SEABROOK UPDATED FSAR

APPENDIX 2G

STATIC DYNAMIC ROCK PROPERTIES

The information contained in this appendix was not revised, but has been extracted from the original FSAR and is provided for historical information.

APPENDIX 2G

STATIC AND DYNAMIC ROCK PROPERTIES

TABLES

Table

Title

- 2G-1 Unconfined Compression Tests
- 2G-2 Laboratory Compression Wave Velocity Measurements
- 2G-3 Strength, Velocity and Hardness Data, Samples from Tunnel Alignments

45

TABLE 2G-1

UNCONFINED COMPRESSION TESTS

Test No.	Location	Hole No.	Depth (ft)	Rock Type	Unconfined Compressive Strength q_u (psi)	Axial Strain@ Failure %	Initial Tangent Modulus (psi)	Secant Modulus @ 50% ¶_ (psi)	Poisson' Initial Load	s Ratio Secant Value @ 50% qu
EIA EID EIF	Reactor 1	El-l	31.4- 31.8 78.3- 78.7 79.1- 79.5	Diorite Diorite Diorite	22,400 19,520 19,820	.21	12 x 106 9.3 x 10⁶	12 x 106 9.3 x 106	.29 .25	.25 .25
EIG E2A E2B E2C	Reactor 2	E2-1	49.6 – 50.0 50.0 – 50.4 50.4 – 50.8	Diorite Diorite Diorite Diorite	19,400 18,020 Failed by 15,530	.20 .20 splitting. .17	13 x 106 12 x 106 Do not repor 12 x 106	11 x 106 10 x 106 t. 9.9 x 106	.36	.28
E2G E2J E2M			138.7-139.1 139.4-139.8 141.9-142.3	Diorite Diorite Diorite	5,970 11,610 18,610	.21 .20	12 x 106 10 x 106	9.7 x 106 10 x 106	.21 .23	.23 .25
B7B	Near Reactors	в7	27.8- 28.2	Schist	17,940	.20	11 x 106	10 x 106	.17	.19
B42D	Contact	В42	123.5-123.9	Diabase	27,600	.27	ll x 106	10 x 106	.21	.26
B42F B42H			141.3-141.7 142.7-143.1	Schist Schist	16,500 11,970	.21 .18	9.1 x 106 10 x 106	8.0 x 106 7.4 x 106	.18	.21
F1A F1B	Tunnel	FlA	127.5-127.9 127.9-128.3	Diorite Diorite	16,130 13,950	.19	11 x 106	9.9 x 106	.33	.28
F2A F2C F2F	Tunnel	F2	246.3-246.7 247.2-247.6 260.3-260.7	Schist Schist Schist	6,060 6,000 6,330					

NOTE: In tests for which values of axial strain at failure, modulus, and Poisson's ratio are omitted, the strain-gage readings appear to be unreliable, No stress-strain curves are plotted for these tests.

TABLE 2G-2

LABORATORY COMPRESSION WAVE VELOCITY MEASUREMENTS

Test No.	Location	Hole No.	Depth (Feet)	Rock Type	Density (gm/cm ³)	Laboratory Wave Velc <u>(</u> 0 psi	Compression ocity @ 3000 psi
E 1 H	Reactor 1	El-1	79.9 - 80.3	Diorite	2.81	19,460	19,880
E 2 E	Reactor 2	E 2 - 1	51.2 - 51.6	Diorite	2.83	18,860	19,090
Е2Н	Reactor 2	E 2 - 1	139.1 - 139.4	Diorite	2.77	20,050	20,300
B 42 B	Contact	в 42	122.5 - 123.0	Diabase	2.84	18,600	18,800
B 42 G	Contact	в 42	141.8 • 142.3	Schist	2.77	16,960	17,320
F 1 D	Tunnel	FIA	128.7 - 129.2	Diorite	2.79	20,050	20,340
F 2 D	Tunnel	F 2	259.0 - 259.4	Schist	2.86	18,110	18,370

TABLE 2G-3

OTTOTIO				
SIKENGIA,	VELUCIII,	AND	TAKDINESS	DATA

SAMPLES FROM TUNNEL ALIGNMENTS

SERIES 1

Boring	Depth, ft.	Rock Mechanics	Unit	9	Sonic Vel	ocity, fp	5	Ultimate	L/0	. 10	lulus		Be	ck Hard	455		Rock Description	Remarks
Re.	, .	Laboratory Number	Weight Dvy		- <u>(Dr</u> Axtat	Y) Load	_	Compressive	Ratio	of BLa	x 10 ⁶	I'''R	"s	HA.	ן ייי	^ R		
			gm/cc	0	100	500	1000	Strength ps1		E,	E,							
M- 1	I67. 0. 267. 1	73-49	2. 93	17,564	17. 606	17. 404	17.691	33,954	3. 72	0. 24	1.29	52	ID	6.U	132	16.7	Diorite - fine grained; 5000 quartz, feldspar, mafics, and iron sulfides	Failed along iron stained joint
ADT-2	266. 6- 267. 6	73-50	2.66	16. 992	16. 492	16. 193	16,505	22,587	2. 76	0. 94	4. m	49	01	6.06	120	18.9	Diorite • coarse grained; primarily feldspar and biotite; slight foliation developed	
A07-2	267. 0- 267. 7	73-51	2. m	16. 271	16. 312	16. 437	16. 479	15,580	3. 26	1.46	6. 32	36	68	4. 01	m	116.0	Quartz diorite + very fine grained; quartz, feldspars, O lorr, and mafics; med. gray	
ADT-4	250.0-250.8	73-52	2. 73	16. 370	15,434	16. 496	16. 631	19. 306	4. 03	0.80	6.01'	32	62	3. 61	61'	9. 9	Diorite • medium to fine grained; highly micaceous; cuartz, feldspar, mica, mafics; lite gray; some foliation developed.	
M⊦I	255.4-256.0	73-53	2. 11	16. 410	16.616	15,570	15,570	20,895	2.26	0. 91	4.84	33	71	6. 00	7¥	6. 9	Diorita + medium grained; quartz, feldspar, • ical. mafics;medium gray;scme- what slickersided.	Failed along pre-existing but healed fracture
AGT-11	222.5-223.5	73-64	***	14. 996	16. 014	IS. 014	16.071	10,060	2. 61	0. 39	2.8	34	69	'5.0 0	76'	12. 1	Schistose diorite - fine grained; high biotite content; foliation developed to fair degree	
ADT-13	213.0-213.7	73-66	2. 71	17.063	16, 996	17. 336	17.611		2.71			47	88	6. 94	1251	9. 1	Diorite • med. to coarse grained; quartz, feldspar, biotite, mafics; and iron sulfides	
M 17	189.0-189.8	73- w	3. 01	17,007	17. 007	17,079	17.07,	7. 026	4. 04	D.62	5.40	60	12	4.66	108	16. 4	Diabase - fine grained;feldspar, pyrite and mafics; dark gray	Failed along calcite filled joint
AIT-1	250.0-250.9	73-57	2.89	16. 343	16. 423	16. 747	16,624	21,290	3. 42	1. 44	6.10	61	Is	4.66	108	8.(Quartz diorite + coarse grained; high quartz-feldspar content, also • Icu; rd. to lite gray	Failed along pn-•rlst, n# but healed fracture
AIT-7	198.5-199.8	73- I)		14,682	14,682	14,789	14,84;	6. 910	2.61	0. 31	1.U)	46	67	4. 76	99	10. : ,	Blofite schist + med, to fine grained; quartz, feldspar, and mafics; fine follation mill developed	Failed along (ron stained joint
AIT-8	195.0-196.2	73-59	2.83	17,686	17,686	17.624	17.911	19. 163	2. 72	1. 43	2. 61)	37	58	6. 13	83	11.4	Biotite schist - rd. grained: well de- veloped fine foliation with guartz - rich lawers: md draw	
f-6	196.3-196.9	73-60	2.11	16.662	16.640	16,684	16. 771	22,312	3. 16	1. 36	6. 11 I	46	73	4.81	101'	16.:	Schistose quartz diorite + fine to med, grained; quartz, feldspar bio- tite; feliation fair; med. to dk. gr	
F-5	205.3-205.9	73-61	2.78	15,989	15,989	16.066	16. 111	24, 796	3. 41	1.22	4.87	46	70	3. 33	84	n.(Diabase - very fine grained: primarily feldspar and mafics; dark gray	Failed along pre-existing but healed fracture
AIT-18	141.2-142.3	73-62	2.82	16,493.	16. 627	16. 627	16. 621	19, 036	4.01	1.07	6. 36	: 39	71	3. 23	70'	7.:	Quartzitic Schist - rd. drained; mostly quartz, feldspar, and blotite with iron sulfides: foliation only fairly developed; med.gray	

E - initial tangent modulus

Et50 - tangent modulus at 50% of the ultimate unconfined strength .

H_R - Schmidt (L-type) Rebound Hardness

H_S - Shore Scleroscope (C-2 type) Hardness

H_A - Modified Taber Abrasion Hardness

HT - HRVHA

An - Nock Abrasiveness

SB 1 & 2 FSAR

APPENDIX 2G

STATIC AND DYNAMIC ROCK PROPERTIES

FIGURES

Figure	-	Title
2G-1	Unconfined Test]	ElF Stress-Strain Curve
2G-2	Unconfined Test N	ElG Stress-Strain Curve
2G 3	Unconfined Test 1	E2A Stress-Strain Curve
2G4	Unconfined Test E	2C Stress-Strain Curve
2G-5	Unconfined Test	E2J Stress-Strain Curve
2G-6	Unconfined Test 1	E2M Stress-Strain Curve
2G-7	Unconfined Test	B7B Stress-Strain Curve
2G-8	Unconfined Test	B42D Stress-Strain Curve
2G-9	Unconfined Test	B42F Stress-Strain Curve
2610	Unconfined Test	B42H Stress-Strain Curve
2611	Unconfined Test	FIA Stress-Strain Curve

NOTE: The stress-strain curves shown in Figures **2G-1** through **2G-11** are terminated at the last strain reading before sudden, brittle failure. The maximum compressive load at failure was recorded by the testing machine and was used to calculate the compressive strengths contained in Table **2G-1**.

45

Diorite Borehole El-l Depth 79.1 to 79.5 ft

UNCONFINED TEST E 1 F STRESS -STRAIN CURVE FIGURE 2G-1

 \frown

DioriteM = Modulus of DeformationBorehole E1-1Depth 79.5 to 79.3 ft

UNCONFINED TEST EIG STRESS-STRAIN CURVE FIGURE 2G-2

Diorite Borehole E2-2 Depth 49. 6 to 50. Oft

UNCONFINED TEST **E2A** STRESS-STRAIN CURVE FIGURE **2G-3**

Diorite Borehole E2-2 Depth 50.4 to 50.8 ft

UNCONFINEDTEST **E2C** STRESS-STRAIN CURVE FIGURE **2G-4**

M = Modulus of Deformation

Schist Borehole E2-2 Depth 139.4 to 139.8

UNCONFINED TEST E2 J STRESS-STRAIN CURVE FIGURE 2G-5

•

M = Moculus of Deformation

Schist Borehole E2-2 Depth 141.9 to 142.3 ft

UNCONFINED TEST E2M STRESS -STRAIN CURVE FIGURE 2G-6

M = Modulus of Deformation

Schist Borehole B7 Depth 27.8 to 28.2 ft

UNCONFINED TEST **B7B** STRESS-STRAIN CURVE FIGURE **2G**- 7

Diabase Borehole B-12 Depth 123.5 to 12%. 9 ft

UNCONFINED TEST **B42D** STRESS-STRAIN CURVE FIGURE **2G-8**

Schist Borchole B42 Depth 141.3 to 141. 7 ft

UNCONFINED TEST B42F STRESS-STRAIN CURVE FIGURE 2G-9

Schist Borehole B42 Depth 142.7 to 143.1 ft

UNCONFINED TEST **B42H** STRESS-STRAIN CURVE FIGURE **2G-10**

Diorite Borehole F1A Depth 127.5 to 127. ?ft

UNCONFINED TEST F IA STRESS-STRAIN CURVE FIGURE **2G-**1 1

SEABROOK UPDATED FSAR

APPENDIX 2H

ROCK STRESS MEASUREMENTS IN BORING OC1A

The information contained in this appendix was not revised, but has been extracted from the original FSAR and is provided for historical information.

SEABROOK STATION

ROCK STRESS MEASUREMENTS IN BORING OC1A

for

Yankee Atomic Electric Company and Public Service Company of New Hampshire

September 1973

by

Geotechnical Engineers, Inc. 934 Main Street Winchester, Massachusetts 01890

SEABROOK STATION

ROCK STRESS MEASUREMENTS

IN BORING OC1A

CONTENTS

Page

SUMMARY

- 1. **INTRODUCTION** 1 1.1 Background 1 1.2 Purpose 1.3 Scope 1 METHOD OF MEASUREMENT 2. 3 2.1 General 2.2 The Overcoring Technique 3 2.3 The Borehole Gage 4 2.4 Measurement of Modulus of Rock 4 5 2.5 Computation of Stresses 3. TEST DATA AND RESULTS 7 3.1 Calibrations 3.2 In Situ Stresses and Directions 8 9 DISCUSSION OF RESULTS 4. MEASUREMENT OF STRESSES IN ROCK APPENDIX A
- APPENDIX A MEASUREMENT OF STRESSES IN ROCK BY OVERCORING IN VERTICAL HOLE
- APPENDIX B MEASUREMENT OF MODULUS OF ANNULAR ROCK CORE

LIST OF TABLES

TABLE 1	CALIBRATIONS
TABLE 2	TEST CONDITIONS FOR STRESS MEASUREMENTS
TABLE 3	DATA AND RESULTS OF STRESS MEASUREMENTS

LIST OF FIGURES

1	Sketch of Hole during Overcoring
2	Log of Boring OC1A
3	Log of Boring El-l
4	Photograph of Borehole Gage System
5	Photograph of Borehole Gage
6	Photograph of Rock Modulus Cell
7	Data from Stress Measurements, Test OC1A-2
8	Data from Stress Measurements, Test OC1A-5
9	Data from Stress Measurements, Test OC1A-6
10	Data from Stress Measurements, Test OClA-7
11	Data from Stress Measurements, Test OC1A-9
12	Test OC1A-2 Hole Dimensions
13	Test OC1A-5 Hole Dimensions
14	Test OCIA-6 Hole Dimensions
15	Test OC 1A -7 Hole Dimensions
16	Test OCIA-9 Hole Dimensions
17	Photographs of Annular Cores, Hole OC1A
18	Summary of Stress Measurements

SUMMARY

Rock stress measurements were made in June and July 1973 at depths of 33 ft to 42 ft in vertical Boring OC1A, which is about 34 ft from the center of proposed Reactor No. 1 of Seabrook Station.

The results of five measurements of compressive stresses in the horizontal plane were:

Largest stress:	1240 psi (150 to 2150 psi)
Smallest stress:	860 psi (50 to 1570 psi)

The vertical stress can be assumed equal to the overburden stress of about 50 psi. The average direction of the largest stress in the horizontal plane was N 40 E ($^{\pm}$ 36°). These results compare well with other stress measurements in New England. (Fig. 18).

The rock at this location consists of a medium-grained, massive, quartz-diorite that contains pegmatitie dikes ranging in thickness from inches to two feet. See Figs. 2 and 3 for logs of Boring OC1A and El-l. The latter hole is NX-size and is located at the center of proposed Reactor No. 1.

The stress measurements were made by inserting a 6-arm borehole gage in a 1.5 in. diameter hole and overcoring with a bit that cuts a 4.31 in. diameter core around the inner hole. The rock modulus was measured by testing the annular core in a cell constructed to apply stress to the exterior of the **annulus** while making deformation measurements in the inner hole with the **borehole** gage.

SEA BROOK STATION ROCK STRESS MEASUREMENTS IN BORING OC 1A

for

Yankee Atomic Electric Company

and

Public Service Company of New Hampshire

Geotechnical Engineers, Inc.

September 10, 1973

1. INTRODUCTION

1.1 Background

Measurements of seismic velocities in the bedrock at the plant site at Seabrook Station were made in the spring of 1969 by Weston Geophysical Research. These measurements indicated that the velocity in the Newburyport granodiorite ranged from 16500 fps to 18500 fps, whereas in the Kittery Schist the velocity was about 13000 fps. The velocities in the granodiorite were slightly on the high side, although not unusual in the area, and could be taken as a possible indication of in-situ stresses in the bedrock. Therefore, a modest program of stress measurement was undertaken in the zone where high velocities were measured at the location of one of the two proposed reactors. The measurements were made during June and July 1973.

1.2 Purpose

The purpose of this report is to present the results of measurements of in-situ stresses in the Newburyport granodiorite in vertical Boring OC1A at a depth of 31 to 43 ft using the overcoring technique. The coordinates of this hole are N20413, E796'71.

1.3 Scope

One hole was drilled near the center of proposed Reactor #1 at Seabrook Station for the purpose of measuring in-situ stresses. Eleven measurements were made using the overcoring technique. Each measurement consisted of three deformation readings in the horizontal plane on axes oriented 120° apart. Of the eleven attempts, the data from five of the measurements, at depths of 33 ft 9 in. to 41 ft 5 in., were deemed suitable for analysis and are reported herein. The other measurements gave poor or marginal information because of rock fracture and /or equipment breakdown during overcoring.

Moduli of elasticity of the rock were measured (a) on two annular cylinders of rock removed after overcoring, and (b) intact specimens oriented such that the load was' applied in the direction of the axis that was horizontal in-situ. These moduli were used with the measured deformations and published formulae to compute the magnitude and direction of the largest and smallest normal stresses in the horizontal plane. The vertical stress was assumed to be *equal* to the overburden *pressure*.

The test procedures used are described in detail in Appendix A and B.

The tests were carried out in the field by Pierre Le Francois under the direction of Geotechnical Engineers Inc. The drilling was performed by the American Drilling and Boring Company.

2. METHOD OF MEASUREMENT

2.1 General

The overcoring technique consists of three phases:

- 1. Measurement of borehole expansion during overcoring.
- 2. Determination of the modulus of elasticity of the rock, for rebound to zero stress, preferably at the point of measurement, and
- 3. Computation of stresses using the theory of linear elasticity and the measured deformations and moduli.

Each of the above steps are described briefly in subsequent subsections.

2.2 The Overcoring Technique

Fig. 1 is a sketch of the appearance of the hole during overcoring. A PX hole, 5. O-in. diameter, was first drilled with a single-tube core barrel to the desired depth. In this case, this depth was the shallowest at which the rock was continuous enough to be tested, which turned out to be 31 to 43 ft below ground surface. Logs of Boring OC1A and Boring El-l (NX-size), which are about 14 ft apart, are shown in Figs. 2 and 3, respectively.

An EX single-tube core barrel, 1.5 in, 0. D., was then carefully centered in the bottom of the PX hole and drilled to a depth of about 2 ft. The recovered EX core was examined to determine whether the rock was sufficiently continuous to attempt a measurement. If the core was unbroken, or only jointed once or twice, then an attempt was made.

The borehole gage, which is described in Subsection 2.3, was then lowered into the hole using orientation rods. These rods were used to preserve the orientation of the measuring points and for measuring depths accurately when the borehole gage was lowered into the hole. The measuring points on the borehole gage were at least 3.5 in. below the bottom of the PX core barrel (Fig. 1) so that a minimum depth of overcoring would be needed for a measurement, and to allow two measurements for each EX run if the rock did not break.

Overcoring with the PX single-tube core barrel was then carried out. Readings of deformation on three axes 120° apart in the horizontal plane were taken continuously until the PX core barrel was about 5 in. below the measuring points, or until the readings stopped changing rapidly. The procedure for carrying out each measurement is described in detail in Appendix A.

2.3 The Borehole Gage

A photograph of the instrument, the hose, the readout, and the pressure application system is shown in Fig. 4. The instrument, without its vinyl sheath, is shown in Fig. 5. The deformation is measured by bending of the cantilevers that are seen at the left in Fig. 5. The readout. of the strain gages on the cantilever arms is proportional to the movement of the tips of the cantilevers. In this instrument three pairs of cantilevers were installed 120° apart. In principle only three cantilevers are needed, but a fourth is necessary to be able to compute body movement of the instrument within the hole. To eliminate this computation, the cantilevers were installed in pairs such that body movements cause zero output on the readout device. The instrument was designed and constructed by Pierre Le Francois.

The tips of the cantilevers are attached to the vinyl sheath, Fig. 4, such that when air pressure (or bottlednitrogen pressure) is applied inside, the cantilevers are forced against the side of the hole. Hence the hose serves the dual purpose of protecting the strain gage leads and passing air to the instrument. The readout is made on a conventional strain gage indicator.

2.4 Measurement of Modulus of Rock

To obtain the best value of the modulus of elasticity of the rock in the zone tested, it is necessary to remove the overcored annular cylinder of rock from the hole and test it in a rock modulus cell. In Fig. 6 an annular core is shown in the cell with the borehole gage in the central hole of the core. To determine the modulus one applies pressure to the outside of the core, up to about 3000 psi, and then removes it in increments, measuring the deformation of the central hole for each pressure decrement. In this way one reproduces reasonably well in the core the stresses that it underwent during overcoring. The details of the measurement procedure are given in Appendix B.

In the present case the rock in Boring OC1A, at the measuring points, was so broken up that only two satisfactory annular cores of sufficient length (16 in.) were recovered. They both contained slightly healed joints that broke during testing, although satisfactory results were obtained from both. 'To supplement the measurement of modulus on the annular cores, intact specimens of rock from Boring OC1A, from depths where stress measurements were made, were tested in unconfined compression. The specimens were loaded in the direction of the axis that was horizontal in-situ so that the load was in the same direction as in situ. The rebound modulus of these specimens was measured with the aid of strain gages glued on the sides of the specimens.

2.5 Computation of Stresses

The major and minor stresses in the horizontal plane were computed from the measurements using the following formulae from Obert (1 966):

$$P = \frac{Ek}{6d} (R_1 + R_2 + R_3)$$
(1)

$$q = \frac{\sqrt{2} Ek}{12d} \sqrt{(R_1 - R_2)^2 + (R_2 - R_3)^2 + (R_3 - R_1)^2}$$
(2)

where:

- p = Stress at center of Mohr circles of stress, psi
- q = Radius of Mohr circle of stress, psi
- E= Modulus of elasticity measured for same stress changes as occurred in situ, psi
- d = Diameter of central hole in which instrument is placed, in.
- kR = Horizontal <u>expansion</u> of the diameter of the borehole during overcoring. The subscripts refer to axes that are 120 apart in the plane perpendicular to the axis of the borehole gage - in this case horizontal. R is the reading in microinches/inch $(\mu \epsilon)$ and k is the instrument calibration in in. $/u\epsilon$

From the values p and q one can compute the largest and smallest stresses in the plane perpendicular to the axis of the borehole gage from:

$$\sigma_{\rm T} = p + q \tag{3}$$

$$\mathbf{PI} = \mathbf{p} - \mathbf{q} \tag{4}$$

The direction of stress σ_{τ} is obtained from the formula: ¹:

$$\alpha = 1/2 \tan^{-1} \frac{\sqrt{3} \left(\frac{R_2 - R_3}{2} \right)}{2R_1 - \left(\frac{R_2 + R_3}{2} \right)}$$
(5)

where: α = angle measured from the direction of R₁ to the direction of σ_1 in the counterclockwise direction.

1) Eq. (5) contains $\sqrt{3}$ in the argument rather than 3, which was shown in the Reference (1) by error, but was correct in an earlier reference.

GEOTECHNICAL ENGINEERS INC

<u>Reference (1)</u> Obert, Leonard (1966) "Determination of the Stress in Rock – A State of the Art Report," Presented at the 69th Annual Meeting of the ASTM, Atlantic City.

Equation (5) is subject to the following restrictions:

If
$$R_2 > R_3$$
 and $R_2 + R_3 < 2R_1$, then $0 < \alpha < 45^{\circ}$
and $R_2 + R_3 > 2R_1$, then $45^{\circ} < \alpha < 90^{\circ}$
If $R_2 < R_3$ and $R_2 + R_3 > 2R_1$, then $90^{\circ} < \alpha < 135^{\circ}$
and $R_2 + R_3 < 2R_1$, then $135^{\circ} < \alpha < 180^{\circ}$

All but Eq. (5) above are based on the assumption that a plane stress condition exists at the measuring point in situ, i.e. that the vertical stress is zero. Since the vertical stress is very close to the overburden stress of about. 50 psi, which is small compared to the magnitude of horizontal stresses of interest, the plane stress assumption is appropriate in this case. Hence the computed stresses are dependent only on the modulus of elasticity and not on Poisson's ratio of the rock.

3. TEST DATA AND RESULTS

3.1 Calibrations

The results of calibrations of the instrument and measurements of rock modulus are shown in Table 1. Direct calibration of Instrument, No, 2 with a micrometer yielded $k = 10 \ \mu$ in. $/\mu \epsilon$. Since $5 \ \mu \epsilon$ can be read, the instrument can be used to discern movements in the borehole as small as $5 \ x \ 10^{-5}$ in. Instrument, No. 1 was not calibrated directly, but it is capable of discerning movements of $2 \ x \ 10^{-5}$ in. in the borehole.

The borehole gages were calibrated under conditions similar to in-situ conditions by using an annular aluminum cylinder of known modulus $(10 \times 10^6 \text{ psi})$ as a standard. Table 1 shows that Instrument No. 2 yielded $k = 8.6 \mu \text{ in}./\mu\epsilon$, as compared with $10 \mu \text{ in}./\mu\epsilon$ for the direct calibration above. Since the calibration in the rock modulus cell models very closely the in-situ testing conditions and since the modulus of aluminum is well known, the value of $k = 8.6 \mu \text{ in}./\mu\epsilon$ for Instrument No. 2 is the better value and was used herein. * Similarly $k = 4.4 \mu \text{ in}./\mu\epsilon$ was used for Instrument No. 1.

Two annular cores of granodiorite were retrieved that could be tested in the rock modulus cell. The second of these, near tests OC1A-8/9, broke and had to be glued with epoxy to complete the test. The results in Table 1 show that the moduli of the two cores were 4.1 and 3.0 x 10^6 psi. The modulus for the pegmatite (Test OCIA-2) was assumed to be 4.1 x 10^6 psi also since it was harder but seemed to contain a greater number of healed joints than the granodiorite.

As a check on the modulus values obtained for the annular cores of granodiorite, additional tests were made by cutting 1.2 in. cube samples from some of the broken cores, gluing on strain gages, and loading them hori zontally. The moduli were:

*The direct calibration was made without the vinyl sheath in place. The cantilevers were therefore unstressed. When the gage is in the borehole, the cantilevers are stressed to half their elastic limit. Hence, the direct calibration is not as appropriate as the calibration which makes use of a standard annular cylinder.

From Test	Rock*	Rebound Modulus 10 ⁶ psi
OC1A-2	Granodiorite	12
OC1A-2	Pegmatite	12
OC1A-3	Granodiorite	5
OC1A-7	Granodiorite	11

 \times Specimens were cubes 1.2 in. on a side.

The range of possible moduli of the granodiorite is from about 3 to 12×10^6 psi. The larger values were measured on small intact specimens using strain gages, whereas the smaller values were measured on the annular *cores* using a loading sys tern and measuring device which were identical for practical purposes to in situ conditions. Hence the moduli used in the computations were those measured on the annular cores. The fact that one intact specimen of granodiorite had a modulus of only 5×10^6 psi gives some confidence in the use of a still lower modulus for the large annular cores, because they can be expected to contain more defects than the smaller specimens.

3.2 In Situ Stresses and Directions

Table 2 shows the test conditions and the computed calibrations and moduli. Table 3 shows the readings selected from the data in Figs. 7 to 11 together with the stresses and directions computed from Eys. (3), (4), and (5). The dimensions of the overcored hole for each test are shown in Figs. 12-16, and photographs of the annular cores recovered, including the ones for which moduli were measured, are shown in Fig. 17.

Fig. 18 shows to scale the computed stresses and directions for the best estimated values. Table 3 shows the numerical values for these best estimates as well as other possible values for Tests OC1A-2, 7, and 9. These additional values arise from alternate selections of the changes in reading from Figs. 7, 10, and 11.

The largest normal stress in the horizontal plane (σ_{I}) is compressive, ranges from 150 to 2150 psi, and averages 1240 psi. The smallest normal stress in the horizontal plane (σ_{II}) is also compressive, ranges from 50 to 1570 psi, and averages 860 psi. The direction of σ_{I} is N 40 E $\stackrel{+}{-}$, 36°. In giving this direction, the direction for Test OC1A-5 is neglected because the stress was so small in that test that the computed direction is not mean-ingful.

4. DISCUSSION OF RESULTS

The stresses and directions in Fig. 18 show that the direction of the major stress in the horizontal plane is generally NE-SW. The magnitude of this stress is best taken as the average of the five satisfactory measurements, since inherent variations in the stress and direction can occur within any given block of rock in situ, particularly near surface. This average is 1240 psi (87 bars) for the major stress and 860 psi (61 bars) for the minor stress in the horizontal plane. The vertical stress is assumed equal to the overburden pressure of about. 50 psi,

At the bottom of Fig. 18 is a tabulation of some known previous stress measurements in New England (Sbar and Sykes, 1973). The general agreement. between the stresses at Seabrook and those elsewhere in New England is clear. The direction of the major stress is also in reasonable agreement. The range of error in the computed direction, simply due to alternate selections of the changes that occurred during overcoring, is such as to place all of the earlier values essentially within the possible total range for the present case.

It should be noted that the technique used herein for modulus measurement is really nothingmore than a method for reapplying the in-situ stresses under laboratory conditions. Hence the computed stresses are in fact independent of the absolute values of the modulus and the instrument calibration constant. If the researchers who made the previous measurements did not use a similar approach, then the agreement of all the data may be fortuitous.

By measuring the deformation of an annular specimen of rock in the laboratory one eliminates many potential sources of error. However, the damage done to the core during drilling is not taken into account. If the rock in-situ contains microfractures, they may be opened during drilling of the EX and the PX holes. When this annulus is brought to the laboratory, its modulus is likely to be lower than in situ. Previous work by Obert (1962) indicates that until the stress levels reach about 50% of the crushing strength of the intact rock, the effect of stress relief is likely to be low. The effect in the present case is probably low because the crushing strength is more than four times the highest stress that was measured.

<u>Reference (2)</u> Sbar, M. L. and Sykes, L. R. (1973) "Contemporary Compressive Stress and Seismicity in Eastern North America: An Example of Intra-Plate Tectonics,"Geological Society of America Bulletin, Volume 84, No. 6, p. 1871. <u>Reference (3)</u> Obert, Leonard (1962) "Effects of Stress Relief and Other Changes in Stress on the Physical Properties of Rock," Bureau of Mines, RI 6053.

TABLES

٠

TABLE 1 CALIBRATIONS

Inst No.	Chang for ea	Instrument Calibration			
	R ₁	R ₂	R ₃	Avg	μ in. $/\mu\epsilon$
2	100	100	103	101	10

A. DIRECT CALIBRATION WITH MICROMETER

B. CALIBRATIONS USING ANNULAR CORES IN ROCK MODULUS CELL

Inst No.	Chang for ea	ge in Rea ach Chan	ading per inel, με	k	E	Medium	
	R ₁	R_2	R ₃	R _{Avg}	μ in . $\mu\epsilon$	10^6 psi	
1	76	78	76	77	4.4	10	Al
2	40	41	39	40	8.6	10	Al
	41	39	39	40	8.6	10	Al
1	200	173	192	188	4.4	4.1	OC1A-4 diorite
2	135	140	130	135	8. 6	3.0	OC1A-8/9 diorite

Underlined values computed using equation for thick-walled cylinder under external pressure for OD = 4.31 in, ID = 1.50 in.: $kR = 3.43 \frac{p}{E}$. The quantity kR is equal to the diametral deformation. Al = Aluminum.

Test No.	Depth ft-in.	Inst. No.	Inst. Calib. k µin. /µ¢	Modulus E 10 ⁶ psi	True Azimuth Channel #1 deg.	Rock Type
OC1A-2	33 - 9 2	2	8.6	4.1	285	Pegmatite
OC1A-5	36 - 9	1	4.4	4.1	165	Granodiorite
OC1A-6	38 - 3	2	8.6	4.1	285	Granodiorite
OC1A-7	39 - 3	2	8.6	3.0	255	Granodiori te
OC1A-9	41 - 5	2	8.6	3.0	240	Granodiorite

TABLE 2 TEST CONDITIONS FOR STRESS MEASUREMENTS

 μ in. = microinches

 $\mu \epsilon$ = micros train

k = instrument calibration

E = modulus of elasticity used for computation of stresses (see Table 3)

All tests performed in vertical Boring OC1A. Coordinates 20413N; 79671E. Ground El. 28.0. Hole diameter = 5.0 in. Core O.D. = 4.3 in. Hole 0. D. in which instrument placed = 1.5 in. Of eleven attempts made to measure stresses, five were successful.

Test No.	Depth	Reading Change during Overcoring ¹⁾³⁾			Compressive Stress in Horizon tal Plane ²⁾		True Bearing
	ft-in.	^R 1 це	R ₂ ЦЕ	R ₃ Це	σ _I	σ _{II} psi	of $\sigma_{_{_{\rm I}}}$
OC1A-2	$33 - 9\frac{1}{2}$	80	95	125	1335	1025	N 38 E
		80	95	(90)	(1090)	(990)	(N 5 E)
OC1A-5	36 - 9	20	30	0	150	50	N 55 W
OC1A-6	38 - 3	60	110	90	1190	850	N 3 E
OC1A-7	39 - 3	250	150	250	2150	1570	N 45 E
		250	(200)	(200)	(2010)	(1710)	(n 75 E)
		250	150	(200)	(1970)	(1470)	(N 60 E)
OC1A-9	41 - 5	90	195	100	1400	800	N 48 E
	,	(130)	195	100	(1470)	(970)	(N 36 E)

TABLE 3 DATA AND RESULTS OF STRESS MEASUREMENTS

- 1) Readings are shown for data from Channels 1, 2, and 3 on instrument. For all tests except OC1A-5, the numbering of the channels, each 120° apart, was counterclockwise. For OC1A-5 it was clockwise. In the equations for computation of the angle between the σ_{I} and the Channel 1 directions, the numbering is assumed to be clockwise. Hence for all but Test OC1A-5, R_{2} and R_{3} should be exchanged when computing this angle. See text for equations used for computations.
- 2) The vertical stress is assumed to be equal to the overburden, i.e. about 50 psi. Hence the stresses shown for the horizontal plane are close to the major and the intermediate principal stresses at each point tested.
- 3) Numbers in parentheses are alternate possible selections of reading changes during each test from the plots in Figs. 7, 10, and 11. These alternates are not considered quite as probable as the ones without parentheses, but they are included, together with the resulting stresses and stress directions to provide insight into the significance and dependability of the results as they are affected by this one source of error.

FIGURES

SEABROOK STATION LOG OF BORING OC1A

SEABROOK STATION LOG OF BORING EI-1

Top El. (MSL): 25.9	Date Logged Dec. 26, 1972
BREAKS DIP CONDITION OF CORE GRA	PHIC DESCRIPTIVE NOTES
Core Breaks -Rusty Rock is fresh. Loc- \times ally affected by slight \times angle (3 0°) $=$ 70° joint to moderate weather-	A Quartz diorite, medium fine grainedmedium grey. Massive texture (not. notab)
10 -joints @ Chips to 1' intervals Chips- Rusty A chips - Chips to 1' intervals Chips - Rusty Chips to Chips - Rusty Chips - Rusty Chips - Rusty Chips - Rusty Chips - Rusty Chips - Chips	Pegmatite Veinlet, forfatted. Hot- 65 Dip ally intruded by Pegmatite Veinlet, pegmatite vein- 175° Dip lets as shown.
20 20 Breaks on ing minor vuggi ng Chips, rusty Chips, rusty Rock is fresh. Slight weather- ing minor rust Chips, rusty Slight weather- ing to minor Slight weather- ing to minor Slight rusty coatings to 1.5' in- 30 tervals Chips, rusty Slight rusty coatings ing to minor ing	 Pegmatite Veinlet Quartz diorite, as above, hlassive, medium fine grained, medium grey.
40 Breaks @.5' to 2' pieces 50 65° joint clean, minor Joints are nor- rust 70° joint minor rust 70° joint angle joints @ 30° rough to 35° dips. Joints slight weather- not rusty ex- ing cept as shown. x	X Quartz diorite as above. X Mostly medium fine graina X medium grey low angle X (30° to 35") joints @.5' to 2 intervals.
60 Breaks @ .3' to 3' pieces slightly Slight to moderate we at here dweathering, rust rusty on occasional joints as shown.	 Rock becomes coarse- grained Quartz diorite @ 72.6' depth. 50° dip on intrusive, welded contact. Reactor * excavation
REMARKS - The total depth of this boring is 150 ft J. R. Rand for the PSAR for Seabrook Station. nal and is included to cover the rock above and in measurements were made, i.e. from 33 - 44 ft.	t, as shown in the log submitted by This partial log is taken from the origi- nmediately below the zone where stres
	FIG. 3
	GEOTECHNICAL ENGINEERS INC

BOREHOLE GAGE SYSTEM

BOREHOLEGAGE (vinyl sheath removed)

Depth of Measuring Points 38 ft 3 in. 100 R_1 Change in Reading, μ in./in. 0 100 R₂ 0 100 \bar{R}_3 0 0 1 2 3 4 5 6 7 Depth of Overcoring, in. Instrument Calibration 116 μ in. /in. = 0.001 in. Note: Hole I.D. = 1.495 in. O.D. = 4.31 in. Yankee Atomic DATA FROM STRESS SEABROOK STATION Electric Company **MEASUREMENTS** TEST OC1A-6 Geotechnical Engineers, Inc. Project 7256 Winchester, Massachusetts Aug. 8, 1973 FIG. 9

Geotachnical Engineers ino

APPENDIX A

APPENDIX A

Test Procedure For

MEASUREMENT OF STRESSES IN ROCK BY OVERCORING TECHNIQUE IN VERTICAL HOLE

Geotechnical Engineers, Inc.

September 1973

NOTE: HANDLE THE INSTRUMENT, HOSE, ORIENTATION RODS AND ALL ASSOCIATED EQUIPMENT VERY CAREFULLY TO PRE-VENT KINKING HOSE, LEAKS, AND INSTRUMENT DAMAGE.

- 1. Drill a pilot NX hole to examine the type and quality of rock. Make measurements only in zones where NX cores are primarily longer than 10 in.
- 2. In a hole about 5-10 ft from pilot hole, drill through poor zones with large diameter double-tube core barrel to reach measuring zone as quickly as possible. Then continue with PX overcore barrel to desired depth in three to five foot runs, each time examining the core to determine whether the rock is suitable for a measurement.
- 3. If the last run of PX core was suitable to try a measurement, attach the EX core barrel to the rods at the bottom end of the PX barrel with an adapter specially designed for that purpose. The adapter ensures that the EX core barrel is centered in the PX hole.
- 4. Drill the EX hole about 2 ft beneath the bottom of the previous bottom elevation of the PX bit and then withdraw the EX core.
- 5. Examine the EX core carefully to determine whether the rock is good enough for a stress measurement. The core pieces preferably should contain only drilling breaks and no natural fractures. If a natural fracture is more than 10 in. below the top, then a measurement near the top of the hole can be attempted.
- 6. Return the PX overcore bit to the bottom of the hole.
- 7. Wash through the BW casing rods and out the bottom of the PX bit for 15 minutes to remove all cuttings.

- 8. Measure accurately (to 1/8 in.) the depth from the surface reference point to the top of the rock at the bottom of the PX (not EX) hole. Enter the measurement on a sketch of the hole.
- Measure and mark the required length on the orientation rods, so 9. that measuring points will be at the proper depth.
- 10. Thread the instrument hose through the swivel at the top of the drive rod, attach gasket and reducing coupling, then attach to swivel. Do not over-tighten as this action may damage the instrument hose.
- Attachinstrument leads to readout device and check readout to en-11. sure that the strain gages can be read, that nothing is wrong with the instrument, and record the direction of reading change that corresponds to expansion of hole. Record instrument number. Record arrangement of leads on readout device.
- Select desired orientation of measuring points on instrument. 12. If possible, orient one axis in direction of anticipated major stress. Record orientation.
- Lower the instrument in the hole after attaching it to the orientation 13. rod with the special fitting for the instrument. The orientation of the cantilevers in the instrument relative to the orientation line on the rods must be recorded on the data sheet. Lower the instrument slowly and carefully, pulling up with slight pressure on the instrument hose so that the instrument is held in the orientation device. When the instrument goes below water, apply pressure inside the vinyl sheath to ensure that no water can enter. Use 2 psi pressure per foot of depth (or 1 kg/cm^2 per 30 ft of depth) as a minimum, but do not apply so much that the instrument will be over inflated and cannot be inserted into the EX hole.
- Insert the instrument into the EX hole very carefully and without 14. banging it on the lip of the EX hole. It helps to use a tapered point on the lower end of the instrument so that the EX hole can be found easily. Lower to the desired elevation and make sure that this elevation is accurate. Record the depth to the measurement point on the instrument from the surface reference point to the nearest 1/8 in.
- Before inflating, make sure that the orientation of the measuring 15. points relative to the line on the orientation rods and relative to a fixed azimuth reference is correct and record the orientation.

APPENDIX A

-2-

- 16. Inflate the instrument to a pressure of about 4 kg/cm^2 greater than the water pressure at that depth, but not greater than about 6 kg/cm^2 above the water pressure.
- 17. Remove the orientation rods carefully, making sure that the orientation fitting at the bottom does not catch on the hose on the way up. The rods should be unhooked carefully so that the connectors will not be broken.
- 18. Screw the drive rod (to which the swivel is attached) to the top of the drill rods using the special adapter. During this process the instrument hose has to be pulled up slightly through the swivel until the hose is straight in the drill rods.
- 19. Pull the PX barrel off the bottom of the hole slightly and start the drilling fluid running through the system.
- 20. Take readings continuously on the instrument readout device until the readings have stabilized with the water running and the PX barrel turning without any downward pressure.
- DO NOT START OVERCORING UNTIL THE READINGS HAVE STABILJZED
- 21. When a plot shows that the readings are stable, which may take about 20 minutes, then set the readout to a convenient starting point so that the subsequent readings can be taken easily.
- 22. Apply slight downward pressure on the PX bit to start the overcoring. Drill at a rate of about 1/2 in. per minute (24 min. per foot), A slightly faster rate could be used if the rock is particularly good. The core catcher should be in place during this operation to ensure that the annular core will be recovered later. The core catcher may cause some extraneous vibrations.
- 23. Take readings during overcoring in the following sequence:

TIME DEPTH GAGE 1 GAGE 2 GAGE 3

Take readings continuously during overcoring, so that as good a graph as possible can be prepared. The driller should call out the overcoring depth to the nearest 1/8 in. when requested by the recorder. Then the person making the strain gage readings should provide his readings. A third person records all readings given to him and the time to the nearest ten seconds.

BE READY TO STOP THE DRILL DURING OVERCORING ANYTTME THAT THE READINGS START TO FLUCTUATE RAPIDLY-HAVE A <u>SIGNAL PREARRANGED.</u> ROTATION OF INSTRUMENT IN HOLE MAY DAMAGE IT.

- 24. When the readings stop changing during overcoring, stop the downward pressure and rotation but continue water flow. Continue the recording until the readings have again stabilized. During this wait, plot the readings taken in Step 23.
- 25. Lower the orientation rods into the hole and attach to instrument after detaching the drive rod from the drill rod at the top. When lowering the orientation rods, be sure that the hose is not cut or damaged.
- 26. Release the pressure in the instrument to that required to keep the water out. Wait until the pressure down at the instrument is at this level.
- 27. At this stage the instrument may be lowered to make a second stress measurement (to Step 14) or the instrument may be removed. The orientation rods are desirable for removal because if they are not used the top of the instrument can get caught on the lower lip of the drill rods at the top of the PX barrel. Remove from hole carefully and slowly, reducing internal pressure gradually if necessary.
- 28. Loosen the reducing coupling at the swivel, detach instrument from readout device, unthread the instrument hose from the swivel care-fully, and put the instrument in a safe place, Examine the instrument and the hose for damage. Recheck instrument readout.
- 29. Attach the drive rod to the drill rod.
- 30. Remove the annular core.
- 31, With a crayon mark the location where the measuring points were on the annular core.
- 32. Carefully and in detail describe the core, particularly within 3 in., on each side of the measurement point. Photograph the core wet and dry, making sure that the crayon mark shows up.
- 33. *To* determine the modulus of the rock for computation of stresses, it is necessary to have a core with a length of 12 in. or more. Save such a piece from the measurement elevation so that it may be tested in the laboratory or field.

CHECK THE DATA SHEET, SKETCHES AND DESCRIPTIONS TO EN-SURE THAT ALL DATA NEEDED FOR UNDERSTANDING THE TEST HAVE BEEN RECORDED. LIST THE NAMES OF ALL PERSONNEL AT THE SITE.

APPARATUS

- 1. Borehole gage for EX hole (1.5-m. dia.) including hose containing lead wires and air tube.
- 2. Portable strain gage readout system, including strain indicator and switching and balancing unit for three strain gages.
- 3. Dry nitrogen supply system, pressure gage, and pressure regulator. Pressure required is 100 psi plus hydrostatic pressure at greatest depth below water level at which instrument will be used.
- Drilling system for overcoring, including hydraulic drill rig, SW casing for seating to rock, NW casing for use as drill rod for overcoring bit, 5 in. by 4-3/16 in. (PX) overcoring bit 5 ft long, 2 and 5-ft-long EX core barrel (1.5 in.
 D.) adaptor to attach EX core barrel to bottom of overcoring bit. Swivel to allow passage of instrument hose so that it will not twist during test but drill water will not leak appreciably.
- 5. Data sheets, form attached.
- 6. Orientation rods for setting the **borehole** gage elevation and for maintaining orientation of **borehole** gage.
- 7. Compass for determining orientation of borehole gage.

APPENDIX A

OVERCORING READINGS - SEABROOK II, NEW HAMPSHIRE

Hole No.	Depths	Project No.	Date	Test
Hole Location	Bot. 5-in. Hole	Driller		
	Rot. EX Hole	Engineer		
El. Top of Hole	Pins on Gage	Weather		
El. Datum	Dimensions in			Page
Orientation of Gage				

	Timo	Elapsed	Overcore	e Strain Gage Readings								
	Ime	Time	Depth	1	2	3	4	5	6	7	8	9
1					l				I		I I	
2				Ī	1		Ì					1
3						ļ						
4										İ		
5									, 1	1	 	i
6						 	l					!
7				I		1			Î	1	1	I
8												
9							1			l.		1
10					1	I	1			1		
11											 {	
12										 [
13											Î	
14					8					I	1	I
15						I		1	1			
16					1		I	l		I	1	I

APPENDIX .B

.

APPENDIX B

MEASUREMENT OF MODULUS OF ANNULAR ROCK CORE

Geotechnical Engineers Inc.

September 1973

- 1. Prepare rock modulus cell by inserting membrane, filling with hydraulic fluid (trapping as little air as possible) and securing end plates.
- 2. Break rock annulus that was removed from hole in field into sections not less than 12 in. long and such that points within EX hole at which borehole gage measurements were made in field can be close to center of rock modulus cell if possible.
- 3. Insert core in cell.
- 4. Insert borehole gage in cell, preferably at same location as in field.
- 5. Apply 100 psi nitrogen pressure to interior of gage to secure it in proper location. Preferably use same pressure as was used in-situ during over-coring (after subtracting in-situ water pressure).
- 6. Connect leads from borehole gage to strain gage readout device, using same wires, lengths, and hook-up as in-situ.
- 7. Take initial gage readings until readings are stable.
- 8. Apply pressure to exterior of rock annulus in increments of 500 psi until the compression of the diameters is equal to their extension during overcoring but do not exceed 3000 psi unless an axial load is put on the core. Record all strain gage readings each time an increment is applied. Allow for equilibrium to be reached before adding each new increment.
- 9. Release the pressure in decrements of 500 psi, taking readings as before.
- 10. Reapply the maximum stress in 1000 psi increments. Repeat the loading and unloading until results are consistent.
- 11. Using the diameter changes measured in the field and in the laboratory, together with the stresses applied in the laboratory, compute the rock modulus and the stress in situ. For the rock modulus cell:

$$u = kR = \frac{2 db^2}{(b^2 - d^2)} - \frac{P}{E}$$

whe re :

k = instrument calibration

R = instrument reading

d = I.D. of core

b = 0. D. of core

P = external pressure

E = rock modulus

APPENDIX B

APPENDIX 21

GEOTECHNICAL REPORT ADDITIONAL PLANT SITE BORINGS

The information contained in this appendix was not revised, but has been extracted from the original FSAR and is provided for historical information.

GEOTECHNICAL REPORT ADDITIONAL PLANT-SITE BORINGS FOR WATER AND OIL STORAGE TANKS, SETTLING BASIN, RETAINING WALL, SEAWALL, AND RIP-RAP STRUCTURES G-SERIES BORINGS

SEABROOK STATION, NEW HAMPSHIRE

Submitted to YANKEE ATOMIC ELECTRIC COMPANY

GEOTECHNICAL ENGINEERS INC. 1017 Main Street Winchester, Massachusetts 01890

> Project 7286 October 21, 1974

TABLE OF CONTENTS

Page No.

1.0 INTRODUCTION	1
1.1 Purpose 1.2 Scope	1 1
2.0 BORING AND TEST PIT DATA	3
2.1 Table and Figures 2.2 Boring and Test Pit Logs	3 3
TABLE I - Summary of Boring Data	
<pre>FIGURES - G-Series Borings; Plan of Boring Locations, Fig. 1 Grain Size Curve, Test Pit-100, TP Sample, Fig. 2</pre>	
APPENDIX I - Boring Logs and Description of Exploratory Test P	it

APPENDIX II - Driller's Logs

1.0 INTRODUCTION

1.1 Purpose

The purpose of the geotechnical investigation was to provide soil and bedrock descriptions pertinent to the design and construction of several proposed structures which will be located at the plant site, including water and oil storage tanks, settling basin, retaining wall, seawall, and rip-rap structures.

1.2 Scope

A subsurface investigation, consisting of a total of 12 borings and 1 test pit was made for the following areas:

- a. <u>Water and Oil Tanks At Fire Pump House</u> One boring was made at the center of the fuel oil storage tank, using standard split-spoon sampling techniques to refusal for the purpose of investigating deposits that may cause settlement problems. Because no unsuitable deposits were encountered at the site for the proposed oil storage tank and based on the general knowledge of site geology, supplementary borings for the proposed water tanks were not done.
- b. <u>Settling Basin</u> A series of three borings was made in the area of a proposed settling basin using standard split-spoon sampling techniques to refusal for the purpose of invest-igating soil conditions at the proposed inlet and outlet structures for the basin, and also to examine the in-situ soil for possible use as construction materials for the dikes. In addition, a test pit bag sample was taken near the center of the settling basin, tested for grain size distribution, and examined as a possible dike material.
- c. <u>Retaining Wall</u> A series of four borings was made for a proposed retaining wall for the purpose of locating and sampling the dense glacial till. These borings were advanced by first "washing" to establish the top of the till layer, then sampling this layer by split-spoon techniques, and finally advancing the borehole to refusal using a roller bit. Based on the results of geophysical surveys and other borings drilled into bedrock in the vicinity, it is believed that refusal does correspond to the bedrock surface in these holes.

2.0 BORING AND TEST PIT DATA

2.1 Table and Figures

Table I is a summary of the boring data including boring location, "as-bored" coordinates, ground elevation, depth to glacial till, and depth to top of bedrock.

The locations of the borings and one exploratory test pit are included in Fig.1. Fig. 2 shows the grain size curve from a sieve analysis which was performed on a sample from the test pit.

2.2 Boring and Test Pit Logs

Logs of the borings and one exploratory test pit are included in Appendix I. Driller's boring logs are included in Appendix II.

TABLES

TABLE I

Boring No.	Boring Location	As-bored Coord.	Ground Elev	Depth to Top of Till	Depth to Top of Bedrock
G-1	Oil Storage Tank	29,690N 78,370E	17.3	8.0	IL
G-2	Settling Basin (Inlet)	21,380N 78,900E	15.9	5.0	
G-3	Settling Basin (Outlet)	21,717N 78,949E	9.4	28.0	
G-4	Settling Basin (additional)	21,571N 78,992E	9.6	19.0	
G-5	Retaining Wall	20,969N 79,525E	7.8	9.0	9.7"
G-6	Retaining Wall	20,949N 79,349E	8.2	10.8	19.5*
G-7	Retaining Wall	20,932N 79,175E	8.6	11.5	23.2"
G-8	Retaining Wall	21,006N 79,107E	7.3	10.5	19.0"
G-9	Seawall	20,123N 79,720E	9.5		10.5
G-10	Seawall	20,083N 78,587E	7.9		6.8
G-11	Seawall	20,042N 79,455E	6.8		15.9
G-12	Rip-Rap	19,898N 78,500E	7.2		11. o*

SURIRIARY OF BORING DATA

*In these holes the boring was made to refusal and no rock was cored. However, based on the results of geophysical surveys and other borings drilled into bedrock in the vicinity, it is believed that refusal does correspond to the bedrock surface.

FIGURES

PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE SEABROOK STATION	SEABROOK STATION SITE TOPOGRAPHY AND PLOT PLAN PLAN OF BORING LOCATIONS
UNITED ENGINEERS & CONSTRUCTORS	
GEOTECHNICAL ENGINEERS, INC.	OCT. 17, 1974 FIG.1 G- SERIES BORINGS

Lab. 4-3, rev. 0 28 May 74

APPENDIX I

pg. <u>1</u> of <u>1</u> Proj. No. : <u>7286</u>

Date: <u>Sent. 30. 1974</u> Described by: <u>W. Pitt</u>

Ground Elevation +17.3 ft Depth to Water Level: depth at ground elcv. 0700; 10/1/74

Sample NO.	Depth ft	Number of Blows per 6"	Description
S - 1	0. O-1.0	1-2	Black, soft <u>PEAT</u> and organic <u>SILT</u> ; highly decomposed
S-1A	1. O-2.0	6-14	Gray-brown, gravelly, sandy, slightly organic <u>SILT</u> , contains subangular gravel up to 35 mm in size.
s - 2	3.0-5.0	11-16 32-23	Rust brown and brown slightly mottled gravelly, sandy <u>SILT</u> , trace clay. Contains gravel up to 13 mm in size. Moderate reaction to shaking test. Low plasticity.
s-3	5.0-6.5	27-39 57	Similar to S-2. Contains gravel up to 35 mm in size.
 s-4	10.0-11.5	100/4" 1	40# hammer gray, very dense, sandy, gravelly <u>SILT</u> trace clay.
		5/2'' 28-22	300# hammer contains broken pieces of gravel up to 35 mm
s - 5	15.0-16.5	5 4 100/4''	140# hammer Similar to S-4
		12 / 2'' 4 0	300# hammer
			Bottom of Borchole
			End of Exploration

GEOTECHNICAL ENGINEERS INC.

BORING NO. <u>G - 2</u>

pg. <u>1 of 1</u> Proj. No. : <u>7286</u> Date: <u>Oct. 1, 1974</u> Described by: <u>W. Pitt</u>

Ground Elevation +15.9 ft Depth to Water Level: -5.1' measured at 0715, 10/2/74

Sample No.	Depth ft	Number of Blows per 6''	Description
S-l	0. O-1.0	2-5	Light brown, silty fine <u>SAND</u> . Contains root fibers and decomposed organic matter.
S-1A	1.0-2.0	3 - 2	Dark brown/rust brown/gray mottled; fine sandy <u>SILT,</u> trace fine gravel
s-2	3. o-4.5	17-50/0'' 22-42	 140# hammer 300# hammer Light brown, gravelly, sandy <u>SILT.</u> Contains gravel from various litho- logies up to 35 mm in size.
s-3	5.0-7.0	15 23 23 33	Light brown silty, gravelly, fine to coarse SAND widely graded,' resembles glacial till
s-4	LO. 0-11.	5 57-100 33	140# hammerGray brown /rust brown slightly mottled dense, silty, gravelly SAND (similar to S-3) Contains broken pieces of gravel up to 35 mm in size.
			Casing refusal met at 13.8' Roller bit refusal at 14.5'
			Bottom of Borehole
			End of Exploration

()

EOGING NO. <u>G-3</u>

pg._1 of 2 _ Proj. No. : 7286 Date: <u>Oct. 1, 1974'</u>

Dcscribccl by: W. Pitt

Ground Elevation +9.4 ft Depth to Water Level: -2.1 measured at 0730, 10/2/74

	Sample No.	Depth it	Number of Elows per 6"	Description
	S-l	0.0-2.0	1/1.5' 2/.5	Brown grading to buff, soft, homogeneous <u>SIL</u> T, trace clay. Upper 1-2'' contains grass and shallow root zone.
	s-2	3. O-5.0	10-20 21-20	Similar to S-l, buff/rust brown mottled, contains black spots - decomposed organic matter? ?; trace roots and mica particles
	s-3	6.0-7.0	14-16	Light brown, loose, silty fine <u>SAND</u> , trace clay
	S-3A	7.0-8.0	22-32	Rust brown/buff medium dense, mottled <u>SILT</u> , little to trace clay. Low plasticity.
	s-4	10.0-12.	C 2-4 4-5	Gray, medium stiff homogeneous C <u>LAY;</u> high plasticity
	s-5	15.0-17.	C 2-3 3-4	Similar to S-4
	S-6	19.5-20.	C 32	Gray-brown silty, sandy, <u>GRAVEL</u> ; trace clay. Con- tains angular pieces of gravel up to 25 mm. Well- graded.
21.5'	S-6A	20. o-21.5	20-12	Light brown, gravelly, sandy <u>CLAY</u> . Contains gravel pieces up to 25 mm in size
	S-7	25-25.5	100/3'' 50/2''	140# hammer Similar to S-6, very dense 300# hammer (Resembles glacial till)
				continued)

 \bigoplus geotechnical engineers inc

ECRING NO. G-3

(Concluded)

pg. 2 of 2 Proj. No. : <u>7286</u> Date: <u>Oct. 1, 1974</u> Described by: <u>W. Pitt</u>

Ground Elevation +9.4 ft

Depth to Water Level: -2.1 measured at 0730, 10/2/74

Sample NO.	Depth It	Number of Blows per 6''	Description
S-8	30.0-31.5	25 25 58	Gray, very dense, silty fine <u>SAND</u> , some gravel up to 30 mm in size
s-9	34'10''>	100/0'' 20/0''	140# hammer 300# hammer No recovery
			Casing refusal at 34'10'' Bottom of Borehole
			End of Exploration

pg. 1 of 1 -Proj. No. : <u>7286</u> Date: <u>Oct. 2, 1974</u>

Described by: W. Pitt

Ground Elevation +9.6 ft Depth to Water Level: Not taken

	Sample No.	Depth ft	Number of Blows per 6''	Description
	S - 1	0. o-o. 5	1	Dark brown, fibrous <u>PEAT</u> and organic <u>SILT</u>
	S-lA	0.5-2.	0 1-1-2	Light brown, fine sandy <u>SILT or</u> silty fine <u>SAND</u>
	s-2	3. 0-5. (6-10 22-42	Light brown/dark brown/rusty brown slightly mottled, medium dense, silty, gravelly fine <u>SAND</u> . Contains gravel up to 35 mm in size.
	s-3	6-7.5	100/5'' 3/1'' 35-60	140# hammerSimilar to S-Z, medium dense to dense300# hammerg
		8.0		Large cobble
	s-4	10.0-11.5	25-50 57	Similar to S-3, coarse to fine <u>SAND</u> So Widely graded
19	s-5	15.0-16.2	100'0" 42 60 75 /3 "	140# hammer Similar to S-4 300# hammer Image: Similar to S-4
	S-6	20-21	76-76	Gray, very dense, gravelly, silty coarse to fine <u>SAND</u> ; little to trace clay. (Till)
22.5				Roller bit refusal at 22.5 Bottom of Borehole
				End of Exploration

GEOTECHNICAL ENGINEERS INC.

BORING NO. <u>G-5</u>

pg. 1 of 1 _ Proj. No. : <u>7286</u> Date: <u>Oct. 3, 1974</u> Described by: <u>W. Pi</u>tt

Ground Elevation +7.8 ft Depth to Water Level: Not taken

Sample No.	Depth ft	Number of Blows per 6''	Description
			Drove casing to 9.0', where encountered strata change - casing refusal Split-spoon at 9.0 - 9.7
S-l	9.0-9.7	5/0''	140# hammergray/brown slightly mottled, very dense silty, gravelly, SAND; little to to trace clay, (Till)
			Roller bit refusal at 9. 7' Bedrock ? Bottom of Borehole
			End of Exploration

pg. <u>1</u> of <u>1</u> Proj. No.: <u>7286</u> Date: <u>Oct. 3, 1974</u> Described by: <u>W. Pitt</u>

Ground Elevation +8.2 ft Depth to Water Level: Not taken

Sample No.	Depth ft	Number of Blows per 6''	Description
			Drove casing to refusal - 9.0' Roller bitted to 10.8' - strata change Split-spoon attempt at 10. 8'
S-1	10.8-12.3	57 100/4'' 8/2'' 30	 140# hammer gray, very dense, sandy, gravelly <u>SILT</u>, trace to little clay. (Till) 300# hammer
			Roller bit refusal at 19.5' Bottom of Borehole
			End of Exploration

GEOTECHNICAL ENGINEERS INC.

BORING NC). <u>G-7</u>

pg._ 1 of 1 _ Proj. No. : 7286 Date: Oct. 3. 1974 Described by: W. Pitt

Ground Elevation +8.6 ft Depth lo Water Level: Not taken

	Sample No.	Depth ft	Number of Blows per 6''	Description
11.5				Drove casing to 10' Roller bitted to 11.5' - strata change
23.2	S-l	11.5-13.	0 24 92 22	140# hammergray, very dense gravelly, silty SAND trace to little clay. (Till)300# hammer Roller bitted to refusal at 23.2 Bottom of Borehole
				End of Exploration

pg. $_ 1$ of $1 _$ Proj. No. : 7286 Date: October 7, 1974 Described by: $\underline{W_{\bullet} Pi}tt$

Ground Elevation +7.3 Depth to Water Level: Not Taken

	Sample No.	Depth it	Number of Blows per 6''	Description
10.5		10.1 —		Cobble. Drove casing to refusal at 10.5. Strata change.
10.5	S-l	10.5- 12.0	18-16- 24	Gray, medium dense clayey silty, <u>SAND</u> , little to trace. Gravel contains subround gravel up to 15 mm in size. Medium plasticity, well graded. Moderate reaction to shaking test.
19.0				Bottom of borehole, roller bit refusal at 19.0'.

pg._1 of 1 _ Proj. No. : 7286 Date: October 9. 1974 Described by: <u>W. Pi</u>tt

Ground Elevation +9.5 ft Depth to Water Level: Not Taken

	Run No	. Depth ft.	Recovery and RQD 9	Description %
10.5'	,,,	-/ / / /	/ REC =	<u>No Samples</u> Washed through overburden <u>TOP OF ROCK</u> Grav/white mixed fine and medium grained DIORITE.
		15.5	100% RQD = 96%	Minor jointing. Fresh and hard throughout. Minor slickensiding on joint surfaces.
	NX-2	15.5- 20.5	REC = 100% RQD = 76%	Similar to NX-1; minor to moderately jointed. Joints rusty; vuggy. Moderate weathering on joint surfaces.
	NX-3	20.5- 25.5	REC = 100% RQD = 80%	Similar to NX-2; high angle jointing with calcite infilling.
25.5				Bottom of boring @ El35.0 ft

BORING NO. <u>G-10</u>

pg.<u>1</u> of 1

Proj. No. : <u>7286</u>

Date: October 8, 1974

Described by: W. Pitt

Ground Elevation +7.9 ft Depth to Water Level: Not Taken

	Run No	Depth ft.	Recovery and RQD %	Description
6.5,		-, , ,	, ,	No Samples Washed through overburden TOP OF ROCK Roller bitted to 7.0 ft / / / / /
	NX-1	7.0- 12.0	REC = 98% RQD = 65%	Gray, mixed fine and medium g-rained <u>DIORITE.</u> Moderately jointed. Generally fresh and hard through- out. Moderately weathered; rusty on joint surfaces.
	NX-2	12.0- 17.0	REC = 100% RQD = 62%	Similar to NX-1; intact rock generally fresh and hard. 'Moderate to severe weathering on joint surfaces.
	NX-3	17.0- 22.0	REC = 100% RQD = 75%	Similar to NX-2; generally fresh and hard throughout. Moderate we'athering on joint surfaces.
22.0'				Bottom of boring @ Fl -299 ft
				Dottom of borning @ Li. 20.0 it.

BORING NO. <u>G-11</u>

pg. 1 of 1 -Proj. No. : <u>7286</u> Date: <u>October 8. 1974</u>

	Ground Depth te	Elevation o Waler I	+6.8 ft evel: Not	TakenDescribed by:W. Pitt
	Run No.	Depth ft.	Recovery and RQD %	Description
15.9'				<u>No Samples</u> Washed through overburden TOP OF ROCK
	/ / NX-1	/ I 16. 0- -21.0	I I REC = 92% RQD = 55%	I I / Roller bitted to 16.0 ft / I I I Gray, mixed fine and medium grained <u>DIORITE;</u> semi-schistose in texture. Moderately jointed with several high angle joints. Generally hard and fresh throughout with minor clay infilling on slicked joint surfaces.
	NX-2	21. 0- 26.0	REC = 100% RQD = 67%	Similar to NX-1, moderately hard; vuggy in places with several weathered, high angle joints.
	NX-3	26. 0- 31.0	REC = 96% RQD = 68%	Similar to NX-2; moderate to severe weathering on joint surfaces.
31.0'				–Bottom of boring @ El37.8 ft.

BORING NO.<u>G-12</u>

pg. <u>1</u> of <u>1</u> Proj. No. : <u>7286</u> Date: <u>October 10, 19</u>74 Described by: <u>W, Pi</u>tt

Ground Elevation. +7.2 ft Depth to Water Level: Not Taken.

	Sample No.	Depth ft	Number of Blows per 6''	Description
1	S-l	0.0- 1.0	l-4	Brown-black soft P <u>EAT</u> and organic <u>SILT</u> , highly decomposed, root mass throughout.
1.	S-1A	1.0- 2.0	6-6	Gray-dark brown mottled, loose fine to medium S <u>AND.</u> little to trace silt.
5.	s-2	5.0- 6.5	-12-21- 28	Gray, slightly micaceous, similar to S-1A.
9.0	s-3	10. 0- 10.9	5-100/5"	140# hammer. Gray, homogeneous <u>CLAY</u> 300# Hammer. High plasticity -Bottom of hole Roller bitted 1'' - refusal. Bedrock or large boulder. End of exploration.

DESCRIPTION OF EXPLORATORY TEST PITS

	Test Pit	#100	Ground Elev. : +9.6
	Location	tp adjacent to DH-G-4 Coord. 21, 572N - 78,993E	Depth to Water: Not encountered
	Date	October 3, 1974	Project 7286
	Depth ft	Soil Description	
1.0'	O-1.0	Black-brown fibrous PEAT and organic	SILT
	1.0 ->	TP Sample- light brown-yellow brown,>3'' found.throughout.	loose, silty fine <u>SAND</u> , cobbles
		Test pit was hand dug approximately 2 ft	to a depth of

APPENDIX 2

		Americ	an D	rilli	ing 8	k Bor	ing Co.	, Inc.			SHEET 1		0F _)
		100 WAT	ER STF	REET	E.	AST P	ROVIDENCE	, R. I.				G-	1	
]	o <u>Yan</u>	<u>kee Atomic</u>	<u>Elect</u>	ric 'at or	<u>Co.</u>		A D D R E S S	<u>West</u>	boro, Mass	•	LINE 8 STA.		-	
F	PROJECT NA	ME LOCATION	utio:	1	per Sr	<u>eri</u> Deci (icit look	<u>Sear</u>	<u>ファロに 1 24 11-</u> ファスム		OFFSET			
, s	SAMPLES SE	ENT TO <u>Deli</u>	Vere	to	Ceote	ch at	Site Ou	JUNNO .	4025		- SURF.ELEV.			
	0.04										Date	Tii	n.e	_
	GRO	UND WATER OBSE	RVATIC	INS			CASING	SAMPLER	CORE BAR.	START	9/30/7	4		0 :
A	2''	after	4_ Hou	rs	Туре		NW	<u> </u>		COMPLETE	<u> </u>			- 0 - - 0 -
					Size I.D.		3"	1-3,	/8''	TOTAL HR	S. KA	1100		=
A		ofter	Hou	rs	Hommer	Wt.	$\frac{300!}{24!!}$	$\frac{140}{300}$	BIT	INSPECTOR	EMAN,	t.		
┢	LOCATION	OF BORING:				7 611				30/23 2/10/		T		
F.	Casing	Sample	Type	BI	ows per 6	5"	Moisture		SOIL IDE	NTIFICATION				_
E d	Blows	Depths	of	or	Sample	r	Density	Chonge	Remarks includ	le color, grada	tion, Type of	57	AMPL	. E
B	fcot	From-To	Sample	From C-6	6-12	T <u>c</u> 1 12-18	or	Elev	ness, Drilling fir	ne, seams ond	i etc	N	ο.	-
F	3	0'-1'	D	1	2	- <u></u> `	w/loose	1'	Leaves.roc	t matter	,sandy	1		-
	6	1'-2'	D	-5	14		moist	1	,	<u>sil</u>	t (muddy)	1 a	-24	
1	14						m/dense	1	D ~					
	$\frac{16}{27}$	י - י י		11	16	32	moist	l	Brown fine	SAND, SON	ne silt	2	24	<u>10</u>
	7	J-0.5	L U	37	39	57	dense		to coarse	oravel	α IIIIe	3	18	12
	45						lacinoc			FIGACE			1	<u> </u>
	65]							
	1:00		<u> </u>					9'						
	19.9	101 11 51	1)			1 22	moist					4	1.0	12
		<u>.0 -11.5</u>	1 · · ·	140	(30	m 22	hard		Grav clave	v STLT 1	ittle fine	-	10	14
1									to medium	sand & f	inc to	1		
									coarse	gravel (]	TILL)			
		1 1 1 2 2 2		1 (4"	8"	,					F	10	(1 ")
		15 - 15.5	L. L'	<u>i</u>	140)	(300)	·	16.5'				<u>э</u>	18	1
	<u>}</u>	·	╂	`		<u>()00)</u>	1		Pottom	of Poring	165'			<u> </u>
									Dottom	or Dorm	g = 10.5			
	<u> </u>	1	1				ļ							<u> </u>
			+		<u> </u>		1							
				~~~~	<u> </u>		1					I		
	¦	£	1	 	   	1 1	י 1							<b> </b> .
		I	1	1	1	1	-							
							1							Ē
		ļ	<b> </b>	ļ	ļ	-								<b> </b>
	}	<u>}</u>	1		<del> </del>	<b> </b>	4							<b> </b> '
	<b> </b>	<u> </u>	+				1							<u> </u> i
		1	1		1	İ	1							
							]							
		· · ·	+		<u> </u>	<u> </u>	4					<b> </b>		<b> </b> !
			+				1						_	┠───┤
			+		†		1					<b> </b>		<u> </u>
							]					<u> </u>		
•										1	о <i>г</i> ,			
l,	GROUND	SURFACE TO	10	<u>)</u>	Properti		<u>hui '</u>	<u>+</u> ASING: 4015 W+ - 7	''HEN <u>samp</u> O''de en O''Ooo	<u>led to 1</u>	0.5 I		N# ^ '	_   
	D-Dry C:C	ored W-washed			trace	0 to 10	Cohes	ionless Der	iu ta on 2 0.0. Isity   Cohesive	Sampler Consistency	Earth	Borin		6.5
	JP: Undistu	rbed Piston			little	101020	% ⁰	IO Loo:	se o-4	Soft 30	+ Hord Rock	Corin	9	5-
'	TP= Test Pi	t A=Auger V=Von	e Test		som e	201035	% <u>30</u>	-50 Den	se 8-15	Stiff		NO.	<u> </u>	<u> </u>

TO PRI REI SAI	VIECT N PORTSEN WPLES S	AMECirculat T TO Distrib	Ele ing w oution ered	etri ater n as to Ge	<u>Syste</u> Syste per S otech	$\frac{m}{S_{\text{peci}}} \Big _{1}^{\mu}$		<u>Seab</u> OJ. NO JOB NO	7286 4-85	LINE & STA OFFSET SURF. ELEV Dote	, <u>Time</u>
<b>ا</b>	GROU 4 '	JND WATER OBSE	Hour	IS rs rs	<b>Type</b> Sue I.D. Hamme <b>Hommer</b>	r Wt. Fall	CASING NV 3" 300" 24"	SAMPLER S /S 1-3 140 ⁽²⁾ 30 ⁽¹⁾	CORE BAR. STA STA COM TOT BOR NSF SOLLC: SOL	IO /1 /74           MPLETE           AL HRS.           ING FOREMAN           VECTOR           S ENGR.	.11en
	OCATION Casing Blows per foot	VOFBORING: Sample Depths From-To	Type of Somp	Bli on e <u>Fron</u> 0-6	ows per 6 Sampler T 6-12	o 12-18	Moisture Density Or Consist	i <b>roio</b> honge <u>Elev.</u>	SOIL IDENTIFIC Remorks include coll soil etc Rock-color, ness, Drilling time, se	ATION or gradation, Type of type, condition, hord- toms and etc.	SAMPLE No. Pen R
	4 17 20 80	0'-2' 2'-3,5'	D D	2 17 (1	5 50/0 0)	3 2 22 42	moist loose dry very	1' 4'	<u>Sandv</u> SILT Brown fine Sa gravel, tra	Γ (Tonsoil) AND, trace find ace of Boulders	1 24 2 18'
	2 5 2 45	5'-7'	D	15	23	23 33	dense wet very dense		l3rown fine s coarse sand gravel,trace	ilty SAND,some & fine-coarse Boulders	3 24"
	65 <u>160</u> <u>123/6</u>	10'-11.5'	υ 	57 (1	100 0)	33 (300)		14.5	(Refusal cas w/roller bi	12'6"-drilled t to 14'6")	
									Bottom of I	Boring - 14.5'	
•	GROUND	SURFACE TO _	12'6	 		USED	<u></u>	ASING:	THEN <u>Roller h</u>	nit to 14.5'	

			an D	rill	ing <b>8</b>	Bor	ing Co.	, Inc.		SHEE	т1	OF	·
	Yan	kee Atomic	Elect	tric	Co.	AJI PR		L, K I Westl	poro, Mage	ног	E N <u>O.</u>	G-3	
TO		Circulati	ng Va	nter	Syste	270	ADDRESS	Scabi	ook, N.H.	LINE	<b>8</b> STA		
RE	PORT SEN	TTO Distrib	ntio	n as	per s	reci	1 COLATION -		7286	OFFSI	ET		
SA	MPLES SE	ENT TO Delive	red 1	to G	eotech	<u>n at</u> S	ite OUF		4-85	SURF.	ELEV.		
	CRON		DUATIO							- · D	ote	Time	
	GROU	UND WATER ODSE	RVATU	NS			CASING	SAMPLER	CORE BAR.	START 10	)/1/74		0 n
At		after	Hour	S	Туре		NW O	<u>_S/S</u>		COMPLETE_1	<u>0/2/7</u> 4		0.7. 0.70
					Size O.		3"	1-3/8		TOTAL HRS.	J T A 1	011	<u> </u>
A1		ofter	Hou	rs	Hommer	Wt	2/11	240%	BIT	INSPECTOR		1	
					tiommer	Fall				SOILS ENGR.			
L	OCATION	I OF BORING					<b>I</b>						
-	Casing	Sample	Type	Bic	ws per	6"	Moisture	Strata	SOIL IDEN	TIFICATION	I	SAM	
E	Blows	Depths	of	0	nSample	r Tia	Density	Chonge	Remarks inclui	de color, gradation,	Type of		
۳.	foot	From - το	Sample	0-6	6-12	1 12-18	Or Consist	Elev	ness, Drilling fir	ne, seams and etc	,	No. Pe	n Re
	1	0'-2'	D	Y	I S H		wet					1 2/	4124
	3					L	soft				t	<u> </u>	
[	4						]		Brow	n SILT			
	.7	3'-5'	<u> </u>	10	20	21	wet				F	2 24	118
	14				1	20	hard				Ļ	1 1	1
	10	61-71	D	11	16			6' 7,	Brn fina -	i 1 to CAND T.		3 1	21 1 21
	20	7'-8'	<u>ת</u>	22	32	+	wot	1	Din. Lines		<u>:1137 -</u>	<u>.'</u>	~ 1 /
	<u></u>	, , , , , , , , , , , , , , , , , , , ,	1-		- 52	+	hard	9'	Brown	silty CLAY	f		
	25	25     24     10'-12'     0     2     4       28     30     4     4     4					]						
	24			2	4	4,	wet					4 2	4 24
	28			·	5	stiff		~	~~				
	30								Gray	y CLAY	-		
	<u>20</u>						wet				-		
	25	151-171	J)	2	3	3	medium				F	5 2	4124
	25					4	stiff				ŀ		
	25		ļ				Ţ				Ļ		
	25	10 11 201		20	<u> </u>	.ļ	wet	19	Contra CD VIII	<b>PT</b> (5		2 0	
	47	201-21 51	1 <u>9</u>	20	12	17	uense	20	Brown e	andy CINY	; )	<u>6 18</u>	2' 12
		20 - 21.5	1-	20	12	1-1'-	Verv	21.5	DIO(III S				, 12
	17						stiff		Reserves at large	CDAVE	ч <b>т</b>		;
	40				•				brown sity	Sandy GRAVE	L		
	<u>/</u> •			100	<b>F</b> 0		4.				ł	-+-	<del>n  </del> '
	45	_25 <b>'-</b> 25 <u>-</u> 5'_	U D	1100	50	1	wet				ŀ	/  6	0
	30		+'	140		<u> </u>	dense	28'					
	65	ł		1	<u>    I                                </u>	+		~0					
	75								Gray silty	fine SAND,1	ittle		
	44	30'-31.5'	D	25	25	58			f ine-med	ium gravel	[	S 1	8114
	40					+	4						
	45	<u> </u>	+		+	+	4						<b></b> `
	<u>90</u> 9175	@ 04'10"	D	100	1 : "	<u>eh70</u> m	<u> </u>	34'10"					
	(10'')			(1	-))	( <u>LOO)</u>						I	Į
							]		Bottom	of Boring • 3	84'10"		
						ļ	4		Refusal	č			-
			+	<b> </b>		- <b> </b>	4					<u>·</u> - -	
			ا '4ز 41 لوز	<u> </u>	1	USED	<u> </u>		THEN SOT	usa		1	-
GF	NUD S	DURFACE TO <u></u>	.,	-	Proport	IONS USE	ed	-4015 Wt.x 3	0"fall on 2"0 D	Sampler	1 9		RY:
D:	Dry C=C	ored W=Washed			troce	0 to 10	% Cones	ionless Der	sity Cohesive	Consistency	Eorth	Boring	<u>34'10</u>
UF	: Undistu	rbed Piston			little	10 1020	% O	IO Loos	se o-4	Soft 30+Ho M/Sliff	d Rock	Coring .	8
T F	Test Pil	A-Auger V-Vone	e Test		some	201035		-50 Den	se 8-15	Stiff		NO	j
	= unaistu	unea ttill <b>mai</b> l		I	ond	35105	0%   00	τ very De	inse   15*5(	J V-STIT	HULE	NU	( <b>.</b> )

	то	Yan	Americ 100 wa kee Atomic	an D TER S Elect	)rilli Treet tric	ng &	ast pr	ing Co. Rovidence	., Inc. , r. i. West	boro, Mass.	DATE	1 G-4	- OF _	1
	PRO REI S A I	DECT NA PORT SEM MPLES SE	ME <u>Circulat</u> MT TO <u>Distrub</u> ENT TO <u>Deliv</u>	<u>ine V</u> Pution Verec	<u>late</u> 1 as t o	<u>r Svst</u> per Sv Geot	en   reci   ech a	LOCATION - - <u></u>  PRC <u>t-Si</u> t/OUF	Seab DJ. NO R JOB NO	rook <u>N.H.</u> 7286 4-85	OFFSET			
r	<b>A</b> I 	GRO	JND WATER OBSE after-23 ofter	RVATION	NS T <b>S</b> rs	<b>Type</b> Size∣D. Homm Hom	er Wil n m e	CASING NV 3'' 300# r ²⁴ Fall	SAMPLER 	CORE BAR 	START 10/2/7 COMPLETE	\ <u>ITC</u>	<u>n -</u> <u>-</u>	ο I- Ρ 
	L	OCATIO	N OF BORING:											
		Casing Blows per	Sample Depths From-To	Type of Somple	Bl or From	ows per Somple	6" r To	Moisture Density or	itrota Change	SOIL IDE Remorks Incluc soil etc Rock-	NTIFICATION de color, grodation, Type of color, type, condition, hard-	S	A M P L	- E
	`∔	<u>foot</u>			_0-6 1	6-12	12-18	Consist.	<u>Elev</u>	('ionsoi l	Crown SILT	No.	Pen	Rec
	ł	1	0 = 2		1		2	soft		(1011501.1		È	24	<u> </u>
	ļ	17	41.51	- D	6	10	22	wet	<i>1</i> ,	Brown fine	sandy SILT		241	19
	ł	2.6		<u> </u>		10	42	dense	Т				24	10
		10	6'-7.5'	- D	$\frac{6''}{100}$	6"	60	- n		Brown fin	e SAND.some coarse	3	18'	118
	ļ	100			140	(30	p)			sand & fi	ne-coarse gravel	Ĺ		
	ł	<u>, ve</u>						ł		trace	of silt	<u> </u>	—	
			10'-11.5'	Ð	25	50	57					4	18	18
-	ł	<u></u>										-	┼──┤	
	ł	125		1	i	<u> </u>		1 <del>1</del>						
		20	15'-16.2'	Ð	50(	j 4	2 6	0 "				5	15'	15
		21			75/	'' <u>(</u> 30	<u>n)</u>	]						
		<u>25</u> 75						1	19'				┼──	├
		16				7/				Gray si	lty SAND, some fine			
			20*-21*		/6	/6		1	225,	to coarse	e gravel	6	12	12
						ļ		]	<u>22.5</u>			$\square$	<u> </u>	$\square$
								1		Bottom	of Boring = 22.5'			
							<b> </b>	4		Refusal	- Koller Bit		<u> </u>	┼──
							1	1						
			l			<u> </u>		-						┼──
													╂	
								1					匚	匚
				+		+	┼───	4					+	┿━
			<u> </u>					1						
								4					╋	+
								1						
	<u>s</u> D: Uf Ti	GROUND ample Ty Dry C=C P= Undistu P= Test F	D SURFACE TO _ <u>pe</u> ored W-Washed urbed Piston Pit A=Auger V=Va	201 d ane Test		Proportie tmce little some	USED ons Us 0 to 10 10 to 20 20 to 35	ed   1 % Cohes % 0 % 10 % 30	<u>+</u> ASING:  40 b W1.x;  ionless De -10 Loc -30 Med. [ -50 De	Image: Figure 1         Koli           30"foll on 2"O.D.         onsity           cohesive         o-4           bense         4-8           nse         8-15	Ler bit to refusal Sompler Consistency Soft 30 + Hard M/Stiff Stiff	SUM h Born k Corin hples	MAR) ng <u>2</u> ng	<u>r:</u> 2.5' 6
1	ŋ.	T=Undistu	irbed Thinwall		I	ana	221020	<i>57</i> 0, 50	+ Very D	ense 15-3	U V-Stiff HOLE	. NC	<b>)</b> . (	<b>n.</b> 1

TC PF RE SA	D YE ROJECT N EPCRT SEN	Americ 100 wat Inkee Atomic AME <u>Circula</u> In To <u>Distril</u> ENT TO <u>Deliv</u>	Can I TER STI CLEG Ling Mution Cred	Drill REET Vat	ing ک E/ <u>er_Sys</u> per ک مoteci	AST PR	ADDRESS	, Inc. , R. L. <u>Vest</u> Seab OJ. NO. RJOB NO.	boro, Mass rook, N.N. 7206 4-25	SHEET DATE HOLE NO LINE & STA. OFFSET SURF. ELEV. Dore	<u>1</u>	OF	
At Al-	GRO 	und water obse ofter ofter	- Hours _ Hours	NS 5 7 <b>5</b>	Type Size I D. Hommer Hammer	Wt Fall ,	CASING NW 3 	SAMPLER <u>s /S</u> <u>1-3/</u> <u>140:</u> <u>30''</u>	CORE 8'' BIT 	BAR START <u>10/4/7</u> COMPLETE TOTAL HRS. BORING FOREMAN <u>K</u> INSPECTOR <u>SOILS ENGR.</u>	4 / [ ] [ [ ] [ ] [ ] ] ]	i1	a m • p m • j.m _ j.m
оертн	Casing Blows per	OF BORING' Sample Depths From- To	Type of Sample	B o Fron	lçws per 6 n Sample	6" r T <u>c</u>	Moisture Density or	Strato Change	SOIL IDE Remarks inclu soil etc. Rock	NTIFICATION ude color, gradation, Type of -color, type, condition, hard-	s,		
	loot 1 1 1 1 21 23 100 42 30 75					011	wet very dense	<u>Elev</u> <u> </u> <u> </u> <u> </u>	Casing Ro Top of TI Gray fine fine-co Bottom Refusal	efusal @ 9' ILL 9' • sampled silty SAND, sonc arse gravel of Boring - 9'8" w/roller bit	No.	Pen	
	GROUND comple Jy - Dry C= P: Undistu P= Test	SURFACE TO pe Cored W=Washedr rbed Piston Pit A=Auger V=V(c) bed Thinwoll	g t		Proportion trace little some and	USED ons Use 0 to 10 ¹⁰ 10 to 20 ¹⁰ 20 to 35 35 1 0 5 0	ii.i d Cohes % O % O % IO % 30 0% 50	ASING: 401b Wt.x 500 Loo 30 Med. E 50 Der + Very D	THEN K <u>erusa</u> 30" fall on 2" O D nsity Cohesive se O-4 Dense 4-6 ise 8-11 ense 15-3	a <u>1</u> :/rolicr bit Sompler Consistency, Soft 30 + Hard Soft Soft Soft Soft Soft Soft Soft Soft	SUMA b Barn k Corin nples _ NO		

to Pr RE SA	<u>Ya</u> OJECT N/ PORT SEN MPLES S	Anieric 100 wat Inkee Atomi AME Circulat IT TO Distribu ENT TO Deliv	an Di TER STR <u>c Ele</u> tin <u>c V</u> tion crec I	CIIIII REET <u>ctric</u> <u>ctric</u> <u>ctric</u> <u>ctric</u>	EA EA Co. Cation t or Spe cotech	Borin AST PR	COVIDENCE ADDRESS	InC. E, R. I. <u>Westi</u> Scabi DJ. NO. JOB NO.	ooro, <u>Mass</u> cook, N.II. 7286 4•85		SHEET DATE HOLE NO LINE & STA, OFFSET SURF. ELEV.	G-6	= <u> </u>
<b>A</b>	GROU	UND WATER OBSE ofter ofter	RVATION Hours r - Hour	S S S	<b>Type</b> Sue I.D. Hammer H o m	Wt.	CASING NW 3'' <u>300.'r</u> r ²² /foil	SAMPLER <u>S</u> [S <u>1-3/3</u> <u>1407</u> <u>3</u> 0"	CORE BAR.	START COMPLETE TOTAL HRS <b>BORING FOI</b> INSPECTOR SOILS ENGR.	<u>0</u>  REMAN, <u>K. A</u> 1	100	о II Олг Олг Олг
	LOCATION	OF BORING:											
ОЕРТН	Casing Blows per foot	Sample Depths From- To	Type of Sample	Bl or <u>From</u> 0-6	ows per 6 Sample 1 1 6 -12	6" r [0 [ 12-18	Moisture Density or Consist	itrota Chonge Elev -	SOIL IDEN Remorks includ soil etc. Rock-i ness, Drilling tin	NTIFICATION e color, grada color, type, con ne, seoms ond	tion, Type of Idition, hord-	SAM No. Pe	IPLE en Rer
	$ \begin{array}{r}     4 \\     14 \\     30 \\     \hline     0 \\     42 \\     100 \\     70 \\     120 \\     110 \end{array} $							Q'	Casing I Strata ch (TII	Refusal @ lange @ 9 .L)	9' 9'		
	100- 70 120 110 10'9"-12'. D			57	200 100 (140) (	8" 38 300)	wet very dense		Gray fine to coarse	SAND,son gravel,	ne fine little silt		
								19'6'	Bottom Refusal v	<b>of</b> Boring v/roller b	g • 19'6" bit		
											•		
5 D: UI T U	GROUND comple T Dry C == P: Undistu P= Test Pi T=Undistu	SURFACE TO _ y p e Cored W=Woshed rbed Piston t A=Auger V=Vor rbed Thinwali	9' Ne Test		Proportu troce little some ond	USED ons Uso 0 to 10 10 to 20 20to 35 35 to 50	Imilian           ed         0           %         Cohe:           %         0           %         10           %         30           %         50	40 ib Wt. x 3 sionless Der IO Loo: -30 Med. Der -50 Den + Very Der	THEN         Roll           O"tail on 2"O.D.         nsity           nsity         Cohesive           se         0-4           nse         4-8           se         8-15           nse         15-3(	et bit to Sompler Consistency Soft 30 M/Stiff Stiff V-Stiff	) refusal Eorti Rock Sam HOLE	(rock) SUMM Boring Coring ples NO.	?) 19 6 19 6 1 G-6

			Americ	an D	rilli Treft	ng &	Bor	ing Co.	, Inc.		SHEET Date	1	(	OF	1
	to Pro Rei	OJECT N	Yankee Ate	<u>prvi c</u> in ~ 'l'	Flec ater	tric Suste	<u>peci</u>	ADDRESS	Uest Seab	<u>boro, Mass</u> rook, K.N. 723	HOLE NO LINE & S OFFSET	 JTA	C-7		
	SA	MPLES S	ENT TO Polive	101	to 🖯	eoteni	n.at 3	Site OUR	R JOB NO. =	4-25	SURF. EL	EV			<u> </u>
		GRO	UND WATER OBSE	ERVATIO	NS			CASING	SAMPLER	CORE BAR.		176	Tim		0.m
4	At-		ofler	Hou	r <b>S</b>	Туре		N	<u> </u>						<b>0</b> .m
	AI		after-	rio	urs	Size I.D. Hommer Hommer	Wt. Fall	300	140	- BIT	TOTAL HRS. BORING FOREMAN INSPECTOR SOILS ENGR	<u></u>	1.0	<u>'1</u>	
	L	OCATIO	N OF BORING				-	<u> </u>		<b></b>	·				
	DEPTH	Casing Blows per	Sample Depths From-To	Type ot Sample	Bi or From	ows per 6 Somple	5" r T <u>o</u>	Moisture Density or	itrata Chonge	SOIL IDEN Remorks includ soil eld Rock-o	VTIFICATION de color gradation, Type color, type, condition, hai	of d	S A	M P L	E
:	=	1			0-6	1_6-12	12-18	Consist	<u>Elev</u>	Thess Printing th	ne, seoms ond etc			- 201	
		17 24 45 51 42								Casing Red Strata Cha	fusal @ 10' mge (TILL) @ 11	.'6			
		<u></u>						wet	11'5'						
			11'6"-13'	<u>]</u> 1	<u></u>	<u> </u>	22	very dense		Gray fine to coars silt	SAND,some fine se gravel,little	 , ,		<u>]</u> 2	
									2212						
									23 2	Bottom c Roller Bit	of Boring • 23'2 : Refusal	- ?"  -			
								-							
								•		· •					
l				1		1		1				F	<u> </u>		
Ì		GROUND	SURFACE TO	L10	<u> </u>	<u></u>	USED _	1	ASING:	THEN Used	Roller Bit to	<u>1</u> 2312	<u></u> _		
	<b>50</b> D - UP	Dry C: Undistu	Cored W=Washed		little	Proportin trace	ons Use 0 to 10 ⁰ 10 1020	ed l Cohes 0% O-	40 ID Wt.x 3 Inchiess Der IO Loo	<b>50" fall</b> on 2"0.D. <b>nsity</b> Cohesive se o-4	Sampler Consistency Earth Soft 30 + HaRock	SUMM Boring Coring	1ARY 9 2.3 9	<u>2''</u>	-
		Pal Test Pi	HA-Auger V <b>:Vo</b>	ne Test		s o n	n e	201035%	30-50 D	lense A-a R-15	M/STITT Som	pies		<u> </u>	<u>!</u>

			Americ 100 wa	an [	)rilli Treet	ing <b>8</b>	k Bor Ast Pl	ing Co Rovidence	., Inc. Е, г. I.			SHEET	·	0F _	1
	το	)	Yankee Ato	mic D	lect	ric	ł.	ADDRESS	Vest	boro, Mass.		HOLE N <u>O.</u>	<u> </u>	<u>}</u>	
	PR	OJECT NA	ME Circrll.7	t.in	hate	r <u>Svs</u> t	^nL O	CATION	Seab	rook, N.M.		LINE <b>8</b> STA.			
	RE	PORT SEN	n to <u>listribu</u>	<u>tion</u>	05 5	or Sr	<u>ecifi</u>	<u> </u>	0J. NQ	7286		OFFSET			
	S A	MPLES SE	NT TO Leli	verco	t to	Leote	<u>ch .at</u>	<u> </u>	J-R JOBNO	21 - 16 1	, I	SURF. ELEV			<u> </u>
Ī	۸.	GROU	IND WATER OBSEI	RVATION	IS			CASING	SAMPLER	CORE BAR	START	Date <u>10/7/74</u>	<u>Tin</u> -	<u>n e</u>	g.m,
1	HU		Qiler	Hour	s	Туре		NK DH	s / s	 011	COMPLETE				o.m. _ <b>p.m</b> .;
	AI		after	Hou	rs	പപ്പ Hommer Hommer	w Fall	<u>200</u>	<u>140</u>	<u> </u>	BORING FOR INSPECTOR SOILS ENGR	REMAN	<u>יין 1  </u> דרין 1	!	, ,
ŀ	1									-	1				
F		Carios	Samola	Type	Di		.11	Moistura	Ŧ i		NTIFICATION				=
	E	Blows	Depths	of		Sample	r r	Density	Strata	Remorks includ	de color grada	tion. Type of	S	AMP	LE
	ы́ I	per	From- To	Somple	From		<u>[0</u>	or	Change	Soil etc. Rock-	color, type, con	dition, hord-	No	Bon	
	_	1001			0-6	1_6-12	12-18	Consist.	Elev.			eic	INU	Pen	Rec
		1	, 											-+	ļ!
	·	<u> </u>		<b> </b>		ł		ł							·
	. I	15		──	<b> </b>	<b> </b>		4		Casing Ref	iusal @ <b>1</b> (	)'6''			
		16				<u> </u>		1					<b></b>	$\rightarrow$	i – j
1	ĺ	17			1	<u> </u>		1							
		16			-	<u> </u>		1							, ;
		15													
		21	21												
								10'6"							
				3	17		24	wet						15	14
			10 0 - 12		± /	• ·		dense		Grav fine	SAND, some	fine to			
					<u> </u>			coarse gravel, little sil				e silt:			
					İ	1		1		C	,				
									•						
						l									
				ļ				ł							
	1								19'				<u> </u>	<u>   </u>	<u> </u>
			· · · · ·	<u> </u>				1		Bottom	f Boring		┝──┥	┝───┤	┟───┤
1				<u> </u>	<u> </u>	<u> </u>		1		Roller	Rit Refus	● ⊥J			
				1		1		1		ROTICI	Die Reide				
1								]							
						ļ		ł	1						
					<b> </b>	<b> </b>	ļ	Į	1						
				—	<u> </u>			4	1						<u> </u>
	•			†		<u>├</u>	<b> </b>	1	1				<u>├</u> ──┤	<u> </u>	
			·		t	·····		1	1				$\left  - \right $		<u>}</u>
1				<u> </u>	1	<u> </u>	1	1						<b>—</b>	
						•		]				•			
									1						
				1		ļ	ļ	4						┣──	<b> </b>
				<u> </u>				ł	1				<u> </u>	┝──	<b>├</b> ───
				<b> </b>	<u> </u>	<u> </u>	<u> </u>	4		· •			<b>├</b> ──┤	├──	╂───
						<u> </u>		1					$\vdash$		<u> </u>
				1		1	<u> </u>	1							
						1		1							
٢		GROUND	SURFACE TO	10'	<u>6'''</u>		USED _	<u>- ::'i'''''</u> '	CASING:	THENROller	bit refu	sal			_
	S	omplc Typ				Proportio	ons Use	ed Coho	1401b Wt.x 3	O fel on 2 O.D.	Sompler consistency		SUMM	ARY	/. ŏ∎
ł	D:	Dry C-C	orea w=washed			IITTIA	0 to 10'		-10 Loo	se o-4	Soft 30	+ Hard Rock	Corin	10 10 T.	
		P=Test Pi	A=Auger V=Von	e Test		some	201035	% 10	-30 Med. De	ense 4-8	M/Stiff	Sam	les_		1
	U1	T= Undistu	rhed Thinwall		I	and	35 10 50	<u>iii - 20</u>	Den Uen	se 8-15	្តុ ភ្នំព្រ	HULE	NO	~	

	to PR RE SAI	OJECT A PORT SEA MPLES SE	Americ 100 WAY Yankee Atc VAME Circulat VAME Circulat NT TO Delive	can I	Drill TREET Elec Wate 1 as 1	tric Eric Ser Sys Coot	AST P	ROVIDENCI ADDRESS LOCATION	D., Inc. E, R I. <u>Vest</u> Seab: ROJ. NO.	boro, Mass. rook, N.N. <u>7280</u> 4-85		SHEET DATE HOLE N <u>O.</u> LINE <b>&amp;</b> STA. OFFSET SURF. ELEV.	1 C-1	<b>OF .</b>	1
	At	grou 2'	IND WATER OBS 	ERVATIO	DNS rs rs	Туре Sizel Hammer H o	D Wt. m n	CASING NV: <u>3''</u> <u>300;</u> e ² f ^{.''} Fol	SAMPLER	CORE BAR. <u>ກາງ</u> BIT	START COMPLETE TOTAL HRS B O R I N G INSPECTOR SOILS ENCR	<u>Dote</u> _ <u>10/7/7</u> 4 FOREMAN		<u>ne</u> 1	o.m o.m o.m
	DEPTH	Cosing Blows per foot	OF BORING: Sample Depths From-To	Type ot Sampie	Bi or From	ows per 6 Sample	5" r To [ i2-18	Moisture Density or Consist	Strata Change Elev	SOIL IDEN Remorks includ sail etc. Rock-i ness, Drilling tir	NTIFICATION de color, grada color, type, con ne, seams and	ition, Type of dition, hard- etc.	S. No	AMP Pen	LE Rec
								10'6'	01	/ERBURDEN					
•			10 ° 6''- 15 ' 7		C	3 111 6 NI				Gray QU	ARTZ DIOR	LITE	C2	60	'60 '61''
			20'6"-25'0			5 M1			<u>25 ' 6'</u>	Bottom cored	of Borin 15'	g = 25'6		60	
-4	SI D: UF Tf	GROUND ample Typ Dry C=C >- Undistu P=Test Pi	SURFACE TO _ SURFACE TO _ ored W=washed rbed Piston t A-Auger V=Va	10 '	6"	Proporti trace little s o m e	USED ons Us 0 to 10 10 to 20 20to 3	ed % % % 5%	"CASING: 1401b Wt.x. sionless Der 0-50 Den 0-30 Med. 2	1'HEN C 30''fall on 2''O D. nsity Cohesive se (8-15 pense 4 - 8	o r Sampler Consistency ScStiff 30 M/Sliff	+ Hard Rock Sam	d SUMM Born Corin		6 5 

T Pi Ri Si	0 Roject N Eport Sen Amples S	Americ 100 WA Yankee Ato AMEC <u>irculat</u> IT TO <u>Distrib</u> ENT TO <u>Delive</u>	an [ <b>TER</b> STF <u> ing W.</u> <u> outior</u> <u> ered t</u>	)rilli REET Elect ater ater o Ce	ing <b>&amp;</b> E ⁱ <u>Svstc</u> <u>por S</u> otech	AST PI	Ting Co ROVIDENCE ADDRESS LOCATION <u>icat</u> ipr <u>itc</u> 100	., Inc. , R. I. <u>Vesti</u> Seaba OJ.NO — R JOBNO.	ooro <u>Mass.</u> rook, :!.I!. 7296' 4-95	SHEET DATE HOLE NO LINE & STA. OFFSET SURF. ELEV.	1 (	) [ 10	: 1 	
At At	GROUND WATER OBSERVATIONS At of terHours			NS 7 <b>5</b> Irs	<b>Type</b> <b>Size I.D.</b> Hommer Hommer	Wt. Foll	CASING NW 3" 300:# 24"	SAMPLER - 	CORE BAR. NO3_ COMPLETE TOTAL HRS. BORING FOREMAN K BIT INSPECTOR GIC SOILS ENGR.		A a.m 4 p.m A 11011 1101			
ЕРТН	LOCATION OF BORING'					5" r Го	Moisture Density or	Strata Change	SOIL IDENTIFICATION Remorks Include color, gradation, Type of Soil etc. Rock-color, type, condition, hard-			SAMPLE		
				0-6	6-12	12-18	Consist.	<u>Elev</u>	ness, Drilling ( ir	RBURDEN	No.	Pen	Rec	
		7'-12'	C C	3-5	Min/F	t 			Gray	DIORITE	C1	60' 60'	<u>60''</u> 60''	
			C		Min/I			2 2 '	Bottan d	ofboring- 22'	<u>C3</u>	60' I	60"  I	
										rod t o 241				
D U T	iomple Typ - Dry C: P: Undistui P= Test Pi T= Undistui	Cored W=Washer Cored W=Washer In A=Auger V=Val In A=Auger V=Val	d ne Test	T	Proportic trace little s o m	0320 <u>-</u> ons Use 0 to 10 ⁰ 10 to 20 ⁰ 1 e 35 to 50	ed Cones % Cones % 0- 201035%	401b Wt.x 3 ionless Den IO Loos IO-30 Med. 30-50 D	SO" foil on 2"0.D.           Isity         Cohesive           Se         0-4           Dense         4-B           Image: Serie and the serie and the serie and the serie and the serie and the serie and the serie and the serie and the serie and the serie and the serie and the serie and the serie and the serie and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the series and the	Sampler Consistency Soft 30 + Hord Rock M/Stiff Stiff Stiff HOLF	SUM Borir Corir Dies	<u>WARY</u> 19 19	- 	

	TO PR RE	OJECT NA PORT SER	America 100 WA Yankee At AME ^C irculat NT TO ^J istrub	n Dri TER STR omic 1 ing Wa ution Vered	lling EET Electu ater as p t o	$\frac{1}{2} \frac{8}{8}$	Bori AST PF	ROVIDENC E S S LOCATION t Site	L, Inc. E, R I Seab UJ: NO	boro, Mass. rook, N.N. 7286 4-85	SHEET DATE HOLE NO. LINE B STA OFFSET SURF ELE	1 (;	- <b>OF.</b> 11	1	
	<b>A:</b> At	GROI	UND' WATER OBS diter of ter	ERVAT 10 Hour Hour	NS 's rs	Type Sue I D. Hammer	Wt , Fall	CASING NW <u>3''</u> <u>300</u> ^{//}	SAMPLER - 	CORE BAR. NDDO_ BIT GIR_	START <u>10/8/</u> COMPLETE '' TOTAL <b>HRS</b> BORING FOREMAN '' INSPECTOR SOILS ENGR	74	4 9		
1	LOCATION OF BORING'				ows per ( Somple	5" r	Moisture - Density or	Strata Change	SOIL IDEN Remarks Includ soil etc Rock-c	ITIFICATION e color, gradation, Type c color, type, condition, hord	of S	SAMPLE			
									<u>Elev</u>	OVE					
			16'-21' I 21'-26' 26'-31'	C C C	4	lin/F Min/F	t		31'	Gray DIORITE			50 60 60	'55' '60' '60'	
	S: D: UF	GROUND ample Tr Dry C=C 2- Undistu	SURFACE TO ype ' ored W=Washed rbed Prston			Proportio	USED_ ns Use 0 to 10 ⁶ 10 to 20 ⁶	NT: '' d Cohes % O	CASING: 40Ib Wt. x 3 ioniess Den iO Loos -30 Med. De	Bottom THEN <u>Cored</u> O''fall on 2"0.D. USINY Cohesive Se 0-4 4-8	of Boring - 31' to 31' Sampler Consistency Soft 30+Hord Rc Soft 30+Hord Rc	SUMI standard	MARY 19		

American Drilling & Boring Co., Inc.											0	F	-				
IDD WATER STREET     EAST PROVIDENCE, R I       TO     Yankee Atomic Electric       PROJECT NAMECITCUL ating Water System     ADDRESS												G+12					
	REPORT SENT TO istribution as por Geodeside PROJ NO       7285       OFFSET         SAMPLES SENT TO relivered to Contection Size       OUR JOB NO.       4-25																
]		G R O	UND WATER OBSE	ERVATI	ONS			CASING	SAMPLER	CURE BAR.	1 1 STARP	<u>Dote</u> 10/10/7	<u>Time</u> 4	2	Le Le		
V ofter Hours Top of Ground				Type Size I. D.		NW 3''				K.\Ilen							
At Ofter Hours			Hommer H o m	W1 m m e	r ²⁴ Foll	<u></u>	Roller	INSPECTOR	ан <u>, : :</u>			_ _					
LOCATION OF BORING:												=					
L Casing Sample Type B Blows Depths of O Depths Per From - To Sample From			lows per 6" n Sampler		Moisture Density or	Strata Dhange	SOIL IDE Remorks inclu Soil etc Rock ness Drilling 1	NTIFICATION de color, gradatio -color, type, condit me, seoms and etc	n,Type of Ion, hord-	SAMPLE							
	=	1001	0'-1'	– – D	<u>_</u> 0-6	4	12-18	Consist.	11	B	rown PEAT		1 ]	.21	6		
	ļ	7	1'-2'	ì)	6	6		wet					<u>la</u> 1	12	3		
	.	14 15 71	······································	 			 	dense		Gray fine	silty SAND						
		<u>33</u> 35	<u>51-616"</u>	þ	12	21	<u>28</u>	<b>wet</b> dense					2 1	18'1	. 2		
	ľ	37			1			1	91				┠──┼─				
		3,2	101 101 11			5750	100/0	11		Gray	CLAY				<u> </u>		
	ł		10 = 10 11	<u> </u>	40	(140	)	stiff	$\frac{10'11''}{-11''}$	Roller Bit	Refusal @	111			<u> </u>		
•	╞					1 ¹	<u> </u>										
					1		Refus <b>al</b>										
														-+			
					<b>1</b> .												
			1						i.								
					]							`					
				<u> </u>			<u> </u>						-+	+			
				İ	 		1								!		
				 		+		1							ن <b>ـــ</b> ـ		
															_		
						·		4						+			
								]		· •							
				<u></u>	┨			4					$ \vdash $	-			
								]					F				
		GROUND	SURFACE TO	10	+	_	USED	livi	ASING:	THEN 🤳	mplea to 11		<u> </u>		<b>ب</b> ز		
	Sa D=	Dry C=C	pe Cored W=Washed			Proporti Iroce	ions Us 01010	ed     9/0   Cohes 19/2   0-	401b Wt. x sionless De 10 Loo	30''fallon 2''00 nsity Cohesive se o-	I. Sampler e Consistency 4 Soft 30+	Earth Hard Rock	SUMMARY:				
UP: Undisturbed Piston TP= Test Pit A=Auger V=Vane Test UT- Undisturbed Thinwall						some	201035	% 10 30	-30 Med. D	ense 4 - se 8-1		ples		3			
						UHQ.	30105	∪% <b>) ⊃0</b>		ense ib•3	U V =Stiff	TURCE	NU.	6.	- 1		