SCV Equivalent Static Analysis

Brandon Schoonmaker

AP1000 Layout & Structures

Introduction

Purpose

- To summarize the analytical basis for RAI-TR03-016
- Comparisons of equivalent static results against those from the time history made on the same steel containment vessel model

Equivalent Static Analysis Methodology

- Developed by Chicago Bridge & Iron
 - Global acceleration applied as single mode deflection
 - Local accelerations applied at each major penetration
 - 3 separate analyses (combining global and local for X, Y, Z) combined by 100-40-40

Critical Sections for Comparison

Global Acceleration Profile

Figure 6 - 5 East West Acceleration (ZPA)

Table 5.7 – Equivalent Global Static Acceleration, ZPA(g) Steel Containment Vessel (Reference 2, Table 7)

Elevation (ft)	Equivalent Global Static Acceleration, ZPA(g)						
	N-S Direction		E-W Direction		Vertical Direction		
	Mass center	Edge	Mass center	Edge	Mass center	Edge	
281.90	1.48		1.56		1.25		
273.83	1.43		1.50		1.02		
265.83	1.38		1.43		0.85		
255.02	1.31		1.34		0.73		
244.21	1.23	1.28	1.26	1.30	0.68	0.71	
224.00	1.09	1.13	1.11	1.17	0.66	0.68	
200.00	0.90	0.94	0.94	0.98	0.61	0.63	
169.93	0.69	0.71	0.72	0.75	0.53	0.55	
162.00	0.63	0.65	0.67	0.68	0.51	0.53	
141.50	0.49	0.50	0.54	0.54	0.45	0.47	
131.68	0.43	0.44	0.47	0.48	0.41	0.44	
112.50	0.40	0.41	0.37	0.38	0.35	0.40	
104.12	0.38	0.40	0.38	0.40	0.32	0.38	
100.00	0.38	0.40	0.39	0.41	0.31	0.34	

Local Accelerations

• Developed in APP-MV50-S2C-009

		Rotational	Rotational
	Radial acceleration	acceleration about	acceleration about
	(g)	horizontal axis	vertical axis
		(radians/sec ²)	(radians/sec ²)
Upper equipment hatch	0.21	0.54	0.45
Upper airlock	0.27	2.54	1.46
Lower equipment hatch	0.12	0.44	0.39
Lower airlock	0.20	1.49	1.87

Table 6-8	Equivalent static accelera	tions to account for	local shell flexibility
	1		

Global Acceleration Loading

Local Accelerations (cont.)

Each penetration has a separate local acceleration load step

Local Accelerations (cont.)

Equivalent forces are applied to the ring section at the throat of each penetration

Local Accelerations (cont.)

Local rotational acceleration about vertical axis

Each load scaled by rotation angle from axis – moment of inertia is higher at extremes

Load Combinations

- Global accelerations are combined with local for each direction X, Y, Z
- As penetrations are located near the 90° azimuth
 - Radial load is combined directly with global Y
 - Horizontal load is combined with global Z
 - Vertical load is combined with global X

Questions

