
≥ 9	176612	-214183	133261	-217.56	9492.17	-1999.28	-860.669
≥ 10	187756	-239944	155315	-219.56	9532.45	-1470.9	-1113.42
<u>≥</u> 11	196580	-260941	174536	-222.457	9591.64	-944.473	-1225.79
<u>≥</u> 12	208017	-291492	204805	-233.488	10058.3	-1217.01	-1749.84
<u>≥</u> 13	214920	-307772	221158	-234.747	10137.1	-897.23	-1868.04
≥ 14	222562	-326471	240234	-228.569	9929.34	-183.47	-2016.12
<u>≥</u> 15	228844	-342382	258347	-226.944	9936.76	117.061	-2106.05
<u>≥</u> 16	233907	-353008	270390	-223.179	9910.72	360.39	-2105.23
≥ 17	244153	-383017	304819	-227.266	10103.2	380.393	-2633.23
≥ 18	249240	-395456	321452	-226.989	10284.1	169.947	-2623.67
<u>≥</u> 19	254343	-406555	335240	-220.569	10070.5	764.689	-2640:2
≥ 20	260202	-421069	354249	-216.255	10069.9	854.497	-2732.77

3.0 DESIGN FEATURES

3.1 Site

3.1.1 Site Location

The HI-STORM 100 Cask System is authorized for general use by 10 CFR Part 50 license holders at various site locations under the provisions of 10 CFR 72, Subpart K.

3.2 Design Features Important for Criticality Control

3.2.1 MPC-24

- 1. Flux trap size: ≥ 1.09 in.
- 2. 10 B loading in the neutron absorbers: ≥ 0.0267 g/cm² (Boral) and ≥ 0.0223 g/cm² (METAMIC)

3.2.2 MPC-68

- 1. Fuel cell pitch: ≥ 6.43 in.
- 2. ¹⁰B loading in the neutron absorbers: ≥ 0.0372 g/cm2 (Boral) and ≥ 0.0310 g/cm2 (METAMIC)

3.2.3 MPC-24E

- 1. Flux trap size:
 - i. Cells 3, 6, 19, and 22: ≥ 0.776 inch
 - ii. All Other Cells: ≥ 1.076 inches
- 2. 10 B loading in the neutron absorbers: ≥ 0.0372 g/cm² (Boral) and ≥ 0.0310 g/cm² (METAMIC)

3.2.4 MPC-32

- 1. Fuel cell pitch: ≥ 9.158 inches
- 2. 10 B loading in the neutron absorbers: \geq 0.0372 g/cm² (Boral) and \geq 0.0310 g/cm² (METAMIC)

DESIGN FEATURES

- 3.2 Design features Important for Criticality Control (cont'd)
 - 3.2.6 Fuel spacers shall be sized to ensure that the active fuel region of intact fuel assemblies remains within the neutron poison region of the MPC basket with water in the MPC.
 - 3.2.7 The B_4C content in METAMIC shall be \leq 33.0 wt.%.
 - 3.2.8 Neutron Absorber Tests

Section 9.1.5.3 of the HI-STORM 100 FSAR is hereby incorporated by reference into the HI-STORM 100 CoC. The minimum ¹⁰B for the neutron absorber shall meet the minimum requirements for each MPC model specified in Sections 3.2.1 through 3.2.5 above.

3.3 Codes and Standards

The American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code), 1995 Edition with Addenda through 1997, is the governing Code for the HI-STORM 100 System MPCs, OVERPACKs, and TRANSFER CASKs, as clarified in Specification 3.3.1 below, except for Code Sections V and IX. The ASME Code paragraphs applicable to the 100U are listed in Table 3-1. The latest effective editions of ASME Code Sections V and IX, including addenda, may be used for activities governed by those sections, provided a written reconciliation of the later edition against the 1995 Edition, including addenda, is performed by the certificate holder. American Concrete Institute (ACI) 349-85 is the governing Code for plain concrete as clarified in Appendix 1.D of the Final Safety Analysis Report for the HI-STORM 100 Cask System.

3.3.1 Alternatives to Codes, Standards, and Criteria

Table 3-1 lists approved alternatives to the ASME Code for the design of the MPCs, OVERPACKs, and TRANSFER CASKs of the HI-STORM 100 Cask System.

3.3.2 Construction/Fabrication Alternatives to Codes, Standards, and Criteria

Proposed alternatives to the ASME Code, Section III, 1995 Edition with Addenda through 1997 including modifications to the alternatives allowed by Specification 3.3.1 may be used on a case-specific basis when authorized by the Director of the Office of Nuclear Material Safety and Safeguards or designee. The request for such alternative should demonstrate that:

 The proposed alternatives would provide an acceptable level of quality and safety, or

(continued)

DESIGN FEATURES

- 3.3.2 <u>Construction/Fabrication Alternatives to Codes, Standards, and Criteria</u> (cont'd)
 - 2. Compliance with the specified requirements of the ASME Code, Section III, 1995 Edition with Addenda through 1997, would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.

Requests for alternatives shall be submitted in accordance with 10 CFR 72.4.

(continued)

Design Features 3.0

DESIGN FEATURES

Table 3-1: Not Used

Table 3-2
Applicable Code Paragraphs for Underground OVERPACKs

	Item	Code Paragraph [†]	Explanation and Applicability
1.	Definition of primary and secondary members	NF-1215	
2.	Jurisdictional boundary	NF-1133	The "intervening elements" are termed interfacing SSCs in this FSAR.
3.	Certification of Material	NF-2130(b) and (c)	Materials shall be certified to the applicable Section II of the ASME Code or equivalent ASTM Specification.
4.	Heat treatment of material	NF-2170 and NF- 2180	
5.	Storage of welding material	NF-2400	
6.	Structural Analysis of Interfacing SSCs	ACI 318-05	The VVM Interface Pad and Support Foundation are reinforced concrete structures. Loadings come from the external environment and from the VVM. Sections of the Code that may reasonably be applied to subterranean application are applicable.
7.	Welding procedure	Section IX	
8.	Welding material	Section II	
9.	Loading conditions	NF-3111	
10.	Allowable stress values	NF-3112.3	
11.	Rolling and sliding supports	NF-3424	
12.	Differential thermal expansion	NF-3127	
13.	Stress analysis	NF-3143 NF-3380 NF-3522 NF-3523	Provisions for stress analysis for Class 3 plate and shell supports and for linear supports are applicable for CEC shells and CLOSURE LID.
14.	Cutting of plate stock	NF-4211 NF-4211.1	
15.	Forming	ŅF-4212	
16.	Forming tolerance	NF-4221	Applies to the CEC Divider Shell and CEC Container Shell
17.	Fitting and Aligning Tack Welds	NF-4231 NF-4231.1	
18.	Alignment	NF-4232	
19.	Storage of Welding Materials	NF-4411	
20.	Cleanliness of Weld Surfaces	NF-4412	Applies to structural and non- structural welds

3 O

Table 3-2 (continued)
Applicable Code Paragraphs for Underground OVERPACKs

	ltem	Code Paragraph [†]	Explanation and Applicability
21.	Backing Strips, Peening	NF-4421 NF-4422	Applies to structural and non- structural welds
22.	Pre-heating and Interpass Temperature	NF-4611 NF-4612 NF-4613	Applies to structural and non- structural welds
23.	Non-Destructive Examination	NF-5360	Invokes Section V
24.	NDE Personnel Certification	NF-5522 NF-5523 NF-5530	-

[†] All references to the ASME Code refer to applicable sections of the 1995 edition with addenda through 1997, except for Code Sections V and IX, where the latest effective editions of ASME Code Sections V and IX, including addenda, may be used, provided a written reconciliation of the later edition against the 1995 Edition, including addenda, is performed by the certificate holder.

3.4 Site-Specific Parameters and Analyses

Site-specific parameters and analyses that will require verification by the system user are, as a minimum, as follows:

- 1. The temperature of 80° F is the maximum average yearly temperature.
- 2. The allowed temperature extremes, averaged over a 3-day period, shall be greater than -40° F and less than 125° F.
- 3. The analyzed flood condition of 15 fps water velocity and a height of 125 feet of water (full submergence of the loaded cask) are not exceeded.
- 4. The potential for fire and explosion while handling a loaded OVERPACK or TRANSFER CASK shall be addressed, based on site-specific considerations. The user shall demonstrate that the site-specific potential for fire is bounded by the fire conditions analyzed by the License Holder, or an analysis of the site-specific fire considerations shall be performed.
- 5. a. The shear wave velocity of the substrate on which the SUPPORT FOUNDATION rests shall be greater than or equal to 3500 ft/s or the SUPPORT FOUNDATION shall rest directly on bedrock.
 - The substrate surrounding the VVM, out to a distance equal to five (5) times the diameter of the VVM cavity, shall have a depth weighted average density of 120 lb/ft³.
- 6. The Support Foundation Pad (mat) for a VVM array established in a construction shall be of monolithic construction to maximize the physical stability of the underground installation.
- 7. Radiation Protection Space (RPS) as defined in Subsection 5.7.9 of Appendix A, is intended to ensure that the substrate material (such as natural subgrade, and engineered fill) remains essentially intact under all service conditions including during an excavation activity adjacent to the RPS. Excavation can only occur at a distance from the RPS greater than 10 times the depth of the planned excavation.

3.4 Site-Specific Parameters and Analyses (continued)

Table 3-3
Values of Principal Design Parameters for the Underground Overpack ISFSI

Thickness of the Foundation Pad, inch	≥30
Thickness of the VVM Interface Pad, inch	≥28
Thickness of the Top Surface Pad, inch	≥24
Rebar Size* (min.) and Layout* (max)	#10 @ 9" each face, each direction
Rebar Concrete Cover (top and bottom)*, inch	per 7.7.1 of ACI 318 (2005)
Compressive Strength of Concrete*, psi	≥4000
Shear Wave Velocity in the Substrate lateral to the VVM, fps	≥800
Shear Wave Velocity in the Substrate Below the Foundation pad, fps	≥800

^{*} Applies to Foundation, VVM Interface, and Top Surface Pads

- 8. Prior to an excavation activity contiguous to an RPS, a seismic qualification of the ISFSI in the structurally most vulnerable configuration (i.e., maximum amount of earth removed) shall be performed to verify that the stability of the Support Foundation, the ISFSI pad and the shielding material within the RPS is maintained.
- 9. In cases where engineered features (i.e., berms and shield walls) are used to ensure that the requirements of 10CFR72.104(a) are met, such features are to be considered important to safety and must be evaluated to determine the applicable quality assurance category.
- 10. LOADING OPERATIONS, TRANSPORT OPERATIONS, and UNLOADING OPERATIONS shall only be conducted with working area ambient temperatures > 0° F.

- 3.4 Site-Specific Parameters and Analyses (continued)
 - 11. For those users whose site-specific design basis includes an event or events (e.g., flood) that result in the blockage of any OVERPACK inlet or outlet air ducts for an extended period of time (i.e, longer than the total Completion Time of LCO 3.1.2), an analysis or evaluation may be performed to demonstrate adequate heat removal is available for the duration of the event. Adequate heat removal is defined as fuel cladding temperatures remaining below the short term temperature limit. If the analysis or evaluation is not performed, or if fuel cladding temperature limits are unable to be demonstrated by analysis or evaluation to remain below the short term temperature limit for the duration of the event, provisions shall be established to provide alternate means of cooling to accomplish this objective.
 - 12. Users shall establish procedural and/or mechanical barriers to ensure that during LOADING OPERATIONS and UNLOADING OPERATIONS, either the fuel cladding is covered by water, or the MPC is filled with an inert gas.

3.5 Cask Transfer Facility (CTF)

3.5.1 TRANSFER CASK and MPC Lifters

The CTF used to transfer a loaded TRANSFER CASK and/or MPC outside of the 10 CFR 50 radiological control boundary can be an aboveground structure that complies with the provisions of 3.5.2 below or an underground cavity that complies with the provisions of 3.5.3 below.

Lifting of a loaded TRANSFER CASK and MPC using devices that are not integral to structures governed by 10 CFR Part 50 shall be performed with a CTF that is designed, operated, fabricated, tested, inspected, and maintained in accordance with the guidelines of NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants", as applicable, and the below clarifications. The CTF Structure requirements below do not apply to heavy loads bounded by the regulations of 10 CFR Part 50.

3.5.2 CTF Structure Requirements

3.5.2.1 Cask Transfer Station and Stationary Lifting Devices

- 1. The metal weldment structure of the CTF structure shall be designed to comply with the stress limits of ASME Section III, Subsection NF, Class 3 for linear structures. The applicable loads, load combinations, and associated service condition definitions are provided in Table 3-4. All compression loaded members shall satisfy the buckling criteria of ASME Section III, Subsection NF.
- 2. If a portion of the CTF structure is constructed of reinforced concrete, then the factored load combinations set forth in ACI-318 (89) for the loads defined in Table 3-4 shall apply.
- 3. The TRANSFER CASK and MPC lifting device used with the CTF shall be designed, fabricated, operated, tested, inspected and maintained in accordance with NUREG-0612, Section 5.1.
- 4. The CTF shall be designed, constructed, and evaluated to ensure that if the MPC is dropped during inter-cask transfer operations, its confinement boundary would not be breached. This requirement applies to CTFs with either stationary or mobile lifting devices.

3.5 Cask Transfer Facility (CTF) (continued)

3.5.2.2 Mobile Lift Devices

If a mobile lifting device is used as the lifting device, in lieu of a stationary lifting device, it shall meet the guidelines of NUREG-0612, Section 5.1, with the following clarifications:

- Mobile lifting devices shall have a minimum safety factor of two over the allowable load table for the lifting device in accordance with the guidance of NUREG-0612, Section 5.1.6(1)(a) and shall be capable of stopping and holding the load during a Design Basis Earthquake (DBE) event.
- 2. Mobile lifting devices shall conform to meet the requirements of ANSI B30.5, "Mobile and Locomotive Cranes," in lieu of the requirements of ANSI B30.2, "Overhead and Gantry Cranes."
- 3. Mobile cranes are not required to meet the requirements of NUREG-0612, Section 5.1.6(2) for new cranes.
- 4. Horizontal movements of the TRANSFER CASK and MPC using a mobile crane are prohibited.

3.5.3 Underground CTF Requirements

An underground CTF shall comply with the following requirements:

- 1. The bottom foundation pad shall have an equal or greater flexural and shear strength than the top ISFSI pad.
- 2. The bottom foundation pad shall have design features to prevent sideways or tip-over of the staged equipment.
- 3. The lifting device(s) used to lift the TRANSFER CASK and/or MPC at the underground CTF shall be designed, operated, fabricated, tested, inspected, and maintained in accordance with guidelines of NUREG-0612, Section 5.1.6.

The Vertical Ventilated Module (VVM) in HI-STORM 100U is an underground CTF since it meets the above requirements (the Top Surface Pad is interpreted as the ISFSI pad and the bottom foundation pad is interpreted as the SUPPORT FOUNDATION).

3.5 Cask Transfer Facility (CTF)(continued)

Table 3-4

Load Combinations and Service Condition Definitions for the CTF Structure (Note 1)

Load Combination	ASME III Service Condition for Definition of Allowable Stress	Comment	
D*	Level A	All primary load bearing members must satisfy Level A	
D + S	·	stress limits	
D + M + W' (Note 2)			
D+F	Level D	Factor of safety against overturning shall be ≥ 1.1	
D + E			
D + Y			

D = Dead load

 D^* = Apparent dead load

S = Snow and ice load for the CTF site

M = Tornado missile load for the CTF site

W' = Tornado wind load for the CTF site

F = Flood load for the CTF site

E = Seismic load for the CTF site

Y = Tsunami load for the CTF site

Notes:

- 1. The reinforced concrete portion of the CTF structure shall also meet the factored combinations of loads set forth in ACI-318(89).
- 2. Tornado missile load may be reduced or eliminated based on a PRA for the CTF site.

3.6 Forced Helium Dehydration System

3.6.1 System Description

Use of a Forced Helium Dehydration (FHD) system, (a closed-loop system) is an alternative to vacuum drying the MPC for moderate burnup fuel (≤ 45,000 MWD/MTU) and mandatory for drying MPCs containing one or more high burnup fuel assemblies. The FHD system shall be designed for normal operation (i.e., excluding startup and shutdown ramps) in accordance with the criteria in Section 3.6.2.

3.6.2 Design Criteria

- 3.6.2.1 The temperature of the helium gas in the MPC shall be at least 15°F higher than the saturation temperature at coincident pressure.
- 3.6.2.2 The pressure in the MPC cavity space shall be \leq 60.3 psig (75 psia).
- 3.6.2.3 The hourly recirculation rate of helium shall be ≥ 10 times the nominal helium mass backfilled into the MPC for fuel storage operations.
- 3.6.2.4 The partial pressure of the water vapor in the MPC cavity will not exceed 3 torr. The limit is met if the gas temperature at the demoisturizer outlet is verified by measurement to remain ≤ 21°F for a period of 30 minutes or if the dew point of the gas exiting the MPC is verified by measurement to remain ≤ 22.9°F for ≥ 30 minutes.
- 3.6.2.5 The condensing module shall be designed to de-vaporize the recirculating helium gas to a dew point $\leq 120^{\circ}F$.
- 3.6.2.6 The demoisturizing module shall be configured to be introduced into its helium conditioning function after the condensing module has been operated for the required length of time to assure that the bulk moisture vaporization in the MPC (defined as Phase 1 in FSAR Appendix 2.B) has been completed.
- 3.6.2.7 The helium circulator shall be sized to effect the minimum flow rate of circulation required by these design criteria.
- 3.6.2.8 The pre-heater module shall be engineered to ensure that the temperature of the helium gas in the MPC meets these design criteria.

3.6 Forced Helium Dehydration System (continued)

3.6.3 Fuel Cladding Temperature

A steady-state thermal analysis of the MPC under the forced helium flow scenario shall be performed using the methodology described in HI-STORM 100 FSAR Section 4.4, with due recognition of the forced convection process during FHD system operation. This analysis shall demonstrate that the peak temperature of the fuel cladding under the most adverse condition of FHD system operation, is below the peak cladding temperature limit for normal conditions of storage for the applicable fuel type (PWR or BWR) and cooling time at the start of dry storage.

3.6.4 Pressure Monitoring During FHD Malfunction

During an FHD malfunction event, described in HI-STORM 100 FSAR Section 11.1 as a loss of helium circulation, the system pressure must be monitored to ensure that the conditions listed therein are met.

3.7 Supplemental Cooling System

3.7.1 System Description

The SCS is a water circulation system for cooling the MPC inside the HI-TRAC transfer cask during on-site transport. Use of the Supplemental Cooling System (SCS) is required for post-backfill HI-TRAC operations of an MPC containing one or more high burnup (> 45,000 MWD/MTU) fuel assemblies. The SCS shall be designed for normal operation (i.e., excluding startup and shutdown ramps) in accordance with the criteria in Section 3.7.2.

3.7.2 Design Criteria

- 3.7.2.1 Not Used.
- 3.7.2.2 If water is used as the coolant, the system shall be sized to limit the coolant temperature to below 180°F under steady-state conditions for the design basis heat load at an ambient air temperature of 100°F. Any electric motors shall have a backup power supply for uninterrupted operation.
- 3.7.2.3 The system shall utilize a contamination-free fluid medium in contact with the external surfaces of the MPC and inside surfaces of the HI -TRAC transfer cask to minimize corrosion.
- 3.7.2.4 All passive components such as tubular heat exchangers, manually operated valves and fittings shall be designed to applicable standards (TEMA, ANSI).
- 3.7.2.5 The heat dissipation capacity of the SCS shall be equal to or greater than the minimum necessary to ensure that the peak cladding temperature is below 400°C (752°F). All heat transfer surfaces in heat exchangers shall be assumed to be fouled to the maximum limits specified in a widely used heat exchange equipment standard such as the Standards of Tubular Exchanger Manufacturers Association.
- 3.7.2.6 The coolant utilized to extract heat from the MPC shall be high purity water or air. Antifreeze may be used to prevent water from freezing if warranted by operating conditions.

- 3.7 Supplemental Cooling System (continued)
 - 3.7.2.7 All pressure boundaries (as defined in the ASME Boiler and Pressure Vessel Code, Section VIII Division 1) shall have pressure ratings that are greater than the maximum system operating pressure by at least 15 psi.
 - 3.7.2.8 All ASME Code components shall comply with Section VIII Division 1 of the ASME Boiler and Pressure Vessel Code.
 - 3.7.2.9 All gasketed and packed joints shall have a minimum design pressure rating of the pump shut-off pressure plus 15 psi.

3.0

DESIGN FEATURES (continued)

3.8 Combustible Gas Monitoring During MPC Lid Welding and Cutting

During MPC lid-to-shell welding and cutting operations, combustible gas monitoring of the space under the MPC lid is required, to ensure that there is no combustible mixture present.

3.9 Corrosion Mitigation Measures

The HI-STORM 100U VVM CEC Container Shell and Bottom Plate shall be protected from corrosion damage due to the corrosivity of the surrounding environment using the following means:

Implementation and Requirements of Corrosion Mitigation Measures				
Surrounding	Corrosion Mitigation Measures			
Environment's Corrosivity	Coating	Concrete Encasement	Cathodic Protection	
(see note iv)	(see note i)	(see note ii)	(see note iii)	
Mild	Required	Choice of either concrete encasement or cathodic protection; or both		
Aggressive	Required	Optional	Required	

Notes:

- i. An exterior surface preservative (coating) applied on the CEC in accordance with the acceptance criteria set forth in the FSAR.
- ii. Concrete encasement of the CEC external surfaces to establish a high pH buffer around the CEC metal mass in accordance with the requirements set forth in the FSAR.
- iii. An impressed current cathodic protection system (ICCPS) in accordance with the design criteria set forth in the FSAR.
- iv. Surrounding environment corrosivity is categorized as either mild or aggressive in accordance with the requirements set forth in the FSAR.

3.10 Periodic Corrosion Inspections for Underground Systems

HI-STORM 100U VVM ISFSIs <u>not</u> employing an impressed current cathodic protection system shall be subject to visual and UT inspection of at least one representative VVM to check for significant corrosion of the CEC Container Shell and Bottom Plate at an interval not to exceed 20 years. The VVM chosen for inspection is not required to be in use or to have previously contained a loaded MPC. The VVM considered to be most vulnerable to corrosion degradation shall be selected for inspection. If significant corrosion is identified, either an evaluation to demonstrate sufficient continued structural integrity (sufficient for at least the remainder of the licensing period) shall be performed or the affected VVM shall be promptly scheduled for repair or decommissioning. Through wall corrosion shall not be permitted without promptly scheduling for repair or decommissioning. Promptness of repair or decommissioning shall be commensurate with the extent of degradation of the VVM but shall not exceed 3 years from the date of inspection.

If the representative VVM is determined to require repair or decommissioning, the next most vulnerable VVM shall be selected for inspection. This inspection process shall conclude when a VVM is found that does not require repair or decommissioning. Since the last VVM inspected is considered more prone to corrosion than the remaining uninspected VVMs, the last VVM inspected becomes the representative VVM for the remaining VVMs.

Inspections

Visual Inspection: Visual inspection of the inner surfaces of the CEC Container Shell and Bottom Plate for indications of significant or through wall corrosion (i.e., holes).

UT Inspection: The UT inspection is performed on the inside surfaces of the CEC. A minimum of 16 data points shall be obtained, 4 near the top, 4 near the mid-height and 4 near the bottom of the CEC Container Shell all approximately 0, 90, 180, and 270 degrees apart; and 4 on the CEC Bottom Plate near the CEC Container Shell approximately 0, 90, 180, and 270 degrees apart. Locations where visual inspection has identified potentially significant corrosion shall also receive UT inspection. Locations suspected of significant corrosion may receive further UT inspection to determine the extent of corrosion.

Inspection Criteria

General wall thinning exceeding 1/8" in depth and local pitting exceeding 1/4" in depth are conditions of significant corrosion.

Design Features

3.0

DESIGN FEATURES (continued)

3.11 Preventing Oxidation of Fuel

During loading and unloading operations, the fuel shall be either maintained underwater or in an inert atmosphere.

Attachment 4 to Holtec Letter 5014683

Summary of Changes Requested in LAR 1014-6

The following is a consolidated list of the proposed changes requested in LAR 1014-6.

CoC:

CONDITIONS first paragraph: Add Appendices A-100U and B-100U to support the use of an underground system.

Section 1.b - Change description of materials used in the Multi-Purpose Canister (MPC).

Section 1.b - Change the description of the weight designation of the HI-TRAC.

Section 1.b - Add description of the HI-STORM 100U.

Sections 6, 7, and 8 Add Appendices A-100U and B-100U for use with underground system.

Section 9 - add the requirements for special thermal test to be performed for the first underground system.

Section 10.a and 10.e – add the option for loading the fuel in a cask loading pool.

Section 10.j clarify that this step can only be performed when using an aboveground system.

Section 11 - changed to be consistent with pending Amendment 6.

Attachments - Added Appendices A-100U and B-100U as attachments to the CoC.

Appendix A:

Added "Amendment #7" to title page and every page in the footer.

Table of Contents: two editorial changes are indicated.

Section 1 – Definition of OVERPACK revised.

Section 1 – Definition of TRANSPORT OPERATIONS revised.

Section 1 – Definition of VERTICAL VENTILATED MODULE added.

SR 3.1.2 – clarified that the user needs to check the inlets and outlets of the air ducts which are covered by the screens and not the entire duct.

Section 5.5 – clarified the "and/or" statement in last sentence of first paragraph to just read "and".

Section 5.5.a.1 – added clarifying text

Section 5.5.a.2 – deleted first sentence to allow users to perform site-specific drop height analyses as necessary.

Section 5.5.a.3 – deleted description of the transport and replaced with the defined term TRANSPORT OPERATIONS.

Section 5.5.b.2 – deleted description of the transport and replaced with the defined term TRANSPORT OPERATIONS.

Section 5.7.6.b – added clarifying text to be consistent with operations.

Section 5.7.7 – added clarifying text to be consistent with operations.

Appendix B:

Added "Amendment #7" to title page and every page in the footer.

Table of Contents: Editorial change.

Section 1 – Definition of LOADING OPERATIONS contains minor editorial change.

Section 1 – Definition of OVERPACK revised.

Section 1 – Definition of TRANSPORT OPERATIONS revised.

Attachment 4 to Holtec Letter 5014683

Appendix B (continued):

- Section 1 Definition of VERTICAL VENTILATED MODULE added.
- Table 2.1-1 Item I. Note 1: added "with or without ITTRs," to be consistent with pending Amendment 6.
- Table 2.1-1 Item III.A.1.e: editorial change "e." to "d."
- Table 2.1-1 Item III.A.1.d.1: editorial change "MTU/MTIHM" to MWD/MTIHM".
- Table 2.1-1 Item III.A.1.e: editorial change "6x6b" to "6x6B".
- Table 2.1-1 Item III.A.1.h: changed "550" to "400"; editorial change for consistency.
- Table 2.1-1 Item IV.A.1.g: removed "and DFC" in two places since this section of the table only addresses Intact Fuel which does not require a DFC.
- Table 2.1-1 Item IV. Note 1: added "with or without ITTRs," to be consistent with pending Amendment 6.
- Table 2.1-1 Item V.A.1.g: removed "and DFC" in two places since this section of the table only addresses Intact Fuel which does not require a DFC.
- Table 2.1-1 Item V.A.2.d.i: changed "2.3" to "2.4"; editorial change for consistency.
- Table 2.1-1 Item V. Note 1: added "with or without ITTRs," to be consistent with pending Amendment 6.
- Table 2.1-8: Added Note 8 and modified title to incorporate ITTRs to be consistent with pending Amendment 6.
- Section 2.4.1: Added decay heat limits for Damaged Fuel to Table 2.4-1
- Section 2.4.2: clarified that Regionalized Loading only pertains to INTACT FUEL
- Section 3.4 Item 5: clarified the fire/explosion conditions that must be addressed by the user of the CoC.
- Section 3.4 Item 6.a and 6.b: clarified that the height limits should be established for both a lift and a drop.
- Section 3.4 Item 7: clarified that items important to safety must be evaluated to determine the appropriate quality assurance level.
- Section 3.5: clarifications made to the Cask Transfer Facility requirements.
- Section 3.6: change "the" to "a". While Holtec holds the patent for the FHD there is not one specific design due to the allowed variations of the design criteria.
- Section 3.8: clarified the combustible gas monitoring that must occur during welding and cutting of the weld.
- Section 3.11: added statement to ensure that the fuel is not exposed to an oxidizing environment.

<u>Appendix A-100U</u> added to provide the Technical Specifications for the HI-STORM 100U.

<u>Appendix B-100U</u> added to provide the Approved Contents and Design Features for the HI-STORM 100U.