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Bayesian inference in forecasting volcanic hazards:
An example from Armenia
Jennifer N. Weller

ABSTRACT

Scientists worldwide are increasingly faced with the need to assess geologic
hazards for very infrequent events that have high consequence, for instance, in siting
nuclear facilities for volcanic hazards. One of the methods currently being developed for
such assessments is the Bayesian method. This paper outlines the Bayesian technique by
focusing on the volcanic hazard assessment for the Armenia Nuclear Power Plant,
(ANPP), which is located in a Quaternary volcanic field. The Bayesian method presented
in this paper relies on the development of a probabilistic model based on the spatial
distribution of past volcanic events and a geologic process model.

To develop the probabilistic model a bivariate Gaussian kernel function is used to
forecast probabilities based on estimates of A;, temporal recurrence rate, and As, spatial
density. Shortcomings often cited in such purely probabilistic assessments are that it
takes into account only known features and the event, new volcano formation, is rare and
there is no opportunity for repeated experiments or uniform observations, the hallmarks

of classical probability. One approach to improving such probabilistic models is to

il



incorporate related geological data that reflect controls on vent distribution and would
improve the accuracy of subsequent models.

Geophysical data indicate that volcanism in Armenia is closely linked to crustal
movement along major right lateral strike-slip fault systems that generates transtension
across region. The surface expression of this transtension is pull-apart basins, filled with
thick deposits of sediment, and antithetic normal faults. Volcanism in Armenia is
concentrated in these deep sedimentary basins as is reflected in regional gravity data
surveys. This means that low gravity anomalies are likely good indicators of future
volcanic activity and therefore would improve probabilistic hazard models. Therefore,
gravity data are transformed into a likelihood function and combined with the original
probability model in quantitative fashion using Bayesian statistics. The result is a model
that is based on the distribution of past events but modified to include pertinent geologic
information. Using the Bayesian approach in this example increases the uncertainty, or
range in probability, which reflects how well we actually know our probability estimate.
Therefore, we feel it is appropriate to consider a range in probabilities for volcanic
disruption of the ANPP, 1-4 x 10 per year (t=1 yr). We note that these values exceed
the current International Atomic Energy Agency standard, 1 x 107 per year by at least

one order of magnitude.
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Chapter 1
Introduction

Scientists worldwide are increasingly faced with the need to assess hazards
associated with point-like features such as volcanoes and earthquake epicenters on
various temporal and spatial scales. Commonality among these phenomena exists
because the analysis of their distribution and geologic setting can be used to estimate
hazards quantitatively. Often, these geologic hazard assessments must evaluate the
likelihood of very infrequent events that have high consequences (Haneberg 2000). For
example, in the last two decades long-term probabilistic volcanic hazard assessment has
increasingly been used in siting nuclear facilities worldwide (Crowe et al. 1982;
Stamatakos and Ferrill 1996; Connor et al. 2000; McBirney et al. 2003; McBirney and
Godoy 2003; Martin et al. 2004). Often, the central issue in these assessments is the
likelihood of a new volcano forming by eruptions in close proximity to the facility. At
such facilities, hazards with probabilities on the order of 10° — 10 per year are often
considered high (Connor et al. 1995, Martin et al. 2004) because overall the risks
associated with such facilities must be very low.

Geological hazard assessments for point-like features should present robust
estimates of hazard rates, based on the frequency of past events and insights about the

geological processes that control such events. One challenge associated with long-term



probabilistic assessment of future volcanism is that models of volcanic processes, such as
the generation and ascent of magma, are inherently uncertain. One approach to making
hazard assessments based on such models more robust is to modify probabilistic analyses
by incorporating additional datasets through Bayesian inference (Von Mises 1957,
Connor et al. 2000; Martin et al. 2004). Essentially, Bayesian inference allows us to
combine two or more states of information (e.g., geophysical) to forecast the probability
of volcanic events, such as formation of a new volcano, based on our understanding of
volcanic systems, rather than solely based on the limited, and often incomplete, record of
volcanic events. If we consider the frequency of volcanic events to be a physical
property of a magmatic system, we are faced with the conclusion that the limiting value
of the frequency of volcanic events is unknown. The event, formation of a new volcano,
is rare and there is simply no opportunity for repeated experiments or uniform
observations, the hallmarks of classical probability. Consequently, we are forced to
update hazard forecasts using disparate observations of geologic and/or geophysical data
that we believe impacts hazard forecasts. Bayesian inference provides a practical
approach to incorporating such information.

In this paper, we analyze volcanological and geophysical data from Armenia with
the goal of calculating the hazard associated with the disruption of the Armenian Nuclear
Power Plant (ANPP) (Karakhanian et al. 2003), outline the technique, and illustrate the
problems inherent to such analyses. We do this through the construction of an improved
model that focuses on the probability of renewed volcanism that would impact the ANPP,

by combining the probabilistic and geophysical models using Bayesian inference. The
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Figure 1. Location map of Armenia showing 554 Quaternary
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39°

volcanoes used in study and faults. The rate of convergence

just north of the ANPP is 18-19 mm/yr based on REVEL

2000 models. The ANPP is shown just south of a cluster of 38

cinder cones.

ANPP is located in
the northwestern
part of the Ararat
Depression (a
sedimentary basin
between Mt.
Aragats in the
north and Mt.
Ararat in the
south) in close
proximity to the
town of
Metzamor, and 28
km west of

Yerevan, the

capital of Armenia (Figure 1). The ANPP is a Chernobyl-style reactor that sits at the

base of the southern foothills of Mt. Aragats, the largest composite volcano in Armenia.

Mount Ararat, another large composite volcano in Turkey, is 55 km south of the ANPP.

The ANPP is located on the Shamiram Volcanic Plateau and is only 1.3 - 6 km south of

38 small cinder cones arranged in four local clusters (Figure 2) (Karakhanian et al. 2003).

An additional source of volcanic hazard for the ANPP and the capital city of Yerevan are

the volcanoes of the Ghegam Ridge located 52 km to the east of the site and just west of



Lake Sevan (Figure
1). Some of these
volcanoes have been
dated as Holocene
and their Late
Pleistocene valley

flow terminates 25

km east of the plant

Figure 2. Photograph of the ANPP — clearly seen in the
background are a cluster of cinder cones and to the far left the
base of Mt. Aragats.

site. The most recent
volcanic eruptions on
the Ghegam Ridge have been dated between 4500 to 4400 + 70 yr BP (Karakhanian et al.

2003).

Armenia is an appropriate choice for this type of analysis due to both its volcanic
and tectonic setting. In the Quaternary (1.6 million years to the present), 554 basaltic to
andesitic cinder cones (Savov et al. 2003) developed in response to mostly monogenetic
activity. Monogenetic activity is characterized by the formation of a new volcano, such
as a cinder cone or lava dome, and duration of volcanic activity at monogenetic
volcanoes is thought to be typically less than 100 years (Connor and Conway 2000).
After cessation of eruptive activity at any individual monogenetic volcano, renewed
volcanism in the area builds a new monogenetic volcano. Thus, for this type of
volcanism, the number of volcanoes reflects the number of volcanic events for which

probabilistic forecasts are made. Because of the nature of this volcanic activity, the
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volcanoes themselves can be considered point-like features (Figure 1) and the hazard
assessment reduces to the problem of estimating the density distribution of these features.
Examples of other hazard assessments for monogenetic volcanic activity include nuclear
power plants and storage facilities (Connor et al. 1995; Karakhanian et al. 2003; Martin et
al. 2004) and urban centers such as Auckland, New Zealand (Magill et al. 2004) and

Mexico City (Bloomfield 1975; Martin del Pozzo 1982).

This distributed, monogenetic volcanism results from the complex tectonic history
of the region that lies within a broad zone of deformation that forms part of the Alpine-
Himalayan collision belt. Overall, volcanism describes an arc across Armenia (Figure 1)
that is subparallel to this collision belt. Pull-apart basins can be delineated by mapping
anomalies in the Earth’s gravity field, caused by density variations between the sediments
filling the basins and the surrounding crust (Tsuboi 1979). Presently, as a part of the
Alpine fold belt, the uplift occurring across Armenia is a result of the northward motion
of the Arabian plate with respect to Eurasia (Philip et al. 2001). The rate of convergence
of these two plates is 18-19 mm/yr based on REVEL 2000 models (Dixon and Mao
2002). Volcanism across the region is linked to subduction and subsequent collision, and
may result from slab steepening and breakoff which provides a viable mechanism for
magma generation (Keskin 2003). In any case, volcanism is closely linked to N-S
compression and E-W extension (Philip et al. 2001). The main geologic structures
produced in this tectonic setting are north-west trending right-lateral strike-slip faults.
These faults produce areas of transtension that create pull-apart basins within which

volcanism is localized. Contrasts in crustal structure reflected in the distribution of

5



3. =
4556406 & 2
4.56+06 { /
4450406 P
4.4e+06 - A A |

4.350+06 - AR AN

4.3e+06

| 'I. ..L.-J f. !
~ S 'IF N

400000 450000 500000 550000 600000 650000

m (mgals)

-80 -0 -60 -50 -40 -30 20 -10 O 10

Figure 4. Gravity distribution across Armenia, coordinates are
in UTM. Volcanoes typically occur in regions of broad gravity
lows which correspond to deep sedimentary basins formed
from extension and pull-apart mechanisms. The above
observations point to a strong correlation between patterns of
volcanism and structure.

gravity anomalies
have been shown to
influence both the
generation and ascent
of magma (Tamura et
al. 2002) and
monogenetic
volcanism has been
shown to
preferentially occur in
pull-apart basins and
similar areas
undergoing crustal
extension (Connor and
Conway 2000). This
correlation between

volcano distribution

and gravity anomalies occurs in Armenia as well (Figure 3), and may result from magma

generation by decompression melting of mantle previously enriched by subduction zone

processes (Pearce 1990; Keskin 2003; Savov et al. 2003). Such a positive correlation

between volcanism and gravity anomalies make it appropriate to consider gravity data in

analysis of volcano distribution and preparation of volcanic hazard forecasts.



Chapter Two

Methods

In this paper we outline a method that allows geologic data to be cast in a way
that permits systematic analysis of hazard at a site of interest. The simplest way to
visualize the process is in chart form (Figure 4). The flowchart provides a step-by-step
summary of the Bayesian process - from the initial step of defining databases to the final
step of evaluating hazard at the location of interest. Each element of the flowchart relies

on information about the region to construct a reasonable hazard model.

Defining the Database

Volcanic hazard assessments are only as good as the data used to create them. In
this paper we use two data sets. The first dataset consists of the geographic coordinates
of Armenian volcanoes. These coordinates were provided by the Armenia National
Academy of Sciences and list all known Quaternary volcanoes in Armenia. The
coordinates are provided in the universal transverse mercator (UTM) grid, WGS-84
datum. The second dataset comprises gravity data (Ohanissyan, 1985), also provided by
the Armenia National Academy of Sciences. These gravity data consist of measurements

of the relative change in the earth’s gravity field, corrected for topographic effects. They
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consist of geographic location, in the same UTM projection used in the volcano dataset,
and relative change in gravity (mGal). Following this compilation, the two datasets
follow somewhat different paths in the development of a probability model and a
geophysical model until they are transformed so they can be combined using Bayesian
methods (Figure 3). We will describe both these paths beginning with the development
of the probability model.
Developing the Probability Model

The first and perhaps most important step in developing a probability model for
volcanic hazard is to explicitly define events in the region of interest (Connor and Hill,
2000; Martin et al. 2004). Given the complexity of volcanic processes, what event is
specifically forecast by the probability model? This is important for a number of reasons,
not least of which is that the entire development of the probability analysis depends on
the event being defined as a point process. Second, having defined the event as a point
process, it is important to unambiguously define what constitutes an event and what does
not. For instance, an event could be the epicenter of an earthquake, or the location of a
sinkhole, or any other process that can be isolated to a precise location spatially. In the
hazard assessments presented in this study, the definition of an event is limited to the
formation of a new volcano, and is estimated directly from the distribution of existing
Quaternary volcanoes and gravity anomalies. This assessment specifically does not look
at the spatial or temporal distribution of volcanic eruptions at existing volcanoes or at the
volcanic hazards associated with eruptions, such as lava flows, lahars, or pyroclastic

flows. This is because the hazard assessment is intended to assess the probability of



eruptions from new volcanic vents in the area around the ANPP that would have a
potential deleterious impact on operation of the nuclear facility, and containment of

radionuclides (Crowe et al. 1982; McBirney and Godoy 2003).

The volcano dataset used in this study includes both monogenetic volcanoes (one
eruptive sequence only) and polygenetic volcanoes (volcanoes that have more than one
eruptive sequence). Volcano types include cinder cones, domes, composite volcanoes,
maars, and calderas. Individual vents are treated equally in the analysis, regardless of
volcano type, because we are modeling the probability of formation of a new volcanic
vent. Estimates of the probability of dike injection, without volcano formation, are not
considered in this hazard assessment but may be important in other types of hazard
assessments, such as for high level waste repositories (Woods et al., 1999; Connor and
Conway 2000). Formally, each volcanic event in this assessment is considered to be

independent of the other volcanic events in the data set.

Alternative methods for defining volcanic events can be used in probabilistic
volcanic hazard assessments. For example, polygenetic volcanoes may be weighted more
heavily depending on the number of past eruptions (Martin et al. 2004). Also, closely
spaced and similarly aged vents can be grouped together as a single event (Connor et al.
2000). Furthermore, only cones younger than a specific age, for example those formed in
the last 100,000 years, might be included in the analysis as volcanic events or these could
be weighted more heavily. Because vents may be grouped into single volcanic events in

varying ways depending on their timing, distribution, and episodes of activity, data sets

10



can be defined in different ways which would change the probability of an event
occurring. In this case, we use a simple definition in which each mapped volcano (Figure
la) is a single event, partly because the additional data required by alternative definitions

does not yet exist for Armenia.

Once the event is explicitly defined, we move on to the mathematical
development of the probability model (Figure 3). Ultimately, the probability of an event

occurring at a specific location is given by

P[N >1]=1-e*** (1)

where A is the effective area of interest (e.g., the area within which volcanism would
impact the ANPP, should it occur). In this study we define A as 50 km?” around the power
plant. The time period of interest is given by the parameter t, (e.g., the duration of
expected operation of the ANPP). We estimate a 100 year time period for the expected

operation of the ANPP. Once these site specific parameters are specified, we are left

with the problem of how to estimate A, spatial density (events per kilometer) and A,

temporal recurrence rate (events per year).

For Armenian volcanism, we use a simple estimate for temporal recurrence rate,

A = (2)

11



because the ages of individual volcanoes are not well constrained. In this equation, N is
the total number of volcanoes, tp is the age of oldest event, and ty is the age of the

youngest event. We know that all the volcanoes used in this study are all of Quaternary

age so we set tg equal to 1.6 million years and ty to 0, or present. This gives A a value of

3.5x 10 years. That is, we expect one event every 2900 years. Where ages of volcanic

events are better constrained, more detailed analyses have revealed time trends in

volcanic activity and other methods for estimating A; have been employed (Ho 1991a,b;

Condit and Connor 1996).

Compared with A, estimation of spatial density, A, is more difficult. However,

pioneering work by Diggle (1985) and Silverman (1986) has led to the development of a
kernel estimation technique that has been used in several studies to estimate spatial
density of volcanism, including in the Pinacate Volcanic Field, Mexico (Lutz and

Gutmann 1994), the Yucca Mountain region, USA (Connor and Hill 1995), and the

Tohoku region, Japan (Martin et al. 2004). In this technique, spatial variation in A is a

function of distance to nearest-neighbor volcanoes and a smoothing parameter, h. The
kernel function is a probability density function that is symmetric about the origin and
spreads probability away from the event (Diggle 1985). Different kernel functions can be
used including the Cauchy kernel (Martin et al. 2004), the Epanechnikov kernel (Lutz
and Gutmann 1994), and the Gaussian kernel (Connor and Hill 1995). It is widely agreed

that the shape of kernel function chosen in this type of analysis generally has a trivial

12



impact on probability calculations compared to other parameters (Connor and Hill 1995;
Lutz and Gutmann 1994). The Gaussian function was chosen for the Armenian problem
because volcanoes are treated as discrete events in time and space and the Gaussian
model responds well to the patterns generally recognized in volcano distributions, such as
clustering of vents. The probability surfaces generated by this model are continuous, as
opposed to consisting of abrupt changes in probability that must be introduced in
spatially homogeneous models (Connor and Hill 1995). Continuous probability surfaces
allow for relatively easy comparison to other empirical data sets, e.g. gravity data that

shed light on volcano distribution. The bivariate Gaussian kernel is given by:

2% y) = — Ze_m 3)
S 27Nh?

where d; is the distance from the point X,y, where A is estimated, to the i volcano
location, h is a smoothing parameter, and N is the number of volcanoes (points) that are
used to estimate As(x,y). Due to the fact that N occurs in the denominator, the integral of
As(x,y) across the map will be unity. Therefore the spatial density, A, is a bivariate
probability density function. Probability estimates made using equations 1 and 3 depend
on the value chosen for h. Using a bivariate Gaussian kernel, events will have a high
estimated probability in proximity to existing volcanoes if the value chosen for h is small,
but low estimated probability away from the volcano. On the other hand, a large value of
h will yield a more uniform estimate of probability distribution across the region. In the

Gaussian kernel, the smoothing factor is equivalent to the standard deviation of a

13



symmetric, bivariate Gaussian distribution. Therefore, the kernel function depends on the
assumption that the smoothing parameter is estimated in a geologically and/or
statistically significant way (Connor and Hill 1995). In this study a wide range of
smoothing constants are used (Figure 4); in addition, the range of reasonable smoothing
constants is further constrained by use of the Clark-Evans (CE) spatial cluster analysis
(Clark and Evans 1954). This analysis shows that volcanic events in Armenia are
clustered across a variety of scales with >99% confidence (Blyth and Ripley 1980;
Cressie 1991). Applying these tools, we use h=3000 m. As mentioned above, an
additional assumption in the kernel estimation technique is the shape of kernel function
chosen. This model gives an estimate of spatial density based on positions of volcanic
vents for Armenia (Figure 5). The kernel model is useful because (1) probability maps
can be made allowing ease of comparison with other geologic information; (2) there is no
need to define zones of volcanic activity, as is required in a homogenous approach
(Margulies et al. 1992); and (3) uncertainty in the distribution of individual events is easy
to assess. The final step in developing the probability model is to prepare a contour map
of spatial density (Figure 6). The map is made using a UTM projection for equal area
measurements and the units of probability are typically converted into their logarithms
because volcano vent density commonly varies by orders of magnitude across a region.
Also, testing the suitability of the smoothing parameter chosen is appropriate at this point
(Figure 6). The maximum probability of an event occurring is 3.4 x 10 where h has a
value of 4000 m. More importantly, this plot demonstrates that probability is sensitive to

the value of h chosen and varies rapidly from a maximum probability of 3.4 x 10 at
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Figure 5. Modeling the data. Complimentary cumulative distribution function
showing distance of nearest-neighbor volcano versus its cumulative probability of
occurrence for the original data set and various values of smoothing parameter h.
Notice that while h=1500 appears to fit the data well overall, it is a very poor fit in
the tail of the distribution. Conversely, h=3000 fits the data well in the tail of the
distribution.
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4000 m to 7.5 x 107 at approximately 25,000 m. This sensitivity of the probability to the
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Figure 7. Plot showing values of h ranging from
1,000 m to 40,000 m versus the probability of an
event occurring at the ANPP. The greatest hazard
exists when h = 4,000 m.

Development of the Gravity Model

smoothing parameter is
important to consider because
we don’t have a robust
method for estimating h
precisely. Using the above
defined parameters, the
acceptable range in
probability of an event
occurring that would disrupt
the ANPP and using equation
lis 1to3.4 x 10™ for 1800

m < h < 17000 m (Figure 7).

Although a probabilistic volcanic hazard assessment could be based solely

on the methods outlined above, there are clear shortcomings. First, the distribution of

volcanoes in the region may incompletely sample the possible distribution of volcanoes.

In other words, because our sample of events is comparatively small, volcanism might

yet occur in areas that have no record of previous activity. Second, the kernel estimation

technique does not attempt to account for additional geologic information that might

influence our assessment of the distribution of future volcanoes. Here, we take gravity

17



data and cast gravity anomalies as another probability density function in an effort to

develop a more geologically realistic probability estimate, the ultimate goal being to

modify A with gravity information. However, to use the gravity data in a probability

model, the gravity observations must be transformed into a likelihood function. This

likelihood function, like A, is a probability density function. However, before the
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Figure 8. KS-test comparison cumulative fraction plot.
Comparison of gravity distribution over the area of study and
the gravity distribution near volcanoes shows that volcanoes
tend to occur in areas of anomalously low gravity. A K-S test,
based on the maximum difference in the two distributions,
indicates that the tendency for volcanoes to occur in gravity
lows is statisticallv significant (>99% confidence).

likelihood
function can be
developed a
relationship
between volcano
distribution and
gravity must be
shown to exist.
A
powerful tool for
assessing the
relationship
between two
distributions such

as volcano

distribution and gravity anomalies is the Kolmogorov-Smirnov (KS-test) goodness-of-fit

test (Chakravarti and Roy 1967). In this case, gravity at each specific volcano location is

18



compared to gravity data collected across the entire region. Both distributions are plotted
in cumulative form (Figure 8) and the maximum difference between the two
distributions, the Kolmogorov-Smirnov statistic, (KS-statistic), is measured. For
Armenian gravity data, the KS-statistic is 0.202 and the two distributions are different (P-
value is ~ 0.0). This indicates volcanoes are clustered in low gravity regions, and this
correlation suggests that gravity anomalies may be an indicator of the distribution of
future volcanic activity. In other words, we need to consider how A might be modified
by the presence or absence of gravity anomalies.

Now that a relationship has been identified between volcano location and gravity
using the K-S test, the next step is to transform the gravity data into a likelihood function.
There is currently no standard method for developing the likelihood function and is
therefore somewhat subjective as it is not purely based on statistics and relies to a certain
extent on the expertise of those conducting the analysis (Martin et al. 2004). The first
step in developing the likelihood function is to make some general observations about the
relationship between gravity anomalies and volcano distribution. One observation is that
there is an inverse relationship between the two distributions — that is, volcano density is
high in areas with low gravity anomalies. Expounding on this observation, volcanoes
only occur in areas where gravity is less than -10 mGal. This leads to the conclusion that
the probability of volcanoes occurring in areas with gravity values greater than -10 mGal
should be correspondingly small. Further observation shows that most volcanoes (about
90%) occur where gravity values are less than -15 mGal. This suggests that the gravity

anomalies indicate a threshold in vent distribution. That is, volcanoes are equally likely
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to occur anywhere gravity anomalies are less than some threshold value (such as -15
m@Gal) and not likely to occur at all in areas with gravity values greater than -10 mGal. In
this case, we develop a step function to transformation to map gravity values into the
likelihood function using Boolean logic. For example:
if (G(x,y) > -10 mGal) then W(X,y) = 0.001
if (-15 mGal < G(x,y) <-10 mGal) then W(X,y) = 0.01
if (G(x,y) < -15 mGal) then W(x,y) = 0.1
where G(X,y) is the measured value of gravity at map location X,y, usually after
interpolation onto a grid, and W(X,y) is the weight assigned to gravity values based on the
observed distribution of volcanoes with respect to gravity anomalies (Figure 8). Adding

additional if-then statements smoothes the mapped transformation. Using the weights

derived from the above process, gravity values are transformed into a likelihood function:

G(X, yW(X,y)
L@|X,y)= 4
@1y > G(X, YW (X, y) @

where L(@| X, Y) is the likelihood function, which integrates to unity over the region of

interest XY, and & is the set of weighted gravity values. Clearly, the way in which
L(@ | X, y)is calculated is a reflection of the geologic interpretation of the data and the
experimenter’s belief about geologic processes governing magma generation, ascent, and
eruption.

Finally, having developed and confirmed the validity of the gravity model, it is
then normalized, recast as a probability density function, and set to the same grid spacing
as the probability model. As with the probability model, the final step in developing the

gravity model is to prepare a contour map of normalized gravity. The map is made using
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a UTM projection for equal area measurements and the units of gravity are in mGal
(Figure 2).
Bayesian Model

The final step in the Bayesian process is to combine the probability PDF (a priori
function) of spatial density and gravity PDF (likelihood function) into a joint probability
density function, or a posteriori PDF for weighted spatial density. The product (or

intersection) of these two states of information is given by

A (X, YL@ X, Y)

A (%Y ]6) =
1o I, 2,06 Y)L@ | x, y)dxdy

()

where X and Yy represent grid point locations in the region of interest A, 0 is the gravity
data, A4(x,y) is the spatial density, which is modified by L(8|x,y), the gravity PDF, or
likelihood function. The posteriori PDF is normalized to unity by integrating over the
entire volcanic field so that cumulative probability does not change, but the shape of the
2-D surface distribution will be modified by the gravity PDF (Figure 9) (Martin et al.,
2004).

A limitation with the standard Bayes rule above in equation (5) is the inability to
weight the respective PDFs. Further, since it is conditional probability, probabilities will
always be negligible or zero in regions where there are no or extremely sparse volcanic
events, irrespective of how irrefutably geophysical or other information show the
potential of new volcanic events to form. We therefore modify equation (5) by combining

PDFs through addition (or union) and assign weights:
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at,(x,y)+(1-a)L@|X,y)

As (X, Y[ 6) =
(X,y|6) jJ'Ra/IS(X’y)jL(l_a)L(mX,y)dxdy

(6)

where a, is the weighting function of factor. Relative weight is assigned to the probability
and gravity PDF’s subjectively. Giving a large weight to the probability model suggests
that future volcanism can be predicted almost exclusively by the distribution of volcanic
events. A large weight applied to the gravity model suggests that future volcanism is
better predicted by gravity anomalies. Setting a = 0.50, gives both PDF’s equal weight
and produces the same result as achieved using equation 4 (Figure 8). Two problems
arise from using this method. First, the aforementioned subjectivity in assigning weights
to the PDF’s and second, a step function must be introduced to determine how much
weight should be given to individual gravity measurements. This process is also
somewhat subjective but can be given credibility by looking at the graph of volcano
fraction versus gravity (Figure 8). The observation that volcanoes cluster in regions
under 20 mGals lends credence to weighting the step function heavily in areas with
gravity values under this threshold. For values over this threshold gravity values are
given increasingly less weight in the step function. When the parameter a is given equal
weight in equation 6, we achieve the same result as using the Baye’s Theorem equation
(5). Now, the new value A4(x,y|0) is used in equation 1, rather than the unmodified value
As(x,y). For the ANPP the probability of volcanic disruption is 1 x 10" using Bayesian
inference. Interestingly, this is lower than the probability calculated using the

unmodified value Ay(x,y) of 4 x 10,
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Figure 9. Bayesian output. Map showing results from equation 5 and equation 6
(parameter a is 0.50) where the spatial recurrence rate PDF and the gravity
likelihood function are combined.
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Chapter Three
Discussion

Von Mises (1957), in his treatise on probability and statistics, shows that it is
possible to develop an accurate model of spatial density, given enough events. That is,
provided the experiment can be performed many times. In geologic hazard assessments
we have only one spatial experiment to work with, in this case the observed distribution
of volcanoes, and models developed to estimate hazards solely based on these data are
inherently uncertain. The risk in using these models is that the distribution of past events
may poorly reflect the distribution of potential future events. Any additional information
that sheds light on the spatial distribution is therefore worth analyzing.

A model based solely on spatial distribution of past events cluster probability
around known events and does not predict a future event at positions far from the cluster
(Figure 10a). However, a geologic model, such as one based on gravity anomalies,
allows probability of future events to be modified to account for our understanding of the
geologic setting of volcanism. For example, we know that volcanoes in Armenia have not
formed in the Quaternary where gravity values are higher than -10 mGal, but do occur
through regions with gravity values below -15 mGal. Taking this into account modifies

the probability model (Figure 10 b,c). By combining the statistical model with gravity
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Figure 10 a,b,c. Stylized diagram showing (a) spatial density model; (b) gravity model;
and (c) Bayesian model that combines the spatial and gravity models. Red areas correspond
to a high probability of a future volcanic event, yellow areas to moderate probability of an
event, and blue areas to regions of low probability of an event. Notice the probability
associated with location X and location y. In the spatial density model (a) X falls in a region
of low probability and y a region of high probability, i.e. an event would not be expected to
occur at location X but would be expected at location y. In the gravity model (b) both X and
y fall in a regions of low gravity (or high probability) and an event would be equally likely
in either location. In the Bayesian model (c) an event is still likely at position y but there is
a moderate probability of an event at location X. This model reflects the most information
available for assessing the hazard at both points.

Gravity Model: L(@|x,y) =
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data through Bayesian inference we arrive at a different, and, if our geologic models are
good, an improved volcanic hazard forecast.

There are several clear limitations to a purely statistical approach to hazard
assessment. One being that this approach takes into account only known features. For
instance, in Armenia volcanoes form in association with deep pull-apart basins that are a
result of transtension and are associated with high rates of sedimentation. The majority
of volcanoes in Armenia are monogenetic and hence do not have a great deal of
topographic relief. It is conceivable that some Quaternary vents are buried beneath
sediment in these basins, and are not accounted for in the estimate of spatial density, but
should be. Furthermore, the distribution of volcanoes in the region may incompletely
sample the possible distribution of volcanoes, i.e. because our sample of events is
statistically small, volcanism could occur in areas that have no previous record of
activity. Conversely, abrupt changes in geologic structure are common, especially at
active plate margins, such as in Armenia. Estimates of spatial density from the point
distribution may inadvertently indicate that areas of very different geology are equally
likely to host future volcanic activity.

In this context, there are several advantages to the Bayesian approach. First, this
approach steers us toward a geological basis for making probabilistic hazard assessments.
In this case we use gravity anomalies as the geologic base from which we modify our
probability model. We use gravity because (1) other studies have shown that distributed,
monogenetic volcanism often correlates with gravity anomalies (e.g., Connor et al, 2000);

(2) the tectonic setting of Armenia and resulting geologic features supports the idea that
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this correlation should occur in Armenia; and (3) the K-S test statistically shows there is
correlation between volcanic events and gravity. However, gravity is not unique — other
pertinent geologic information could be used either alone or in combination with other
data to enhance probabilistic hazard assessments. These include seismic tomographs
(Martin et al., 2004), geochemical data (Condit and Connor, 1996), fault and other
structural data, and magnetic data.

Second, this approach raises the issue that there is no standard method for
development of the likelihood function. Transforming geophysical observations into
PDF’s and deciding how best to combine them is a subjective process that relies on the
experimenter’s interpretation of geological data and on general observations about the
relationship between datasets.

Third, uncertainty in probability estimates may actually increase using the
Bayesian approach. For instance, the range of probabilities may increase because of
uncertainty in how to create the likelihood function, and in how much weight to assign

the likelihood function. Since the posteriori function for A (X,y) is a PDF, increasing

probability in regions of low gravity with no volcanoes decreases probability in the
immediate vicinity of volcano clusters. The amount of change depends on the weighting
of geologic models. Rather than being a negative outcome, increase in uncertainty more
accurately reflects our understanding of the geology. In the case of the ANPP, the
probability of volcanic disruption based solely on kernel estimation techniques is 3.4 x
10" for volcanic events impacting the site (A=50 km?, t = 100 yr, h=3000 m). When the

kernel estimation technique is modified with gravity using Bayesian inference, the
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probability of volcanism decreases to 1 x 10", If other models of volcano formation are
used to assess volcanic hazards to the ANPP, the probability may change, depending on
both the geologic model and probability model chosen. Perhaps a more useful estimate
for this site is simply stating that a range of models based on spatial density of volcanoes
and additional geologic information yield probabilities of volcanic eruptions impacting
the ANPP site of 1-4 x 107 per year (t=1 yr). These values, whilst apparently low on
human timescales, do in fact exceed the current International Atomic Energy Agency
standard, 1 x 107 per year (McBirney and Godoy, 2003), by at least one order of

magnitude.
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Chapter 4
Conclusions

The approach presented here points to the applicability of assessing point-like
geologic features, in this case volcanoes, through spatial statistics, specifically, Bayesian
statistics. This study shows that geologic structure controls the distribution of volcanism
in Armenia. Regionally, Quaternary volcanism is concentrated in pull-apart basins
associated with low gravity anomalies, as a result of crustal extension and decompression
melting of an enriched mantle. Gaussian kernel estimates of spatial density are greatest
in two clusters in the Ararat Depression, including the cluster in proximity to the ANPP.
Furthermore, vent density varies by three orders of magnitude across the region. These
models lead to estimates of probability of volcanic disruption to the ANPP of between 1
x 10* and 3 x 10 in 100 years, which exceeds the current IAEA standard of 1 x 10 in
100 years. This variation indicates that modification of models through the incorporation
of additional geologic information, may increase the range in probability estimates.
Ultimately, this paper provides a pathway towards the incorporation of geologic process
models in volcanic hazard assessments by allowing these models to be combined with

more traditional probabilistic models through Bayesian inference.
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43.78 40.21 44.87 40.41 4496 40.16
43.78  40.20 44.87  40.42 45.02  40.12
43.78  40.20 44.87 40.42 45.01 40.11
43.79  40.20 4488 40.42 45.05 40.12
43.79  40.20 4488 40.41 45.07 40.10
43.79  40.20 44.89  40.40 45.08 40.09
43.78 40.21 44.89  40.40 45.05 40.04
43.80 40.20 4490 40.40 45.02  40.17
43.79  40.20 4491 40.41 45.03  40.17
43.77 40.18 4490 40.40 45.04 40.15
43.77  40.17 4491 40.39 45.05 40.16
43.78  40.17 4491 40.38 4496 40.44
43.79  40.17 4492 40.39 4496 40.40
43.78 40.18 4491 40.36 4497 40.41
43.78 40.10 4492  40.34 4499  40.42
43.78 40.10 4494  40.36 4499  40.44
43.78 40.11 4494  40.35 45.00 40.42
43.79  40.10 4495 40.33 45.00 40.43
43.79  40.10 4494  40.32 45.00 40.43
43.80 40.10 4490 40.31 45.00 40.43
43.80 40.12 4492  40.31 45.00 40.44
43.80 40.13 4492  40.29 45.01 40.42
43.79  40.14 4492  40.31 45.00 40.45
43.80 40.13 4492  40.31 45.01 40.41
43.82  40.12 4493  40.30 45.03 40.42
43.84 40.11 4493  40.30 45.04 40.39
43.82  40.12 4494  40.29 45.02  40.39
43.83  40.12 4495 40.30 45.04 40.38
43.93  40.12 44.88  40.26 45.01 40.37
4392  40.13 4490 40.27 45.06 40.27
4392  40.13 4492  40.28 45.07 40.26
4392  40.13 4494  40.28 45.07 40.25
44.18 40.13 4493  40.25 45.22 40.03
4395 40.11 4494  40.26 45.22  40.07
43.96 40.10 4495 40.25 45.15 40.13
43.99  40.09 4493 40.23 45.16  40.12
44.03  40.08 4495 40.23 45.16 40.11
44.67 40.35 4494  40.22 45.17 40.11
44.68 40.34 4498 40.29 45.16 40.10
44.68 40.35 45.00 40.30 45.14  40.09
44.68 40.35 45.00 40.29 45.18 40.21
4472 40.32 45.01 40.29 45.18  40.20
4473  40.31 4492  40.21 45.14 40.38
44.73  40.30 4492  40.21 45.15 40.38
4472 40.30 4491 40.20 4521 40.38
4472 40.33 4497  40.20 45.22  40.39
4489 40.43 4496 40.17 45.00 40.47
4490 40.43 4495 40.16 4538 40.12
44.89  40.42 4496 40.16 45.41 40.10
4486 40.42 4496 40.16 45.42  40.09
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45.42  40.08 45.61 39.99 4591 39.72
45.42  40.06 45.61 39.97 45.89  39.71
45.46  40.06 45.58 39.96 4590 39.71
45.46  40.06 45.56 39.93 4591 39.70
45.46  40.06 45.58 3991 4591 39.69
45.51  40.08 45.60 39.94 4592  39.67
45.51  40.09 45.61 39.92 4594  39.67
4548 40.11 45.61 3993 4594  39.67
45.57 40.06 45.68 39.96 4595 39.65
45.64  40.05 45.70  39.96 4595 39.63
45.58 40.10 45.71 39.96 4596 39.62
45.47 40.16 45.73  39.87 4597 39.59
45.50 40.13 45.49 39.80 4593 39.59
45.56  40.12 45.59 39.89 46.14 39.53
45.59 40.11 45.59 39.88 46.09 39.54
45.64 40.13 45.61 39.88 46.09 39.56
45.63 40.14 45.59 39.82 46.06 39.59
45.63  40.06 45.59 39.82 46.07 39.59
45.61 40.03 45.63 39.84 4595 39.78
45.61 40.01 45.63 39.89 4594 39.77
45.72  40.05 45.69 39.85 4596 39.76
45.73  40.06 45.69 39.83 4595 39.75
45.75 40.03 45.70  39.81 4597 39.75
45.74  40.02 45.70  39.78 4597 39.73
4577 40.03 45.79  39.86 4596 39.72
4577  40.03 4578 39.75 4599 39.77
45.79  40.08 45.69 39.76 4599 39.77
45.81 40.07 4570  39.76 4599 39.76
45.78  40.05 45.71  39.70 46.00 39.76
45.81 40.05 45.71  39.69 46.01 39.77
45.28 40.02 4571  39.69 46.00 39.76
45.28 40.00 4582 39.86 4599 39.74
45.30  40.01 4582 39.82 4599 39.76
4530  40.01 4583  39.79 4599 39.75
45.31 40.00 45.84  39.79 4599 39.75
45.39  40.00 45.87 39.80 46.01 39.76
45.47  40.00 4586  39.79 46.01 39.75
45.13  40.00 4583  39.78 46.01 39.75
4532 3997 4586 39.77 46.02 39.75
4536  39.98 4586  39.77 46.03 39.74
45.39  40.00 4586  39.76 46.01 39.73
45.40 39.99 4585 39.76 46.01 39.72
45.40 39.99 45.84 39.76 46.01 39.72
45.41 39.99 4583  39.76 46.01 39.71
45.47 39.96 4584 39.74 46.02 39.71
4539 3993 4588 39.73 46.02 39.72
45.50 3993 45.89 39.74 46.02 39.71
45.52  39.97 4590 39.74 46.02 39.71
45.59  40.00 4587 39.70 46.03 39.71
45.59  39.99 4588 39.69 46.03 39.70
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Appendix A (Continued)

46.03 39.70 46.12  39.66 46.20 39.49
46.03  39.69 46.12  39.65 46.22  39.49
46.03 39.70 46.10 39.64 46.25 39.49
46.04  39.69 46.10 39.60 46.26  39.49
46.06 39.71 46.13  39.66 46.23  39.48
46.05 39.69 46.12  39.63 46.27 39.49
46.05 39.70 46.12  39.62 46.21 39.47
46.05 39.70 46.13  39.62 46.26  39.45
46.05 39.70 46.11 39.63 46.26 39.44
46.06 39.70 46.12  39.63 46.25 39.46
46.06 39.69 46.13  39.61 46.25 39.47
46.06 39.69 46.14 39.61 46.26  39.47
46.06 39.69 46.14  39.60 46.27 39.47
46.05 39.67 46.14 39.62 46.28 39.48
46.07 39.68 46.14 39.62 46.31 39.46
46.08 39.67 46.14 39.62 46.34 39.47
46.10 39.68 46.22  39.58 46.31 39.44
46.07 39.66 46.24  39.56 46.28 39.43
46.02  39.66 46.24  39.58 46.29 39.43
4599 39.66 46.25 39.57 46.28 39.42
46.05 39.66 46.24  39.57 46.33  39.40
46.05 39.65 46.17 39.54 46.48 39.32
46.04 39.64 46.21 39.53 46.46 39.28
46.03  39.62 46.20 39.53 46.40 39.26
46.06 39.64 46.22 39.54 46.49  39.26
46.07 39.64 46.23 39.53 46.50 39.28
46.08 39.64 46.23 39.53 46.50 39.28
46.07 39.63 46.24 39.53 4420 40.38
46.07 39.63 46.24 39.52 46.16  39.57
46.09 39.64 46.21 39.52 46.20 39.58
46.09 39.64 46.22  39.52 45.84  40.06
46.09 39.65 46.22  39.51 4495 40.22
46.10 39.66 46.25 39.51 44.68 40.39
46.11 39.65 46.19 39.50
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Appendix B: Computer Codes

All codes for this project were written in the PERL computing language.
The shell script to run the Bayesian code is as follows:
#!/usr/bin/csh

#make your grid spacing = to one kilometer!

#the file small lat long 5000.xyz is output

#from, for example, the Gaussian kernel function code
# It is the output grid of coordinates and might be

# in UTM at some spacing like 5000 m

# the script pow.pl converts the log of

#probabilities to "normal" probability numbers

#then feed the results to pow.out

echo "perl pow.pl redone volc_gauss 3000.dat > pow.out"
perl pow.pl redone volc gauss 3000.dat > pow.out

#the Bayesian method is all about "normalizing"
#so this means the map has to integrate to 1 (unity)
#run "does it sum_to 1.pl to figure this out

echo "perl does it sum to 1.pl pow.out"
perl does_it_sum to 1.pl pow.out

#go ahead and normalize the grid file of probability values to integrate to
#unity across the map (grid) region

echo "perl normalize data.pl pow.out > normalized pow.out"
perl normalize data.pl pow.out > normalized pow.out

#just check one more time
#remember this just prints the value of the summation

echo "perl does_it sum to 1.pl normalized pow.out"
perl does_it sum to 1.pl normalized pow.out

#develop the weighting function. Use the input gravity data here
#instead of small grav001.dat

echo "perl grav_wt_function.pl detrended grav_Xyz.dat > normalized grav.dat"
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Appendix B (Continued)

perl grav_wt function.pl grav_Xyz.dat > normalized grav.dat
perl does it sum to 1.pl normalized grav.dat

echo "perl two_files.pl normalized grav.dat normalized pow.out >
normalized grav x_ pow.out"

perl two_files.pl normalized grav.dat normalized pow.out >
normalized grav_x pow.out

echo "perl does it sum to 1.pl normalized grav x pow.out"
perl does_it sum to 1.pl normalized grav_x_ pow.out

echo "perl normalize product.pl normalized grav_x pow.out > normalize product.out"
perl normalize product.pl normalized grav x pow.out > normalize product.out

echo "perl does it sum to 1.pl normalize product.out"
perl does it sum to 1.pl normalize product.out

echo "take log for plotting..."
perl log normalize product.pl normalize product.out >log normalize product.out

echo "./bayes.gmt"
/bayes.gmt

The following are the individual scripts that make up the shell script above:

Script: pow.pl
#!/usr/bin/perl

while (<>) {

($a, $b, $data) = split;
$newdata = 10.0**$data;
print "$a, $b, $newdata\n";

}

Script: does_it_sum_to_one.pl
#!/usr/bin/perl

open (INPUT, SARGV[0])||die "cannont read file!/n";
#ARGV[0] means read from the first file after .pl listed on command line, @data creates
an array and assigns variables to each column

40



Appendix B (Continued)

while (KINPUT>) {

$line=$ _;
SN=SN+1;

@data = split(" ", $line);

$x=8$data[0];
$y=%$data[1];
$z=$data[2];

$sum z=$sum_z+$z;

}

print "$sum_z\n";

Script: normalize.pl
#!/usr/bin/perl

$sum_z=0; $N=0;
#initializes variables

open (INPUT, SARGV[0])||die "cannont read file!/n";

#ARGV[0] means read from the first file after .pl listed on command line, @data creates
an array and assigns variables to each column

while (INPUT>) {

$line=§ ;
SN=$N+1;

@data = split(" ", $line);
$x=$%data[0];
$y=$%data[1];
$z=$data[2];

$sum_z=$sum_z+$z;
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}

#print "$sum_z\n";

close (INPUT);

open (INPUT, SARGV[0])||die "cannot read file!/n";
while (KINPUT>)

{
$line=$ ;
if ($line=~m/\d/)
{
@data= split (" ", $line);
$x=$%data[0];
$y=$data[1];
$z=$data[2];
$w=3%$z/$sum_z;
print "$x $y $w\n";
}
else
{
print "[$line]\n";
}
}

Script: log_normalize_product.pl
#!/usr/bin/perl

while (<>) {

($a, $b, $data) = split;
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$newdata = log($data)/log(10.0);
print "$a $b $newdata\n";

}

Script: grav_wt_function.pl
#!/usr/bin/perl

$sum_z=0; $N=0;
#initializes variables

open (INPUT, SARGV[0])||die "cannont read file!/n";

#ARGV][0] means read from the first file after .pl listed on command line, (@data creates

an array and assigns variables to each column
while (INPUT>) {

$line=$ _;
SN=SN+1;

@data = split(" ", $line);

$x=8$data[0];
$y=%8data[1];
$z=$data[2];

if ($z > -10){Snew_z=10.01};
if ($z <-12){$new z=0.1};

if ($z <-16){$Snew_z = 1.0};

if ($z <-18){$new_z=5.0};

if ($z <-20){$Snew_z = 20.0};
if ($z <-22){$new_z=30.5};
if ($z <-24){Snew_z = 35.0};
if ($z <-26){Snew_z=40.0};
if ($z <-28){$Snew_z=45.0};
if ($z <-30){$new_z =50.0};

$sum new z += $new_z;
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}

#print "$sum_z\n";

close (INPUT);

open (INPUT, $ARGV[0])||die "cannot read file!/n";
while (<INPUT>)

{

$line=$ ;
if ($line=~m/\d/)
{
@data= split (" ", $line);

$x=8$data[0];
$y=%$data[1];
$z=$data[2];

if ($z > -10){Snew_z=10.01};
if (§z <-12){$new_z=0.1};

if ($z <-16){$new_z=1.0};

if ($z <-18){$Snew_z = 5.0};

if ($z <-20){$new_z=20.0};
if ($z <-22){Snew_z = 30.5};
if ($z <-24){$new_z=35.0};
if ($z <-26){$Snew_z =40.0};
if ($z <-28){$new _z=45.0};
if ($z <-30){Snew_z = 50.0};

$w=$new_z/$sum new_z;

print "$x $y $w\n";

else

print "[$line]\n";
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}

Script: two_files.pl
#!/usr/bin/perl

open(FILE1, SARGV[0]) || die "Cannot open <$ARGV[0]> for input: [$@]";
open(FILE2, SARGV[1]) || die "Cannot open <SARGV[1]> for input: [$@]";
Appendix B (Continued)

$a=0.50;
while (SFILE1>) {

($al, $bl, $datal) = split;

$line = <FILE2>;

($a2, $b2, $data2) = split " ", $line;
$total =($a* $datal)+((1-$a)*$data2);
print "$al $bl S$total\n";

}

close FILEI;
close FILE2;

Script: Bayes.gmt (Note: This is a GMT code for mapping the output
log normalize product.out.

#!/bin/bash

gmtset FRAME PEN 2.0p

gmtset HEADER FONT 5

gmtset LABEL FONT 5

gmtset HEADER FONT SIZE 20
gmtset LABEL FONT SIZE 16
gmtset ANOT FONT SIZE 14

# surface does the interpolation with a minimum curvature algorithm
# -12 means the grid spacing is 2 units in each direction

# -Gfilename indicates the output file

# -R specifies the west,east,south, and north bounds of the map
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surface -11000 -V log_normalize product.out -Gnormalized prod.grd -
R380000/662000/4299000/4573000

# makecpt creates a color table (to color shade contours)
# -Cseis specifies the basic color table

# -T specifies the range and interval

makecpt -Cseis -T-8/-3.5/.25 -V -1 > normalized grav.cpt

#psmask clips or masks area of no data on a map
#-R gives range of data

#-B gives tickmark info

#-1 grid spacing

psmask grav_utm.dat -R -110000 -Jx0.000022 -B25000a50000/WSne -K -V -P -Y'1.5 >
bayesian product 50.ps

# grdimage plots the image (color map)

# -JX6.01 1s the scale (must match the following)

# -Clat_long_5000.cpt is the color scale created with makecpt

# -P portait mode (must match the following)

# -E is the dpi (dots per inch) of the color shading

# -K more postscript to be appended to cn.ps in the following

grdimage normalized prod.grd -Jx0.000022 -Cnormalized grav.cpt -P -E100 -K -V -O

>> bayesian_product 50.ps

#grdcontour draws the contours from the grid

# -JX6.01 means the map will be 6 inches wide

# -C250 means there is a 250 nT contour interval

# -A500 means the contours are annotated every 500 nT

# -B25a50f5/WSne draw the frame, 25 m tick with 50 m label, add 5 m ticks, label on
# west and south side only

#-WO0.25p set line width

# -P draw in portrait mode

# -O overlay contours on the image

grdcontour normalized prod.grd -Jx0.000022 -C.5 -A2 -L-8 -W0.25p -P -O -K -V >>
bayesian_product 50.ps

psmask -C -O -K -P -V >> bayesian_product 50.ps
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# psxy plots volcanic vents as solid black triangles

# -S specifies the size and shape

# - GO makes the triangles solid

psxy volcano_type.dat -R -Jx0.000022 -St0.051 -GO -O -P -K -V >>
bayesian product 50.ps

#add a color scale to show the range of lat long 5000 intensities plotted
psscale -D2.65/-.5/5/0.2h -Cnormalized grav.cpt -B1/:"log (volc/km@+2@+)": -O -P -I -
V -K >> bayesian_product 50.ps

psxy armfaults_utm.dat -Jx0.000022 -R -W2.0 -O -M -V -K -P
>>bayesian_product 50.ps

psxy lake sevan utm.dat -Jx0.000022 -R -W1.25 -P -G255 -V -O -K
>>bayesian_product 50.ps

pstext -R -Jx0.000022 -GO -O -P -V -P -K <<EOF>> bayesian_product 50.ps
522500 4456000 9 0 24 BL Lake Sevan
EOF

pstext -R -Jx0.000022 -GO -O -P -V -K <<EOF>> bayesian_product 50.ps
443000 4430000 12 0 24 BL Yerevan
EOF

psxy -R -Jx0.000022 -O -P -G0/0/0 -Sa0.151 -W0.5 -V <<EOF>>
bayesian_product 50.ps

440000 4440000

EOF

The following script is used to calculate the recurrence rate which is then mapped in
GMT.

#!/usr/bin/perl

#this is a perl script by Jenn Weller

#created on Feb. 24, 2003

#Purpose: this script reads volcano location data from a file and calculates the spatially
nonhomgeneous recurrence rate

#using a guassian kernal function.
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#The location of the point density estimate and the value of the point density estimate is
output (x y z);
#this output can be contoured in GMT.

#This code requires the input file to contain two columns of numbers giving location of
volcanoes.

#initialize variables used in calculations
$n=0; $x=0; $y=0; $h=3000;

@volcanoes=();

open (INPUT, SARGV[0])||die "cannot access file!/n";

while (SINPUT>)

{
$line=§ ;
if ($line=~m/\d/)
{

@data = split(" ", $line);

$volcanoes[0][$n]=$data[0];
$volcanoes[1][$n]=Sdata[1];

#print "$volcanoes[0][$n] $volcanoes[1][$n]\n";
$n=%n+1;

else

print "[$line]\n";
j

j
for ($y=4.573e+06; $y>4.29899¢+06; $y-=1000){

#steps through all y points on grid

for ($x=380000; $x<662001; $x+=1000){
#steps through all x points on grid
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$sum_k=0;

for ($ct=0; $ct<Sn; $ct++){
#steps through all data points

$dist=sqrt(($volcanoes[0][$ct]-$x)**2 + ($Svolcanoes[1][$ct]-
Sy)**2);

#calculates the distance from point X,y to point $ct

#print "$dist\n";

$kernel=1/(2*3.14159)* exp(-0.5*$dist**2/$h**2);
$sum_k=$sum_k + $kernel;
#print "$kernel\n";

#calculates the kernel and the sum respectively

¥
$lambda=1/($n*$h**2)*$sum k;
#lambda is calculated
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if ($lambda>=0.00000000000001){
$lambda2=log($lambda*1e6)/log(10);
#the log of lambda is calculated for ease of use in contouring
#note that "log" in perl is In so divid by log(10)
#also multiple by le6 to report answer in terms of volcanoes/km”2 rather
than m”2
}
else{
$lambda2=-13;

}

b
}
close (INPUT);

print "$x $y $lambda2\n";
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