Probabilistic modelling of tephra dispersion
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Depending on their magnitude and location, volcanic
eruptions have the potential to become major social
and economic disasters (e.g. Tambora, Indonesia,
1815; Vesuvius, Italy, AD 79; Soufriere Hills
Volcano, Montserrat, 1995—present). One of the
challenges for the volcanology community is to
improve our understanding of volcanic processes
so as to achieve successful assessments and mitiga-
tion of volcanic hazards, which are traditionally
based on volcano monitoring and geological
records. Geological records are crucial to our under-
standing of eruptive activity and history of a
volcano, but often do not provide a comprehensive
picture of the variation of volcanic processes and
their effects on the surrounding area. The geological
record is also typically biased towards the largest
events, as deposits from smaller eruptions are
often removed by erosion. Numerical modelling
and probability analysis can be used to complement
direct observations and to explore a much wider
range of possible scenarios. As a result, numerical
modelling and probabilistic analysis have become
increasingly important in hazard assessment of vol-
canic hazards (e.g. Barberi et al. 1990; Heffter &
Stunder 1993; Wadge et al. 1994, 1998; Hill et al.
1998; Iverson et al. 1998; Searcy et al. 1998;
Canuti et al. 2002).

Reliable and comprehensive hazard assessments
of volcanic processes are based on the critical com-
bination of field data, numerical simulations and
probability analysis. This paper offers a detailed
review of common approaches for hazard assess-
ments of tephra dispersion. First, the main charac-
teristics of tephra dispersion and tephra hazards
are recounted. A critical use of field data for a quan-
titative study of tephra deposits is also discussed.
Second, numerical modelling typically used for
hazard assessments of tephra accumulation is
described. Finally, the most common probability
analyses applied to hazard studies of tephra dis-
persion are presented.

The challenges of tephra dispersion and
tephra hazards

Tephra is one of the main products of explosive erup-
tions and forms after material has been explosively

ejected from a vent to produce an eruptive column,
which is a buoyant plume of tephra and gas rising
high into the atmosphere. Tephra can also be dis-
persed from buoyant plumes overriding dome-
collapse or column-collapse pyroclastic flows and
generated for elutriation (i.e. co-pyroclastic-flow
plumes). Elutriation is the process in which fine par-
ticles are separated from the heavier pyroclastic-flow
material as a result of an upward-directed stream of
gas. Tephra is then transported through the atmos-
phere and fractionated by the wind depending on par-
ticle size, density and shape. In this paper tephra is
used in the original sense of Thorarinsson (1944)
as a collective term for airborne volcanic ejecta irre-
spective of size, composition or shape.

The main components of tephra deposits are
juvenile fragments (i.e. quenched pieces of fresh
magma), lithic fragments (i.e. pieces of pre-existing
rocks) and free crystals. Particle sizes can range
from large blocks and bombs (>64 mm) to fine
ash (<63 wm). Particle densities typically vary
between ¢. 3000 kg m > (for dense crystals and
lithic fragments) and ¢. 500 kg m > (for highly ves-
icular juveniles).

Production of tephra is not the most dangerous
amongst volcanic phenomena, pyroclastic flows and
lahars being the two most deadly volcanic processes
(Baxter 1990). However, tephra can be transported in
the atmosphere for long times and distances after the
eruptive event, and represents one of the most wide-
spread hazards, with several deadly consequences
and the potential to significantly affect diverse econ-
omic sectors, such as agriculture, social services,
tourism and industry. As an example, despite a
massive and successful evacuation of people living
within 30 km of the volcano, about 300 people died
from the collapse of roofs under the weight of 5—
50 cm of wet tephra in the 1991 eruption of Pinatubo
(Philippines).

Volcanic ash suspended in the air soon after
fallout and/or reworked even a few years after the
eruptive event might contain a large proportion of
respirable particles (<10 wm), which may induce
ahost of respiratory problems in unprotected suscep-
tible people, including asthma, bronchitis, pneumo-
nia and emphysema. Volcanic ash can also contain
crystalline silica (i.e. quartz and its polymorphs),
which may pose a potential hazard of silicosis and
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lung cancer, and can incorporate toxic substances
such as fluoride, which can kill a large number of
grazing animals and endanger human drinking
water supplies. In addition, windborne ash is also a
serious threat to aircraft up to 3000 km from the
eruptive vent, and accumulation of even a few milli-
metres of tephra can affect aircraft manoeuvring on
runways, and cause airports to close for several days.
Finally, massive production of tephra can also
provide loose sediments for the generation of
deadly lahars even several years after the eruptive
event. As aresult, the study of tephra dispersion rep-
resents an important aspect of hazard mitigation
necessary in those populated areas that have devel-
oped close to active volcanoes and/or where there
is significant aviation traffic.

Field investigations and their
natural evolution

Field investigations are the first step towards a
quantitative characterization of volcanic processes
and they naturally evolve to complement associated
studies of eruptive dynamics. Collection and analy-
sis of field data were originally aimed at classifying
the style of eruptive events and the type of pyroclas-
tic deposits using thickness and grain-size data
(Walker 1971, 1973). Distributions of deposit
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thickness and grain-size characteristics were quan-
tified by compiling isopach maps (Fig. 1a) and
determining statistical parameters, respectively
(e.g. median diameter, Mdy, and deviation, o, of
cumulative grain-size curves (Inman 1952;
Walker 1971)). Grain-size analyses were typically
carried out using standard sieving techniques,
which are practical only for particles with diameter
>63 pwm.

Later, field data were also used to thoroughly
quantify other important eruptive parameters, such
as column height, wind speed, magnitude, intensity
and grain-size distribution of the whole deposit,
also defined as total grain-size distribution (e.g.
Walker 1980; Carey & Sparks 1986; Pyle 1989).
As a result, field data collection and processing
were adjusted to account for specific features used
in these models. For example, the distribution of
specific particle sizes around the vent can be quan-
tified by compiling isopleth maps (Fig. 1b) and used
to determine the column height and wind speed at
the time of the eruption (Carey & Sparks 1986).

For the benefit of hazard studies and a better
understanding of volcanic processes, field investi-
gations should evolve even further to account for
specific requirements of numerical modelling and
probability analysis of eruptive scenarios.
Dispersion models are very sensitive to the choice
of the total grain-size distribution. Therefore,

Fig. 1. Three styles of contour maps of tephra deposits for different periods of activity of the Soufriere Hills volcano,
Montserrat. (a) Isopach map (cm) showing the cumulative thickness of all tephra accumulated between 4 August and
21 October 1997 (mainly from Vulcanian explosions). (b) Isopleth map showing mean diameter (cm) of the five largest
lithic fragments for the 17 September 1996 sub-Plinian eruption. (¢) Isomass map showing the distribution of
co-pyroclastic flow tephra (in kg m~?) generated from a small dome-collapse pyroclastic flow (31 March 1997). The grey
area shows the associated pyroclastic-flow deposit. Dashed lines indicate contours constructed with limited field data (e).
Position of Soufriere Hills volcano is also shown (A). Data from Robertson et al. (1998) and Bonadonna et al. (2002b).
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grain-size analysis should include fine ash
(<63 pm) and individual grain-size distributions
(i.e. distributions for each locality) should be inte-
grated to provide the grain-size distribution for the
whole deposit. Only a few complete total grain-
size distributions are actually available in the litera-
ture (e.g. Sparks et al. 1981; Carey & Sigurdsson
1982; Bonadonna & Houghton 2005). In addition,
the validity of Mdy and o relies on the assumption
that grain-size distributions are approximately log
normal. More appropriate statistical parameters
should be used to characterize grain-size distri-
butions that are not log normal (e.g. polymodal dis-
tributions). Another important feature for the
validation of numerical models is the identification
of the contour line of zero mass or thickness. There-
fore, some indications of localities where tephra
accumulation is zero should be given. Finally,
when multiple units are present in a stratigraphic
record, it is crucial to distinguish the climactic
phase from minor events, to define accurate eruptive
scenarios. Thickness distribution for each phase is
also easier to model and forecast than cumulative
thickness. When feasible, distribution of mass per
unit area (isomass maps, Fig. 1c) is preferred to
isopach maps (Fig. 1a), to account for compaction
of the deposit and for variation of deposit density
with distance from the vent. Isomass maps are also
easier to compare directly with outputs from numeri-
cal simulations, which are typically expressed as
mass per unit area. As a result, in addition to the
classic field parameters, field investigations should
also provide detailed information on total grain-
size distributions, lateral extent of deposit, strati-
graphic record, deposit density, particle density
and tephra accumulation per unit area.

Numerical investigations

Numerical investigations help reproduce those parts
of the deposit that are not accessible or are partly or
completely missing. They can also be used to simu-
late eruptive events that have not happened yet, but
might eventually happen, providing a fundamental
tool for hazard mitigation.

A number of studies of particle sedimentation
from volcanic plumes have been based on the prin-
ciples of particle advection and diffusion expressed
by the following mass-conservation equation:

oLj a(uxc ) 8(uy C]) + B(Mzci)
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where C is the mass concentration of particles
(kgm— ) in a given grain-size category j, ¢ is the
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time (seconds), x, y and z are components of a rec-
tangular coordinate system (metres), with corre-
spondlng velocity components u,, u, and u;
(ms™ "), and corresponding dlfqulOIl coefficient
components K, K, and K (m?s™ Y. @ is a source
or sink term that can be used to describe the
change in particle concentration with time
(kg m3s7h.

Some of the models based on equation (1)
describe tephra dispersion as advection of particles
from plumes approximated as vertical line diffusers
located on the position of the eruptive vent (e.g.
Suzuki 1983; Armienti et al. 1988; Macedonio
et al. 1988; Glaze & Self 1991; Hurst & Turner
1999; Bonadonna et al. 2005; Pfeiffer et al. 2005)
and co-pyroclastic-flow sources (Bonadonna et al.
2002a). To simplify the algorithm even further,
some workers have also modified equation (1) by
making some assumptions, such as constant term-
inal velocity with particle size, constant and isotro-
pic horizontal diffusion coefficient (i.e. K = K, =
K,), negligible vertical diffusion (i.e. K; = 0) and
negligible vertical wind velocity (e.g. Armienti
et al. 1988; Bonadonna et al. 2002a). Based on
these assumptions, equation (1) can be written as

aC; aC; oC; oC;
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where w, and w, are the x and y components of the
wind veloc1ty (m s~ 1Y), K is the diffusion coefficient
(m*s™ ") and v; is the settlmg Velocﬁy of the
particles of the size class j (ms ™ b. Equation (2)
can also be slightly modified to account for the vari-
ation of particle terminal velocity with height as a
result of the variation of particle Reynolds number
and atmospheric density. In this case, v is deter-
mined for each size class j and each atmospheric
interval k (e.g. Bonadonna er al. 1998, 2005;
Connor & Connor 2006) (Fig. 2).

The quantity of greatest interest in hazard studies
is the mass accumulation, M, at a point (x,y) on the
ground, which represents the sum of all particle
sizes, j, released from all levels, [ (Fig. 2). The
mass accumulation is calculated by

H  dmax

ZZmﬁw 3)

=0 j=dmnin

M(x,y) =

where m,j(x, y) is the mass fraction of the size class
j released from the level / accumulated at (x,y), H is
the total plume height and dp, and dp.x are the
minimum and maximum particle diameter,
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Fig. 2. Simplified sketch showing the rectangular
coordinate system. Vertical lines represent the simulated
volcanic plumes of coordinates x and y: the black line
represents the plume on the main eruptive vent; grey
lines represent co-pyroclastic flow plumes overriding
pyroclastic flows. Horizontal segments represent
particle-releasing points /. Each particle (O),
corresponding to a size class j, is advected by
atmospheric wind described by the two vectors w, and
wy, and moves downward according to its terminal
velocity determined for each atmospheric level k.

my j(x,y) represents the accumulation of tephra on the
ground at a point (x, y) of particles of size j released from
a level / (equation (3)).

respectively (Armienti ef al. 1988; Bonadonna et al.
2005; Connor & Connor 2006).

These models are based on the assumption that,
far from the source, the eruption-column dynamics
is negligible and particle dispersion and sedimen-
tation are mainly controlled by wind transport, tur-
bulent diffusion and settling caused by gravity. In
addition, complex plume and atmospheric pro-
cesses are typically lumped into empirical par-
ameters, such as the term K in equation (2). This
greatly simplifies the models but also ignores pro-
cesses that can affect tephra dispersion, such as
the variation of the diffusion coefficient with baro-
metric pressure in the atmosphere and with the
scale of the phenomenon. However, given the sim-
plicity of the approach, these models are very versa-
tile and find their ideal application in the
computationally expensive simulations required in
hazard assessments. Moreover, a thorough investi-
gation of empirical parameters (e.g. K) based on
rigorous sensitivity tests and/or inversion tech-
niques (Connor & Connor 2006), typically results
in very good agreement between computed and
observed accumulation data that well justifies the
application to real-case scenarios.

Other models are based on the advection—
diffusion equation described above, but also use
principles from the classic plume theory and fluid
dynamics (Morton et al. 1956; Briggs 1969;
Turner 1973) to account for more complex
current-spreading dynamics and particle sedimen-
tation. As a result, the use of empirical parameters
is kept to a minimum but the algorithm is more
complicated. Initially, these models could describe
symmetrical plumes and particles of uniform
density and settling regime (Bursik er al. 1992b;
Sparks et al. 1992), but they have subsequently
been developed to account for wind advection of
volcanic clouds (Bursik et al. 1992a; Koyaguchi
& Ohno 2001) and particle transport combined
with various processes of particle sedimentation,
such as density variation, Reynolds number
variation and particle aggregation (Bonadonna &
Phillips 2003). However, even though these
models give good agreement with field data and lab-
oratory observations, they still mainly describe
sedimentation along the dispersal axis and therefore
cannot be used to compile 2D maps.

Finally, equation (1) is also used by atmospheric
trajectory models that account for global circulation
models to investigate the long-range transport of
volcanic plumes (Heffter & Stunder 1993; Searcy
et al. 1998). These models accurately describe the
atmospheric processes and simulate the movement
of airborne volcanic particles in near real-time fol-
lowing an eruption cloud for the purposes of hazard
warning. As a result, these models represent an
indispensable tool for hazard mitigation, in particu-
lar for aviation purposes, but they do not predict
ground deposition. Nevertheless, they could be
easily modified to account for sedimentation of
tephra, as they have already been used to describe
deposition of radioactive and chemical contami-
nants (Stunder et al. 1986; Apsimon et al. 1988).

Probabilistic analysis of tephra dispersion

A number of pioneering volcanic hazard assess-
ments have completely relied on characteristics of
the stratigraphic record, prevailing geomorphology
and some characteristics of the local climate
(Crandell & Mullineaux 1978; Wadge & Isaacs
1988). Some researchers have also used a similar
approach to that used for earthquakes to quantify
the probability of a particular tephra accumulation
at any given site based on observations (Stirling
& Wilson 2002). As described in the previous two
sections, thorough field investigations of tephra
deposits provide crucial insights into the history
and the characteristics of specific volcanoes.
Although extremely important, these studies are
not sufficient for a complete understanding of
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volcanoes and for the mitigation of their risks. This
is certainly true for volcanic environments that are
characterized by few past eruptions and for which
the resulting deposits are limited or are difficult to
interpret. In addition, past eruptions generally
provide a limited sample of all possible wind pro-
files. Finally, given the nature of preservation of
pyroclastic deposits, the geological record is typi-
cally biased toward larger, less frequent events.

One possible solution to the limitation of field
data is probabilistic analysis of a large number of
wind profiles and of a large number of activity scen-
arios and eruptive conditions considered possible.
These analyses are often crucial even for volcanoes
with a well-known history and relatively frequent
eruptions (e.g. Vesuvius, Italy), where field data
can be combined with numerical simulations to
provide a comprehensive hazard assessment
(Cioni et al. 2003).

At present, only models from the first category
described in the previous section can be realistically
used to forecast hazardous tephra accumulation
(e.g. Suzuki 1983; Armienti et al. 1988). Histori-
cally, these advection—diffusion models have been
used to investigate the probability distribution of
reaching specific hazardous accumulations of
tephra given the maximum expected event
(Barberi et al. 1990; Hill et al. 1998). This approach
provides more information than the pure determi-
nistic one described above. However, it is still
limited by the assumption of the maximum
expected event or even the most likely event,
which is typically very hard to identify objectively
in volcanology (Blong 1996; Marzocchi et al.
2004). The formulation of the most likely event or
most likely activity scenario is a very delicate
issue and several workers have suggested tech-
niques to quantify the probability of volcanic
events (Newhall & Hoblitt 2002; Stirling &
Wilson 2002; Aspinall er al. 2003; Marzocchi
et al. 2004). Some workers have also used Monte-
Carlo simulations to allow uncertainties in the erup-
tion-frequency distributions to be included expli-
citly when not many field data are available
(Hurst & Smith 2004). The evaluation of these pro-
cedures is beyond the scope of this paper, but cer-
tainly for a comprehensive volcanic hazard
assessment, several types of probability analysis
should be carried out and different scenarios and
volcanic activities should be considered and com-
pared (see the Discussion).

The compilation of any hazard assessment also
requires the use of a statistically significant
sample of wind profiles. The number of wind pro-
files used depends on the range of variation charac-
teristic of specific geographical areas; the larger the
variation, the larger the number of wind profiles.
Selected wind samples can also be used to

investigate specific atmospheric conditions, such
as seasonal variations and the El Nifio—Southern
Oscillation (ENSO) phenomenon (Bonadonna
et al. 2005). The main types of probability
approaches used for hazard mitigation and risk man-
agement purposes are described below. Examples
from real-case studies are also shown (mainly
using data from Bonadonna et al. (20024, 2005)).

Probability maps based on
hazardous thresholds

Given an eruptive scenario, these probability maps
contour the probability of reaching a particular
hazardous accumulation threshold (kg m~?).
Hazardous accumulations of tephra can be esti-
mated for specific areas or can be based on the
effects of tephra observed for a number of eruptive
events and different volcanoes. The most common
hazardous thresholds used in hazard assessments
are the threshold for minor damage to vegetation,
which has significant implications for agriculture
(c. 1em~10kgm 2 for a deposit density of
1000 kg m~>; Blong 1984; Bonadonna et al.
2002a) and the threshold for the collapse of build-
ings (c. 100—700 kg m ™2, depending on the struc-
ture of the roof). A threshold for airport closure is
also important to consider in areas with heavy air
traffic (e.g. 1 kg m ™). Other hazardous thresholds
are (Blong 1984): 150-500 mm (partial survival
of vegetation, zone 2), 500—1500 mm (partial sur-
vival of vegetation, zone 1), 1500 mm (zone of
near-total vegetation kill) and >1500 mm (zone of
total vegetation kill). These four zones are based
on vegetation damage around Paricutin during the
19431952 eruption: in the zone of total vegetation
kill all vegetation died; in the zone of near-total
vegetation kill most individuals of all size classes
of all species were eliminated; in the first zone of
partial survival tree damage and heavy Kkill
of shrubs and herbs occurred; in the second zone
of partial survival tephra accumulation resulted in
slight tree damage and partial survival of shrubs
and herbs.

Individual eruptive episodes.

(1) Probability maps given one eruptive episode
and a set of wind profiles (One Eruption Scenario).
These maps show the probability distribution of
reaching a particular tephra accumulation around
the volcano based on the statistical distribution of
wind profiles and therefore contour P[M(x,y) >
threshold | eruption], where all eruption par-
ameters are specified deterministically (e.g.
Fig. 3a). M(x,y) is the mass per unit area at a
given point with coordinates (x, y) (Fig. 2; equation
(3), and threshold is a given accumulation of tephra
considered hazardous (kg m~2). Given a number of
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wind profiles »,,, the probability, P(x,y) at a point
with coordinates (x,y) is determined by summing
the number of times a certain hazardous threshold
is reached:

e
= )
where

S 1, if [M;(x,y) > threshold|eruption]
‘710, otherwise

where i refers to a given wind profile. The total
number of wind profiles N, is equivalent to the
number of runs performed. Any number of wind
profiles, N,,, can be used, with each run being inde-
pendent; that is, the outcome of each run is unaf-
fected by previous runs. One Eruption Scenario
maps are useful for determining the upper limit

Fig. 3. (a) One Eruption Scenario and (b) Eruption
Range Scenario computed for the tephra hazard
assessment of Tarawera volcano, New Zealand (see text
for the input parameters used). Contour interval is 10%
probability of reaching the hazardous threshold of minor
damage to vegetation (i.e. 10 kg m~2). The 5% contour is
also shown (grey contour). Tarawera volcano (A) and the
city of Taupo () are also shown.

value on tephra accumulation if the parameters
are specified for the largest eruption considered in
any given scenario. They are often defined as
upper limit scenarios or scenarios for the
maximum expected event with the limitation dis-
cussed above.

(2) Probability maps given a set of eruptive
episodes and a set of wind profiles (Eruption
Range Scenario). These maps show the probability
distribution of a particular mass loading around the
volcano based on the statistical distribution of
possible eruptive episodes and wind profiles
(e.g. Fig. 3b). These maps contour P[M(x,y) >
threshold|eruption], where all eruption parameters
and wind profiles are randomly sampled, and
provide a fully probabilistic hazard assessment
for the investigated activity scenario. The prob-
ability P(x,y) at a point with coordinates (x,y) is
determined using equation (4), where for each
run, i, the eruption parameters are sampled from a
given function instead of being specified
deterministically.

(3) Probability maps given a set of eruptive epi-
sodes and one wind profile (One Wind Scenario).
These maps show the probability distribution of
a particular mass loading around the volcano
based on the statistical distribution of possible
eruptive episodes and one wind profile. These
maps contour P[M(x,y) > threshold|wind profile],
where all eruption parameters are randomly
sampled and the wind profile is chosen a priori.
Given N,, the total number of possible eruptions
considered, the probability, P(x, y), at a point with
coordinates (x, y), is determined by summing the
number of times a certain hazardous threshold is
reached:

vazl ni

P(x,y) = N

; ®)

where

_ ] I, if [Mi(x,y) > threshold|wind profile]
" =0, otherwise

where i refers to a given eruption. These maps are
used for hazard assessments of specific sites (e.g.
nuclear power plants). In such cases the worst-
case scenario is considered with the wind blowing
in the direction of the considered site (McBirney
& Godoy 2003; McBirney et al. 2003).

Long-lasting activity (i.e. total accumulation prob-
ability maps). These maps show the probability
distribution of reaching a particular mass loading
around the volcano given the statistics of winds
and a certain activity scenario; that is, many
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eruptive episodes with different magnitudes and/or
of different types occurring over a certain period of
time, contouring P[M(x,y) > threshold|scenario].
These maps are important for assessing tephra
accumulation from multi-phase eruptions, for
example, the c. AD 1315 Kaharoa eruption of
Tarawera volcano, New Zealand (Sahetapy-Engel
2002), and long-lasting eruptions, for example, the
1995—present eruption of The Soufriere Hills
volcano, Montserrat (Kokelaar 2002). Table 1
shows an example of activity scenario used for
the hazard assessment of the Soufriere Hills
volcano and based on the 1995-1998 eruptive
activity. These maps are more complex than prob-
ability maps compiled for individual events, as
they need to include individual probabilities of indi-
vidual eruptive events, and combinations of wind
profiles and accumulation or erosion of tephra
deposits over a certain period of time. As the
process of erosion cannot be easily predicted,
maximum and minimum accumulation probabilities
can be investigated. The actual tephra accumulation
for a specific activity scenario is most likely to be
between the forecast of these two end-members
(i.e. minimum and maximum tephra accumulation).
The large difference between probability maps for
the minimum and maximum accumulation com-
piled for the hazard assessment on Montserrat has
confirmed the importance of clean-up operations
during long-lasting eruptions (Bonadonna et al.
2002a).

(1) Total accumulation probability maps for a
given scenario of activity and set of wind profiles
(Multiple Eruption Scenario for the maximum
accumulation). These probability maps (Fig. 4a
and b) assume continuous tephra accumulation
with no erosion between eruptive episodes and are
calculated using Monte-Carlo simulations based
on a random sampling of specific eruption par-
ameters; for example, wind profile and valley of

Table 1. Activity scenario used for the hazard
assessment of tephra dispersion on Montserrat
(approximation of the July 1995—March 1998 activity)

Event Volume, Number

DRE (x 10° m®) of events

(3 year period)
Dome collapse 50 1
Dome collapse 30 1
Dome collapse 10 2
Dome collapse 3 7
Dome collapse 1 16
Dome collapse 0.5 30
Vulcanian 0.4 90
explosions

Volume is given as dense rock equivalent (DRE), an estimate of
the volume of erupted unvesiculated magma.
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dome collapse (i.e. the valley in which the pyroclas-
tic flow associated with a dome collapse is going to
flow) (Bonadonna et al. 2002a). The wind profile is
random and does not depend on the eruptive
episode. The valley of collapse depends on the
direction of preferential dome growth, which is
assumed to be random. The Monte-Carlo approach
is used because for this kind of map it is impracti-
cable to compute the number of combinations of
tephra accumulation produced by individual
eruptive episodes and wind profiles (Table 1). The
probability P(x, y) is determined by adding the con-
tribution from individual eruptive episodes to
tephra accumulation at a point with coordinates

(x,y):

Zivzl ni

N, ©)

P(x,y) =

where

p— 1’
n; = 0.

where i refers to a given sequence of eruptive epi-
sodes. N, represents the number of times a given
sequence (i.e. scenario) is performed using a differ-
ent combination of wind profiles. Wind profiles are
randomly sampled for each eruptive episode in each
sequence. Mrori(x, y) represents the accumulation
of tephra produced from all eruptive episodes con-
sidered in a given sequence, i. Sequences can
consist of either the same eruptive episodes (the
most likely scenario) or different eruptive episodes
(a range of possible scenarios).

Examples of these maps were used for the hazard
assessment of Tarawera (i.e. multi-phase eruption;
Bonadonna et al. 2005) and Soufriere Hills
(long-lasting eruption, Fig. 4a-b); Bonadonna
et al. 2002a). The Multiple Eruption Scenario
assessment of Soufriere Hills was based on the
most likely scenario, whereas the Tarawera assess-
ment was based on a range of possible scenarios. In
fact, for the Montserrat assessment, only the
sequence in Table 1 was performed in association
with different combinations of wind profiles and
valleys of collapse, whereas for the Tarawera
assessment each sequence i consisted of 10
Plinian eruptions randomly sampled. The Tarawera
assessment was based on the c. AD 1315 Kaharoa
eruption sequence, which consisted of 10 Plinian
eruptive episodes with plume height ranging
between 14 and 26 km above sea level. However,
field data for this eruption sequence are limited
and did not allow for the most likely scenario of
activity to be easily constrained (Bonadonna et al.
2005). As a result, plume heights, eruption

if [Mrori(x, y) > threshold|scenario]
otherwise
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Fig. 4. Multiple Eruption Scenario (MES) maps computed for the activity scenario in Table 1. MES for the maximum
tephra accumulation and a threshold of (a) 12kgm72 and (b) 120kgm72. MES for the minimum tephra accumulation
and a threshold of (¢)12 kg m~ 2 and (d) 120kgm72. These thresholds are for minor damage to vegetation and
minimum accumulation causing roof collapse adapted for a deposit density of 1200kgm™~. The computed co-
pyroclastic-flow plume sources (®) and the Soufriere Hills volcano (A) are also shown. Contour interval is 20%
probability. Maps were computed using 3 years of wind profiles (1995-1997). MES maps for the maximum

accumulation are based on 200 Monte-Carlo simulations.

durations, total grain-size distributions and eruptive
vents were randomly sampled from specific prob-
ability density distributions (see the next section
for details).

For the Montserrat study, the accuracy of the
Monte-Carlo simulations was investigated by calcu-
lating several times the probability of reaching a
certain deposit threshold (12 kg m™~?) at a particular
locality for different numbers of runs and for differ-
ent samples of wind profiles (1, 3 and 6 years)

(Fig. 5a). The standard deviation for the three
wind samples decreases with the number of runs,
but does not vary significantly with the number of
wind profiles used (Fig. 5b). The variation of this
standard deviation is fitted well by a power law
(Fig. 5b). The mean probability also does not vary
significantly for the three samples of wind profiles
used (Fig. 5c¢) (standard deviation of the mean prob-
ability of the three samples of wind profiles is 0.7,
0.6 and 0.8 for 1 year, 3 years and 6 years,
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respectively). In conclusion, for this particular geo-
graphical and volcanic setting, probability maps are
much more sensitive to the number of Monte-Carlo
simulations considered than to the number of wind
profiles sampled.

(2) Total accumulation probability maps for a
given scenario of activity and a set of wind profiles
(Multiple Eruption Scenario for the minimum
accumulation). These maps differ from maximum
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Fig. 5. Accuracy of the Monte-Carlo technique used to
compile Multiple Eruption Scenario maps for the
maximum tephra accumulation (Fig. 4a). Variability of:
(a) probability values; (b) standard deviation of
probability values (corresponding power-law fit is also
shown); (¢) mean of probability values. Probability
values were computed for a given locality and a threshold
of 12 kg m~2. Simulations for any given number of runs
were performed 20 times for the case of 1 year period and
10 times for the cases of 3 and 6 year periods.

accumulation maps because they assume erosion
between events. In this case the probability of reach-
ing a specific hazardous threshold is calculated sep-
arately for each eruptive episode considered in the
scenario (Fig. 4c and d; Table 1), and then the
total accumulation probabilities are calculated by
the union of individual probabilities of each
episode. Over a certain period of activity, different
eruptive episodes represent independent, but not
mutually exclusive, events. To fully understand
this concept, let us consider some basic principles
of probability theory. When an experiment is per-
formed whose outcome is uncertain, the collection
of possible elementary outcomes is called sample
space, often denoted by S. For any two events, A,
and A, of a sample space, S, we define the new
event, Ay U A, to consist of all points that are
either in A; or in A, or in both A; and A,. That is,
the event, A; U A, will occur if either A; or A,
occurs. The event, A; U A, is called the union of
the events A; and A, (Fig. 6a). For any two events,
A| and A, we may also define the new event, A} N
Aj (or A1Aj), called the intersection of A; and A, to
consist of all outcomes that are both in A; and in A,.
That is, the event, A;A,, will occur only if both A,
and A, occur (Fig. 6b). If AjA; = (J, then A and
A, are said to be mutually exclusive (where (J is
the empty set relative to S). Finally, for any event,
Aq, we define the new event, Af, referred to as the
complement of Aj, to consist of all points in the
sample space, S, that are not in A; (Fig. 6¢). That
is, AS will occur if and only if A; does not occur.
Aj and AS are always mutually exclusive.

Eruptive episodes of a specific activity scenario
are independent but not mutually exclusive
because they have no influence on each other and
they all happen. Let A} and A, be the probability
P(x, y) determined using equation (4) for the erup-
tive episodes 1 and 2, respectively. The probability
of the union of A| and A, is

P(A1 U A2) = P(A1) + P(A2) — P(A1 NAz) (D)
and, as A; and A, are independent,
P(A1 N A2) = P(A1)P(A2). ®)
Resolving equation (7) for n events,

P(A, UA, U---UA,)

= iP(A» =D PAnA) +---+
i=1

i1<ip
ED*YT PAAL . A+t
i1 <ip...<i,
1" PAA; . AY). )
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Fig. 6. Venn diagrams showing the subspace S (consisting of all the points in the rectangle) and the events A; and A,
(consisting of all the points in given circles within the rectangle). Shaded areas show events of interest: (a) A} U A,

(union); (b) A; N A, (intersection); (c) AIC (complement).

The summation Zi|<io...<i, P(Aj A ... A;) is taken
over all of the (’;) possible subsets of size r of the set
{1,2,...,n} (Ross 1989). An equivalent solution
for the same problem is obtained by calculating
the probability of the intersection of all the comp-
lements A]C, Azc R AS, to analyse the probability
of ‘never reaching a certain hazardous threshold at
a given grid point given a scenario of activity’.
This probability can be described as

PA UA U---UA,) =1—PAS) 10
x P(AS) x - - x P(AS).

An example of these maps was used for the hazard
assessment of the Soufriere Hills volcano (Fig. 4c
and d).

Hazard curves for tephra accumulation

All the scenarios discussed above can also be used
to compile hazard curves, which typically show
the probability of exceeding certain values of
accumulation of tephra per unit area at a particular
location (Hill ez al. 1998; Stirling & Wilson 2002).
Hazard curves are more commonly known in stat-
istics as survivor or complementary cumulative dis-
tribution functions, because they plot probability
complements v. sorted values of interest (e.g.
tephra accumulation in Fig. 7). However, they are
very different from hazard functions, which
represent the ratio between probability density
functions and survivor functions.

For X, the random variable specifying tephra
accumulation, what is the exceedance probability
EP = P(X > x), where x is a specific mass per unit
area? For example, what is the probability that
tephra accumulation will exceed x = 10 kg m >?
Outputs of tephra accumulation from dedicated
numerical simulations can be sorted in ascending
order, Xy, X, X5,..., Xy_1, then

EP=1—-—

, forO<i<N.
N

(11)

These curves are limited to a certain locality but are
more flexible than probability maps as they do not
rely on the choice of hazardous thresholds (e.g.
Fig. 7).

Hazard curves can also be constructed from field
data at a particular locality by sorting observed
tephra accumulations in ascending order and deriv-
ing the exceedance probability from equation (11)
(e.g. dashed line in Fig. 8). However, the strati-
graphic record can be misleading because it does
not provide a wide range of accumulation values
for individual localities and, mainly because of
erosion, it is typically biased towards the largest
events. The difference between computed curves
(continuous lines) and the curve constructed from
field data (dashed line) can be defined as reducible
or epistemic uncertainty; that is, uncertainty caused
by lack of information (see the Discussion). As a
result, geological records are not detailed enough
to investigate low-probability events. For instance,
the field-based curve stops at probability excee-
dance c. 3% in Fig. 8, whereas the computed
curves can be extrapolated down to 0.1%

1003

104

exceedance probability (%)

0.1+
0.001

0.01 0.1 1 10
tephra accumulation (kg m-2)

100

Fig. 7. Hazard curves computed for the One Eruption
Scenario (continuous line) and the Eruption Range
Scenario (dashed line) for the city of Taupo. Location of
Taupo is indicated in Fig. 3.
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Fig. 8. Comparison between two hazard curves
computed using two different random generator
functions (continuous lines) and a hazard curve derived
from field data (dashed line) for the same locality. Field
data were collected on Montserrat between 3 June 1996
and 27 June 1997 at a location about 4 km west of the
Soufriere Hills volcano (Bonadonna et al. 2002b).
Computed curves were generated running 1000
Monte-Carlo simulations and considering a scenario that
approximates the 19961997 activity of the Soufriere
Hills volcano. Such a scenario predicts the occurrence of
dome collapses with volume 0.5, 1, 3 and 10 x 10° m?
with a corresponding probability of 54%, 29%, 13% and
4%, respectively. The difference between the computed
and field-based hazard curves depends on the epistemic
uncertainty (double-headed arrow).

probability or even lower if more Monte-Carlo runs
are performed.

It is important to notice that the Soufriere Hills
volcano record is one of the most detailed strati-
graphic records available in the volcanology litera-
ture (e.g. the field-based curve in Fig. 8 is derived
from 30 sample collections at the same locality
over a 1 year period). In addition, Soufriere Hills
volcano tephra is typically collected during fallout
using dedicated containers, and therefore small
accumulations can be accounted for. Stratigraphic
records from less studied areas are expected to
provide even larger epistemic uncertainties.

Finally, stratigraphic records typically represent a
very small sample of all possible activity scenarios.
For example, the Soufriere Hills volcano geological
record between June 1996 and June 1997 (Fig. 8)
does not account for the significantly larger dome
collapses that occurred in late 1997 (c. 45 x 10° m®
dense rock equivalent (DRE), Boxing Day collapse)
and in 2003 (c. 210 x 10° m®, DRE; 12-15 July
2003 collapses), or the 88 Vulcanian explosions
that occurred in August—October 1997. In con-
clusion, a careful analysis of possible activity scen-
arios combined with dedicated numerical
simulations and probability calculations provides a
more reliable hazard assessment than general assess-
ments based only on stratigraphic records.

Probability maps and hazard curves
based on return periods

Given an erupted volume frequency distribution for
one or more volcanoes, probability maps can be
compiled to contour the tephra accumulation with
a particular return period (e.g. 10 ka) and hazard
curves can be constructed to plot the return period
as a function of tephra accumulation (Fig. 9;
Hurst & Smith 2004). This approach is particularly
valuable for risk management purposes; for
example, for insurance companies. In fact, insur-
ance companies are more interested in the prob-
ability of reaching a hazardous accumulation of
tephra at a given location in a given period of
time than in the hazard assessment in terms of erup-
tive scenario as discussed above. Hazard assess-
ments in terms of eruptive scenario are more
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Fig. 9. (a) Return period as a function of tephra
thickness (mm) for the combined effects of Ruapehu,
Taupo and Okataina eruptions at the cities of Rotorua
and Napier, New Zealand. (b) Map of the North Island of
New Zealand showing tephra thickness (mm) with a

10 ka return period (i.e. 1/10 000 annual probability)
based on eruptions from Ruapehu, Taupo and Okataina.
The grey and white circles indicate the cities of Rotorua
and Napier, respectively. Data and map from Hurst &
Smith (2004).
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valuable for planning purposes and hazard mitiga-
tion, because an effort is made to present realistic
scenarios and likely effects (Hurst & Smith 2004).
As a result, the return-period approach relies on a
careful quantification of the volcanic eruption
history, and therefore is typically more complex
than the eruptive-scenario approach because
reliable field data on the eruption frequency distri-
butions are rarely available.

Probabilistic analyses of input parameters

A random sampling can be used to identify not only
wind profiles but a whole range of input parameters
for the physical model (e.g. column height, eruption
duration, total grain-size distribution, eruptive
vent). This is important because sometimes differ-
ent eruptive scenarios need to be investigated but
also because often these parameters are not well
known but can be sampled from probability
density functions. Therefore, the more simulations
are performed the better the full range of possible
outcomes is understood. This kind of Monte-Carlo
approach is very similar to the ensemble forecast
technique commonly used in weather and climate
forecast to deal with the uncertainties of models
and/or perturbed initial conditions (Palmer 2000).
For instance, the Multiple Eruption Scenario assess-
ment for Tarawera volcano performed running
different sequences of eruptive episodes associated
with a range of plume heights, total grain-size dis-
tributions, eruption durations and eruptive vents
can be considered as an example of ensemble fore-
cast for tephra dispersion (Bonadonna et al. 2005).
Such an assessment provides a comprehensive
analysis of possible outcomes in a situation where
the stratigraphic record does not allow for detailed
scenarios to be constrained. It differs from ensem-
ble forecasts used in meteorology because these
mainly combine outputs derived with different
models (Palmer 2000). Any probability density
function for input parameters can be used. In a
case where the history of the volcano is well
known, the probability density function can be
based on field data (Cioni et al. 2003); in a case
where not many observations are available, the
probability density function can be derived from
Monte-Carlo simulations based on the few data
available (Hurst & Smith 2004) or arbitrarily
chosen based on some general criteria for natural
processes (Bonadonna er al. 2005). For instance,
in the Eruption Range Scenario and the Multiple
Eruption Scenario used for the assessment of a
multi-phase eruption at Tarawera volcano, the
column height was sampled from a uniform set of
values ranging between 10g(Hpyin) and log(Hmax),
where Hpyin and Hp.x are the minimum and the
maximum plume height observed and/or
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considered possible (14km and 26 km in this
case). The logarithmic function was chosen to
reflect a natural higher frequency of low plumes.
In the same assessment, because of limitations of
field data, the total grain-size distribution was uni-
formly sampled amongst three distributions
derived for a different New Zealand volcano with
similar characteristics. Finally, based on field obser-
vations from the Kaharoa eruption, the eruption
duration was uniformly sampled between 2 and
6 h and the eruptive vent was uniformly sampled
from three locations within the Tarawera volcanic
complex (Bonadonna et al. 2005).

Discussion

Importance of probability analysis

Field observations of tephra deposits (e.g. Fig. 1),
are crucial to our understanding of the history and
the behaviour of a volcano. However, hazard
assessments of tephra accumulation cannot be
based on field observations only, and they also
require a thorough probabilistic analysis of a wide
range of possible scenarios. In fact, field obser-
vations are the result of a few eruptive conditions
that are typically not statistically meaningful. For
instance, the geological record samples only a few
column heights, eruption durations and wind pro-
files. In particular, wind profiles are typically very
variable and field observations are too limited to
represent a statistically significant sample of
weather conditions. Any sample of wind data used
for numerical simulations (e.g. 1, 5 or 10 years, or
more) will always be a subsample of the whole
possible range, but still more significant than the
range shown in the stratigraphic record. A careful
analysis of wind profiles can provide an indication
of the critical number of wind profiles that needs
to be considered to capture the variability signifi-
cantly relevant in specific hazard studies (e.g.
Fig. 5). In addition, the combination of direct obser-
vations of tephra accumulation and the study of the
resulting deposits has often shown that only the
major eruptive episodes leave a significant strati-
graphic record, whereas smaller episodes produce
tephra deposits that are typically eroded soon after
they have been deposited (Bonadonna et al.
2002b). Therefore, a hazard assessment based
only on the stratigraphic record would be clearly
biased toward large events. This is particularly
true for prehistoric stratigraphic records, which are
more likely to have experienced erosion, especially
of thin layers. In short, the stratigraphic record
sampled at a given location typically represents an
incomplete accumulation curve, whereas a hazard
curve compiled for the same location represents a
comprehensive forecast that also accounts for the
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smallest events, for large events that have not hap-
pened yet and for a wider range of wind profiles
(e.g. Fig. 8). The reliability of such a forecast is
obviously based on the reliability of the activity
scenario chosen and the physical model used.

Importance of field data

Field observations are crucial for the calibration of
dispersion models and for the identification of poss-
ible activity scenarios. First of all, before prob-
ability maps and hazard curves are compiled,
sensitivity tests need to be carried out to investigate
the actual agreement between field and computed
data and establish confidence that a given model
can actually reproduce the volcanic processes we
want to forecast. Second, sensitivity tests based on
the comparison between field and computed data
are also used to determine empirical parameters
that cannot be determined a priori. In fact, dis-
persion models used for hazard assessments still
require empirical parameters (e.g. the diffusion
coefficient in equation (2)) that mainly account for
those complex volcanic processes that these simpli-
fied models do not describe, and therefore they need
to be determined for each specific volcano and style
of eruption. Third, the history of a volcano needs to
be carefully studied to produce density functions for
the input parameters (e.g. column height, eruption
duration, total grain-size distribution, eruptive
vent) and to understand the type of activity that
characterizes a given volcano. As a result, a
hazard assessment is typically very specific for
any given volcano and can only be done in combi-
nation with field investigations.

Uncertainty analysis

Uncertainty analysis is also an important aspect of
numerical studies and probability investigations.
Uncertainties can be divided into aleatoric and epis-
temic. Aleatoric uncertainties are mainly due to
random errors in field measurements and to the
random behaviour of the natural system. Epistemic
uncertainties are due to lack of information of both
field data and numerical investigations, and there-
fore they can represent the inaccuracy of field tech-
niques, the limitation of the geological records and
the limitations of the physical model. Often, aleato-
ric uncertainty can be assessed quantitatively, but
realistically epistemic uncertainty may be more
important. As a result, probability assessments
may be more reliable if they simply give a range
of probability values. Epistemic uncertainties can
also be reduced by improving our physical models
and our field investigation techniques. As a first
approximation, numerical simulations typically per-
formed for hazard assessments show good
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agreements with field data because uncertainties
caused by the physical models (epistemic) are on
the same scale as the uncertainties related to the col-
lection of field data (epistemic and aleatoric). As a
result, hazard assessments based on these models
can be considered reliable. However, physical
models still need to be improved to account for par-
ameters that can be crucial for specific eruptive con-
ditions, such as particle aggregation and mass
distribution in the convective region of the plume.
Propagation of uncertainties in numerical simu-
lations should also be addressed to evaluate the
cumulative uncertainties related to the outputs.
This represents a complex task, in particular for
complex physical models.

Choice of activity scenarios

Hazard assessments discussed in this paper mainly
involve conditional probabilities; that is, given a
specific eruptive scenario, what is the expected
range of tephra accumulation over a region of inter-
est? Once the choice of the eruptive scenario is
defined (One Eruption Scenario, Eruption Range
Scenario, One Wind Scenario, Multiple Eruption
Scenario) and the density functions for input para-
meters are identified, the assessment becomes rela-
tively straightforward and the various probability
techniques described in this paper can be applied.
More complicated is the actual choice of the most
likely scenario and the maximum expected event
(strictly related to the choice of the input para-
meters). In fact, the maximum expected event
often represents the most likely maximum expected
event instead of the maximum event possible.
Therefore a whole range of events with magnitude
or VEI (Volcano Explosivity Index) larger than
the most likely maximum expected event is typi-
cally ignored, underestimating the actual hazard.
As an example, the hazard assessment for the
Soufriere Hills volcano was based on the 1996—
1998 activity (Table 1; Bonadonna et al. 2002a),
and it underestimated the upper limit scenario. In
fact, the largest dome collapse considered had a
volume of 50 x 10° m> DRE (Table 1). However,
on July 2003 a collapse of 210 x 10° m® occurred,
causing roof collapses in the SW of the island not
predictable by the 1996-1998 scenario. A more
comprehensive evaluation of activity scenarios
should be based on a critical probability analysis
of all possible events (also the most unlikely). As
a result, the probability of each scenario could be
combined with the probability of reaching a
certain tephra accumulation in a given area for a
specific scenario. A different approach is the use
of ensemble forecast techniques based on random
sampling of a wide range of input parameters
(including extreme values). In this case, the
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density function of input parameters is crucial. For
instance, the Multiple Eruption Scenario assess-
ment based on a range of possible scenarios (Tara-
wera assessment) provides more information and
accounts for more possible outcomes than the Mul-
tiple Eruption Scenario based on the most likely
scenario (Montserrat assessment). The ensemble
forecast approach used for Tarawera was made
possible by the parallelization of the algorithm.
The choice of the eruptive scenario and the
maximum expected event will always be biased
by the geological record. Therefore, extreme care
is required in the investigation of the chosen
activity scenario (i.e. chosen input parameters and
probability density functions) and researchers
need to be aware of the associated limitations and
implications for hazard assessments.

Computing implications

Hazard investigations can be computationally
expensive because the same calculations need to
be executed for a large number of grid points
(hazard-map resolution) and several simulations
need to be run to analyse a wide range of possible
scenarios (hazard-map reliability). The hazard-
map reliability also depends on the physical
model and on the initial assumptions considered,
and these are often simplified to speed up the calcu-
lations (e.g. assumption of constant particle settling
velocity (Armienti et al. 1988; Macedonio et al.
1988; Barberi er al. 1990; Bonadonna et al.
2002a); assumption of uniform wind field (Connor
et al. 2001); assumption of a single particle diffu-
sion law (Armienti er al. 1988; Macedonio et al.
1988; Barberi er al. 1990; Connor et al. 2001;
Bonadonna et al. 2002a)). One low-cost solution
for the improvement of hazard-map resolution,
hazard-map reliability and computing time is the
use of parallel modelling. Modelling for hazard
assessments is embarrassingly parallel because the
same calculations are performed independently on
a large number of grid points. In this case, compu-
tational time is significantly reduced by dividing the
number of grid points between several computers
(or nodes) and computational speed increases line-
arly with the number of computers (or nodes)
used. As a result, the parallelization of the algor-
ithm increases the computing speed and, therefore,
allows for the implementation of the physical
model, a fully probabilistic analysis of inputs and
outputs (including ensemble-forecast approaches),
and the use of denser and larger grids.

Concluding remarks

Hazard assessments of volcanological hazards have
significantly progressed during the last 20 years in

association with the development of more powerful
computing techniques. Researchers have realized
that deterministic assessments typically give
limited results that could often be misleading
because of the natural bias of geological records.
Accounting for a more comprehensive range of
possible scenarios, the combination of field data,
numerical modelling and probabilistic analysis
gives a better understanding of natural processes
and their effects. However, such a combination is
not always straightforward and requires a critical
evaluation of crucial steps.

Reliable field data represent the cornerstone of
any hazard study, but for comprehensive hazard
assessments, their collection and processing
should adjust to the requirements of numerical
modelling and probability analyses. In particular,
distribution of tephra accumulation should be quan-
tified using isomass maps, complete grain-size
distribution for the whole deposit should be deter-
mined, the contour line of approximately zero
mass should be identified, deposit and particle
density should be characterized, and stratigraphic
records should be carefully described to define
accurate eruptive scenarios. For a comprehensive
validation of numerical models, particular attention
should be paid to field data from large eruptions. In
fact, most good datasets available in the literature to
date are from more frequent, weak eruptions, which
are typically characterized by very different plume
and sedimentation dynamics.

Before considering field observations for vali-
dation purposes or to construct specific scenarios,
researchers need to fully understand the impli-
cations of data-gathering processes and critically
evaluate the uncertainties related to individual data-
sets and the field techniques used. In addition,
whenever probabilistic methods are used, uncer-
tainties in the analysis also need to be addressed.
Misconception on the capability and limitations
of probabilistic approaches and misinterpretations
of field data can lead to misleading hazard
assessments.

The reliability of hazard assessments is also
based on the reliability of the physical model.
Current physical models typically used for hazard
studies provide good agreement with field data
when thorough calibrations are performed.
However, recent advances in parallel computing
and faster computers allow more complexities in
the algorithm, which could help reduce the
number of empirical parameters, making the phys-
ical models more flexible and easier to use. There-
fore, future research should aim toward more
robust physical models that can describe also
complex but crucial plume and sedimentation pro-
cesses. For instance, a good parameterization of
particle aggregation is necessary to model
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dispersion of fine-rich tephra, and a better descrip-
tion of mass distribution in the convective column
is required to model tephra dispersion in proximal
areas. It would also be important to investigate the
evolution of mass distribution with time, the
effects of particle shape on terminal velocity, turbu-
lent diffusion and the interaction of the plume with
the surrounding atmospheric environment.
Advances in dataset quality and computing tech-
niques, combined with an increasing appreciation
for interdisciplinary collaborations, represent a
very promising indication for a rapid development
of hazard investigations. Resulting studies will
provide a fundamental tool for the improvement
of life of people living close to active volcanoes.

Further reading

A more extensive review of general characteristics
of tephra deposits and numerical modelling of
tephra dispersion is given in the book Volcanic
Plumes by Sparks et al. (1997). A detailed descrip-
tion of standard techniques for field investigations
and data processing is given in Volcanic Succes-
sions by Cas & Wright (1987). For a general use
of deposit characteristics to determine crucial erup-
tion parameters, the reader is referred to the book
From Magma to Tephra by Freundt & Rosi (2001).

The author is particularly grateful to S. Sparks,
G. Macedonio and C. Connor for their invaluable
support and extensive discussions on the application of
numerical modelling and probabilistic analysis to hazard
assessment of tephra dispersion. She also benefited from
constructive considerations on probability investigations
from W. Aspinall and W. Marzocchi. Many thanks go to
H. Mader, C. Connor and L. Connor for endless encour-
agement and helpful revisions of this paper.

References

ApsimMoN, H. M., GubpikseN, P., Kurtrov, L.,
RoDHE, H. & YOSHIKURA, T. 1988. Modeling of
the dispersal and deposition of radionuclides;
lessons from Chernobyl. Environment, 30, 17-20.

ARMIENTI, P., MACEDONIO, G. & PAREScHI, M. T.
1988. A numerical model for simulation of tephra
transport and deposition—applications to May 18,
1980, Mount St Helens eruption. Journal of Geo-
physical Research, 93, 6463—-6476.

AspINALL, W. P, Woo, G., VOIGHT, B. & BAXTER,
P. J. 2003. Evidence-based volcanology: appli-
cation to eruption crises. Journal of Volcanology
and Geothermal Research, 128, 273-285.

BARBERI, F., MACEDONIO, G., PARESCHI, M. T. &
SANTACROCE, R. 1990. Mapping the tephra
fallout risk: an example from Vesuvius, Italy.
Nature, 344, 142—144.

257

BAXTER, P. J. 1990. Medical effects of volcanic erup-
tions. 1. Main causes of death and injury. Bulletin
of Volcanology, 52, 532—544.

BLONG, R. J. 1984. Volcanic Hazards. A Sourcebook
on the Effects of Eruptions. Academic Press,
Sydney.

BLONG, R. J. 1996. Volcanic hazard risk assessment.
In: ScarpA, R. & TILLING, R. L. (eds) Monitoring
and Mitigation of Volcanic Hazards. Springer,
Berlin, 675-698.

BonaDoNNA, C. & HouGHTON, B. F. 2005. Total
grainsize distribution and volume of tephra-fall
deposits. Bulletin of Volcanology, 67, 441-456.

BoNaDONNA, C. & PHiLLIPs, J. C. 2003. Sedimen-
tation from strong volcanic plumes. Journal of
Geophysical Research, 108, 2340-2368.

BONADONNA, C., ERNST, G. G. J. & SPARKS, R. S. J.
1998. Thickness variations and volume estimates
of tephra fall deposits: the importance of particle
Reynolds number. Journal of Volcanology and
Geothermal Research, 81, 173-187.

BONADONNA, C., MACEDONIO, G. & SPARKS, R. S. J.
2002a. Numerical modelling of tephra fallout
associated with dome collapses and Vulcanian
explosions: application to hazard assessment on
Montserrat. In: DRUITT, T. H. & KOKELAAR, B. P.
(eds) The Eruption of Soufriere Hills Volcano,
Montserrat, from 1995 to 1999. Geological
Society, London, Memoirs, 21, 517-537.

BONADONNA, C., MAYBERRY, G. C., CALDER, E. S. et
al. 2002b. Tephra fallout in the eruption of Sou-
friere Hills Volcano, Montserrat. In: DRUITT,
T. H. & KOKELAAR, B. P. (eds) The eruption of
Soufriere Hills Volcano, Montserrat, from 1995
to 1999. Geological Society, London, Memoirs,
21, 483-516.

BonaDONNA, C., CONNOR, C. B., HouGHTON, B. F.,
CONNOR, L., BYRNE, M., LAING, A. & HINCKS,
T. 2005. Probabilistic modeling of tephra dis-
persion: hazard assessment of a multi-phase erup-
tion at Tarawera, New Zealand. Journal of
Geophysical —Research, 110, B03203, doi:
10.1029/2003JB002896.

BRrIGGS, G. A. 1969. Plume Rise. US Atomic Energy
Commission, Washington, DC.

BuURrsIK, M. I, CAREY, S. N. & SPARKS, R. S. J. 1992a.
A gravity current model for the May 18, 1980
Mount St Helens plume. Geophysical Research
Letters, 19, 1663 —1666.

Bursik, M. L., SparksS, R. S. J., GILBERT, J. S. &
CAREY, S. N. 1992b. Sedimentation of tephra by
volcanic plumes: I. Theory and its comparison
with a study of the Fogo A plinian deposit, Sdo
Miguel (Azores). Bulletin of Volcanology, 54,
329-344.

CanNuTl, P., CAsAGLI, N., CATANI, F. & FALORNI, G.
2002. Modeling of the Guagua Pichincha volcano
(Ecuador) lahars. Physics and Chemistry of the
Earth, 27, 1587-1599.

CAREY, S. N. & SIGURDSSON, H. 1982. Influence of
particle aggregation on deposition of distal tephra
from the May 18, 1980, eruption of Mount St
Helens volcano. Journal of Geophysical Research,
87, 7061-7072.



258

CAREY, S. N. & SpARKsS, R. S. J. 1986. Quantitative
models of the fallout and dispersal of tephra from
volcanic eruption columns. Bulletin of Volcanol-
0gy, 48, 109-125.

Cas, R. & WRIGHT, J. 1987. Volcanic Successions:
Modern and Ancient: a Geological Approach to
Processes, Products and Successions. Springer,
Berlin.

Cion;, R., LonNGo, A., MAceponNiO, G.,
SANTACROCE, R., SBRANA, A., SuLprizio, R. &
ANDRONICO, D. 2003. Assessing pyroclastic fall
hazard through field data and numerical simu-
lations: example from Vesuvius. Journal of
Geophysical Research, 108 (B2), 2063, doi:
10.1029/2001JB000642.

CONNOR, L. J. & CoNNOR, C. B. 2006. Inversion is the
key to dispersion: understanding eruption
dynamics by inverting tephra fallout. /n: MADER,
H. M., CoNNOR, C. B., CoLES, S. G. & CONNOR,
L. J. (eds) Statistics in Volcanology. Special Publi-
cations of IAVCEI, 1. Geological Society, London,
231-242.

CONNOR, C. B., HILL, B. E., WINFREY, B., FRANKLIN,
N. M. & LA FEMINA, P. C. 2001. Estimation of vol-
canic hazards from tephra fallout. Natural Hazards
Review, 2, 33-42.

CRANDELL, D. R. & MULLINEAUX, D. R. 1978. Poten-
tial hazards from future eruptions of Mt St Helens
volcano. US Geological Survey Bulletin, 1383C,
1-26.

FrREUNDT, A. & Rosi, M. 2001. From Magma to
Tephra. Developments in Volcanology 4.

GLAZE, L. S. & SELF, S. 1991. Ashfall dispersal for the
16 September 1986, eruption of Lascar, Chile, cal-
culated by a turbulent-diffusion model. Geophysi-
cal Research Letters, 18, 1237—1240.

HEFFTER, J. L. & STUNDER, B. J. B. 1993. Volcanic
Ash Forecast Transport and Dispersion (Vaftad)
Model. Weather and Forecasting, 8, 533-541.

HiL, B. E., ConNOR, C. B., JARZEMBA, M. S,
La FEMINA, P. C., NAVARRO, M. & STRAUCH, W.
1998. 1995 eruptions of Cerro Negro volcano,
Nicaragua, and risk assessment for future erup-
tions. Geological Society of America Bulletin,
110, 1231-1241.

HURrsT, A. W. & TURNER, R. 1999. Performance of the
program ASHFALL for forecasting ashfall during
the 1995 and 1996 eruptions of Ruapehu volcano.
New Zealand Journal of Geology and Geophysics,
42, 615-622.

HursTt, T. & SmiTH, W. 2004. A Monte Carlo method-
ology for modelling ashfall hazards. Journal of
Volcanology and Geothermal Research, 138,
393-403.

INMAN, D. L. 1952. Measures for describing the size
distribution of sediments. Journal of Sedimentary
Petrology, 22, 125-145.

IVERSON, R. M., SCHILLING, S. P. & VALLANCE, J. W.
1998. Objective delineation of lahar-inundation
hazard zones. Geological Society of America Bulle-
tin, 110, 972-984.

KOKELAAR, B. P. 2002. Setting, chronology and con-
sequences of the eruption of Soufriere Hills

C. BONADONNA

Volcano, Montserrat (1995-1999). In: DRuITT,
T. H. & KOKELAAR, B. P. (eds) The Eruption of
Soufriere Hills Volcano, Montserrat, from 1995
to 1999. Geological Society, London, Memoirs,
21, 1-43.

KovacGucHl, T. & OnNo, M. 2001. Reconstruction of
eruption column dynamics on the basis of grain
size of tephra fall deposits. 1. Methods. Journal
of Geophysical Research, 106, 6499-6512.

MACEDONIO, G., PARESCHI, M. T. & SANTACROCE, R.
1988. A numerical simulation of the Plinian fall
phase of 79 AD eruption of Vesuvius. Journal of
Geophysical Research, Solid Earth and Planets,
93, 14817-14827.

MarzoccHI, W., SANDRI, L., GASPARINI, P.,
NEWHALL, C. G. & BoscHi, E. 2004. Quantifying
probabilities of volcanic events: the example of
volcanic hazard at Mount Vesuvius. Journal of
Geophysical — Research, 109, B11201, doi:
10.1029/2004JB003155.

MCBIRNEY, A. & GoDpoY, A. 2003. Notes on the IAEA
guidelines for assessing volcanic hazards at nuclear
facilities. Journal of Volcanology and Geothermal
Research, 126, 1-9.

MCcCBIRNEY, A. R., SErRvA, L., GUERRA, M. &
CoNNOR, C. B. 2003. Volcanic and seismic
hazards at a proposed nuclear power site in
central Java. Journal of Volcanology and Geother-
mal Research, 126, 11-30.

MORTON, B., TAYLOR, G. L. & TURNER, J. S. 1956.
Turbulent gravitational convection from main-
tained and instantaneous source. Proceedings of
the Royal Society of London, 234, 1-23.

NEWHALL, C. G. & HoBLITT, R. P. 2002. Constructing
event trees for volcanic crises. Bulletin of Volca-
nology, 64, 3-20.

PALMER, T. N. 2000. Predicting uncertainty in fore-
casts of weather and climate. Reports on Progress
in Physics, 63, 71-116.

PrEIFFER, T., CosTA, A. & MACEDONIO, G. 2005. A
model for the numerical simulation of tephra fall
deposits. Journal of Volcanology and Geothermal
Resarch, 140, 273-294.

PYLE, D. M. 1989. The thickness, volume and grain-
size of tephra fall deposits. Bulletin of Volcanol-
ogy, 51, 1-15.

ROBERTSON, R., COLE, P., SPARKS, R. S. J., ET AL.
1998. The explosive eruption of Soufriere Hills
Volcano, Montserrat, West Indies, 17 September,
1996. Geophysical Research Letters, 25, 3429—
3432.

Ross, S. M. 1989. A First Course in Probability.
Macmillan, New York.

SAHETAPY-ENGEL, S. 2002. Tephra fall deposit of the
AD 1305 eruption of Tarawera, New Zealand:
reconstruction of eruption dynamics. MS thesis,
University of Hawaii.

SEARCY, C., DEAN, K. & STRINGER, W. 1998. PUFF: a
high-resolution volcanic ash tracking model.
Journal of Volcanology and Geothermal Research,
80, 1-16.

SPARKS, R. S.J., WILSON, L. & SIGURDSSON, H. 1981.
The pyroclastic deposits of the 1875 eruption of



PROBABILISTIC MODELLING OF TEPHRA DISPERSION

Askja, Iceland. Philosophical Transactions of the
Royal Society of London, 229, 241-273.

Sparks, R. S. J., Bursik, M. 1., ABLAY, G. ],
THOMAS, R. M. E. & CAREY, S. N. 1992. Sedimen-
tation of tephra by volcanic plumes. 2. Controls on
thickness and grain-size variations of tephra fall
deposits. Bulletin of Volcanology, 54, 685-695.

SpARkS, R. S. J., Bursik, M. I, CAREY, S. N.,
GILBERT, J. S., GLAZE, L. S., SIGURDSSON, H. &
Woobs, A. W. 1997. Volcanic Plumes. Wiley,
Chichester.

STIRLING, M. W. & WILSON, C. J. N. 2002. Develop-
ment of a volcanic hazard model for New Zealand:
first approaches from the methods of probabilistic
seismic hazard analysis. Bulletin of the New
Zealand Society for Earthquake Engineering, 35,
266-277.

STUNDER, B. J. B., HEFFTER, J. L. & DAYAN, U. 1986.
Trajectory analysis of wet deposition at Whiteface
Mountain: a sensitivity study. Atmospheric
Environment, 20, 1691-1695.

Suzuki, T. 1983. A theoretical model for dispersion of
tephra. /n: SHIMOZURU, D. & YOKOYAMA, 1. (eds)
Arc Volcanism, Physics and Tectonics. Terra,
Tokyo, 95-113.

THORARINSSON, S. 1944. Petrokronologista Studier
pa Island. Geographes Annuales Stockholm, 26,
1-217.

259

TURNER, J. S. 1973. Buoyancy Effects in Fluids.
Cambridge University Press, Cambridge.

WADGE, G. & Isaacs, M. C. 1988. Mapping the vol-
canic hazards from Soufriere Hills Volcano, Mon-
tserrat, West Indies, using an image-processor.
Journal of the Geological Society, London, 145,
541-552.

WADGE, G., YOUNG, P. A. V. & McKENDRICK, . J.
1994. Mapping lava flow hazards using computer
simulation. Journal of Geophysical Research-
Solid Earth, 99, 489-504.

WADGE, G., JACKSON, P., BOWER, S. M., Woobs,
A. W. & CALDER, E. 1998. Computer simulations
of pyroclastic flows from dome collapse. Geophysi-
cal Research Letters, 25, 3677-3680.

WALKER, G. P. L. 1971. Grainsize characteristics of
pyroclastic deposits. Journal of Geology, 79,
696-714.

WALKER, G. P. L. 1973. Explosive volcanic
eruptions—a new classification scheme. Geolo-
gische Rundschau, 62, 431-446.

WALKER, G. P. L. 1980. The Taupo Pumice: product
of the most powerful known (Ultraplinian) erup-
tion? Journal of Volcanology and Geothermal
Research, 8, 69-94.






