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Bayesian inference in forecasting volcanic hazards: 

An example from Armenia 
 

Jennifer N. Weller 

ABSTRACT 

 

Scientists worldwide are increasingly faced with the need to assess geologic 

hazards for very infrequent events that have high consequence, for instance, in siting 

nuclear facilities for volcanic hazards.  One of the methods currently being developed for 

such assessments is the Bayesian method.  This paper outlines the Bayesian technique by 

focusing on the volcanic hazard assessment for the Armenia Nuclear Power Plant, 

(ANPP), which is located in a Quaternary volcanic field.  The Bayesian method presented 

in this paper relies on the development of a probabilistic model based on the spatial 

distribution of past volcanic events and a geologic process model.   

To develop the probabilistic model a bivariate Gaussian kernel function is used to 

forecast probabilities based on estimates of λt, temporal recurrence rate, and λs, spatial 

density.   Shortcomings often cited in such purely probabilistic assessments are that it 

takes into account only known features and the event, new volcano formation, is rare and 

there is no opportunity for repeated experiments or uniform observations, the hallmarks 

of classical probability.  One approach to improving such probabilistic models is to 
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incorporate related geological data that reflect controls on vent distribution and would 

improve the accuracy of subsequent models.   

Geophysical data indicate that volcanism in Armenia is closely linked to crustal 

movement along major right lateral strike-slip fault systems that generates transtension 

across region.  The surface expression of this transtension is pull-apart basins, filled with 

thick deposits of sediment, and antithetic normal faults. Volcanism in Armenia is 

concentrated in these deep sedimentary basins as is reflected in regional gravity data 

surveys.  This means that low gravity anomalies are likely good indicators of future 

volcanic activity and therefore would improve probabilistic hazard models.  Therefore, 

gravity data are transformed into a likelihood function and combined with the original 

probability model in quantitative fashion using Bayesian statistics.  The result is a model 

that is based on the distribution of past events but modified to include pertinent geologic 

information.  Using the Bayesian approach in this example increases the uncertainty, or 

range in probability, which reflects how well we actually know our probability estimate.  

Therefore, we feel it is appropriate to consider a range in probabilities for volcanic 

disruption of the ANPP, 1-4 x 10-6 per year (t=1 yr).  We note that these values exceed 

the current International Atomic Energy Agency standard, 1 x 10-7 per year by at least 

one order of magnitude.
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Chapter 1 

Introduction 

Scientists worldwide are increasingly faced with the need to assess hazards 

associated with point-like features such as volcanoes and earthquake epicenters on 

various temporal and spatial scales.  Commonality among these phenomena exists 

because the analysis of their distribution and geologic setting can be used to estimate 

hazards quantitatively.  Often, these geologic hazard assessments must evaluate the 

likelihood of very infrequent events that have high consequences (Haneberg 2000).  For 

example, in the last two decades long-term probabilistic volcanic hazard assessment has 

increasingly been used in siting nuclear facilities worldwide (Crowe et al. 1982; 

Stamatakos and Ferrill 1996; Connor et al. 2000; McBirney et al. 2003; McBirney and 

Godoy 2003; Martin et al. 2004).  Often, the central issue in these assessments is the 

likelihood of a new volcano forming by eruptions in close proximity to the facility.  At 

such facilities, hazards with probabilities on the order of 10-6 – 10-8 per year are often 

considered high (Connor et al. 1995, Martin et al. 2004) because overall the risks 

associated with such facilities must be very low. 

Geological hazard assessments for point-like features should present robust 

estimates of hazard rates, based on the frequency of past events and insights about the 

geological processes that control such events. One challenge associated with long-term 
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probabilistic assessment of future volcanism is that models of volcanic processes, such as 

the generation and ascent of magma, are inherently uncertain.  One approach to making 

hazard assessments based on such models more robust is to modify probabilistic analyses 

by incorporating additional datasets through Bayesian inference (Von Mises 1957; 

Connor et al. 2000; Martin et al. 2004).  Essentially, Bayesian inference allows us to 

combine two or more states of information (e.g., geophysical) to forecast the probability 

of volcanic events, such as formation of a new volcano, based on our understanding of 

volcanic systems, rather than solely based on the limited, and often incomplete, record of 

volcanic events.  If we consider the frequency of volcanic events to be a physical 

property of a magmatic system, we are faced with the conclusion that the limiting value 

of the frequency of volcanic events is unknown.  The event, formation of a new volcano, 

is rare and there is simply no opportunity for repeated experiments or uniform 

observations, the hallmarks of classical probability.  Consequently, we are forced to 

update hazard forecasts using disparate observations of geologic and/or geophysical data 

that we believe impacts hazard forecasts.  Bayesian inference provides a practical 

approach to incorporating such information. 

In this paper, we analyze volcanological and geophysical data from Armenia with 

the goal of calculating the hazard associated with the disruption of the Armenian Nuclear 

Power Plant (ANPP) (Karakhanian et al. 2003), outline the technique, and illustrate the 

problems inherent to such analyses.  We do this through the construction of an improved 

model that focuses on the probability of renewed volcanism that would impact the ANPP, 

by combining the probabilistic and geophysical models using Bayesian inference.  The 
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ANPP 

ANPP is located in 

the northwestern 

part of the Ararat 

Depression (a 

sedimentary basin 

between Mt. 

Aragats in the 

north and Mt. 

Ararat in the 

south) in close 

proximity to the 

town of 

Metzamor, and 28 

km west of 

Yerevan, the 

capital of Armenia (Figure 1).  The ANPP is a Chernobyl-style reactor that sits at the 

base of the southern foothills of Mt. Aragats, the largest composite volcano in Armenia. 

Mount Ararat, another large composite volcano in Turkey, is 55 km south of the ANPP. 

The ANPP is located on the Shamiram Volcanic Plateau and is only 1.3 - 6 km south of 

38 small cinder cones arranged in four local clusters (Figure 2) (Karakhanian et al. 2003). 

An additional source of volcanic hazard for the ANPP and the capital city of Yerevan are 

the volcanoes of the Ghegam Ridge located 52 km to the east of the site and just west of 

Figure 1.  Location map of Armenia showing 554 Quaternary 
volcanoes used in study and faults.  The rate of convergence 
just north of the ANPP is 18-19 mm/yr based on REVEL 
2000 models. The ANPP is shown just south of a cluster of 38 
cinder cones. 



 4

n 

Lake Sevan (Figure 

1). Some of these 

volcanoes have been 

dated as Holocene 

and their Late 

Pleistocene valley 

flow terminates 25 

km east of the plant 

site. The most recent 

volcanic eruptions o

the Ghegam Ridge have been dated between 4500 to 4400 + 70 yr BP (Karakhanian et al. 

2003). 

Figure 2.  Photograph of the ANPP – clearly seen in the 
background are a cluster of cinder cones and to the far left the 
base of Mt. Aragats. 

Armenia is an appropriate choice for this type of analysis due to both its volcanic 

and tectonic setting.  In the Quaternary (1.6 million years to the present), 554 basaltic to 

andesitic cinder cones (Savov et al. 2003) developed in response to mostly monogenetic 

activity.  Monogenetic activity is characterized by the formation of a new volcano, such 

as a cinder cone or lava dome, and duration of volcanic activity at monogenetic 

volcanoes is thought to be typically less than 100 years (Connor and Conway 2000).  

After cessation of eruptive activity at any individual monogenetic volcano, renewed 

volcanism in the area builds a new monogenetic volcano.  Thus, for this type of 

volcanism, the number of volcanoes reflects the number of volcanic events for which 

probabilistic forecasts are made.  Because of the nature of this volcanic activity, the 
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volcanoes themselves can be considered point-like features (Figure 1) and the hazard 

assessment reduces to the problem of estimating the density distribution of these features.  

Examples of other hazard assessments for monogenetic volcanic activity include nuclear 

power plants and storage facilities (Connor et al. 1995; Karakhanian et al. 2003; Martin et 

al. 2004) and urban centers such as Auckland, New Zealand (Magill et al. 2004) and 

Mexico City (Bloomfield 1975; Martin del Pozzo 1982). 

This distributed, monogenetic volcanism results from the complex tectonic history 

of the region that lies within a broad zone of deformation that forms part of the Alpine-

Himalayan collision belt.  Overall, volcanism describes an arc across Armenia (Figure 1) 

that is subparallel to this collision belt.  Pull-apart basins can be delineated by mapping 

anomalies in the Earth’s gravity field, caused by density variations between the sediments 

filling the basins and the surrounding crust (Tsuboi 1979).  Presently, as a part of the 

Alpine fold belt, the uplift occurring across Armenia is a result of the northward motion 

of the Arabian plate with respect to Eurasia (Philip et al. 2001). The rate of convergence 

of these two plates is 18-19 mm/yr based on REVEL 2000 models (Dixon and Mao 

2002).  Volcanism across the region is linked to subduction and subsequent collision, and 

may result from slab steepening and breakoff which provides a viable mechanism for 

magma generation (Keskin 2003).  In any case, volcanism is closely linked to N-S 

compression and E-W extension (Philip et al. 2001).  The main geologic structures 

produced in this tectonic setting are north-west trending right-lateral strike-slip faults.  

These faults produce areas of transtension that create pull-apart basins within which 

volcanism is localized.  Contrasts in crustal structure reflected in the distribution of 
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analysis of volcano distribution and preparation of volcanic hazard forecasts.  

gravity anomalies 

have been shown to 

influence both the 

generation and ascent 

of magma (Tamura et 

al. 2002) and 

monogenetic 

volcanism has been 

shown to 

preferentially occur in 

pull-apart basins and 

similar areas 

undergoing crustal 

extension (Connor a

Conway 2000).  This 

correlation betwe

volcano distributio

and gravity anomalies occurs in Armenia as well (Figure 3), and may result from magma

generation by decompression melting of mantle previously enriched by subduction zo

processes (Pearce 1990; Keskin 2003; Savov et al. 2003).  Such a positive correlatio

between volcanism and gravity anomalies make it appropriate to consider gravity data

Figure 4.  Gravity distribution across Armenia, coordinates are 
in UTM.  Volcanoes typically occur in regions of broad gravity 
lows which correspond to deep sedimentary basins formed 
from extension and pull-apart mechanisms.  The above 
observations point to a strong correlation between patterns of 
volcanism and structure. 
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Chapter Two 

Methods 

 In this paper we outline a method that al

that permits systematic analysis of haza f interest.  The simplest way to 

visualize the process is in chart form (Figure 4).   The flowchart provides a step-by-step 

summary of the Bayesian process - from the initial step of defining databases to the final 

step of evaluating hazard at the location of interest.  Each element of the flowchart relies 

on information about the region to construct a reasonable hazard model. 

create them.  In 

this paper we use two data sets.  The first dataset consists of the geographic coordinates 

of Armenian volcanoes.  These coordinates were provided by the Armenia National 

Academy of Sciences and list all known Quaternary volcanoes in Armenia.  The 

coordinates are provided in the universal transverse mercator (UTM) grid, WGS-84 

datum.  The second dataset comprises gravity data (Ohanissyan, 1985), also provided by 

the Armenia National Academy of Sciences.  These gravity data consist of measurements 

of the relative change in the earth’s gravity field, corrected for topographic effects.  They  

 

lows geologic data to be cast in a way 

rd at a site o

Defining the Database 

Volcanic hazard assessments are only as good as the data used to 
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follow somewhat different paths in the development of a probability model and a 

geophysical model until they are transformed so they can be combined using Bayesian 

methods (Figure 3).  We will describe both these paths beginning with the development 

of the probability model. 

Developing the Probability Model 

 The first and perhaps most important step in developing a probability model for 

volcanic hazard is to explicitly define events in the region of interest (Connor and Hill, 

2000; Martin et al. 2004).  Given the complexity of volcanic processes, what event is 

specifically forecast by the probability model?  This is important for a number of reasons, 

not least of which is that the entire development of the probability analysis depends on 

the event being defined as a point process.  Second, having defined the event as a point 

process, it is important to unambiguously define what constitutes an event and what does 

not.  For instance, an event could be the epicenter of an earthquake, or the location of a 

sinkhole, or any other process that can be isolated to a precise location spatially.  In the

consist of geographic location, in the same UTM projection used in the volcano dataset, 

and relative change in gravity (mGal).  Following this compilation, the two datasets  

hazard assessments presented in this study, the definition of an event is limited to the 

formation of a new volcano, and is estimated directly from the distribution of existing 

Quaternary volcanoes and gravity anomalies. This assessment specifically does not loo

at the spatial or temporal distribution of volcanic eruptions at existing volcanoes or at t

volcanic hazards associated with eruptions, such as lava flows, lahars, or pyroclastic 

flows. This is because the hazard assessment is intended to assess the probability of 

 

k 

he 



eruptions from new volcanic vents in the area around the ANPP that would have a 

potential deleterious impact on operation of the nuclear facility, and containment of 

radionuclides (Crowe et al. 1982; McBirney and Godoy 2003). 
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The volcano dataset used in this study includes both monogenetic volcanoes (one 

eruptive sequence only) and polygenetic volcanoes (volcanoes that have more than one 

eruptive sequence).  Volcano types include cinder cones, domes, composite volcanoes, 

maars, and calderas. Individual vents are treated equally in the analysis, regardless of 

volcano type, because we are modeling the probability of formation of a new volcanic 

vent.  Estimates of the probability of dike injection, without volcano formation, are not 

considered in this hazard assessment but may be important in other types of hazard 

assessments, such as for high level waste repositories (Woods et al., 1999; Connor and 

Conway 2000).  Formally, each volcanic event in this assessment is considered to be 

independent of the other volcanic events in the data set.  

e 

l. 

 

 in 

ets 

Alternative methods for defining volcanic events can be used in probabilistic 

volcanic hazard assessments. For example, polygenetic volcanoes may be weighted mor

heavily depending on the number of past eruptions (Martin et al. 2004). Also, closely 

spaced and similarly aged vents can be grouped together as a single event (Connor et a

2000).  Furthermore, only cones younger than a specific age, for example those formed in

the last 100,000 years, might be included in the analysis as volcanic events or these could 

be weighted more heavily. Because vents may be grouped into single volcanic events

varying ways depending on their timing, distribution, and episodes of activity, data s
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igure 

by alternative definitions 

does not yet exist for Armenia. 

t 

P      (1) 

 

er 

r time period for the expected 

operation of the ANPP.  Once these s

can be defined in different ways which would change the probability of an event 

occurring.  In this case, we use a simple definition in which each mapped volcano (F

1a) is a single event, partly because the additional data required 

Once the event is explicitly defined, we move on to the mathematical 

development of the probability model (Figure 3).  Ultimately, the probability of an even

occurring at a specific location is given by 

where A is the effective area of interest (e.g., the area within which volcanism would

impact the ANPP, should it occur).  In this study we define A as 50 km

AtsteN λλ−−=≥ 1]1[

2 around the pow

plant.   The time period of interest is given by the parameter t, (e.g., the duration of 

expected operation of the ANPP).  We estimate a 100 yea

ite specific parameters are specified, we are left 

with the problem of how to estimate λs, spatial density (events per kilometer) and λt, 

temporal recurrence rate (events per year). 

For Armenian volcanism, we use a simple estimate for temporal recurrence rate, 

y
t tt

N
−
−

=λ       (2) 
0

1
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n, N is 

ion years and ty to 0, or present.  This gives λt a value of 

3.5 x 10 f volcanic 

mating λt have been employed (Ho 1991a,b; 

Condit and Connor 1996). 

, 

kernel estimation technique that has been used in several studies to estimate spatial 

density of volcanism, including in the Pinacate Volcanic Field, Mexico (Lutz and 

Tohoku region, Japan (Martin et al. 2004). In this technique, spatial variation in λs

function of distance to nearest-neighbor volcanoes and a smoothing parameter, h. The 

kernel 

spreads probability away from the event (Diggle 1985). Different kernel functions can be 

used including the Cauchy kernel (Martin et al

and Gutmann 1994), and the Gaussian kernel (Connor and Hill 1995).  It is widely agreed 

that the shape of kernel function chosen in this type of analysis generally has a trivial 

because the ages of individual volcanoes are not well constrained.  In this equatio

the total number of volcanoes, t0 is the age of oldest event, and ty is the age of the 

youngest event.  We know that all the volcanoes used in this study are all of Quaternary 

age so we set t0 equal to 1.6 mill

-4 years.  That is, we expect one event every 2900 years.  Where ages o

events are better constrained, more detailed analyses have revealed time trends in 

volcanic activity and other methods for esti

 Compared with λt, estimation of spatial density, λs, is more difficult.  However

pioneering work by Diggle (1985) and Silverman (1986) has led to the development of a 

Gutmann 1994), the Yucca Mountain region, USA (Connor and Hill 1995), and the 

 is a 

function is a probability density function that is symmetric about the origin and 

. 2004), the Epanechnikov kernel (Lutz 
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oblem 

 

clustering of vents.  The probability surfaces generated by this model are continuous, as 

opposed to consisting of abrupt changes in probability that must be introduced in 

spatially homogeneous models (Connor and Hill 1995).  Continuous probability surfaces 

ution.  The bivariate Gaussian kernel is given by: 

impact on probability calculations compared to other parameters (Connor and Hill 1995; 

Lutz and Gutmann 1994).  The Gaussian function was chosen for the Armenian pr

because volcanoes are treated as discrete events in time and space and the Gaussian 

model responds well to the patterns generally recognized in volcano distributions, such as

allow for relatively easy comparison to other empirical data sets, e.g. gravity data that 

shed light on volcano distrib

∑
⎟
⎠

⎞
⎜
⎝

⎛−

=

2

2
11),( h

di

eyx 22s Nhπ
λ     (3) 

where di is the distance from the point x,y, where λs is estimated, to the ith volcano 

location, h is a smoothing parameter, and N is the number of volcanoes (points) tha

used to estimate λ

t are 

l of 

probability density function. Probability estimates made using equations 1 and 3 depend 

e 

s(x,y). Due to the fact that N occurs in the denominator, the integra

λs(x,y) across the map will be unity.  Therefore the spatial density, λs, is a bivariate 

on the value chosen for h.  Using a bivariate Gaussian kernel, events will have a high 

estimated probability in proximity to existing volcanoes if the value chosen for h is small, 

but low estimated probability away from the volcano.  On the other hand, a large value of 

h will yield a more uniform estimate of probability distribution across the region. In th

Gaussian kernel, the smoothing factor is equivalent to the standard deviation of a 
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function 

chosen.  This model gives an estimate of spatial density based on positions of volcanic 

vents for Armenia (Figure 5).  The kernel model is useful becau

can be made allowing ease of comparison with other geologic information; (2) there is no 

 

a 

.  

 

 at  

symmetric, bivariate Gaussian distribution.  Therefore, the kernel function depends on the

assumption that the smoothing parameter is estimated in a geologically and/or 

statistically significant way (Connor and Hill 1995).  In this study a wide range of 

smoothing constants are used (Figure 4); in addition, the range of reasonable smoothing 

constants is further constrained by use of the Clark-Evans (CE) spatial cluster analysis 

(Clark and Evans 1954).  This analysis shows that volcanic events in Armenia are 

clustered across a variety of scales with >99% confidence (Blyth and Ripley 1980; 

Cressie 1991).  Applying these tools, we use h=3000 m.  As mentioned above, an 

additional assumption in the kernel estimation technique is the shape of kernel 

se (1) probability maps 

need to define zones of volcanic activity, as is required in a homogenous approach 

(Margulies et al. 1992); and (3) uncertainty in the distribution of individual events is easy

to assess.  The final step in developing the probability model is to prepare a contour map 

of spatial density (Figure 6).  The map is made using a UTM projection for equal are

measurements and the units of probability are  typically converted into their logarithms 

because volcano vent density commonly varies by orders of magnitude across a region

Also, testing the suitability of the smoothing parameter chosen is appropriate at this point 

(Figure 6).  The maximum probability of an event occurring is 3.4 x 10-4 where h has a 

value of 4000 m.  More importantly, this plot demonstrates that probability is sensitive to

the value of h chosen and varies rapidly from a maximum probability of 3.4 x 10-4
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Figure 5.  Modeling the data.  Complimentary cumulative distribution function 
showing distance of nearest-neighbor volcano versus its cumulative probability of 
occurrence for the original data set and various values of smoothing parameter h.  
Notice that while h=1500 appears to fit the data well overall, it is a very poor fit in 
the tail of the distribution.  Conversely, h=3000 fits the data well in the tail of the 
distribution. 
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Figure 6.  Map of spatial recurrence rate, coordinates are in UTM. Quaternary 
ent density is greatest in two volcano clusters in the Ararat Depression, 
ncluding the region of the ANPP. Vent density varies by approximately three 
rders of magn

v
i
o itude across the area of interest. 



Figure 7.  Plot showing values of h ranging from 
1,000 m to 40,000 m versus the probability of an 
event occurring at the ANPP.  The greatest hazard 
exists when h = 4,000 m. 

4000 m to 7.5 x 10-5 at approximately 25,000 m. This sensitivity of the probability to the 

smoothing parameter is 

important to consider because 

we don’t have a robust 

method for estimating h 

f 

vol noes.  

In o paratively small, volcanism might 

yet occur in areas that have no record of previous activity.  Second, the kernel estimation 

technique does not attempt to account for additional geologic information that might 

influence our assessment of the distribution of future volcanoes.  Here, we take gravity 

precisely.  Using the above 

defined parameters, the 

acceptable range in 

probability of an event 

occurring that would disrupt 

the ANPP and using equation 

1 is 1 to 3.4  x 10-4 for 1800 

m < h < 17000 m (Figure 7).  

 

Development of the Gravity Model 

 Although a probabilistic volcanic hazard assessment could be based solely 

on the methods outlined above, there are clear shortcomings.  First, the distribution o

canoes in the region may incompletely sample the possible distribution of volca

ther words, because our sample of events is com

 17
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near volcanoes 
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bution 
ll 

data and cast gravity anomalies as another probability density function in an effort to 

he ultimate goal being to

avity data in a probability  

.  However, before the 

likelihood 

function can

develop

relationship

between volcano 

distribution and 

gravity must be 

shown to exist. 

Gravity (mGals) 
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Figure 8.  KS-test comparison cumulative fraction plot.  

the gravity distribution near volcanoes shows that volcanoes 

based on the maximum difference in the two distributions, 

l

Comparison of gravity distribution over the area of study and 

tend to occur in areas of anomalously low gravity.  A K-S test, 

indicates that the tendency for volcanoes to occur in gravity 
ows is statistically significant (>99% confidence).

develop a more geologically realistic probability estimate, t  

modify λs with gravity information.  However, to use the gr

model, the gravity observations must be transformed into a likelihood function.  This 

likelihood function, like λs, is a probability density function

 be 

ed a 

 

A 

powerful tool for 

ch 

-fit 

s 

assessing the 

relationship 

between two 

distributions su

as volcano 

distribution and gravity anomalies is the Kolmogorov-Smirnov (KS-test) goodness-of

test (Chakravarti and Roy 1967).  In this case, gravity at each specific volcano location i



compared to gravity data collected across the entire region.  Both distributions are plot

in cumulative form (Figure 8) and the maximum difference between the two 

distributions, the Kolmogorov-Smirnov statistic, (KS-statistic), is measured.  For 

Armenian gravity data, the KS-statistic is 0.202 and the two distributions are different 

value is ~ 0.0).  This indicates volcanoes are clustered in low gravity regions, and th

ght be modified 

elihood function. 

ction and is 

04).  The first 

ted 

(P-

is 

correlation suggests that gravity anomalies may be an indicator of the distribution of 

future volcanic activity.  In other words, we need to consider how λs mi

by the presence or absence of gravity anomalies. 

Now that a relati ied between volcano location and gravity 

g the K-S test, the next step is to transform the gr  into a lik  

e is currently no standard method for developing  fun

fore somewhat subjective as it is not purely based on statistics and relies to a certain 

extent on the expertise of those conducting the analysis (Martin et al. 20

step in developing the likelihood function is to make some general observations about the 

relationship between gravity anomalies and volcano distribution.  One o

there is an inverse relationsh  distributions – that is, volcano density is 

high rvati  

only o th hat 

the p  great

should be correspondingly small.  Further observation shows that most volcanoes (about 

onship has been identif

usin

Ther

there

avity data

 the likelihood

bservation is that 

on, volcanoes

e conclusion t

er than -10 mGal 

90%) occur where gravity values are less than -15 mGal.  This suggests that the gravity 

anomalies indicate a threshold in vent distribution.  That is, volcanoes are equally likely 

ip between the two

 in areas with low gravity anomalies.  Expounding on this obse

 occur in areas where gravity is less than -10 mGal.  This leads t

robability of volcanoes occurring in areas with gravity values
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 20

0 mGal.  In 

he 

if (-15 mGal < G(x,y) < -10 mGal) then W(x,y) = 0.01 

 

 assigned to gravity values based on the 

observe

tion: 

to occur anywhere gravity anomalies are less than some threshold value (such as -15 

mGal) and not likely to occur at all in areas with gravity values greater than -1

this case, we develop a step function to transformation to map gravity values into t

likelihood function using Boolean logic.  For example: 

if (G(x,y) > -10 mGal) then W(x,y) = 0.001 

if (G(x,y) < -15 mGal) then W(x,y) = 0.1 

where G(x,y) is the measured value of gravity at map location x,y, usually after 

interpolation onto a grid, and W(x,y) is the weight

d distribution of volcanoes with respect to gravity anomalies (Figure 8).  Adding 

additional if-then statements smoothes the mapped transformation.  Using the weights 

derived from the above process, gravity values are transformed into a likelihood func

∑
=

XY

yxWyxGyxL ),(),(),|(θ      (4) 

where ),|( yxL

yxWyxG ),(),(

θ  is the likelihood function, which integrates to unity over the region of 

interest XY, and θ  is the set of weighted gravity values.  Clearly, the way in which 

),|( yxL θ is calculated is a reflection of the geologic interpretation of the data and the 

experimenter’s belief about geologic processes governing magma generation, ascent, a

eruption.  

Finally, having developed and confirmed the validity of the gravity model, it is 

then normalized, recast as a probability density function, and set to the same grid spacing 

as the probability model.  As with the probability model, the final step in developing the 

gravity model is to prepare a contour map of normalized gravity.  The map is made using

nd 
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ine the probability PDF (a priori 

function) of spatial den to a joint probability 

density function, or a po  The product (or 

s

a UTM projection for equal area measurements and the units of gravity are in mGal 

(Figure 2). 

Bayesian Model 

The final step in the Bayesian process is to comb

sity and gravity PDF (likelihood function) in

steriori PDF for weighted spatial density. 

intersection) of these two states of information is given by 

λ  
∫∫

=
R s

s

dxdyyxLyx
yxLyx

yx
),|(),(
),|(),(

)|,(
θλ
θλ

θ      (5)

where x and y represent grid point locations in the region of interest A, θ is the gravity 

data, λ

 

likelihood function.  The posteriori PDF is normalized to uni

entire volcanic field so that cumulative probability does not change, but the shape of the 

A l  

egligible or zero in regions where there are no or extremely sparse volcanic 

events,

s(x,y) is the spatial density, which is modified by L(θ|x,y), the gravity PDF, or 

ty by integrating over the 

2-D surface distribution will be modified by the gravity PDF (Figure 9) (Martin et al., 

2004). 

imitation with the standard Bayes rule above in equation (5) is the inability to

weight the respective PDFs. Further, since it is conditional probability, probabilities will 

always be n

 irrespective of how irrefutably geophysical or other information show the 

potential of new volcanic events to form. We therefore modify equation (5) by combining 

PDFs through addition (or union) and assign weights:  
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λs

∫ −+∫

−+
= s yxLayxa

yx
),|()1(),(

)|,(
R s dxdyyxLayxa ),|()1(),( θλ

θλ
θ     (6) 

ighting function of factor. Relative weight is assigned to the probability 

and gra

s 

es both PDF’s equal weight 

and produces the same result as achieved using equation 4 (Figure 8).  T

arise from using this method.  First, the aforementioned subjectivity in assigning weights 

values under this threshold.  For values over this threshold gravity values are 

given i

 

sian 

where a, is the we

vity PDF’s subjectively.  Giving a large weight to the probability model suggests 

that future volcanism can be predicted almost exclusively by the distribution of volcanic 

events.  A large weight applied to the gravity model suggests that future volcanism i

better predicted by gravity anomalies.  Setting a = 0.50, giv

wo problems 

to the PDF’s and second, a step function must be introduced to determine how much 

weight should be given to individual gravity measurements.  This process is also 

somewhat subjective but can be given credibility by looking at the graph of volcano 

fraction versus gravity (Figure 8).  The observation that volcanoes cluster in regions 

under 20 mGals lends credence to weighting the step function heavily in areas with 

gravity 

ncreasingly less weight in the step function.  When the parameter a is given equal 

weight in equation 6, we achieve the same result as using the Baye’s Theorem equation 

(5).  Now, the new value λs(x,y|θ) is used in equation 1, rather than the unmodified value

λs(x,y).  For the ANPP the probability of volcanic disruption is 1 x 10-4 using Baye

inference.  Interestingly, this is lower than the probability calculated using the 

unmodified value λs(x,y) of 4 x 10-4.   
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Figure 9.  Bayesian output. Map showing results from equation 5 and equation 6 
(parameter a is 0.50) where the spatial recurrence rate PDF and the gravity 
likelihood function are combined. 
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Chapter Three 

Discussion 

 Von Mises (1957), in his treatise on probability and statistics, shows that it is 

possible to develop an accurate model of spatial density, given enough events. That is, 

provided the experiment can be performed many times. In geologic hazard assessments 

we have only one spatial experiment to work with, in this case the observed distribution 

of volcanoes, and models developed to estimate hazards solely based on these data are 

inherently uncertain.  The risk in using these models is that the distribution of past events 

may poorly reflect the distribution of potential future events. Any additional information 

that sheds light on the spatial distribution is therefore worth analyzing.  

A model based solely on spatial distribution of past events cluster probability 

around known events and does not predict a future event at positions far from the cluster 

(Figure 10a).  However, a geologic model, such as one based on gravity anomalies, 

allows probability of future events to be modified to account for our understanding of the 

geolo ot 

formed in the Quaternary where gravity values are higher than -10 mGal, but do occur 

through regions with gravity values below -15 mGal.  Taking this into account modifies 

the probability model (Figure 10 b,c).  By combining the statistical model with gravity  

gic setting of volcanism. For example, we know that volcanoes in Armenia have n
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Figure 10 a,b,c.  Stylized diagram showing (a) spatial density model; (b) gravity model; 
an
to a high probability of a future volcanic event, yellow areas to moderate probability of an 
ev
associated w
of o 
occur at location x but would be expected at location y.  In the gravity model (b) both x and 
y f
in either loc
a 
available for assessing the hazard at both points. 

d (c) Bayesian model that combines the spatial and gravity models.  Red areas correspond 

ent, and blue areas to regions of low probability of an event.  Notice the probability 
ith location x and location y.  In the spatial density model (a) x falls in a region 

 low probability and y a region of high probability, i.e. an event would not be expected t

all in a regions of low gravity (or high probability) and an event would be equally likely 
ation.  In the Bayesian model (c) an event is still likely at position y but there is 

moderate probability of an event at location x.  This model reflects the most information 



data through Bayesian inference we arrive at a different, and, if our geologic models are 

good, an improved volcanic hazard forecast.  

ear limitations to a purely statistical approach to hazard 

assessment.  One being that this approach takes into account only known features.  For 

instance, in Armenia volcanoes form in association with deep pull-apart basins that are a 

result of transtension and are associated with high rates of sedimentation.  The majority 

of volcanoes in Armenia are monogenetic and hence do not have a great deal of 

topographic relief.  It is conceivable that some Quaternary vents are buried beneath 

sediment in these basins, and are not accounted for in the estimate of spatial density, but 

should be.  Furthermore, the distribution of volcanoes in the region may incompletely 

sam istribution of volcanoes, i.e. because our sample of events is 

statistically small, volcanism could occur in areas that have no previous record of 

activity. Conversely, abrupt changes in geologic structure are common, especially at 

active plate margins, such as in Armenia. Estimates of spatial density from he nt 

distribution may inadvertently indicate that areas of very different geology are equally 

likely to host future volcanic activity. 

.  

 

supports the idea that 

In this context, there are several advantages to the Bayesian approach. First, this 

approach steers us toward a geological basis for making probabilistic hazard assessments

In this case we use gravity anomalies as the geologic base from which we modify our 

probability model.  We use gravity because (1) other studies have shown that distributed, 

monogenetic volcanism often correlates with gravity anomalies (e.g., Connor et al, 2000);

(2) the tectonic setting of Armenia and resulting geologic features 

poi t

There are several cl

ple the possible d
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y.  However, gravity is not unique – other 

pertine er 

 

o 

n 

this correlation should occur in Armenia; and (3) the K-S test statistically shows there is 

correlation between volcanic events and gravit

nt geologic information could be used either alone or in combination with oth

data to enhance probabilistic hazard assessments.  These include seismic tomographs 

(Martin et al., 2004), geochemical data (Condit and Connor, 1996), fault and other 

structural data, and magnetic data. 

 Second, this approach raises the issue that there is no standard method for

development of the likelihood function.   Transforming geophysical observations int

PDF’s and deciding how best to combine them is a subjective process that relies on the 

experimenter’s interpretation of geological data and on general observations about the 

relationship between datasets.   

 Third, uncertainty in probability estimates may actually increase using the 

Bayesian approach.  For instance, the range of probabilities may increase because of 

uncertainty in how to create the likelihood function, and in how much weight to assig

the likelihood function. Since the posteriori function for ),( yxsλ  is a PDF, increasing 

probability in regions of low gravity with no volcanoes decreases probability in the 

immed  

e 

iate vicinity of volcano clusters.  The amount of change depends on the weighting

of geologic models. Rather than being a negative outcome, increase in uncertainty more 

accurately reflects our understanding of the geology. In the case of the ANPP, th

probability of volcanic disruption based solely on kernel estimation techniques is 3.4 x 

10-4 for volcanic events impacting the site (A=50 km2, t = 100 yr, h=3000 m).  When the 

kernel estimation technique is modified with gravity using Bayesian inference, the 
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es 

ing 

 (t=1 yr).  These values, whilst apparently low on 

uman cy 

probability of volcanism decreases to 1 x 10-4.  If other models of volcano formation are 

used to assess volcanic hazards to the ANPP, the probability may change, depending on 

both the geologic model and probability model chosen.  Perhaps a more useful estimate

for this site is simply stating that a range of models based on spatial density of volcano

and additional geologic information yield probabilities of volcanic eruptions impact

the ANPP site of 1-4 x 10-6 per year

h  timescales, do in fact exceed the current International Atomic Energy Agen

standard, 1 x 10-7 per year (McBirney and Godoy, 2003), by at least one order of 

magnitude. 
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an 

anism 

Regionally, Quaternary volcanism is concentrated in pull-apart basins 

associated with low gravity anomalies, as a result of crustal extension and decompression 

melting of an enriched mantle.  Gaussian kernel estimates of spatial density are greatest 

in two clusters in the Ararat Depression, including the cluster in proximity to the ANPP.  

Furthermore, vent density varies by three orders of magnitude across the region.  These 

models lead to estimates of probability of volcanic disruption to the ANPP of between 1 

x 10-4 and 3 x 10-4 in 100 years, which exceeds the current IAEA standard of 1 x 10-5 in 

100 years.  This variation indicates that modification of models through the incorporation 

of additional geologic information, may increase the range in probability estimates.  

Ultimately, this paper provides a pathway towards the incorporation of geologic process 

models in volcanic hazard assessments by allowing these models to be combined with 

more traditional probabilistic models through Bayesian inference. 

 

 

 

Chapter 4 

Conclusions 

The approach presented here points to the applicability of assessing point-like 

geologic features, in this case volcanoes, through spatial statistics, specifically, Bayesi

statistics. This study shows that geologic structure controls the distribution of volc

in Armenia. 
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Appendix A: Armenia Volcano Location Data 

43.56 41.09 
43.59 41.08 
43.68 41.13 
43.67 41.09 
43.67 41.04 
43.73 41.04 
43.75 41.11 
43.82 41.05 
43.86 41.03 
43.95 41.17 
43.96 41.15 
43.94 41.13 
43.97 41.13 
43.96 41.11 
43.92 41.10 
43.93 41.08 
43.95 41.09 
43.95 41.08 
43.95 41.07 
44.00 41.07 
43.99 41.10 
44.02 41.08 
44.00 41.13 
43.82 40.57 
43.92 40.60 
44.01 40.62 
44.05 40.59 
44.04 40.59 
44.05 40.60 
44.11 40.60 
44.11 40.60 
44.12 40.58 
44.13 40.57 
44.09 40.57 
44.09 40.57 
44.10 40.55 
44.13 40.55 
44.09 40.54 
44.14 40.49 
44.15 40.49 
44.13 40.49 
44.10 40.47 
44.19 40.51 
44.16 40.41 
44.16 40.40 
44.07 40.38 
44.08 40.39 
44.04 40.37 
44.00 40.38 
43.96 40.37 
43.94 40.47 

43.91 40.43 
43.90 40.44 
43.90 40.44 
43.79 40.38 
43.79 40.36 
43.83 40.35 
43.62 40.45 
43.59 40.46 
43.58 40.48 
43.56 40.48 
43.64 40.51 
43.66 40.51 
43.66 40.52 
43.64 40.53 
44.10 40.69 
44.29 40.44 
44.30 40.44 
44.41 40.37 
44.44 40.37 
44.45 40.41 
44.45 40.39 
44.32 40.26 
44.32 40
44.34
44.41 40
44.41 40.28 
44.41 40.29 
44.43 40.29 
44.46 40.29 
44.45 40.29 
44.55 40.21 
44.55 40.21 
44.55 40.22 
44.56 40.22 
44.56 40.20 
44.57 40.23 
44.60 40.23 
44.59 40.26 
44.12 40.24 
44.12 40.23 
44.12 40.23 
44.12 40.22 
44.12 40.22 
44.13 40.22 
44.13 40.22 
44.15 40.23 
44.16 40.23 
44.15 40.23 
44.15 40.23 
44.15 40.22 
44.16 40.23 

44.16 40.21 
44.17 40.21 
44.17 40.22 
44.17 40.22 
44.17 40.22 
44.18 40.22 
44.18 40.22 
44.18 40.22 
44.19 40.22 
44.19 40.22 
44.19 40.22 
44.19 40.22 
44.19 40.21 
44.15 40.19 
44.15 40.19 
44.16 40.19 
44.16 40.20 
44.15 40.19 
44.12 40.18 
44.13 40.18 
44.13 40.18 
44.13 40.19 
44.12 40.18 
44.13 40.18 
44.13 40.19 
44.79 40.43 
44.87 40.48 
44.88 40.49 
44.91 40.50 
44.68 40.38 
44.69 40.37 
44.70 40.36 
44.69 40.37 
43.84 40.26 
43.85 40.26 
43.85 40.27 
43.85 40.26 
43.85 40.26 
43.84 40.26 
43.84 40.27 
43.85 40.27 
43.79 40.21 
43.79 40.22 
43.79 40.22 
43.79 40.22 
43.79 40.22 
43.80 40.22 
43.76 40.20 
43.77 40.20 
43.77 40.21 
43.77 40.21 

 

.26 
 40.25 

.29 
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43.78 40.21 
43.78 40.20 
43.78 40.20 
43.79 40.20 
43.79 40.20 
43.79 40.20 
43.78 40.21 
43.80 40.20 
43.79 40.20 
43.77 40.18 
43.77 40.17 
43.78 40.17 
43.79 40.17 
43.78 40.18 
43.78 40.10 
43.78 40.10 
43.78 40.11 
43.79 40.10 
43.79 40.10 
43.80 40.10 
43.80 40.12 
43.80 40.13 
43.79 40.14 
43.80 40.13 
43.82 40.12 
43.84 40.11 
43.82 40.12 
43.83 40.12 
43.93 40.12 
43.92 40.13 
43.92 40.13 
43.92 40.13 
44.18 40.13 
43.95 40.11 
43.96 40.10 
43.99 40.09 
44.03 40.08 
44.67 40.35 
44.68 40.34 
44.68 40.35 
44.68 40.35 
44.72 40.32 
44.73 40.31 
44.73 40.30 
44.72 40.30 
44.72 40.33 
44.89 40.43 
44.90 40.43 
44.89 40.42 
44.86 40.42 

44.87 40.41 
44.87 40.42 
44.87 40.42 
44.88 40.42 
44.88 40.41 
44.89 40.40 
44.89 40.40 
44.90 40.40 
44.91 40.41 
44.90 40.40 
44.91 40.39 
44.91 40.38 
44.92 40.39 
44.91 40.36 
44.92 40.34 
44.94 40.36 
44.94 40.35 
44.95 40.33 
44.94 40.32 
44.90 40.31 
44.92 40.31 
44.92 40.29 
44.92 40.31 
44.92 40.31 
44.93 40.30 
44.93 40.30 
44.94 40.29 
44.95 40.30 
44.88 40.26 
44.90 40.27 
44.92 40.28 
44.94 40.28 
44.93 40.25 
44.94 40.26 
44.95 40.25 
44.93 40.23 
44.95 40.23 
44.94 40.22 
44.98 40.29 
45.00 40.30 
45.00 40.29 
45.01 40.29 
44.92 40.21 
44.92 40.21 
44.91 40.20 
44.97 40.20 
44.96 40.17 
44.95 40.16 
44.96 40.16 
44.96 40.16 

44.96 40.16 
45.02 40.12 
45.01 40.11 
45.05 40.12 
45.07 40.10 
45.08 40.09 
45.05 40.04 
45.02 40.17 
45.03 40.17 
45.04 40.15 
45.05 40.16 
44.96 40.44 
44.96 40.40 
44.97 40.41 
44.99 40.42 
44.99 40.44 
45.00 40.42 
45.00 40.43 
45.00 40.43 
45.00 40.43 
45.00 40.44 
45.01 40.42 
45.00 40.45 
45.01 40.41 
45.03 40.42 
45.04 40.39 
45.02 40.39 
45.04 40.38 
45.01 40.37 
45.06 40.27 
45.07 40.26 
45.07 40.25 
45.22 40.03 
45.22 40.07 
45.15 40.13 
45.16 40.12 
45.16 40.11 
45.17 40.11 
45.16 40.10 
45.14 40.09 
45.18 40.21 
45.18 40.20 
45.14 40.38 
45.15 40.38 
45.21 40.38 
45.22 40.39 
45.00 40.47 
45.38 40.12 
45.41 40.10 
45.42 40.09 
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45.42 40.08 
45.42 40.06 
45.46 40.06 
45.46 40.06 
45.46 40.06 
45.51 40.08 
45.51 40.09 
45.48 40.11 
45.57 40.06 
45.64 40.05 
45.58 40.10 
45.47 40.16 
45.50 40.13 
45.56 40.12 
45.59 40.11 
45.64 40.13 
45.63 40.14 
45.63 40.06 
45.61 40.03 
45.61 40.01 
45.72 40.05 
45.73 40.06 
45.75 40.03 
45.74 40.02 
45.77 40.03 
45.77 40.03 
45.79 40.08 
45.81 40.07 
45.78 40.05 
45.81 40.05 
45.28 40.02 
45.28 40.00 
45.30 40.01 
45.30 40.01 
45.31 40.00 
45.39 40.00 
45.47 40.00 
45.13 40.00 
45.32 39.97 
45.36 39.98 
45.39 40.00 
45.40 39.99 
45.40 39.99 
45.41 39.99 
45.47 39.96 
45.39 39.93 
45.50 39.93 
45.52 39.97 
45.59 40.00 
45.59 39.99 

45.61 39.99 
45.61 39.97 
45.58 39.96 
45.56 39.93 
45.58 39.91 
45.60 39.94 
45.61 39.92 
45.61 39.93 
45.68 39.96 
45.70 39.96 
45.71 39.96 
45.73 39.87 
45.49 39.80 
45.59 39.89 
45.59 39.88 
45.61 39.88 
45.59 39.82 
45.59 39.82 
45.63 39.84 
45.63 39.89 
45.69 39.85 
45.69 39.83 
45.70 39.81 
45.70 39.78 
45.79 39.86 
45.78 39.75 
45.69 39.76 
45.70 39.76 
45.71 39.70 
45.71 39.69 
45.71 39.69 
45.82 39.86 
45.82 39.82 
45.83 39.79 
45.84 39.79 
45.87 39.80 
45.86 39.79 
45.83 39.78 
45.86 39.77 
45.86 39.77 
45.86 39.76 
45.85 39.76 
45.84 39.76 
45.83 39.76 
45.84 39.74 
45.88 39.73 
45.89 39.74 
45.90 39.74 
45.87 39.70 
45.88 39.69 

45.91 39.72 
45.89 39.71 
45.90 39.71 
45.91 39.70 
45.91 39.69 
45.92 39.67 
45.94 39.67 
45.94 39.67 
45.95 39.65 
45.95 39.63 
45.96 39.62 
45.97 39.59 
45.93 39.59 
46.14 39.53 
46.09 39.54 
46.09 39.56 
46.06 39.59 
46.07 39.59 
45.95 39.78 
45.94 39.77 
45.96 39.76 
45.95 39.75 
45.97 39.75 
45.97 39.73 
45.96 39.72 
45.99 39.77 
45.99 39.77 
45.99 39.76 
46.00 39.76 
46.01 39.77 
46.00 39.76 
45.99 39.74 
45.99 39.76 
45.99 39.75 
45.99 39.75 
46.01 39.76 
46.01 39.75 
46.01 39.75 
46.02 39.75 
46.03 39.74 
46.01 39.73 
46.01 39.72 
46.01 39.72 
46.01 39.71 
46.02 39.71 
46.02 39.72 
46.02 39.71 
46.02 39.71 
46.03 39.71 
46.03 39.70 
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Appendix A (Continued) 

46.03 39.70 
46.03 39.69 
46.03 39.70 
46.04 39.69 
46.06 39.71 
46.05 39.69 
46.05 39.70 
46.05 39.70 
46.05 39.70 
46.06 39.70 
46.06 39.69 
46.06 39.69 
46.06 39.69 
46.05 39.67 
46.07 39.68 
46.08 39.67 
46.10 39.68 
46.07 39.66 
46.02 39.66 
45.99 39.66 
46.05 39.66 
46.05 39.65 
46.04 39.64 
46.03 39.62 
46.06 39.64 
46.07 39.64 
46.08 39.64 
46.07 39.63 
46.07 39.63 
46.09 39.64 
46.09 39.64 
46.09 39.65 
46.10 39.66 
46.11 39.65 

46.12 39.66 
46.12 39.65 
46.10 39.64 
46.10 39.60 
46.13 39.66 
46.12 39.63 
46.12 39.62 
46.13 39.62 
46.11 39.63 
46.12 39.63 
46.13 39.61 
46.14 39.61 
46.14 39.60 
46.14 39.62 
46.14 39.62 
46.14 39.62 
46.22 39.58 
46.24 39.56 
46.24 39.58 
46.25 39.57 
46.24 39.57 
46.17 39.54 
46.21 39.53 
46.20 39.53 
46.22 39.54 
46.23 39.53 
46.23 39.53 
46.24 39.53 
46.24 39.52 
46.21 39.52 
46.22 39.52 
46.22 39.51 
46.25 39.51 
46.19 39.50 

46.20 39.49 
46.22 39.49 
46.25 39.49 
46.26 39.49 
46.23 39.48 
46.27 39.49 
46.21 39.47 
46.26 39.45 
46.26 39.44 
46.25 39.46 
46.25 39.47 
46.26 39.47 
46.27 39.47 
46.28 39.48 
46.31 39.46 
46.34 39.47 
46.31 39.44 
46.28 39.43 
46.29 39.43 
46.28 39.42 
46.33 39.40 
46.48 39.32 
46.46 39.28 
46.40 39.26 
46.49 39.26 
46.50 39.28 
46.50 39.28 
44.20 40.38 
46.16 39.57 
46.20 39.58 
45.84 40.06 
44.95 40.22 
44.68 40.39 
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 Codes 

is project were w L computing la

t to run the Bay  follows: 

 spacing = to on
lat_long_5000.xy
ple, the Gaussian kernel function code 
t grid of coordin e 

e spacing like 5
.pl converts the 
 "normal" proba

esults to pow.ou

pl redone_volc_gauss_3000.dat > pow.out" 
ne_volc_gauss_3000.dat > pow.out 

ethod is all abo  
he map has to integrate to 1 (unity) 
um_to_1.pl to fig

_it_sum_to_1.pl 
_to_1.pl pow.o

ormalize the gri lity values to int
e map (grid) reg

echo "perl normalize_data.pl pow.out > normalized_pow.out" 
perl normalize_data.pl pow.out > normalized_pow.out 
 
#just check one more time 
#remember this just prints the value of the summation 
 
echo "perl does_it_sum_to_1.pl normalized_pow.out" 
perl does_it_sum_to_1.pl normalized_pow.out 
 
#develop the weighting function. Use the input gravity data here  
#instead of small_grav001.dat 
 
echo "perl grav_wt_function.pl detrended_grav_Xyz.dat > normalized_grav.dat" 

Appendix B: Computer
 
 

All codes for th ritten in the PER nguage. 

The shell scrip esian code is as

#!/usr/bin/csh 
 
#make your grid e kilometer! 
#the file small_ z is output 
#from, for exam
# It is the outpu ates and might b
# in UTM at som 000 m 
# the script pow log of  
#probabilities to bility numbers 
#then feed the r t 
 
echo "perl pow.
perl pow.pl redo
 
#the Bayesian m ut "normalizing"
#so this means t
#run "does_it_s ure this out 
 
echo "perl does pow.out" 
perl does_it_sum ut 
 
#go ahead and n d file of probabi egrate to 
#unity across th ion 
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perl does_it_sum_to_1.pl normalized_grav.dat 

echo "perl two_files.pl normalized_grav.dat normalized_pow.out > 
v_x_pow.out" 

erl two_files.pl normalized_grav.dat normalized_pow.out > 

.out" 
.out 

ized_grav_x_pow.out > normalize_product.out" 
ow.out > normalize_product.out 

cho "perl does_it_sum_to_1.pl normalize_product.out" 

cho "take log for plotting..." 
.out > log_normalize_product.out 

bayes.gmt 

ipts that make up the shell script above: 

a, $b, $data) = split; 

 

!/usr/bin/perl 

ARGV[0] means read from the first file after .pl listed on command line, @data creates 

Appendix B (Continued) 

perl grav_wt_function.pl grav_Xyz.dat > normalized_grav.dat 

 

normalized_gra
p
normalized_grav_x_pow.out 
 
echo "perl does_it_sum_to_1.pl normalized_grav_x_pow
perl does_it_sum_to_1.pl normalized_grav_x_pow
 
echo "perl normalize_product.pl normal
perl normalize_product.pl normalized_grav_x_p
 
e
perl does_it_sum_to_1.pl normalize_product.out 
 
e
perl log_normalize_product.pl normalize_product
 
echo "./bayes.gmt" 
./
 
The following are the individual scr
 
Script: pow.pl 
#!/usr/bin/perl 
 
while (<>) { 
 
($
$newdata = 10.0**$data; 
print "$a, $b, $newdata\n"; 
}
 
Script: does_it_sum_to_one.pl 
#
 
open (INPUT, $ARGV[0])||die "cannont read file!/n"; 
#
an array and assigns variables to each column 
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hile (<INPUT>) { 

$line = $_; 

data = split(" ", $line); 

$y=$data[1]; 

$sum_z=$sum_z+$z; 

 

cript: normalize.pl 

initializes variables 

ARGV[0])||die "cannont read file!/n"; 
ARGV[0] means read from the first file after .pl listed on command line, @data creates 

ssigns variables to each column 
hile (<INPUT>) { 

 
@data = split(" ", $line); 

a[0]; 
$y=$data[1]; 

Appendix B (Continued) 
 
w
  

 

 $N=$N+1; 
  

  
 
@
  
 $x=$data[0]; 
 
 $z=$data[2]; 
  
 
  
  
}
print "$sum_z\n"; 
 
S
#!/usr/bin/perl 
 
 
$sum_z=0; $N=0; 
#
 
open (INPUT, $
#
an array and a
w
  
 $line = $_; 
 $N=$N+1; 
 
 
  
 $x=$dat
 
 $z=$data[2]; 
  
 $sum_z=$sum_z+$z; 
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#print "$sum_z\n"; 
 

 
 

)||die "cannot read file!/n"; 
>)  

=~m/\d/) 

 @data= split (" ", $line); 

 $x=$data[0]; 
ta[1]; 

z=$data[2]; 
  
  

$z/$sum_z; 

 print "$x $y $w\n"; 

rint "[$line]\n"; 

malize_product.pl 

Appendix B (Continued) 
 
 
} 

 
close (INPUT);

 
open (INPUT, $ARGV[0]
while (<INPUT
 
 
{ 
  
 $line=$_; 
 if ($line
 { 
 
   
 
  $y=$da
  $
 
 
  $w=
   
 
   
 } 
 else 
 { 
  p
   
 } 
} 
 
Script: log_nor
#!/usr/bin/perl 
 
while (<>) { 
 
($a, $b, $data) = split; 
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ewdata = log($data)/log(10.0); 
ta\n"; 

 

cript: grav_wt_function.pl 

sum_z=0; $N=0; 
initializes variables 

ARGV[0])||die "cannont read file!/n"; 

 first file after .pl listed on command line, @data creates 
gns variables to each column 

INPU

 ", $line); 

{$new_z = 0.01}; 
2){$new_z = 0.1}; 

ew_z = 5.0}; 
0){$new_z = 20.0}; 

if ($z < -22){$new_z = 30.5}; 
if ($z < -24){$new_z = 35.0}; 

; 
-28){$new_z = 45.0}; 

if ($z < -30){$new_z = 50.0}; 

 
 $new_z; 

Appendix B (Continued) 
 
 
$n
print "$a $b $newda
 
}
 
 
S
#!/usr/bin/perl 
 
$
#
 
open (INPUT, $
 
#ARGV[0] means read from the
an array and assi
while (< T>) { 
  
 $line = $_; 
 $N=$N+1; 
  
 @data = split("
  
 $x=$data[0]; 
 $y=$data[1]; 
 $z=$data[2]; 
  
  
 if ($z > -10)
 if ($z < -1
 if ($z < -16){$new_z = 1.0}; 
 if ($z < -18){$n
 if ($z < -2
 
 
 if ($z < -26){$new_z = 40.0}
 if ($z < 
 
  
 
 $sum_new_z +=
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Appendix B (Continued) 

 
rint "$sum_z\n"; 

lose (INPUT); 

pen (INPUT, $ARGV[0])||die "cannot read file!/n"; 

 

if ($line=~m/\d/) 

x=$data[0]; 
data[1]; 

]; 

01}; 
-12){$new_z = 0.1}; 

 = 1.0}; 
 = 5.0}; 
 = 20.0}; 

-22){$new_z = 30.5}; 
-24){$new_z = 35.0}; 

 
 

_z; 

 
 
  
}
#p
 
c
 
 
o
while (<INPUT>)  
{ 
 
 $line=$_; 
 
 { 
  @data= split (" ", $line);  
  
  $
  $y=$
  $z=$data[2
   
 if ($z > -10){$new_z = 0.
 if ($z < 
 if ($z < -16){$new_z
 if ($z < -18){$new_z
 if ($z < -20){$new_z
 if ($z < 
 if ($z < 
 if ($z < -26){$new_z = 40.0}; 
 if ($z < -28){$new_z = 45.0};
 if ($z < -30){$new_z = 50.0};
  
   
  $w=$new_z/$sum_new
   
  print "$x $y $w\n"; 
   
 } 
 else 
 { 
  print "[$line]\n"; 
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Appendix B (Continued) 
 

} 

 
!/usr/bin/perl 

pen(FILE1, $ARGV[0]) || die "Cannot open <$ARGV[0]> for input: [$@]"; 
pen(FILE2, $ARGV[1]) || die "Cannot open <$ARGV[1]> for input: [$@]"; 

ed) 

=0.50; 
) { 

>; 

data1)+((1-$a)*$data2); 

T code for mapping the output 

!/bin/

mtset 
R_FONT 5 

 5 

_SIZE 16 

e interpolation with a minimum curvature algorithm 
d spacing is 2  units in each direction 

icates the output file 
orth bounds of the map 

 
 
} 
 
Script: two_files.pl
#
 
o
o

Appendix B (Continu
 
$a
while (<FILE1>
   
  ($a1, $b1, $data1) = split; 
  $line = <FILE2
  ($a2, $b2, $data2) = split " ", $line; 
  $total =($a* $
  print "$a1  $b1  $total\n"; 
   
}   
 
close FILE1; 
close FILE2;         
  
 
Script: Bayes.gmt  (Note: This is a GM
log_normalize_product.out. 
 
# bash 
 
g FRAME_PEN 2.0p  
gmtset HEADE
gmtset LABEL_FONT
gmtset HEADER_FONT_SIZE 20 
gmtset LABEL_FONT
gmtset ANOT_FONT_SIZE 14 
 
# surface does th
# -I2  means the gri
# -Gfilename ind
# -R specifies the west,east,south, and n
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Appendix B (Continued) 

 
 log_normalize_product.out -Gnormalized_prod.grd -

80000/662000/4299000/4573000 

olor table (to color shade contours) 
e basic color table 

 -T specifies the range and interval 

#psmask clips or masks area of
-R gives range of data 

tickmark info 

0000 -Jx0.000022 -B25000a50000/WSne -K -V -P -Y1.5 > 
0.ps 

(color map) 
JX6.0i is the scale (must match the following) 

lat_long_5000.cpt is the color scale created with makecpt 
 -P portait mode (must match the following) 

 (dots per inch) of the color shading 
t to be appended to cn.ps in the following 

dimage normalized_prod.grd -Jx0.000022 -Cnormalized_grav.cpt -P -E100 -K -V -O  

grdcontour draws the contours from the grid 
ap will be 6 inches wide 

 -C250 means there is a 250 nT contour interval 
are annotated every 500 nT 
 frame, 25 m tick with 50 m label, add 5 m ticks, label on 

h side only 

ge 
rdcontour normalized_prod.grd -Jx0.000022 -C.5 -A2 -L-8 -W0.25p -P -O -K -V >> 

surface -I1000 -V
R3
 
# makecpt creates a c
# -Cseis specifies th
#
makecpt -Cseis -T-8/-3.5/.25 -V -I > normalized_grav.cpt 
 

 no data on a map 
#
#-B gives 
#-I grid spacing 
 
psmask grav_utm.dat -R -I1
bayesian_product_5
 
 
# grdimage plots the image 
# -
# -C
#
# -E is the dpi
# -K more postscrip
gr
 
>> bayesian_product_50.ps 
 
#
# -JX6.0i means the m
#
# -A500 means the contours 
# -B25a50f5/WSne draw the
#                   west and sout
# -W0.25p set line width 
# -P draw in portrait mode 
# -O overlay contours on the ima
g
bayesian_product_50.ps 
 
 
psmask -C -O -K -P -V >> bayesian_product_50.ps 
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Appendix B (Continued) 
 
 

 - G0 makes the triangles solid 
 -K -V >> 

sities plotted 
sscale -D2.65/-.5/5/0.2h -Cnormalized_grav.cpt -B1/:"log (volc/km@+2@+)": -O -P -I -

tm.dat -Jx0.000022 -R -W2.0 -O -M -V -K -P  

sxy lake_sevan_utm.dat -Jx0.000022 -R -W1.25 -P -G255 -V -O -K 
>bayesian_product_50.ps 

>> bayesian_product_50.ps 

oduct_50.ps 

OF 

sxy -R -Jx0.000022 -O -P -G0/0/0 -Sa0.15i -W0.5 -V <<EOF>> 

ate the recurrence rate which is then mapped in 

 
Purpose: this script reads volcano location data from a file and calculates the spatially 
onhomgeneous recurrence rate 

# psxy plots volcanic vents as solid black triangles 
# -S specifies the size and shape 
#
psxy volcano_type.dat -R -Jx0.000022 -St0.05i -G0 -O -P
bayesian_product_50.ps 
 
#add a color scale to show the range of lat_long_5000 inten
p
V -K >> bayesian_product_50.ps 
 
 
psxy armfaults_u
 
>>bayesian_product_50.ps 
 
p
>
 
pstext -R -Jx0.000022 -G0 -O -P -V -P -K <<EOF
522500 4456000 9 0 24 BL Lake Sevan 
EOF 
 
pstext -R -Jx0.000022 -G0 -O -P -V -K <<EOF>> bayesian_pr
443000 4430000 12 0 24 BL Yerevan 
E
 
p
bayesian_product_50.ps 
440000 4440000  
EOF 
 
 
The following script is used to calcul
GMT. 
 
#!/usr/bin/perl 
#this is a perl script by Jenn Weller 
#created on Feb. 24, 2003
#
n
#using a guassian kernal function. 
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alue of the point density estimate is 

GMT. 

put file to contain two columns of numbers giving location of 
olcanoes. 

volcanoes=(); 

 

$line = $_; 

  
 @data = split(" ", $line); 

a[0]; 
 $volcanoes[1][$n]=$data[1]; 
 #print "$volcanoes[0][$n]  $volcanoes[1][$n]\n"; 

{  
 

 
06; $y>4.29899e+06; $y-=1000){ 

 grid 

x<662001; $x+=1000){ 
points on grid 

Appendix B (Continued) 
 
 
#The location of the point density estimate and the v
output (x y z); 
#this output can be contoured in 
 
#This code requires the in
v
 
#initialize variables used in calculations 
$n=0; $x=0; $y=0; $h=3000; 
@
 
open (INPUT, $ARGV[0])||die "cannot access file!/n"; 
 
while (<INPUT>)  
{
 
 

 if ($line=~m/\d/) 
 { 
 
 
  
  $volcanoes[0][$n]=$dat
 
 
  $n=$n+1; 
 } 
 else  
 
 
 
print "[$line]\n"; 
} 
}
for ($y=4.573e+
 #steps through all y points on
  
  
  for ($x=380000; $
  #steps through all x 
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 $sum_k=0;  

or ($ct=0; $ct<$n; $ct++){ 
 data points 

   

  #calculates the distance from point x,y to point $ct 

$kernel=1/(2*3.14159)* exp(-0.5*$dist**2/$h**2); 
  $sum_k=$sum_k + $kernel; 

   
#calculates the kernel and the sum respectively 

 } 
 $lambda=1/($n*$h**2)*$sum_k; 
 #lambda is calculated 

Appendix B (Continued) 
 
 
   
  f
   #steps through all
 
   $dist=sqrt(($volcanoes[0][$ct]-$x)**2 + ($volcanoes[1][$ct]-
$y)**2); 
 
   #print "$dist\n"; 
    
   
 
   #print "$kernel\n"; 
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Appendix B (Continued) 

0001){ 
lambd  

#also multiple by 1e6 to report answer in terms of volcanoes/km^2 rather 
an m

 

  
  
  if ($lambda>=0.0000000000
  $ a2=log($lambda*1e6)/log(10);
  #the log of lambda is calculated for ease of use in contouring 
  #note that "log" in perl is ln so divid by log(10)  
  
th ^2 
 } 
 else{ 
 $lambda2=-13; 
 } 
  print "$x   $y     $lambda2\n"; 
 } 
}
close (INPUT); 
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Map of spatial density h=1300 m. 
 

Appendix C: Additional Maps 

 

 
 
 
 
 
 
 

 



Map of spatial denstity h=6000  
 
 
 
 
 

 
Appendix C (Continued) 
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Appendix C (Continued) 
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Map of spatial denstity h=8000 
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