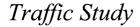

## Traffic Study: Levy County Advanced Reactor Site Levy County, Florida Kimley-Horn and Associates, Inc. March 2009



# Levy County Advanced Reactor Site

## Levy County, Florida


Prepared for:

The Shaw Group, Inc. Inglis, Florida

*Prepared by:* 

Kimley-Horn and Associates, Inc. Tampa, Florida

©Kimley-Horn and Associates, Inc. March 2009 148907000



# Levy County Advanced Reactor Site

## Levy County, Florida

Prepared for:

The Shaw Group, Inc. Inglis, Florida

*Prepared by:* 

Kimley-Horn and Associates, Inc. Tampa, Florida

©Kimley-Horn and Associates, Inc. March 2009 148907000

The entirety of this document, including text and images, is property of Kimley-Horn and Associates, Inc., Protected under U.S. copyright law. Copyright © 2009 Kimley-Horn and Associates, Inc.

## TABLE OF CONTENTS

|                                                | Page |
|------------------------------------------------|------|
| INTRODUCTION                                   | 1    |
| PROJECT TRAFFIC                                | 4    |
| Existing and Proposed Land Uses                | 4    |
| Trip Generation                                | 4    |
| Trip Distribution and Trip Assignment          | 6    |
| SCHEDULED IMPROVEMENTS                         | 9    |
| STUDY AREA                                     | 10   |
| EXISTING TRAFFIC CONDITIONS                    | 13   |
| FUTURE TRAFFIC VOLUMES                         | 16   |
| PEAK CONSTRUCTION WORKFORCE TRAFFIC CONDITIONS | 18   |
| PEAK OPERATIONAL WORKFORCE TRAFFIC CONDITIONS  | 23   |
| TURN LANE ANALYSIS                             | 27   |
| CONCLUSION                                     | 29   |

Page

<u>Page</u>

## LIST OF FIGURES

| FIGURE 1: | Project Location Map          |
|-----------|-------------------------------|
| FIGURE 2: | Project Trip Distribution Map |

### LIST OF TABLES

| TABLE 1:  | Project Trip Generation Estimates                                                  | 6  |
|-----------|------------------------------------------------------------------------------------|----|
| TABLE 2:  | 2008 P.M. Peak-Hour Existing Intersection Conditions                               | 14 |
| TABLE 3:  | 2008 P.M. Peak-Hour Existing Roadway Conditions                                    | 15 |
| TABLE 4:  | 2015 A.M. Peak-Hour Peak Construction Workforce Traffic Intersection Conditions    | 19 |
| TABLE 5:  | 2015 P.M. Peak-Hour Peak Construction Workforce Traffic Intersection<br>Conditions | 20 |
| TABLE 6:  | 2015 P.M. Peak-Hour Peak Construction Workforce Traffic Roadway<br>Conditions      | 22 |
| TABLE 7:  | 2017 A.M. Peak-Hour Peak Operational Workforce Traffic Intersection Conditions     | 24 |
| TABLE 8:  | 2017 P.M. Peak-Hour Peak Operational Workforce Traffic Intersection<br>Conditions  | 25 |
| TABLE 9:  | 2017 P.M. Peak-Hour Peak Operational Workforce Traffic Roadway<br>Conditions       | 26 |
| TABLE 10: | Turn Lane Length Requirements (Worst-Cast Traffic Scenario)                        | 28 |

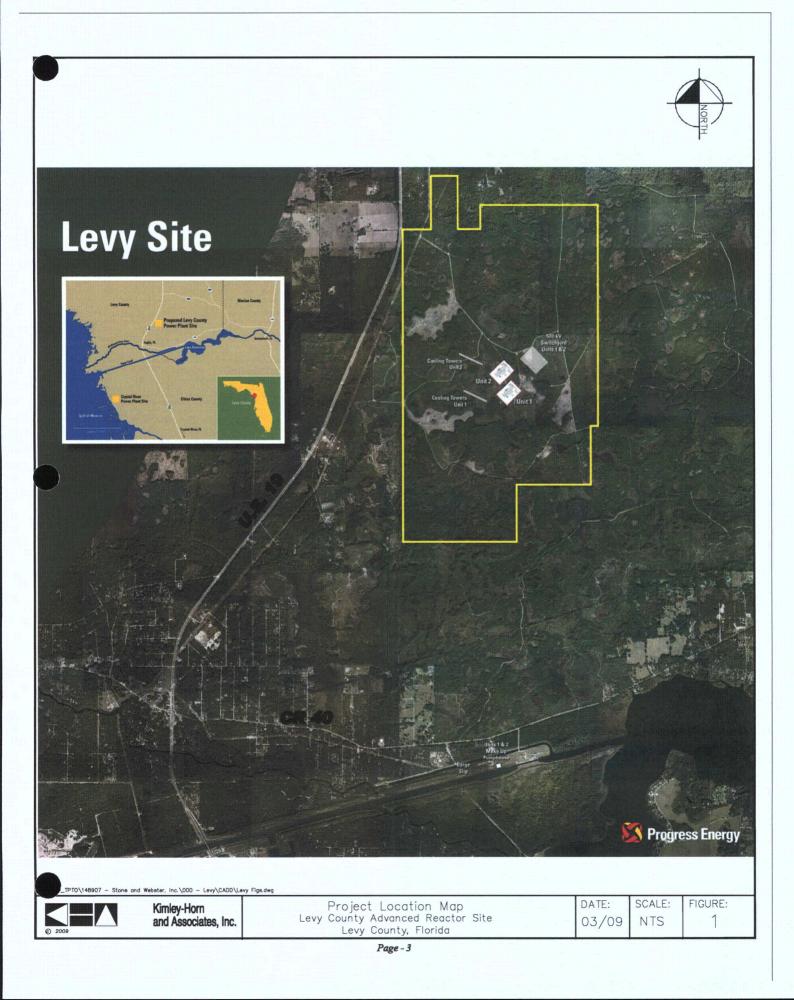
## LIST OF APPENDICES

- APPENDIX A: Project Trip Generation, Trip Distribution, and Study Area Worksheets
- APPENDIX B: Existing Traffic Count Data
- APPENDIX C: Existing and Future Traffic Volume Worksheets
- APPENDIX D: 2008 Existing Intersection and Roadway Analyses Worksheets
- APPENDIX E: Future Intersection and Roadway Analyses Worksheets
- APPENDIX F: Turn-Lane Length Requirements Worksheets

#### **INTRODUCTION**

Kimley-Horn and Associates, Inc. has been retained by The Shaw Group, Inc. to conduct a transportation impact analysis to evaluate the anticipated operation and construction activities of Progress Energy's proposed Levy County Advanced Reactor Site in Levy County, Florida. This study focused on project traffic impacts at project driveways and adjacent public intersections during the peak of construction (anticipated to be between 2014 and 2015) and at buildout of the development (anticipated to be 2017). Findings of this analysis will be used to support the driveway permit applications required for the project driveways.

The proposed project site is located on the east side of US 19, approximately 5.5 miles south of the US 19 & SR 121 intersection and approximately 4.0 miles north of the US 19 & CR 40 intersection, in Levy County, Florida. The facility will primarily consist of two (2) nuclear reactors and required ancillary buildings to support the training and operation of these reactors. The Levy County Advanced Reactor project will be designed and constructed as a "third-generation" nuclear facility; which requires fewer workers than older nuclear facilities.


Access to the site is proposed through two driveways on US 19, and a heavy haul road intersection crossing CR 40. The northern US 19 driveway is proposed as a "construction only" driveway, while the southern US 19 driveway is proposed as the main site access upon completion of construction. During construction of the facility, no rail access was assumed and transport of bulk commodities to the site were defined consistent with the anticipated Barge/Truck shipment schedule. Based upon discussions with The Shaw Group, Inc., during the peak of construction a total of up to 3,300 construction workers may be required. In addition to the construction workers, up to 500 operational employees will be trained during the peak of construction, which coincides with the construction of Unit 1.



After construction is completed on Unit 1 and Unit 2, it was assumed that the site will be served by up to 800 full-time operational employees. Also as required, a refueling outage is periodically planned every 18 months for the site. During this time, 800 additional workers will be on-site to assist with this periodic maintenance (refueling). These 800 workers are anticipated to access the site via the Construction Driveway.

Construction on the first reactor is planned to be completed by 2016, and the second reactor is anticipated to be completed by 2017. Figure 1 illustrates the location of the project site, including the adjacent public roadway network.

Prior to conducting this analysis, an initial transportation methodology meeting was conducted for the study on November 25, 2008, with Levy County transportation staff and the Florida Department of Transportation (FDOT) District Two staff. As discussed at the methodology meeting, the intent of this study was to analyze the operational conditions at the proposed project driveway locations so that intersection improvements can be designed to accommodate the anticipated transportation impacts during and after construction of the proposed nuclear facility.



#### **PROJECT TRAFFIC**

Project traffic used in this analysis is defined as the vehicle trips expected to be generated in association with the construction and operation of the advanced reactor site. These trips were distributed and assigned throughout the study roadway network.

#### **Existing and Proposed Land Uses**

The proposed advanced reactor site is currently vacant and is expected to consist of two (2) "third-generation" nuclear reactors. Access to the proposed site is expected to be provided to US 19 through one northern driveway (Construction Driveway) and one southern driveway (Operations "Main" Driveway), and to CR 40 through the Heavy Haul Road crossing.

#### **Trip Generation**

The a.m. and p.m. peak hour trip generation potential of the proposed advanced reactor site was estimated based upon data collected at a similar, existing nuclear facility (i.e., Shearon Harris site in New Hill, North Carolina) and information provided by The Shaw Group, Inc. The trip generation for the proposed advanced reactor site was broken down into three categories: construction workforce, commodities delivery, and operational workforce.

For the purposes of this analysis, two trip generation estimates were conducted. The first estimate was based upon the "Peak Construction Workforce" scenario, which included construction workforce traffic, commodities delivery (truck) traffic, and operational workforce traffic. The following assumptions were considered as part of the "Peak Construction Workforce" traffic estimates:

- 3,300 construction workers at the peak of construction (year 2014-2015);
- Two shifts one large (70% of construction workers) and one small (30% of construction workers);
- Construction workers of the large shift enter the site during the a.m. peak hour and exit the site during the p.m. peak hour;

- Vehicle occupancy rate of 1.8 construction workers per vehicle;
- 150 vehicles and trucks associated with construction were assumed in the off-peak direction during the peak hours;
- The 500 operational employees that will be trained on-site during the peak of construction enter and exit the site during the a.m. and p.m. peak hours consistent with the directional split determined at the existing Shearon Harris Nuclear Plant; and
- 20% of daily vendor trucks (5 trucks) and 100% of the commodity delivery truck fleet (15 trucks) traveling in the peak direction during the a.m. and p.m. peak hours.

The second estimate was based upon the "Peak Operational Workforce" scenario, which included only operational workforce traffic at buildout of the facility. The following assumptions were considered as part of the "Peak Operational Workforce" traffic estimates:

- 800 operational employees at buildout of the nuclear facility (year 2017);
- Operational employees entering and exiting the site during the a.m. and p.m. peak hours were defined based upon the directional split at the existing Shearon Harris Nuclear Plant; and
- Peak hour trip rates based upon trip generation survey conducted at the existing Shearon Harris Nuclear Plant.

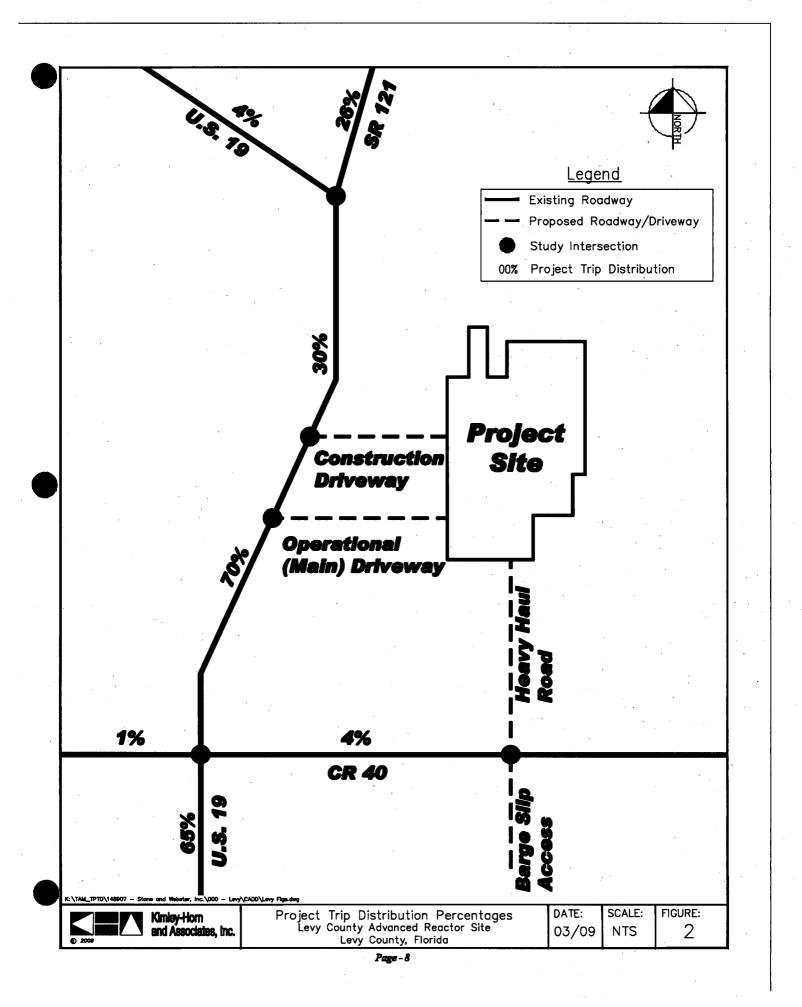
The daily, a.m. peak-hour and p.m. peak-hour trip generation potential for the two scenarios described above are summarized in Table 1 and documented in Appendix A.

Traffic Study

| TABLE 1         Project Trip Generation Estimates                                            |                                                 |       |       |     |     |         |  |  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------|-------|-------|-----|-----|---------|--|--|
| Daily A.M. Peak Hour P.M. Peak Hour                                                          |                                                 |       |       |     |     | ak Hour |  |  |
| Scenario                                                                                     | Entering Exiting Entering Exiting Entering Exit |       |       |     |     | Exiting |  |  |
| Peak Construction Workforce<br>(3,300 construction workers<br>and 500 operational employees) | 2,262                                           | 2,262 | 1,433 | 163 | 163 | 1,415   |  |  |
| Peak Operational Workforce<br>(800 operational employees)                                    | 531                                             | 531   | 212   | 20  | 20  | 185     |  |  |

It should be noted that during the study methodology meeting on November 25, 2008, FDOT staff recommended conducting a trip generation study at the existing Crystal River nuclear facility to estimate the trip generation potential of the proposed Levy County Advanced Reactor site. However, the Crystal River facility is not a "third-generation" nuclear power facility and includes several coal burning power plants. Based upon this information, the Crystal River facility has different traffic generating characteristics than the proposed "third-generation" nuclear facility in Levy County. Therefore, the operational trip generation estimates collected from a similar nuclear facility (i.e. Shearon Harris Nuclear Plant with approximately 800 operational employees) was used in this analysis.

#### **Trip Distribution and Trip Assignment**


The trip distribution and trip assignment of project traffic was based upon a manual gravity model and supplemented with engineering judgment. The manual gravity model was based upon population estimates within a 35-mile radius from the proposed project site. The population data was published by the U.S. Census Bureau and the Bureau of Economic and Business Research (BEBR), including 2000 Census data and 2007 population estimates. It should be noted that a manual gravity model was used in place of a travel demand forecasting model (i.e., FSUTMS model) because no such model currently exists for Levy County.



The population estimates of each of the incorporated, and unincorporated, cities and towns documented by the U.S. Census Bureau, within a 35-mile radius of the project site, were included in the manual gravity model calculations. In addition, the manual gravity model also included the travel distance from each of these cities and towns to the project site.

The results of the manual gravity model calculation are provided in Table A of Appendix A. The results of the gravity model calculation indicated 30% of project traffic is expected to travel to/from north of the project site on US 19 and 70% is expected to travel to/from south of the project site on US 19, which was consistent with previous traffic studies completed for this site.

The resulting percentages were applied to the trip generation estimates shown in Table 1 above to estimate project trips within the vicinity of the project site. The distribution of project traffic, in terms of percentages, is shown in Figure 2.



#### SCHEDULED IMPROVEMENTS

A review of the Work Programs for Levy County and FDOT District 2 revealed no improvements are currently under construction or scheduled for construction within the next several years near the project site. Currently, FDOT District 7 is widening the US 19 bridge crossing the Florida Bypass Canal from the existing two-lanes to four-lanes. Based upon this information, existing lane geometry and traffic controls were used in the analysis of existing and future conditions for all intersections and roadways evaluated.

#### **STUDY AREA**

The extent of the roadway network to be studied was based upon all roadway segments for which project traffic is expected to consume at least five percent (5%) of the two-way, peak-hour LOS standard service volume for each specific segment. Based upon the low number of p.m. peak-hour trips expected to be generated during the Peak Operational Workforce traffic conditions (205 trips), only three (3) segments meet this criteria:

- US 19 from the Project Site to CR 40;
- SR 121 from US 19 to SE 80<sup>th</sup> Street/NW 27<sup>th</sup> Street; and
- US 41 from SE 80<sup>th</sup> Street/NW 27<sup>th</sup> Street to CR 328.

In addition to these impacted roadway segments, the first directly accessed roadway segments of US 19 from SR 121 to the project site and CR 40 from US 19 to Heavy Haul Road Access were evaluated in this analysis. It should be noted that no other segments of US 41 are significantly impacted by project traffic. The results of the study area determination are shown in Appendix A.

In addition to the above study roadway segments, the following intersections were evaluated:

- US 19 & SR 121;
- US 19 & CR 40;
- the two (2) proposed project access locations along US 19; and
- the one (1) proposed project access location along CR 40 (Heavy Haul Road Access).

US 19 is a four-lane, divided highway classified as an emerging Strategic Intermodal System (SIS) facility, with a level of service (LOS) standard of 'B'. SR 121 is a two-lane, undivided highway, with a LOS standard of 'C'. US 41 is a two-lane, undivided highway, with a LOS standard of 'C'. CR 40 is a two-lane, undivided major collector facility, with a LOS standard of 'C'. In addition, it should be noted that CR 40 currently has a 10 ton truck limit.

The existing US 19 & SR 121 study intersection is currently an unsignalized T-intersection with left-turn and/or right-turn lanes on each approach. The existing US 19 & CR 40 study intersection is currently signalized with left-turn and/or right-turn lanes on each approach. It should be noted that the adopted LOS performance standard for both of these study intersections is LOS C. This performance standard was compared to the existing and future operating conditions shown in later sections of this report to determine the traffic impacts of this development on these two intersections.

The northernmost project access location (i.e., Construction Driveway) along US 19 is proposed to be full-access, with an exclusive northbound right-turn lane, dual southbound left-turn lanes, dual westbound left-turn lanes, an exclusive westbound right-turn lane, and a traffic signal. The adopted LOS performance standard for the US 19 & Construction Driveway intersection is LOS B.

As previously mentioned, a periodic refueling outage is planned for the site every 18 months. During this time, an additional 800 workers (in addition to the 800 full-time operations workers) will be on-site assisting with the refueling process. It is planned that the additional 800 part-time workers will access the facility through the signalized construction driveway. After construction of the site, the existing traffic signal should operate in flashing mode, with periodic use during the refueling outage. Since the traffic signal is planned for flashing mode after construction, one of the southbound left-turn lanes should be restriped so that it is not used during the "flashing" signal intersection control. It is anticipated that the second southbound left-turn lane will not be required during the refueling. In addition, in the event that an Emergency Response/Fire Rescue facility is constructed on-site, the traffic signal could be modified for emergency signal use.

The southernmost project access location (i.e., Operations (Main) Driveway) along US 19 is proposed to be a full-access, unsignalized driveway with an exclusive northbound right-turn lane, an exclusive southbound left-turn lane, an exclusive westbound left-turn lane, and an exclusive westbound right-turn lane. The Operations (Main) Driveway is expected to remain unsignalized

Traffic Study

at buildout of the nuclear facility. The adopted LOS performance standard for the US 19 & Operations (Main) Driveway intersection is LOS B.

It should be noted that, as currently planned, the proposed project access locations will not align with existing full-access median openings along US 19. Median modifications, including closing and relocating existing median openings, are anticipated to be required. Further discussions with the FDOT are planned in regards to the driveway access locations.

The proposed "Heavy Haul Road" is a private road planned to connect the Florida Bypass Canal with the proposed site. This road will allow for the hauling of commodities required during construction of the site. This private road will intersect CR 40. Full access will be required at the crossing with CR 40, and an eastbound right turn-lane is proposed for truck use from CR 40. Although many of the commodities will be transported through standard 15 ton trucks, periodic modules to be delivered to the site will require a special heavy haul crawler that travels 3 to 5 miles per hour. Due to the unique characteristics of the crawler, it is recommended that right-of-way be granted to the crawler across CR 40 during the times of transport of periodic modules. In an effort to facilitate a safe crossing for these modules, it is recommended that, at a minimum, two (2) trained/certified flagmen direct traffic during the time the heavy hauler is crossing CR 40. Depending upon the outcome of discussions with the appropriate public agencies, other special traffic control methods may be required. The adopted LOS performance standard for the CR 40 & Heavy Haul Road intersection is LOS C.

It should be noted that the project access locations along US 19 and CR 40 were evaluated for both the a.m. and p.m. peak hours. However, the off-site study intersections and roadways were evaluated for the p.m. peak-hour, peak-season condition only because, typically, this is the time when the highest amount of background traffic occurs.

#### **EXISTING TRAFFIC CONDITIONS**

Existing traffic conditions were evaluated for the study roadway segments and study intersections previously identified. The procedures used in this analysis are discussed below.

Vehicle turning movement volume counts were obtained by KHA at the two (2) existing study intersections, as identified in the previous section of this report, during the p.m. peak period (4:00 P.M. to 6:00 P.M.) to quantify existing p.m. peak-hour conditions near the proposed project site. The counts were conducted in November and December 2008, and the raw counts are provided in Appendix B. Existing a.m. and p.m. peak-hour traffic volumes near the proposed project access locations were estimated based upon the average of a three-day, 24-hour machine count (converted to a.m. and p.m. peak-hour volumes) along both US 19 and CR 40. The 24-hour machine count data, which was collected in July 2008, was obtained from a traffic study (*Levy County Nuclear Power Plant*, July 2008 – Lincks and Associates) previously submitted to Levy County and is included in Appendix B. Existing p.m. peak-hour traffic volumes along US 41, from SE 80<sup>th</sup> Street/NW 27<sup>th</sup> Street to CR 328, were estimated based upon the average of a two-day, 24-hour machine count (converted to a.m. peak-hour volumes) conducted by the FDOT and documented in the *2007 Florida Traffic Information DVD*.

The vehicle counts at the two (2) existing study intersections and the 24-hour machine counts were adjusted to reflect peak-season conditions. This modification was performed using the FDOT seasonal adjustment factors for Levy County. The appropriate factors used, including the existing peak-season traffic volumes, are provided in Appendix C.

Using the existing peak-season traffic volumes identified in Appendix C, an intersection analysis was conducted for the two (2) existing study intersections during the p.m. peak hour. The intersection analysis was performed using the HCS+ (Release 5.21) program for signalized and unsignalized intersections. As part of this analysis, existing lane geometry and traffic controls were used for the study intersections.

The results of this analysis are summarized in Table 2 and indicate that both study intersections are currently operating at an acceptable LOS performance standard during the p.m. peak hour. Summary worksheets of the intersection analysis are provided in Appendix D.

| TABLE 2           2008 P.M. Peak-Hour Existing Intersection Conditions |                                          |                     |    |    |    |    |  |
|------------------------------------------------------------------------|------------------------------------------|---------------------|----|----|----|----|--|
|                                                                        | Overall<br>Intersection LOS Approach LOS |                     |    |    |    | DS |  |
| Intersection                                                           | Standard                                 | Existing<br>Traffic | NB | SB | EB | WB |  |
| US 19 & SR 121 (unsignalized)                                          | С                                        | A*                  |    |    |    | A  |  |
| US 19 & CR 40 (signalized)                                             | С                                        | В                   | В  | В  | C  | C  |  |

\*LOS on cross-street approach for the unsignalized intersection.

In addition to the intersection analysis, a roadway analysis was conducted for the study roadway segments of US 19 (from SR 121 to CR 40), SR 121 (from US 19 to SE 80<sup>th</sup> Street/NW 27<sup>th</sup> Street), US 41 (from SE 80<sup>th</sup> Street/NW 27<sup>th</sup> Street to CR 328), and CR 40 (from US 19 to the proposed Heavy Haul Road) for the p.m. peak hour. Service volumes were defined using the FDOT's *2007 Quality/Level of Service Tables* and accompanying FDOT *LOSPlan 2007* software based upon the existing roadway characteristics. The use of the service volumes found in the FDOT *2007 Quality/Level of Service Tables* provided a conservative (worst-case) estimate of operating conditions along the study roadway segments.

The results of the roadway analysis, which are summarized in Table 3, indicated that the study roadway segments along US 19, SR 121, US 41, and CR 40 are currently operating at an acceptable LOS performance standard during the p.m. peak hour. Worksheets documenting the roadway analysis are provided in Appendix D.



Traffic Study

| TABLE 3           2008 P.M. Peak-Hour Existing Roadway Conditions        |              |                          |  |  |  |  |
|--------------------------------------------------------------------------|--------------|--------------------------|--|--|--|--|
| Roadway                                                                  | LOS Standard | Roadway LOS<br>(Two-Way) |  |  |  |  |
| US 19<br>SR 121 to Project Site                                          | В            | A                        |  |  |  |  |
| US 19<br>Project Site to CR 40                                           | В            | A                        |  |  |  |  |
| SR 121<br>US 19 to NW 27 <sup>th</sup> Street                            | С            | A                        |  |  |  |  |
| US 41<br>SE 80 <sup>th</sup> Street/NW 27 <sup>th</sup> Street to CR 328 | С            | В                        |  |  |  |  |
| <b>CR 40</b><br>US 19 to Heavy Haul Driveway                             | С            | С                        |  |  |  |  |

Traffic Study

Kimley-Horn and Associates, Inc.

### **FUTURE TRAFFIC VOLUMES**

Future traffic volumes consist of two components: project traffic and background (non-project) traffic estimates. Project traffic volumes have been previously identified in this report. Future background traffic volumes, including the procedures used to develop these estimates, are provided below.

Future background traffic is defined as expected traffic on the roadway network in the future year for specific development levels of the proposed project. For the purposes of this analysis, two "future" year scenarios were evaluated: the "Peak Construction Workforce" scenario (anticipated to be between years 2014 and 2015) and the "Peak Operational Workforce" scenario (anticipated being year 2017). The following procedure was undertaken to develop the future 2015 (representing the worst-case construction year) and 2017 background traffic volumes. These volumes considered existing traffic volumes adjusted by an annual growth rate and estimated volumes from other approved and/or planned developments in the area.

To develop the future background volumes, the existing 2008 peak-season volumes, as previously identified in Appendix C, were first adjusted by an annual growth rate of 2.2% to reflect 2015 and 2017 conditions. The determination of this percentage was based upon historical traffic data in the area, as documented by the FDOT. The growth rate, as documented in Appendix C, was also applied to the existing traffic counts at the study intersections.

In addition to the annual growth rate, traffic volumes associated with approved and/or planned developments in the area were added to the adjusted existing traffic volumes to determine background traffic estimates. Based upon discussions with Levy County and FDOT staff, only one proposed development (Tarmac Lime-Rock Mine) was provided. It is understood that, based upon these discussions with Levy County and FDOT staff, the Tarmac Lime-Rock Mine is currently not approved but may be approved in 2009. In an effort to provide a conservative analysis, the trip generation potential of this development was included in the analysis as if it has

been approved based on the TIA performed by Grimail Crawford and submitted in November 2007.

The traffic volumes from the Tarmac Lime-Rock Mine development were added to the adjusted (to year 2015 and 2017) peak-season existing traffic volumes to produce both future 2015 and 2017 a.m. and p.m. peak-hour background traffic volume estimates.

The future background traffic volumes, including the Tarmac Lime-Rock Mine development traffic, are documented in Appendix C. The project traffic volumes, as previously shown, were then added to these background traffic volumes to determine 2015 and 2017 total traffic volumes for both peak hours. The total traffic volumes for both the a.m. and p.m. peak hours are documented in Appendix C.

### PEAK CONSTRUCTION WORKFORCE TRAFFIC CONDITIONS

The Peak Construction Workforce traffic scenario was evaluated for year 2015 conditions of the development during both the a.m. and p.m. peak-hour scenarios. It should be noted that the Peak Construction Workforce scenario includes two (2) separate commodity delivery routes planned for truck commodity deliveries. It should also be noted that regardless of the truck commodity deliveries (accessing the site via the crawler). In the preferred route, deliveries from the barge slip will access the site using the Heavy Haul Road with a return ("unloaded truck") trip to the barge slip along US 19 and CR 40. An alternative route is provided if the preferred route cannot be used. The alternative route proposes loaded truck commodity deliveries access the site by traversing west on CR 40, then north on US 19, and enter the site via the Construction Driveway, with a similar return ("unloaded truck") route to the preferred route. For the purpose of this analysis, both routes were analyzed separately. For these analyses, Peak Construction Workforce traffic estimates and existing/proposed traffic controls and lane geometry, as previously discussed, were considered.

A determination of the impact of the Peak Construction Workforce traffic volumes, as documented in Appendix C, on the roadway network was made, including LOS conditions for the intersections and roadway segments within the study area. The analysis procedures used in this evaluation were similar to those used to evaluate existing traffic conditions. As previously mentioned, the proposed project access locations along US 19 and CR 40 were evaluated for both the a.m. and p.m. peak hours. However, the off-site study intersections and roadways were evaluated for the p.m. peak-hour, peak-season condition only.

The results of the a.m. peak-hour intersection analysis conducted for both of the heavy haul truck routes are summarized in Table 4 and indicate that each of the proposed project access locations are expected to operate at an acceptable LOS performance standard with the proposed traffic controls and lane geometry identified in the "Study Area" section of this report. Summary worksheets of the intersection analysis are provided in Appendix E.



| TABLE 42015 A.M. Peak-HourPeak Construction Workforce Traffic Intersection Conditions |                             |                         |    |              |    |    |  |  |
|---------------------------------------------------------------------------------------|-----------------------------|-------------------------|----|--------------|----|----|--|--|
|                                                                                       | Overall<br>Intersection LOS |                         |    | Approach LOS |    |    |  |  |
| Intersection                                                                          | Standard                    | Construction<br>Traffic | NB | SB           | EB | WB |  |  |
| Preferred Commodity Delivery Route                                                    |                             |                         |    |              |    |    |  |  |
| US 19 & Construction Driveway<br>(signalized)                                         | В                           | B*                      | В  | С            |    | D  |  |  |
| US 19 & Operations (Main)<br>Driveway (unsignalized)                                  | В                           | C**                     |    |              |    | С  |  |  |
| CR 40 & Heavy Haul Driveway<br>(unsignalized)                                         | С                           | B**                     | В  | В            |    |    |  |  |
| Alternati                                                                             | ve Commodity                | y Delivery Route        |    |              |    |    |  |  |
| US 19 & Construction Driveway<br>(signalized)                                         | В                           | B*                      | В  | C            |    | D  |  |  |
| US 19 & Operations (Main)<br>Driveway (unsignalized)                                  | В                           | C**                     |    |              |    | C  |  |  |
| CR 40 & Heavy Haul Driveway<br>(unsignalized)                                         | С                           | B**                     | В  | В            |    |    |  |  |

\* LOS based upon proposed lane geometry and traffic controls.

\*\*LOS on cross-street approach for the unsignalized intersection, including the proposed lane geometry and traffic controls.

In addition to the intersection analysis performed during the a.m. peak hour, an intersection analysis was conducted at the two (2) existing study intersections and at the proposed project access locations along US 19 and CR 40 during the p.m. peak hour, for both of the heavy haul truck routes. The analysis procedures used in this evaluation were similar to those used to evaluate existing traffic conditions.

The results of the p.m. peak-hour intersection analysis conducted for both of the commodity delivery routes plans are summarized in Table 5 and indicated that the study intersections and two (2) of the proposed access locations are expected to operate at an acceptable LOS performance standard without any additional improvements, beyond those previously identified in the "Study Area" section of this report.



Traffic Study

| Peak Construction V                                  | TABLE2015 P.M. PealWorkforce Tra | k-Hour                  | Condit    | ions |    |    |
|------------------------------------------------------|----------------------------------|-------------------------|-----------|------|----|----|
|                                                      | Overall<br>Intersection LOS      |                         |           |      |    |    |
| Intersection                                         | Standard                         | Construction<br>Traffic | NB        | SB   | EB | WB |
| Preferre                                             | ed Commodity                     | Delivery Route          | 4         |      | •  |    |
| US 19 & SR 121 (unsignalized)                        | C                                | B*                      |           |      |    | В  |
| US 19 & CR 40 (signalized)                           | C                                | В                       | В         | В    | С  | C  |
| US 19 & Construction Driveway<br>(signalized)        | В                                | C**                     | В         | В    |    | D  |
| US 19 & Operations (Main)<br>Driveway (unsignalized) | В                                | B***                    |           |      |    | В  |
| CR 40 & Heavy Haul Driveway<br>(unsignalized)        | С                                | B***                    | В         | В    |    |    |
| Alternati                                            | ve Commodity                     | Delivery Route          | d <u></u> |      | •  |    |
| US 19 & SR 121 (unsignalized)                        | С                                | B*                      |           |      |    | В  |
| US 19 & CR 40 (signalized)                           | С                                | В                       | В         | В    | С  | C  |
| US 19 & Construction Driveway<br>(signalized)        | В                                | C**                     | В         | В    |    | D  |
| US 19 & Operations (Main)<br>Driveway (unsignalized) | В                                | B***                    |           |      |    | В  |
| CR 40 & Heavy Haul Driveway<br>(unsignalized)        | C                                | B***                    | В         | В    |    |    |

\*LOS on cross-street approach for the unsignalized intersection. \*\*LOS based upon proposed lane geometry and traffic controls. \*\*\*LOS on cross-street approach for the unsignalized intersection, including the proposed lane geometry and traffic controls.

Traffic Study

The one exception is the US 19 & Construction Driveway access location. This intersection is expected to operate at an overall LOS C. However, the US 19 mainline approaches are expected to operate at an acceptable LOS. Considering the fact that the traffic signal at the Construction Driveway will only operate periodically during construction and refueling, and that the mainline approaches are both operating at an acceptable LOS, no additional improvements, beyond those previously identified in the "Study Area" section of this report, are recommended.

In addition to the intersection analyses, a p.m. peak-hour roadway analysis was conducted for the previously identified study roadway segments within the study area, for both of the commodity delivery route plans. The analysis procedures for this evaluation were similar to those used to evaluate existing traffic conditions.

The results of the p.m. peak-hour roadway analysis are summarized in Table 6 and indicate that the study roadway segments along US 19, SR 121, US 41, and CR 40 have adequate capacity and are expected to operate at an acceptable LOS with Peak Construction Workforce traffic, without any roadway improvements required. Worksheets documenting the intersection and roadway analyses are provided in Appendix E.



| TABLE 6<br>2015 P.M. Peak-Hour<br>Peak Construction Workforce Traffic Roadway Conditions |                    |             |  |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------|-------------|--|--|--|--|--|
| Roadway                                                                                  | LOS Standard       | Roadway LOS |  |  |  |  |  |
| Preferred Commodi                                                                        | ty Delivery Route  |             |  |  |  |  |  |
| US 19:<br>SR 121 to Project Site B A                                                     |                    |             |  |  |  |  |  |
| US 19:<br>Project Site to CR 40                                                          | В                  | В           |  |  |  |  |  |
| SR 121:<br>US 19 to NW 27 <sup>th</sup> Street                                           | С                  | С           |  |  |  |  |  |
| US 41:<br>SE 80 <sup>th</sup> Street/NW 27 <sup>th</sup> Street to CR 328                | С                  | C*          |  |  |  |  |  |
| <b>CR 40:</b><br>US 19 to Heavy Haul Driveway                                            | С                  | С           |  |  |  |  |  |
| Alternative Commod                                                                       | ity Delivery Route |             |  |  |  |  |  |
| US 19:<br>SR 121 to Project Site                                                         | B                  | А           |  |  |  |  |  |
| US 19:<br>Project Site to CR 40                                                          | В                  | В           |  |  |  |  |  |
| SR 121:<br>US 19 to NW 27 <sup>th</sup> Street                                           | С                  | С           |  |  |  |  |  |
| US 41:<br>SE 80 <sup>th</sup> Street/NW 27 <sup>th</sup> Street to CR 328                | С                  | C*          |  |  |  |  |  |
| <b>CR 40:</b><br>US 19 to Heavy Haul Driveway                                            | С                  | С           |  |  |  |  |  |

\*LOS based upon a detailed HIGHPLAN analysis of the segment.

#### PEAK OPERATIONAL WORKFORCE TRAFFIC CONDITIONS

The Peak Operational Workforce traffic scenario was evaluated for the 2017 buildout year of the site during the both the a.m. and p.m. peak hour scenarios. For this analysis, Peak Operational Workforce traffic estimates and existing/proposed traffic controls and lane geometry, as previously discussed, were considered.

A determination of the impact of the Peak Operational Workforce traffic volumes, as documented in Appendix C, on the roadway network was made, including LOS conditions for the intersections and roadway segments within the study area. The analysis procedures used in this evaluation were similar to those used to evaluate existing traffic conditions. As previously mentioned, the proposed project access locations along US 19 and CR 40 were evaluated for both the a.m. and p.m. peak hours. However, the off-site study intersections and roadways were evaluated for the p.m. peak-hour, peak-season condition only. It should be noted that at the completion of construction, the Construction Driveway and Heavy Haul Driveway are expected to have minimal, if any, traffic. Therefore, for the 2017 buildout conditions, these two project access locations were not evaluated.

The results of the a.m. peak-hour intersection analysis for the US 19 & Operations (Main) Driveway project access location are summarized in Table 7 and indicate that this project access location is expected to operate at an acceptable LOS with no additional intersection improvements, beyond those previously identified in the "Study Area" section of this report, required. Summary worksheets of the intersection analysis are provided in Appendix E.

| TABLE 7<br>2017 A.M. Peak-Hour<br>Peak Operational Workforce Traffic Intersection Conditions |          |                  |    |    |    |    |  |
|----------------------------------------------------------------------------------------------|----------|------------------|----|----|----|----|--|
| Overall<br>Intersection LOS Approach LOS                                                     |          |                  |    |    |    | os |  |
| Intersection                                                                                 | Standard | Total<br>Traffic | NB | SB | EB | WB |  |
| US 19 & Operations (Main) Driveway<br>(unsignalized)                                         | В        | B*               |    |    |    | В  |  |

\* LOS on cross-street approach for the unsignalized intersection.

During the time of a periodic refueling outage planned every 18 months, an additional 800 workers (in addition to the 800 full-time operations workers) will be on-site to assist with the refueling outage. It is planned that the additional 800 workers will access the facility through the Construction Driveway. Impacts associated with the refueling are less than those evaluated during the Peak Construction Workforce scenario. Therefore, the improvements described in the "Study Area" section of this report are anticipated to be sufficient to serve the additional traffic associated with the refueling outage.

In addition to the intersection analysis performed for the a.m. peak hour, an intersection analysis was conducted at the two (2) existing study intersections and the Operations (Main) Driveway during the p.m. peak hour. The analysis procedures used in this evaluation were similar to those used to evaluate existing traffic conditions.

The results of the p.m. peak-hour intersection analysis are summarized in Table 8 and indicate that both study intersections and the Operations (Main) Driveway are expected to operate at an acceptable LOS without any additional improvements, beyond those previously identified in the "Study Area" section of this report. Summary worksheets of the intersection analysis are provided in Appendix E.



| TABLE 8<br>2017 P.M. Peak-Hour<br>Peak Operational Workforce Traffic Intersection Conditions |          |                  |    |       |          |    |  |  |  |
|----------------------------------------------------------------------------------------------|----------|------------------|----|-------|----------|----|--|--|--|
| Overall<br>Intersection LO                                                                   |          |                  |    | pproa | oach LOS |    |  |  |  |
| Intersection                                                                                 | Standard | Total<br>Traffic | NB | SB    | EB       | WB |  |  |  |
| US 19 & SR 121 (unsignalized)                                                                | С        | B*               |    |       |          | В  |  |  |  |
| US 19 & CR 40 (signalized)                                                                   | С        | В                | В  | В     | С        | С  |  |  |  |
| US 19 & Operations (Main) Driveway<br>(unsignalized)                                         | В        | B*               |    |       |          | В  |  |  |  |

\*LOS on cross-street approach for the unsignalized intersection.

In addition to the intersection analyses, a p.m. peak-hour roadway analysis was undertaken on the previously identified study roadway segments within the study area. The analysis procedures for this evaluation were similar to those used to evaluate existing and background traffic conditions.

The results of the p.m. peak-hour roadway analysis are summarized in Table 9 and indicate that the study roadway segments along US 19, SR 121, US 41, and CR 40 have adequate capacity and are expected to operate at an acceptable LOS with Peak Operational Workforce traffic, without any required roadway improvements. Worksheets documenting the roadway analyses are provided in Appendix E.

.



| TABLE 9<br>2017 P.M. Peak-Hour<br>Peak Operational Workforce Traffic Roadway Conditions |   |     |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|---|-----|--|--|--|--|--|--|
| Roadway LOS Standard Roadway LOS                                                        |   |     |  |  |  |  |  |  |
| US 19:<br>SR 121 to Project Site                                                        | В | А   |  |  |  |  |  |  |
| US 19:<br>Project Site to CR 40                                                         | В | А   |  |  |  |  |  |  |
| SR 121:<br>US 19 to NW 27 <sup>th</sup> Street                                          | С | · A |  |  |  |  |  |  |
| US 41:<br>SE 80 <sup>th</sup> Street/NW 27 <sup>th</sup> Street to CR 328               | С | С   |  |  |  |  |  |  |
| <b>CR 40:</b><br>US 19 to Heavy Haul Driveway                                           | С | С   |  |  |  |  |  |  |

#### **TURN LANE ANALYSIS**

In addition to the analyses contained in earlier sections of this report, a turn-lane analysis was conducted to determine anticipated turn-lane length requirements for the proposed intersection improvements (i.e. left-turn lanes and right-turn lanes) into the project site at the project access locations on US 19 and CR 40. As previously indicated, these turn lanes are required to support the construction and operation of the site.

In addition, at the US 19 & CR 40 intersection, the southbound left-turn lane and the westbound right-turn lane were also reviewed for turn-lane length requirements because a significant number of project-related trips are anticipated to utilize these movements.

The procedures used for this evaluation follow FDOT plans preparation design guidelines for turn lanes at signalized and unsignalized intersections to determine the appropriate deceleration length and queue length requirements. The results of this evaluation are provided in Table 10 and the worksheets summarizing the turn-lane calculations are documented in Appendix F.

The total turn-lane length requirements for turn lanes into the project site at each of the three project driveways along US 19 (Construction Driveway and Operations (Main) Driveway) and CR 40 (Heavy Haul Road) are shown in Table 10.

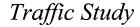
In addition, for the intersection of US 19 & CR 40, the total turn-lane length (requirement) for the southbound left-turn lane needs to be lengthened from 340 feet to 450 feet, and the westbound right-turn lane needs to be lengthened from 195 feet to 340 feet.

Driveway

**TABLE 10** Turn Lane Length Requirements (Worst-Case Traffic Scenario) Turn Lane Length per Lane Movement and (Includes deceleration and Intersection (Worst-Case Traffic Scenario) queue length) Lane(s) 1,610 feet (new construction) US 19 & Construction Driveway NB Right-Turn (Peak Construction Workforce) 785 feet (new construction) Dual SB Left-Turn US 19 & Operations (Main) NB Right-Turn 460 feet (new construction) SR Left\_Turn 510 feet (new construction)

| (Peak Operational Workforce)                                 | SD Lett-Tum                   | 510 leet (new construction)                                              |
|--------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|
| US 19 & CR 40<br>(Peak Construction Workforce)               | SB Left-Turn<br>WB Right-Turn | Lengthen from 340 feet to 450 feet<br>Lengthen from 195 feet to 340 feet |
| CR 40 & Heavy Haul Driveway<br>(Peak Construction Workforce) | EB Right-Turn                 | 405 feet (new construction)                                              |

Traffic Study


### CONCLUSION

Evaluating the existing transportation network based upon the anticipated traffic impacts from the proposed Levy County Advanced Reactor during the Peak Construction Workforce Traffic and Peak Operational Workforce Traffic conditions, the following recommended intersection improvements were determined to be necessary to accommodate the anticipated impacts. The recommended improvements, based upon the worst-case traffic conditions at each intersection, are as follows:

• US 19 & CR 40 (Peak Construction Workforce)

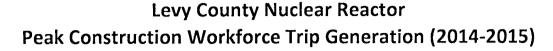
-Extend existing southbound left-turn lane from 340 feet to 450 feet.-Extend existing westbound right-turn lane from 195 feet to 340 feet.

- US 19 & Construction Driveway (Peak Construction Workforce) -Installation of a traffic signal.
  - -Construct one (1) northbound right-turn lane approximately 1,610 feet.
  - -Construct two (2) southbound left-turn lanes approximately 785 feet each.
  - -Construct two (2) westbound left-turn lanes exiting the site.
  - -Construct one (1) westbound right-turn lane exiting the site.
- US 19 & Operations (Main) Driveway (Peak Operational Workforce)
  - -Construct one (1) northbound right-turn lane approximately 460 feet.
  - -Construct one (1) southbound left-turn lane approximately 510 feet.
  - -Construct one (1) westbound left-turn lane exiting the site.
  - -Construct one (1) westbound right-turn lane exiting the site.
- CR 40 & Heavy Haul Driveway (Peak Construction Workforce)
  - -Construct one (1) northbound approach lane.
  - -Construct one (1) eastbound right-turn lane approximately 405 feet.
  - -At a minimum, provide two (2) trained/certified flagmen to direct traffic during the time the heavy hauler is crossing the roadway.



# Levy County Advanced Reactor Site

## Levy County, Florida


Prepared for:

The Shaw Group, Inc. Inglis, Florida

Prepared by:

Kimley-Horn and Associates, Inc. Tampa, Florida

©Kimley-Horn and Associates, Inc. March 2009 148907000 APPENDIX A: Project Trip Generation, Trip Distribution, and Study Area Worksheets



|                               |       | Daily |       | AM Peak Hour |     | PM Peak Hour |     | ur    |       |
|-------------------------------|-------|-------|-------|--------------|-----|--------------|-----|-------|-------|
|                               | In    | Out   | Total | In           | Out | Total        | In  | Out   | Total |
| Construction Workforce        | 1,830 | 1,830 | 3,660 | 1,280        | 150 | 1,430        | 150 | 1,280 | 1,430 |
| Commodity Deliveries (Trucks) | 100   | 100   | 200   | 20           | 0*  | 20           | 0*  | 20    | 20    |
| Operational Employees         | 332   | 332   | 664   | 133          | 13  | 146          | 13  | 115   | 128   |
| Total Trips                   | 2,262 | 2,262 | 4,524 | 1,433        | 163 | 1,596        | 163 | 1,415 | 1,578 |

Notes: 1. Assumes 500 operational employees during the peak of construction.

2. Assumes a construction workforce of 3,300 employees at the peak of construction.

- 3. Assumes a maximum impact of 15 truck fleet during peak hour and 5 vendor trucks (20% of daily vendor trucks) during peak hour.
- \* Truck traffic included in off-peak workforce assumptions.

# Levy County Nuclear Reactor Peak Operational Workforce Trip Generation (2017 Buildout)

|                               |     | Daily |       | A   | AM Peak Hour |       |    | PM Peak Hour |       |  |
|-------------------------------|-----|-------|-------|-----|--------------|-------|----|--------------|-------|--|
|                               | ln  | Out   | Total | In  | Out          | Total | In | Out          | Total |  |
| Construction Workforce        | -   | -     | -     |     | -            | -     | -  | -            | -     |  |
| Commodity Deliveries (Trucks) | -   | -     | -     | -   | -            | -     | -  | -            | -     |  |
| Operational Employees         | 531 | 531   | 1,062 | 212 | 20           | 232   | 20 | 185          | 205   |  |
| Total Trips                   | 531 | 531   | 1,062 | 212 | 20           | 232   | 20 | 185          | 205   |  |

Notes: 1. Assumes 800 operational employees upon construction completion.

# 2011 through 2016 Peak Construction Workforce Traffic

### Levy County Advanced Reactor Construction Trip Generation

## **Construction Workforce Assumptions**

| Peak construction workforce:               | 3,300 workers                               |
|--------------------------------------------|---------------------------------------------|
| Number of shifts per day:                  | 2                                           |
| Percent of workforce during largest shift: | 70%                                         |
| Vehicle occupancy rate:                    | 1.8 workers per vehicle                     |
| Off-peak construction traffic:             | 150 vehicles (including trucks in off-peak) |
| Anticpated vendor trucks per day:          | 25 vehicles per day                         |

## Construction Workforce Calculations (Peak Hour)

#### 1. Determine peak construction workforce for largest shift.

| Anticipated construction workforce:      | 3,300 workers |             |
|------------------------------------------|---------------|-------------|
| Percent of workforce during large shift: | 70%           |             |
| Construction workforce (large shift):    | 2,310 workers | · · · · · · |
| Construction workforce (small shift):    | 990 workers   |             |
|                                          |               |             |

### 2. Determine anticipated peak demand for construction workforce during largest shift.

| Total vehicle demand:                 | 1,830 vehicles per day             |  |
|---------------------------------------|------------------------------------|--|
| Peak vehicle demand (small shift):    | 550 peak hour vehicles (rounded)   |  |
| Peak vehicle demand (large shift):    | 1,280 peak hour vehicles (rounded) |  |
| Vehicle occupancy rate:               | 1.8 workers per vehicle            |  |
| Construction workforce (small shift): | 990 workers                        |  |
| Construction workforce (large shift): | 2,310 workers                      |  |

### 3. Add anticipated truck traffic to construction workforce peak demand.

| Commodity peak truck traffic: | 15 (based upon a 15 truck fleet size)       |
|-------------------------------|---------------------------------------------|
| Vendor trucks:                | 5 assume 20% vender trucks during peak hour |
| Total truck traffic:          | 20 trucks during peak traffic               |

### 4. Peak hour traffic conditions at peak of construction.

| Peak construction shift vehicles:            | 1,280 peak hour vehicles (rounded)    |
|----------------------------------------------|---------------------------------------|
| Anticipated peak trucks during construction: | 20 trucks during peak traffic         |
| Total peak traffic:                          | 1,300 vehicles and truck peak demands |

# 2009 through 2016 Anticipated Construction Truck Traffic

| Commodity | Monday | Tuesday | Wednesday | <b>Thursday</b> | Friday | Total |
|-----------|--------|---------|-----------|-----------------|--------|-------|
| Rebar     | 2      |         |           |                 | 2      | 4     |
| Cement    | 6      | 6       | 6         | 6               | 6      | 30    |
| Vendors   | 25     | 25      | 25        | 25              | 25     | 125   |
| Aggregate |        | 39      | 39        | 39              |        | 117   |
| Total     | 33     | 70      | 70        | 70              | 33     | 276   |

#### Site Preparation Anticipated Truck Schedule (2nd Quarter 2009 to 3rd Quarter 2012)

**Note:** Reactor Module shipments, one every 2 weeks for 216 weeks, starting on 1/1/2011.

### Reactor Construction Truck Delivery Schedule (3rd Quarter 2012 to 2nd Quarter 2016)

|     | Commodity | Monday | Tuesday | Wednesday | Thursday | Friday | Total |
|-----|-----------|--------|---------|-----------|----------|--------|-------|
|     | Rebar     | 2      |         |           |          | 2      | 4     |
|     | Cement    | 9      | 9       | 9         | 9        | 9      | 45    |
|     | Vendors   | 25     | 25      | 25        | 25       | 25     | 125   |
|     | Aggregate |        | 66      | 66        | 66       |        | 198   |
| • — | Total     | 36     | 100     | 100       | 100      | 36     | 372   |

**Note:** Reactor Module shipments, one every 2 weeks for 216 weeks, starting on 1/1/2011.



# Operational Workforce Traffic (Based upon Existing Harris Advanced Reactor Trip Generation)

## Existing Harris Advanced Reactor Trip Generation (Operational employee traffic at existing facility)

|                                 |      |     |       | Trip Genera                            | tion Summary |
|---------------------------------|------|-----|-------|----------------------------------------|--------------|
| Daily Trips                     | In   | Out | Total | D                                      | aily         |
| Trip Ends (Estimated)           | 500  | 500 | 1000  | Rate                                   | Unit         |
| Directional Distribution        | 50%  | 50% | 100%  | 1.33                                   | Employee     |
| AM Peak Hour Trips              | In   | Out | Total | AM P                                   | eak Hour     |
| Trip Ends                       | 200  | 19  | 219   | Rate                                   | Unit         |
| Directional Distribution        | 91%  | 9%  | 100%  | 0.29                                   | Employee     |
| PM Peak Hour Trips              | In . | Out | Total | PM Pe                                  | eak Hour     |
| Trip Ends                       | 19   | 174 | 193   | Rate                                   | Unit         |
| <b>Directional Distribution</b> | 10%  | 90% | 100%  | 0.26                                   | Employee     |
|                                 |      |     |       | •••••••••••••••••••••••••••••••••••••• |              |

Harris Advanced Reactor: 754 Existing Employees

## Levy County Advanced Reactor Trip Generation (Peak operational employee traffic during construction)

| Operational employees during construction: |     |     |       |  |  |  |
|--------------------------------------------|-----|-----|-------|--|--|--|
| Daily Trips                                | In  | Out | Total |  |  |  |
| Trip Ends                                  | 332 | 332 | 664   |  |  |  |
| Directional Distribution                   | 50% | 50% | 100%  |  |  |  |
| AM Peak Hour Trips                         | In  | Out | Total |  |  |  |
| Trip Ends                                  | 133 | 13  | 146   |  |  |  |
| Directional Distribution                   | 91% | 9%  | 100%  |  |  |  |
| PM Peak Hour Trips                         | In  | Out | Total |  |  |  |
| Trip Ends                                  | 13  | 115 | 128   |  |  |  |
| <b>Directional Distribution</b>            | 10% | 90% | 100%  |  |  |  |
|                                            |     |     |       |  |  |  |

## Levy County Advanced Reactor Trip Generation (Operational employee traffic in 2017 after the completion of construction of both reactors)

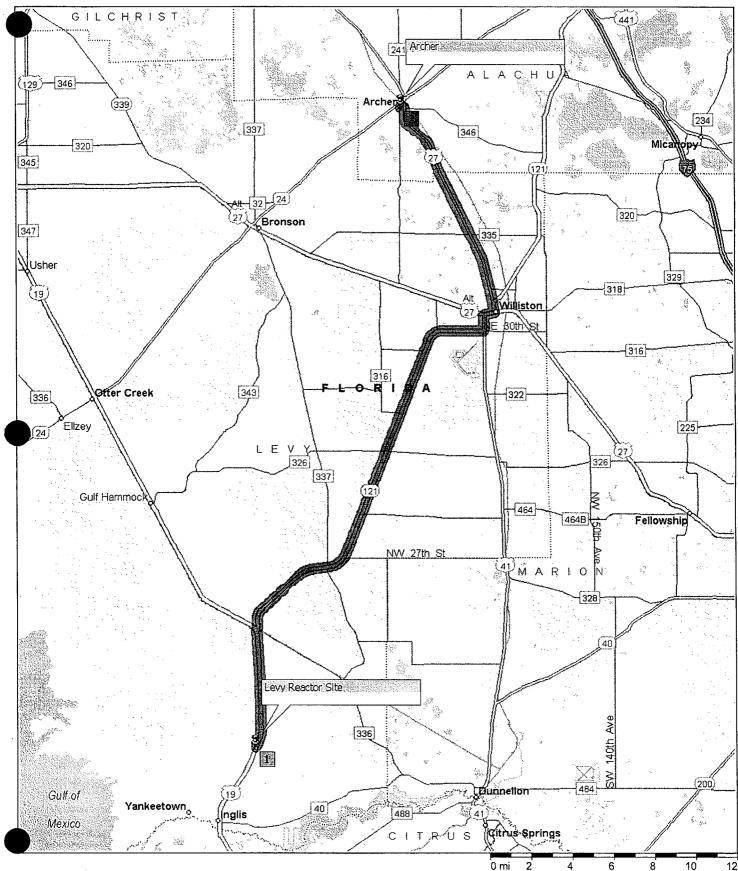
| Operational employe      | 800 |     |       |
|--------------------------|-----|-----|-------|
| Daily Trips              | In  | Out | Total |
| Trip Ends                | 531 | 531 | 1062  |
| Directional Distribution | 50% | 50% | 100%  |
| AM Peak Hour Trips       | In  | Out | Total |
| Trip Ends                | 212 | 20  | 232   |
| Directional Distribution | 91% | 9%  | 100%  |
| PM Peak Hour Trips       | In  | Out | Total |
| Trip Ends                | 20  | 185 | 205   |
| Directional Distribution | 10% | 90% | 100%  |

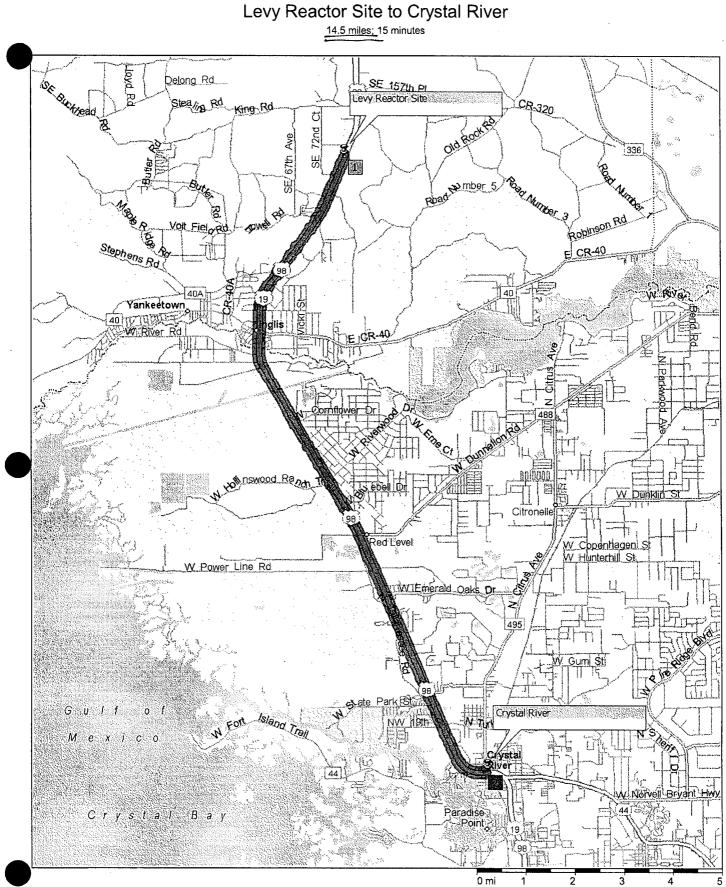
|        |           | 12,                        | /04/08       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|--------|-----------|----------------------------|--------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|        |           |                            |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| OUTE   | COUNTY    | CITY                       | DISTRIBUTION | POPULATION                            | DISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GRAVIT     |
| e Maps | ALACHUA   | Alachua                    |              | <del>7,854</del>                      | 61.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        |           | Archer                     | 0.41%        | 1,229                                 | 38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.833      |
|        |           | Gainsville                 | 1            | <del>122,671</del>                    | 49.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        |           | Hawthorne                  |              | <del>1,401</del>                      | <del>60,5</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | High-Springs               |              | 4,739                                 | 65,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        |           | LaCrosse                   |              | 195                                   | 62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        |           | Micanopy                   |              | 637                                   | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        |           | Newberry<br>Waldo          |              | 4,787                                 | 47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | 1         | Waldo                      | L            | 831                                   | <del>61.9</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        | CITRUS    | Crystal River              | 8.68%        | 3,737                                 | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.774     |
|        |           | Inverness                  | 3.45%        | 7,286                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.071      |
|        |           | Beverly Hills              | 8.96%        | 9,959                                 | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        |           | Black Diamond              | 0.75%        | 831                                   | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        | 1         | Citrus Hills               | 3.65%        | 4,825                                 | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|        |           | Pine Ridge                 | 4.86%        | 6,574                                 | 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.953      |
|        |           | Citrus Springs             | 5.02%        | 4,978                                 | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.28      |
|        | 1         | Floral City                | 1.93%        | 5,974                                 | 38.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.948      |
|        |           | Homosassa                  | 2.22%        | 2,747                                 | 24,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.539      |
|        |           | Homosassa Springs          | 15.91%       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Sugarmill Woods            | 3.78%        | · · · · · · · · · · · · · · · · · · · | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
|        |           | Hernando                   | 6.07%        | 9,883                                 | 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.42      |
|        | CILCUPICT | lo-u                       |              | 1                                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|        | GILCHRIST | Bell<br>Copping Springs    | +            | 452<br>350                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Fanning Springs<br>Trenton |              | 330<br>1,690                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           |                            |              |                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|        | HERNANDO  | Brooksville                | 1.82%        | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        | 1         | Weeki-Washee               |              | 8                                     | 43.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |
|        | LEVY      | Bronson                    | 0.56%        | 1,143                                 | 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.145      |
|        |           | Cedar Key                  | 0.27%        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Chiefland                  | 1.14%        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Fanning Springs            |              | 596                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Inglis                     | *            | 1,731                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Otter Creek                | 0.18%        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.37       |
|        |           | Williston                  | 1.68%        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Yankeetown                 | *            | 760                                   | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *          |
|        | 1         | Andrews                    | 0.30%        | 822                                   | 2 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.614      |
|        |           | East Bronson               | 0.50%        | 1,248                                 | 3 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.02       |
|        |           | East Williston             | 0.67%        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        | 1         | Manatee Road               | 0.80%        | 2,249                                 | 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.64       |
|        |           | Williston Highlands        | 1.62%        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.32       |
|        |           | Dellastan                  | 1            | 1 0.000                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 6 65     |
|        | MARION    | Belleview                  | 0.91%        |                                       | and the second se |            |
|        |           | Dunnellon                  | 3.06%        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Meintosh<br>Ocala          |              | 45:                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Reddick                    | 20.679       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | Silver Springs Shores      | 0,147        | 8,54                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | L                          |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • <u>•</u> |
|        | SUMTER    | Bushnell                   |              | 2,33                                  | 8 <del>54.</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2          |
|        |           | Center Hill                |              | 91                                    | 2 <del>61.</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2          |
|        |           |                            |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|        |           | <del>Coleman</del>         |              | 64                                    | 7 59.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₹          |
|        |           |                            |              | <del>64</del><br>77                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |

\* - Excluded from distribution calculation due to abnormally high gravity factor.

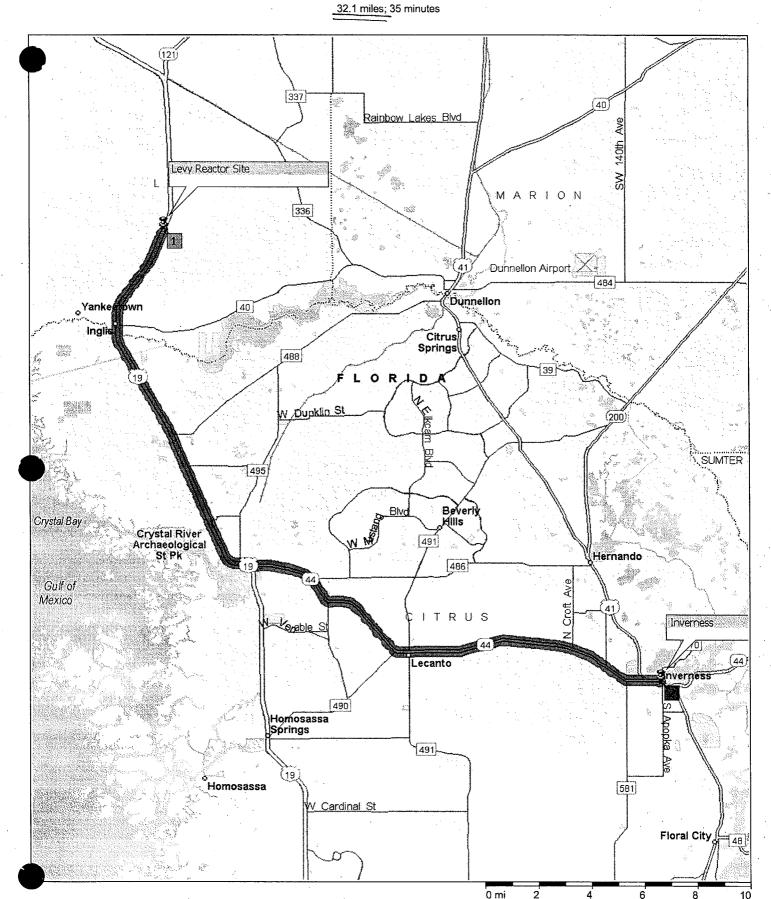
TABLE A

% Distribution North 28.94% -> 30.0%


% Distribution South 71.06% -> 70.0%


File Path = H:\148907 - Stone and Webster, Inc\000 - Levy\trip distribution\[Trip\_Distribution\_ATG\_120408.xls]Distribution (DET.112408) Print Date = December 5, 2008

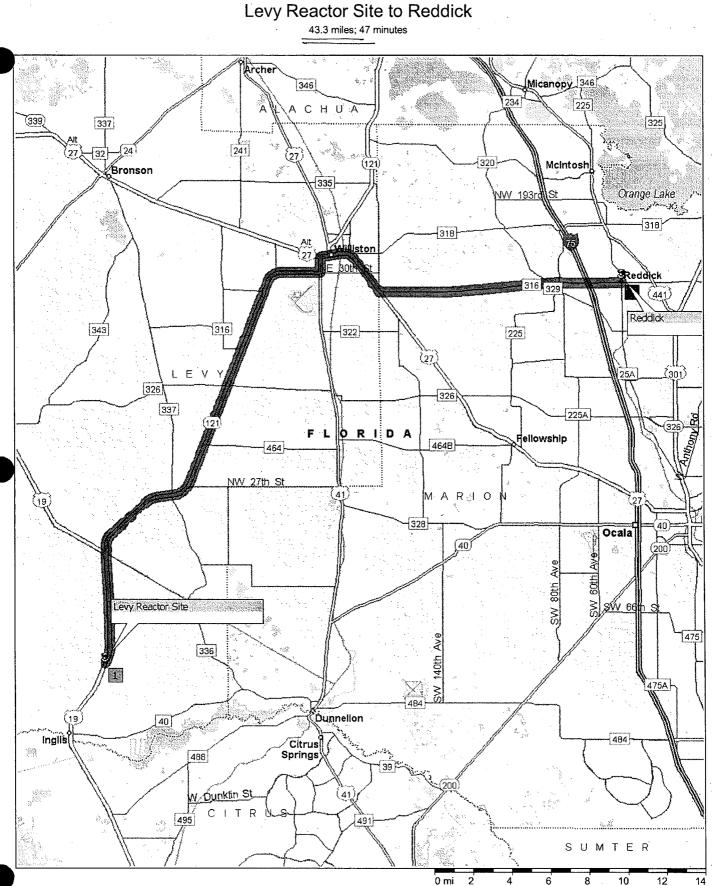
Print Time = 12:58 PM


# Levy Reactor Site to Archer

38.4 miles; 42 minutes

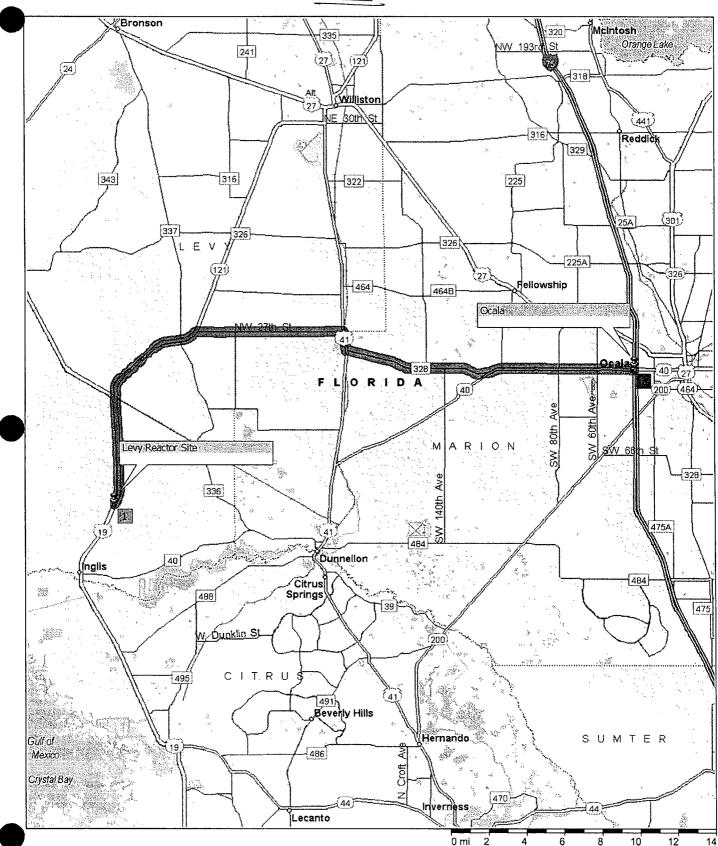





# Levy Reactor Site to Inverness

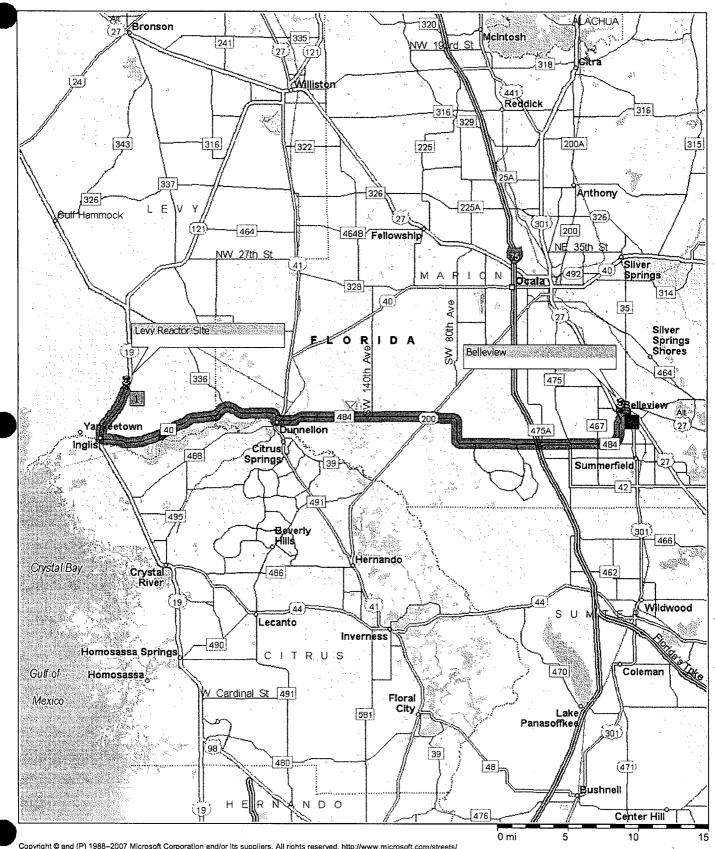


0 mi 6 10 Copyright © and (P) 1988–2007 Microsoft Corporation and/or its suppliers. All rights reserved. http://www.microsoft.com/streets/ Certain mapping and direction data © 2007 NAVTEQ. All rights reserved. The Data for areas of Canada includes information taken with permission from Canadian authorities, including: © Her Majesty the Queen in Right of Canada, © Queen's Printer for Ontario. NAVTEQ and NAVTEQ ON BOARD are trademarks of NAVTEQ. © 2007 Tele Atlas North America, Inc. All rights reserved. Tele Atlas and Tele Atlas North America are trademarks of Tele Atlas, Inc. Page 1


4

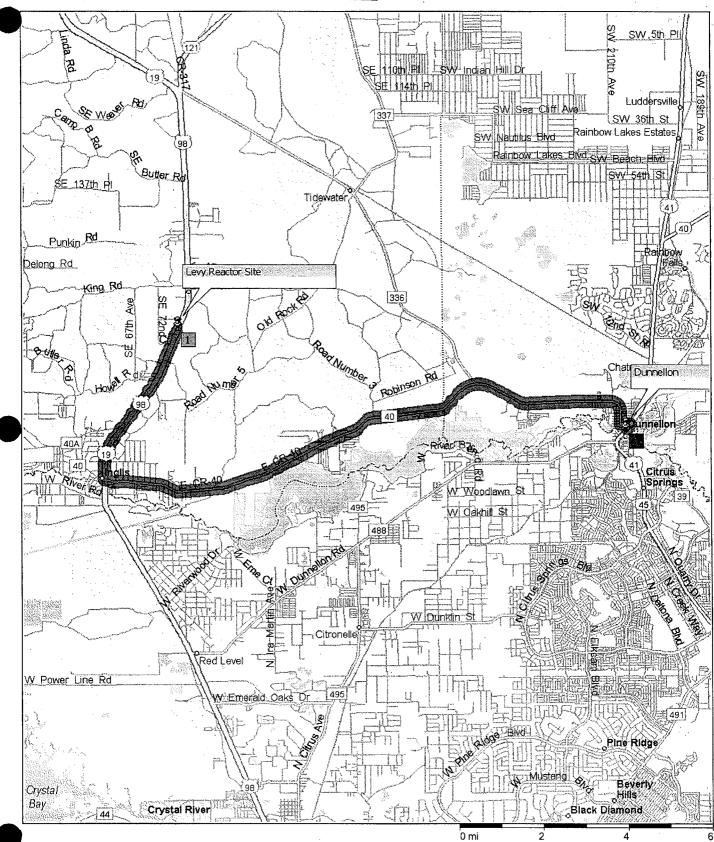
8

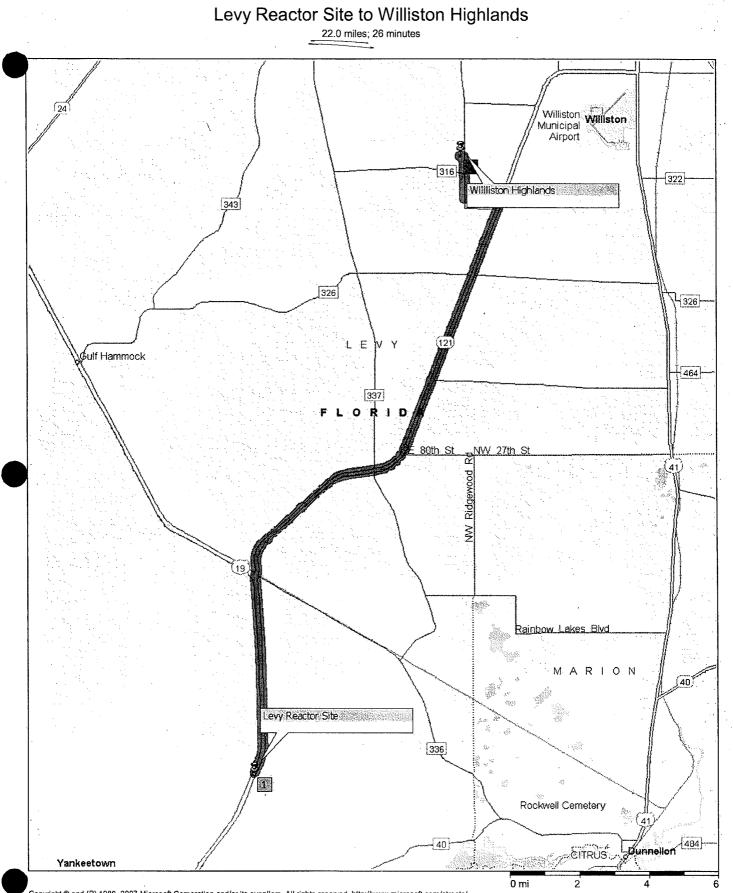


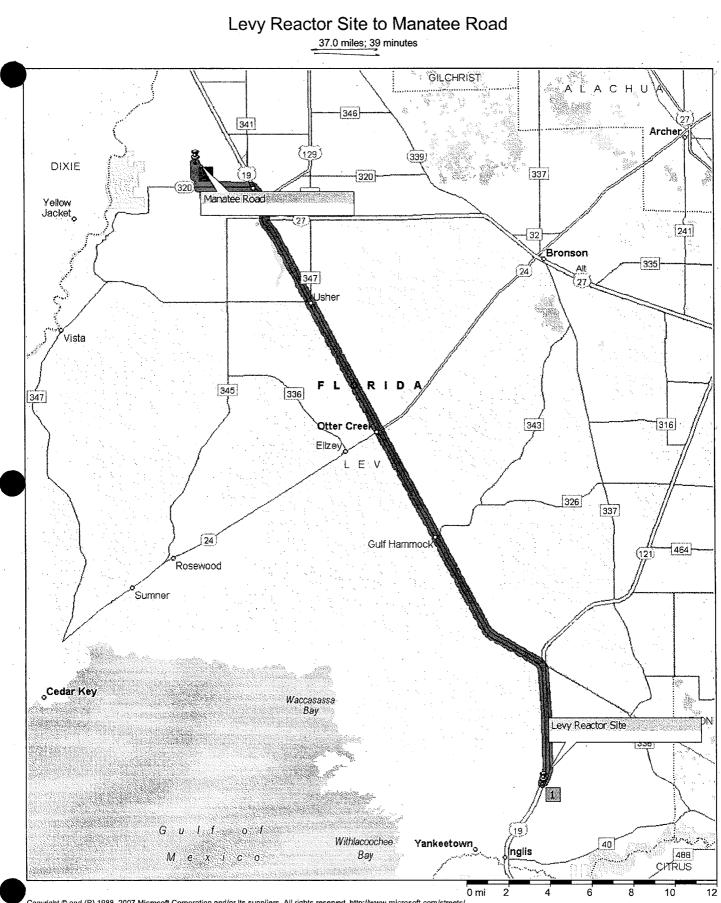

Levy Reactor Site to Ocala

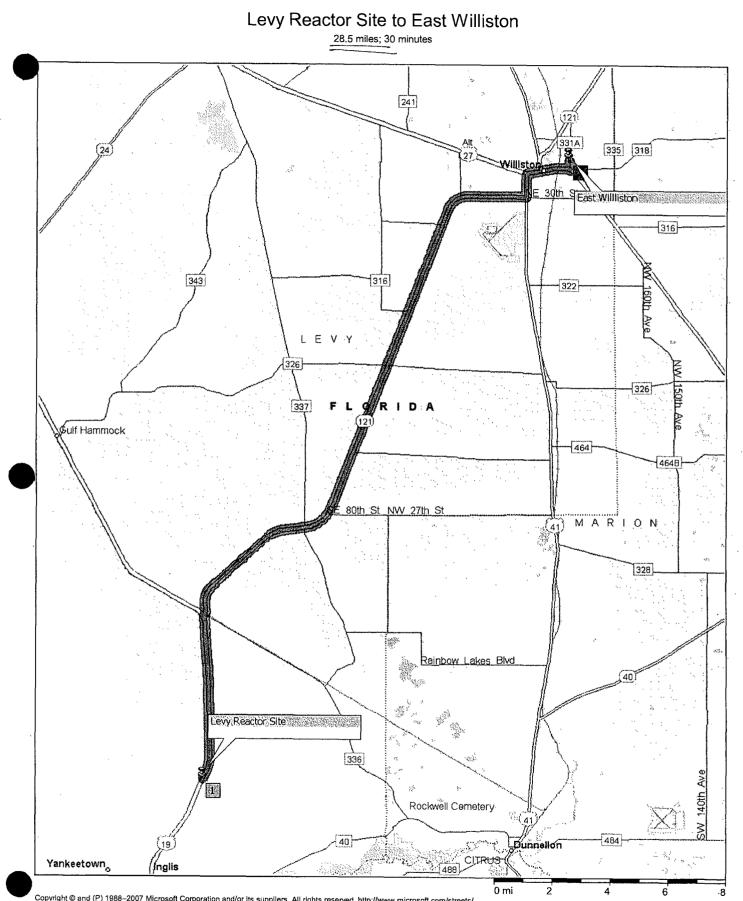
35.8 miles; 45 minutes

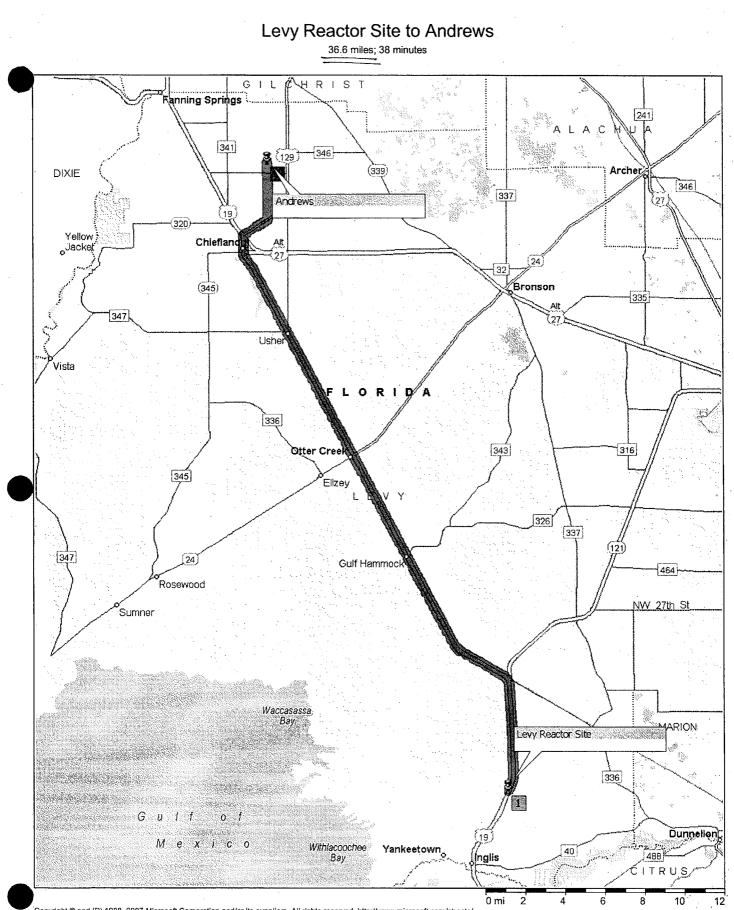


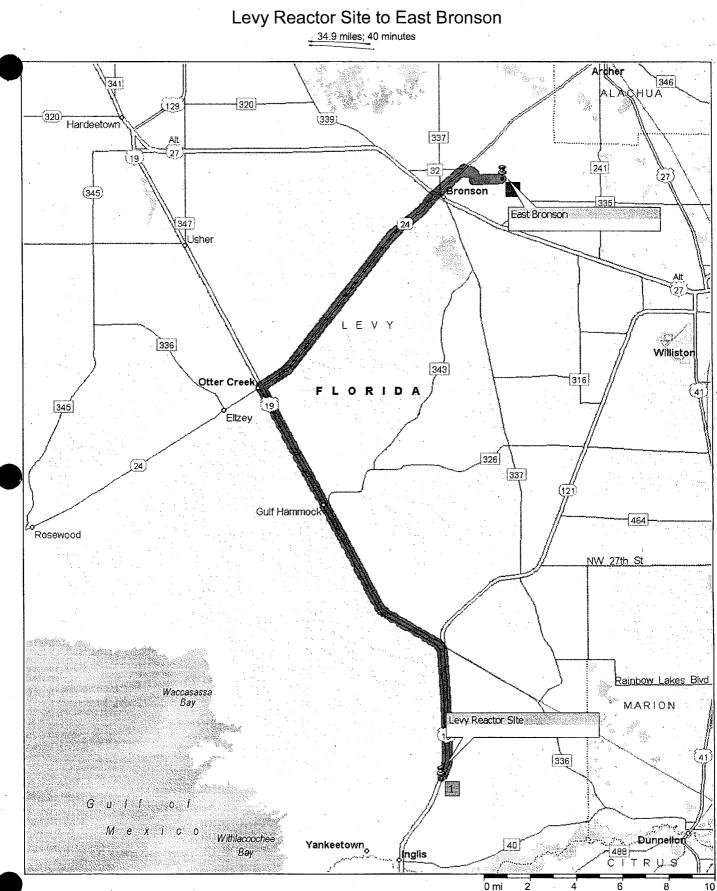

# Levy Reactor Site to Belleview


46.3 miles; 57 minutes



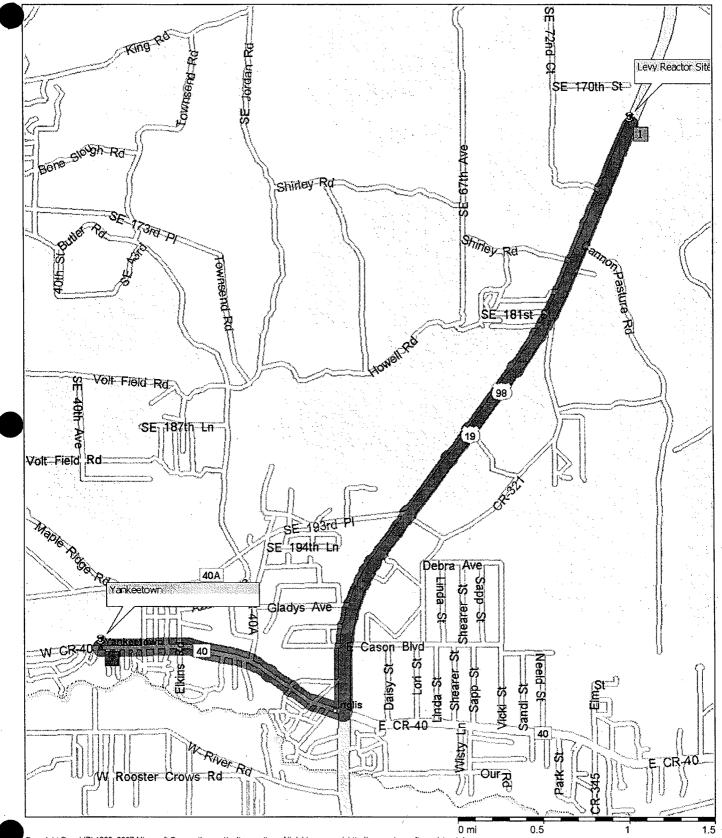


Levy Reactor Site to Dunnellon

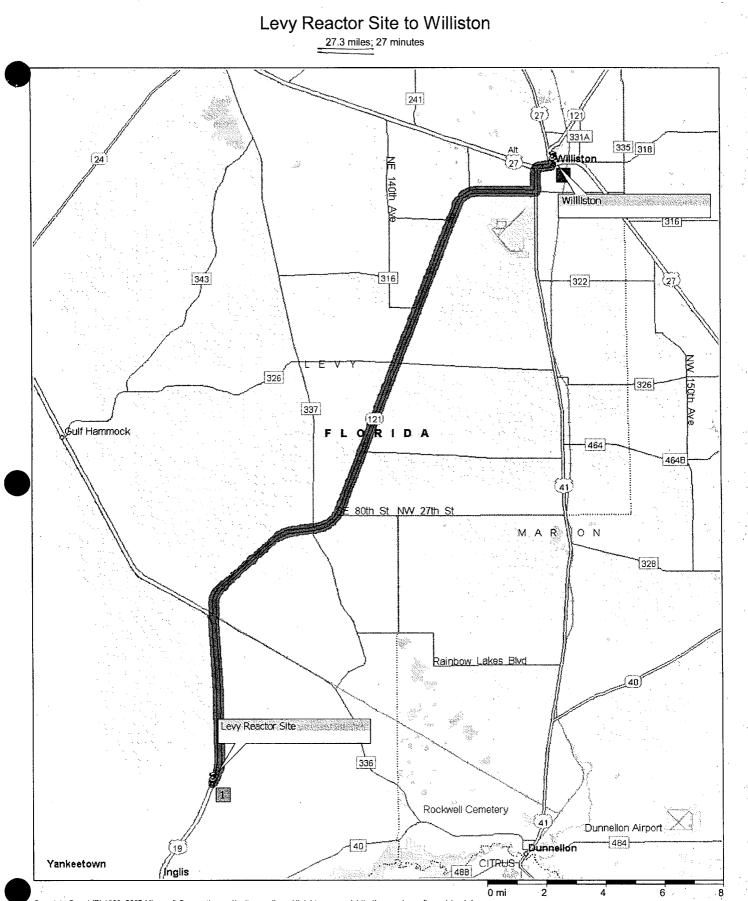

18.0 miles; 24 minutes

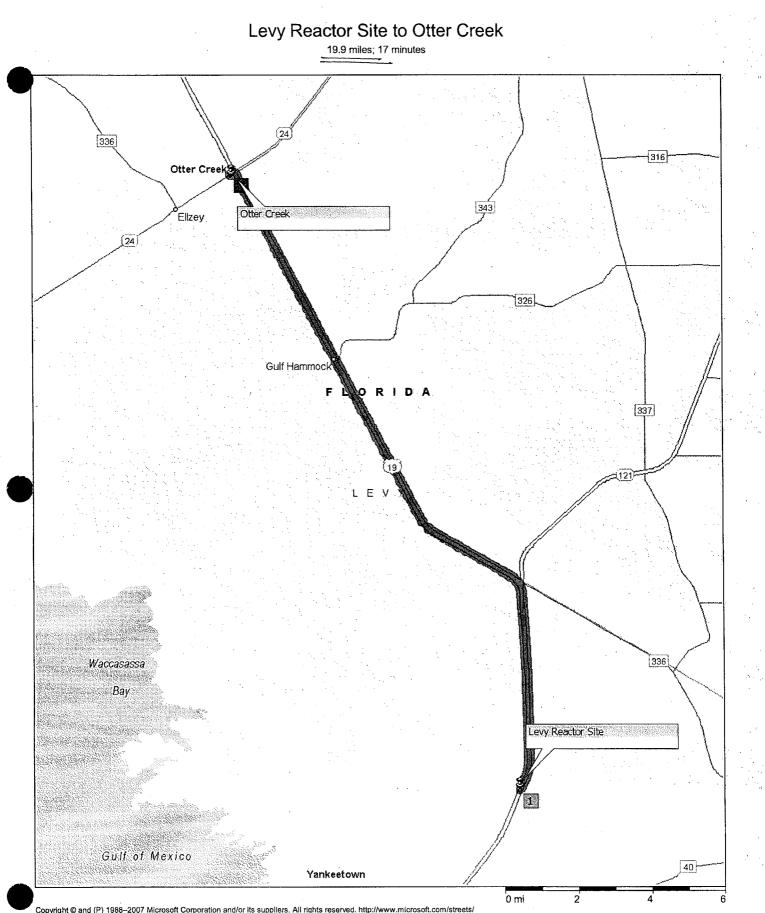






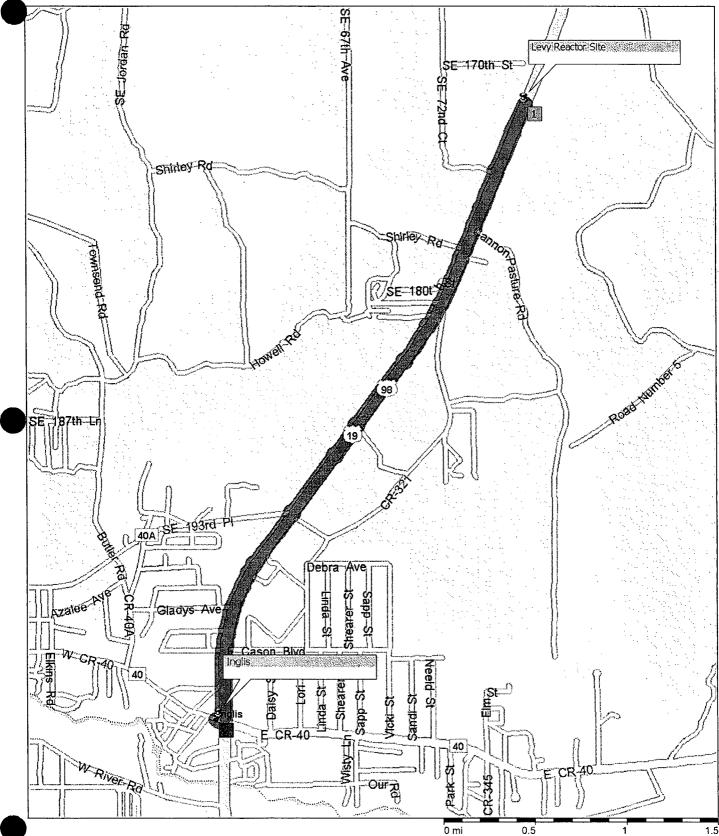



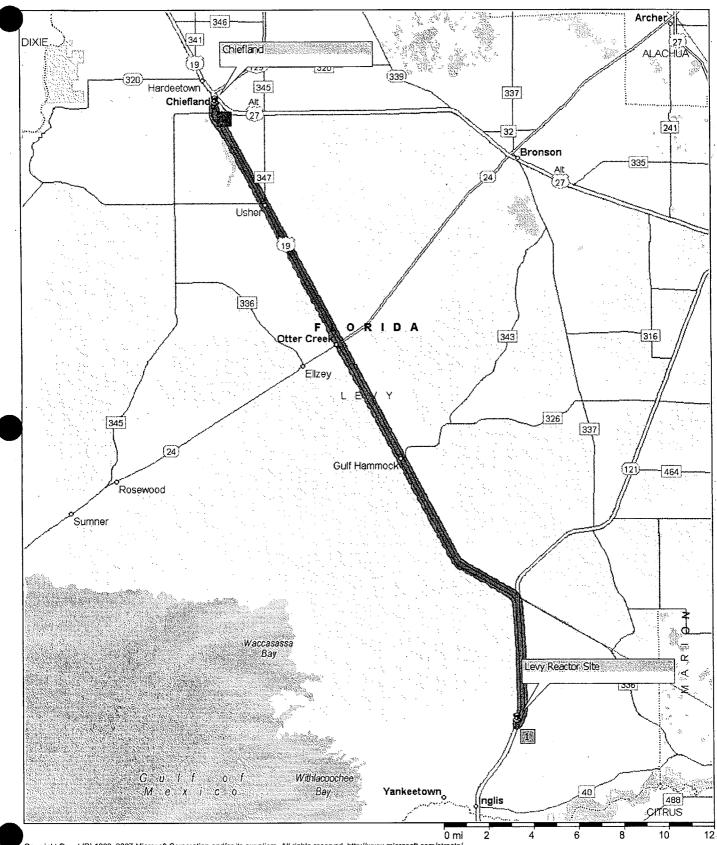

Levy Reactor Site to Yankeetown

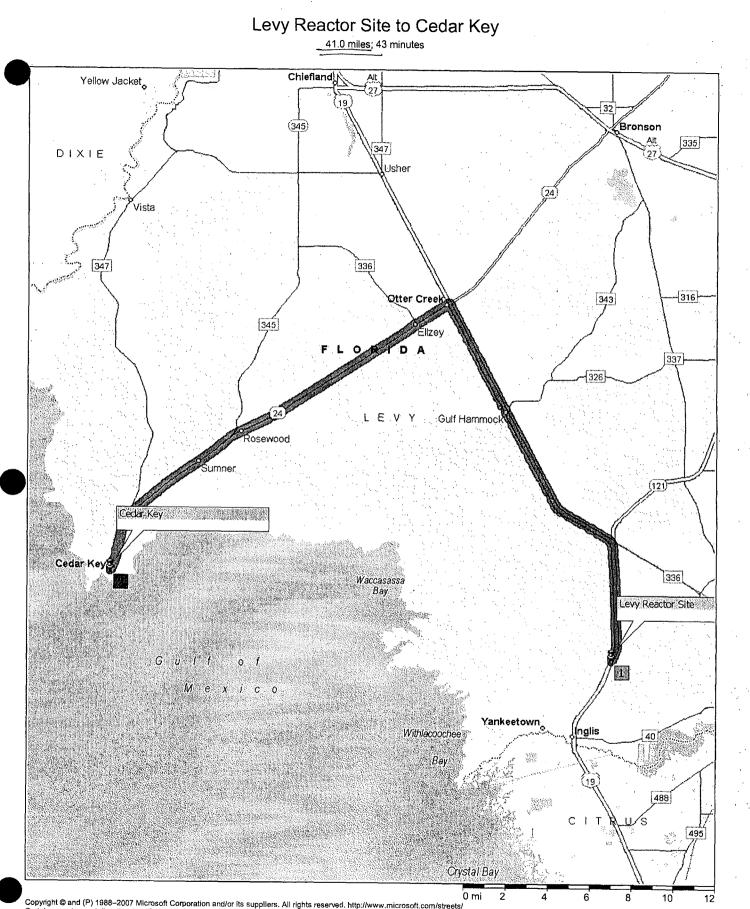
5.6 miles; 6 minutes

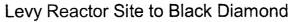




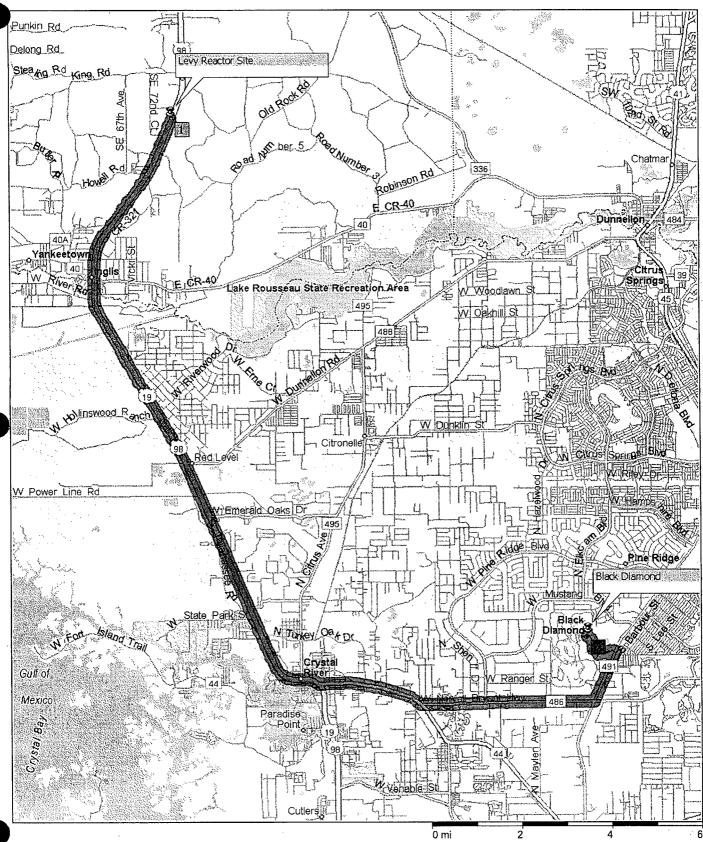




# Levy Reactor Site to Inglis


4.1 miles; 4 minutes

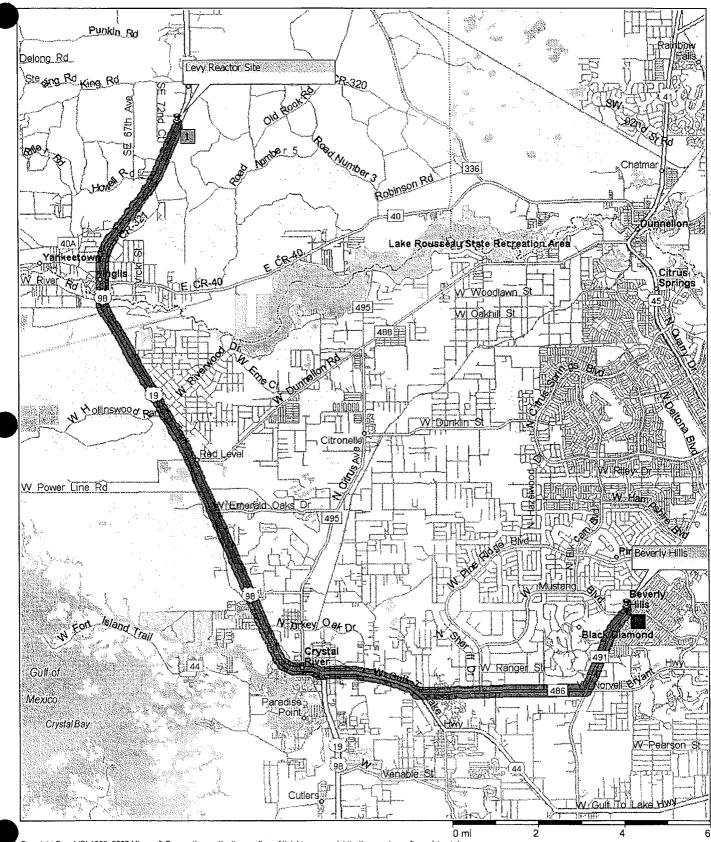


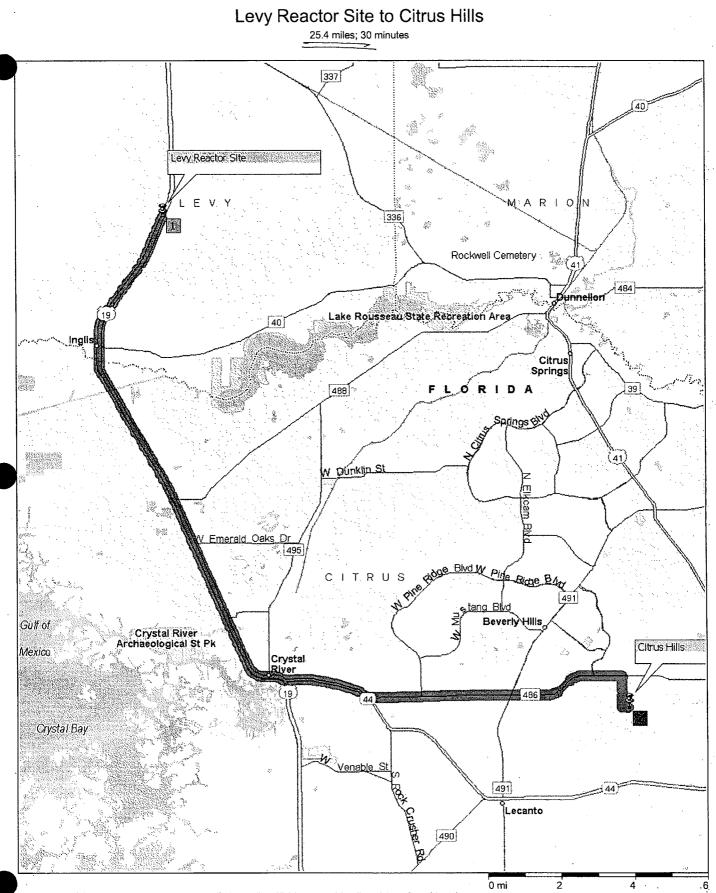

Levy Reactor Site to Chiefland


31.6 miles; 27 minutes



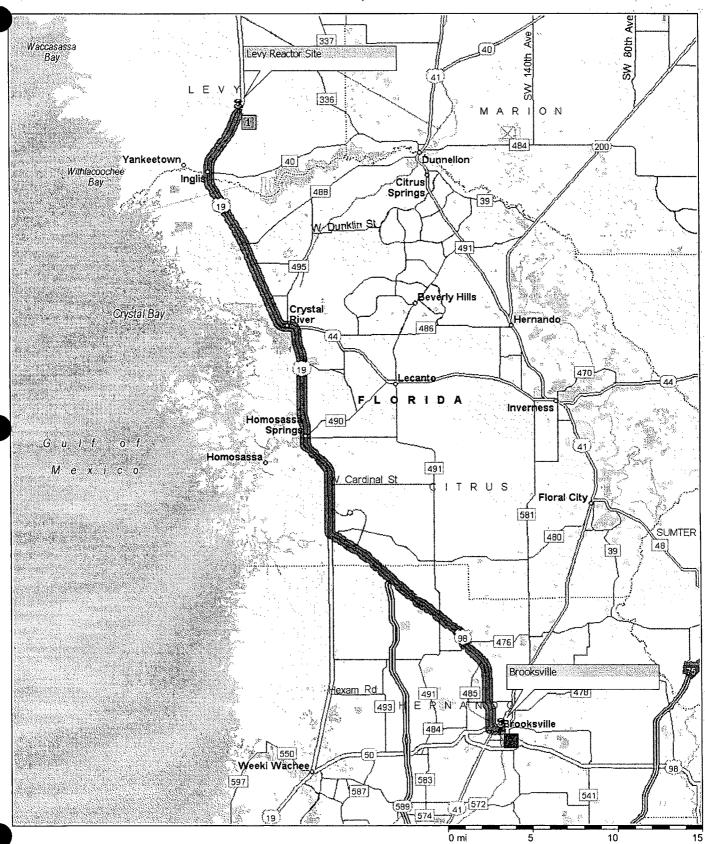


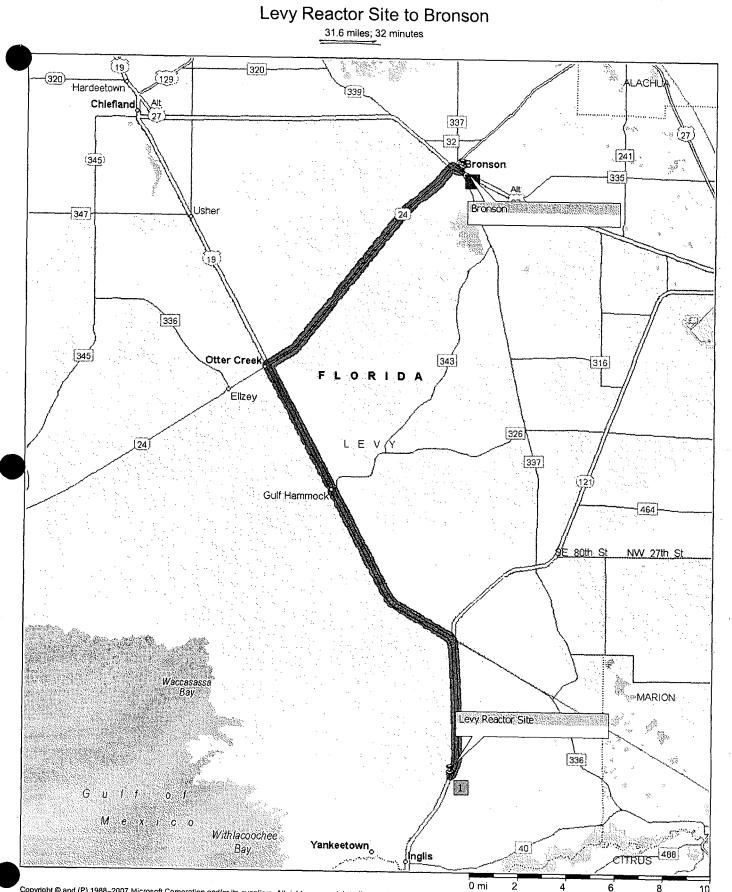




23.3 miles; 27 minutes



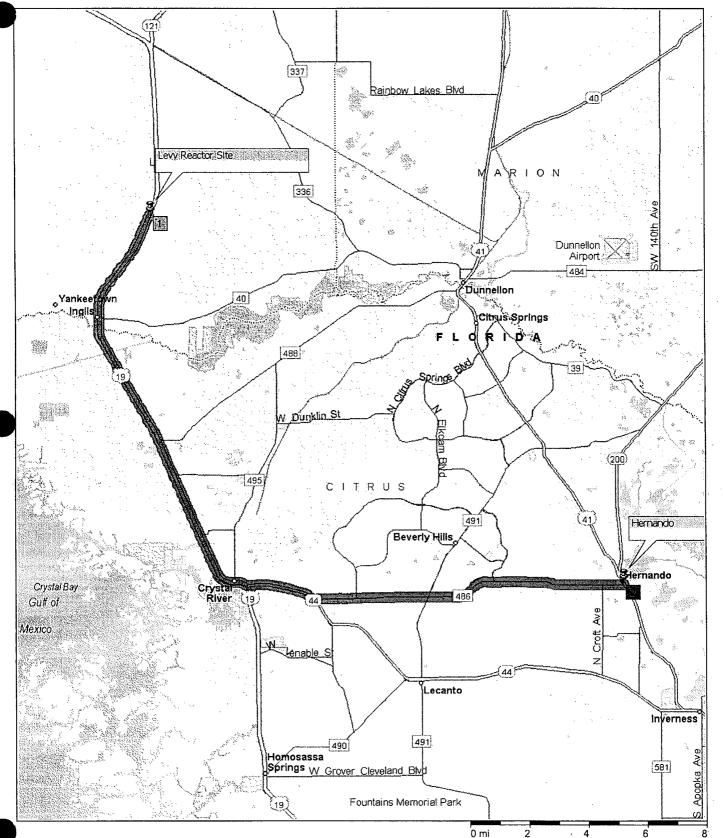
Levy Reactor Site to Beverly Hills


23.3 miles; 26 minutes



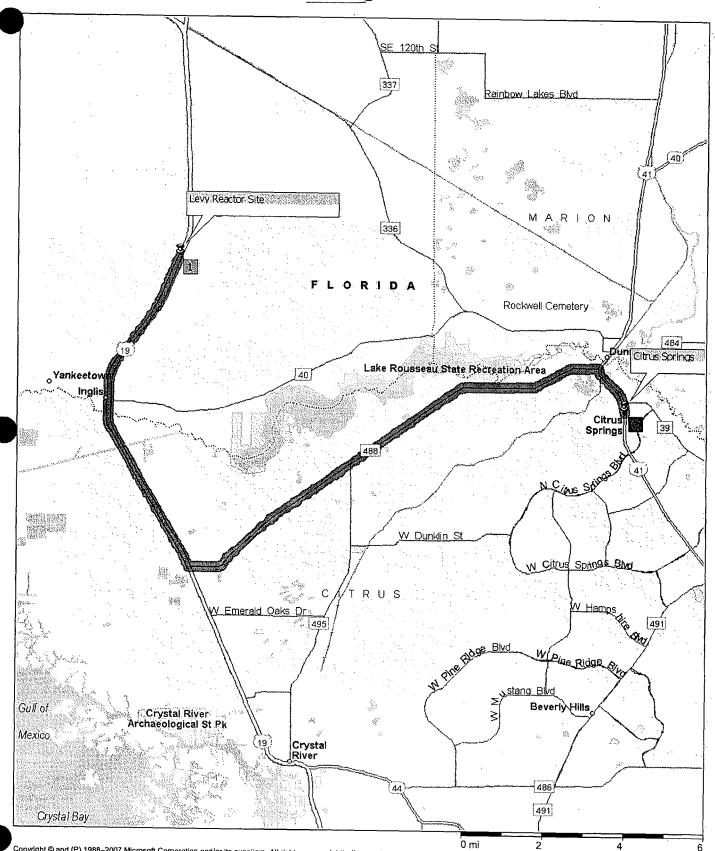



# Levy Reactor Site to Brooksville

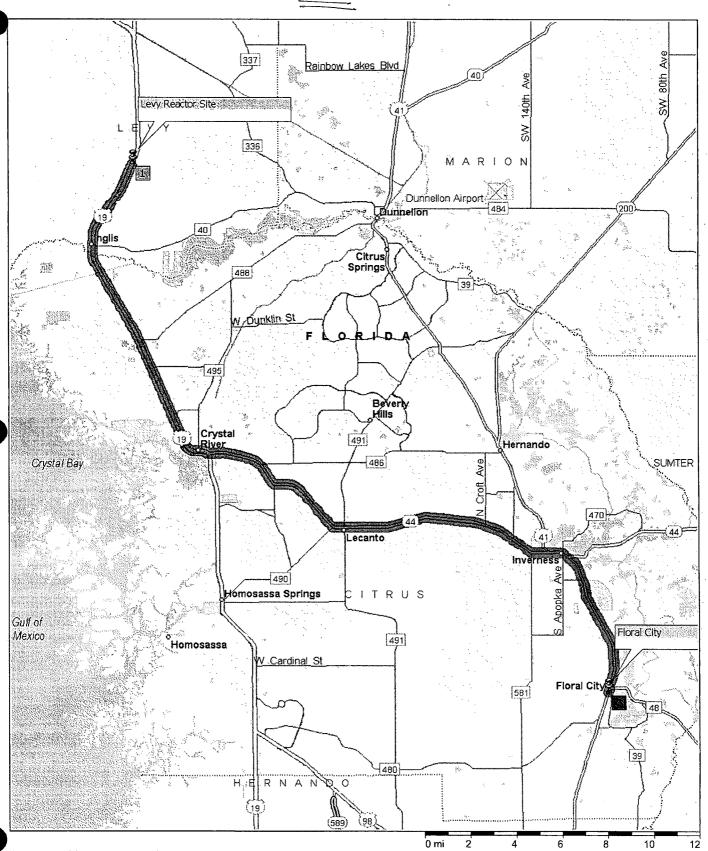

44.3 miles; 48 minutes






# Levy Reactor Site to Hernando

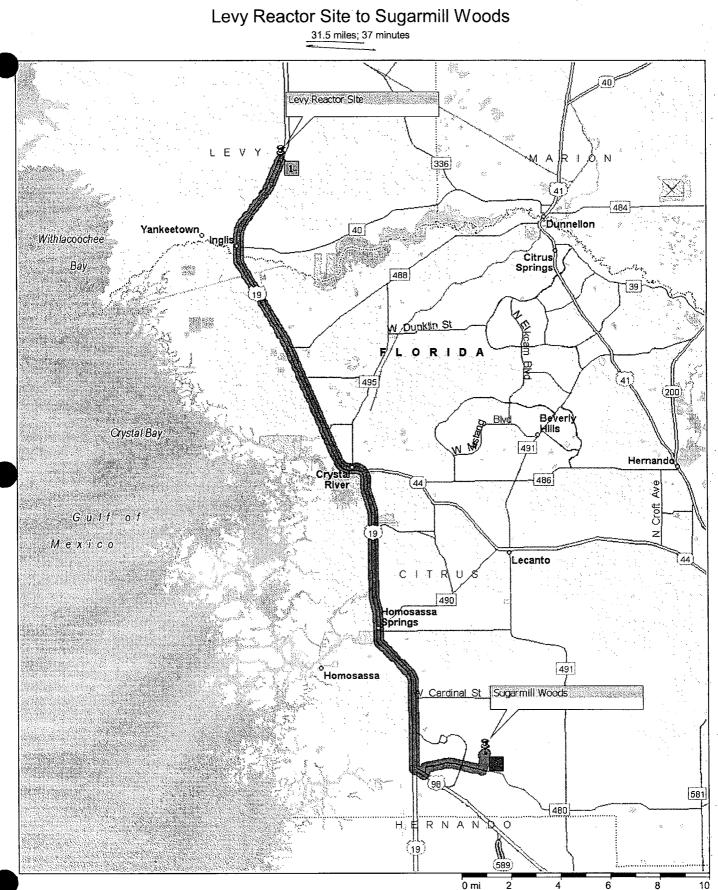
28.2 miles; 32 minutes




Levy Reactor Site to Citrus Springs

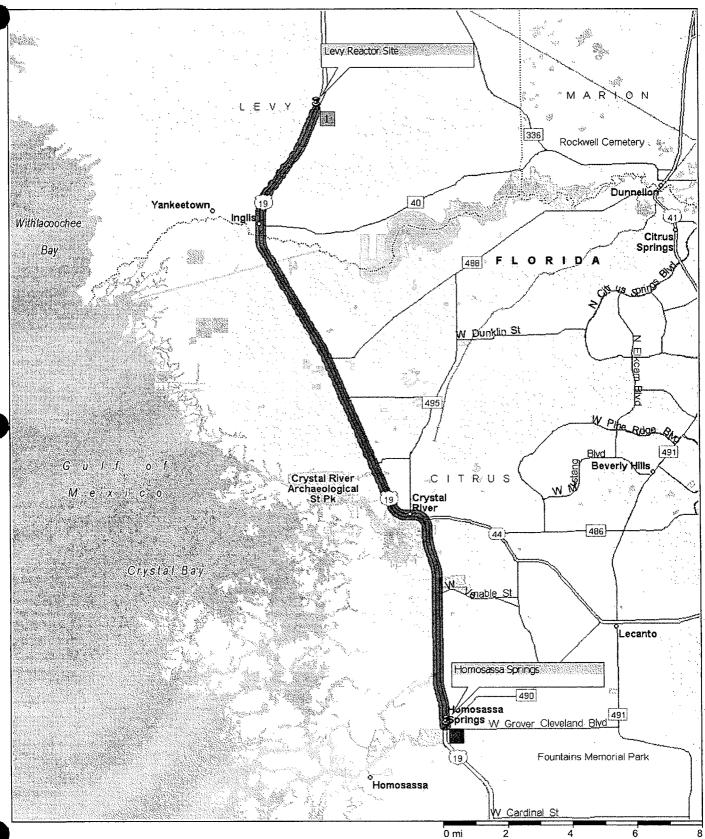
22.0 miles; 25 minutes

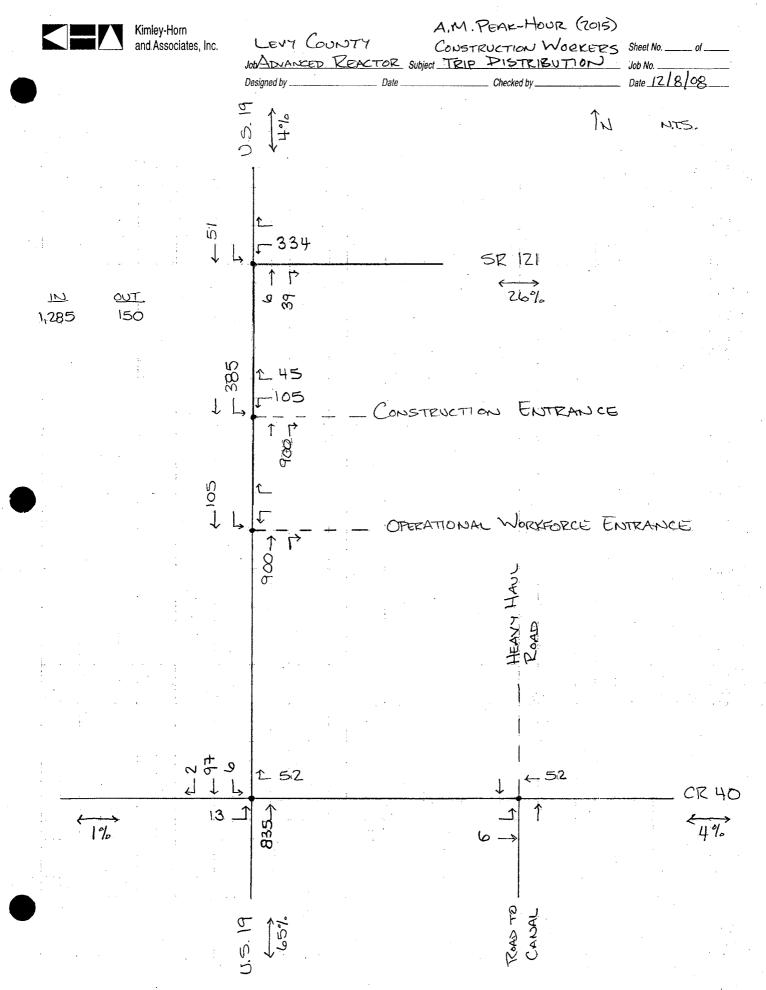


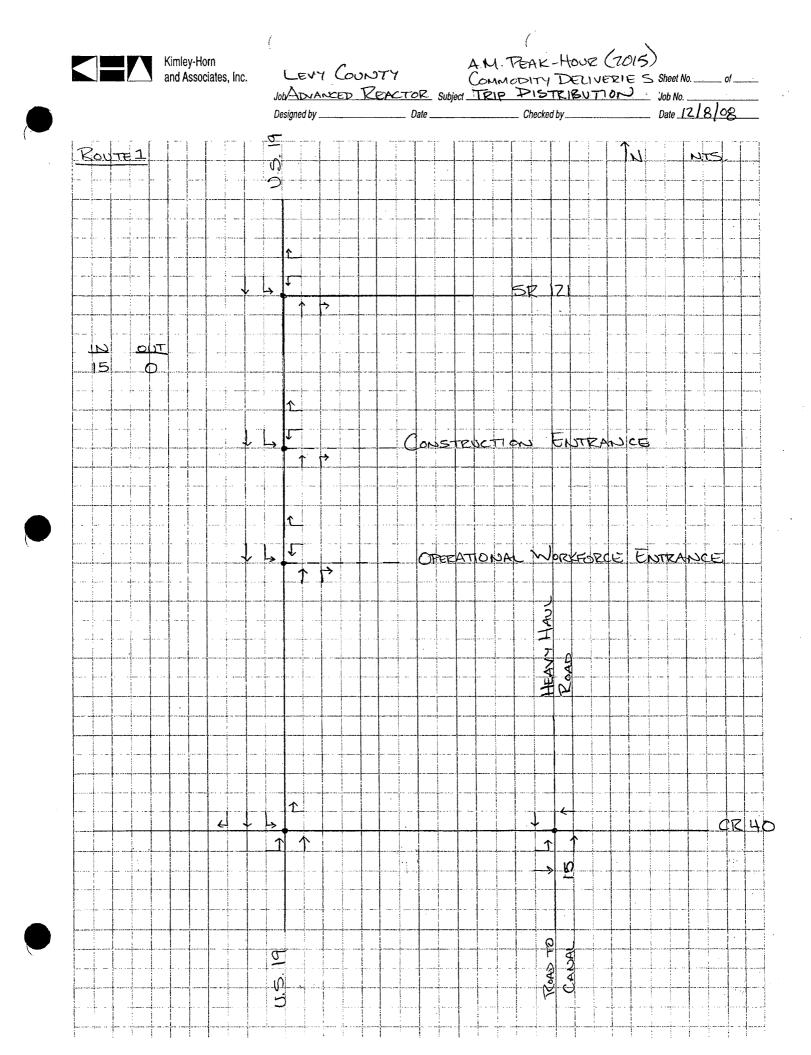

Levy Reactor Site to Floral City 38.9 miles; 44 minutes

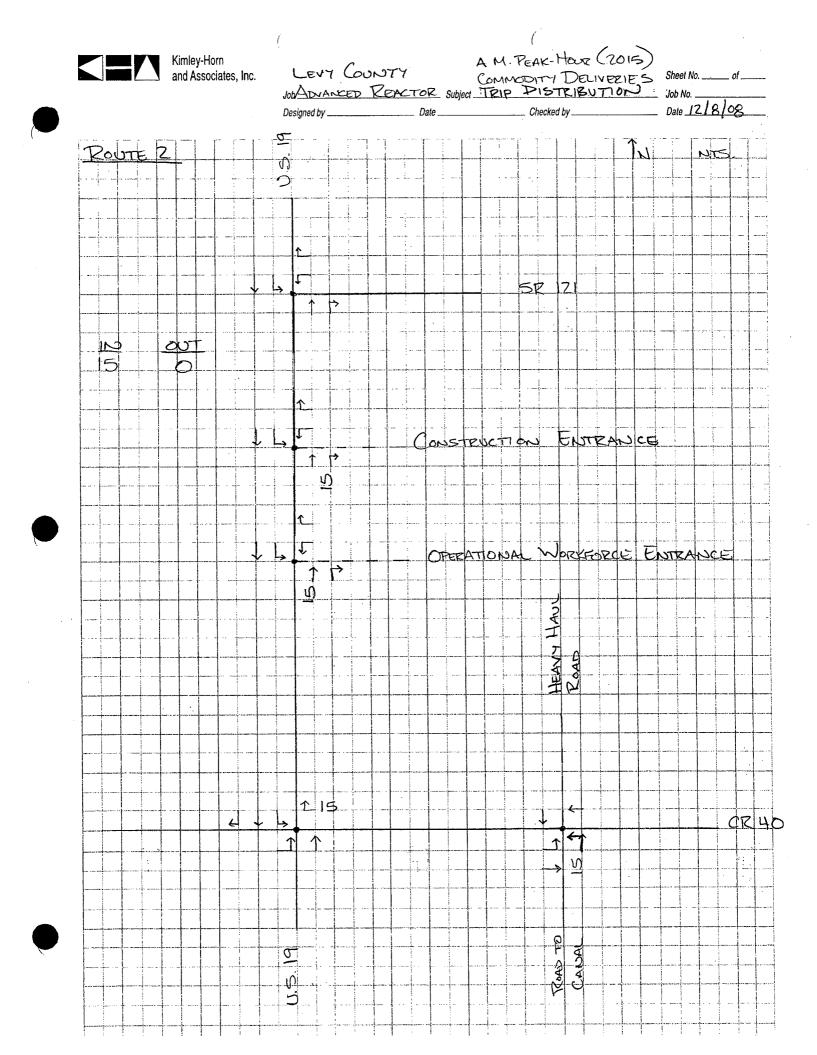


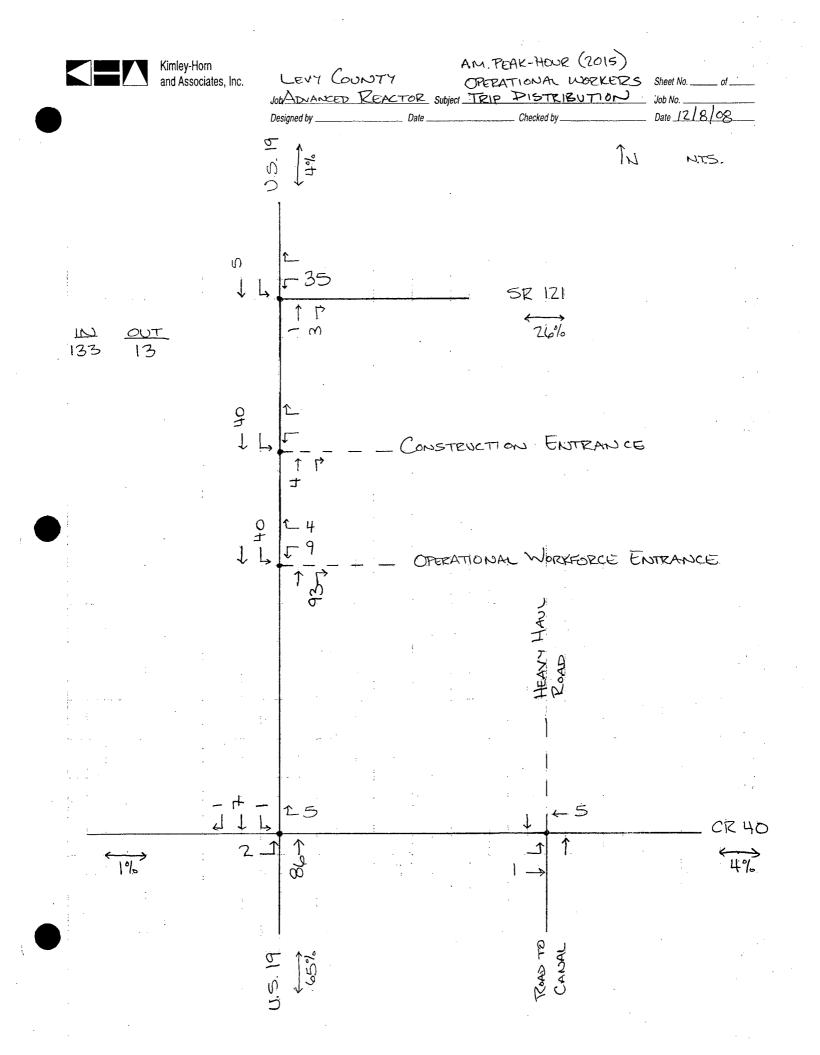
# Levy Reactor Site to Homosassa

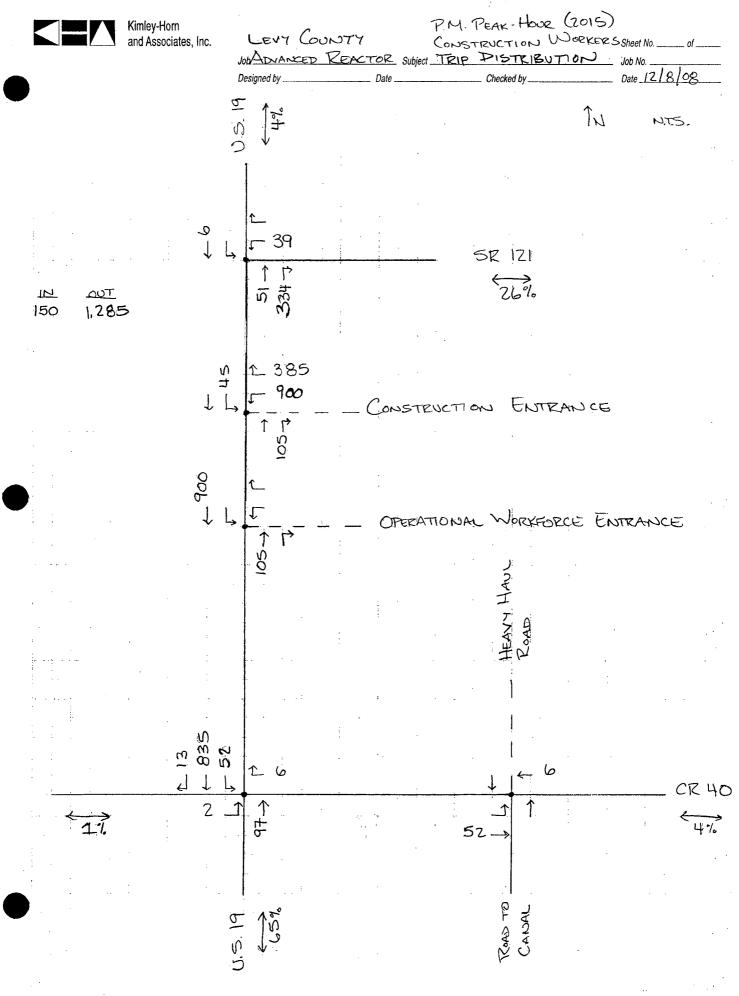

24.6 miles; 30 minutes

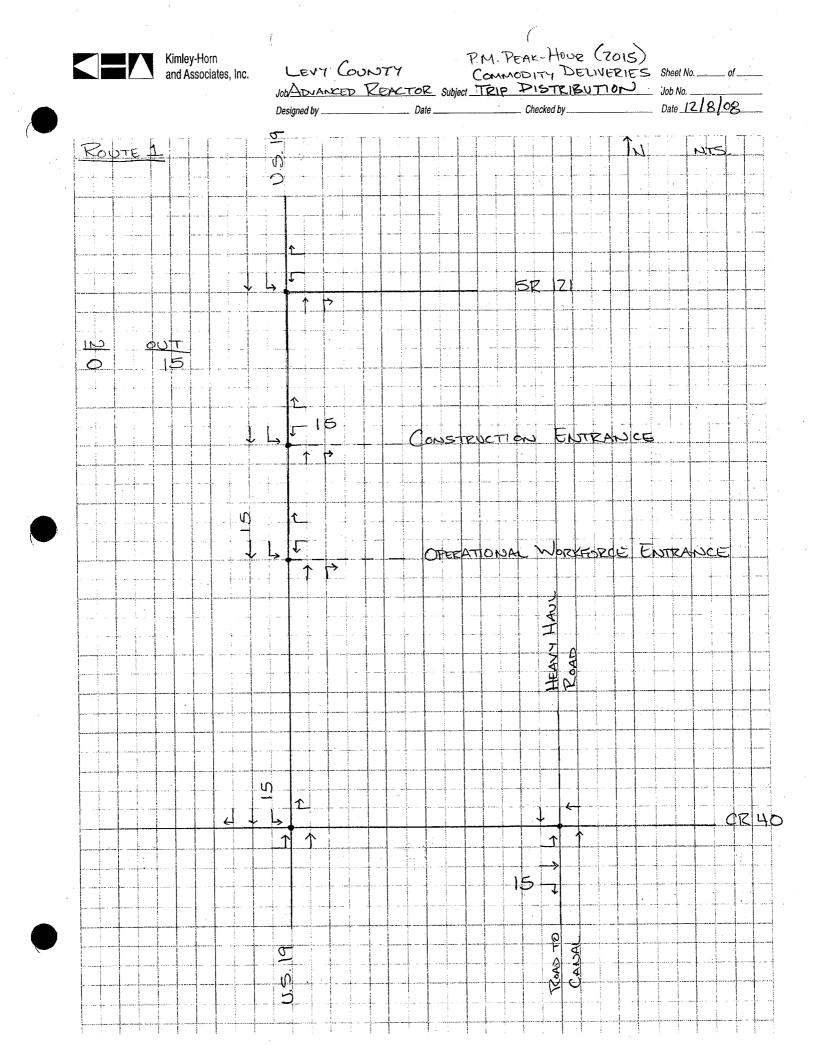


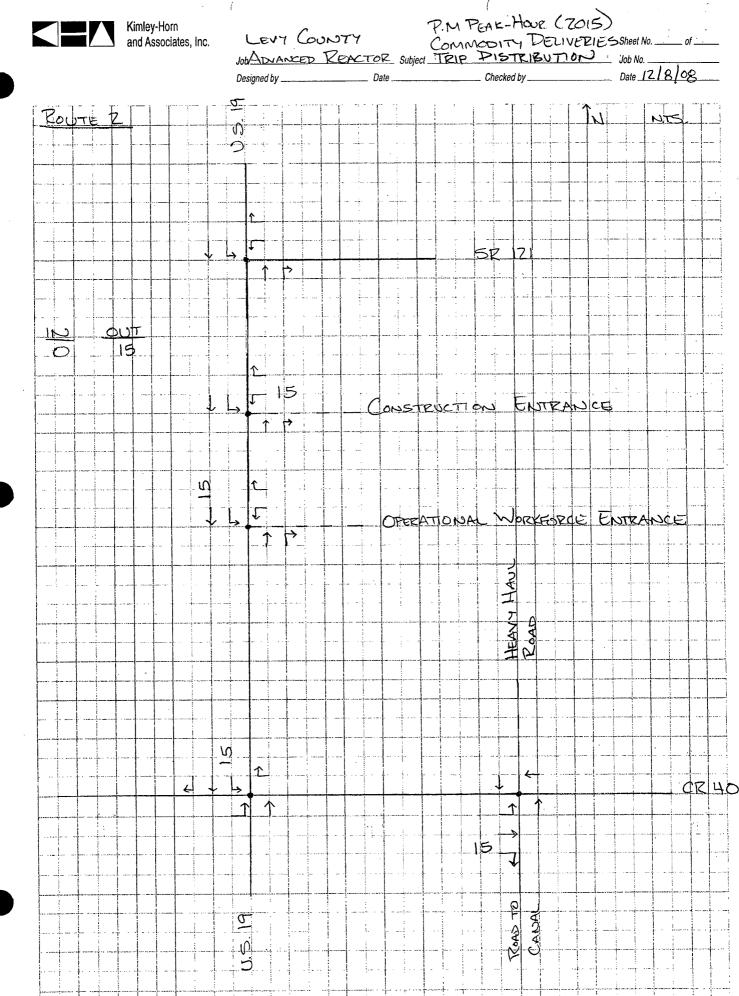



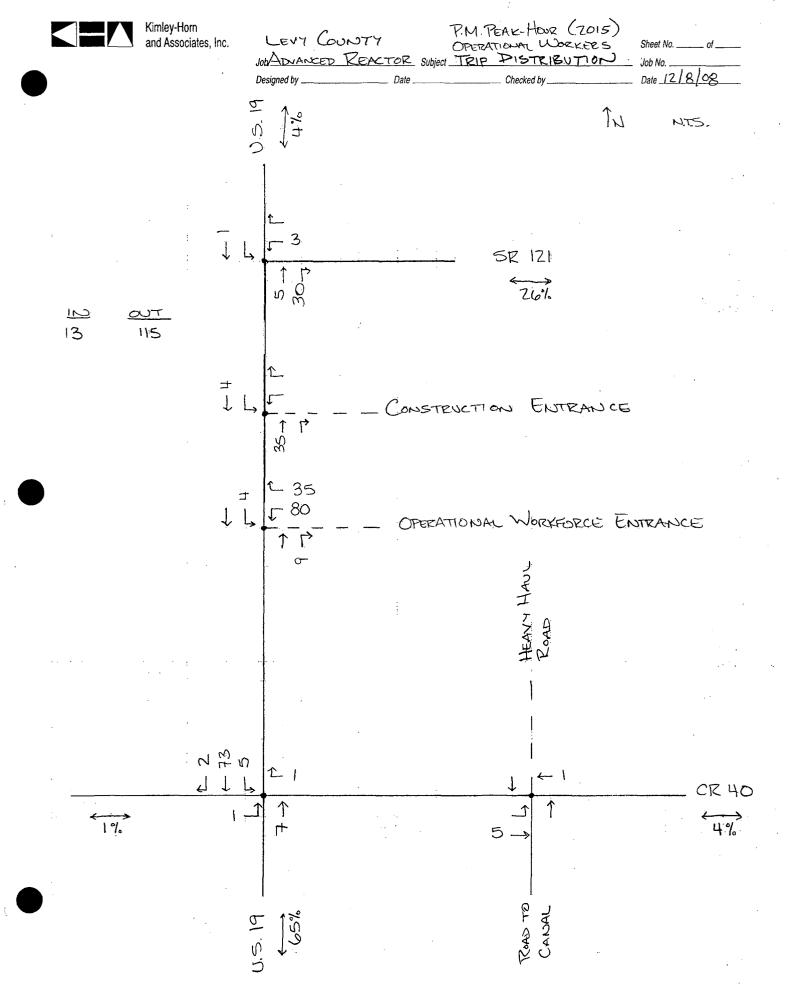


# Levy Reactor Site to Homosassa Springs

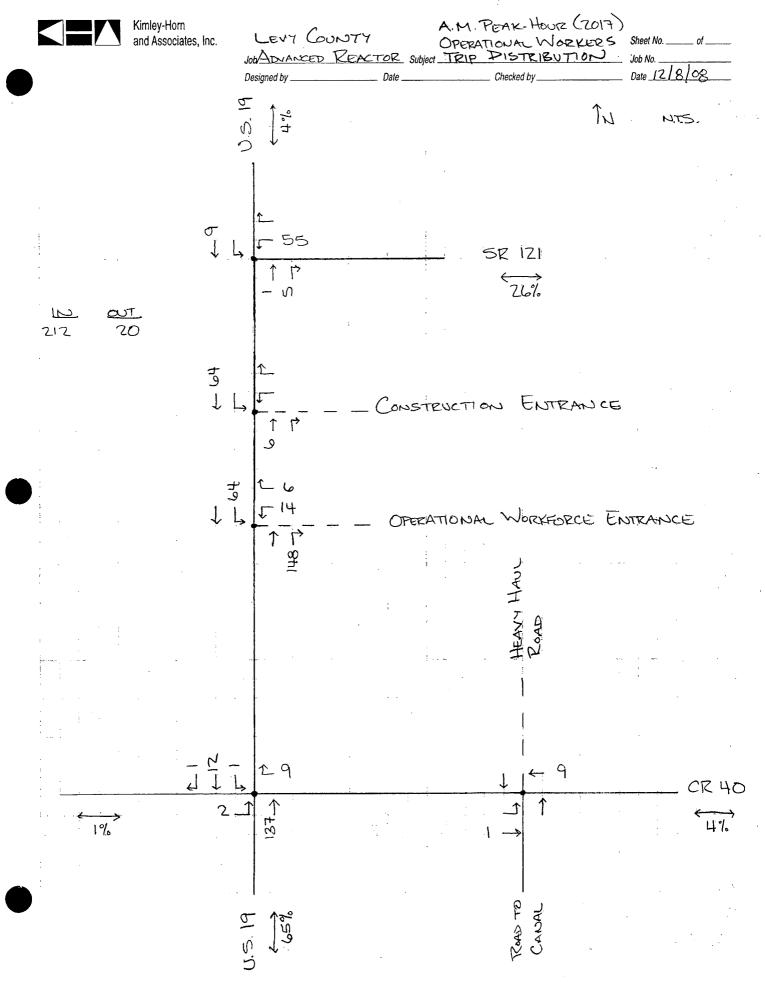

21.4 miles; 23 minutes

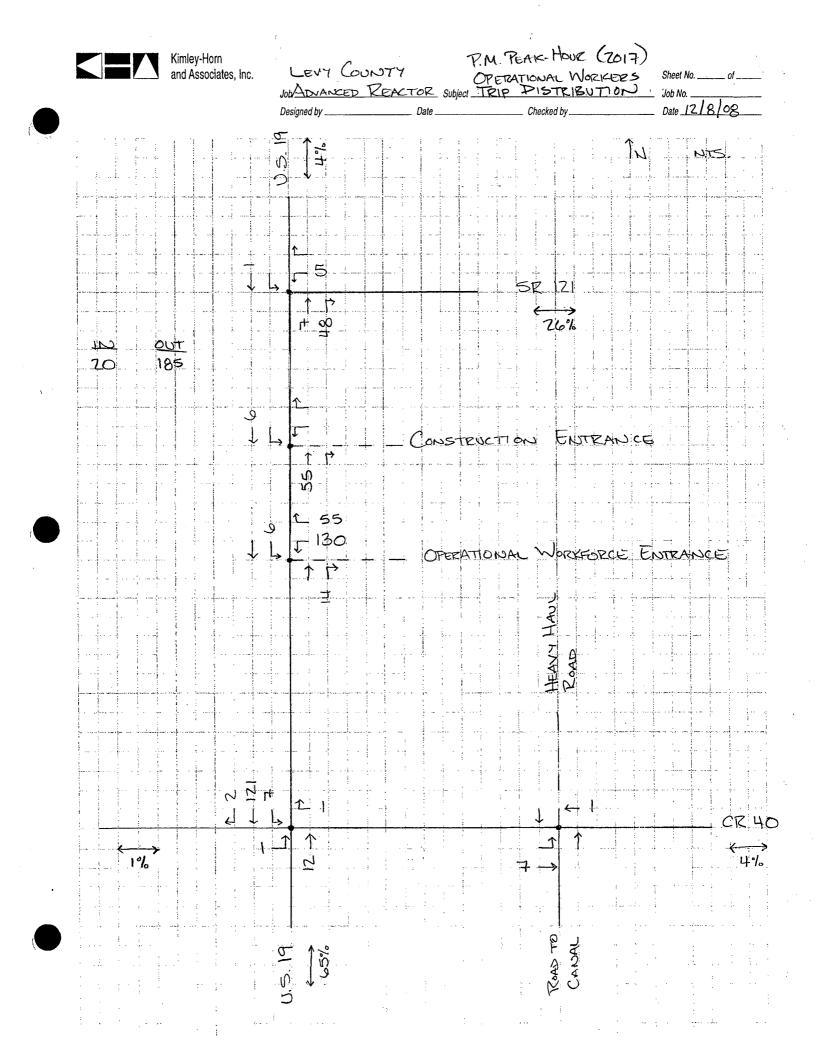


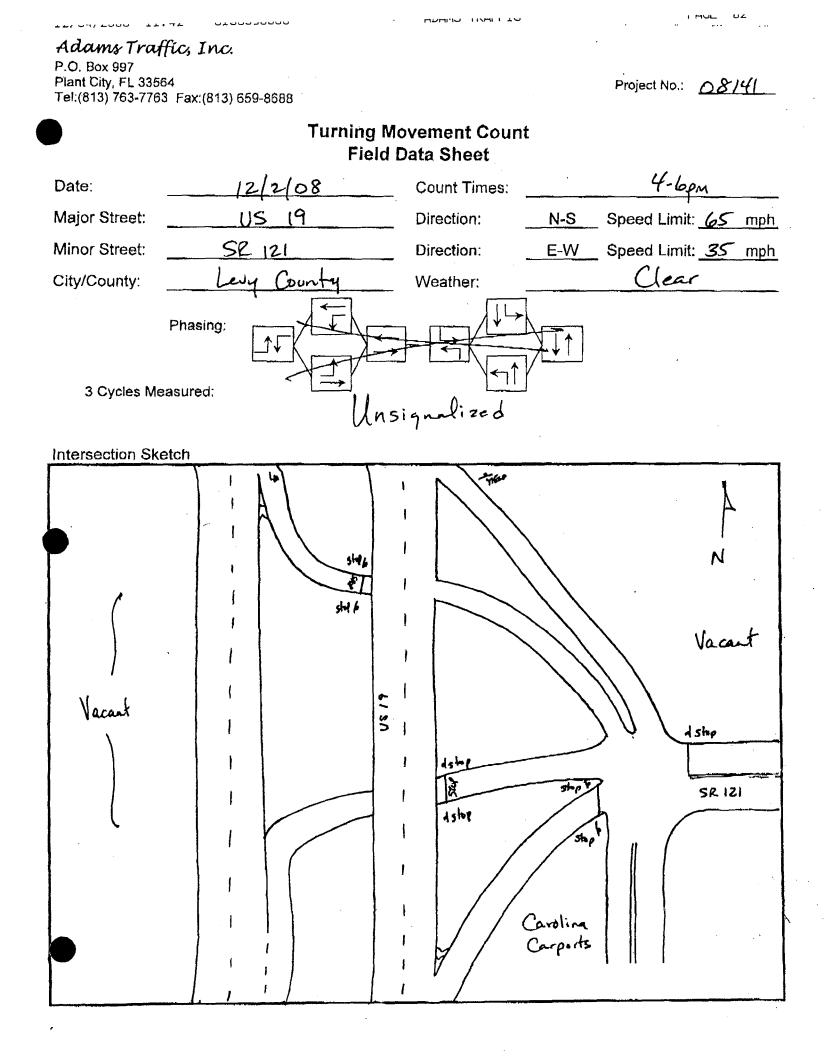











### P.M. PEAK HOUR SIGNIFICANCE TEST

#### Scenario: Operational Workforce Traffic

|                               |                                                                                                                                                                     | No.<br>2-Way                                                                                                                                                                                                                                       | Service<br>Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project<br>Traffic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From                          | То                                                                                                                                                                  | Lanes                                                                                                                                                                                                                                              | Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Std                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Yes/No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CR 488                        | CR 40                                                                                                                                                               | 4                                                                                                                                                                                                                                                  | 2,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR 40                         | Project Site                                                                                                                                                        | 4                                                                                                                                                                                                                                                  | 2,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Project Site                  | SR 121                                                                                                                                                              | 4                                                                                                                                                                                                                                                  | 2,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SR 121                        | CR 326                                                                                                                                                              | 4                                                                                                                                                                                                                                                  | 2,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| US 19                         | NW 27th Street                                                                                                                                                      | 2                                                                                                                                                                                                                                                  | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NW 27th Street                | US 41                                                                                                                                                               | 2                                                                                                                                                                                                                                                  | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR 328                        | SE 80th Street/NW 27th Street                                                                                                                                       | 2                                                                                                                                                                                                                                                  | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SE 80th Street/NW 27th Street | SR 121                                                                                                                                                              | 2                                                                                                                                                                                                                                                  | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SR 121                        | S.C.L. of Williston                                                                                                                                                 | 2                                                                                                                                                                                                                                                  | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S.C.L. of Williston           | SR 500                                                                                                                                                              | 2                                                                                                                                                                                                                                                  | 1,070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SR 121                        | US 41                                                                                                                                                               | 2                                                                                                                                                                                                                                                  | 1,340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| US 19                         | CR 336                                                                                                                                                              | 2                                                                                                                                                                                                                                                  | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.04%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR 336                        | US 41                                                                                                                                                               | 2                                                                                                                                                                                                                                                  | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.04%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| US 41                         | SR 40                                                                                                                                                               | 2                                                                                                                                                                                                                                                  | 1,340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               | CR 40<br>Project Site<br>SR 121<br>US 19<br>NW 27th Street<br>CR 328<br>SE 80th Street/NW 27th Street<br>SR 121<br>S.C.L. of Williston<br>SR 121<br>US 19<br>CR 336 | CR 488CR 40CR 40Project SiteProject SiteSR 121SR 121CR 326US 19NW 27th StreetNW 27th StreetUS 41CR 328SE 80th Street/NW 27th StreetSR 121SR 121SR 121S.C.L. of WillistonS.C.L. of WillistonSR 500SR 121US 41US 19CR 336US 19CR 336US 19CR 336US 41 | From         To         Lanes           CR 488         CR 40         4           CR 40         Project Site         4           Project Site         SR 121         4           SR 121         CR 326         4           US 19         NW 27th Street         2           NW 27th Street         US 41         2           CR 328         SE 80th Street/NW 27th Street         2           SR 121         SR 121         2           CR 328         SE 80th Street/NW 27th Street         2           SR 121         SR 121         2           SR 121         SR 500         2           SR 121         US 41         2           US 19         CR 336         2           US 19         CR 336         2           CR 336         US 41         2 | From         To         2-Way<br>Lanes         Volume<br>Capacity           CR 488         CR 40         4         2,800           CR 40         Project Site         4         2,800           Project Site         SR 121         4         2,800           SR 121         CR 326         4         2,800           US 19         NW 27th Street         2         770           NW 27th Street         US 41         2         770           CR 328         SE 80th Street/NW 27th Street         2         770           SR 121         SR 121         2         770           SR 121         SR 58 00h Street/NW 27th Street         2         770           SR 121         SR 500         2         1,070           SR 121         US 41         2         1,340           US 19         CR 336         US 41         2         770           SR 121         US 41         2         1,340         2 | From         To         2-Way<br>Lanes         Volume<br>Capacity         LOS<br>Std           CR 488         CR 40         4         2,800         B           CR 40         Project Site         4         2,800         B           Project Site         SR 121         4         2,800         B           SR 121         CR 326         4         2,800         B           US 19         NW 27th Street         2         770         C           NW 27th Street         US 41         2         770         C           CR 328         SE 80th Street/NW 27th Street         2         770         C           SR 121         SR 121         SR 121         2         770         C           SR 328         SE 80th Street/NW 27th Street         2         770         C           SR 121         SC.L. of Williston         2         770         C           SR 121         US 41         2         1,070         C           SR 121         US 41         2         1,340         D           US 19         CR 336         US 41         2         770         C           CR 336         US 41         2         770         C | From         To         Lanes         Z-Way         Volume         LOS         Traffic           CR 488         CR 40         4         2,800         B         133           CR 40         Project Site         4         2,800         B         144           Project Site         SR 121         4         2,800         B         62           SR 121         CR 326         4         2,800         B         62           SR 121         CR 326         4         2,800         B         62           SR 121         CR 326         4         2,800         B         8           US 19         NW 27th Street         2         770         C         53           NW 27th Street         US 41         2         770         C         9           CR 328         SE 80th Street/NW 27th Street         SR 121         2         770         C         0           SR 121         S.C.L. of Williston         2         770         C         6           SR 121         US 41         2         1,070         C         6           SR 121         US 41         2         770         C         6           SR | From         To         Lanes         Volume         LOS         Traffic         Project           CR 488         CR 40         4         2,800         B         133         4.75%           CR 40         Project Site         4         2,800         B         144         5.14%           Project Site         SR 121         4         2,800         B         62         2.21%           SR 121         CR 326         4         2,800         B         62         2.21%           US 19         NW 27th Street         2         770         C         53         6.88%           NW 27th Street         US 41         2         770         C         9         1.17%           CR 328         SE 80th Street/NW 27th Street         SR 121         2         770         C         42         5.45%           SE 80th Street/NW 27th Street         SR 121         2         770         C         6         0.78%           S.C.L. of Williston         SR 500         2         1,070         C         6         0.56%           SR 121         US 41         2         1,340         D         42         3.13%           US 19         CR 336 |

# APPENDIX B: Existing Traffic Count Data





Comments:

City/County: Levy County Weather: Clear

### Kimley-Horn and Associates, Inc. 10117 Princess Palm Ave, Suite 300 Tampa, FL 33610 813-620-1460

### File Name : US19SR~1 Site Code : 0000000 Start Date : 12/2/2008 Page No : 1

|                         |             |          | ·         | Groups Print | ted-Passeng |             |            | icles - U-Turns |            |             |          |            |            |
|-------------------------|-------------|----------|-----------|--------------|-------------|-------------|------------|-----------------|------------|-------------|----------|------------|------------|
|                         |             | SR 1     | 21        |              |             | US          | 19         |                 |            | US          | 19       |            |            |
|                         |             | Westbo   | ound      | (            |             | Northb      | ound       |                 |            | Southb      | ound     | 1          |            |
| Start Time              | Left        | Thru     | Right     | App. Total   | Left        | Thru        | Right      | App. Total      | Left       | Thru        | Right    | App. Total | Int. Total |
| 04:00 PM                | 12          | 0        | 2         | 14           | 0           | 25          | 3          | 28              | 3          | 26          | 0        | 29         | 71         |
| 04:15 PM                | 17          | 0        | 1         | 18           | 0           | 23          | 12         | 35              | 6          | 44          | 0        | 50         | 103        |
| 04:30 PM                | 12          | 0        | 2         | 14           | 0           | 19          | 6          | 25              | 3          | 22          | 0        | 25         | 64         |
| 04:45 PM                | 16          | 0        | 1         | 17           | 0           | 19          | 12         | 31              | 4          | 36          | 0        | 4Ó         | 88         |
| Total                   | 57          | 0        | 6         | 63           | 0           | 86          | 33         | 119             | 16         | 128         | 0        | 144        | 326        |
| 05:00 PM                | 17          | 0        | 3         | 20           | 0           | 17          | 11         | 28              | 4          | 26          | 0        | 30         | 78         |
| 05:15 PM                | 14          | 0        | 2         | 16           | 0           | 25          | 10         | 35              | 4          | 33          | 0        | 37         | 88         |
| 05:30 PM                | 15          | 0        | 1         | 16           | 0           | 34          | 8          | 42              | 4          | 26          | 0        | 30         | 88         |
| 05:45 PM                | 8           | 0        | 0         | 8            | 0           | 28          | 14         | 42              | 4          | 24          | 0        | 28         | 78         |
| Total                   | 54          | 0        | 6         | 60           | 0           | 104         | 43         | 147             | 16         | 109         | Ő        | 125        | 332        |
| Grand Total<br>Apprch % | 111<br>90.2 | 0<br>0.0 | 12<br>9.8 | 123          | 0<br>0.0    | 190<br>71.4 | 76<br>28.6 | 266             | 32<br>11.9 | 237<br>88.1 | 0<br>0.0 | 269        | 658        |
| Total %                 | 16.9        | 0.0      | 1.8       | 18.7         | 0.0         | 28.9        | 11.6       | 40.4            | 4.9        | 36.0        | 0.0      | 40.9       |            |

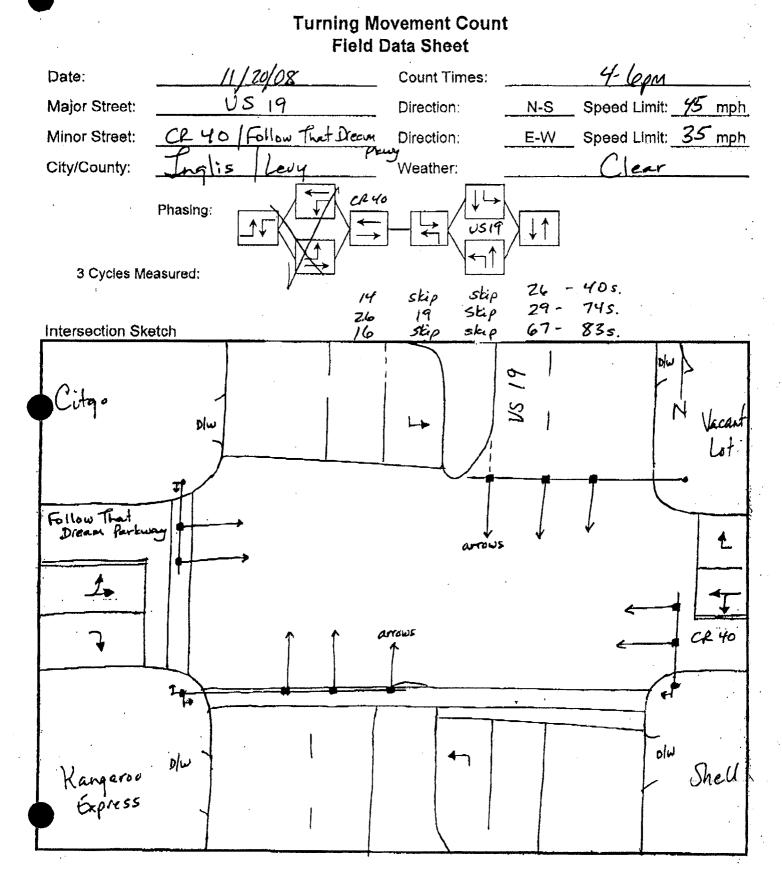
|                              |                     | SR 1<br>Westbo |       |            | 4        | US 1<br>Northbo |       |            |          | US 1<br>Southb |       |            |            |
|------------------------------|---------------------|----------------|-------|------------|----------|-----------------|-------|------------|----------|----------------|-------|------------|------------|
| Start Time                   | Left                | Thru           | Right | App. Total | Left     | Thru            | Right | App. Total | Left     | Thru           | Right | App. Total | Int. Total |
| Peak Hour From 04:00 PM to 0 | 05:45 PM - Peak 1 ( | of 1           |       |            |          |                 |       |            |          |                |       |            |            |
| Intersection                 | 04:45 PM            |                |       |            |          |                 |       |            |          |                |       |            |            |
| Volume                       | 62                  | 0              | 7     | 69         | 0        | 95              | 41    | 136        | 16       | 121            | 0     | 137        | 342        |
| Percent                      | 89.9                | 0.0            | 10.1  |            | 0.0      | 69.9            | 30.1  |            | 11.7     | 88.3           | 0.0   |            |            |
| 05:30 Volume                 | 15                  | 0              | 1     | 16         | 0        | 34              | 8     | 42         | 4        | 26             | 0     | 30         | 88         |
| Peak Factor                  |                     |                |       | Í          |          |                 |       |            |          |                |       | 1          | 0.972      |
| High Int.                    | 05:00 PM            |                |       |            | 05:30 PM |                 |       |            | 04:45 PM |                |       |            |            |
| Volume                       | 17                  | 0              | 3     | 20         | 0        | 34              | 8     | 42         | 4        | 36             | 0     | 40         |            |
| Peak Factor                  |                     |                |       | 0.863      |          |                 |       | 0.810      |          |                |       | 0.856      |            |

### Kimley-Horn and Associates, Inc. 10117 Princess Palm Ave, Suite 300 Tampa, FL 33610 813-620-1460

### City/County: Levy County Weather: Clear Comments:

# File Name : US19SR~1 Site Code : 00000000 Start Date : 12/2/2008 Page No : 1

|          |                         |            |          |          |            | Groups F | Printed-Hear | vy Vehicles |            |          |             |          |            |            |
|----------|-------------------------|------------|----------|----------|------------|----------|--------------|-------------|------------|----------|-------------|----------|------------|------------|
|          |                         |            | SR 12    | 21       |            |          | US           | 19          |            |          | US 1        | 9        |            |            |
|          |                         |            | Westbo   | und      |            |          | Northb       | ound        |            |          | Southb      | ound     |            |            |
|          | Start Time              | Left       | Thru     | Right    | App. Total | Left     | Thru         | Right       | App. Total | Left     | Thru        | Right    | App. Total | Int. Total |
| <u> </u> | 04:00 PM                | 1          | 0        | 0        | 1          | 0        | 2            | 0           | 2          | 0        | · · 1       | 0        | 1          | 4          |
|          | 04:15 PM                | 2          | 0        | 0        | 2          | 0        | 0            | 1           | 1          | 0        | 4           | 0        | 4          | 7          |
|          | 04:30 PM                | 0          | 0        | 0        | 0          | 0        | 1            | 2           | 3          | 0        | 1           | 0        | 1          | 4          |
|          | 04:45 PM                | 0          | 0        | 0        | 0          | 0        | 0            | 1           | 1          | 0        | 1           | 0        | 1          | 2          |
|          | Total                   | 3          | 0        | 0        | 3          | 0        | 3            | 4           | 7          | 0        | 7           | 0        | 7          | 17         |
|          | 05:00 PM                | 1          | 0        | 0        | 1          | 0        | 0            | 2           | 2          | 0        | 1           | 0        | 1          | 4          |
|          | 05:15 PM                | 0          | 0        | 0        | 0          | 0        | 1            | 0           | 1          | 0        | 3           | 0        | 3          | 4          |
|          | 05:30 PM                | 0          | 0        | 0        | 0          | 0        | 0            | 0           | 0          | 0        | 2           | 0        | 2          | 2          |
|          | 05:45 PM                | 0          | 0        | 0        | 0          | 0        | 2            | 0           | 2          | 0        | 5           | 0        | 5          | 7          |
|          | Total                   | 1          | 0        | 0        | 1          | 0        | 3            | 2           | 5          | Ö        | 11          | 0        | 11         | 17         |
|          | Grand Total<br>Apprch % | 4<br>100.0 | 0<br>0.0 | 0<br>0.0 | 4          | 0<br>0.0 | 6<br>50.0    | 6<br>50.0   | 12         | 0<br>0.0 | 18<br>100.0 | 0<br>0.0 | 18         | 34         |
|          | Total %                 | 11.8       | 0.0      | 0.0      | 11.8       | 0.0      | 17.6         | 17.6        | 35.3       | 0.0      | 52.9        | 0.0      | 52.9       |            |


|                              |                     | SR 12<br>Westbo |       |            |          | US <sup>-</sup><br>Northb |       |            |          | US 1<br>Southbe |       |            |            |
|------------------------------|---------------------|-----------------|-------|------------|----------|---------------------------|-------|------------|----------|-----------------|-------|------------|------------|
| Start Time                   | Left                | Thru            | Right | App. Total | Left     | Thru                      | Right | App. Total | Left     | Thru            | Right | App. Total | Int. Total |
| Peak Hour From 04:00 PM to 0 | 05:45 PM - Peak 1 o | f1              |       |            |          |                           |       |            |          |                 |       |            |            |
| Intersection                 | 04:00 PM            |                 |       |            |          |                           |       |            |          |                 |       |            |            |
| Volume                       | 3                   | 0               | 0     | 3          | 0        | 3                         | 4     | 7          | 0        | 7               | 0     | 7          | 17         |
| Percent                      | 100.0               | 0.0             | 0.0   |            | 0.0      | 42.9                      | 57.1  |            | 0.0      | 100.0           | 0.0   |            |            |
| 04:15 Volume                 | 2                   | 0               | 0     | 2          | 0        | 0                         | 1     | 1          | 0        | 4               | 0     | 4          | 7          |
| Peak Factor                  |                     |                 |       |            |          |                           |       |            |          |                 |       | 1          | 0.607      |
| High Int.                    | 04:15 PM            |                 |       |            | 04:30 PM |                           |       |            | 04:15 PM |                 |       | l l        |            |
| Volume                       | 2                   | 0               | 0     | 2          | 0        | 1                         | 2     | 3          | 0        | 4               | 0     | 4          |            |
| Peak Factor                  |                     |                 |       | 0.375      |          |                           |       | 0.583      |          |                 |       | 0.438      |            |

HV %

 $N|S; (11) \rightarrow 4\%$   $E/w; (1) \rightarrow 1\%$ 

Adams Traffic, Inc. P.O. Box 997 Plant City, FL 33564 el:(813) 763-7763 Fax:(813) 659-8688

Project No.: 08/4/





### Kimley-Horn and Associates, Inc. 10117 Princess Palm Ave, Suite 300 Tampa, FL 33610 813-620-1460

### City/County: Inglis/Levy Weather: Clear Comments:

| File Name  | : US19&C~1   |
|------------|--------------|
| Site Code  | : 00000000   |
| Start Date | : 11/20/2008 |
| Page No    | : 1          |

|     |             |      |        |         |         |            |      |          |          |         |             |           |           |           |      |            |      |      |         | ,    | •••        |            |
|-----|-------------|------|--------|---------|---------|------------|------|----------|----------|---------|-------------|-----------|-----------|-----------|------|------------|------|------|---------|------|------------|------------|
|     |             |      |        |         |         |            |      | Groups I | Printed- | Passeng | ger Vehicle | es - Heav | y Vehicle | es - U-Ti | urns |            |      |      | -       |      |            |            |
| Г   |             | FOLL | OW THA | T DRE   | AM PARK | WAY        |      |          | CR 40    |         |             |           |           | US 19     |      | 1          |      |      | US 19   |      |            |            |
|     |             |      | E      | astbour | nd      | · · ·      |      | W        | /estbou  | nd      |             |           | N         | orthbou   | nd   |            |      | S    | outhbou | nd   |            |            |
|     | Start Time  | Left | Thru   | Right   | RTOR    | App. Total | Left | Thru     | Right    | RTOR    | App. Total  | Left      | Thru      | Right     | RTOR | App. Total | Left | Thru | Right   | RTOR | App. Total | Int. Total |
| L., | 04:00 PM    | 2    | 13     | 13      | 7       | 35         | 7    | 16       | 2        | 4       | 29          | 19        | 54        | 11        | 4    | 88         | 12   | 45   | 2       | 2    | 61         | 213        |
|     | 04:15 PM    | 3    | 12     | 8       | 4       | 27         | 15   | 13       | 8        | 4       | 40          | 19        | 49        | 7         | 4    | 79         | 8    | 56   | 3       | 3    | 70         | 216        |
|     | 04:30 PM    | 3    | 18     | 13      | 1       | 35         | 12   | 15       | 4        | 4       | 35          | 22        | 59        | 11        | 5    | 97         | 9    | 48   | 1       | ō    | 58         | 225        |
|     | 04:45 PM    | 3    | 14     | 12      | 7       | 36         | 14   | 10       | 4        | 6       | 34          | 13        | 52        | 11        | 8    | 84         | 9    | 45   | 1       | 1    | 56         | 210        |
| _   | Total       | 11   | 57     | 46      | 19      | 133        | 48   | 54       | 18       | 18      | 138         | 73        | 214       | 40        | 21   | 348        | 38   | 194  | 7       | 6    | 245        | 864        |
|     |             |      |        |         |         |            |      |          |          |         |             |           |           |           |      | 1          | • -  |      |         | -    |            |            |
|     | 05:00 PM    | 6    | 14     | 10      | 5       | 35         | 16   | 9        | 10       | 6       | 41          | 22        | 43        | 13        | 7    | 85         | 11   | 55   | 1       | 1    | 68 ]       | 229        |
|     | 05:15 PM    | 7    | 9      | 9       | 5       | 30         | 15   | 11       | 4        | 2       | 32          | 37        | 61        | 13        | 11   | 122        | 13   | 52   | 1       | 2    | 68         | 252        |
|     | 05:30 PM    | 4    | 20     | 11      | 7       | 42         | 12   | 19       | 4        | 5       | 40          | 27        | 65        | 15        | 7    | 114        | 9    | 42   | 4       | 1    | 56         | 252        |
|     | 05:45 PM    | 4    | 10     | 3       | 7       | 24         | 12   | 9        | 5        | 9       | 35          | 26        | 52        | 8         | 2    | 88         | 10   | 41   | 1       | Ó    | 52         | 199        |
| _   | Total       | 21   | 53     | 33      | 24      | 131        | 55   | 48       | 23       | 22      | 148         | 112       | 221       | 49        | 27   | 409        | 43   | 190  | 7       | 4    | 244        | 932        |
|     |             |      |        | •••     |         |            |      |          |          |         |             |           |           |           |      |            |      |      |         | •    |            |            |
|     | Grand Total | 32   | 110    | 79      | 43      | 264        | 103  | 102      | 41       | 40      | 286         | 185       | 435       | 89        | 48   | 757        | 81   | 384  | 14      | 10   | 489        | 1796       |
|     | Apprch %    | 12.1 | 41.7   | 29.9    | 16.3    |            | 36.0 | 35.7     | 14.3     | 14.0    |             | 24.4      | 57.5      | 11.8      | 6.3  |            | 16.6 | 78.5 | 2.9     | 2.0  |            |            |
|     | Total %     | 1.8  | 6.1    | 4.4     | 2.4     | 14.7       | 5.7  | 5.7      | 2.3      | 2.2     | 15.9        | 10.3      | 24.2      | 5.0       | 2.7  | 42.1       | 4.5  | 21.4 | 0.8     | 0.6  | 27.2       |            |
|     |             |      |        |         |         |            |      |          |          |         |             |           |           |           | =    |            |      | =    |         |      |            |            |

|                    | FOLLO       | DW TH    | AT DRE    | AM PAR | KWAY       |          |      | CR 40    |      |            | 1        | -    | US 19    |      |            | [        |      | US 19   |      |            |            |
|--------------------|-------------|----------|-----------|--------|------------|----------|------|----------|------|------------|----------|------|----------|------|------------|----------|------|---------|------|------------|------------|
|                    | 1           | I        | Eastbour  | nd     |            |          | N    | /estbour | nd   |            | 1        | N    | orthbour | nd   |            |          | S    | outhbou | nd   | [          |            |
| Start Time         | Left        | Thru     | Right     | RTOR   | App. Total | Left     | Thru | Right    | RTOR | App. Total | Left     | Thru | Right    | RTOR | App. Total | Left     | Thru | Right   | RTOR | App. Total | Int. Total |
| Peak Hour From 04: | 00 PM to 05 | :45 PM • | Peak 1 of | 1      |            |          |      |          |      |            |          |      |          |      |            |          |      |         |      |            |            |
| Intersection       | 04:45 PN    | 1        |           |        |            |          |      |          |      |            |          |      |          |      |            |          |      |         |      | 1          |            |
| Volume             | 20          | 57       | 42        | 24     | 143        | 57       | 49   | 22       | 19   | 147        | 99       | 221  | 52       | 33   | 405        | 42       | 194  | 7       | 5    | 248        | 943        |
| Percent            | 14.0        | 39.9     | 29.4      | 16.8   |            | 38.8     | 33.3 | 15.0     | 12.9 |            | 24.4     | 54.6 | 12.8     | 8.1  |            | 16.9     | 78.2 | 2.8     | 2.0  |            |            |
| 05:30 Volume       | 4           | 20       | 11        | 7      | 42         | 12       | 19   | 4        | 5    | 40         | 27       | 65   | 15       | 7    | 114        | 9        | 42   | 4       | 1    | 56         | 252        |
| Peak Factor        |             |          |           |        |            |          |      |          |      |            |          |      |          |      |            |          |      |         |      |            | 0.936      |
| High Int.          | 05:30 PM    | 1        |           |        |            | 05:00 PI | N    |          |      |            | 05:15 PI | N    |          |      |            | 05:00 PN | 1    |         |      |            |            |
| Volume             | 4           | 20       | 11        | 7      | 42         | 16       | 9    | 10       | 6    | 41         | 37       | 61   | 13       | 11   | 122        | 11       | 55   | 1       | 1    | 68         |            |
| Peak Factor        |             |          |           |        | 0.851      |          |      |          |      | 0.896      |          |      |          |      | 0.830      |          |      |         |      | 0.912      |            |

### Kimley-Horn and Associates, Inc. 10117 Princess Palm Ave, Suite 300 Tampa, FL 33610 813-620-1460

### City/County: Inglis/Levy Weather: Clear Comments:

# File Name : US19&C~1 Site Code : 00000000 Start Date : 11/20/2008 Page No : 1

| _ |             |       |        |         |        |           |      |      |          | Groups P | rinted- Hea | avy Veh | icles |          |      |            |      |      |          |        |           |            |
|---|-------------|-------|--------|---------|--------|-----------|------|------|----------|----------|-------------|---------|-------|----------|------|------------|------|------|----------|--------|-----------|------------|
|   |             | FOLLO | OW THA | T DREA  | M PARK | NAY       |      |      | CR 40    |          |             |         |       | US 19    |      |            |      |      | US 19    |        |           |            |
|   |             |       | E      | astboun |        |           |      | N    | /estbour | nd       |             |         | N     | orthbour |      |            |      | Se   | outhbour | าd     |           |            |
|   | Start Time  | Left  | Thru   | Right   | RTOR A | pp. Total | Left | Thru | Right    | RTOR A   | pp. Total   | Left    | Thru  | Right    | RTOR | App. Total | Left | Thru | Right    | RTOR A | op. Total | Int. Total |
| • | 04:00 PM    | 0     | 0      | 0       | . 0    | 0         | 0    | 0    | 0        | 0        | 0           | 0       | 7     | 0        | 0    | 7          | 0    | 3    | 0        | 0      | 3         | 10         |
|   | 04:15 PM    | 0     | 0      | 0       | 0      | 0         | • 0  | 1    | 0        | 0        | 1 [         | 2       | 0     | 0        | 0    | 2          | 1    | 2    | 0        | 0      | 3         | 6          |
|   | 04:30 PM    | 0     | 1      | 0       | 0      | 1         | 0    | 0    | 0        | 0        | 0           | 1       | 5     | 1        | 0    | 7          | 0    | 1    | 0        | 0      | 1         | 9          |
|   | 04:45 PM    | 0     | 1      | 0       | 0      | 1         | 0    | 0    | 0        | 0        | 0           | 0       | 1     | 0        | 0    | 1          | D    | 1    | 0        | 0      | 1         | 3          |
|   | Total       | 0     | 2      | 0       | 0      | 2         | 0    | 1    | 0        | 0        | 1           | 3       | 13    | 1        | Ō    | 17         | 1    | 7    | 0        | 0      | 8         | 28         |
|   |             |       |        |         |        |           |      |      |          |          |             |         |       |          |      |            |      |      |          |        |           |            |
|   | 05:00 PM    | 0     | 1      | 0       | 0      | 1         | 0    | 0    | 0        | 0        | 0           | 0       | 2     | 0        | 0    | 2          | 0    | 2    | 0        | 0      | 2         | 5          |
|   | 05:15 PM    | 0     | 0      | 0       | 0      | 0         | 0    | 1    | 0        | 0        | 1           | 0       | 4     | 0        | 0    | 4          | 0    | 2    | 0        | 0      | 2         | 7          |
|   | 05:30 PM    | 1     | 1      | 0       | 0      | 2         | 1    | 0    | 0        | 0        | 1 (         | 0       | 4     | 2        | 0    | 6          | 0    | 2    | 0        | 0      | 2         | 11         |
|   | 05:45 PM    | 0     | 0      | 0       | 0      | 0         | 0    | 0    | 0        | 0        | 0           | 0       | 2     | 0        | 0    | 2          | 0    | 1    | 0        | 0      | 1         | 3          |
|   | Total       | 1     | 2      | 0       | Ó      | 3         | 1    | 1    | 0        | 0        | 2           | 0       | 12    | 2        | 0    | 14         | Ò    | 7    | 0        | 0      | 7         | 26         |
|   |             |       |        |         |        |           |      |      |          |          |             |         |       |          |      |            |      |      |          |        | ·         |            |
|   | Grand Total | 1     | 4      | 0       | 0      | 5         | 1    | 2    | 0        | 0        | 3           | 3       | 25    | 3        | 0    | 31         | 1    | 14   | 0        | 0      | 15        | 54         |
|   | Apprch %    | 20.0  | 80.0   | 0.0     | 0.0    |           | 33.3 | 66.7 | 0.0      | 0.0      |             | 9.7     | 80.6  | 9.7      | 0.0  |            | 6.7  | 93.3 | 0.0      | 0.0    |           |            |
|   | Total %     | 1.9   | 7.4    | 0.0     | 0.0    | 9.3       | 1.9  | 3.7  | 0.0      | 0.0      | 5.6         | 5.6     | 46.3  | 5.6      | 0.0  | 57.4       | 1.9  | 25.9 | 0.0      | 0.0    | 27.8      |            |
|   |             |       |        |         |        |           |      |      |          |          | -           |         |       |          |      |            |      |      |          |        |           |            |

|                    | FOLL       | OW THA    | T DREA    | M PARI | KWAY       |          |       | CR 40   |      |            |          |      | US 19    | ••••••• |            |          |      | US 19   |      |            |            |
|--------------------|------------|-----------|-----------|--------|------------|----------|-------|---------|------|------------|----------|------|----------|---------|------------|----------|------|---------|------|------------|------------|
|                    |            | E         | astboun   | d      |            |          | V     | Vestbou | nd   |            |          | N    | orthbour |         |            |          | S    | puthbou | nd   |            | •          |
| Start Time         | Left       | Thru      | Right     | RTOR   | App. Total | Left     | Thru  | Right   | RTOR | App. Total | Left.    | Thru | Right    | RTOR    | App. Total | Left     | Thru | Right   | RTOR | App. Total | Int. Total |
| Peak Hour From 04: | 00 PM to 0 | 5:45 PM - | Peak 1 of | 1      |            |          |       |         |      |            |          |      | _        |         |            |          |      |         |      |            |            |
| Intersection       | 04:00 PI   | M         |           |        |            |          |       |         |      |            |          |      |          |         | •          |          |      |         |      | .          |            |
| Volume             | 0          | 2         | 0         | 0      | 2          | 0        | 1     | 0       | 0    | 1          | 3        | 13   | 1        | 0       | · 17       | 1        | 7    | 0       | 0    | 8          | 28         |
| Percent            | 0.0        | 100.0     | 0.0       | 0.0    |            | 0.0      | 100.0 | 0.0     | 0.0  |            | 17.6     | 76.5 | 5.9      | 0.0     |            | 12.5     | 87.5 | 0.0     | 0.0  | 1          |            |
| 04:00 Volume       | 0          | 0         | 0         | 0      | 0          | 0        | 0     | 0       | 0    | 0          | 0        | 7    | 0        | - 0     | 7          | 0        | 3    | 0       | 0    | 3          | 10         |
| Peak Factor        |            |           |           |        |            |          |       |         |      |            |          |      |          |         |            |          |      |         |      |            | 0.700      |
| High Int.          | 04:30 PI   | N         |           |        |            | 04:15 PI | M     |         |      |            | 04:00 PN | Λ    |          | -       |            | 04:00 PN | Λ    |         |      |            |            |
| Volume             | 0          | 1         | 0         | 0      | 1          | 0        | 1     | 0       | 0    | 1          | 0        | 7    | 0        | 0       | 7          | 0        | 3    | 0       | 0    | 3          |            |
| Peak Factor        |            |           |           |        | 0.500      |          |       |         |      | 0.250      |          |      |          |         | 0.607      |          |      |         |      | 0.667      |            |

 $HV''_{6} \quad NIS: (20) \rightarrow 3'_{6}$  $E/w: (6) \rightarrow 2'_{6}$ 

TABLE A-2

| •       |                                       |             |            |              |                 |                   | FDOT        |       |             |                                       |
|---------|---------------------------------------|-------------|------------|--------------|-----------------|-------------------|-------------|-------|-------------|---------------------------------------|
|         |                                       |             |            |              |                 |                   | Peak Season | F     | Peak Seaso  | n                                     |
|         |                                       | Count       | Count      | P            | M Peak Hou      | ur .              | Adjustment  | Pea   | ak Hour Vol | ume                                   |
| Roadway | Location                              | <u>Date</u> | Time       | <u>NB/EB</u> | SB/WB           | Total             | Factor      | NB/EB | SB/WB       | Total                                 |
| US 19   | Between SR 336 and project access     | 7/22/2008   | 4:00 PM    | 182          | 198             | 380               |             |       |             |                                       |
|         |                                       | 7/23/2008   | 4:00 PM    | 209          | 194             | 403               |             |       |             |                                       |
|         |                                       | 7/24/2008   | 4:45 PM    | 210          | <u>203</u>      | <u>413</u>        | · ·         |       |             | · · · · · · · · · · · · · · · · · · · |
|         | · · · · ·                             |             |            | 200          | 198             | 398               | 1.10%       | 220   | 218         | 438                                   |
| US 19   | Project access and CR 40              | 7/22/2008   | 4:00 PM    | 189          | 194             | 383               |             |       |             |                                       |
|         |                                       | 7/23/2008   | 4:00 PM    | 221          | 201             | 422               |             |       |             | •                                     |
|         |                                       | 7/24/2008   | 4:00 PM    | <u>222</u>   | <u>194</u>      |                   |             |       |             |                                       |
|         |                                       | •           |            | 211          | 196             | <u>416</u><br>407 | 1.10%       | 232   | 216         | 448                                   |
| CR 40   | US 19 and CR 40A                      | 7/22/2008   | 4:00 PM    | 64           | 80              | 144               |             |       |             |                                       |
|         |                                       | 7/23/2008   | 4:00 PM    | 78           | 77              | 155               |             |       |             |                                       |
| · .     |                                       | 7/24/2008   | 4:00 PM    |              |                 | <u>140</u>        |             |       |             |                                       |
|         | · · ·                                 |             |            | 67<br>70     | 73<br>77        | 147               | 1.10%       | 77    | 85          | 162                                   |
| CR 40   | US 19 to Marion County                | 7/22/2008   | 5:00 PM    | 82           | 79              | 161               | 2           |       |             |                                       |
| •       |                                       | 7/23/2008   | 4:00 PM    | 80           | 71              | 151               |             |       |             |                                       |
|         |                                       | 7/24/2008   | 5:00 PM    | 90           |                 | <u>155</u>        |             |       |             |                                       |
|         | · · · · · · · · · · · · · · · · · · · | · •         | 1 <b>a</b> | 84           | <u>65</u><br>72 | 156               | 1.10%       | 92    | 79          | 171                                   |

LINCKS & ASSOCIATES, INC.



FLORIDA DEPARTMENT OF PORTATION 2007 Annual Average Daily Paffic Report - Report Type: ALL

#### County: 34 LEVY

|      | Site |                        |         |       |         |      | AADT    | " K "  | Demand | " D "  | "T"   |
|------|------|------------------------|---------|-------|---------|------|---------|--------|--------|--------|-------|
| Site | Type | Description            | Direct: | ion 1 | Directi | on 2 | Two-Way | Fctr   | K100   | Fctr   | Fctr  |
| ==== | ==== |                        | ======  |       | ======= | ==== | ======= | =====  | ====   | =====  | ===== |
| 0039 |      | SR 45 150' S OF CR 326 | N       | 0     | S       | 0    | 4400 C  | 12.52F | 11.10  | 59.16F | 5.99F |

Site Type : P= Portable; T= Telemetered
AADT Flags : C= Computed; E= Manual Est; F= First Yr Est P= Prior Year; S= Second Yr Est; T= Third Yr Est; X= Unknown
"K/D" Flags : A= Actual; F= Volume Fctr Catg; D= Dist/Func. Class; P= Prior Year; S= State-wide Default; W= One-Way Road
"T" Flags : A= Actual; F= Axle Fctr Catg; D= Dist/Func. Class; P= Prior Year; S= State-wide Default; X= Cross-Reference

18-Mar-2008 11:26:26

Page 1 of 1 ·

622UPD [1,0,0,2] 2\_34\_CAADT.txt

ort: 340039-20070807.syn Synopsis Page: 1 1

| County:<br>Station<br>Descrip<br>Start I<br>Start I | tion:<br>Date: | 34<br>0039<br>SR 45 1<br>08/07/2<br>0000 | .50' S C<br>2007 | )F CR 3 | 26    |
|-----------------------------------------------------|----------------|------------------------------------------|------------------|---------|-------|
|                                                     |                | Dire                                     | ection:          | в       |       |
| Time                                                | 1st            | 2nd                                      | 3rd              | 4th     | Total |
| 0000                                                | 10             | 5                                        | 5                | 4       | 24    |
| 0100                                                | 2              | 2                                        | 1                | 3       | 8     |
| 0200                                                | 2              | 2                                        | 2                | 4       | 10    |
| 0300                                                | 6              | 1                                        | 5                | 10      | 22    |
| 0400                                                | 8              | 9                                        | 14               | 10      | 41    |
| 0500                                                | 21             | 19                                       | 50               | 55      | 145   |
| 0600                                                | 71             | 70                                       | 68               | 72      | 281   |
| 0700                                                | 77             | 76                                       | 77               | 67      | 297   |
| 0800                                                | 69             | 51                                       | 70               | 61      | 251   |
| 0900                                                | 59             | 60                                       | 57               | 55      | 231   |
| 1000                                                | 55             | 70                                       | 60               | 69      | 254   |
| 1100                                                | 62             | 71                                       | 64               | 77      | 274   |
| 1200                                                | 75             | 57                                       | 66               | 74      | 272   |
| 1300                                                | 73             | 72                                       | 57               | 53      | 255   |
| 1400                                                | 83             | 73                                       | 76               | 54      | 286   |
| 1500                                                | 71             | 87                                       | 89               | 100     | 347   |
| 1600                                                | 86             | 99                                       | 80               | 75      | 340   |
| 1700                                                | 91             | 81                                       | 67               | 69      | 308   |
| 1800                                                | 77             | 64                                       | 43               | 61      | 245   |
| 1900                                                | 45             | 41                                       | 49               | 48      | 183   |
| 2000                                                | 35             | 33                                       | 35               | 28      | 131   |
| 2100                                                | 30             | 18                                       | 23               | 19      | 90    |
| 2200                                                | 13             | 9                                        | 15               | 9       | 46    |
| 2300                                                | 11             | 6                                        | 11               | 8       | 36    |
| 24-Hour                                             | Totals         | 5:                                       |                  |         | 4377  |

24-Hour Totals: 

Peak Volume Information

-----

|       | Hour | Volume |  |
|-------|------|--------|--|
| A.M.  | 0645 | 302    |  |
| P.M.  | 1530 | 374    |  |
| Daily | 1530 | 374    |  |

Synopsis ort: 340039-20070808.syn Page: 2

|         | n:<br>ption:<br>Date: | 34<br>0039<br>SR 45 1<br>08/08/2<br>0000 |               | FCR 3 | 26    |
|---------|-----------------------|------------------------------------------|---------------|-------|-------|
|         |                       |                                          | ection:       |       |       |
| Time    | 1st                   | 2nd                                      | 3rd           |       | Total |
| 0000    | 9                     | 5                                        | <b>-</b><br>4 | 2     | 20    |
| 0100    | 1                     | 4                                        | 0             | 5     | 10    |
| 0200    | 5                     | 2                                        | 2             | 5     | . 14  |
| 0300    | 3                     | 2                                        | 2             | 12    | 19    |
| 0400    | 8                     | 8                                        | 12            | 16    | 44    |
| 0500    | 19                    | 38                                       | 31            | 56    | 144   |
| 0600    | 64                    | 51                                       | 63            | 71    | 249   |
| 0700    | 66                    | 68                                       | 98            | 61    | 293   |
| 0800    | 80                    | 75                                       | 67            | 66    | 288   |
| 0900    | 51                    | 47                                       | 58            | 60    | 216   |
| 1000    | 65                    | 61                                       | 68            | 61    | 255   |
| 1100    | 78                    | 67                                       | 59            | 55    | 259   |
| 1200    | 70                    | 65                                       | 65            | 79    | 279   |
| 1300    | 76                    | 54                                       | 69            | 57    | 256   |
| 1400    | 79                    | 73                                       | 66            | 83    | 301   |
| 1500    | 55                    | · 76                                     | 82            | 93    | 306   |
| 1600    | 99                    | 89                                       | 91            | 82    | 361   |
| 1700    | 70                    | 96                                       | 90            | 102   | 358   |
| 1800    | 59                    | 63                                       | 57            | 50    | 229   |
| 1900    | 46                    | 49                                       | 40            | 34    | 169   |
| 2000    | 46                    | 47                                       | 38΄           | 39    | 170   |
| 2100    | 29                    | 26                                       | 24            | 22    | 101   |
| 2200    | 20                    | 22                                       | 13            | 12    | 67    |
| 2300    | 15                    | 4                                        | 5             | 5     | 29    |
| 24-Hour | Totals                | :                                        |               |       | 4437  |

4-Hour Totals:

Peak Volume Information

|       | Hour | Volume |  |
|-------|------|--------|--|
| A.M.  | 0730 | 314    |  |
| P.M.  | 1545 | 372    |  |
| Daily | 1545 | 372    |  |

## APPENDIX C: Existing and Future Traffic Volume Worksheets

.007 Weekly Axle Factor Category Report - Report Type: ALL

.

County: 34 - LEVY

| Weel | c Dates               | 3401      |                  | 3403   |               | an f 0.0 |
|------|-----------------------|-----------|------------------|--------|---------------|----------|
| -    | 01 (01 (0007 01 (00)) | US27A     | SR121, SR55 - SR |        | SR55, CR347 - |          |
|      | 01/01/2007 - 01/06/   |           |                  | 0.95   |               |          |
| 2    | 01/07/2007 - 01/13/   |           |                  | 0.95   |               |          |
| 3    | 01/14/2007 - 01/20/   |           |                  | 0.95   |               |          |
| 4    | 01/21/2007 - 01/27/   |           |                  | 0.95   |               |          |
| 5    | 01/28/2007 - 02/03/   |           |                  | 0.95   |               |          |
| 6    | 02/04/2007 - 02/10/3  |           |                  | 0.95   |               |          |
| 7    | 02/11/2007 - 02/17/   |           |                  | 0.95   |               |          |
| 8    | 02/18/2007 - 02/24/   |           |                  | 0.95   |               |          |
| 9    | 02/25/2007 - 03/03/   |           |                  | 0.95   |               |          |
| 10   | 03/04/2007 - 03/10/2  | -         |                  | 0.95   |               |          |
| 11   | 03/11/2007 - 03/17/2  |           |                  | 0.95   |               |          |
| 12   | 03/18/2007 - 03/24/3  |           |                  | 0.95   |               |          |
| 13   | 03/25/2007 - 03/31/2  |           |                  | 0.95   |               |          |
| 14   | 04/01/2007 - 04/07/2  |           |                  | 0.95   |               |          |
| 15   | 04/08/2007 - 04/14/3  |           |                  | 0.95   |               |          |
| 16   | 04/15/2007 - 04/21/2  |           |                  | . 0.95 |               |          |
| 17   | 04/22/2007 - 04/28/2  |           |                  | 0.95   |               |          |
| 18   | 04/29/2007 - 05/05/3  |           |                  | 0.95   |               |          |
|      | 05/06/2007 - 05/12/3  |           |                  | 0.95   |               |          |
|      | 05/13/2007 - 05/19/3  |           |                  | 0.95   |               |          |
|      | 05/20/2007 - 05/26/3  |           |                  | 0.95   |               |          |
|      | 05/27/2007 - 06/02/2  |           |                  | 0.95   |               |          |
| 23   | 06/03/2007 - 06/09/3  |           |                  | 0.95   |               |          |
|      | 06/10/2007 - 06/16/3  |           |                  | 0.95   |               |          |
|      | 06/17/2007 - 06/23/3  |           |                  | 0.95   |               |          |
| 26   | 06/24/2007 - 06/30/3  |           |                  | 0.95   |               |          |
| 27   | 07/01/2007 - 07/07/3  |           |                  | 0.95   |               |          |
|      | 07/08/2007 - 07/14/2  |           |                  | 0.95   |               |          |
| 29   | 07/15/2007 - 07/21/3  |           |                  | 0.95   |               |          |
|      | 07/22/2007 - 07/28/3  |           |                  | 0.95   |               |          |
|      | 07/29/2007 - 08/04/3  |           |                  | 0.95   |               |          |
|      | 08/05/2007 - 08/11/2  |           |                  | 0.95   |               |          |
|      | 08/12/2007 - 08/18/2  |           |                  | 0.95   |               |          |
|      | 08/19/2007 - 08/25/2  |           |                  | 0.95   |               |          |
| 35   | 08/26/2007 - 09/01/2  |           |                  | 0.95   |               |          |
|      | 09/02/2007 - 09/08/2  |           |                  | 0.95   |               |          |
|      | 09/09/2007 - 09/15/2  |           |                  | 0.95   |               |          |
|      | 09/16/2007 - 09/22/2  |           |                  | 0.95   |               |          |
|      | 09/23/2007 - 09/29/2  |           |                  | 0.95   |               |          |
|      | 09/30/2007 - 10/06/2  |           |                  | 0.95   |               |          |
|      | 10/07/2007 - 10/13/2  |           |                  | 0.95   |               |          |
|      | 10/14/2007 - 10/20/2  |           |                  | 0.95   |               |          |
|      | 10/21/2007 - 10/27/2  |           |                  | 0.95   |               |          |
|      | 10/28/2007 - 11/03/2  |           |                  | 0.95   |               | -        |
|      | 11/04/2007 - 11/10/2  |           |                  | 0.95   |               |          |
|      | 11/11/2007 - 11/17/2  |           |                  | 0.95   |               |          |
|      | 11/18/2007 - 11/24/2  |           |                  | 0.95   |               |          |
|      | 11/25/2007 - 12/01/2  |           |                  | 0.95   |               |          |
|      | 12/02/2007 - 12/08/2  |           |                  | 0.95   |               |          |
|      | 12/09/2007 - 12/15/2  |           |                  | 0.95   |               |          |
|      | 12/16/2007 - 12/22/2  |           |                  | 0.95   | 0.96          |          |
|      | 12/23/2007 - 12/29/2  |           |                  | 0.95   | 0.96          |          |
| 53   | 12/30/2007 - 12/31/2  | 2007 0.92 | 0.95             | 0.95   | 0.96          |          |
|      |                       |           |                  | •      | •             |          |

### INTERSECTION: U.S. 19 & Construction Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING            | TRAFFIC"         | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------|------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2008 EXISTING        | CONDITIONS       |      |      |      |      |      |      |      | 180  |      |      | 132  |      |
| "BACKGROU            | ND TRAFFIC"      | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VEST          | ED" TRAFFIC      |      |      |      |      |      |      |      | 79   |      |      | 92   |      |
| Years To             | Buildout         | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    |
| Yearly Gro           | owth Rate        | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND T         | RAFFIC GROWTH    |      |      |      |      |      |      |      | 30   |      |      | 22   |      |
| 2015 NON-PRO         | JECT TRAFFIC     |      |      |      |      |      |      |      | 289  |      |      | 246  |      |
| "PROJECT<br>LAND USE | TRAFFIC"<br>TYPE | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project              | Pass - By        |      |      |      |      |      |      |      |      |      |      |      |      |
| Trips                | Net New          |      |      |      | 105  |      | 45   |      | 4    | 900  | 385  | 40   |      |
| TOTAL PROJ           | ECT TRAFFIC      |      |      |      | 105  |      | 45   |      | 4    | 900  | 385  | 40   |      |
| 2015 TOTA            | L TRAFFIC        |      |      |      | 105  |      | 45   |      | 293  | 900  | 385  | 286  |      |

### INTERSECTION: U.S. 19 & Operations Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"      | EBL      | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT   | NBR  | SBL  | SBT  | SBR  |
|---------------|---------------|----------|------|------|------|------|------|------|-------|------|------|------|------|
| 2008 EXISTING | CONDITIONS    |          |      |      |      |      |      |      | 180   |      |      | 132  |      |
| "BACKGROUI    |               | EBL      | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT   | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VEST   | ED" TRAFFIC   | <u> </u> |      |      |      |      |      |      | 79    | L    |      | 92   |      |
| Years To      | Buildout      | 7        | 7    | 7    | 7    | 7    | 7    | 7    | 7     | 7    | 7    | 7    | 7    |
| Yearly Gro    | owth Rate     | 2.2%     | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2%  | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND TH | RAFFIC GROWTH |          |      |      |      |      |      |      | 30    |      |      | 22   |      |
| 2015 NON-PRO  |               | I        |      |      |      |      |      |      | 289   |      |      | 246  |      |
| LAND USE      | TYPE          | EBL      | EBT  | EBR  | WBL  | wвт  | WBR  | NBL  | NBT   | NBR  | SBL  | SBT  | SBR  |
| Project       | Pass - By     |          |      |      |      |      |      |      |       |      |      |      |      |
| Trips         | Net New       |          |      |      | 9    |      | 4    |      | 900   | 93   | 40   | 105  |      |
| TOTAL PROJE   | CT TRAFFIC    |          |      |      | 9    |      | 4    |      | 900   | 93   | 40   | 105  |      |
| 2015 TOTAI    | TRAFFIC       | [        |      |      | 9    |      | 4    |      | 1,189 | 93   | 40   | 351  |      |

### INTERSECTION: CR 40 & Heavy Haul Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"      | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL.    | NBT  | NBR  | SBL  | SBT  | SBR     |
|---------------|---------------|------|------|------|------|------|------|---------|------|------|------|------|---------|
| 2008 EXISTING | CONDITIONS    |      | 56   |      |      | 53   |      |         |      |      |      |      |         |
| "BACKGROU     | ND TRAFFIC"   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL     | NBT  | NBR  | SBL  | SBT  | SBR     |
| TOTAL "VEST   | ED" TRAFFIC   |      | 0    |      |      | 0    | [    |         |      |      |      |      |         |
| Years To      | Buildout      | 7    | 7    | 7    | 7    | 7    | 7    | 7       | 7    | 7    | 7    | 7    | 7       |
| Yearly Gro    | owth Rate     | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2%    | 2.2% | 2.2% | 2.2% | 2.2% | 2.2%    |
| BACKGROUND TI | RAFFIC GROWTH |      | 9    |      |      | 9    |      |         |      |      |      |      |         |
| 2015 NON-PRO  | JECT TRAFFIC  |      | 65   |      | I    | 62   | [    |         |      |      |      |      |         |
| "PROJECT      | TRAFFIC"      |      |      |      |      |      |      |         |      |      |      |      |         |
| LAND USE      | TYPE          | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL     | NBT  | NBR  | SBL  | SBT  | SBR     |
| Project       | Pass - By     |      |      |      |      |      |      |         |      |      |      |      |         |
| Trips         | Net New       |      | 7    |      |      | 57   |      |         | 15   |      |      |      |         |
| TOTAL PROJ    | ECT TRAFFIC   |      | 7    |      |      | 57   |      |         | 15   |      |      |      |         |
| 2015 TOTA     | L TRAFFIC     |      | 72   | r    |      | 119  |      | ······· | 15   |      |      |      | <b></b> |

INTERSECTION: U.S. 19 & SR 121 COUNT DATE: December 2, 2008 TIME PERIOD: 4:45 p.m. - 5:45 p.m. PEAK HOUR FACTOR: 0.97

| "EXISTING      | TRAFFIC"        | EBL   | ЕΒТ   | EBR   | WBL   | WBT   | WBR       | NBL   | NBT   | NBR      | SBL   | SBT   | SBR   |
|----------------|-----------------|-------|-------|-------|-------|-------|-----------|-------|-------|----------|-------|-------|-------|
| Raw Turning    | Movements       |       |       |       | 62    |       | 7         |       | 95    | 41       | 16    | 121   |       |
| Peak Season Co | rrection Factor | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090     | 1.090 | 1.090 | 1.090    | 1.090 | 1.090 | 1.090 |
| 2008 EXISTING  | CONDITIONS      |       | ·     |       | 68    |       | 8         |       | 104   | 45       | 17    | 132   |       |
| "BACKGROUN     | ND TRAFFIC"     | EBL   | EBT   | EBR   | WBL   | WBT   | WBR       | NBL   | NBT   | NBR      | SBL   | SBT   | SBR   |
| TOTAL "VEST    | ED" TRAFFIC     |       |       |       | 0     |       | 0         |       | 15    | 0        | 0     | 9     |       |
|                |                 |       |       | ·     |       |       | r <u></u> |       |       | <b>.</b> |       | · · · |       |
| Years To       | Buildout        | 7     | 7     | 7     | 7     | 7     | 7         | 7     | 7     | 7        | 7     | 7     | 7     |
| Yearly Gro     | wth Rate        | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%      | 2.2%  | 2.2%  | 2.2%     | 2.2%  | 2.2%  | 2.2%  |
| BACKGROUND TR  | RAFFIC GROWTH   |       |       |       | 11    |       | 1         |       | 17    | 7        | 3     | 22    |       |
| 2015 NON-PRO.  | JECT TRAFFIC    |       |       |       | 79    |       | 9         |       | 136   | 52       | 20    | 163   |       |
| "PROJECT       | TRAFFIC"        |       |       |       |       |       |           |       |       |          |       |       |       |
| LAND USE       | TYPE            | EBL   | EBT   | EBR   | WBL   | WBT   | WBR       | NBL   | NBT   | NBR      | SBL   | SBT   | SBR   |
| Project        | Pass - By       |       |       |       |       |       |           |       |       |          |       |       |       |
| Trips          | Net New         |       |       |       | 42    |       |           |       | 56    | 364      |       | 7     |       |
| TOTAL PROJE    | CT TRAFFIC      |       |       |       | 42    |       | 0         |       | 56    | 364      | 0.    | 7     |       |
| 2015 TOTAL     |                 | 1     |       |       | 121   |       | 9         |       | 192   | 416      | 20    | 170   |       |

INTERSECTION: U.S. 19 & CR 40 COUNT DATE: November 20, 2008 TIME PERIOD: 4:45 p.m. - 5:45 p.m. PEAK HOUR FACTOR: 0.94

| "EXISTING      | TRAFFIC"        | EBL      | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
|----------------|-----------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Raw Turning    | Movements       | 20       | 57    | 66    | 57    | 49    | 41    | 99    | 221   | 85    | 42    | 194   | 12    |
| Peak Season Co | rrection Factor | 1.070    | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 |
| 2008 EXISTING  | CONDITIONS      | 21       | 61    | 71    | 61    | 52    | 44    | 106   | 236   | 91    | 45    | 208   | 13    |
| "BACKGROU      | ND TRAFFIC"     | EBL      | EBT   | EBR   | WBL   | wвт   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| TOTAL "VEST    | ED" TRAFFIC     | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 35    | 0     | 0     | 59    | 0     |
| Years To       | Buildout        | 7        | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     |
| Yearly Gro     | wth Rate        | 2.2%     | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  |
| BACKGROUND TH  | RAFFIC GROWTH   | 3        | 10    | 12    | 10    | 9     | 7     | 17    | 39    | 15    | 7     | 34    | 2     |
| 2015 NON-PRO   | JECT TRAFFIC    | 24       | 71    | 83    | 71    | 61    | 51    | 123   | 310   | 106   | 52    | 301   | 15    |
| "PROJECT       | TRAFFIC"        |          |       |       |       |       |       |       |       |       |       |       |       |
| LAND USE       | TYPE            | EBL      | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Project        | Pass - By       | <u> </u> |       |       |       |       |       |       |       |       |       |       |       |
| Trips          | Net New         | 3        |       |       |       |       | 7     |       | 104   |       | 72    | 908   | 15    |
| TOTAL PROJE    | CT TRAFFIC      | 3        | 0     | 0     | 0     | 0     | 7     | 0     | 104   | 0     | 72    | 908   | 15    |
| 2015 TOTAI     | TRAFFIC         | 27       | 71    | 83    | 71    | 61    | 58    | 123   | 414   | 106   | 124   | 1,209 | 30    |

> INTERSECTION: U.S. 19 & Construction Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"      | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------|---------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2008 EXISTING | G CONDITIONS  |      | [    |      | ]    |      |      |      | 216  |      |      | 232  |      |
| "BACKGROU     | ND TRAFFIC"   | EBL  | EBT  | EBR  | WBL  |      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VEST   | ED" TRAFFIC   |      |      |      |      |      |      |      | 35   |      |      | 59   |      |
| Years To      | Buildout      | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    |
| Yearly Gro    | owth Rate     | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND T  | RAFFIC GROWTH |      |      |      |      |      |      |      | 36   |      |      | 38   |      |
| 2015 NON-PRO  | JECT TRAFFIC  |      |      |      |      | [    |      |      | 287  |      |      | 329  |      |
| "PROJECT      | TRAFFIC"      |      |      |      |      |      |      |      |      |      |      |      |      |
| LAND USE      | TYPE          | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project       | Pass - By     |      |      |      |      |      |      |      |      | -    |      |      |      |
| Trips         | Net New       |      |      |      | 900  | ·    | 385  |      | 35   | 105  | 45   | 4    |      |
| TOTAL PROJ    | ECT TRAFFIC   |      |      |      | 900  |      | 385  |      | 35   | 105  | 45   | 4    |      |
| 2015 TOTA     | L TRAFFIC     |      |      |      | 900  |      | 385  |      | 322  | 105  | 45   | 333  |      |

> INTERSECTION: U.S. 19 & Operations Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"      | EBL      | EBT  | EBR  | WBL      | WBT  | WBR  | NBL  | NBT  | NBR  | ŞBL  | SBT   | SBR  |
|---------------|---------------|----------|------|------|----------|------|------|------|------|------|------|-------|------|
| 2008 EXISTING | CONDITIONS    |          |      |      |          |      |      |      | 216  |      |      | 232   |      |
| "BACKGROU     | ND TRAFFIC"   | EBL      | EBT  | EBR  | WBL      | wвт  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT   | SBR  |
| TOTAL "VEST   | ED" TRAFFIC   |          | ſ    |      |          |      |      |      | 35   |      |      | 59    |      |
| Years To      | Buildout      | 7        | 7    | 7    | 7        | 7    | 7    | 7    | 7    | 7    | 7    | 7     | 7    |
| Yearly Gro    | owth Rate     | 2.2%     | 2.2% | 2.2% | 2.2%     | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2%  | 2.2% |
| BACKGROUND TH | RAFFIC GROWTH |          |      |      |          |      |      |      | 36   |      |      | 38    |      |
| 2015 NON-PRO  |               | <u> </u> | [    |      | <u> </u> |      | []   |      | 287  |      |      | 329   |      |
| LAND USE      | TYPE          | EBL      | EBT  | EBR  | WBL      | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT   | SBR  |
| Project       | Pass - By     | T        |      |      |          |      |      |      |      |      |      |       |      |
| Trips         | Net New       |          |      |      | 80       |      | 35   |      | 105  | 9    | 4    | 900   |      |
| TOTAL PROJ    | ECT TRAFFIC   | 1        |      |      | 80       |      | 35   |      | 105  | 9    | 4    | 900   |      |
| 2015 TOTA     |               |          |      |      | 80       |      | 35   |      | 392  | 9    | 4    | 1,229 |      |

### INTERSECTION: CR 40 & Heavy Haul Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"      | EBL                                   | EBT  | EBR  | WBL       | WBT  | WBR  | NBL  | NBT  | NBR     | SBL  | SBT  | SBR  |
|---------------|---------------|---------------------------------------|------|------|-----------|------|------|------|------|---------|------|------|------|
| 2008 EXISTING | G CONDITIONS  |                                       | 77   |      |           | 85   |      |      |      |         |      | ·    |      |
| "BACKGROU     | ND TRAFFIC"   | EBL                                   | EBT  | EBR  | WBL       | WBT  | WBR  | NBL  | NBT  | NBR     | SBL  | SBT  | SBR  |
| TOTAL "VEST   | ED" TRAFFIC   |                                       | 0    |      |           | 0    |      |      |      | ·       |      |      |      |
|               |               | · · · · · · · · · · · · · · · · · · · | r    |      | · · · · · |      |      |      |      | <b></b> |      |      |      |
| Years To      | Buildout      | 7                                     | 7    | 7    | 7         | 7    | 7    | 7    | 7    | 7       | 7    | 7    | 7    |
| Yearly Gr     | owth Rate     | 2.2%                                  | 2.2% | 2.2% | 2.2%      | 2.2% | 2.2% | 2.2% | 2.2% | 2.2%    | 2.2% | 2.2% | 2.2% |
| BACKGROUND T  | RAFFIC GROWTH |                                       | 13   |      |           | 14   |      |      |      |         |      |      |      |
|               |               | · · ·                                 | r    |      |           |      | ·    |      |      | r       |      |      |      |
| 2015 NON-PRO  | JECT TRAFFIC  |                                       | 90   | L    |           | 99   |      |      |      |         |      |      |      |
| "PROJECT      |               |                                       |      |      |           |      |      |      | •    |         |      |      |      |
| LAND USE      | TYPE          | EBL                                   | EBT  | EBR  | WBL       | WBT  | WBR  | NBL  | NBT  | NBR     | SBL  | SBT  | SBR  |
| Project       | Pass - By     |                                       |      |      |           |      |      |      |      |         |      |      |      |
| Trips         | Net New       |                                       | 57   | 15   |           | 7    |      |      |      |         |      |      |      |
| TOTAL PROJ    | ECT TRAFFIC   |                                       | 57   | 15   |           | 7    | •    |      |      |         |      |      |      |
| 2015 TOTA     | L TRAFFIC     |                                       | 147  | 15   |           | 106  |      |      |      |         |      |      |      |

> INTERSECTION: U.S. 19 & Construction Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"     | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2008 EXISTING | CONDITIONS   |      |      |      |      |      |      |      | 180  |      |      | 132  |      |
| BACKGROUN     | ID TRAFFIC"  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VESTI  | ED" TRAFFIC  |      |      | l    |      |      |      |      | 79   |      |      | 92   |      |
| Years To      | Buildout     | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    |
| Yearly Gro    | wth Rate     | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND TR | AFFIC GROWTH |      |      |      |      |      |      |      | 30   |      |      | 22   |      |
| 2015 NON-PRO. |              |      |      |      |      |      |      |      | 289  |      |      | 246  |      |
| LAND USE      | TYPE         | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project       | Pass - By    |      |      |      |      |      |      |      |      |      |      |      | ·    |
| Trips         | Net New      |      |      |      | 105  |      | 45   | _    | 4    | 900  | 385  | 40   |      |
| TOTAL PROJE   | CT TRAFFIC   |      |      |      | 105  |      | 45   |      | 4    | 900  | 385  | 40   |      |
| 2015 TOTAL    | . TRAFFIC    |      |      |      | 105  |      | 45   |      | 293  | 900  | 385  | 286  |      |

### INTERSECTION: U.S. 19 & Operations Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING                             | TRAFFIC"      | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT   | NBR  | SBL  | SBT  | SBR  |
|---------------------------------------|---------------|------|------|------|------|------|------|------|-------|------|------|------|------|
| 2008 EXISTING                         | CONDITIONS    |      |      |      |      |      |      |      | 180   |      |      | 132  |      |
| "BACKGROUI                            | ND TRAFFIC"   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT   | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VESTED" TRAFFIC                |               | T    |      |      |      |      |      |      | 79    |      |      | 92   |      |
| · · · · · · · · · · · · · · · · · · · |               |      |      |      |      |      |      |      |       | •    |      |      |      |
| Years To                              | Buildout      | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7     | 7    | 7    | 7    | 7    |
| Yearly Gro                            | wth Rate      | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2%  | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND TF                         | RAFFIC GROWTH |      |      |      |      | _    |      |      | 30    |      |      | 22   |      |
|                                       |               |      |      |      |      |      |      |      |       |      |      |      |      |
| 2015 NON-PRO                          | JECT TRAFFIC  |      |      |      |      |      |      |      | 289   |      |      | 246  |      |
| "PROJECT                              | TRAFFIC"      |      |      |      |      |      |      |      |       |      |      |      |      |
| LAND USE                              | TYPE          | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT   | NBR  | SBL  | SBT  | SBR  |
| Project                               | Pass - By     |      |      |      |      |      |      |      |       |      |      |      |      |
| Trips                                 | Net New       |      |      |      | 9    |      | 4    |      | 900   | 93   | 40   | 105  |      |
| TOTAL PROJE                           | CT TRAFFIC    |      |      |      | 9    |      | 4    |      | 900   | 93   | 40   | 105  |      |
| 2015 TOTAI                            | TRAFFIC       |      |      |      | 9    |      | 4    |      | 1,189 | 93   | 40   | 351  |      |

> INTERSECTION: CR 40 & Heavy Haul Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"           | EBL | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------|--------------------|-----|------|------|------|------|------|------|------|------|------|------|------|
| 2008 EXISTING | CONDITIONS         |     | 56   |      |      | 53   |      |      |      |      |      |      |      |
| "BACKGROUN    | ND TRAFFIC"        | EBL | EBT  | EBR  | WBL  | WBT  | WBR  | NBL. | NBT  | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VEST   | ED" TRAFFIC        |     | 0    |      |      | 0    |      |      |      |      |      |      |      |
| Years To      | Buildout           | 7   | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    |
| Yearly Gro    | Yearly Growth Rate |     | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND TR | RAFFIC GROWTH      |     | 9    |      |      | 9    |      |      |      |      |      |      |      |
| 2015 NON-PRO. | JECT TRAFFIC       |     | 65   | [    |      | 62   |      |      |      |      |      |      |      |
| "PROJECT      | TRAFFIC"           |     |      |      |      |      |      |      |      |      |      |      |      |
| LAND USE      | TYPE               | EBL | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project       | Pass - By          |     |      |      |      |      |      |      |      |      |      |      |      |
| Trips         | Net New            |     | 7    |      |      | 57   |      | 15   |      |      |      |      |      |
| TOTAL PROJE   | CT TRAFFIC         |     | 7    |      |      | 57   |      | 15   |      |      |      |      |      |
| 2015 TOTAL    | TRAFFIC            |     | - 72 | [    |      | 119  |      | 15   |      |      |      |      |      |

> INTERSECTION: U.S. 19 & SR 121 COUNT DATE: December 2, 2008 TIME PERIOD: 4:45 p.m. - 5:45 p.m. PEAK HOUR FACTOR: 0.97

| "EXISTING     | TRAFFIC"           | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
|---------------|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Raw Turning   | Movements          |       |       |       | 62    |       | 7     |       | 95    | 41    | 16    | 121   |       |
| Peak Season C | orrection Factor   | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 |
| 2008 EXISTING | CONDITIONS         |       | [     |       | 68    |       | 8     |       | 104   | 45    | 17    | 132   |       |
| "BACKGROU     | ND TRAFFIC"        | EBL   | ЕВТ   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| TOTAL "VEST   | ED" TRAFFIC        |       | [     |       | 0     |       | 0     |       | 15    | 0     | 0     | 9     |       |
| Years To      | Buildout           | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     |
| Yearly Gr     | Yearly Growth Rate |       | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  |
| BACKGROUND T  | RAFFIC GROWTH      |       |       |       | 11    |       | 1     |       | 17    | 7     | 3     | 22    |       |
| 2015 NON-PRO  | JECT TRAFFIC       |       |       |       | 79    |       | 9     |       | 136   | 52    | 20    | 163   |       |
| "PROJECT      | TRAFFIC"           |       |       |       |       |       |       |       |       |       |       |       |       |
| LAND USE      | TYPE               | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Project       | Pass - By          | 1     |       |       |       |       |       |       |       |       |       |       |       |
| Trips         | Net New            |       |       |       | 42    |       |       |       | 56    | 364   |       | 7     |       |
| TOTAL PROJ    | ECT TRAFFIC        |       |       |       | 42    |       | 0     |       | 56    | 364   | 0     | 7     |       |
| 2015 TOTA     | L TRAFFIC          |       |       |       | 121   |       | 9     |       | 192   | 416   | 20    | 170   |       |

> INTERSECTION: U.S. 19 & CR 40 COUNT DATE: November 20, 2008 TIME PERIOD: 4:45 p.m. - 5:45 p.m. PEAK HOUR FACTOR: 0.94

| "EXISTING     | TRAFFIC"               | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
|---------------|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Raw Turning   | Movements              | 20    | 57    | 66    | 57    | 49    | 41    | 99    | 221   | 85    | 42    | 194   | 12    |
| Peak Season C | orrection Factor       | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 |
| 2008 EXISTING | G CONDITIONS           | 21    | 61    | 71    | 61    | 52    | 44    | 106   | 236   | 91    | 45    | 208   | 13    |
| "BACKGROU     | ND TRAFFIC"            | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| TOTAL "VEST   | TOTAL "VESTED" TRAFFIC |       | 0     | 0     | 0     | 0     | 0     | 0     | 35    | 0     | 0     | 59    | 0     |
| Years To      | Buildout               | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | 7     | . 7   | 7     | 7     |
| Yearly Gr     | owth Rate              | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  |
| BACKGROUND T  | RAFFIC GROWTH          | 3     | 10    | 12    | 10    | 9     | 7     | 17    | 39    | 15    | 7     | 34    | 2     |
| 2015 NON-PRC  | JECT TRAFFIC           | 24    | 71    | 83    | 71    | 61    | 51    | 123   | 310   | 106   | 52    | 301   | 15    |
| "PROJECT      | TRAFFIC"               |       |       |       |       |       |       |       |       |       |       |       |       |
| LAND USE      | TYPE                   | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Project       | Pass - By              |       |       |       |       |       |       |       |       |       |       |       |       |
| Trips         | Net New                | 3     |       |       |       |       | 7     |       | 104   |       | 72    | 908   | 15    |
|               |                        |       |       |       |       |       |       |       |       |       |       |       |       |

TOTAL PROJECT TRAFFIC 2015 TOTAL TRAFFIC 1,209  **TRAFFIC VOLUMES AT STUDY INTERSECTION** (P.M. Peak-Hour, Peak Construction Traffic, Heavy Haul Route 2)

### INTERSECTION: U.S. 19 & Construction Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"      | EBL                                          | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------|---------------|----------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| 2008 EXISTING | CONDITIONS    |                                              |      |      |      |      |      |      | 216  |      |      | 232  |      |
| "BACKGROU     |               | EBL                                          | EBT  | EBR  | WBL  |      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VEST   | ED" TRAFFIC   | <u>.                                    </u> | l    | L    | l    |      | l    | L    | 35   | L    | l    | 59   |      |
| Years To      | Buildout      | 7                                            | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    |
| Yearly Gro    | owth Rate     | 2.2%                                         | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND T  | RAFFIC GROWTH |                                              |      |      |      | _    |      |      | 36   |      |      | 38   |      |
| 2015 NON-PRO  | JECT TRAFFIC  |                                              |      |      |      |      |      |      | 287  |      |      | 329  |      |
| "PROJECT      | TRAFFIC"      |                                              |      |      |      |      | ,    |      |      |      |      |      |      |
| LAND USE      | TYPE          | EBL                                          | EBT  | EBR  | WBL  | _WBT | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project       | Pass - By     |                                              |      |      |      |      |      | ·    |      |      |      |      |      |
| Trips         | Net New       |                                              |      |      | 900  |      | 385  |      | 35   | 105  | 45   | 4    |      |
| TOTAL PROJ    | ECT TRAFFIC   |                                              |      |      | 900  |      | 385  |      | 35   | 105  | 45   | 4    |      |
| 2015 TOTA     | L TRAFFIC     | [                                            |      |      | 900  |      | 385  |      | 322  | 105  | 45   | 333  |      |

TRAFFIC VOLUMES AT STUDY INTERSECTION (P.M. Peak-Hour, Peak Construction Traffic, Heavy Haul Route 2)

### INTERSECTION: U.S. 19 & Operations Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"      | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------|---------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2008 EXISTING | CONDITIONS    | 1    |      |      |      |      |      |      | 216  |      |      | 232  |      |
| "BACKGROUI    | ND TRAFFIC"   | EBL  | ЕВТ  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBF  |
| TOTAL "VEST   | ED" TRAFFIC   |      |      |      |      |      |      |      | 35   |      |      | 59   |      |
| Years To      | Buildout      | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    |
| Yearly Gro    | owth Rate     | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND TH | RAFFIC GROWTH |      |      |      |      |      |      |      | - 36 |      |      | 38   |      |
| 2015 NON-PRO  | JECT TRAFFIC  |      |      |      |      |      |      |      | 287  |      |      | 329  |      |
| "PROJECT      | TRAFFIC"      |      |      |      |      |      |      |      |      |      |      |      |      |
| LAND USE      | TYPE          | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project       | Pass - By     |      |      |      |      |      |      |      |      |      |      |      |      |
| Trips         | Net New       |      |      |      | 80   |      | 35   |      | 105  | 9    | 4    | 900  |      |
| TOTAL PROJE   | CT TRAFFIC    |      |      |      | 80   |      | 35   | ·    | 105  | 9    | 4    | 900  |      |
|               |               |      |      |      |      |      |      |      |      |      |      |      |      |

TRAFFIC VOLUMES AT STUDY INTERSECTION (P.M. Peak-Hour, Peak Construction Traffic, Heavy Haul Route 2)

### INTERSECTION: CR 40 & Heavy Haul Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"                   | EBL  | EBT      | EBR  | WBL  | WBT        | WBR   | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------|----------------------------|------|----------|------|------|------------|-------|------|------|------|------|------|------|
| 2008 EXISTING | G CONDITIONS               |      | 77       |      |      | 85         |       |      |      |      |      |      |      |
| "BACKGROU     | ND TRAFFIC"<br>ED" TRAFFIC | EBL  | EBT      | EBR  | WBL  | <b>WBT</b> | WBR   | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|               |                            |      | <u>_</u> | L    | I    |            | l     |      |      | (    | L    | I    | LJ   |
| Years To      | Buildout                   | 7    | 7        | 7    | 7    | 7          | 7     | 7    | 7    | 7    | 7    | 7    | 7    |
| Yearly Gro    | owth Rate                  | 2.2% | 2.2%     | 2.2% | 2.2% | 2.2%       | 2.2%  | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND T  | ACKGROUND TRAFFIC GROWTH   |      |          |      |      | 14         |       |      |      |      |      |      |      |
|               |                            |      |          |      |      |            | ····· |      |      |      |      |      |      |
| 2015 NON-PRO  | JECT TRAFFIC               |      | 90       |      | L    | 99         |       |      |      |      |      |      |      |
| "PROJECT      | TRAFFIC"                   |      |          |      |      |            |       |      |      |      |      |      |      |
| LAND USE      | TYPE                       | EBL  | EBT      | EBR  | WBL  | WBT        | WBR   | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project       | Pass - By                  |      |          |      |      |            |       |      |      |      |      |      |      |
| Trips         | Net New                    |      | 57       | 15   |      | 7          |       |      |      |      |      |      |      |
| TOTAL PROJ    | TOTAL PROJECT TRAFFIC      |      |          | 15   |      | 7          |       |      |      |      |      |      |      |
| 2015 TOTA     | L TRAFFIC                  | Т    | 147      | 15   |      | 106        |       |      |      |      |      |      |      |

**TRAFFIC VOLUMES AT STUDY INTERSECTION** (A.M. Peak-Hour, Peak Operations Traffic)

#### INTERSECTION: U.S. 19 & Operations Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING            | TRAFFIC"                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2008 EXISTING        | CONDITIONS               |      |      |      |      |      |      |      | 180  |      |      | 132  |      |
| "BACKGROUI           | ND TRAFFIC"              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VEST          | ED" TRAFFIC              |      |      |      |      |      |      |      | 79   |      |      | 92   | 1    |
| Years To             | Buildout                 | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    |
| Yearly Gro           | owth Rate                | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND TH        | ACKGROUND TRAFFIC GROWTH |      |      |      |      |      |      |      | 39   |      |      | 29   |      |
| 2017 NON-PRO         | JECT TRAFFIC             | 1    |      |      |      |      |      |      | 298  |      |      | 253  |      |
| "PROJECT<br>LAND USE | TRAFFIC"                 | EBL  | ЕВТ  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project              | Pass - By                |      |      | LDI  | WDL  |      |      | NUL  | NDT  |      | 301  |      |      |
| Trips                | Net New                  |      |      |      | 14   |      | 6    |      |      | 148  | 64   |      |      |
| TOTAL PROJE          | ECT TRAFFIC              |      |      |      | 14   |      | 6    |      | 0    | 148  | 64   | 0    |      |
| 2017 TOTA            |                          |      |      |      | 14   |      | 6    |      | 298  | 148  | 64   | 253  |      |

### **TRAFFIC VOLUMES AT STUDY INTERSECTION** (P.M. Peak-Hour, Peak Operations Traffic)

INTERSECTION: U.S. 19 & SR 121 COUNT DATE: December 2, 2008 TIME PERIOD: 4:45 p.m. - 5:45 p.m. PEAK HOUR FACTOR: 0.97

| "EXISTING      | TRAFFIC"        | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
|----------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Raw Turning    | Movements       |       |       |       | 62    |       | 7     |       | 95    | 41    | 16    | 121   |       |
| Peak Season Co | rrection Factor | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 | 1.090 |
| 2008 EXISTING  | CONDITIONS      |       |       |       | 68    |       | 8     |       | 104   | 45    | 17    | 132   |       |
| "BACKGROUN     | ND TRAFFIC"     | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| TOTAL "VEST    | ED" TRAFFIC     |       |       |       | 0     |       | 0     |       | 15    | 0     | 0     | 9     |       |
| Years To       | Buildout        | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     |
| Yearly Gro     | wth Rate        | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  |
| BACKGROUND TR  | RAFFIC GROWTH   |       |       |       | 15    |       | 2     |       | 23    | 10    | 4     | 29    |       |
| 2017 NON-PRO.  | JECT TRAFFIC    |       |       |       | 83    |       | 10    |       | 142   | 55    | 21    | 170   |       |
| "PROJECT       | TRAFFIC"        |       |       |       |       |       |       |       |       |       |       | ,     |       |
| LAND USE       | TYPE            | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Project        | Pass - By       |       |       |       |       |       |       |       |       |       |       |       |       |
| Trips          | Net New         |       |       |       | 5     |       |       |       | 7     | 48    |       | 1     |       |
| TOTAL PROJE    | CT TRAFFIC      |       |       |       | 5     |       | 0     |       | 7     | 48    | 0     | 1     |       |
| 2017 TOTAL     | TRAFFIC         |       |       |       | 88    |       | 10    |       | 149   | 103   | 21    | 171   |       |

### **TRAFFIC VOLUMES AT STUDY INTERSECTION** (P.M. Peak-Hour, Peak Operations Traffic)

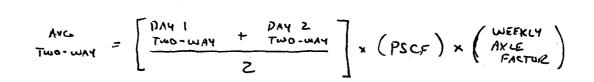
INTERSECTION: U.S. 19 & CR 40 COUNT DATE: November 20, 2008 TIME PERIOD: 4:45 p.m. - 5:45 p.m. PEAK HOUR FACTOR: 0.94

| "EXISTING      | TRAFFIC"                                     | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
|----------------|----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Raw Turning    | Movements                                    | 20    | 57    | 66    | 57    | 49    | 41    | 99    | 221   | 85    | 42    | 194   | 12    |
| Peak Season Co | orrection Factor                             | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 | 1.070 |
| 2008 EXISTING  | CONDITIONS                                   | 21    | 61    | 71    | 61    | 52    | 44    | 106   | 236   | 91    | 45    | 208   | 13    |
| "BACKGROU      | ND TRAFFIC"                                  | EBL   | EBT   | EBR   | WBL   | wвт   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| TOTAL "VEST    | ED" TRAFFIC                                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 35    | 0.    | 0     | 59    | 0     |
| Years To       | Buildout                                     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     |
| Yearly Gr      | owth Rate                                    | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  | 2.2%  |
| BACKGROUND TI  | Yearly Growth Rate<br>KGROUND TRAFFIC GROWTH |       | 13    | 15    | 13    | 11    | 10    | 23    | 51    | 20    | 10    | 45    | 3     |
| 2017 NON-PRO   | JECT TRAFFIC                                 | 26    | 74    | 86    | 74    | 63    | 54    | 129   | 322   | 111   | 55    | 312   | 16    |
| "PROJECT       | TRAFFIC"                                     |       |       |       |       |       |       |       |       |       |       |       |       |
| LAND USE       | TYPE                                         | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Project        | Pass - By                                    |       |       |       |       |       |       |       |       |       |       |       |       |
| Trips          | Net New                                      | 1     |       |       |       |       | 1     |       | 12    |       | 7     | 121   | 2     |
| TOTAL PROJ     | ECT TRAFFIC                                  | 1     | 0     | 0     | 0     | 0     | 1     | 0     | 12    | 0     | 7     | 121   | 2     |
| 2017 TOTA      |                                              | 27    | 74    | 86    | 74    | 63    | 55    | 129   | 334   | 111   | 62    | 433   | 18    |

TRAFFIC VOLUMES AT STUDY INTERSECTION (P.M. Peak-Hour, Peak Operations Traffic)

#### INTERSECTION: U.S. 19 & Operations Driveway PEAK HOUR FACTOR: 0.95

| "EXISTING     | TRAFFIC"                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2008 EXISTING | CONDITIONS               |      |      |      |      |      |      |      | 216  |      |      | 232  |      |
| "BACKGROU     | ND TRAFFIC"              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| TOTAL "VEST   | ED" TRAFFIC              |      |      |      |      |      |      |      | 35   | l    |      | 59   |      |
| Years To      | Buildout                 | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    | 9    |
| Yearly Gro    | owth Rate                | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
| BACKGROUND T  | ACKGROUND TRAFFIC GROWTH |      |      |      |      |      |      |      | 47   |      |      | 50   |      |
| 2017 NON-PRO  |                          |      |      |      |      |      |      |      | 298  |      |      | 341  |      |
| LANDUSE       | TYPE                     | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Project       | Pass - By                | 1    |      |      |      |      |      |      |      |      |      |      |      |
| Trips         |                          |      |      |      | 130  |      | 55   |      |      | 14   | 6    |      |      |
| TOTAL PROJ    | TOTAL PROJECT TRAFFIC    |      |      |      | 130  |      | 55   |      | 0    | 14   | 6    | 0    |      |
| 2017 TOTA     |                          |      |      |      | 130  |      | 55   |      | 298  | 14   | 6    | 341  |      |


.

### ROADWAY PEAK-HOUR CALCULATIONS

#### Station # 0039

US 41 => South of CR 326

| US 41 => South of | CR 326           |                       |                 |                   |                   |            |                |        | Weekly          |                   |
|-------------------|------------------|-----------------------|-----------------|-------------------|-------------------|------------|----------------|--------|-----------------|-------------------|
|                   |                  |                       |                 |                   | Maximum Values    |            | PHF            | PSCF   | Axle Factor     |                   |
|                   |                  | Number of Count Days: | 2               |                   | 370               |            | 0.93           | 1.11   | 0.95            |                   |
|                   |                  |                       | Ex              | tisting Peak-Se   | eason             |            |                | 2015 B | ackground       | 2017 Background   |
| Day 1<br>TWO-WAY  | Day 2<br>TWO-WAY | Time of<br>Day        | Avg.<br>TWO-WAY | 15-Min<br>Two-Wav | Hourly<br>TWO-WAY |            | Growth<br>Rate | E      | lourly<br>O-WAY | Hourly<br>TWO-WAY |
| 86                | 99               | 4:00                  | 98              | 98                | 370               | 400-500 pm | 2.80%          | 1      | 449             | 474               |
| 99                | 89 .             | 4:15                  | 99              | 99                | 357               | p          | 2.0070         |        | 112             | -1-               |
| 80                | 91               | 4:30                  | 90              | 90                | 351               |            |                |        |                 |                   |
| 75                | 82               | 4:45                  | 83              | 83                | 344               |            |                |        |                 |                   |
| 91                | 70               | 5:00                  | 85              | 85                | 351               |            |                |        |                 |                   |
| 81                | 96               | 5:15                  | 93              | 93                |                   |            |                |        |                 |                   |
| 67                | 90               | 5:30                  | 83              | 83                |                   |            |                |        |                 |                   |
| 69                | 102              | 5:45                  | 90              | 90                |                   |            |                |        |                 |                   |



# FLORIDA STATE HIGHWAY SYSTEM LEVEL OF SERVICE REPORT

2007



### FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT TWO

August 2008



⇒



|                | lap    | Loca     |                        | System  | W.P                         | Miles   | S/MI FDOT    |                            |                   | MIN        | Maximum           |        |                  |      |                 |             | Proj            | ectio       | ons                   |             |
|----------------|--------|----------|------------------------|---------|-----------------------------|---------|--------------|----------------------------|-------------------|------------|-------------------|--------|------------------|------|-----------------|-------------|-----------------|-------------|-----------------------|-------------|
| Location       | ID     | Lanes    | AreaType               | Status  | <u>Committed</u><br>Section |         | Jur          | Station<br>#               |                   | LOS<br>STD | Service<br>Volume | Count  | Count O<br>S     | Rate | 2008            | L<br>O<br>S | 2011            | L<br>O<br>S | 2021                  | L<br>O<br>S |
| Levy           |        |          |                        |         |                             |         |              |                            |                   |            |                   |        |                  |      |                 |             |                 |             |                       |             |
| SR 24          | 43 D S | St.      |                        |         | From 2nd                    | Street  | t to N.C.L.  | of Cedar                   | ·Key              |            |                   |        |                  |      |                 |             |                 | K           | 11.1                  | אכ          |
| Town of Ceda   | r Key  | 2/U      | Arterial<br>Rural Dev  | SHS     | <br>34070000                | 0.91    | 0.0          | 340155                     | AADT:<br>Peak Hr: | C<br>C     | 11,000<br>1,070   | 2,800  | 2,500 C<br>278 C | 1%   | 2,500<br>278    | с<br>с      | 2,600<br>289    | с<br>с      | 2,900<br>322          |             |
| SR 24          | 29     |          |                        |         | From N.C                    | .L. of  | Cedar Key    | to S.W.C                   | C.L. of O         | tter C     | reek              |        |                  |      |                 |             |                 | K           |                       | 3%          |
| Levy County    |        | 2/U      | Highway<br>Rural Undev | SHS     | <br>34070000                | 19.55   |              | 340008<br>340155<br>340239 | AADT:<br>Peak Hr: | с<br>с     | 7,900<br>770      | 2,131  | 1,962 A<br>239 B | 1%   | 2,000<br>244    | A<br>B      | 2,000<br>244    | A<br>B      | 2,200<br>268          | A<br>B      |
| SR 24          | 42 2n  | d Ave.   |                        | <u></u> | From S.W                    | .C.L.   | of Otter C   | reek to N                  | .E.C.L. 0         | f Otte     | r Creek           |        |                  |      |                 |             |                 | K           | 100: 11.10            | )%          |
| Town of Otter  | Creek  | 2/U      | Arterial<br>Rural Dev  | SHS     | <br>34070000                | 1.42    | 0.0          | 340024<br>340224           | AADT:<br>Peak Hr: | C<br>C     | 11,000<br>1,070   | 1,400  | 1,275 B<br>142 B | 1%   | 1,300<br>144    | B<br>B      | 1,300<br>144    | B<br>B      | 1,400<br>155          | B<br>B      |
| SR 24          | 30     |          |                        |         | From N.E                    | .C.L. ( | of Otter Cı  | eek to S.                  | W.C.L. o          | f Bron     | son               |        |                  |      |                 |             |                 | K           | 100: <b>11.1</b> 0    | )%          |
| Levy County    |        | 2/U      | Highway<br>Rural Undev | SHS     | □<br>34070000               | 9.83    |              | 340224                     | AADT:<br>Peak Hr: | · C<br>C   | 7,900<br>770      | 1,400  | 1,150 A<br>128 A | 1%   | 1,200<br>133    | A<br>A      | 1,200<br>133    | A<br>A      | 1,300<br>144          |             |
| SR 24          | 37 Th  | rasher [ | Dr,                    |         | From S.W                    | .C.L.   | of Bronson   | to N.E.C                   | C.L. of Br        | onson      |                   |        |                  |      |                 |             |                 | K           | 100: <b>11.1</b> 0    | )%          |
| City of Bronso | n      | 2/U      | Arterial<br>Rural Dev  | SHS     |                             | 2.77    | 0.4          | 340117                     | AADT:<br>Peak Hr: | C<br>C     | 11,000<br>1,070   | 3,700  | 3,600 C<br>400 C | 2.2% | 4,100<br>455    | с<br>с      | 4,400<br>488    | с<br>с      | 5,300<br>588          | с<br>с      |
| SR 24          | 31     |          |                        |         | From N.E.                   | .C.L. 0 | of Bronson   | to Alach                   | ua Co. Li         | ine        |                   |        |                  |      |                 |             |                 | К           | <sub>100:</sub> 11.10 | )%          |
| Levy County    |        | 2/U      | Highway<br>Rural Undev | SHS     | <br>34070000                | 5.27    |              | 340117                     | AADT:<br>Peak Hr: | C<br>C     | 7,900<br>770      | 3,700  | 3,600 B<br>400 B | 2.2% | 4,100<br>455    | B<br>C      | 4,400<br>488    | B<br>C      | 5,300<br>588          | с<br>с      |
| SR 45          | 27 US  | 41/ SW   | / 7th St.              |         | From Mar                    | ion C   | o. Line to S | 5.C.L. of                  | Williston         |            |                   |        |                  |      |                 |             |                 | К           | 100: 11.10            | )%          |
| Levy County    |        | 2/U      | Highway<br>Rural Undev | SHS     | <br>34040000                | 11.29   |              | 340039<br>340223           | AADT:<br>Peak Hr: | с<br>с     | 7,900<br>770      | 4,700  | 4,700 C<br>522 C | 2.8% | 5,200<br>577    | C<br>C      | 5,700<br>633    | C<br>C      | 7,100<br>788          |             |
| SR 45          | 39 US  | 41/ SW   | / 7th St.              |         | From S.C.                   | L. of V | Williston to | SR 500                     |                   |            |                   |        |                  |      |                 |             |                 | K           | 11.10                 | 1%          |
| Town of Willis | ton    | 2/U      | Arterial<br>Rural Dev  | SHS     | <br>34040000                | 0.61    | 1.0          | 340143<br>345015           | AADT:<br>Peak Hr: | с<br>с     | 11,000<br>1,070   | 10,250 | 8,950 C<br>993 C | 2.1% | 10,100<br>1,121 | C<br>D      | 10,700<br>1,188 | C<br>D      | 12,900<br>1,432       | D<br>E      |

| Roa       | Мар       | Loca         | Facility               | System          | W.P                  | Miles    | S/MI F   | DOT    | Cou                                   |                   | MIN        | Maximum           | 2006   | 2007 L              | Growth |                 |             | Proj            | ecti        |                         |    |
|-----------|-----------|--------------|------------------------|-----------------|----------------------|----------|----------|--------|---------------------------------------|-------------------|------------|-------------------|--------|---------------------|--------|-----------------|-------------|-----------------|-------------|-------------------------|----|
| Locatio   |           | Lanes        |                        |                 | Committed<br>Section | _        |          | Jur    | Station<br>#                          | -                 | LOS<br>STD | Service<br>Volume |        | Count O<br>S        | Rate   | 2008            | L<br>O<br>S | 2011            | L<br>O<br>S | 2021                    |    |
| Levy      |           |              |                        |                 |                      |          |          |        |                                       |                   |            |                   |        |                     |        |                 |             |                 |             |                         |    |
| SR 45     | 2         | 2 US 27A     |                        |                 | From W.              | C.L. of  | [ Willis | ton t  | o SR 45 (                             | North)            | -          |                   |        |                     |        | _               |             |                 | К           | C <sub>100:</sub> 11.10 | 09 |
| Town of   | Williston | 4/D          | Arterial<br>Rural Dev  | Emergin<br>SIS  | g 🗌<br>34010000      | 0.80     | 1.0      |        | 340122<br>340139<br>345014            | AADT:<br>Peak Hr: | B<br>B     | 5,300<br>520      | 14,366 | 14,267 C<br>1,584 C |        | 14,900<br>1,654 | C<br>C      | 15,700<br>1,743 | C<br>C      | 18,600<br>2,065         |    |
| SR 45     | 4         | 0 N Main St  |                        |                 | From NE              | 1st Av   | ve to SF | R 121  | · · · · · · · · · · · · · · · · · · · |                   |            |                   |        |                     |        |                 |             |                 | К           | C <sub>100:</sub> 11.10 | 0% |
| Town of   | Williston | 4/U          | Arterial<br>Rural Dev  | SHS             | ☐<br>34040000        | 0.37     | 0.0      |        | 345013                                | AADT:<br>Peak Hr: | с<br>с     | 25,500<br>2,470   | 9,000  | 10,000 C<br>1,110 C | Var    | 10,100<br>1,121 | с<br>с      | 10,400<br>1,154 |             | 11,400<br>1,265         |    |
| SR 45     | 4         | I N Main St  |                        |                 | From SR              | 121 to   | N.C.L.   | . of V | Villiston                             |                   |            |                   |        |                     |        |                 |             |                 | K           | C <sub>100:</sub> 11.10 | 0% |
| Town of   | Williston | 2/U          | Arterial<br>Rural Dev  | SHS             |                      | 0.50     | 0.0      |        | 340150<br>345011                      | AADT:<br>Peak Hr: | с<br>с     | 11,000<br>1,070   | 4,300  | 4,250 C<br>472 C    | 2.2%   | 4,500<br>500    | с<br>с      | 4,800<br>533    | C<br>C      | 5,700<br>633            |    |
| SR 45     | 2         | 8 N Main St. |                        |                 | From N.C             | C.L. of  | Willist  | on to  | Alachua                               | Co. Lin           | e          |                   |        |                     |        |                 |             | <u></u>         | K           | C <sub>100:</sub> 11.10 | 0% |
| Levy Co   | unty      | 2/U          | Highway<br>Rural Undev | SHS             |                      | 6.45     |          |        | 340150                                | AADT:<br>Peak Hr: | с<br>с     | 7,900<br>770      | 3,800  | 4,000 B<br>444 C    | 2.9%   | 4,100<br>455    | B<br>C      | 4,400<br>488    | B<br>C      | 5,600<br>622            |    |
| SR 49     | 34        | 4 US 129     |                        |                 | From SR              | 55 to N  | N.E.C.L  | J. of  | Chieflan                              | 1                 |            |                   |        |                     |        |                 |             |                 | K           | 11.10                   | ٥٥ |
| City of C | hiefland  | 2/U          | Arterial<br>Rural Dev  | SHS             |                      | 0.22     | 0.0      |        | 340089                                | AADT:<br>Peak Hr: | C<br>C     | 11,000<br>1,070   | 3,600  | 3,100 C<br>344 C    | 2.6%   | 3,500<br>388    | с<br>с      | 3,800<br>422    | с<br>с      | 4,700<br>522            |    |
| SR 49     | 24        | 4 US 129     |                        |                 | From N.E             | .C.L. o  | of Chie  | flanc  | l to Gilch                            | rist Co.          | Line       |                   |        |                     |        |                 |             |                 | K           | 11.10                   | %נ |
| Levy Co   | unty      | 2/U          | Highway<br>Rural Undev | SHS             | <br>34020000         | 7.61     |          |        | 340089                                | AADT:<br>Peak Hr: | с<br>с     | 7,900<br>770      | 3,600  | 3,100 B<br>344 B    | 2.6%   | 3,500<br>388    | B<br>B      | 3,800<br>422    | 8<br>B      | 4,700<br>522            |    |
| SR 55     | 18        | 9 US 19/98   |                        |                 | From N.C             | L. of    | Inglis t | o S.C  | C.L. of In                            | glis              |            |                   |        |                     |        |                 |             |                 | ĸ           | . 11.10                 | )% |
| Town of   | Inglis    | 4/D          | Arterial<br>Rural Dev  | Emerging<br>SIS | 34050000             | 1.07     | 0.9      |        | 340030<br>340069                      | AADT:<br>Peak Hr: | B<br>B     | 5,300<br>520      | 6,700  | 6,450 C<br>716 C    | 1.9%   | 7,100<br>788    | с<br>с      | 7,500<br>832    | с<br>с      | 8,800<br>977            |    |
| SR 55     |           | 4 US 19/98   |                        |                 | From SR              | 121 to   | N.C.L.   | of I   | nglis                                 |                   |            |                   |        |                     |        |                 |             |                 | K           | . <sub>100:</sub> 11.10 | 9ر |
| Levy Co   | unty      | 4/D          | Highway<br>Rural Undev | Emerging<br>SIS | 34050000             | 9.05     |          |        |                                       | AADT:<br>Peak Hr: | B<br>B     | 28,600<br>2,800   | 5,200  | 4,900 A<br>544 A    | 2.2%   | 5,300<br>588    | A<br>A      | 5,600<br>622    | A<br>A      | 6,800<br>755            |    |
| SR 55     | -         | 3 US 19/98   |                        |                 | From S.C             | .L. of ( | Otter C  | reek   | to SR 12                              | 1                 |            |                   |        |                     |        |                 |             |                 | K           | . <sub>100:</sub> 11.10 | )% |
| Levy Co   | unty      | 4/D          | Highway<br>Rural Undev | Emerging<br>SIS | 34050000             | 13.31    |          |        |                                       | AADT:<br>Peak Hr: | B<br>B     | 28,600<br>2,800   | 4,000  | 3,400 A<br>377 A    | 1%     | 4,000           | A           | 4,100<br>455    | Α           | 4,500<br>500            |    |

Page 2

# APPENDIX D: 2008 Existing Intersection and Roadway Analyses Worksheets

HCS+: Unsignalized Intersections Release 5.3

\_TWO-WAY STOP CONTROL SUMMARY\_\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour U.S. 19 & SR 121 Intersection: Jurisdiction: FDOT District 2 Units: U. S. Customary 2008 Existing Traffic Conds Analysis Year: Project ID: Levy County Advanced Reactor East/West Street: SR 121 North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ Major Street: Northbound Southbound Approach Movement 2 3 5 1 4 6 т т L R L R Volume 104 45 17 132 Peak-Hour Factor, PHF 0.97 0.97 0.97 0.97 Hourly Flow Rate, HFR 107 46 17 136 Percent Heavy Vehicles - ----4 --Median Type/Storage / 2 Raised curb RT Channelized? No Lanes 2 2 1 1 Configuration  $\mathbf{T}$ R  $\mathbf{L}$ т Upstream Signal? No No Westbound Minor Street: Eastbound Approach 7 Movement 8 9 11 12 10 L  $\mathbf{T}$ R L Т R . Volume 68 8 Peak Hour Factor, PHF 0.97 0.97 Hourly Flow Rate, HFR 70 8 Percent Heavy Vehicles 1 1 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage 1 Lanes 1 1 Configuration L R Delay, Queue Length, and Level of Service\_ SB Westbound Eastbound Approach NB Movement 1 4 7 8 9 10 12 11 Lane Config L  $\mathbf{L}$ R v (vph) 17 70 8 C(m) (vph) 1411 812 1016 0.01 0.09 0.01 v/c 95% queue length 0.02 0.04 0.28 8.6 Control Delay 7.6 9.9 LOS А А А 9.7 Approach Delay Approach LOS А

#### HCS+: Unsignalized Intersections Release 5.3

Phone: E-Mail: Fax:

TWO-WAY STOP CONTROL (TWSC) ANALYSIS Analyst: KHA Agency/Co.: KHA 12/8/2008 Date Performed: Analysis Time Period: P.M. Peak Hour U.S. 19 & SR 121 Intersection: Jurisdiction: FDOT District 2 Units: U. S. Customary 2008 Existing Traffic Conds Analysis Year: Project ID: Levy County Advanced Reactor East/West Street: SR 121 North/South Street: U.S. 19 Study period (hrs): 0.25 Intersection Orientation: NS Vehicle Volumes and Adjustments\_ 5 Major Street Movements 1 2 3 4 6  $\mathbf{L}$ т  $\mathbf{L}$ т R R 104 45 17 132 Volume Peak-Hour Factor, PHF 0.97 0.97 0.97 0.97 Peak-15 Minute Volume 27 12 4 34 Hourly Flow Rate, HFR 107 46 17 136 Percent Heavy Vehicles ---------4 -----12 Median Type/Storage Raised curb RT Channelized? No Lanes 2 1 1 2 т R Configuration т L Upstream Signal? No No 8 12 Minor Street Movements 7 9 10 11 т  $\mathbf{L}$ R Т R L 8 Volume 68 Peak Hour Factor, PHF 0.97 0.97 Peak-15 Minute Volume 18 2 Hourly Flow Rate, HFR 70 8 Percent Heavy Vehicles 1 1 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage 1 RT Channelized? No 1 1 Lanes Configuration L R Pedestrian Volumes and Adjustments\_ 13 14 15 16 Movements Flow (ped/hr) 0 0 0 0 12.0 Lane Width (ft) 12.0 12.0 12.0 4.0 4.0 Walking Speed (ft/sec) 4.0 4.0 0 0 Percent Blockage 0 0

|    |                      |                       | Up                 | stream Si                             | gnal Dat             | a                      |                                        |                               |  |
|----|----------------------|-----------------------|--------------------|---------------------------------------|----------------------|------------------------|----------------------------------------|-------------------------------|--|
|    |                      | Prog.<br>Flow<br>'vph | Sat<br>Flow<br>vph | Arrival<br>Type                       | Green<br>Time<br>sec | Cycle<br>Length<br>sec | Prog.<br>Speed<br>mph                  | Distance<br>to Signal<br>feet |  |
| s2 | Left-Turn<br>Through |                       | <u></u>            | · · · · · · · · · · · · · · · · · · · | <u> </u>             |                        | ···· - · · · · · · · · · · · · · · · · |                               |  |
| S5 | Left-Turn            |                       |                    |                                       |                      |                        |                                        |                               |  |

Through

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

Movement 2 Movement 5 Shared ln volume, major th vehicles: Shared ln volume, major rt vehicles: Sat flow rate, major th vehicles: Sat flow rate, major rt vehicles: Number of major street through lanes:

Worksheet 4-Critical Gap and Follow-up Time Calculation

| . Gap Cal | culatio                                           | m                                                                                                      |                                                                                                                                                                                       |                                                      |                                                      |                                                      |                                                      |                                                      |
|-----------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| :         | 1                                                 | 4                                                                                                      | 7                                                                                                                                                                                     | 8                                                    | 9                                                    | 10                                                   | 11                                                   | 12                                                   |
|           | $\mathbf{L}$                                      | L                                                                                                      | L                                                                                                                                                                                     | т                                                    | R                                                    | L                                                    | т                                                    | R                                                    |
| e)        |                                                   | 4.1                                                                                                    | 7.5                                                                                                                                                                                   |                                                      | 6.2                                                  |                                                      |                                                      |                                                      |
|           | 2.00                                              | 2.00                                                                                                   | 2.00                                                                                                                                                                                  | 2.00                                                 | 2.00                                                 | 2.00                                                 | 2.00                                                 | 2.00                                                 |
|           |                                                   | 4                                                                                                      | 1                                                                                                                                                                                     |                                                      | 1                                                    |                                                      |                                                      |                                                      |
|           |                                                   |                                                                                                        | 0.20                                                                                                                                                                                  | 0.20                                                 | 0.10                                                 | 0.20                                                 | 0.20                                                 | 0.10                                                 |
| Grade     |                                                   |                                                                                                        | 0.00                                                                                                                                                                                  | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 |
|           |                                                   | 0.00                                                                                                   | 0.70                                                                                                                                                                                  |                                                      | 0.00                                                 |                                                      |                                                      |                                                      |
| 1-stage   | 0.00                                              | 0.00                                                                                                   | 0.00                                                                                                                                                                                  | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 |
| 2-stage   | 0.00                                              | 0.00                                                                                                   | 1.00                                                                                                                                                                                  | 1.00                                                 | 0.00                                                 | 1.00                                                 | 1.00                                                 | 0.00                                                 |
| 1-stage   |                                                   | 4.2                                                                                                    | 6.8                                                                                                                                                                                   |                                                      | 6.2                                                  |                                                      |                                                      |                                                      |
| 2-stage   |                                                   | 4.2                                                                                                    | 5.8                                                                                                                                                                                   |                                                      | 6.2                                                  |                                                      |                                                      |                                                      |
| Jp Time C | alculat                                           | ions                                                                                                   | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>                                                                                                                                          |                                                      | • • • •                                              |                                                      |                                                      |                                                      |
| :         | 1                                                 | 4                                                                                                      | 7                                                                                                                                                                                     | 8                                                    | 9                                                    | 10                                                   | 11                                                   | 12                                                   |
|           | L                                                 | $\mathbf{L}$                                                                                           | L                                                                                                                                                                                     | т                                                    | R                                                    | L                                                    | Т                                                    | R                                                    |
| 2)        | 1.00                                              | 2.20<br>1.00<br>4<br>2.2                                                                               | 3.50<br>1.00<br>1<br>3.5                                                                                                                                                              | 1.00                                                 | 3.30<br>1.00<br>1<br>3.3                             | 1.00                                                 | 1.00                                                 | 1.00                                                 |
|           | Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage | 1<br>L<br>2.00<br>Grade<br>1-stage 0.00<br>2-stage 0.00<br>1-stage<br>2-stage<br>Dp Time Calculat<br>L | L L<br>4.1<br>2.00 2.00<br>4<br>Grade<br>0.00<br>1-stage 0.00 0.00<br>2-stage 0.00 0.00<br>1-stage 4.2<br>2-stage 4.2<br>2-stage 4.2<br>2-stage 4.2<br>2-stage 2.20<br>1.00 1.00<br>4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Worksheet 5-Effect of Upstream Signals

Proportion vehicles arriving on green P

| Computation 1-Queue Clearance Time at         | -    | Signal<br>vement 2 | Mo   | vement 5  |
|-----------------------------------------------|------|--------------------|------|-----------|
|                                               | V(t) | V(l,prot)          | V(t) | V(l,prot) |
| V prog<br>Total Saturation Flow Rate, s (vph) |      |                    |      |           |
| Arrival Type                                  |      |                    |      |           |
|                                               |      |                    |      |           |
| Effective Green, g (sec)                      |      |                    |      |           |

g(q1) g(q2) g(q)

| alpha<br>beta<br>Travel time, t<br>Smoothing Fact<br>Proportion of<br>Max platooned |         |             |                    | V(t     |        | nent 2                                |          | Movemen                  | 5      |
|-------------------------------------------------------------------------------------|---------|-------------|--------------------|---------|--------|---------------------------------------|----------|--------------------------|--------|
| oeta<br>Fravel time, t<br>Smoothing Fact<br>Proportion of<br>Max platooned          |         |             |                    |         |        |                                       | ) V(t    | - \ \ \ \ \ 77/7         | ,prot) |
| beta<br>Travel time, t<br>Smoothing Fact<br>Proportion of<br>Max platooned          |         |             |                    | . ( -   | -) V   | (l,prot                               | / V((    | -) V(I                   | ,proc, |
| Travel time, t<br>Smoothing Fact<br>Proportion of<br>Max platooned                  |         |             |                    |         |        |                                       |          |                          |        |
| Smoothing Fact<br>Proportion of<br>Max platooned                                    |         |             |                    |         |        |                                       |          |                          |        |
| Proportion of<br>Max platooned                                                      |         | c)          |                    |         |        |                                       |          |                          |        |
| Max platooned                                                                       | or, F   |             |                    |         |        |                                       |          |                          |        |
|                                                                                     | conflic | ting flo    | w, f               |         |        |                                       |          |                          |        |
|                                                                                     | flow, V | (c,max)     |                    |         |        |                                       |          |                          |        |
| Min platooned                                                                       |         |             |                    |         |        |                                       |          |                          |        |
| Duration of bl                                                                      |         |             | (q)                |         |        |                                       |          |                          |        |
| Proportion tim                                                                      |         |             | ( <u>r</u> ,       |         | 0.0    | 000                                   |          | 0.000                    |        |
|                                                                                     |         |             |                    |         |        |                                       |          |                          |        |
| Computation 3-                                                                      | Platoon | Event P     | eriods             | Resu    | ılt    |                                       |          |                          |        |
| p(2)                                                                                |         |             |                    | 0.00    | )0     |                                       |          |                          |        |
| p(5)                                                                                |         |             |                    | 0.00    | 00     |                                       |          |                          |        |
| p(dom)                                                                              |         |             |                    |         |        |                                       |          |                          |        |
| p(subo)                                                                             |         |             |                    |         | •      |                                       |          |                          |        |
| Constrained or                                                                      | uncons  | trained?    |                    |         |        |                                       |          |                          |        |
|                                                                                     | -       |             |                    |         |        |                                       |          |                          |        |
| Proportion                                                                          |         | •           |                    |         |        |                                       |          |                          |        |
| unblocked                                                                           |         | (1          |                    | (       | (2)    |                                       | (3)      | )                        |        |
| for minor                                                                           |         |             | -stage             |         | Two-S  | Stage Pr                              | ocess    |                          |        |
| movements, p(x                                                                      | :)      | Proc        | ess                | Stag    | ge I   |                                       | Stage    | II                       |        |
| <br>p(1)                                                                            |         |             |                    | ······. |        | •                                     |          |                          |        |
| p(4)                                                                                |         |             |                    |         |        |                                       |          |                          |        |
| p(7)                                                                                |         |             |                    |         |        |                                       |          |                          |        |
|                                                                                     |         |             |                    |         |        |                                       |          |                          |        |
| p(8)                                                                                |         |             |                    |         |        |                                       |          |                          |        |
| p(9)                                                                                |         |             |                    |         |        |                                       |          |                          |        |
| p(10)                                                                               |         |             |                    |         |        |                                       |          |                          |        |
| p(11)                                                                               |         |             |                    |         |        |                                       |          |                          |        |
| p(12)                                                                               |         |             |                    |         |        |                                       |          |                          |        |
| Computation 4                                                                       | and 5   |             |                    |         |        | · · · · · · · · · · · · · · · · · · · |          |                          |        |
| Single-Stage P                                                                      |         |             |                    |         |        |                                       |          |                          |        |
| Movement                                                                            |         | 1           | 4                  | 7       | 8      | 9                                     | 10       | 11                       | 12     |
| .iovemene                                                                           |         | L           | Ľ                  | Ĺ       | т      | R                                     | L        | T                        | R      |
|                                                                                     |         | <u> </u>    |                    |         | *      |                                       | <u> </u> | 1                        | **     |
| Vc,x                                                                                |         | ·······     | 153                | 209     |        | 54                                    |          |                          |        |
| S                                                                                   |         |             |                    |         |        |                                       |          |                          |        |
| Px                                                                                  |         |             |                    |         |        |                                       |          |                          |        |
| V c,u,x                                                                             |         |             |                    |         |        |                                       |          |                          |        |
| Cr,x                                                                                |         |             |                    |         |        |                                       |          |                          |        |
| C plat,x                                                                            |         |             |                    |         |        |                                       |          |                          |        |
| - ·                                                                                 |         |             |                    |         |        |                                       |          |                          |        |
| Two-Stage Proc                                                                      |         | 7           |                    | 0       |        | 1.0                                   |          | -                        | 1      |
|                                                                                     |         | 7<br>Stage2 | Stado <sup>1</sup> | 8       | ) (1+- | 10<br>age1 St                         | 3900     | 1<br>Stagol              |        |
|                                                                                     | Stage1  | stage2      | Stage1             | Stage2  | 6 DC8  | ager St                               | age2     | Stage1                   | Stage: |
| V(c,x)                                                                              | 107     | 102         |                    |         |        |                                       |          | ************************ |        |
| S                                                                                   |         | 3000        |                    |         |        |                                       |          |                          |        |
| P(x)                                                                                |         |             |                    |         |        |                                       |          |                          |        |
| V(c,u,x)                                                                            |         |             |                    |         |        |                                       |          |                          |        |
|                                                                                     |         |             |                    |         |        |                                       |          |                          |        |
| C(r,x)                                                                              |         |             |                    |         |        |                                       |          |                          |        |

### C(plat,x)

Worksheet 6-Impedance and Capacity Equations

| Step 1: RT from Minor St.              | 9    | 12   |
|----------------------------------------|------|------|
| Conflicting Flows                      | 54   |      |
| Potential Capacity                     | 1016 |      |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Movement Capacity                      | 1016 |      |
| Probability of Queue free St.          | 0.99 | 1.00 |
| Step 2: LT from Major St.              | 4    | 1    |
| Conflicting Flows                      | 153  |      |
| Potential Capacity                     | 1411 |      |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Movement Capacity                      | 1411 | •    |
| Probability of Queue free St.          | 0.99 | 1.00 |
| Maj L-Shared Prob Q free St.           |      |      |
| Step 3: TH from Minor St.              | 8    | 11   |
| Conflicting Flows                      |      |      |
| Potential Capacity                     |      |      |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 0.99 | 0.99 |
| Movement Capacity                      |      |      |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Step 4: LT from Minor St.              | · 7  | 10   |
| Conflicting Flows                      | 209  |      |
| Potential Capacity                     | 763  |      |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Maj. L, Min T Impedance factor         |      | 0.99 |
| Maj. L, Min T Adj. Imp Factor.         |      | 0.99 |
| Cap. Adj. factor due to Impeding mvmnt | 0.99 | 0.98 |
| Movement Capacity                      | 754  |      |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8    | 11   |
|----------------------------------------|------|------|
| Part 1 - First Stage                   |      |      |
| Conflicting Flows                      |      | •    |
| Potential Capacity                     | 811  | 762  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 0.99 |
| Movement Capacity                      | 811  | 753  |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Part 2 - Second Stage                  |      | · ·  |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 762  | 775  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 0.99 | 1.00 |
| Movement Capacity                      | 753  | 775  |

Part 3 - Single Stage Conflicting Flows

| Potential Capacity                     |                                       |                                        |
|----------------------------------------|---------------------------------------|----------------------------------------|
| Pedestrian Impedance Factor            | 1.00                                  | 1.00                                   |
| Cap. Adj. factor due to Impeding mvmnt | 0.99                                  | 0.99                                   |
| Movement Capacity                      |                                       |                                        |
|                                        |                                       |                                        |
| Result for 2 stage process:            |                                       |                                        |
| a                                      | 0.95                                  | 0.95                                   |
| У                                      |                                       |                                        |
| Ct                                     |                                       |                                        |
| Probability of Queue free St.          | 1.00                                  | 1.00                                   |
|                                        | · · · · · ·                           |                                        |
| Step 4: LT from Minor St.              | 7                                     | 10                                     |
|                                        |                                       |                                        |
| Part 1 - First Stage                   | 100                                   |                                        |
| Conflicting Flows                      | . 107                                 | 0.4.0                                  |
| Potential Capacity                     | 909                                   | 849                                    |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00                                   |
| Cap. Adj. factor due to Impeding mvmnt | 1.00                                  | 0.99                                   |
| Movement Capacity                      | 909                                   | 839                                    |
| Part 2 - Second Stage                  | · · · · · · · · · · · · · · · · · · · |                                        |
| Conflicting Flows                      | 102                                   |                                        |
| Potential Capacity                     | 914                                   | 969                                    |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00                                   |
| Cap. Adj. factor due to Impeding mymnt | 0.99                                  | 0.99                                   |
| Movement Capacity                      | 903                                   | 961                                    |
|                                        | 505                                   |                                        |
| Part 3 - Single Stage                  | · ·                                   | · · ·                                  |
| Conflicting Flows                      | 209                                   |                                        |
| Potential Capacity                     | 763                                   |                                        |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00                                   |
| Maj. L, Min T Impedance factor         |                                       | 0.99                                   |
| Maj. L, Min T Adj. Imp Factor.         |                                       | 0.99                                   |
| Cap. Adj. factor due to Impeding mvmnt | 0.99                                  | 0.98                                   |
| Movement Capacity                      | 754                                   |                                        |
|                                        |                                       | ······································ |
| Results for Two-stage process:         |                                       | *                                      |
| a                                      | 0.95                                  | 0.95                                   |
| У                                      | 1.04                                  |                                        |
| Ct                                     | 812                                   |                                        |
| •                                      |                                       |                                        |

Worksheet 8-Shared Lane Calculations

| Movement                                              | 7   | 8 | 9    | 10           | 11 | 12 |    |
|-------------------------------------------------------|-----|---|------|--------------|----|----|----|
|                                                       | L   | т | R    | $\mathbf{L}$ | Т  | R  |    |
| Volume (vph)                                          | 70  |   | 8    |              |    |    | ~~ |
| Movement Capacity (vph)<br>Shared Lane Capacity (vph) | 812 |   | 1016 |              |    |    |    |
|                                                       |     |   |      |              |    |    |    |

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement | 7            | 8 | 9    | 10 | 11 | 12 |
|----------|--------------|---|------|----|----|----|
|          | $\mathbf{L}$ | Т | R    | L, | т  | R  |
| C sep    | 812          |   | 1016 |    |    |    |
| Volume   | 70           |   | 8.   |    |    |    |
| Delay    |              |   |      |    |    |    |
| Q sep    |              |   |      |    |    |    |

Q sep +1 round (Qsep +1) n max C sh SUM C sep n C act

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4            | 7    | 8   | 9    | 10 | 11 | -12 |  |
|------------------|---|--------------|------|-----|------|----|----|-----|--|
| Lane Config      |   | $\mathbf{L}$ | L    |     | R    |    |    |     |  |
| v (vph)          |   | 17           | 70   |     |      |    |    |     |  |
| C(m) (vph)       |   | 1411         | 812  |     | 1016 |    |    |     |  |
| v/c              |   | 0.01         | 0.09 |     | 0.01 |    |    |     |  |
| 95% queue length |   | 0.04         | 0.28 |     | 0.02 |    |    |     |  |
| Control Delay    |   | 7.6          | 9.9  |     | 8.6  |    |    |     |  |
| LOS              |   | А            | А    |     | A '  |    |    |     |  |
| Approach Delay   |   |              |      | 9.7 |      |    |    |     |  |
| Approach LOS     |   |              |      | А   |      |    |    |     |  |
|                  |   |              |      |     |      |    |    |     |  |

Worksheet 11-Shared Major LT Impedance and Delay

Movement 2Movement 5p(oj)1.000.99v(i1), Volume for stream 2 or 51.000.99v(i2), Volume for stream 3 or 655s(i1), Saturation flow rate for stream 2 or 556p\*(oj)0.997.6d(M,LT), Delay for stream 1 or 47.6N, Number of major street through lanes7.6d(rank, 1) Delay for stream 2 or 55

HCS+: Signalized Intersections Release 5.3

Analyst: KHAInter.: U.S. 19 & CR 40Agency: KHAArea Type: All other areasDate: 12/8/2008Jurisd: FDOT District 2Period: P.M. Peak HourYear : 2008 Existing Traffic CondsProject ID: Levy County Advanced ReactorE/W St: CR 40/Follow That Dream PkwyN/S St: U.S. 19

|                                                                                                  |                                                                                      |                                      |                                              |                                              | RSECTI                                                       |                                        |                       |         |                   |        |     |     |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------|----------------------------------------|-----------------------|---------|-------------------|--------|-----|-----|
|                                                                                                  | Eastbo                                                                               | ound                                 | 1                                            | oound                                        |                                                              | Nort                                   | hbour                 | nd      | Sou               | ithbou | ınd | 1   |
|                                                                                                  | L T                                                                                  | R                                    |                                              | r R                                          |                                                              | L                                      | Т                     | R       | $\mathbf{L}$      | т      | R   |     |
| No. Lanes                                                                                        | 0 1                                                                                  | 1                                    | 0                                            | 1 1                                          | ······                                                       | 1                                      | 2                     | 0       | 1                 | 2      | 0   | -   |
| LGConfig                                                                                         | j I                                                                                  | LT R                                 |                                              | $\mathbf{LT}$                                | R I                                                          |                                        | TR                    | İ       | Ľ                 | TR     |     | i   |
| Volume                                                                                           | 21 61                                                                                | 71                                   | 61 52                                        | 2 44                                         | 10                                                           | 06 2                                   | 236 9                 | €1      | 45                | 208    | 13  | Ì   |
| Lane Width                                                                                       | j 12.                                                                                | .0 12.0                              | 12                                           | 2.0 12                                       | .0  12                                                       | 2.0 1                                  | 12.0                  | İ       | 12.0              | 12.0   |     | i   |
| RTOR Vol                                                                                         |                                                                                      | 24                                   |                                              | 19                                           | Ì                                                            |                                        |                       | 33 İ    |                   |        | 5   | ł   |
| Duration                                                                                         | 0.25                                                                                 | Area                                 | Type: A                                      |                                              | er are                                                       |                                        |                       |         |                   |        |     |     |
| Phase Combi                                                                                      | .nation 1                                                                            | 2                                    | 33                                           | 4                                            | acioi                                                        | 15                                     | 5                     | 6       | 7                 |        | 3   |     |
| EB Left                                                                                          | А                                                                                    |                                      |                                              | i                                            | NB Le                                                        | eft                                    | А                     |         |                   |        |     |     |
| Thru                                                                                             | А                                                                                    |                                      |                                              | į                                            | Tł                                                           | nru                                    |                       | А       |                   |        |     |     |
| Right                                                                                            | А                                                                                    |                                      |                                              | 1                                            | Ri                                                           | ight                                   |                       | А       |                   |        |     |     |
| Peds                                                                                             |                                                                                      |                                      |                                              | i                                            |                                                              | eds                                    |                       |         |                   |        |     |     |
| WB Left                                                                                          | A                                                                                    |                                      |                                              | ĺ                                            | SB Le                                                        | eft                                    | А                     |         |                   |        | •   |     |
| Thru                                                                                             | A                                                                                    |                                      |                                              |                                              |                                                              | hru                                    |                       | А       |                   |        |     |     |
| Right                                                                                            | A                                                                                    |                                      |                                              |                                              |                                                              | ight                                   |                       | A       |                   |        |     |     |
| Peds                                                                                             |                                                                                      |                                      |                                              |                                              |                                                              | eds                                    |                       |         |                   |        |     |     |
| NB Right                                                                                         |                                                                                      |                                      |                                              |                                              |                                                              | ight                                   |                       |         |                   |        |     |     |
| SB Right                                                                                         |                                                                                      |                                      |                                              |                                              |                                                              | ight                                   |                       |         |                   |        |     |     |
| Green                                                                                            | 10                                                                                   | . 0                                  |                                              | I                                            |                                                              | - 9 0                                  | 10.0                  | 25.0    | )                 |        |     |     |
| Yellow                                                                                           | 4.0                                                                                  |                                      |                                              |                                              |                                                              |                                        | 4.0                   | 4.0     |                   |        |     |     |
| All Red                                                                                          | 1.0                                                                                  |                                      |                                              |                                              |                                                              |                                        | 1.0                   | 1.0     |                   |        |     |     |
|                                                                                                  |                                                                                      |                                      |                                              |                                              |                                                              |                                        |                       | le Ler  | gth:              | 60.0   | se  | ecs |
|                                                                                                  |                                                                                      | Interse                              |                                              |                                              |                                                              |                                        | -                     |         |                   |        |     |     |
| Appr/ Lar                                                                                        |                                                                                      | Adj Sat                              | Rat                                          | LOS                                          | Lέ                                                           | ane (                                  | Group                 | Apr     | proach            | n      |     |     |
| Lane Gro                                                                                         | -                                                                                    | low Rate                             |                                              |                                              | _                                                            |                                        |                       |         |                   |        |     |     |
| Grp Cap                                                                                          | pacity                                                                               | (s)                                  | v/c                                          | g/C                                          | D/                                                           |                                        |                       | D - 1 - |                   | 3      |     |     |
|                                                                                                  |                                                                                      |                                      | v/C                                          | 9,0                                          |                                                              | elay                                   | LOS                   | Dere    | ay LO:            | 5      |     |     |
| Eastbound                                                                                        |                                                                                      |                                      |                                              |                                              | D                                                            | elay<br>                               | LOS                   | Dera    | ay LO:            |        |     |     |
|                                                                                                  | 19                                                                                   | 1684                                 |                                              |                                              |                                                              |                                        |                       |         | -                 |        |     |     |
| LT 30                                                                                            |                                                                                      | 1684<br>1583                         | 0.28                                         | 0.18                                         | 3 2:                                                         | 1.6                                    | C<br>C                | 21.4    | -                 |        |     |     |
| LT 30<br>R 29                                                                                    |                                                                                      | 1684<br>1583                         |                                              |                                              | 3 2:                                                         |                                        | С                     |         | -                 |        |     |     |
| LT 30                                                                                            | 90 2                                                                                 |                                      | 0.28                                         | 0.18                                         | 3 2:<br>3 20                                                 | 1.6                                    | С                     |         | 4 C               |        |     |     |
| LT 30<br>R 29<br>Westbound<br>LT 26                                                              | 90 <u>-</u><br>58 :                                                                  | 1583                                 | 0.28                                         | 0.18                                         | 3 2:<br>3 2(<br>3 2)                                         | 1.6                                    | C<br>C                | 21.4    | 4 C               |        |     |     |
| LT 30<br>R 29<br>Westbound<br>LT 26<br>R 29                                                      | 90 <u>-</u><br>58 :                                                                  | 1583<br>1460                         | 0.28<br>0.17<br>0.45                         | 0.18                                         | 3 2:<br>3 2(<br>3 2)                                         | 1.6<br>0.9<br>3.0                      | C<br>C<br>C           | 21.4    | 4 C               |        |     |     |
| LT 30<br>R 29<br>Westbound<br>LT 26<br>R 29<br>Worthbound                                        | 58 1<br>50 1                                                                         | 1583<br>1460                         | 0.28<br>0.17<br>0.45                         | 0.18                                         | 3 2:<br>3 20<br>3 2:<br>3 2:<br>3 2:                         | 1.6<br>0.9<br>3.0<br>0.5               | C<br>C<br>C           | 21.4    | 4 C               |        |     |     |
| LT 30<br>R 29<br>Westbound<br>LT 26<br>R 29<br>Northbound<br>L 32                                | 90 :<br>58 :<br>90 :<br>21 :                                                         | 1583<br>1460<br>1583                 | 0.28<br>0.17<br>0.45<br>0.09                 | 0.18<br>0.18<br>0.18<br>0.18                 | 3 2:<br>3 20<br>3 2:<br>3 2:<br>3 2:<br>3 2:<br>3 2:         | 1.6<br>0.9<br>3.0                      | с<br>с<br>с<br>с      | 21.4    | 4 C               |        |     |     |
| LT 30<br>R 29<br>Westbound<br>LT 26<br>R 29<br>Northbound<br>L 32<br>IR 14                       | 90 :<br>58 :<br>90 :<br>21 :                                                         | 1583<br>1460<br>1583<br>1752         | 0.28<br>0.17<br>0.45<br>0.09<br>0.35         | 0.18<br>0.18<br>0.18<br>0.18<br>0.18         | 3 2:<br>3 20<br>3 2:<br>3 2:<br>3 2:<br>3 2:<br>3 2:         | 1.6<br>0.9<br>3.0<br>0.5<br>2.1        | с<br>с<br>с<br>с      | 21.4    | 4 C               |        |     |     |
| LT 30<br>R 29<br>Westbound<br>LT 26<br>R 29<br>Northbound<br>L 32<br>TR 14<br>Southbound         | 90 1<br>58 1<br>90 1<br>21 1<br>177 1                                                | 1583<br>1460<br>1583<br>1752         | 0.28<br>0.17<br>0.45<br>0.09<br>0.35<br>0.21 | 0.18<br>0.18<br>0.18<br>0.18<br>0.18         | 3 23<br>3 20<br>3 20<br>3 20<br>3 20<br>3 20<br>3 20<br>3 20 | 1.6<br>0.9<br>3.0<br>0.5<br>2.1        | с<br>с<br>с<br>с      | 21.4    | 4 C               |        |     |     |
| LT 30<br>R 29<br>Westbound<br>LT 26<br>R 29<br>Northbound<br>L 32<br>TR 14<br>Southbound<br>L 32 | 90     1       58     1       90     1       21     1       477     1       21     1 | 1583<br>1460<br>1583<br>1752<br>3408 | 0.28<br>0.17<br>0.45<br>0.09<br>0.35         | 0.18<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18 | 3 23<br>3 20<br>3 20<br>3 20<br>3 20<br>3 20<br>3 20<br>3 20 | 1.6<br>0.9<br>3.0<br>0.5<br>2.1<br>0.7 | C<br>C<br>C<br>C<br>B | 21.4    | 4 С<br>5 С<br>7 В |        |     |     |

#### HCS+: Signalized Intersections Release 5.3

Phone: E-Mail: Fax:

\_\_\_\_OPERATIONAL ANALYSIS\_ Analyst: KHA Agency/Co.: KHA Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour U.S. 19 & CR 40 Intersection: Area Type: All other areas Jurisdiction: FDOT District 2 Analysis Year: 2008 Existing Traffic Conds Project ID: Levy County Advanced Reactor E/W St: CR 40/Follow That Dream Pkwy N/S St: U.S. 19

\_\_\_\_VOLUME DATA\_

|              | Eas  | stbour        | nđ     | Wes   | stbour     | nd      | Noi   | rthboi | und  | Sot  | ıthboı | ınd  |
|--------------|------|---------------|--------|-------|------------|---------|-------|--------|------|------|--------|------|
|              | L    | т             | R      | L<br> | т          | R       | L     | т      | R    | L    | т      | R    |
| Volume       | 21   | 61            | 71     | 61    | 52         | 44      | 106   | 236    | 91   | 45   | 208    | 13   |
| % Heavy Veh  | 2    | 2             | 2      | 2     | 2          | 2       | 3     | 3      | 3    | 3    | 3      | 3    |
| PHF          | 0.94 | 0.94          | 0.94   | 0.94  | 0.94       | 0.94    | 0.94  | 0.94   | 0.94 | 0.94 | 0.94   | 0.94 |
| PK 15 Vol    | 6    | 16            | 19     | 16    | 14         | 12      | 28    | 63     | 24   | 12   | 55     | 4    |
| Hi Ln Vol    |      |               |        |       |            |         |       |        |      | İ    |        |      |
| % Grade      |      | 0             |        | ĺ     | 0          |         | İ     | 0      |      | i    | 0      |      |
| Ideal Sat    |      | 1900          | 1900   | ĺ     | 1900       | 1900    | 1900  | 1900   |      | 1900 | 1900   |      |
| ParkExist    |      |               |        | İ     |            |         | 1     |        |      |      |        |      |
| NumPark      | 1    |               |        | ĺ     |            |         | 1     |        |      |      |        |      |
| No. Lanes    | 0    | 1             | 1      | j o   | 1          | 1       | 1     | 2      | 0    | 1    | 2      | 0    |
| LGConfig     |      | $\mathbf{LT}$ | R      | ĺ     | $_{ m LT}$ | R       | L     | TR     |      | L    | TR     |      |
| Lane Width   | l    | 12.0          | 12.0   | ĺ     | 12.0       | 12.0    | 12.0  | 12.0   |      | 12.0 | 12.0   |      |
| RTOR Vol     |      |               | 24     | ĺ     |            | 19      | İ     |        | 33   |      |        | 5    |
| Adj Flow     |      | 87            | 50     | İ     | 120        | 27      | 113   | 313    |      | 48   | 230    |      |
| %InSharedLn  |      |               |        | İ     |            |         | İ     |        |      |      |        |      |
| Prop LTs     |      | 0.25          | 53     | j.    | 0.54       | 42      | 1     | 0.0    | 00   | İ.   | 0.0    | 00   |
| Prop RTs     | 0    | .000          | 1.000  | 0.    | .000       | 1.000   | i o   | .198   |      | j o  | .039   |      |
| Peds Bikes   | 0    |               |        | i o   |            |         | j oʻ  |        |      | i o  |        |      |
| Buses        | ł    | 0             | 0      | 1     | 0          | 0       | 0     | 0      |      | 0    | 0      |      |
| %InProtPhase | 2    |               |        | 1     |            |         | Í     |        |      | İ    |        |      |
| Duration     | 0.25 |               | Area ' | Type: | A11 (      | other . | areas |        |      |      |        |      |

|             | Eas          | stbou | nd  | Westbound |      |     | No  | rthbou | Southbound |     |       |      |
|-------------|--------------|-------|-----|-----------|------|-----|-----|--------|------------|-----|-------|------|
|             | $\mathbf{L}$ | Т     | R   | L         | т    | R   | L   | Т      | R          | L   | т     | R    |
| Init Unmet  |              | 0.0   | 0.0 |           | 0.0  | 0.0 | 0.0 | 0.0    |            | 0.0 | 0.0   | <br> |
| Arriv. Type |              | 3     | 3   | 1         | 3    | 3   | 3   | 3      |            | 3   | 3     | 1    |
| Unit Ext.   |              | 3.0   | 3.0 | İ         | 3.0  | 3.0 | 3.0 | 3.0    |            | 3.0 | 3.0   | İ    |
| I Factor    |              | 1.00  | 0   | İ         | 1.00 | 0   |     | 1.000  |            |     | 1.000 | İ    |
| Lost Time   |              | 2.0   | 2.0 | j ,       | 2.0  | 2.0 | 2.0 | 2.0    |            | 2.0 | 2.0   | İ    |
| Ext of g    |              | 3.0   | 3.0 | İ         | 3.0  | 3.0 | 3.0 | 3.0    |            | 3.0 | 3.0   | ĺ    |
| Ped Min g   |              | 3.2   |     | i         | 3.2  |     | İ   | 3.2    |            |     | 3.2   | ĺ    |

\_\_OPERATING PARAMETERS\_

| Phase Combina                    | tion 1             | 2 | 3 | 4 |    |                               | 5                  | 6                  | 7 | 8 |
|----------------------------------|--------------------|---|---|---|----|-------------------------------|--------------------|--------------------|---|---|
| EB Left<br>Thru<br>Right<br>Peds | A<br>A<br>A        |   |   |   | NB | Left<br>Thru<br>Right<br>Peds | A                  | A<br>A             |   |   |
| WB Left<br>Thru<br>Right<br>Peds | A<br>A<br>A        |   |   |   | SB | Left<br>Thru<br>Right<br>Peds | A                  | A<br>A             |   |   |
| NB Right                         |                    |   |   |   | EB | Right                         |                    |                    |   |   |
| SB Right                         |                    |   |   |   | WB | Right                         |                    |                    |   |   |
| Green<br>Yellow<br>All Red       | 10.0<br>4.0<br>1.0 |   |   | I | I  |                               | 10.0<br>4.0<br>1.0 | 25.0<br>4.0<br>1.0 |   |   |

Cycle Length: 60.0 secs

| VOLU   | ME ADJUS | TMENT AND | SATURATION | FLOW | WORKSHEET |  |
|--------|----------|-----------|------------|------|-----------|--|
| stment |          |           |            |      |           |  |

|            | Eas | stbou | nd    | We   | stbour        | nd    | No:  | rthbou | und  | Soi  | lthbou | und  |
|------------|-----|-------|-------|------|---------------|-------|------|--------|------|------|--------|------|
|            | L   | т     | R     | Ľ    | Т             | R     | L    | т      | R    | L    | т      | R    |
| Volume, V  | 21  | 61    | 71    | 61   | 52            | 44    | 106  | 236    | 91   | 45   | 208    | 13   |
| PHF        | 094 | 0.94  | 0.94  | 0.94 | 0.94          | 0.94  | 0.94 | 0.94   | 0.94 | 0.94 | 0.94   | 0.94 |
| Adj flow   | 22  | 65    | 50    | 65   | 55            | 27    | 113  | 251    | 62   | 48   | 221    | 9    |
| No. Lanes  | 0   | 1     | 1     | 0    | 1             | 1     | 1    | 2      | 0    | 1    | 2      | 0    |
| Lane group | ĺ   | LT    | R     | İ    | $\mathbf{LT}$ | R     | L ·  | TR     |      | L    | TR     |      |
| Adj flow   |     | 87    | 50    | İ    | 120           | 27    | 113  | 313    |      | 48   | 230    |      |
| Prop LTs   | İ   | 0.2   | 53    | i    | 0.54          | 42    | İ    | 0.0    | 00   |      | 0.0    | 00   |
| Prop RTs   | i o | .000  | 1.000 | i o  | .000          | 1.000 | i o  | .198   |      | i o  | .039   |      |

| Saturatio   |           |       |            |        |           |       | -            | factors) | <u>.</u> |
|-------------|-----------|-------|------------|--------|-----------|-------|--------------|----------|----------|
|             | Eastbound |       |            |        |           |       | Sout         |          |          |
| LG          | LT        | R .   |            |        | L         |       | $\mathbf{L}$ | TR       |          |
| So          | 1900      | 1900  | 1900       | 1900   | 1900      | 1900  | 1900         | 1900     |          |
| Lanes O     | 1         | 1 0   | 1          | 1      | 1         | 2 0   | 1            | 2 0      |          |
| fW          | 1.000     | 1.000 | 1.000      | 1.000  | 1.000     | 1.000 | 1.000        | 1.000    |          |
| <b>f</b> HV | 0.980     | 0.980 | 0.980      | 0.980  | 0.971     | 0.971 | 0.971        | 0.971    |          |
| fG          | 1.000     | 1.000 | 1.000      | 1.000  | 1.000     | 1.000 | 1.000        | 1.000    |          |
| fP          | 1.000     |       |            |        |           | 1.000 |              | 1.000    |          |
| fBB         | 1.000     | 1.000 |            |        |           | 1.000 |              | 1.000    |          |
| fA          | 1.000     | 1.000 | 1.000      | 1.000  | 1.000     | 1.000 | 1.000        | 1.000    |          |
| flu         | 1.000     | 1.000 | 1.000      |        |           |       |              | 0.952    |          |
| fRT         |           |       | 1.000      |        |           |       |              | 0.994    |          |
| fLT         | 0.904     |       |            |        |           | 1.000 |              | 1.000    |          |
| Sec.        |           |       |            |        |           |       |              |          |          |
| fLpb        | 1.000     |       | 1.000      |        | 1.000     | 1.000 | 1.000        | 1.000    |          |
| fRpb        |           | 1.000 | 1.000      |        |           | 1.000 |              | 1.000    |          |
| s           | 1684      |       |            | 1583   |           | 3408  |              | 3492     |          |
| Sec.        |           |       |            |        |           |       |              |          |          |
|             |           | (     | CAPACITY A | ND LOS | WORKSI    | неет  |              |          |          |
| Capacity    | Analysis  |       | e Group Ca |        |           |       |              | ·····    | -        |
|             |           | Adj   |            |        |           | Green | Lane G       |          |          |
| Appr/       | Lane      | -     | ate Flow   |        |           |       |              | -        |          |
| Mvmt        | Group     | (v)   |            |        |           | (g/C) | (c)          | Ratio    |          |
| 141111      | Group.    | ( • / | (5         | ,      | ( v / 5 / | (g/c/ | (0)          | nacio    |          |

| Critical<br>Control D<br>Appr/ R<br>Lane<br>Grp v/c<br>Eastbound<br>LT 0.28<br>R 0.17<br>Westbound<br>LT 0.45<br>R 0.09<br>Northboun           | elay and<br>atios<br>g/C<br>0.18<br>0.18<br>0.18<br>0.18<br>d<br>0.18<br>d<br>0.18<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d LOS 1<br>Unf<br>Del<br>d1<br>21.1<br>20.7                         | Determi<br>Prog<br>Adj<br>Fact                                              | inatio:<br>Lane<br>Grp<br>Cap<br>309<br>290<br>268<br>290<br>321 | n<br>Incre<br>Facto<br>k                                | r       | ntal<br>Del<br>d2<br>0.5<br>0.3                      | <pre>= (Yc Res Del d3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre> | Lane                                                 | Group<br>Y LOS                          | 0.30<br>Approx<br>Delay<br>21.4<br>22.5<br>13.7 |          |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|---------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-------------------------------------------------|----------|
| Critical<br>Control D<br>Appr/ R<br>Lane<br>Grp v/c<br>Eastbound<br>LT 0.28<br>R 0.17<br>Westbound<br>LT 0.45<br>R 0.09<br>Northboun<br>L 0.35 | elay and<br>atios<br>g/C<br>0.18<br>0.18<br>0.18<br>0.18<br>d<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d LOS 1<br>Unf<br>Del<br>d1<br>21.1<br>20.7<br>21.8<br>20.4<br>21.4 | Determi<br>Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | inatio:<br>Lane<br>Grp<br>Cap<br>309<br>290<br>268<br>290<br>321 | n<br>Facto<br>k<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11 | r       | ntal<br>Del<br>d2<br>0.5<br>0.3<br>1.2<br>0.1<br>0.7 | Res<br>Del<br>d3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0         | Lane<br>Dela<br>21.6<br>20.9<br>23.0<br>20.5<br>22.1 | Group<br>y LOS<br>C<br>C<br>C<br>C<br>C | Approa<br>Delay<br>21.4<br>22.5                 | LOS<br>C |
| Critical<br>Control D<br>Appr/ R<br>Lane<br>Grp v/c<br>Eastbound<br>LT 0.28<br>R 0.17<br>Westbound<br>LT 0.45<br>R 0.09                        | elay and<br>atios<br>g/C<br>0.18<br>0.18<br>0.18<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d LOS 1<br>Unf<br>Del<br>d1<br>21.1<br>20.7<br>21.8                 | Determi<br>Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000                   | Lane<br>Grp<br>Cap<br>309<br>290<br>268                          | n<br>Incre<br>Facto<br>k<br>0.11<br>0.11<br>0.11        | r       | ntal<br>Del<br>d2<br>0.5<br>0.3<br>1.2               | Res<br>Del<br>d3<br>0.0<br>0.0                              | Lane<br>Dela<br>21.6<br>20.9<br>23.0                 | Group<br>y LOS<br>C<br>C<br>C           | Approa<br>Delay<br>21.4                         | C        |
| Critical<br>Control D<br>Appr/ R<br>Lane<br>Grp v/c<br>Eastbound<br>LT 0.28<br>R 0.17<br>Westbound<br>LT 0.45                                  | elay and<br>atios<br>g/C<br>0.18<br>0.18<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d LOS 1<br>Unf<br>Del<br>d1<br>21.1<br>20.7<br>21.8                 | Determi<br>Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000                   | Lane<br>Grp<br>Cap<br>309<br>290<br>268                          | n<br>Incre<br>Facto<br>k<br>0.11<br>0.11<br>0.11        | r       | ntal<br>Del<br>d2<br>0.5<br>0.3<br>1.2               | Res<br>Del<br>d3<br>0.0<br>0.0                              | Lane<br>Dela<br>21.6<br>20.9                         | Group<br>y LOS<br>C<br>C                | Approa<br>Delay<br>21.4                         | C        |
| Critical<br>Control D<br>Appr/ R<br>Lane<br>Grp v/c<br>Eastbound<br>LT 0.28<br>R 0.17                                                          | elay and<br>atios<br>g/C<br>0.18<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d LOS 1<br>Unf<br>Del<br>d1<br>21.1                                 | Determi<br>Prog<br>Adj<br>Fact<br>1.000                                     | ination<br>Lane<br>Grp<br>Cap<br>309                             | n<br>Facto<br>k<br>0.11                                 | me<br>r | ntal<br>Del<br>d2<br>0.5                             | Res<br>Del<br>d3                                            | Lane<br>Dela                                         | Group<br>y LOS<br>C                     | Approa<br>Delay                                 | LOS      |
| Critical<br>Control D<br>Appr/ R<br>Lane<br>Grp v/c<br>Eastbound<br>LT 0.28                                                                    | elay and<br>atios<br>g/C<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d LOS 1<br>Unf<br>Del<br>d1<br>21.1                                 | Determi<br>Prog<br>Adj<br>Fact<br>1.000                                     | ination<br>Lane<br>Grp<br>Cap<br>309                             | n<br>Facto<br>k<br>0.11                                 | me<br>r | ntal<br>Del<br>d2<br>0.5                             | Res<br>Del<br>d3                                            | Lane<br>Dela                                         | Group<br>y LOS<br>C                     | Approa<br>Delay                                 | LOS      |
| Critical<br>Control D<br>Appr/ R<br>Lane<br>Grp v/c                                                                                            | elay and<br>atios<br>g/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d LOS 1<br>Unf<br>Del                                               | Determi<br>Prog<br>Adj                                                      | inatio<br>Lane<br>Grp                                            | n<br>Incre<br>Facto                                     | me      | ntal<br>Del                                          | Res<br>Del                                                  | Lane                                                 | Group                                   | Approa                                          |          |
| Critical<br>Control D<br>Appr/ R<br>Lane                                                                                                       | elay and<br>atios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d LOS 1<br>Unf<br>Del                                               | Determi<br>Prog<br>Adj                                                      | inatio<br>Lane<br>Grp                                            | n<br>Incre<br>Facto                                     | me      | ntal<br>Del                                          | Res<br>Del                                                  | Lane                                                 | Group                                   | Approa                                          |          |
| Critical :<br>Control D                                                                                                                        | elay and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d Los 1                                                             | Determi                                                                     | inatio                                                           | n                                                       |         |                                                      |                                                             | ·····                                                |                                         |                                                 | h        |
| unral los                                                                                                                                      | c cruc l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                                                                             |                                                                  |                                                         |         |                                                      |                                                             |                                                      |                                         |                                                 |          |
| Thru<br>Right<br>Sum of flo                                                                                                                    | TR<br>ow rations for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | os for                                                              |                                                                             |                                                                  | ne gro                                                  | up      | 0.07<br>s, Yc                                        |                                                             | 43<br>um (v/                                         | 1513<br>s) =                            | 0.15                                            | <u></u>  |
| Prot<br>Perm                                                                                                                                   | mp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o.,                                                                 | 2.0                                                                         | 2.4                                                              | 0.2                                                     |         | 0 07                                                 | 0                                                           | 4.2                                                  | 1 - 1 - 2                               | 0 1 5                                           | ·        |
| Southbound<br>Prot<br>Perm<br>Left                                                                                                             | d<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41                                                                  | 8                                                                           | 17                                                               | 52                                                      |         | 0.03                                                 | 0 -                                                         | 18                                                   | 321                                     | 0.15                                            |          |
| Perm<br>Thru<br>Right                                                                                                                          | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                  | 13                                                                          | 34                                                               | 08                                                      | #       | 0.09                                                 | 0.                                                          | 43                                                   | 1477                                    | 0.21                                            |          |
| Perm<br>Left<br>Prot                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                  | 13                                                                          | 17!                                                              | 52                                                      | #       | 0.06                                                 | 0.                                                          | 18                                                   | 321                                     | 0.35                                            |          |
| Right<br>Northbound<br>Prot                                                                                                                    | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                  |                                                                             | 158                                                              |                                                         |         | 0.02                                                 | 0.                                                          |                                                      | 290                                     | 0.09                                            |          |
| Prot<br>Perm<br>Left<br>Prot<br>Perm<br>Thru                                                                                                   | LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                  | 20                                                                          | 14(                                                              | 50                                                      | #       | 0.08                                                 | 0.                                                          | 18                                                   | 268                                     | 0.45                                            |          |
| Right<br>Westbound                                                                                                                             | LT<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87<br>50                                                            |                                                                             | 168<br>158                                                       |                                                         |         | 0.05<br>0.03                                         | 0.<br>0.                                                    |                                                      | 309<br>290                              | 0.28<br>0.17                                    |          |

Intersection delay = 15.6 (sec/veh) Intersection LOS = B

# 2008 Roadway Analysis

| U.S. 19                                 |         | Minimum                         | P.M. Peak-Hour Road   | dway Traffic Volumes              |
|-----------------------------------------|---------|---------------------------------|-----------------------|-----------------------------------|
|                                         | Star    | ndard                           | Existing              | ) Traffic                         |
| Segment                                 | LOS     | Volume<br><sup>:</sup> wo-way)* | Volume<br>(Two-way)** | LOS                               |
| SR 121 to Project Site                  | В       | 2,800                           | 438                   | А                                 |
| Project Site to CR 40                   | В       | 2,800                           | 448                   | A                                 |
| SR 121                                  |         | Minimum                         | P.M. Peak-Hour Road   | dway Traffic Volumes              |
|                                         | Star    | ndard                           | Existing              | g Traffic                         |
| Segment                                 | LOS     | Volume<br>(Two-way)*            | Volume<br>(Two-way)** | LOS                               |
| U.S. 19 to NW 27th Street               | С       | 770                             | 138                   | А                                 |
| US 41                                   |         | Minimum<br>ndard                |                       | dway Traffic Volumes<br>g Traffic |
| Segment                                 | LOS     | Volume<br>(Two-way)*            | Volume<br>(Two-way)** | LOS                               |
| SE 80th Street/NW 27th Street to CR 328 | С       | 770                             | 370                   | В                                 |
| CR 40                                   | Adopted | Minimum                         | P.M. Peak-Hour Road   | dway Traffic Volumes              |
|                                         |         | ndard                           |                       | g Traffic                         |
| Segment                                 | LOS     | Volume<br>(Two-way)*            | Volume<br>(Two-way)** | LOS                               |
| U.S. 19 to Heavy Haul Driveway          | С       | 1,070                           |                       | С                                 |

\*These volumes were attained from the FDOT 2007 Generalized Level of Service Tables.

\*\*These volumes along segments between counted intersections were estimated based upon the average of the intersection volumes counted along the segment.

### APPENDIX E: Future Intersection and Roadway Analyses Worksheets

# Peak Construction Workforce Traffic Conditions

HCS+: Signalized Intersections Release 5.3

Analyst: KHAInter.: U.S. 19 & Construction AccessAgency: KHAArea Type: All other areasDate: 12/11/2008Jurisd: FDOTPeriod: A.M. Peak HourYear : 2015 Peak Construction TrafficProject ID: Levy County Advanced Reactor - Heavy Haul Route 1E/W St: Construction AccessN/S St: U.S. 19

|                                                                                                                                                             |                                        |                                                     | SI                                                               | GNALIZ                                    |             | INTERSE                                             | CTION                                        | SOLIDE                                                        |                                             |                |               |      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|-------------|-----------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|---------------------------------------------|----------------|---------------|------|------|
|                                                                                                                                                             | Eas                                    | tbour                                               | ıd                                                               | Wes                                       | tboı        | und                                                 | Nor                                          | thbo                                                          | und                                         | Sc             | outhbo        | ound |      |
|                                                                                                                                                             | L                                      | T                                                   | R                                                                | L                                         | т           | R                                                   | L.                                           | т                                                             | R                                           | L              | т             | R    |      |
| No. Lanes                                                                                                                                                   | 0                                      | 0                                                   | 0                                                                | 2                                         | 0           | 1                                                   | 0                                            | 2                                                             | 1                                           | 2              | 2 2           | 0    |      |
| LGConfig                                                                                                                                                    |                                        |                                                     |                                                                  | L                                         |             | R                                                   |                                              | т                                                             | R                                           | L              | т             |      | 1    |
| Volume                                                                                                                                                      |                                        |                                                     |                                                                  | 105                                       |             | 45                                                  |                                              | 293                                                           | 900                                         | 385            | 286           |      |      |
| Lane Width                                                                                                                                                  |                                        |                                                     |                                                                  | 12.0                                      |             | 12.0                                                |                                              | 12.0                                                          | 12.0                                        | 12.0           | ) 12.0        | )    | 1    |
| RTOR Vol                                                                                                                                                    | İ                                      |                                                     |                                                                  | 1                                         |             | 0                                                   | ĺ                                            |                                                               | 0                                           | Í              |               |      | İ    |
| Duration                                                                                                                                                    | 0.25                                   |                                                     | Area                                                             |                                           |             | other<br>Operat                                     |                                              |                                                               |                                             |                |               |      |      |
| Phase Combi                                                                                                                                                 | ination                                | 1                                                   | 2                                                                | S10<br>3                                  |             | 4                                                   | .1005_                                       | 5                                                             | 6                                           | -              | 7             | 8    |      |
| EB Left                                                                                                                                                     |                                        |                                                     |                                                                  |                                           |             | NB                                                  | Left                                         |                                                               |                                             |                |               |      |      |
| Thru                                                                                                                                                        |                                        |                                                     |                                                                  |                                           |             |                                                     | Thru                                         |                                                               | А                                           |                |               |      |      |
| Right                                                                                                                                                       |                                        |                                                     |                                                                  |                                           |             |                                                     | Right                                        | 5                                                             | A                                           |                |               |      |      |
| Peds                                                                                                                                                        |                                        |                                                     |                                                                  |                                           |             |                                                     | Peds                                         |                                                               |                                             |                |               |      |      |
| WB Left                                                                                                                                                     |                                        | А                                                   |                                                                  |                                           |             | SB                                                  |                                              | А                                                             |                                             |                |               |      |      |
| Thru                                                                                                                                                        |                                        |                                                     |                                                                  |                                           |             |                                                     | Thru                                         |                                                               | А                                           |                |               |      |      |
| Right                                                                                                                                                       |                                        | А                                                   |                                                                  |                                           |             |                                                     | Right                                        |                                                               | A                                           |                |               |      |      |
| Peds                                                                                                                                                        |                                        | ~                                                   |                                                                  |                                           |             |                                                     | Peds                                         | -                                                             |                                             |                |               |      |      |
|                                                                                                                                                             |                                        | А                                                   |                                                                  |                                           |             | EB                                                  | Right                                        | -                                                             |                                             |                |               |      |      |
| NB Right                                                                                                                                                    |                                        | А                                                   |                                                                  |                                           |             | WB                                                  |                                              |                                                               |                                             |                |               |      |      |
|                                                                                                                                                             |                                        |                                                     |                                                                  |                                           |             | i wb                                                | Right                                        | _ A                                                           |                                             |                |               |      |      |
| SB Right                                                                                                                                                    |                                        | 10 0                                                |                                                                  |                                           |             | 1=                                                  | -                                            | 20                                                            | 0 75                                        | ^              |               |      |      |
| SB Right<br>Green                                                                                                                                           |                                        | 10.0                                                |                                                                  |                                           |             | ,                                                   | -                                            | 20.                                                           |                                             |                |               |      |      |
| SB Right<br>Green<br>Yellow                                                                                                                                 |                                        | 4.0                                                 |                                                                  |                                           |             | ,                                                   | -                                            | 4.0                                                           | 4.0                                         | 1              |               |      |      |
| SB Right<br>Green<br>Yellow                                                                                                                                 |                                        |                                                     |                                                                  |                                           |             | ,                                                   | -                                            | 4.0<br>1.0                                                    | 4.0<br>1.0                                  | -<br>          |               |      |      |
| SB Right<br>Green<br>Yellow                                                                                                                                 |                                        | 4.0<br>1.0                                          |                                                                  | at i on                                   | Dow         | <b>,</b>                                            |                                              | 4.0<br>1.0<br>Cy                                              | 4.0<br>1.0<br>cle Le                        | -<br>          | : 120         | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red                                                                                                                      |                                        | 4.0<br>1.0<br>Ir                                    | nterse<br>j Sat                                                  | ction                                     |             | formanc                                             | ce Sum<br>Lane                               | 4.0<br>1.0<br>Cy<br>mary_                                     | 4.(<br>1.(<br>cle Le                        | -<br>          |               | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>                                                                                                                  |                                        | 4.0<br>1.0<br>Ir<br>Ir                              |                                                                  | Ra                                        |             | formanc                                             |                                              | 4.0<br>1.0<br>Cy<br>mary_                                     | 4.(<br>1.(<br>cle Le                        | ength          |               | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>                                                                                                                  | ne                                     | 4.0<br>1.0<br>Ir<br>Ad_<br>Flow                     | j Sat                                                            | Ra                                        | tio         | formanc                                             | Lane                                         | 4.0<br>1.0<br>Cy<br>mary_                                     | 4.0<br>1.0<br>cle Le<br>p Ap                | ength          | ch            | . 0  | sec: |
| SB Right<br>Green<br>Yellow<br>All Red<br>                                                                                                                  | ne<br>oup                              | 4.0<br>1.0<br>Ir<br>Ad_<br>Flow                     | j Sat<br>v Rate                                                  | Ra                                        | tio         | formanc<br>s                                        | Lane                                         | 4.0<br>1.0<br>Cy<br>mary_<br>Grou                             | 4.0<br>1.0<br>cle Le<br>p Ap                | ength<br>oproa | ch            | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Cap                                                                                  | ne<br>oup                              | 4.0<br>1.0<br>Ir<br>Ad_<br>Flow                     | j Sat<br>v Rate                                                  | Ra                                        | tio         | formanc<br>s                                        | Lane                                         | 4.0<br>1.0<br>Cy<br>mary_<br>Grou                             | 4.0<br>1.0<br>cle Le<br>p Ap                | ength<br>oproa | ch            | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Cap<br>Eastbound<br>Westbound                                                        | ne<br>oup<br>pacity                    | 4.0<br>1.0<br>Ir<br>Ad<br>Flow                      | j Sat<br>v Rate<br>(s)                                           | Ra<br>v/c                                 | atio        | formand<br>s<br>g/C                                 | Lane<br>Dela                                 | 4.0<br>1.0<br>Cy<br>mary_<br>Grou<br>Y LOS                    | 4.0<br>1.0<br>cle Le<br>p Ap                | ength<br>oproa | ch            | . 0  | sec: |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Cap<br>Eastbound                                                                     | ne<br>oup                              | 4.0<br>1.0<br>Ir<br>Ad_<br>Flow                     | j Sat<br>v Rate<br>(s)                                           | Ra                                        | atio        | formanc<br>s                                        | Lane                                         | 4.0<br>1.0<br>Cy<br>mary_<br>Grou                             | 4.0<br>1.0<br>cle Le<br>p Ap                | ength<br>oproa | ch            | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Cap<br>Eastbound<br>Westbound<br>L 31                                                | ne<br>oup<br>pacity                    | 4.0<br>1.0<br>Ir<br>Ad<br>Flow                      | j Sat<br>v Rate<br>(s)                                           | Ra<br>v/c                                 |             | formand<br>s<br>g/C                                 | Lane<br>Dela                                 | 4.0<br>1.0<br>Cy<br>mary_<br>Grou<br>Y LOS                    | 4.(<br>1.(<br>cle Le<br>p Ap<br><br>Del     | ength<br>oproa | ch<br>OS      | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Cap<br>Eastbound<br>Westbound<br>L 31<br>R 47                                        | ne<br>pacity<br>15                     | 4.0<br>1.0<br>Ir<br>Ad_<br>Flow                     | j Sat<br>v Rate<br>(s)                                           | Ra<br>v/c                                 |             | formand<br>s<br>g/C<br>0.09                         | Lane<br>Delay                                | 4.0<br>1.0<br>Cy<br>mary_<br>Grou<br>Y LOS                    | 4.(<br>1.(<br>cle Le<br>p Ap<br><br>Del     | ength<br>oproa | ch<br>OS      | .0   | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Car<br>Eastbound<br>L 31<br>R 47<br>Northbound                                       | ne<br>pacity<br>15                     | 4.0<br>1.0<br>Ir<br>Ad<br>Flow<br>343<br>158<br>347 | j Sat<br>v Rate<br>(s)<br>37<br>33                               | Ra<br>v/c<br>0.35<br>0.10                 | 1           | formand<br>s<br>g/C<br>0.09<br>0.30<br>0.63         | Lane<br>Delay<br>51.8<br>30.4<br>8.9         | 4.0<br>1.0<br>Cy<br>ary_<br>Grou<br>Y LOS<br>D<br>C           | 4.(<br>1.(<br>cle Le<br>p Ap<br><br>Del     | ay L           | ch<br>OS      | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Car<br>Eastbound<br>L 31<br>R 47<br>Northbound<br>T 22                               | ne<br>pacity<br>15                     | 4.0<br>1.0<br>Ir<br>Ad<br>Flow<br>343               | j Sat<br>v Rate<br>(s)<br>37<br>33                               | Ra<br><br>0.35<br>0.10                    | 1           | formand<br>s<br>g/C<br>0.09<br>0.30                 | Lane<br>Delay<br>51.8<br>30.4                | 4.0<br>1.0<br>Cy<br>ary_<br>Grou<br>Y LOS<br>D<br>C           | 4.(<br>1.(<br>cle Le<br>p Ap<br><br>Del<br> | ay L           | ch<br>os<br>D | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Car<br>Eastbound<br>L 31<br>R 47<br>Northbound<br>T 22<br>R 12                       | ne<br>pacity<br>15<br>75<br>203<br>200 | 4.0<br>1.0<br>Ir<br>Ad<br>Flow<br>343<br>158<br>347 | j Sat<br>v Rate<br>(s)<br>37<br>33                               | Ra<br>v/c<br>0.35<br>0.10                 | 1           | formand<br>s<br>g/C<br>0.09<br>0.30<br>0.63         | Lane<br>Delay<br>51.8<br>30.4<br>8.9         | 4.0<br>1.0<br>Cy<br>ary_<br>Grou<br>Y LOS<br>D<br>C           | 4.(<br>1.(<br>cle Le<br>p Ap<br><br>Del<br> | ay L           | ch<br>os<br>D | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Cap<br>Eastbound<br>L 31<br>R 47<br>Northbound<br>T 22<br>R 12<br>Southbound         | ne<br>pacity<br>15<br>75<br>203<br>200 | 4.0<br>1.0<br>Ir<br>Ad<br>Flow<br>343<br>158<br>347 | j Sat<br>v Rate<br>(s)<br>37<br>33<br>33<br>78<br>33             | Ra<br>v/c<br>0.35<br>0.10                 | 5<br>)      | formand<br>s<br>g/C<br>0.09<br>0.30<br>0.63         | Lane<br>Delay<br>51.8<br>30.4<br>8.9         | 4.0<br>1.0<br>Cy<br>ary_<br>Grou<br>Y LOS<br>D<br>C           | 4.(<br>1.(<br>cle Le<br>p Ap<br><br>Del<br> | ay L           | ch<br>os<br>D | . 0  | sec  |
| SB Right<br>Green<br>Yellow<br>All Red<br>Appr/ Lar<br>Lane Gro<br>Grp Car<br>Eastbound<br>L 31<br>R 47<br>Northbound<br>T 22<br>R 12<br>Southbound<br>L 60 | ne<br>pacity<br>15<br>75<br>203<br>200 | 4.0<br>1.0<br>Ir<br>Ad<br>Flow<br>343<br>158<br>347 | j Sat<br>v Rate<br>(s)<br>37<br>33<br>33<br>33<br>78<br>33<br>37 | Ra<br>v/c<br>0.35<br>0.10<br>0.14<br>0.79 | 5<br>5<br>1 | formand<br>s<br>g/C<br>0.09<br>0.30<br>0.63<br>0.76 | Lane<br>Delay<br>51.8<br>30.4<br>8.9<br>12.4 | 4.0<br>1.0<br>Cy<br>ary_<br>Grou<br>Y LOS<br>D<br>C<br>A<br>B | 4.(<br>1.(<br>cle Le<br>p Ap<br><br>Del<br> | ay L           | ch<br>os<br>D | . 0  | sec  |

HCS+: Signalized Intersections Release 5.3

Phone: E-Mail: Fax:

\_OPERATIONAL ANALYSIS\_\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/11/2008 Analysis Time Period: A.M. Peak Hour U.S. 19 & Construction Access Intersection: Area Type: All other areas Jurisdiction: FDOT Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor ~ Heavy Haul Route 1 E/W St: Construction Access N/S St: U.S. 19

\_\_\_\_\_VOLUME DATA\_

|                      | Eas  | stbou | nd   | Wes   | tbo | unđ     | No    | rthbo | und   | Soi   | uthbou    | ınd |
|----------------------|------|-------|------|-------|-----|---------|-------|-------|-------|-------|-----------|-----|
|                      | L    | т     | R    | L     | Т   | R       | L     | т     | R     | L     | т         | R   |
| Volume               |      |       |      | 105   |     | 45      | •     | 293   | 900   | 385   | 286       |     |
| % Heavy Veh          |      |       |      | 2     |     | 2       |       | 4     | 2     | 2     | 4         |     |
| PHF                  |      |       |      | 0.95  |     | 0.95    |       | 0.95  | 0.95  | 0.95  | 0.95      |     |
| PK 15 Vol            |      |       |      | 28    |     | 12      |       | 77    | 237   | 101   | 75        |     |
| Hi Ln Vol            |      |       |      |       | 0   |         |       | 0     |       |       | 0         |     |
| % Grade<br>Ideal Sat |      |       |      | 11900 | U   | 1900    |       | •     | 1900  | 11000 | 0<br>1900 |     |
| ParkExist            |      |       |      | 11900 |     | 1900    |       | 1900  | 1900  | 11900 | 1900      |     |
| NumPark              |      |       |      |       |     |         |       |       |       | 1     |           |     |
| No. Lanes            | 0    | 0     | 0    | 2     | 0   | 1       | 0     | 2     | 1     | 2     | 2         | 0   |
| LGConfig             | _    |       | -    | L     | -   | R       |       | T     | R     | L L   | -<br>T    | •   |
| Lane Width           |      |       |      | 12.0  |     | 12.0    |       | 12.0  | 12.0  | 12.0  | 12.0      |     |
| RTOR Vol             |      |       |      | i     |     | 0       | İ     |       | 0     | i     |           |     |
| Adj Flow             |      |       |      | 1111  |     | 47      | İ     | 308   | 947   | 405   | 301       |     |
| %InSharedLn          | ĺ    |       |      | Ì     |     |         |       |       |       | 1     |           |     |
| Prop LTs             |      |       |      |       |     |         |       | 0.0   | 00    | 1     | 0.00      | 00  |
| Prop RTs             |      |       |      |       |     | 1.000   | 0     | .000  | 1.000 | 0     | .000      |     |
| Peds Bikes           | 0    |       |      | 0     |     |         | 0     |       |       |       |           |     |
| Buses                |      |       |      | 0     |     | 0       |       | 0     | 0     | 0     | 0         |     |
| %InProtPhase         | -    |       |      | 1     |     | _       |       |       |       | l     |           |     |
| Duration             | 0.25 |       | Area | Type: | A11 | other a | areas |       |       |       |           |     |

\_OPERATING PARAMETERS\_

|              | Ea    | stbou      | nd | We  | stboi | ınd     | No | orthbo | und | Sc  | uthbo | und |
|--------------|-------|------------|----|-----|-------|---------|----|--------|-----|-----|-------|-----|
|              | L     | Т          | R  | L   | Т     | R       | L  | т      | R   | L   | Т     | R   |
| Init Unmet   |       |            |    | 0.0 |       | 0.0     |    | 0.0    | 0.0 | 0.0 | 0.0   | 1   |
| Arriv. Type  |       |            |    | 3   |       | 3       | ì  | 3      | 3   | 13  | 3     | i   |
| Unit Ext.    |       |            |    | 3.0 |       | 3.0     |    | 3.0    | 3.0 | 3.0 | 3.0   | i   |
| I Factor     |       |            |    | · · | 1.00  | 00      | 1  | 1.00   | 0   | j   | 1.00  | o i |
| Lost Time    |       |            |    | 2.0 |       | 2.0     | İ  | 2.0    | 2.0 | 2.0 | 2.0   |     |
| Ext of g     |       |            |    | 3.0 |       | 3.0     | 1  | 3.0    | 3.0 | 3.0 | 3.0   |     |
| Ped Min g    |       | 3.2        |    |     | 3.2   |         | Í  | 3.2    |     |     |       |     |
|              |       |            |    |     |       |         |    |        |     |     |       |     |
|              |       |            |    |     | PHAS  | SE DATA | ·  |        |     |     |       |     |
| Phase Combin |       | <b>m</b> 1 | 2  | 3   | ,     | 1       |    | 5      | 6   | 7   | ,     | 8   |
| Fhase Combin | IACIO | 11 1       | 2  | 2   | 4     | ±       |    | 5      | 0   |     |       | 0   |

| EB                | Left<br>Thru<br>Right<br>Peds |                    | NB<br> <br> | Left<br>Thru<br>Right<br>Peds |                    | A<br>A             |
|-------------------|-------------------------------|--------------------|-------------|-------------------------------|--------------------|--------------------|
| WB                | Left<br>Thru<br>Right<br>Peds | A                  | SB          | Left<br>Thru<br>Right<br>Peds | A<br>A             | A                  |
| NB                | Right                         | A                  | EB          | Right                         |                    |                    |
| SB                | Right                         |                    | WB          | Right                         | A                  |                    |
| Gre<br>Yel<br>All |                               | 10.0<br>4.0<br>1.0 | I           |                               | 20.0<br>4.0<br>1.0 | 75.0<br>4.0<br>1.0 |

Cycle Length: 120.0 secs

|              |        | VOLU  | ME AD | JUSTMEN | T AN | ID SATU | RATIC | N FLO | w work | SHEET |        |     |
|--------------|--------|-------|-------|---------|------|---------|-------|-------|--------|-------|--------|-----|
| Volume Adjus | stment | :     |       |         |      |         |       |       |        |       |        |     |
|              | Eas    | stbou | nđ    | Wes     | tbou | ind     | j No  | rthbo | und    | So    | uthbou | ind |
|              | L      | т     | R     | L       | т    | R       | L     | т     | R      | L     | Т      | R   |
| Volume, V    |        |       |       | 105     |      | 45      | <br>  | 293   | 900    | 385   | 286    |     |
| PHF          |        |       |       | 0.95    |      | 0.95    | İ     | 0.95  | 0.95   | 0.95  | 0.95   |     |
| Adj flow     | ĺ      |       |       | 111     |      | 47      | İ     | 308   | 947    | 405   | 301    |     |
| No. Lanes    | 0      | 0     | 0     | 2       | 0    | 1       | 0     | 2     | 1      | 2     | 2      | 0   |
| Lane group   |        |       |       | L       |      | R       | 1     | т     | R      | L     | T      |     |
| Adj flow     |        |       |       | 111     |      | 47      | ł     | 308   | 947    | 405   | 301    |     |
| Prop LTs     |        |       |       |         |      |         | 1     | 0.0   | 00     |       | 0.00   | 00  |
| Prop RTs     |        |       |       | 1       |      | 1.000   | (     | .000  | 1.000  | 0     | .000   |     |

| Saturatio | on Flow R | ate (see Exh | ibit 16-7 to | determine  | the adj  | ustment      | t facto | ors) |
|-----------|-----------|--------------|--------------|------------|----------|--------------|---------|------|
|           | Eastboun  |              | stbound      |            | -        |              |         |      |
| LG        |           | L            | R            | т          | R        | $\mathbf{L}$ | т       |      |
| So        |           | 1900         | 1900         | 1900       | 1900     | 1900         | 1900    |      |
| Lanes O   | 0         | 0 2          | 0 1          | 0 2        | 1        | 2            | 2       | 0    |
| fW        |           | 1.000        | 1.000        | 1.00       | 0 1.000  | 1.000        | 1.000   |      |
| fHV       |           | 0.980        | 0.980        | 0.96       | 52 0.980 | 0.980        | 0.962   |      |
| fG        |           | 1.000        | 1.000        | 1.00       | 00 1.000 | 1.000        | 1.000   |      |
| fP        |           | 1.000        | 1.000        | 1.00       | 0 1.000  | 1.000        | 1.000   |      |
| fBB       |           | 1.000        | 1.000        | 1.00       | 00 1.000 | 1.000        | 1.000   |      |
| fA        |           | 1.000        | 1.000        | 1.00       | 00 1.000 | 1.000        | 1.000   |      |
| fLU       |           | 0.971        | 1.000        | 0.95       | 52 1.000 | 0.971        | 0.952   |      |
| fRT       |           |              | 0.850        | 1.00       | 0 0.850  |              | 1.000   |      |
| fLT       |           | 0.950        |              | 1.00       | 00       | 0.950        | 1.000   |      |
| Sec.      |           |              |              |            |          |              |         |      |
| fLpb      |           | 1.000        |              | 1.00       | 00       | 1.000        | 1.000   |      |
| fRpb      |           |              | 1.000        | 1.00       | 00 1.000 |              | 1.000   |      |
| S         |           | 3437         | 1583         | 3478       | 3 1583   | 3437         | 3478    |      |
| Sec.      |           |              |              |            |          |              |         |      |
|           |           | CAPA         | CITY AND LOS | WORKSHEET_ |          |              |         |      |
| Capacity  | Analysis  | and Lane Gr  | oup Capacity |            |          |              |         |      |
|           |           | Adj          | Adj Sat      | Flow Gi    | reen     | Lane G       | roup    |      |
| Appr/     | Lane      | Flow Rate    | Flow Rate    | Ratio Ra   | atio Ca  | pacity       | v/c     |      |
| Mvmt      | Group     | (v)          | (s)          | (v/s) (g   | g/C)     | (c)          | Ratic   | C    |

Eastbound

Prot

| R<br>Jorthi                     | ound<br>0.35<br>0.10<br>bound<br>0.14<br>0.79 | 0.30<br>0.63<br>0.76 | 51.2<br>30.3<br>8.9<br>8.7 | 1.000<br>1.000<br>1.000<br>1.000 | 475<br>2203 | 0.11<br>0.11<br>0.11<br>0.34 | 0.7<br>0.1<br>0.0<br>3.6 | 0.0<br>0.0<br>0.0<br>0.0 | 51.8<br>30.4<br>8.9<br>12.4 | D<br>C<br>A<br>B | 45.5         | LOS<br>D<br>B |
|---------------------------------|-----------------------------------------------|----------------------|----------------------------|----------------------------------|-------------|------------------------------|--------------------------|--------------------------|-----------------------------|------------------|--------------|---------------|
| Lane<br>Erp<br>Lastbo<br>Vestbo | ound<br>0.35<br>0.10                          | 0.30                 |                            |                                  |             |                              |                          |                          |                             |                  |              |               |
| ane<br>rp<br>astbo              | ound                                          | 0.09                 | 51.2                       | 1.000                            | 315         | 0.11                         | 0.7                      | 0.0                      | 51.8                        | D                | 45.5         |               |
| ane<br>irp                      |                                               |                      |                            |                                  | •           |                              |                          |                          |                             |                  |              | LOS           |
| ane                             | V/C                                           |                      |                            |                                  |             | -                            |                          | -                        |                             |                  |              | LOS           |
| Appr/                           |                                               | g/C                  | Del<br>d1                  | Adj<br>Fact                      | Grp<br>Cap  | Factor<br>k                  | Del<br>d2                | Del<br>d3                | Delay                       | LOS              | Delay        |               |
| Contro                          |                                               | lay an<br>tios       | Unf                        | Determi<br>Prog                  | Lane        | Increm                       |                          |                          | Lane G                      | roup             | Approa       | ach           |
| Total                           | lost                                          | time                 | per cy                     |                                  | . = 3.0     | ne grou<br>)0 sec<br>Lo,     |                          |                          | um (v/s                     |                  | 0.72<br>0.73 |               |
| Pe:<br>Th:<br>Rig               |                                               | T                    | 3                          | 01                               | 347         | 78                           | 0.09                     | 0.                       | 84 2                        | 927              | 0.10         |               |
| Pro<br>Pe:<br>Le:<br>Pro        | ot<br>rm<br>Et                                | L                    | 4                          | 05                               | 343         | 37 #                         | 0.12                     | 0.                       | 17 6                        | 01               | 0.67         |               |
|                                 |                                               | R                    |                            | 08<br>47                         | 347<br>158  |                              | 0.09<br>0.60             |                          |                             | 203<br>200       | 0.14<br>0.79 |               |
| Pro<br>Per<br>Let<br>Pro<br>Per | rm<br>Et<br>ot<br>rm                          | т                    | 2                          | 0.0                              | 2.4.5       | 7 0                          | 0 0 0                    | 0                        | 63 2                        | 202              | 0.14         |               |
|                                 | rm<br>ru<br>ght                               |                      | 4                          | 7                                | 158         | 3                            | 0.03                     | 0.                       | 30 4                        | 75               | 0.10         |               |
| Pro<br>Pei<br>Lei               | ound<br>ot<br>cm<br>Et                        | L                    | 1                          | 11                               | 343         | 7                            | 0.03                     | 0.                       | 09 3                        | 15               | 0.35         |               |
| Thi<br>Riç<br>estbo             | ru                                            |                      |                            |                                  |             |                              |                          |                          |                             |                  |              |               |

HCS+: Unsignalized Intersections Release 5.3

\_TWO-WAY STOP CONTROL SUMMARY\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/11/2008 Analysis Time Period: A.M. Peak Hour U.S. 19 & Operations Access Intersection: Jurisdiction: FDOT Units: U. S. Customary 2015 Peak Construction Traffic Analysis Year: Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 East/West Street: **Operations Access** U.S. 19 North/South Street: Intersection Orientation: NS Study period (hrs): 0.25 Vehicle Volumes and Adjustments Northbound Southbound Major Street: Approach 2 3 5 Movement 1 4 6 L т R  $\mathbf{L}$ т R Volume 1189 93 40 351 0.95 0.95 0.95 Peak-Hour Factor, PHF 0.95 Hourly Flow Rate, HFR 97 1251 42 369 Percent Heavy Vehicles 2 - -- -Median Type/Storage / 2 Raised curb RT Channelized? No Lanes 2 1 1 2 Configuration т R  $\mathbf{L}$ т Upstream Signal? No No Minor Street: Approach Westbound Eastbound 7 9 Movement 8 10 11 12 L т R L т R 9 Volume 4 Peak Hour Factor, PHF 0.95 0.95 9 Hourly Flow Rate, HFR 4 Percent Heavy Vehicles 2 2 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage Lanes 1 1 Configuration L R Delay, Queue Length, and Level of Service Approach NB SB Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Config L L R 42 9 4 v (vph) 507 482 C(m) (vph) 216 0.08 0.04 0.01 v/c 95% queue length 0.27 0.13 0.03 Control Delay 12.7 22.4 12.5 LOS в С В 19.4 Approach Delay Approach LOS С

Phone: E-Mail:

Percent Blockage

Fax:

TWO-WAY STOP CONTROL (TWSC) ANALYSIS\_\_\_\_ Analyst: KHA Agency/Co.: KHA 12/11/2008 Date Performed: Analysis Time Period: A.M. Peak Hour U.S. 19 & Operations Access Intersection: Jurisdiction: FDOT Units: U. S. Customary Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 East/West Street: Operations Access North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ 5 Major Street Movements 1 2 3 4 6 т т R  $\mathbf{L}$ R T, Volume 1189 93 40 351 0.95 0.95 0.95 Peak-Hour Factor, PHF 0.95 Peak-15 Minute Volume 313 24 11 92 369 Hourly Flow Rate, HFR 1251 97 42 Percent Heavy Vehicles - -\_ \_ 2 \_ \_ . ...... / 2 Raised curb Median Type/Storage RT Channelized? No 2 1 2 Lanes 1 т R т Configuration L Upstream Signal? No No Minor Street Movements 7 8 9 10 11 12 Τ R L T R L Volume 9 4 0.95 0.95 Peak Hour Factor, PHF Peak-15 Minute Volume 2 1 Hourly Flow Rate, HFR 9 4 2 Percent Heavy Vehicles 2 0 Percent Grade (%) 0 Flared Approach: Exists?/Storage RT Channelized? No 1 1 Lanes Configuration Г R \_Pedestrian Volumes and Adjustments\_ 15 Movements 13 14 16 0 0 0 0 Flow (ped/hr) Lane Width (ft) 12.0 12.0 12.0 12.0 Walking Speed (ft/sec) 4.0 4.0 4.0 4.0

0

0

0

0

|                                                                                                              | Prog.<br>Flow<br>vph                       | Sat<br>Flow<br>vph                    | Arriv<br>Type                  | Т            |                      | Cycle<br>Length<br>sec      | Prog.<br>Speed<br>mph | Distance<br>to Signal<br>feet |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|--------------------------------|--------------|----------------------|-----------------------------|-----------------------|-------------------------------|
| S2 Left-Turn<br>Through<br>S5 Left-Turn<br>Through                                                           |                                            |                                       |                                |              |                      |                             |                       |                               |
| Worksheet 3-Dat                                                                                              | a for Cor                                  | mputing                               | Effect                         | of De        | lay to               | Major                       | Street V              | Vehicles                      |
|                                                                                                              |                                            |                                       |                                |              | Moveme               | ent 2                       | Moveme                | ent 5                         |
| Shared ln volum<br>Shared ln volum<br>Sat flow rate,<br>Sat flow rate,<br>Number of major<br>Worksheet 4-Cri | e, major<br>major th<br>major rt<br>street | rt veh<br>vehicl<br>vehicl<br>through | icles:<br>es:<br>es:<br>lanes: |              | Calcu                | lation                      |                       |                               |
| Critical Gap Ca                                                                                              | lculatio                                   | n                                     |                                |              |                      |                             |                       |                               |
| Movement                                                                                                     | 1<br>L                                     | 4<br>L                                | 7<br>L                         | 8<br>T       | 9<br>R               | 10<br>L                     | 11<br>T               | 12<br>R                       |
| t(c,base)<br>t(c,hv)<br>P(hv)                                                                                | 2.00                                       | 4.1<br>2.00<br>2                      | 7.5<br>2.00<br>2               | 2.00         | 6.2<br>2.00<br>2     | ) 2.00                      | 2.00                  | 2.00                          |
| t(c,g)<br>Percent Grade<br>t(3,lt)                                                                           |                                            | 0.00                                  | 0.20<br>0.00<br>0.70           | 0.20<br>0.00 | 0.10<br>0.00<br>0.00 | ) 0.00                      |                       | 0.10<br>0.00                  |
| 2-stag<br>t(c) 1-stag                                                                                        |                                            | 0.00<br>0.00<br>4.1                   | 0.00<br>1.00<br>6.8            | 0.00<br>1.00 | 0.00                 |                             |                       | 0.00                          |
| 2-stag                                                                                                       |                                            | 4.1                                   | 5.8                            |              | 6.2                  |                             |                       |                               |
| Follow-Up Time<br>Movement                                                                                   | Calculat<br>1<br>L                         | ions<br>4<br>L                        | 7<br>L                         | 8<br>T       | 9<br>R               | 10<br>L                     | 11<br>T               | 12<br>R                       |
| t(f,base)<br>t(f,HV)<br>P(HV)                                                                                | 1.00                                       | 2.20<br>1.00<br>2                     | 3.50<br>1.00<br>2              | 1.00         | 3.30<br>1.00<br>2    |                             | 1.00                  | 1.00                          |
| t(f)                                                                                                         |                                            | 2.2                                   | 3.5                            |              | 3.3                  |                             |                       |                               |
| Worksheet 5-Eff                                                                                              | ect of U                                   | pstream                               | ı Signal                       | .s           |                      |                             |                       |                               |
| Computation 1-Q                                                                                              | ueue Cle                                   | arance                                | Time at                        |              | Mover                | ignal<br>ment 2<br>V(l,prot |                       | ovement 5<br>V(1,prot)        |
| V prog<br>Total Saturatic                                                                                    | n Flow R                                   | ate, s                                | (vph)                          |              |                      |                             |                       | <u> </u>                      |

Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P

g(q1) g(q2) g(q)

| Computation 2- | Proport: | lon of T  | WSC Inte                              | ersectio                                | on Tim<br>Movem |          |         | lovement     | 5                                     |
|----------------|----------|-----------|---------------------------------------|-----------------------------------------|-----------------|----------|---------|--------------|---------------------------------------|
|                |          |           |                                       | V ( t                                   |                 | (l,prot  |         |              | prot)                                 |
| alpha          |          |           |                                       |                                         |                 |          |         |              |                                       |
| peta           |          |           |                                       |                                         |                 |          |         |              |                                       |
| Fravel time, t | (a) (se  | 2)        |                                       |                                         |                 |          |         |              |                                       |
| Smoothing Fact | or, F    |           |                                       |                                         |                 |          |         |              |                                       |
| Proportion of  | conflic  | ing flo   | w, f                                  |                                         |                 |          |         |              |                                       |
| Max platooned  |          |           |                                       |                                         |                 |          |         |              |                                       |
| Min platooned  |          |           |                                       |                                         |                 |          |         |              |                                       |
| Duration of bl |          |           | (2)                                   |                                         |                 |          |         |              |                                       |
|                |          |           | (p)                                   |                                         | 0.0             | 0.0      |         | 0.000        |                                       |
| Proportion tim | e block  | ea, p     |                                       |                                         | 0.0             | 00       |         | 0.000        |                                       |
| Computation 3- | Platoon  | Event P   | eriods                                | Rest                                    | ılt             |          |         |              |                                       |
| p(2)           |          |           |                                       | 0.0                                     |                 |          |         |              |                                       |
| p(5)           |          |           |                                       | 0.0                                     | 00              |          |         |              |                                       |
| p(dom)         |          |           |                                       |                                         |                 |          |         |              |                                       |
| p(subo)        |          |           |                                       |                                         |                 |          |         |              |                                       |
| Constrained or | uncons   | crained?  |                                       |                                         |                 |          |         |              |                                       |
| Broportion     |          | <u>,-</u> |                                       |                                         |                 |          | · ··    |              |                                       |
| Proportion     |          | 1.4       | · ·                                   |                                         | (2)             |          | 121     |              |                                       |
| unblocked      |          | (1        |                                       |                                         | (2)             | –        | (3)     |              |                                       |
| for minor      |          |           | -stage                                |                                         |                 | Stage Pr |         |              |                                       |
| movements, p(x | .)       | Proc      | ess                                   | Sta                                     | je I            |          | Stage I | L I          |                                       |
| p(1)           |          | · · · · · | · · · · · · · · · · · · · · · · · · · |                                         |                 |          |         |              |                                       |
| p(4)           |          |           |                                       |                                         |                 |          |         |              |                                       |
| p(7)           |          |           |                                       |                                         |                 |          |         |              |                                       |
| p(8)           |          |           |                                       |                                         |                 |          |         |              |                                       |
|                |          |           |                                       |                                         |                 |          |         |              |                                       |
| p(9)           |          |           |                                       |                                         |                 |          |         |              |                                       |
| p(10)          |          |           |                                       |                                         |                 |          |         |              |                                       |
| p(11)          |          |           |                                       |                                         |                 |          |         |              |                                       |
| p(12)          |          |           |                                       |                                         |                 |          |         |              |                                       |
| Computation 4  | and 5    |           |                                       |                                         |                 |          |         |              | · · · · · · · · · · · · · · · · · · · |
| Single-Stage P | rocess   |           |                                       |                                         |                 |          |         |              |                                       |
| Movement       |          | 1         | 4                                     | 7                                       | 8               | 9        | 10      | 11           | 12                                    |
| 110 1 01110    |          | Ĺ         | L                                     | Ĺ                                       | Ť               | R        | L       | <br>T        | R                                     |
|                |          | ىد        | <u> </u>                              |                                         | ۲               |          |         | 1            |                                       |
| V c,x          |          |           | 1348                                  | 1519                                    |                 | 626      |         |              |                                       |
| S              |          |           |                                       |                                         |                 |          |         |              |                                       |
| Px             |          |           |                                       |                                         |                 |          |         |              |                                       |
| V c,u,x        |          |           |                                       |                                         |                 |          |         |              |                                       |
| <br>C r,x      |          |           |                                       |                                         |                 |          |         |              | ,                                     |
| C plat,x       |          |           |                                       |                                         |                 |          |         |              |                                       |
| Two-Stage Proc | ess      |           |                                       |                                         |                 |          |         | <u>.</u> .   |                                       |
|                | Q+-, 1   | 7         | 05. 1                                 | 8                                       | 2 21            | 10       |         | 1:<br>Chorol |                                       |
|                | Stage1   | Stage2    | Stage1                                | Stage                                   | z Sta           | agel St  | age2    | Stage1       | Stage2                                |
| V(c,x)         | 1251     | 268       |                                       | ••••••••••••••••••••••••••••••••••••••• |                 |          |         |              |                                       |
| S              |          | 3000      |                                       |                                         |                 |          |         |              |                                       |
| P(x)           |          |           |                                       |                                         |                 |          |         |              |                                       |
| V(c,u,x)       |          |           |                                       |                                         |                 |          |         |              |                                       |
| v(C, u, A)     |          |           |                                       |                                         |                 |          |         |              |                                       |

### C(plat,x)

Worksheet 6-Impedance and Capacity Equations

| Step 1: RT from Minor St.              | 9    | 12   |
|----------------------------------------|------|------|
| Conflicting Flows                      | 626  |      |
| Potential Capacity                     | 482  |      |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Movement Capacity                      | 482  |      |
| Probability of Queue free St.          | 0.99 | 1.00 |
| Step 2: LT from Major St.              | 4    | 1    |
| Conflicting Flows                      | 1348 |      |
| Potential Capacity                     | 507  |      |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Movement Capacity                      | 507  |      |
| Probability of Queue free St.          | 0.92 | 1.00 |
| Maj L-Shared Prob Q free St.           |      |      |
| Step 3: TH from Minor St.              | 8    | 11   |
| Conflicting Flows                      |      |      |
| Potential Capacity                     |      |      |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 0.92 | 0.92 |
| Movement Capacity                      |      |      |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Step 4: LT from Minor St.              | 7    | 10   |
| Conflicting Flows                      | 1519 |      |
| Potential Capacity                     | 110  |      |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Maj. L, Min T Impedance factor         |      | 0.92 |
| Maj. L, Min T Adj. Imp Factor.         |      | 0.94 |
| Cap. Adj. factor due to Impeding mvmnt | 0.92 | 0.93 |
| Movement Capacity                      | 101  |      |
|                                        |      |      |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8    | 11   |
|----------------------------------------|------|------|
| Part 1 - First Stage                   |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 246  | 573  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 0.92 |
| Movement Capacity                      | 246  | 526  |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Part 2 - Second Stage                  |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 573  | 221  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 0.92 | 1.00 |
| Movement Capacity                      | 526  | 221  |

Part 3 - Single Stage Conflicting Flows

| Potential Capacity<br>Pedestrian Impedance Factor           | 1.00 | 1.00 |
|-------------------------------------------------------------|------|------|
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity | 0.92 | 0.92 |
| Result for 2 stage process:                                 |      |      |
| a                                                           | 0.95 | 0.95 |
| У                                                           |      |      |
| Ct Statistic Constant                                       | 1 00 | 1 00 |
| Probability of Queue free St.                               | 1.00 | 1.00 |
| Step 4: LT from Minor St.                                   | 7    | 10   |
| Part 1 - First Stage                                        |      |      |
| Conflicting Flows                                           | 1251 |      |
| Potential Capacity                                          | 233  | 613  |
| Pedestrian Impedance Factor                                 | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt                      | 1.00 | 0.92 |
| Movement Capacity                                           | 233  | 562  |
| Part 2 - Second Stage                                       |      |      |
| Conflicting Flows                                           | 268  |      |
| Potential Capacity                                          | 753  | 501  |
| Pedestrian Impedance Factor                                 | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt                      | 0.92 | 0.99 |
| Movement Capacity                                           | 691  | 497  |
| Part 3 - Single Stage                                       |      |      |
| Conflicting Flows                                           | 1519 |      |
| Potential Capacity                                          | 110  |      |
| Pedestrian Impedance Factor                                 | 1.00 | 1.00 |
| Maj. L, Min T Impedance factor                              |      | 0.92 |
| Maj. L, Min T Adj. Imp Factor.                              | •    | 0.94 |
| Cap. Adj. factor due to Impeding mvmnt                      | 0.92 | 0.93 |
| Movement Capacity                                           | 101  |      |
| Results for Two-stage process:                              |      |      |
| a                                                           | 0.95 | 0.95 |
| У                                                           | 0.22 |      |
| Ct                                                          | 216  |      |
|                                                             |      |      |

### Worksheet 8-Shared Lane Calculations

| Movement                                              | 7         | 8  | 9   | 10  | 11    | 12     |
|-------------------------------------------------------|-----------|----|-----|-----|-------|--------|
|                                                       | ${\tt L}$ | Τ. | R   | L . | Т     | R      |
| Volume (vph)                                          | . 9       |    | 4   |     | ····· | ······ |
| Movement Capacity (vph)<br>Shared Lane Capacity (vph) | 216       |    | 482 |     |       |        |

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement | . 7 | 8 | 9   | 10 | 11 | 12 |
|----------|-----|---|-----|----|----|----|
|          | L   | т | R   | L  | т  | R  |
| C sep    | 216 |   | 482 |    |    |    |
| Volume   | 9   |   | 4   |    |    |    |
| Delay    |     |   |     |    |    |    |
| Q sep    |     |   |     |    |    |    |
| Q sep +1 |     |   |     |    |    |    |
|          |     |   |     |    |    |    |

round (Qsep +1)

n max C sh SUM C sep n C act

# Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10 | 11 | 12 |  |
|------------------|---|------|------|------|------|----|----|----|--|
| Lane Config      |   | L    | L    |      | R    |    |    |    |  |
| v (vph)          |   | 42   | 9    |      | 4    |    |    |    |  |
| C(m) (vph)       |   | 507  | 216  |      | 482  |    |    |    |  |
| v/c              |   | 0.08 | 0.04 |      | 0.01 |    |    |    |  |
| 95% queue length |   | 0.27 | 0.13 |      | 0.03 |    |    |    |  |
| Control Delay    |   | 12.7 | 22.4 |      | 12.5 |    |    |    |  |
| LOS              |   | в    | С    |      | в    |    |    |    |  |
| Approach Delay   |   |      |      | 19.4 |      |    |    |    |  |
| Approach LOS     |   |      |      | С    |      |    |    |    |  |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
| p(oj)                                         | 1.00       | 0.92       |
| v(il), Volume for stream 2 or 5               |            |            |
| v(i2), Volume for stream 3 or 6               |            |            |
| s(il), Saturation flow rate for stream 2 or 5 |            |            |
| s(i2), Saturation flow rate for stream 3 or 6 |            |            |
| P*(oj)                                        |            |            |
| d(M,LT), Delay for stream 1 or 4              |            | 12.7       |
| N, Number of major street through lanes       |            |            |
| d(rank,1) Delay for stream 2 or 5             |            |            |

\_TWO-WAY STOP CONTROL SUMMARY\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/15/2008 Analysis Time Period: A.M. Peak Hour Intersection: CR 40 & Heavy Haul Driveway Jurisdiction: Levy County Units: U. S. Customary 2015 Peak Construction Traffic Analysis Year: Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 CR 40 East/West Street: North/South Street: Heavy Haul Driveway Intersection Orientation: EW Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ Major Street: Approach Eastbound Westbound

| hajor bureet. Approach                                                             | Lascoound  |      |      |   | Westbound |        |      |   |
|------------------------------------------------------------------------------------|------------|------|------|---|-----------|--------|------|---|
| Movement                                                                           | 1          | 2    | 3    | 1 | 4         | 5.     | 6    |   |
|                                                                                    | L          | Т    | R    | İ | L         | т      | R    |   |
| Volume                                                                             | 0          | 72   | 0    |   | 0         | 119    | 0    |   |
| Peak-Hour Factor, PHF                                                              | 0.95       | 0.95 | 0.95 |   | 0.95      | 0.95   | 0.95 |   |
| Hourly Flow Rate, HFR                                                              | 0          | 75   | 0    |   | 0         | 125    | 0    |   |
| Percent Heavy Vehicles                                                             | 100        |      |      |   | 100       |        |      |   |
| Median Type/Storage                                                                | Undivi     | ded  |      |   | /         |        |      |   |
| RT Channelized?                                                                    |            |      | No   |   |           |        |      |   |
| Lanes                                                                              | 0          | 1 1  |      |   | 0         | 1      | 0    |   |
| Configuration                                                                      | LT         | R    |      |   | LT        | R      |      |   |
| Upstream Signal?                                                                   |            | No   |      |   |           | No     |      |   |
| Minor Street: Approach                                                             | Northbound |      |      |   | Sou       | thboun | d    |   |
| Movement                                                                           | 7          | 8    | 9    | 1 | 10        | 11     | 12   |   |
|                                                                                    | L          | T    | R    | Ì | L         | Т      | R    |   |
| Jolume                                                                             | 0          | 15   | 0    |   | 0         | 1      | 0    |   |
| Peak Hour Factor, PHF                                                              | 0.95       | 0.95 | 0.95 |   | 0.95      | 0.95   | 0.95 |   |
| Hourly Flow Rate, HFR                                                              | 0          | 15   | 0    |   | 0         | 1      | 0    |   |
|                                                                                    | 100        | 100  | 100  |   | 100       | 100    | 100  |   |
| Percent Heavy Vehicles                                                             | 100        | 100  | TOO  |   | 100       | 100    |      |   |
| -                                                                                  | 100        | 0    | 100  |   | 100       | 0      | 200  |   |
| Percent Grade (%)                                                                  |            |      | No   | / | 100       |        | No   | 1 |
| Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exists?/S<br>Lanes |            |      | No   | 1 | 0         | 0      |      | / |

|                  | _Delay,       | Queue Le | ngth, and Le | vel of | Service_ |           |    |
|------------------|---------------|----------|--------------|--------|----------|-----------|----|
| Approach         | EB            | WB       | Northbou     | nd     | Sc       | outhbound | £  |
| Movement         | 1             | 4        | 7 8          | 9      | 10       | 11        | 12 |
| Lane Config      | $\mathbf{LT}$ | LTR      | LTR          |        | ĺ        | LTR       | :  |
| v (vph)          | 0             | 0        | 15           |        |          | 1.        |    |
| C(m) (vph)       | 1026          | 1078     | 553          |        |          | 553       |    |
| v/c              | 0.00          | 0.00     | 0.03         |        |          | 0.00      |    |
| 95% queue length | 0.00          | 0.00     | 0.08         |        |          | 0.01      |    |
| Control Delay    | 8.5           | 8.3      | 11.7         |        |          | 11.5      |    |
| LOS              | А             | А        | В            |        |          | в         |    |
| Approach Delay   |               |          | 11.7         |        |          | 11.5      |    |
| Approach LOS     |               |          | В            |        |          | В         |    |
|                  |               |          |              |        |          |           |    |

Phone: E-Mail: Fax:

\_\_\_TWO-WAY STOP CONTROL(TWSC) ANALYSIS\_\_\_

| Analyst:               | КНА                      |                |        |      |
|------------------------|--------------------------|----------------|--------|------|
| -                      | KHA                      |                |        |      |
| Date Performed:        | 12/15/2008               |                |        |      |
| Analysis Time Period:  | A.M. Peak Hour           |                |        |      |
| Intersection:          | CR 40 & Heavy Haul Dri   | veway          |        |      |
| Jurisdiction:          | Levy County              |                |        |      |
| Units: U. S. Customary | <i>I</i>                 |                |        |      |
| Analysis Year:         | 2015 Peak Construction   | Traffic        |        |      |
| Project ID: Levy Cour  | nty Advanced Reactor - 1 | Heavy Haul Rou | ite 1  |      |
| East/West Street:      | CR 40                    |                |        |      |
| North/South Street:    | Heavy Haul Driveway      |                |        |      |
| Intersection Orientat: | ion: EW                  | Study period   | (hrs): | 0.25 |
|                        |                          |                |        |      |

|                                                                 | _Vehicle V | olumes | s and Adj | justment      | .s   |      |   |
|-----------------------------------------------------------------|------------|--------|-----------|---------------|------|------|---|
| Major Street Movements                                          | 1          | 2      | 3         | 4             | 5    | 6    |   |
|                                                                 | L          | Т      | R         | L             | Т    | R    |   |
| Volume                                                          | 0          | 72     | 0         | 0             | 119  | 0    |   |
| Peak-Hour Factor, PHF                                           | 0.95       | 0.95   | 0.95      | 0.95          | 0.95 | 0.95 |   |
| Peak-15 Minute Volume                                           | 0          | 19     | 0         | 0             | 31   | 0    |   |
| Hourly Flow Rate, HFR                                           | 0          | 75     | 0         | 0             | 125  | 0    |   |
| Percent Heavy Vehicles                                          | 100        |        |           | 100           |      |      |   |
| Median Type/Storage                                             | Undiv      | ided   |           | 1             |      |      |   |
| RT Channelized?                                                 |            |        | No        |               |      |      |   |
| Lanes                                                           | 0          | 1      | 1         | 0             | 1    | 0    |   |
| Configuration                                                   | LI         | ' I    | 3         | $\mathbf{L}'$ | ГR   |      |   |
| Upstream Signal?                                                |            | No     |           |               | No   |      |   |
| Minor Street Movements                                          | 7          | 8      | 9         | 10            | 11   | 12   |   |
|                                                                 | L          | Т      | R         | L             | Т    | R    |   |
| Volume                                                          | 0          | 15     | 0         | 0             | 1    | 0    |   |
| Peak Hour Factor, PHF                                           | 0.95       | 0.95   | 0.95      | 0.95          | 0.95 | 0.95 |   |
| Peak-15 Minute Volume                                           | 0          | 4      | 0         | 0             | 0    | 0    |   |
| Hourly Flow Rate, HFR                                           | 0          | 15     | 0         | 0             | 1    | 0    |   |
| Percent Heavy Vehicles                                          | 100        | 100    | 100       | 100           | 100  | 100  |   |
|                                                                 |            | 200    |           |               |      |      |   |
| Percent Grade (%)                                               |            | 0      | -         | 2.00          | 0    | 200  |   |
| Percent Grade (%)<br>Flared Approach: Exist:<br>RT Channelized? |            | 0      | No        | /             |      | No   | 1 |
| Flared Approach: Exists                                         |            | 0      | No<br>0.  | / 0           |      |      | / |

| Pede                   | estrian Vo | olumes . | and Adjı | ustments |  |
|------------------------|------------|----------|----------|----------|--|
| Movements              | 13,        | 14       | 15       | 16       |  |
| Flow (ped/hr)          | 0          | 0        | 0        | 0        |  |
| Lane Width (ft)        | 12.0       | 12.0     | 12.0     | 12.0     |  |
| Walking Speed (ft/sec) | 4.0        | 4.0      | 4.0      | 4.0      |  |
| Percent Blockage       | 0          | 0        | 0        | 0        |  |

|                        | Prog.<br>Flow<br>vph | Sat<br>Flow<br>vph | Arrival<br>Type | Green<br>Time<br>sec | Cycle<br>Length<br>sec | Prog.<br>Speed<br>mph | Distance<br>to Signal<br>feet         |
|------------------------|----------------------|--------------------|-----------------|----------------------|------------------------|-----------------------|---------------------------------------|
| 2 Left-Turn<br>Through | ·····                |                    |                 |                      |                        |                       | · · · · · · · · · · · · · · · · · · · |
| 5 Left-Turn<br>Through |                      |                    |                 |                      | •2                     |                       |                                       |

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

|                                       | Movement 2 | Movement 5 |
|---------------------------------------|------------|------------|
| Shared ln volume, major th vehicles:  | 75         | 125        |
| Shared ln volume, major rt vehicles:  | 0          | 0          |
| Sat flow rate, major th vehicles:     | 1700       | 1700       |
| Sat flow rate, major rt vehicles:     | 1700       | 1700       |
| Number of major street through lanes: | 1          | 1          |

Worksheet 4-Critical Gap and Follow-up Time Calculation

| tion<br>4<br>L | 7                                                              | 0                                                    |                                                      |                                                      |                                                      |                                                      |
|----------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                | 7                                                              | ~                                                    |                                                      |                                                      |                                                      |                                                      |
| т              |                                                                | 8                                                    | 9                                                    | 10                                                   | 11                                                   | 12                                                   |
| L.             | L                                                              | Т                                                    | R                                                    | L                                                    | Т                                                    | R                                                    |
| 4.1            | 7.1                                                            | 6.5                                                  | 6.2                                                  | 7.1                                                  | 6.5                                                  | 6.2                                                  |
| 0 1.00         | 1.00                                                           | 1.00                                                 | 1.00                                                 | 1.00                                                 | 1.00                                                 | 1.00                                                 |
| 100            | 100                                                            | 100                                                  | 100                                                  | 100                                                  | 100                                                  | 100                                                  |
|                | 0.20                                                           | 0.20                                                 | 0.10                                                 | 0.20                                                 | 0.20                                                 | 0.10                                                 |
|                | 0.00                                                           | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 |
| 0 0.00         | 0.00                                                           | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 |
| 0 0.00         | 0.00                                                           | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 | 0.00                                                 |
| 0 0.00         | 1.00                                                           | 1.00                                                 | 0.00                                                 | 1.00                                                 | 1.00                                                 | 0.00                                                 |
| 5.1            | 8.1                                                            | 7.5                                                  | 7.2                                                  | 8.1                                                  | 7.5                                                  | 7.2                                                  |
|                |                                                                |                                                      |                                                      |                                                      |                                                      |                                                      |
| lations        |                                                                |                                                      |                                                      |                                                      |                                                      |                                                      |
| 4              | 7                                                              | 8                                                    | 9                                                    | 10                                                   | 11                                                   | 12                                                   |
| ${ m L}$       | ${\tt L}$                                                      | Т                                                    | R                                                    | L                                                    | Т                                                    | R                                                    |
| 0 0.90<br>100  | 3.50<br>0.90<br>100<br>4.4                                     | 4.00<br>0.90<br>100<br>4.9                           | 3.30<br>0.90<br>100<br>4.2                           | 3.50<br>0.90<br>100<br>4.4                           | 4.00<br>0.90<br>100<br>4.9                           | 3.30<br>0.90<br>100<br>4.2                           |
|                | 4.1<br>0 1.00<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Worksheet 5-Effect of Upstream Signals

| Computation | 1-Queue | Clearance | Time | at | Upstream | Signal    |      |           |
|-------------|---------|-----------|------|----|----------|-----------|------|-----------|
|             |         |           |      |    | Mot      | vement 2  | Mov  | ement 5   |
|             |         |           |      |    | V(t)     | V(l,prot) | V(t) | V(l,prot) |

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P g(q1) g(q2) g(q)

| Computation 2-Proport                          | tion of 1   | WSC Int | ersect                                | ion Time<br>Moveme |                       |         |              | -    |
|------------------------------------------------|-------------|---------|---------------------------------------|--------------------|-----------------------|---------|--------------|------|
|                                                |             |         | v                                     | ovement<br>V(1,    | Vement 5<br>V(1,prot) |         |              |      |
| - 1 h                                          |             |         |                                       |                    |                       |         |              |      |
| alpha<br>beta                                  |             |         |                                       |                    |                       |         |              |      |
| Travel time, t(a) (se                          | ec)         |         |                                       |                    |                       |         |              |      |
| Smoothing Factor, F                            |             |         |                                       |                    |                       |         |              |      |
| Proportion of conflic                          |             | ow, f   |                                       |                    |                       |         |              |      |
| Max platooned flow, V                          |             |         |                                       |                    |                       |         |              |      |
| Min platooned flow, N                          |             | - (m)   |                                       |                    |                       |         |              |      |
| Duration of blocked p<br>Proportion time block |             | -101    |                                       | 0.0                | 00                    |         | 0.000        |      |
| · · · · · · · · · · · · · · · · · · ·          | , p         |         |                                       |                    |                       |         |              |      |
| Computation 3-Platoor                          | n Event l   | Periods | Re                                    | sult               |                       |         |              |      |
| p(2)                                           |             |         | 0.                                    | 000                |                       |         |              |      |
| p(5)                                           |             |         | 0.                                    | 000                |                       |         |              |      |
| p(dom)                                         |             |         |                                       |                    |                       |         |              |      |
| p(subo)                                        |             |         |                                       |                    |                       |         |              |      |
| Constrained or uncons                          | strained    | ?       |                                       |                    |                       |         |              |      |
| Proportion                                     |             |         |                                       |                    |                       |         |              | •    |
| unblocked                                      |             | 1)      |                                       | (2)                |                       | (3)     |              |      |
| for minor                                      |             | e-stage | <u> </u>                              |                    | tage Pr               |         | -            |      |
| movements, p(x)                                | Pro         | cess    | St                                    | age I              |                       | Stage I | T            |      |
| p(1)                                           |             |         |                                       |                    |                       |         |              |      |
| p(4)                                           |             |         |                                       |                    |                       |         |              |      |
| p(7)                                           |             |         |                                       |                    |                       |         |              |      |
| p(8)                                           |             |         |                                       |                    |                       |         |              |      |
| p(9)                                           |             |         |                                       |                    |                       |         |              |      |
| p(10)                                          |             |         |                                       |                    |                       |         |              |      |
| p(11)<br>p(12)                                 |             |         |                                       |                    |                       |         |              |      |
|                                                |             |         |                                       |                    |                       |         |              |      |
| Computation 4 and 5                            |             |         |                                       |                    |                       |         |              |      |
| Single-Stage Process<br>Movement               | 1           | · 4     | 7                                     | 8                  | 9                     | 10      | 11           | 12   |
| MOVEMENC                                       | L           | 4<br>L  | ,<br>L                                | o<br>T             | R                     | L       | T            | R    |
|                                                |             |         | -                                     | -                  |                       |         | -            |      |
| Vc,x                                           | 125         | 75      | 201                                   | 200                | 75                    | 207     | 200          | 125  |
| S<br>-                                         |             |         |                                       |                    |                       |         |              |      |
| Px                                             |             |         |                                       |                    |                       |         |              |      |
| V c,u,x                                        |             |         |                                       |                    |                       |         |              |      |
| Cr,x                                           |             |         |                                       |                    |                       |         |              |      |
| C plat,x                                       |             |         |                                       |                    |                       |         |              |      |
| Two-Stage Process                              |             |         | •                                     |                    |                       |         |              |      |
|                                                | 7<br>Stage2 | Stage1  | 8<br>. Stag                           | e2 Sta             | 10<br>gel St          | tage2 S | 1:<br>Stage1 |      |
| Stagel                                         |             |         | · · · · · · · · · · · · · · · · · · · |                    |                       |         |              |      |
|                                                |             |         |                                       |                    |                       |         |              |      |
| V(c,x)                                         | 1500        |         | 1500                                  |                    | 1!                    | 500     |              | 1500 |
|                                                | 1500        |         | 1500                                  |                    | 1!                    | 500     |              | 1500 |

5

C(plat, x)

Worksheet 6-Impedance and Capacity Equations Step 1: RT from Minor St. 9 12 Conflicting Flows 75 125 Potential Capacity 770 717 1.00 1.00 Pedestrian Impedance Factor Movement Capacity 770 717 1.00 1.00 Probability of Queue free St. Step 2: LT from Major St. 4 1 75 Conflicting Flows 125 1078 Potential Capacity 1026 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 1078 1026 Probability of Queue free St. 1.00 1.00 Maj L-Shared Prob Q free St. 1.00 1.00 8 11 Step 3: TH from Minor St. Conflicting Flows 200 200 Potential Capacity 553 553 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 553 553 0.97 1.00 Probability of Queue free St. Step 4: LT from Minor St. 7 10 Conflicting Flows 201 207 Potential Capacity 587 581 Pedestrian Impedance Factor 1.00 1.00 0.97 Maj. L, Min T Impedance factor 1.00 Maj. L, Min T Adj. Imp Factor. 1.00 0.98 Cap. Adj. factor due to Impeding mvmnt 1.00 0.98 Movement Capacity 586 569

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

Step 3: TH from Minor St. 8 11 Part 1 - First Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity Probability of Queue free St. Part 2 - Second Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity Part 3 - Single Stage Conflicting Flows 200 200

| Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding<br>Movement Capacity                                              | mvmnt | 1<br>1 | 53<br>.00<br>.00<br>53 |     | 553<br>1.00<br>1.00<br>553 |     |       |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------------------|-----|----------------------------|-----|-------|-----|
| Result for 2 stage process:                                                                                                                             | ·     |        |                        |     |                            |     | -     |     |
| a                                                                                                                                                       |       |        |                        |     |                            |     |       |     |
| У                                                                                                                                                       |       |        |                        |     |                            |     |       |     |
| Ct                                                                                                                                                      |       |        | 53                     |     | 553                        |     |       |     |
| Probability of Queue free St.                                                                                                                           |       | 0      | .97                    |     | 1.00                       |     |       |     |
| Step 4: LT from Minor St.                                                                                                                               |       |        | 7                      |     | 1.0                        |     | _     | . ' |
| Part 1 - First Stage<br>Conflicting Flows<br>Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding<br>Movement Capacity | mvmnt |        |                        |     |                            |     | <br>8 |     |
| Part 2 - Second Stage                                                                                                                                   |       |        |                        |     |                            |     | -     |     |
| Conflicting Flows                                                                                                                                       |       |        |                        |     |                            |     |       |     |
| Potential Capacity                                                                                                                                      |       |        |                        |     |                            |     |       |     |
| Pedestrian Impedance Factor                                                                                                                             |       |        |                        |     |                            |     |       |     |
| Cap. Adj. factor due to Impeding                                                                                                                        | mvmnt |        |                        |     |                            |     |       |     |
| Movement Capacity                                                                                                                                       |       |        |                        |     |                            |     |       |     |
| Part 3 - Single Stage                                                                                                                                   |       |        |                        |     | 0.05                       |     |       |     |
| Conflicting Flows                                                                                                                                       |       |        | 01                     |     | 207                        |     |       |     |
| Potential Capacity                                                                                                                                      |       |        | 87                     |     | 581                        |     |       |     |
| Pedestrian Impedance Factor                                                                                                                             |       |        | .00                    |     | 1.00                       |     |       |     |
| Maj. L, Min T Impedance factor                                                                                                                          |       |        | .00                    |     | 0.97                       |     |       |     |
| Maj. L, Min T Adj. Imp Factor.                                                                                                                          |       |        | .00                    |     | 0.98                       |     |       |     |
| Cap. Adj. factor due to Impeding                                                                                                                        | mvmnt |        | .00<br>86              |     | 0.98<br>569                |     |       |     |
| Movement Capacity                                                                                                                                       |       | c      | <u> </u>               |     | 209                        |     | _     |     |
| Results for Two-stage process:                                                                                                                          |       |        |                        |     |                            |     |       | . • |
| Y                                                                                                                                                       |       |        |                        |     |                            |     |       |     |
| Ĉ t                                                                                                                                                     |       | 5      | 86                     |     | 569                        |     |       |     |
| Worksheet 8-Shared Lane Calculat                                                                                                                        | ions  |        |                        |     |                            |     |       |     |
| Movement                                                                                                                                                | 7     | 8      | 9                      | 10  | 11                         | 12  | —     |     |
|                                                                                                                                                         | L     | T      | R                      | L   | T                          | R   |       |     |
| Volume (vph)                                                                                                                                            | 0     | 15     | 0                      | 0   | 1                          | 0   | -     |     |
| Movement Capacity (vph)                                                                                                                                 | 586   | 553    | 770                    | 569 | 553                        | 717 |       |     |
| Shared Lane Capacity (vph)                                                                                                                              |       | 553    |                        |     | 553                        |     |       |     |

. .

| Movement | 7   | 8   | 9   | 10  | 11           | 12  |
|----------|-----|-----|-----|-----|--------------|-----|
|          | L   | т   | R   | L   | $\mathbf{T}$ | R   |
| C sep    | 586 | 553 | 770 | 569 | 553          | 717 |
| Volume   | 0   | 15  | 0   | 0   | 1            | 0   |
| Delay    |     |     |     |     |              |     |
| Q sep    |     |     |     |     |              |     |
| 0 0 0 1  |     |     |     |     |              |     |

Q sep +1 round (Qsep +1) n max C sh SUM C sep n C act

\_

553

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1    | 4    | 7 | 8    | 9           | 10 | 11   | 12 |
|------------------|------|------|---|------|-------------|----|------|----|
| Lane Config      | LT   | LTR  |   | LTR  |             |    | LTR  |    |
| v (vph)          | 0    | 0    |   | 15   | <del></del> |    | 1    |    |
| C(m) (vph)       | 1026 | 1078 |   | 553  |             |    | 553  |    |
| v/c              | 0.00 | 0.00 |   | 0.03 |             |    | 0.00 |    |
| 95% queue length | 0.00 | 0.00 |   | 0.08 |             |    | 0.01 |    |
| Control Delay    | 8.5  | 8.3  |   | 11.7 |             |    | 11.5 |    |
| LOS              | A    | А    |   | В    |             |    | В    |    |
| Approach Delay   |      |      |   | 11.7 |             |    | 11.5 |    |
| Approach LOS     |      |      |   | в    |             |    | в    |    |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
| p(oj)                                         | 1.00       | 1.00       |
| v(il), Volume for stream 2 or 5               | 75         | 125        |
| v(i2), Volume for stream 3 or 6               | 0          | 0          |
| s(il), Saturation flow rate for stream 2 or 5 | 1700       | 1700       |
| s(i2), Saturation flow rate for stream 3 or 6 | 1700       | 1700       |
| P*(oj)                                        | 1.00       | 1.00       |
| d(M,LT), Delay for stream 1 or 4              | 8.5        | 8.3        |
| N, Number of major street through lanes       | 1          | 1          |
| d(rank,1) Delay for stream 2 or 5             | 0.0        | 0.0        |

TWO-WAY STOP CONTROL SUMMARY\_ Analyst: KHA KHA Agency/Co.: Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & SR 121 Jurisdiction: FDOT District 2 Units: U. S. Customary 2015 Peak Construction Traffic Analysis Year: Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 SR 121 East/West Street: North/South Street: U.S. 19 Study period (hrs): 0.25 Intersection Orientation: NS \_Vehicle Volumes and Adjustments\_ Major Street: Approach Northbound Southbound 2 5 6 Movement 1 3 4 L т т R R L Volume 192 416 20 170 Peak-Hour Factor, PHF 0.97 0.97 0.97 0.97 197 428 20 175 Hourly Flow Rate, HFR Δ۰ Percent Heavy Vehicles \_ ~ - -- -~ ~ / 2 Median Type/Storage Raised curb RT Channelized? ŇΟ Lanes 2 1 1 2 Configuration т R т L Upstream Signal? NO No Westbound Eastbound Minor Street: Approach 7 Movement 8 9 10 11 12 L т R т R L Volume 121 9 0.97 0.97 Peak Hour Factor, PHF 124 Hourly Flow Rate, HFR 9 1 Percent Heavy Vehicles 1 0 Percent Grade (%) 0 Flared Approach: Exists?/Storage Lanes 1 1 Configuration  $\mathbf{L}$ R Delay, Queue Length, and Level of Service Westbound Eastbound NB SBApproach 4 7 9 10 12 Movement 1 8 11 Lane Config L L R 9 20 v (vph) 124 960 C(m) (vph) 939 . 732 v/c 0.02 0.17 0.01 0.07 0.61 0.03 95% queue length

8.9

А

10.9

В

8.8

А

10.8

в

Control Delay

Approach Delay

Approach LOS

LOS

Phone: E-Mail:

Percent Blockage

0

0

0

0

Fax:

E-Mail: TWO-WAY STOP CONTROL(TWSC) ANALYSIS\_\_\_\_ Analyst: KHA Agency/Co.: KHA Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & SR 121 Jurisdiction: FDOT District 2 Units: U. S. Customary 2015 Peak Construction Traffic Analysis Year: Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 East/West Street: SR 121 North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments Major Street Movements 1 2 3 4 5 6  $\mathbf{L}$ т R L т R Volume 192 416 20 170 Peak-Hour Factor, PHF 0.97 0.97 0.97 0.97 Peak-15 Minute Volume 49 107 5 44Hourly Flow Rate, HFR 197 428 175 20 Percent Heavy Vehicles \_\_\_\_ - -4 - --Median Type/Storage / 2 Raised curb RT Channelized? No Lanes 2 1 1 2 Configuration т R  $\mathbf{T}$ L Upstream Signal? No No Minor Street Movements 7 9 8 10 11 12 R L Т T. T R Volume 121 9 Peak Hour Factor, PHF 0.97 0.97 Peak-15 Minute Volume 31 2 Hourly Flow Rate, HFR 124 9 Percent Heavy Vehicles 1 1 Percent Grade (%) 0 Ω Flared Approach: Exists?/Storage RT Channelized? No Lanes 1 1 Configuration L R \_Pedestrian Volumes and Adjustments\_ Movements 13 14 15 16 Flow (ped/hr) 0 0 0 0 Lane Width (ft) 12.0 12.0 12.0 12.0 Walking Speed (ft/sec) 4.0 4.0 4.0 4.0

|                                                                                                                                                 | 2                                                                          | Prog.<br>Flow<br>vph                              | Sat<br>Flow<br>Vph                                                                                       | Arriv<br>Type                                                                                      | т                                                | reen<br>Lme<br>ec                                                                 | Cycle<br>Length<br>sec                                                       | Prog.<br>Speed<br>mph                        | Distance<br>to Signal<br>feet                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| S2 Left-                                                                                                                                        |                                                                            |                                                   |                                                                                                          |                                                                                                    |                                                  |                                                                                   |                                                                              |                                              | ,                                                    |
| Throu<br>S5 Left-                                                                                                                               | -Turn                                                                      |                                                   |                                                                                                          |                                                                                                    |                                                  |                                                                                   |                                                                              |                                              |                                                      |
| Throu                                                                                                                                           | 1gh<br>                                                                    |                                                   |                                                                                                          | <u>,</u>                                                                                           |                                                  |                                                                                   |                                                                              | -                                            |                                                      |
| Worksheet                                                                                                                                       | : 3-Data                                                                   | for Co                                            | omputing                                                                                                 | Effect                                                                                             | of De                                            | lay to                                                                            | o Major                                                                      | Street V                                     | Vehicles                                             |
|                                                                                                                                                 |                                                                            |                                                   |                                                                                                          |                                                                                                    | 1                                                | Moveme                                                                            | ent 2                                                                        | Moveme                                       | ent 5                                                |
| Shared lr                                                                                                                                       | n volume                                                                   | , majoı                                           | th veh                                                                                                   | icles:                                                                                             |                                                  |                                                                                   |                                                                              |                                              | <u></u>                                              |
| Shared lr                                                                                                                                       |                                                                            |                                                   |                                                                                                          |                                                                                                    |                                                  |                                                                                   |                                                                              |                                              |                                                      |
| Sat flow                                                                                                                                        | rate, ma                                                                   | ajor th                                           | n vehicl                                                                                                 | es:                                                                                                |                                                  |                                                                                   |                                                                              |                                              |                                                      |
| Sat flow                                                                                                                                        |                                                                            |                                                   |                                                                                                          |                                                                                                    |                                                  |                                                                                   |                                                                              |                                              |                                                      |
| Number of                                                                                                                                       | E major s                                                                  | street                                            | through                                                                                                  | lanes:                                                                                             |                                                  |                                                                                   |                                                                              |                                              |                                                      |
|                                                                                                                                                 |                                                                            | · · · · · · · · · · · · · · · · · · ·             |                                                                                                          |                                                                                                    |                                                  | ÷                                                                                 |                                                                              |                                              |                                                      |
|                                                                                                                                                 |                                                                            |                                                   |                                                                                                          |                                                                                                    |                                                  |                                                                                   |                                                                              |                                              |                                                      |
| Worksheet                                                                                                                                       | - A-Crit                                                                   |                                                   | an and E                                                                                                 |                                                                                                    | n Time                                           | Calc                                                                              | lation                                                                       |                                              |                                                      |
| Worksheet                                                                                                                                       | t 4-Crit                                                                   | ical Ga                                           | ap and F                                                                                                 | ollow-u                                                                                            | ıp Time                                          | Calcu                                                                             | ulation                                                                      |                                              | ·····                                                |
| Critical                                                                                                                                        |                                                                            | culatio                                           | -<br>on                                                                                                  |                                                                                                    |                                                  |                                                                                   | ·                                                                            |                                              |                                                      |
| Critical                                                                                                                                        |                                                                            | culatio                                           | -<br>on<br>4                                                                                             | 7                                                                                                  | 8                                                | 9                                                                                 | 10                                                                           | 11                                           | 12                                                   |
| Worksheet<br>Critical<br>Movement                                                                                                               |                                                                            | culatio                                           | -<br>on                                                                                                  |                                                                                                    |                                                  |                                                                                   | ·                                                                            | 11<br>T                                      | 12<br>R                                              |
| Critical                                                                                                                                        | Gap Calo                                                                   | culatio                                           | -<br>on<br>4                                                                                             | 7                                                                                                  | 8                                                | 9                                                                                 | 10<br>L                                                                      |                                              |                                                      |
| Critical<br>Movement                                                                                                                            | Gap Calo                                                                   | culatio                                           | on<br>4<br>L                                                                                             | 7<br>L                                                                                             | 8                                                | 9<br>R                                                                            | 10<br>L                                                                      | Т                                            |                                                      |
| Critical<br>Movement                                                                                                                            | Gap Calo                                                                   | culatio<br>1<br>L                                 | 2<br>2<br>4<br>L<br>4.1                                                                                  | 7<br>L<br>7.5                                                                                      | 8<br>T                                           | 9<br>R<br>6.2                                                                     | 10<br>L                                                                      | Т                                            | R                                                    |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)                                                                                                    | Gap Calo                                                                   | culatio<br>1<br>L                                 | 2<br>0n<br>4<br>L<br>4.1<br>2.00                                                                         | 7<br>L<br>7.5<br>2.00                                                                              | 8<br>T                                           | 9<br>R<br>6.2<br>2.00                                                             | 10<br>L<br>0 2.00                                                            | T<br>2.00                                    | R                                                    |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)                                                                                           | Gap Calo                                                                   | culatio<br>1<br>L                                 | 2<br>0n<br>4<br>L<br>4.1<br>2.00                                                                         | 7<br>L<br>7.5<br>2.00<br>1                                                                         | 8<br>T<br>2.00                                   | 9<br>R<br>6.2<br>2.00                                                             | 10<br>L<br>0 2.00<br>0 0.20                                                  | T<br>2.00<br>0.20                            | R<br>2.00                                            |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)                                                                                 | Gap Calo                                                                   | culatio<br>1<br>L                                 | 2<br>0n<br>4<br>L<br>4.1<br>2.00                                                                         | 7<br>L<br>7.5<br>2.00<br>1<br>0.20                                                                 | 8<br>T<br>2.00<br>0.20                           | 9<br>R<br>6.2<br>2.00<br>1<br>0.10                                                | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00                                        | T<br>2.00<br>0.20                            | R<br>2.00<br>0.10                                    |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (                                                                    | Gap Calo                                                                   | 2.00                                              | 2 00 4<br>L<br>4.1<br>2.00<br>4                                                                          | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00                                                         | 8<br>T<br>2.00<br>0.20                           | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00                                        | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00                                        | T<br>2.00<br>0.20<br>0.00                    | R<br>2.00<br>0.10                                    |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)                                                         | Gap Calo                                                                   | Culation<br>1<br>L<br>2.00<br>0.00                | 2<br>2<br>4<br>1<br>2.00<br>4<br>0.00                                                                    | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70                                                 | 8<br>T<br>2.00<br>0.20<br>0.00                   | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00                                        | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00                              | T<br>2.00<br>0.20<br>0.00<br>0.00            | R<br>2.00<br>0.10<br>0.00                            |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)                                                         | Gap Calo<br>)<br>Grade<br>1-stage                                          | Culation<br>1<br>2.00<br>0.00<br>0.00             | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                  | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00                                         | 8<br>T<br>2.00<br>0.20<br>0.00<br>0.00           | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00                                | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 0.00<br>0 1.00          | T<br>2.00<br>0.20<br>0.00<br>0.00            | R<br>2.00<br>0.10<br>0.00<br>0.00                    |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)<br>t(c,T):                                              | Gap Calo<br>)<br>Grade<br>1-stage<br>2-stage                               | Culation<br>1<br>2.00<br>0.00<br>0.00             | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                  | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00                                 | 8<br>T<br>2.00<br>0.20<br>0.00<br>0.00           | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00                        | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 0.00<br>0 1.00          | T<br>2.00<br>0.20<br>0.00<br>0.00            | R<br>2.00<br>0.10<br>0.00<br>0.00                    |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-U                          | Gap Calo<br>Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage              | 2.00<br>0.00<br>0.00                              | Dn<br>4<br>L<br>4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions                   | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8                   | 8<br>T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00   | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>6.2<br>6.2                  | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 0.00<br>0 1.00          | T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00    | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)<br>t(c,T):<br>t(c)                                      | Gap Calo<br>Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage              | culatio<br>1<br>L<br>2.00<br>0.00<br>0.00<br>0.00 | Dn<br>4<br>L<br>4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4              | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8                   | 8<br>T<br>2.00<br>0.20<br>0.00<br>1.00           | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>6.2<br>6.2<br>9             | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00<br>10              | T<br>2.00<br>0.20<br>0.00<br>1.00            | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-U                          | Gap Calo<br>Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage              | 2.00<br>0.00<br>0.00                              | Dn<br>4<br>L<br>4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions                   | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8                   | 8<br>T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00   | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>6.2<br>6.2                  | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 0.00<br>0 1.00          | T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00    | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-U                          | Gap Calo<br>Grade<br>1-stage<br>2-stage<br>2-stage<br>2-stage<br>0 Time Ca | culatio<br>1<br>L<br>2.00<br>0.00<br>0.00<br>0.00 | Dn<br>4<br>L<br>4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4              | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8                   | 8<br>T<br>2.00<br>0.20<br>0.00<br>1.00           | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>6.2<br>6.2<br>9             | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00<br>1.00<br>10<br>L | T<br>2.00<br>0.20<br>0.00<br>1.00            | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-Up<br>Movement             | Gap Calo<br>Grade<br>1-stage<br>2-stage<br>2-stage<br>2-stage<br>0 Time Ca | culatio<br>1<br>L<br>2.00<br>0.00<br>0.00<br>0.00 | Dn<br>4<br>L<br>4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4<br>L         | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L         | 8<br>T<br>2.00<br>0.20<br>0.00<br>1.00           | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>6.2<br>6.2<br>9<br>R        | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00<br>10<br>L         | T<br>2.00<br>0.20<br>0.00<br>1.00<br>11<br>T | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| Critical<br>Movement<br>t(c,base)<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent (<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-Up<br>Movement<br>t(f,base | Gap Calo<br>Grade<br>1-stage<br>2-stage<br>2-stage<br>2-stage<br>0 Time Ca | 2.00<br>0.00<br>0.00<br>alculat                   | Dn<br>4<br>L<br>4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4<br>L<br>2.20 | 7<br>L<br>7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L<br>3.50 | 8<br>T<br>2.00<br>0.20<br>0.00<br>1.00<br>8<br>T | 9<br>R<br>6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>6.2<br>6.2<br>9<br>R<br>3.3 | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00<br>10<br>L         | T<br>2.00<br>0.20<br>0.00<br>1.00<br>11<br>T | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00<br>12<br>R |

Worksheet 5-Effect of Upstream Signals

Computation 1-Queue Clearance Time at Upstream Signal Movement 2 Movement 5 V(t) V(1,prot) V(t) V(1,prot)

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P





.

g(q1) g(q2) g(q)

| Computation 2-  | 1100010 |             |          |             | Movem        | ent 2         | М       | ovement      |        |
|-----------------|---------|-------------|----------|-------------|--------------|---------------|---------|--------------|--------|
|                 | -       |             |          | V           | (t) V        | (l,prot       | ) V(t)  | V(1,         | prot)  |
| alpha           |         |             |          |             |              |               |         |              |        |
| beta            |         |             |          |             |              |               |         |              |        |
| Travel time, t  | (a) (se | 2)          |          |             |              |               |         |              |        |
| Smoothing Fact  | or, F   |             |          |             |              |               |         |              |        |
| Proportion of   |         | ting flo    | w, f     |             |              |               |         |              |        |
| Max platooned   |         |             |          |             |              |               |         |              |        |
| Min platooned   |         |             |          |             |              |               |         |              |        |
| Duration of bl  |         |             | (n)      |             |              |               |         |              |        |
| Proportion tim  |         |             |          |             | 0.0          | 00            |         | 0.000        |        |
|                 |         | <u> </u>    |          |             | 0.0          |               |         |              |        |
| Computation 3-  | Platoon | Event F     | Periods  | Rea         | sult         |               |         |              |        |
| p(2)            |         |             |          | 0.0         | 000          |               |         |              |        |
| p(5)            |         |             |          | 0.0         | 000          |               |         |              |        |
| p(dom)          |         |             |          |             |              |               |         |              |        |
| p(subo)         |         |             |          |             |              |               |         |              |        |
| Constrained or  | uncone  | trained?    | <b>)</b> |             |              |               |         |              |        |
| Consciatileu Of |         |             |          |             |              |               |         |              |        |
| Proportion      |         |             |          |             |              |               |         |              |        |
| unblocked       |         | (1          |          |             | (2)          |               | (3)     |              |        |
| for minor       |         |             | e-stage  |             |              | tage Pr       | ocess   |              |        |
| movements, p(x  | r)      | Proc        | cess     | Sta         | age I        |               | Stage I | I.           |        |
| p(1)            |         |             |          |             |              |               |         |              |        |
| p(4)            |         |             |          |             |              |               |         |              |        |
| p(7)            |         |             |          |             |              |               |         |              |        |
| p(8)            |         |             |          |             |              |               |         |              |        |
|                 |         |             |          |             |              |               |         |              |        |
| p(9)            |         |             |          |             |              |               |         |              |        |
| p(10)           |         |             |          |             |              |               |         |              |        |
| p(11)           |         |             |          |             |              |               |         |              |        |
| p(12)           |         |             |          |             |              |               |         |              |        |
| Computation 4   | and 5   |             |          |             |              |               |         |              |        |
| Single-Stage H  |         |             |          |             |              |               |         |              |        |
| Movement        |         | 1           | 4        | 7           | 8            | 9             | 10      | 11           | 12     |
|                 |         | L           | Ĺ        | L           | T            | R             | L       | T            | R      |
|                 | •       |             |          |             | -            |               |         | -            |        |
| V c,x           |         |             | 625      | 324         |              | 98            |         |              |        |
| S               |         |             |          |             |              |               |         |              |        |
| Px              |         |             |          |             |              |               |         |              |        |
| V c,u,x         |         |             |          |             |              |               |         |              |        |
| Cr,x            |         |             |          | · · · ·     |              |               |         |              |        |
| C plat,x        |         |             |          |             |              |               |         |              |        |
| Two-Stage Proc  | cess    | _           |          |             |              | <u></u>       |         |              |        |
|                 | Stagel  | 7<br>Stage2 | Stage    | 8<br>1 Stag | -)<br>-) C+- | 10<br>2001 St | age2 S  | 11<br>Stagel |        |
|                 | orager  | scayez      | scaye.   | L DLAG      |              |               | ayes s  | Juager       | Juaye. |
| V(c,x)          | 197     | 127         |          |             |              |               |         |              |        |
| S               |         | 3000        |          |             |              |               |         |              |        |
| P(x)            |         |             |          |             |              |               |         |              |        |
|                 |         |             |          |             |              |               |         |              |        |
| V(c,u,x)        |         |             |          |             |              |               |         |              |        |

.

C

C(plat, x)

Worksheet 6-Impedance and Capacity Equations

| Step 1: RT from Minor St.              | 9    | 12                                    |
|----------------------------------------|------|---------------------------------------|
| Conflicting Flows                      | 98   | · · · · · · · · · · · · · · · · · · · |
| Potential Capacity                     | 960  |                                       |
| Pedestrian Impedance Factor            | 1.00 | 1.00                                  |
| Movement Capacity                      | 960  |                                       |
| Probability of Queue free St.          | 0.99 | 1.00                                  |
| Step 2: LT from Major St.              | 4    | 1                                     |
| Conflicting Flows                      | 625  |                                       |
| Potential Capacity                     | 939  |                                       |
| Pedestrian Impedance Factor            | 1.00 | 1.00                                  |
| Movement Capacity                      | 939  |                                       |
| Probability of Queue free St.          | 0.98 | 1.00                                  |
| Maj L-Shared Prob Q free St.           |      |                                       |
| Step 3: TH from Minor St.              | 8    | 11                                    |
| Conflicting Flows                      |      |                                       |
| Potential Capacity                     |      |                                       |
| Pedestrian Impedance Factor            | 1.00 | 1.00                                  |
| Cap. Adj. factor due to Impeding mvmnt | 0.98 | 0.98                                  |
| Movement Capacity                      |      |                                       |
| Probability of Queue free St.          | 1.00 | 1.00                                  |
| Step 4: LT from Minor St.              | 7    | 10                                    |
| Conflicting Flows                      | 324  |                                       |
| Potential Capacity                     | 647  |                                       |
| Pedestrian Impedance Factor            | 1.00 | 1.00                                  |
| Maj. L, Min T Impedance factor         |      | 0.98                                  |
| Maj. L, Min T Adj. Imp Factor.         |      | 0.98                                  |
| Cap. Adj. factor due to Impeding mvmnt | 0.98 | 0.97                                  |
| Movement Capacity                      | 633  |                                       |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8                                     | 11                                    |
|----------------------------------------|---------------------------------------|---------------------------------------|
| Part 1 - First Stage                   |                                       | · · · · · · · · · · · · · · · · · · · |
| Conflicting Flows                      |                                       |                                       |
| Potential Capacity                     | 742                                   | 729                                   |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00                                  |
| Cap. Adj. factor due to Impeding mvmnt | 1.00                                  | 0.98                                  |
| Movement Capacity                      | 742                                   | 713                                   |
| Probability of Queue free St.          | 1.00                                  | 1.00                                  |
| Part 2 - Second Stage                  | · · · · · · · · · · · · · · · · · · · |                                       |
| Conflicting Flows                      |                                       |                                       |
| Potential Capacity                     | 729                                   | 480                                   |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00                                  |
| Cap. Adj. factor due to Impeding mvmnt | 0.98                                  | 1.00                                  |
| Movement Capacity                      | 713                                   | 480                                   |

Part 3 - Single Stage Conflicting Flows

| Potential Capacity                                          |   |          |     |    |             |                                        |
|-------------------------------------------------------------|---|----------|-----|----|-------------|----------------------------------------|
| Pedestrian Impedance Factor                                 |   |          | 00  |    | 1.00        |                                        |
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity |   | 0.       | 98  |    | 0.98        |                                        |
| Result for 2 stage process:                                 |   |          |     |    |             | ······································ |
| a                                                           |   | 0.       | 95  |    | 0.95        |                                        |
| X .                                                         |   |          |     |    |             |                                        |
| C t                                                         |   |          |     |    |             |                                        |
| Probability of Queue free St.                               |   | 1.       | 00  |    | 1.00        |                                        |
| Step 4: LT from Minor St.                                   |   |          | 7   |    | 10          | ·····                                  |
| Part 1 - First Stage                                        |   |          | _   |    |             |                                        |
| Conflicting Flows                                           |   | 19       |     |    |             |                                        |
| Potential Capacity                                          |   | 82       |     |    | 806         |                                        |
| Pedestrian Impedance Factor                                 |   |          | 00  |    | 1.00        |                                        |
| Cap. Adj. factor due to Impeding mvmnt                      |   |          | 00  |    | 0.98        |                                        |
| Movement Capacity                                           |   | 82       | 0   |    | 789         |                                        |
| Part 2 - Second Stage                                       |   |          | ~   |    |             |                                        |
| Conflicting Flows                                           |   | 12       |     |    | 0.01        |                                        |
| Potential Capacity                                          |   | 88       |     |    | 921         |                                        |
| Pedestrian Impedance Factor                                 |   |          | 00  |    | 1.00        |                                        |
| Cap. Adj. factor due to Impeding mymnt                      |   | U.<br>86 | 98  |    | 0.99<br>912 |                                        |
| Movement Capacity                                           |   | 80       | 9   |    | 912         |                                        |
| Part 3 - Single Stage                                       |   |          |     |    |             |                                        |
| Conflicting Flows                                           |   | 32       |     |    |             |                                        |
| Potential Capacity                                          |   | 64       |     |    |             |                                        |
| Pedestrian Impedance Factor                                 |   | 1.       | 00  |    | 1.00        |                                        |
| Maj. L, Min T Impedance factor 🕐                            |   |          |     |    | 0.98        |                                        |
| Maj. L, Min T Adj. Imp Factor.                              |   |          |     |    | 0.98        |                                        |
| Cap. Adj. factor due to Impeding mvmnt                      |   |          | 98  |    | 0.97        |                                        |
| Movement Capacity                                           |   | 63       | 13  |    |             |                                        |
| Results for Two-stage process:                              |   |          |     |    |             |                                        |
| a                                                           |   |          | 95  |    | 0.95        |                                        |
| Y                                                           |   |          | 79  |    |             |                                        |
| C t .                                                       |   | 73       | 32  |    |             |                                        |
| Worksheet 8-Shared Lane Calculations                        |   |          |     |    |             |                                        |
| Movement 7                                                  |   |          | 9   | 10 | 11          | 12                                     |
| I                                                           | - |          | R   | L  | T           | R                                      |
| Volume (vph) 12                                             | 4 |          | 9   |    |             |                                        |
|                                                             | 2 |          | 960 |    |             |                                        |
|                                                             |   |          |     |    |             |                                        |

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement | 7        | 8 | 9   | 10 | 11 | 12 |
|----------|----------|---|-----|----|----|----|
|          | ${ m L}$ | т | R   | L  | т  | R  |
| C sep    | 732      |   | 960 |    |    |    |
| Volume   | 124      |   | 9   |    |    |    |
| Delay    |          |   |     |    |    |    |
| Q sep    |          |   |     |    |    |    |
| Q sep +1 |          |   |     |    |    |    |

round (Qsep +1)

n max C sh SUM C sep n C act

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10 | 11 | 12 |
|------------------|---|------|------|------|------|----|----|----|
| Lane Config      |   | L    | L    |      | R    |    |    |    |
| v (vph)          |   | 20   | 124  |      | 9    |    |    |    |
| C(m) (vph)       |   | 939  | 732  |      | 960  |    |    |    |
| v/c              |   | 0.02 | 0.17 |      | 0.01 |    |    |    |
| 95% queue length |   | 0.07 | 0.61 |      | 0.03 | •  |    |    |
| Control Delay    |   | 8.9  | 10.9 |      | 8.8  |    |    |    |
| LOS              |   | А    | В    |      | А    |    |    |    |
| Approach Delay   |   |      |      | 10.8 |      |    |    |    |
| Approach LOS     |   |      |      | В    |      |    |    |    |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
| p(oj)                                         | 1.00       | 0.98       |
| v(il), Volume for stream 2 or 5               | x          |            |
| v(i2), Volume for stream 3 or 6               |            |            |
| s(il), Saturation flow rate for stream 2 or 5 |            |            |
| s(i2), Saturation flow rate for stream 3 or 6 |            |            |
| P* (oj)                                       |            |            |
| d(M,LT), Delay for stream 1 or 4              |            | 8.9        |
| N, Number of major street through lanes       |            |            |
| d(rank,1) Delay for stream 2 or 5             | 4          |            |
|                                               |            |            |

Analyst: KHAInter.: U.S. 19 & CR 40Agency: KHAArea Type: All other areasDate: 12/8/2008Jurisd: FDOT District 2Period: P.M. Peak HourYear : 2015 Peak Construction TrafficProject ID: Levy County Advanced Reactor - Heavy Haul Route 1E/W St: CR 40/Follow That Dream PkwyN/S St: U.S. 19

|                                                                                                                                           | Eas                                                                  | tbound                                                                                          | SIGNALIZI<br>  West                                            | bound                                         |                            |                                                               | thbou                                                                                                |                                                 | So1                                           | ithboi | und      | 1    |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|----------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|--------|----------|------|
|                                                                                                                                           | L                                                                    | T R                                                                                             | L                                                              |                                               | х                          | L                                                             | т                                                                                                    | R                                               | L                                             | т      | R        |      |
| No. Lanes                                                                                                                                 | 0                                                                    | 1 1                                                                                             |                                                                | 1 :                                           | <br>1                      | 1                                                             | 2                                                                                                    | 0                                               | 1                                             | 2      | 0        | —    |
| LGConfig                                                                                                                                  |                                                                      | LT R                                                                                            | -                                                              | LT -                                          | R                          | L                                                             | TR                                                                                                   | •                                               | L                                             | TR     | -        | l    |
| Volume                                                                                                                                    | 27                                                                   | 71 83                                                                                           |                                                                | 51 58                                         | 1                          | 123                                                           | 414                                                                                                  | 106                                             | 124                                           | 1209   |          | ł    |
| Lane Widt                                                                                                                                 |                                                                      | 12.0 12.                                                                                        |                                                                | L2.0 12                                       | !                          | 12.0                                                          |                                                                                                      |                                                 | 1                                             | 12.0   | 20       | ł    |
| RTOR Vol                                                                                                                                  |                                                                      | 24                                                                                              |                                                                | 19                                            |                            |                                                               | 2010                                                                                                 | 33                                              |                                               | 1210   | 5        |      |
| Duration                                                                                                                                  | 0.25                                                                 | Area                                                                                            | a Type: A                                                      |                                               |                            |                                                               |                                                                                                      |                                                 |                                               |        |          |      |
| Phase Com                                                                                                                                 | binatior                                                             | n 1 2                                                                                           |                                                                | 1al.Ope<br>4                                  | erati                      | lons                                                          | 5                                                                                                    | 6                                               | 7                                             |        | 8        |      |
| EB Left                                                                                                                                   |                                                                      | A                                                                                               |                                                                | í                                             | NB                         | Left                                                          | A                                                                                                    |                                                 |                                               |        |          |      |
| Thru                                                                                                                                      |                                                                      | А                                                                                               |                                                                |                                               |                            | Thru                                                          |                                                                                                      | А                                               |                                               |        |          |      |
| Right                                                                                                                                     |                                                                      | A                                                                                               |                                                                | i                                             |                            | Right                                                         |                                                                                                      | A                                               |                                               |        |          |      |
| Peds                                                                                                                                      |                                                                      |                                                                                                 |                                                                | i                                             |                            | Peds                                                          |                                                                                                      |                                                 |                                               |        |          |      |
| WB Left                                                                                                                                   |                                                                      | А                                                                                               |                                                                | i                                             | SB                         | Left                                                          | А                                                                                                    |                                                 |                                               |        |          |      |
| Thru                                                                                                                                      |                                                                      | A                                                                                               |                                                                | l l                                           |                            | Thru                                                          |                                                                                                      | А                                               |                                               |        |          |      |
| Right                                                                                                                                     |                                                                      | А                                                                                               |                                                                | ĺ                                             |                            | Right                                                         |                                                                                                      | А                                               |                                               |        |          |      |
| Peds                                                                                                                                      |                                                                      |                                                                                                 |                                                                | i                                             |                            | Peds                                                          |                                                                                                      |                                                 |                                               |        |          |      |
| NB Right                                                                                                                                  |                                                                      |                                                                                                 |                                                                | i i                                           | EB                         | Right                                                         |                                                                                                      |                                                 |                                               |        |          |      |
| SB Right                                                                                                                                  |                                                                      |                                                                                                 |                                                                | 1                                             | WB                         | Right                                                         |                                                                                                      |                                                 |                                               |        |          |      |
|                                                                                                                                           |                                                                      | o -                                                                                             |                                                                | 1                                             |                            |                                                               |                                                                                                      |                                                 |                                               |        |          |      |
| Green                                                                                                                                     |                                                                      | 9.5                                                                                             |                                                                |                                               |                            |                                                               | 10.0                                                                                                 | ) 25.                                           | 5                                             |        |          |      |
|                                                                                                                                           |                                                                      | 9.5<br>4.0                                                                                      |                                                                |                                               |                            |                                                               | 10.0                                                                                                 | 25.                                             | 5                                             |        |          |      |
| Green<br>Yellow<br>All Red                                                                                                                |                                                                      |                                                                                                 |                                                                |                                               |                            |                                                               |                                                                                                      |                                                 | 5                                             |        |          |      |
| Yellow                                                                                                                                    |                                                                      | 4.0<br>1.0                                                                                      |                                                                |                                               |                            |                                                               | 4.0<br>1.0<br>Cyc                                                                                    | 4.0                                             | -                                             | 60.0   |          | secs |
| Yellow<br>All Red                                                                                                                         | ane                                                                  | 4.0<br>1.0<br>Inter                                                                             | section )                                                      |                                               | mance                      |                                                               | 4.0<br>1.0<br>Cyc<br>mary_                                                                           | 4.0<br>1.0<br>cle Le                            | ngth:                                         |        |          | secs |
| Yellow<br>All Red<br>                                                                                                                     | ane                                                                  | 4.0<br>1.0<br>Inter<br>Adj Sa                                                                   | t Ra                                                           | Perfor                                        | mance                      | e Summ<br>Lane                                                | 4.0<br>1.0<br>Cyc<br>mary_                                                                           | 4.0<br>1.0<br>cle Le                            | -                                             |        |          | secs |
| Yellow<br>All Red<br>Appr/ L<br>Lane G                                                                                                    | ane<br>roup<br>apacity                                               | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra                                                        | t Ra                                                           |                                               |                            |                                                               | 4.0<br>1.0<br>Cyc<br>mary<br>Group                                                                   | 4.0<br>1.0<br>cle Le:<br>p Ap                   | ngth:                                         | h<br>  | 5. J.A.T | secs |
| Yellow<br>All Red<br>Appr/ L<br>Lane G<br>Grp C                                                                                           | roup<br>apacity                                                      | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra                                                        | t Rai<br>te                                                    | cios                                          |                            | Lane                                                          | 4.0<br>1.0<br>Cyc<br>mary<br>Group                                                                   | 4.0<br>1.0<br>cle Le:<br>p Ap                   | ngth:<br>proacl                               | h<br>  |          | secs |
| Yellow<br>All Red<br>Appr/ L<br>Lane G<br>Grp C<br>Eastbound                                                                              | roup<br>apacity                                                      | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra                                                        | t Rai<br>te                                                    | cios                                          |                            | Lane                                                          | 4.0<br>1.0<br>Cyc<br>mary<br>Group                                                                   | 4.0<br>1.0<br>cle Le:<br>p Ap                   | ngth:<br>proacl<br>ay LO                      | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT                                                                       | roup<br>apacity                                                      | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra<br>(s)                                                 | t Ra<br>te<br>v/c                                              | g/C                                           | 7                          | Lane<br>Delay                                                 | 4.0<br>1.0<br>Cyc<br>ary_<br>Group<br>r LOS                                                          | 4.0<br>1.0<br>cle Le<br><u>Ap</u><br><u>Del</u> | ngth:<br>proacl<br>ay LO                      | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R                                                                  | roup<br>apacity<br>287<br>277                                        | 4.0<br>1.0<br>—Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640                                        | t Ra<br>te<br>v/c                                              | g/C                                           | 7                          | Lane<br>Delay<br>22.6                                         | 4.0<br>1.0<br>Cyc<br>Group<br>r LOS                                                                  | 4.0<br>1.0<br>cle Le<br><u>Ap</u><br><u>Del</u> | ngth:<br>proacl<br>ay LO                      | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R<br>Westbound                                                     | roup<br>apacity<br>287<br>277                                        | 4.0<br>1.0<br>—Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640                                        | t Ra<br>te<br>v/c                                              | g/C                                           | 7<br>7                     | Lane<br>Delay<br>22.6                                         | 4.0<br>1.0<br>Cyc<br>Group<br>r LOS                                                                  | 4.0<br>1.0<br>cle Le<br><u>Ap</u><br><u>Del</u> | ngth:<br>proacl<br>ay LO                      | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R<br>Westbound<br>LT                                               | roup<br>apacity<br>287<br>277                                        | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640<br>1583                                 | t Ra<br>te                                                     | g/C<br>0.1<br>0.1                             | 7<br>7<br>7                | Lane<br>Delay<br>22.6<br>21.7                                 | 4.0<br>1.0<br>Cyc<br>Group<br>r LOS<br>C<br>C                                                        | 4.0<br>1.0<br>cle Ler<br>Del<br>Del<br>22.      | ngth:<br>proacl<br>ay LO                      | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R<br>Westbound<br>LT<br>R                                          | roup<br>apacity<br>287<br>277<br>253<br>277                          | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640<br>1583<br>1444                         | t Ra<br>te                                                     | g/C<br>0.1<br>0.1<br>0.1                      | 7<br>7<br>7                | Lane<br>Delay<br>22.6<br>21.7<br>25.4                         | 4.0<br>1.0<br>Cyc<br>Group<br>C LOS<br>C C                                                           | 4.0<br>1.0<br>cle Ler<br>Del<br>Del<br>22.      | ngth:<br>proacl<br>ay LO                      | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R<br>Westbound<br>LT<br>R<br>Northboun                             | roup<br>apacity<br>287<br>277<br>253<br>277                          | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640<br>1583<br>1444                         | t Ra<br>te                                                     | g/C<br>0.1<br>0.1<br>0.1                      | 7<br>7<br>7<br>7           | Lane<br>Delay<br>22.6<br>21.7<br>25.4                         | 4.0<br>1.0<br>Cyc<br>Group<br>C LOS<br>C C                                                           | 4.0<br>1.0<br>cle Ler<br>Del<br>Del<br>22.      | ngth:<br>proacl<br>ay LO                      | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R<br>Westbound<br>LT<br>R<br>Northboun<br>L                        | roup<br>apacity<br>287<br>277<br>253<br>277<br>d                     | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640<br>1583<br>1444<br>1583                 | t Ra<br>te                                                     | 0.1<br>0.1<br>0.1                             | 7<br>7<br>7<br>7<br>8      | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2                 | 4.0<br>1.0<br>Cyc<br>Group<br>C LOS<br>C C<br>C C                                                    | 4.0<br>1.0<br>cle Ler<br>Del<br>Del<br>22.      | ngth:<br>proacl<br>ay LO<br>3 C<br>4 C        | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R<br>Westbound<br>LT<br>R<br>Northboun<br>L<br>TR                  | roup<br>apacity<br>287<br>277<br>253<br>277<br>d<br>321<br>1516      | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640<br>1583<br>1444<br>1583<br>1752         | t Rat<br>te                                                    | g/C<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1        | 7<br>7<br>7<br>7<br>8      | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5         | 4.0<br>1.0<br>Cyc<br>Group<br>Group<br>C<br>C<br>C<br>C<br>C<br>C                                    | 4.0<br>1.0<br>cle Ler<br>Del<br>22.<br>24.      | ngth:<br>proacl<br>ay LO<br>3 C<br>4 C        | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L,<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R<br>Westbound<br>LT<br>R<br>Northboun<br>L<br>TR<br>Southboun     | roup<br>apacity<br>287<br>277<br>253<br>277<br>d<br>321<br>1516      | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640<br>1583<br>1444<br>1583<br>1752         | t Rat<br>te                                                    | g/C<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1        | 7<br>7<br>7<br>8<br>4      | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5         | 4.0<br>1.0<br>Cyc<br>Group<br>Group<br>C<br>C<br>C<br>C<br>C<br>C                                    | 4.0<br>1.0<br>cle Ler<br>Del<br>22.<br>24.      | ngth:<br>proacl<br>ay LO<br>3 C<br>4 C        | h<br>S |          | secs |
| Yellow<br>All Red<br>Appr/ L<br>Lane G<br>Grp C<br>Eastbound<br>LT<br>R<br>Westbound<br>LT<br>R<br>Northboun<br>L<br>TR<br>Southboun<br>L | roup<br>apacity<br>287<br>277<br>253<br>277<br>d<br>321<br>1516<br>d | 4.0<br>1.0<br>Inter<br>Adj Sa<br>Flow Ra<br>(s)<br>1640<br>1583<br>1444<br>1583<br>1752<br>3433 | t Ra<br>te V/c<br>0.37<br>0.23<br>0.56<br>0.15<br>0.41<br>0.34 | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 7<br>7<br>7<br>8<br>4<br>8 | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5<br>11.1 | 4.0<br>1.0<br>Cyc<br>Group<br>Group<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 4.0<br>1.0<br>cle Ler<br>Del<br>22.<br>24.      | ngth:<br>proacl<br>ay LO<br>3 C<br>4 C<br>4 B | h<br>S |          | secs |

HCS+: Signalized Intersections Release 5.3

Phone: E-Mail: Fax:

OPERATIONAL ANALYSIS

KHA Analyst: Agency/Co.: KHA 12/8/2008 Date Performed: P.M. Peak Hour Analysis Time Period: Intersection: U.S. 19 & CR 40 Area Type: All other areas Jurisdiction: FDOT District 2 Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 E/W St: CR 40/Follow That Dream Pkwy N/S St: U.S. 19

| ·····                  |      | ·····           |       | V     | JOLUM | E DATA |       |       | ·     |      |        |      |
|------------------------|------|-----------------|-------|-------|-------|--------|-------|-------|-------|------|--------|------|
|                        | Eas  | stbou           | nd    | Wes   | stbou | nd     | No:   | rthbo | unđ · | So   | lthboi | und  |
|                        | L    | т               | R     | L     | т     | R      | L     | т     | R     | L    | Т      | R    |
| Volume                 | 27   | 71              | 83    | 71    | 61    | 58     | 123   | 414   | 106   | 124  | 1209   | 30   |
| % Heavy Veh            | 2    | 2               | 2     | 2     | 2     | 2      | 3     | 3     | 3     | 3    | 3      | 3    |
| PHF                    | 0.94 | 0.94            | 0.94  | 0.94  | 0.94  | 0.94   | 0.94  | 0.94  | 0.94  | 0.94 | 0.94   | 0.94 |
| PK 15 Vol<br>Hi Ln Vol | 7    | 19              | 22    | 19    | 16.   | 15     | 33    | 110   | 28    | 33   | 322    | 8    |
| % Grade                | İ    | 0               |       | i     | 0     |        | •     | 0     |       | i    | 0      |      |
| Ideal Sat              |      | 1900            | 1900  | ļ     | 1900  | 1900   | 1900  | 1900  |       | 1900 | 1900   |      |
| ParkExist<br>NumPark   |      |                 |       |       |       |        |       |       |       |      |        |      |
| No. Lanes              | 0    | 1               | 1     |       | 1     | 1      | 1 1   | 2     | 0     | 1    | 2      | 0    |
| LGConfig               | -    | $_{\rm LT}^{-}$ | R     | i     | LT    | R      | L     | TR    | -     | L L  | TR     | -    |
| Lane Width             |      | 12.0            | 12.0  | i     | 12.0  | 12.0   | 1     | 12.0  |       | 1    | 12.0   |      |
| RTOR Vol               | 1    | 2210            | 24    | i     | 20.0  | 19     |       | 10.0  | 33    | 1    | 20.0   | 5    |
| Adj Flow               | ĺ    | 105             | 63    |       | 141   | 41     | 131   | 518   |       | 132  | 1313   |      |
| %InSharedLn            | İ    |                 |       |       |       |        | İ     |       |       |      |        | Í    |
| Prop LTs               | Ì    | 0.2             | 76    |       | 0.5   | 39     | İ     | 0.0   | 00    | i    | 0.0    | 00 İ |
| Prop RTs               | 0    | .000            | 1.000 | j o   | .000  | 1.000  | i o   | .151  |       | j o  | .021   | i    |
| Peds Bikes             | 0    |                 |       | i o   |       |        | j o   |       |       | j o  |        | ļ.   |
| Buses                  |      | 0               | 0     | İ     | 0     | 0      | İo    | 0     |       | 0    | 0      |      |
| %InProtPhase           | e    |                 |       | i     |       |        | İ     |       |       |      |        |      |
| Duration               | 0.25 |                 | Area  | Type: | A11   | other  | areas |       |       | ,    |        | 1    |

\_\_\_\_OPERATING PARAMETERS\_

|              | Ea    | istbou | nd  | We      | estbou | nd     | No  | rthbou | ind | Sc  | uthbour | nd |
|--------------|-------|--------|-----|---------|--------|--------|-----|--------|-----|-----|---------|----|
|              | L     | Т      | R   | L       | Т      | R      | L   | т      | R   | L   | т       | R  |
| Init Unmet   |       | 0.0    | 0.0 | .  <br> | 0.0    | 0.0    | 0.0 | 0.0    |     | 0.0 | 0.0     |    |
| Arriv. Type  | ĺ     | 3      | 3   | 1       | 3      | 3      | 3   | 3      |     | 3   | 3       | Í  |
| Unit Ext.    | İ     | 3.0    | 3.0 | i       | 3.0    | 3.0    | 3.0 | 3.0    |     | 3.0 | 3.0     | İ  |
| I Factor     | İ     | 1.00   | 0   | ŀ       | 1.00   | 0      | i · | 1.000  | )   |     | 1.000   | i  |
| Lost Time    | ĺ     | 2.0    | 2.0 | i       | 2.0    | 2.0    | 2.0 | 2.0    |     | 2.0 | 2.0     |    |
| Ext of g     |       | 3.0    | 3.0 | i       | 3.0    | 3.0    | 3.0 | 3.0    |     | 3.0 | 3.0     | i  |
| Ped Min g    | Í     | 3.2    |     | İ       | 3.2    |        | j   | 3.2    |     |     | 3.2     | İ  |
|              |       |        |     |         | PHAS   | E DATA | A   |        |     |     |         |    |
| Phase Combir | natio | on 1   | 2   | 3       | 4      | . 1    |     | 5      | 6   | 7   | 8       |    |

| EB | Left<br>Thru<br>Right<br>Peds | A<br>A<br>A       | NB | Left<br>Thru<br>Right<br>Peds | A                  | A<br>A             |
|----|-------------------------------|-------------------|----|-------------------------------|--------------------|--------------------|
| WB | Left<br>Thru<br>Right<br>Peds | A<br>A<br>A       | SB | Left<br>Thru<br>Right<br>Peds | A                  | A<br>A             |
| NB | Right                         |                   | EB | Right                         |                    |                    |
| SB | Right                         |                   | WB | Right                         |                    |                    |
|    | en<br>low<br>Red              | 9.5<br>4.0<br>1.0 | ł  |                               | 10.0<br>4.0<br>1.0 | 25.5<br>4.0<br>1.0 |

Cycle Length: 60.0 secs

|       | _vorm                             | ME ADJU                                                                   | JSTMEI                                                                        | NT ANI                                                                                                              | SATU                                                                                                                                                    | RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                | N FLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SHEET_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                        |
|-------|-----------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| tment | 5                                 |                                                                           |                                                                               |                                                                                                                     |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                        |
| Eas   | stbour                            | nd                                                                        | Wes                                                                           | stbour                                                                                                              | nd                                                                                                                                                      | No:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rthbou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ınd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ithbou                                                 | ind                                                    |
| L     | т                                 | R                                                                         | L                                                                             | т                                                                                                                   | R                                                                                                                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | т                                                      | R                                                      |
| 27    | 71                                | 83                                                                        | <br>  71                                                                      | 61                                                                                                                  | 58                                                                                                                                                      | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1209                                                   | 30                                                     |
| 0.94  | 0.94                              | 0.94                                                                      | 0.94                                                                          | 0.94                                                                                                                | 0.94                                                                                                                                                    | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 1                                                      |
| 29    | 76                                | 63                                                                        | 76                                                                            | 65                                                                                                                  | 41                                                                                                                                                      | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1286                                                   | 27                                                     |
| 0     | 1                                 | 1                                                                         | 0                                                                             | 1                                                                                                                   | 1                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                      | 0                                                      |
|       | $\mathbf{LT}$                     | R                                                                         | 1                                                                             | LT                                                                                                                  | R                                                                                                                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TR                                                     |                                                        |
|       | 105                               | 63                                                                        |                                                                               | 141                                                                                                                 | 41                                                                                                                                                      | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1313                                                   | 1                                                      |
|       | 0.2                               | 76                                                                        |                                                                               | 0.53                                                                                                                | 39                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                   | 00                                                     |
| 0     | .000                              | 1.000                                                                     | 0                                                                             | .000                                                                                                                | 1.000                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .021                                                   |                                                        |
|       | Eas<br>L<br>27<br>0.94<br>29<br>0 | Eastbour<br>L T<br>27 71<br>0.94 0.94<br>29 76<br>0 1<br>LT<br>105<br>0.2 | Eastbound<br>L T R<br>27 71 83<br>0.94 0.94 0.94<br>29 76 63<br>0 1 1<br>LT R | Eastbound Wes<br>L T R L<br>27 71 83 71<br>0.94 0.94 0.94 0.94<br>29 76 63 76<br>0 1 1 0<br>LT R<br>105 63<br>0.276 | tment<br>Eastbound Westboun<br>L T R L T<br>27 71 83 71 61<br>0.94 0.94 0.94 0.94<br>29 76 63 76 65<br>0 1 1 0 1<br>LT R LT<br>105 63 141<br>0.276 0.55 | tment         Eastbound       Westbound         L       T       R       L       T       R         27       71       83       71       61       58         0.94       0.94       0.94       0.94       0.94       0.94         29       76       63       76       65       41         0       1       1       0       1       1         LT       R       LT       R       LT       R         105       63       141       41       0.276       0.539 | tment         Eastbound       Westbound       No:         L       T       R       L         27       71       83       71       61       58       123         0.94       0.94       0.94       0.94       0.94       0.94       0.94         29       76       63       76       65       41       131         0       1       1       0       1       1         LT       R       LT       R       L         105       63       141       41       131         0.276       0.539       0.539       0 | tment         Eastbound       Westbound       Northbox         L       T       R       L       T         27       71       83       71       61       58       123       414         0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94         29       76       63       76       65       41       131       440         0       1       1       0       1       1       2         LT       R       LT       R       L       TR         105       63       141       41       131       518         0.276       0.539       0.01       0.01 | Itment         Eastbound       Westbound       Northbound         L       T       R       L       T       R         27       71       83       71       61       58       123       414       106         0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       12       0       12       0 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| Saturation Flow Ra | ate (see Exh | ibit 16-7 to | determin | e the adju | stment f | actors) |
|--------------------|--------------|--------------|----------|------------|----------|---------|
| Eastbound          | d Wes        | stbound      | Northb   | ound       | Southb   | ound    |
| LG LT              | R            | LT R         | L T      | R          | г г      | 'R      |
| So 1900            | 1900         | 1900 1900    | 1900 19  | 00         | 1900 19  | 00      |
| Lanes 0 1          | 1 0          | 1 1          | 1 2      | 0          | 1 2      | 0       |
| fW 1.000           | 1.000        | 1.000 1.000  | 1.000 1. | 000        | 1.000 1. | 000     |
| fHV 0.980          | 0.980        | 0.980 0.980  | 0.971 0. | 971        | 0.971 0. | 971     |
| fG 1.000           | 1.000        | 1.000 1.000  | 1.000 1. | 000        | 1.000 1. | 000     |
| fP 1.000           | 1.000        | 1.000 1.000  | 1.000 1. | 000        | 1.000 1. | 000     |
| fBB 1.000          | 1.000        | 1.000 1.000  | 1.000 1. | .000       | 1.000 1. | 000     |
| fA 1.000           | 1.000        | 1.000 1.000  | 1.000 1. | . 000      | 1.000 1. | 000     |
| fLU 1.000          | 1.000        | 1.000 1.000  | 1.000 0. | .952       | 1.000 0. | 952     |
| fRT 1.000          | 0.850        | 1.000 0.850  | 0.       | . 977      | 0.       | 997     |
| fLT 0.880          |              | 0.775        | 0.950 1. | .000       | 0.950 1. | 000     |
| Sec.               |              |              |          |            |          |         |
| fLpb 1.000         |              | 1.000        | 1.000 1. | .000       | 1.000 1. | 000     |
| fRpb 1.000         | 1.000        | 1.000 1.000  | 1.       | .000       | 1.       | 000     |
| S 1640             | 1583         | 1444 · 1583  | 1752 34  | 133        | 1752 35  | 501     |
| Sec.               |              |              |          |            |          |         |
|                    | CAPA         | CITY AND LOS | WORKSHEE | ET         |          |         |
| Capacity Analysis  | and Lane Gr  | oup Capacity |          |            |          |         |
|                    | Adj          | Adj Sat 🗄    | Flow     | GreenL     | ane Grou | ip      |
| Appr/ Lane         | Flow Rate    | Flow Rate    | Ratio    | Ratio Cap  | acity    | v/c     |
| Mvmt Group         | (v)          | (s)          | (v/s)    | (g/C)      | (c) F    | Ratio   |

Eastbound Prot

| R 0.15<br>Northboun<br>L 0.41                                                                      | 0.17<br>0.17<br>0.17<br>0.17<br>d<br>0.17<br>d<br>0.18<br>0.44 | 22.6<br>21.0<br>21.6         |                         | 277<br>253<br>277<br>321 | 0.15<br>0.11                 | 0.8<br>0.4<br>2.7<br>0.2<br>0.8<br>0.1 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 22.6<br>21.7<br>25.4<br>21.2<br>22.5<br>11.1 | С<br>С<br>С<br>С<br>В | 22.3<br>24.4<br>13.4 | C<br>C<br>B |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|-------------------------|--------------------------|------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|-----------------------|----------------------|-------------|
| Grp v/c<br>Eastbound<br>LT 0.37<br>R 0.23<br>Westbound<br>LT 0.56<br>R 0.15<br>Northboun<br>L 0.41 | 0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>d<br>0.18              | 21.3<br>22.6<br>21.0<br>21.6 | 1.000<br>1.000<br>1.000 | 277<br>253<br>277<br>321 | 0.11<br>0.15<br>0.11<br>0.11 | 0.4<br>2.7<br>0.2<br>0.8               | 0.0<br>0.0<br>0.0                      | 21.7<br>25.4<br>21.2<br>22.5                 | c<br>c<br>c           | 24.4                 | c<br>c      |
| Grp v/c<br>Eastbound<br>LT 0.37<br>R 0.23<br>Westbound<br>LT 0.56<br>R 0.15<br>Northboun           | 0.17<br>0.17<br>0.17<br>0.17<br>0.17                           | 21.3<br>22.6<br>21.0         | 1.000<br>1.000<br>1.000 | 277<br>253<br>277        | 0.11<br>0.15<br>0.11         | 0.4<br>2.7<br>0.2                      | 0.0                                    | 21.7<br>25.4<br>21.2                         | C<br>C<br>C           |                      | С           |
| Grp v/c<br>Eastbound<br>LT 0.37<br>R 0.23<br>Westbound<br>LT 0.56<br>R 0.15                        | 0.17<br>0.17<br>0.17<br>0.17                                   | 21.3<br>22.6                 | 1.000                   | 277<br>253               | 0.11                         | 0.4                                    | 0.0                                    | 21.7<br>25.4                                 | c<br>c                |                      | С           |
| Erp v/c<br>Eastbound<br>T 0.37<br>C 0.23<br>Westbound<br>T 0.56                                    | 0.17<br>0.17<br>0.17                                           | 21.3<br>22.6                 | 1.000                   | 277<br>253               | 0.11                         | 0.4                                    | 0.0                                    | 21.7<br>25.4                                 | c<br>c                |                      | С           |
| Eastbound<br>T 0.37<br>0.23                                                                        | 0.17<br>0.17                                                   |                              |                         |                          |                              |                                        |                                        |                                              | C<br>C                | 22.3                 | <u> </u>    |
| Erp v/c<br>Eastbound<br>ET 0.37<br>& 0.23                                                          | 0.17<br>0.17                                                   |                              |                         |                          |                              |                                        |                                        |                                              | C<br>C                | 22.3                 | <u> </u>    |
| Srp v/c<br>Castbound<br>T 0.37                                                                     | 0.17                                                           |                              |                         |                          |                              |                                        |                                        |                                              | С                     | 22.3                 | <u> </u>    |
| rp v/c                                                                                             | l                                                              |                              |                         |                          |                              |                                        |                                        |                                              |                       |                      | LOS         |
|                                                                                                    |                                                                |                              |                         |                          |                              |                                        |                                        |                                              |                       |                      | LOS         |
| ane                                                                                                | g/C                                                            | d1                           | Fact                    | Cap                      | k                            | d2                                     | d3                                     | Dela                                         | y LOS                 | Delay                |             |
|                                                                                                    | elay an<br>atios                                               | d LOS<br>Unf<br>Del          | Determi<br>Prog<br>Adj  | ination<br>Lane<br>Grp   | n<br>Increm<br>Factor        |                                        | Res<br>Del                             | Lane                                         | Group                 | Approa               | ach         |
| otal los<br>Critical                                                                               | t time<br>flow ra                                              | per cy<br>te to              | cle, I<br>capacit       | . = 12<br>;y rat:        | .00 sec<br>io,               |                                        |                                        |                                              |                       |                      |             |
| Right<br>um of flo                                                                                 | ow rati                                                        | os for                       | critic                  | al lar                   | ne grou                      | os. Yc                                 | = S1                                   |                                              | s) =                  | 0.55                 |             |
| Prot<br>Perm<br>Thru                                                                               | TR                                                             | 1                            | 313                     | 350                      | )1. #                        | 0.38                                   | 0.4                                    | 44                                           | 1546                  | 0.85                 |             |
| outhbound<br>Prot<br>Perm<br>Left                                                                  | d<br>L                                                         | 1                            | 32                      | 175                      | 52 #                         | 0.08                                   | 0.1                                    | 18                                           | 321                   | 0.41                 |             |
| Perm<br>Thru<br>Right                                                                              | TR                                                             | 5                            | 18                      | 343                      | 33                           | 0.15                                   | 0.4                                    | 14                                           | 1516                  | 0.34                 |             |
| Prot<br>Perm<br>Left<br>Prot                                                                       | L                                                              | 1                            | 31                      | 175                      | 52                           | 0.07                                   | 0.2                                    | 18                                           | 321                   | 0.41                 |             |
| orthbound                                                                                          |                                                                | -                            | -                       | 1.50                     |                              | 2.00                                   | 0.1                                    | _ ·                                          | _ · ·                 | · • • • • •          |             |
| Perm<br>Left<br>Prot<br>Perm<br>Thru<br>Right                                                      | LT<br>R                                                        | 1                            | 41                      | 144<br>158               |                              | 0.10                                   | 0.1<br>0.1                             |                                              | 253<br>277            | 0.56<br>0.15         |             |
| FIOL                                                                                               | R                                                              | 6                            |                         | 158                      |                              | 0.04                                   | 0.1                                    |                                              | 277                   | 0.23                 |             |
| Thru<br>Right<br>estbound<br>Prot                                                                  | LT                                                             |                              | 05                      | 164                      | In                           | 0.06                                   | 0.1                                    |                                              | 287                   | 0.37                 |             |

. .

Intersection delay = 18.7 (sec/veh) Intersection LOS = B

٠

Analyst: KHAInter.: U.S. 19 & Construction AccessAgency: KHAArea Type: All other areasDate: 12/11/2008Jurisd: FDOTPeriod: P.M. Peak HourYear : 2015 Peak Construction TrafficProject ID: Levy County Advanced Reactor - Heavy Haul Route 1E/W St: Construction AccessN/S St: U.S. 19

|                                                                                  |                                                                               | <u>ں                                    </u>                    | IGNALIZE                                            | D INTERSE                                    | SCTION S                                   | SUMMAP                     | (1                   |                        |        |     |     |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------|----------------------|------------------------|--------|-----|-----|
|                                                                                  | Ea                                                                            | stbound                                                         | West                                                | bound                                        | Nort                                       | thbour                     | ıd                   | Soi                    | uthbou | ind | l   |
|                                                                                  | L                                                                             | T R                                                             | L                                                   | T R                                          | L                                          | Т                          | R                    | L                      | т      | R   |     |
| No. Lar                                                                          | nes 0                                                                         | 0 0                                                             | 2                                                   | 0 1                                          | -                                          | 2                          | 1                    | 2                      | 2      | 0   | -!  |
| LGConfi                                                                          | ,                                                                             |                                                                 | L                                                   | R                                            |                                            | -<br>T                     | R                    | L                      | T      | Ū   |     |
| Volume                                                                           | - 5                                                                           |                                                                 | 900                                                 | 385                                          | -                                          |                            |                      | 45                     | 333    |     |     |
| Lane Wi                                                                          | dth                                                                           |                                                                 | 12.0                                                | 12.0                                         | - E                                        | 12.0 1                     | 1                    |                        | 12.0   |     |     |
| RTOR Vo                                                                          |                                                                               |                                                                 | 12.0                                                | 0                                            | -                                          | 12.01                      | 5                    | 12.0                   | 12.0   |     |     |
| Duratio                                                                          | on 0.25                                                                       | Area                                                            |                                                     | ll other                                     |                                            |                            |                      |                        |        |     |     |
| Phase (                                                                          | Combinatio                                                                    | n 1 2                                                           | Sign<br>3                                           | al Operat<br>4                               | ions                                       | 5                          | 6                    | 7                      | 5      | 3   |     |
| EB Lef                                                                           |                                                                               |                                                                 | 5                                                   | I NB                                         | Left                                       | 5                          | Ũ                    | ,                      |        | 5   |     |
| DD DC1<br>Thr                                                                    |                                                                               |                                                                 |                                                     |                                              | Thru                                       |                            | A                    |                        |        |     |     |
| Ric                                                                              |                                                                               |                                                                 |                                                     |                                              |                                            |                            |                      |                        |        |     |     |
| -                                                                                |                                                                               |                                                                 |                                                     |                                              | Right                                      |                            | A                    |                        |        |     |     |
| Pec                                                                              |                                                                               | 7                                                               |                                                     |                                              | Peds                                       |                            |                      |                        |        |     |     |
| WB Lef                                                                           |                                                                               | A                                                               |                                                     | SB                                           | Left                                       | A                          | _                    |                        |        |     |     |
| Thr                                                                              |                                                                               | _                                                               |                                                     |                                              | Thru                                       | А                          | A                    |                        |        |     |     |
| Rig                                                                              |                                                                               | A                                                               |                                                     | ļ                                            | Right                                      |                            |                      |                        |        |     |     |
| Pec                                                                              |                                                                               |                                                                 |                                                     |                                              | Peds                                       |                            |                      |                        |        |     |     |
| NB Rig                                                                           |                                                                               | A                                                               |                                                     | EB                                           | Right                                      |                            |                      |                        |        |     |     |
| SB Rig                                                                           | ght                                                                           |                                                                 |                                                     | WB                                           | Right                                      | А                          |                      |                        |        |     |     |
| Green                                                                            |                                                                               | 35.0                                                            |                                                     |                                              |                                            | 10.0                       | 60.0                 | )                      |        |     |     |
| Yellow                                                                           |                                                                               | 4.0                                                             |                                                     |                                              |                                            | 4.0                        | 4.0                  |                        |        |     |     |
| All Red                                                                          | E                                                                             | 1.0                                                             |                                                     |                                              |                                            | 1.0                        | 1.0                  |                        |        |     |     |
|                                                                                  |                                                                               | Techowa                                                         |                                                     |                                              |                                            | Cyc]                       | le Len               | gth:                   | 120.0  | ) s | ecs |
|                                                                                  | Lane                                                                          | Adj Sat                                                         |                                                     | erformanc<br>ios                             | Lane (                                     |                            |                      | roac                   | h      |     |     |
| Appr/                                                                            |                                                                               |                                                                 |                                                     |                                              |                                            | ~                          |                      |                        | •      |     |     |
|                                                                                  | Group                                                                         | Flow Rat                                                        | e                                                   |                                              |                                            |                            |                      |                        |        |     |     |
| Lane                                                                             | Group<br>Capacity                                                             | Flow Rat                                                        | e<br>v/c                                            | g/C                                          | Delay                                      | LOS                        | Dela                 | y LO                   | S      |     |     |
| Lane<br>Grp                                                                      | Capacity                                                                      | Flow Rat                                                        |                                                     | g/C                                          | Delay                                      | LOS                        | Dela                 | IY LO                  | <br>S  |     |     |
| Lane<br>Grp                                                                      | Capacity                                                                      | Flow Rat                                                        |                                                     | g/C                                          | Delay                                      | LOS                        | Dela                 | IY LO:                 | S      |     |     |
| Lane<br>Grp<br>Eastbou                                                           | Capacity<br>und                                                               | Flow Rat                                                        |                                                     | g/C                                          | Delay                                      | LOS                        | Dela                 | IY LO                  | S      |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou                                                | Capacity<br>und                                                               | Flow Rat                                                        |                                                     | g/C<br>0.30                                  | Delay                                      | LOS                        | Dela                 | IY LO                  | 5      |     |     |
| Appr/<br>Lane<br>Grp<br>Eastbou<br>Westbou<br>L                                  | Capacity<br>und                                                               | Flow Rat                                                        | v/c                                                 |                                              |                                            |                            | <br>Dela<br>45.8     |                        | 5      |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou<br>L                                           | Capacity<br>und                                                               | Flow Rat                                                        | v/c                                                 |                                              |                                            |                            |                      |                        | 5      |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou<br>L<br>R                                      | Capacity<br>and<br>1031<br>673                                                | Flow Rat<br>(s)<br>3437                                         | v/c<br>0.92                                         | 0.30                                         | 53.3                                       | D                          |                      |                        | S      |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou<br>L<br>R<br>Northbo                           | Capacity<br>and<br>1031<br>673                                                | Flow Rat<br>(s)<br>3437                                         | v/c<br>0.92                                         | 0.30                                         | 53.3                                       | D                          |                      | -<br>3 D               |        |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou<br>L<br>R<br>Northbo                           | Capacity<br>and<br>1031<br>673<br>bund                                        | Flow Rat<br>(s)<br>3437<br>1583                                 | v/c<br>0.92<br>0.60                                 | 0.30<br>0.43                                 | 53.3<br>28.2                               | D<br>C                     | 45.8                 | -<br>3 D               |        |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou<br>L<br>R<br>Northbo<br>T<br>R                 | Capacity<br>and<br>1031<br>673<br>bund<br>1768<br>1332                        | Flow Rat<br>(s)<br>3437<br>1583<br>3478                         | v/c<br>0.92<br>0.60<br>0.19                         | 0.30<br>0.43<br>0.51                         | 53.3<br>28.2<br>16.1                       | D<br>C<br>B                | 45.8                 | -<br>3 D               |        |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou<br>L<br>R<br>Northbo<br>T<br>R<br>Southbo      | Capacity<br>and<br>1031<br>673<br>bund<br>1768<br>1332                        | Flow Rat<br>(s)<br>3437<br>1583<br>3478                         | v/c<br>0.92<br>0.60<br>0.19                         | 0.30<br>0.43<br>0.51                         | 53.3<br>28.2<br>16.1                       | D<br>C<br>B                | 45.8                 | -<br>3 D               |        |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou<br>L<br>R<br>Northbo<br>T<br>R<br>Southbo<br>L | Capacity<br>and<br>1031<br>673<br>bund<br>1768<br>1332<br>bund                | Flow Rat<br>(s)<br>3437<br>1583<br>3478<br>1583                 | v/c<br>0.92<br>0.60<br>0.19<br>0.08<br>0.15         | 0.30<br>0.43<br>0.51<br>0.84<br>0.09         | 53.3<br>28.2<br>16.1<br>1.6<br>50.4        | D<br>C<br>B<br>A           | 45.8                 | -<br>3 D<br>5 В        |        |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou                                                | Capacity<br>and<br>1031<br>673<br>bund<br>1768<br>1332<br>bund<br>315<br>2203 | Flow Rat<br>(s)<br>3437<br>1583<br>3478<br>1583<br>3437<br>3478 | v/c<br>0.92<br>0.60<br>0.19<br>0.08<br>0.15<br>0.16 | 0.30<br>0.43<br>0.51<br>0.84<br>0.09<br>0.63 | 53.3<br>28.2<br>16.1<br>1.6<br>50.4<br>9.0 | D<br>C<br>B<br>A<br>D<br>A | 45.8<br>12.6<br>13.9 | а<br>3 р<br>5 в<br>9 в |        |     |     |
| Lane<br>Grp<br>Eastbou<br>Westbou<br>L<br>R<br>Northbo<br>T<br>R<br>Southbo<br>L | Capacity<br>and<br>1031<br>673<br>bund<br>1768<br>1332<br>bund<br>315<br>2203 | Flow Rat<br>(s)<br>3437<br>1583<br>3478<br>1583<br>3437         | v/c<br>0.92<br>0.60<br>0.19<br>0.08<br>0.15<br>0.16 | 0.30<br>0.43<br>0.51<br>0.84<br>0.09<br>0.63 | 53.3<br>28.2<br>16.1<br>1.6<br>50.4<br>9.0 | D<br>C<br>B<br>A<br>D      | 45.8<br>12.6<br>13.9 | а<br>3 р<br>5 в<br>9 в |        |     |     |

HCS+: Signalized Intersections Release 5.3

Phone: Fax: E-Mail: \_\_\_\_\_OPERATIONAL ANALYSIS\_\_\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/11/2008 P.M. Peak Hour Analysis Time Period: U.S. 19 & Construction Access Intersection: Area Type: All other areas Jurisdiction: FDOT Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 E/W St: Construction Access N/S St: U.S. 19

|                                                            |             |      |      | v                               | OLUM | ie data                 |         |                        |                        |                 | •                      |    |
|------------------------------------------------------------|-------------|------|------|---------------------------------|------|-------------------------|---------|------------------------|------------------------|-----------------|------------------------|----|
| l                                                          | Eas         | tbou | nd   | Wes                             | tbou | ınd                     | No      | rthbo                  | und                    | So              | uthbou                 | nd |
|                                                            | L           | т    | R    | L                               | т    | R                       | L       | т                      | R                      | L               | т                      | R  |
| Volume<br>% Heavy Veh<br>PHF<br>PK 15 Vol                  |             |      |      | <br> 900<br> 2<br> 0.95<br> 237 |      | 385<br>2<br>0.95<br>101 |         | 322<br>4<br>0.95<br>85 | 105<br>2<br>0.95<br>28 | 45<br>2<br>0.95 | 333<br>4<br>0.95<br>88 |    |
| Hi Ln Vol<br>% Građe<br>Ideal Sat<br>ParkExist             |             |      |      | 1900                            | 0    | 1900                    |         | 0<br>1900              | 1900                   | 1900            | 0<br>1900              |    |
| NumPark<br>No. Lanes<br>LGConfig<br>Lane Width<br>RTOR Vol | 0           | 0    | 0    | 2<br>L<br>12.0                  | 0    | 1<br>R<br>12.0<br>0     | 0       | 2<br>T<br>12.0         | 1<br>R<br>12.0<br>0    | 2<br>L<br>12.0  | 2<br>T<br>12.0         | 0  |
| Adj Flow<br>%InSharedLn                                    |             |      |      | 947                             |      | 405                     | ĺ       | 339                    | 111                    | 47              | 351                    |    |
| Prop LTs<br>Prop RTs                                       | İ<br>İ      |      |      | Ì                               |      | 1.000                   | <br>  c | 0.0<br>000.0           | 00<br>1.000            | 0               | 0.00                   | 00 |
| Peds Bikes<br>Buses<br>%InProtPhase                        | 0<br> <br>e |      |      |                                 |      | 0                       | C       | 0                      | 0                      | 0               | 0                      |    |
| Duration                                                   | 0.25        |      | Area | Type:                           | A11  | other                   | areas   | 5                      |                        | •               |                        |    |

\_\_\_\_OPERATING PARAMETERS\_

| 1            | Ea      | stbou | nd | We  | stbou | ınd     | No  | orthbo | und | Sc  | uthbou | nd |
|--------------|---------|-------|----|-----|-------|---------|-----|--------|-----|-----|--------|----|
|              | L       | Т     | R  | L   | Т     | R       | L   | Т      | R   | L   | т      | R  |
| Init Unmet   | <u></u> |       |    | 0.0 |       | 0.0     |     | 0.0    | 0.0 | 0.0 | 0.0    |    |
| Arriv. Type  |         |       |    | 3   |       | 3       | 1   | 3      | 3   | 3   | 3      |    |
| Unit Ext.    |         |       |    | 3.0 |       | 3.0     | İ   | 3.0    | 3.0 | 3.0 | 3.0    |    |
| I Factor     |         |       |    | i   | 1.00  | 0       | i   | 1.00   | 0   | Ì   | 1.000  |    |
| Lost Time    |         |       |    | 2.0 |       | 2.0     | İ 👘 | 2.0    | 2.0 | 2.0 | 2.0    |    |
| Ext of g     |         |       |    | 3.0 |       | 3.0     | 1   | 3.0    | 3.0 | 3.0 | 3.0    |    |
| Ped Min g    |         | 3.2   |    | Ì   | 3.2   |         | Ì   | 3.2    |     | İ   |        |    |
|              |         |       |    |     | _PHAS | SE DATA |     |        |     |     |        |    |
| Phase Combin | natic   | n 1   | 2  | 3   | 4     |         |     | 5      | 6   | 7   | ' 8    | 3  |

| EB                  | Left<br>Thru<br>Right<br>Peds |                    | NB<br> <br> | Left<br>Thru<br>Right<br>Peds |                    | A<br>A             |
|---------------------|-------------------------------|--------------------|-------------|-------------------------------|--------------------|--------------------|
| WB                  | Left<br>Thru<br>Right<br>Peds | A                  | SB<br> <br> | Left<br>Thru<br>Right<br>Peds | A<br>A             | A                  |
| NB                  | Right                         | А                  | EB          | Right                         |                    |                    |
| SB                  | Right                         |                    | WB          | Right                         | A                  |                    |
| Gree<br>Yell<br>All |                               | 35.0<br>4.0<br>1.0 | 1           |                               | 10.0<br>4.0<br>1.0 | 60.0<br>4.0<br>1.0 |

Cycle Length: 120.0 secs

| Volume Adjus | stment | :     |    |      |      |       |      |       |       |      |        |     |
|--------------|--------|-------|----|------|------|-------|------|-------|-------|------|--------|-----|
|              | Eas    | stbou | nd | Wes  | tbou | nd    | No   | rthbo | und   | Sou  | lthbou | ınd |
|              | L      | Т     | R  | L    | Т    | R     | L    | Т     | R     | L    | т      | R   |
| Volume, V    |        |       | r  | 900  | i    | 385   | <br> | 322   | 105   | 45   | 333    |     |
| PHF          | 1      |       |    | 0.95 |      | 0.95  | 1    | 0.95  | 0.95  | 0.95 | 0.95   |     |
| Adj flow     | İ      |       |    | 947  |      | 405   | ĺ    | 339   | 111   | 47   | 351    |     |
| No. Lanes    | j o    | 0     | 0  | 2    | 0    | 1     | j o  | 2     | 1     | 2    | 2      | 0   |
| Lane group   | İ      |       |    | Ĺ    |      | R     |      | т     | R     | L    | т      |     |
| Adj flow     | ļ      |       |    | 947  |      | 405   | İ    | 339   | 111   | 47   | 351    |     |
| Prop LTs     | İ      |       |    | i    |      |       | i    | 0.0   | 00    |      | 0.00   | 0   |
| Prop RTs     | i      |       |    |      |      | 1.000 | i o  | .000  | 1.000 | i o  | .000   |     |

| Saturatio | n Flow R  | ate (see Exh | ibit 16-7 to | determine th | ne adju | stment | : facto | ors) |
|-----------|-----------|--------------|--------------|--------------|---------|--------|---------|------|
|           | Eastboun  |              | stbound      |              |         |        | hbound  |      |
| LG        |           | L            | R            | т            | R       | L      | т       |      |
| So        |           | 1900         | 1900         | 1900         | 1900    | 1900   | 1900    |      |
| Lanes O   | 0         | 0 2          | 0 1          | 0 2          | 1       | 2      | 2       | 0    |
| fW        |           | 1.000        | 1.000        | 1.000        | 1.000   | 1.000  | 1.000   |      |
| fhv       |           | 0.980        | 0.980        | 0.962        | 0.980   | 0.980  | 0.962   |      |
| fG        |           | 1.000        | 1.000        | 1.000        | 1.000   | 1.000  | 1.000   |      |
| fP        |           | 1.000        | 1.000        | 1.000        | 1.000   | 1.000  | 1.000   |      |
| fBB       |           | 1.000        | 1.000        | 1.000        | 1.000   | 1.000  | 1.000   |      |
| fA        |           | 1.000        | 1.000        | 1.000        | 1.000   | 1.000  | 1.000   |      |
| fLU       |           | 0.971        | 1.000        | 0.952        | 1.000   | 0.971  | 0.952   |      |
| ÉRT       |           |              | 0.850        | 1.000        | 0.850   |        | 1.000   |      |
| fLT       |           | 0.950        |              | 1.000        |         | 0.950  | 1.000   |      |
| Sec.      |           |              |              |              |         |        |         |      |
| fLpb      |           | 1.000        |              | 1.000        |         | 1.000  | 1.000   |      |
| fRpb      | •         |              | 1.000        | 1.000        | 1.000   |        | 1.000   |      |
| S         |           | 3437         | 1583         | 3478         | 1583    | 3437   | 3478    |      |
| Sec.      |           |              |              |              |         |        |         |      |
|           | <u>_,</u> | САРА         | CITY AND LOS | WORKSHEET    |         |        |         |      |
| Capacity  | Analysis  |              | oup Capacity |              |         |        |         |      |
|           |           |              | Adj Sat      |              |         |        | -       |      |
| Appr/     |           |              | Flow Rate    |              | -       | pacity |         |      |
| Mvmt      | Group     | (v)          | (s)          | (v/s) (g/d   | 2)      | (C)    | Ratio   | >    |

Eastbound

Prot

| Control<br>Appr/<br>Lane<br>Erp v,<br>Lastbour<br>Lastbour<br>L 0.9<br>R 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Delay<br>Ratio<br>/c g<br>nd<br>92 0.<br>60 0.<br>und<br>19 0.<br>08 0.<br>und<br>15 0. | and LOS<br>s Unf<br>Del<br>/C d1<br>30 40.6<br>43 26.7                                 | Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673<br>1768<br>1332        | n<br>Factor<br>k<br>0.44<br>0.19<br>0.11<br>0.11<br>0.11 | nental                                           | Res<br>Del<br>d3                                           | Lane                                                | C<br>B<br>A                              | 0.43<br>Appro<br>Delay<br>45.8<br>12.6<br>13.9 |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|------------------------------------------------|--------|
| Control<br>Appr/<br>Lane<br>Erp v,<br>Castbour<br>Nestbour<br>Conthbour<br>Conthbour<br>Conthbour<br>Conthbour<br>Conthbour<br>Conthbour<br>Conthbour<br>Conthbour<br>Conthbour<br>Conthbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Delay<br>Ratio<br>/c g<br>nd<br>92 0.<br>60 0.<br>und<br>19 0.<br>08 0.<br>und<br>15 0. | and LOS<br>s Unf<br>Del<br>/C d1<br>30 40.6<br>43 26.7<br>51 16.1<br>84 1.6<br>09 50.2 | Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673<br>1768<br>1332<br>315 | n<br>Factor<br>k<br>0.44<br>0.19<br>0.11<br>0.11<br>0.11 | nental<br>d2<br>12.7<br>1.5<br>0.1<br>0.0<br>0.2 | Res<br>Del<br>d3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | Lane<br>Del.<br>53.3<br>28.2<br>16.1<br>1.6<br>50.4 | Group<br>ay LOS<br>D<br>C<br>B<br>A<br>D | Appro<br>Delay<br>45.8<br>12.6                 | D<br>B |
| Control<br>Appr/<br>Lane<br>Erp v,<br>Castbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour<br>Lastbour | Delay<br>Ratio<br>/c g<br>nd<br>92 0.<br>60 0.<br>und<br>19 0.<br>08 0.<br>und          | and LOS<br>s Unf<br>Del<br>/C d1<br>30 40.6<br>43 26.7<br>51 16.1<br>84 1.6            | Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000          | inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673<br>1768<br>1332        | n<br>Factor<br>k<br>0.44<br>0.19<br>0.11<br>0.11         | nental<br>d2<br>12.7<br>1.5<br>0.1<br>0.0        | Res<br>Del<br>d3<br>0.0<br>0.0<br>0.0<br>0.0               | Lane<br>Del.<br>53.3<br>28.2<br>16.1<br>1.6         | Group<br>ay LOS<br>D<br>C<br>B<br>A      | Appro<br>Delay<br>45.8                         | D      |
| Control<br>Appr/<br>Lane<br>Erp v,<br>Castbour<br>Vestbour<br>L 0.9<br>R 0.6<br>Northbour<br>R 0.1<br>R 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Delay<br>Ratio<br>/c g<br>nd<br>92 0.<br>60 0.<br>und<br>19 0.<br>08 0.                 | and LOS<br>s Unf<br>Del<br>/C d1<br>30 40.6<br>43 26.7<br>51 16.1                      | Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000                   | inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673<br>1768                | n<br>Factor<br>k<br>0.44<br>0.19<br>0.11                 | nental<br>d2<br>12.7<br>1.5<br>0.1               | Res<br>Del<br>d3<br>0.0<br>0.0<br>0.0                      | Lane<br>Del.                                        | Group<br>ay LOS<br>D<br>C<br>B           | Appro<br>Delay<br>45.8                         | D      |
| Control<br>Appr/<br>Lane<br>Erp v,<br>Castbour<br>Vestbour<br>L 0.9<br>R 0.6<br>Northbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Delay<br>Ratio<br>/c g<br>nd<br>92 0.<br>60 0.<br>und<br>19 0.                          | and LOS<br>s Unf<br>Del<br>/C d1<br>30 40.6<br>43 26.7<br>51 16.1                      | Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000                   | inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673<br>1768                | n<br>Factor<br>k<br>0.44<br>0.19<br>0.11                 | nental<br>d2<br>12.7<br>1.5<br>0.1               | Res<br>Del<br>d3<br>0.0<br>0.0<br>0.0                      | Lane<br>Del.                                        | Group<br>ay LOS<br>D<br>C<br>B           | Appro<br>Delay<br>45.8                         | D      |
| Control<br>Appr/<br>Lane<br>Erp v,<br>Lastbour<br>Lastbour<br>L 0.9<br>R 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Delay<br>Ratio<br>/c g<br>nd<br>92 0.<br>60 0.<br>und                                   | and LOS<br>s Unf<br>Del<br>/C d1<br>30 40.6<br>43 26.7                                 | Prog<br>Adj<br>Fact<br>1.000<br>1.000                            | inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673                        | n<br>Factor<br>k<br>0.44<br>0.19                         | nental<br>Del<br>d2<br>12.7<br>1.5               | Res<br>Del<br>d3<br>0.0<br>0.0                             | Lane<br>Del.                                        | Group<br>ay LOS<br>D<br>C                | Appro<br>Delay<br>45.8                         | D      |
| Control<br>Appr/<br>Lane<br>Erp v/<br>Lastbour<br>Vestbour<br>L 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Delay<br>Ratio<br>/c g<br>nd<br>92 0.                                                   | and LOS<br>s Unf<br>Del<br>/C d1<br>30 40.6                                            | Prog<br>Adj<br>Fact<br>1.000                                     | inatio<br>Lane<br>Grp<br>Cap<br>1031                               | n<br>Factor<br>k<br>0.44                                 | nental<br>Del<br>d2                              | Res<br>Del<br>d3                                           | Lane<br>                                            | Group<br>ay LOS<br>D                     | Appro<br>Delay                                 | LOS    |
| Control<br>Appr/<br>Lane<br>Erp v,<br>Castbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Delay<br>Ratio<br>/c g<br>nd                                                            | and LOS<br>s Unf<br>Del<br>/C d1                                                       | Prog<br>Adj<br>Fact                                              | inatio<br>Lane<br>Grp<br>Cap                                       | n<br>Increm<br>Factor<br>k                               | nental<br>Del<br>d2                              | Res<br>Del<br>d3                                           | Lane                                                | Group<br>ay LOS                          | Appro<br>Delay                                 | LOS    |
| Control<br>Appr/<br>Lane<br>Erp v,<br>Castbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Delay<br>Ratio<br>/c g<br>nd                                                            | and LOS<br>s Unf<br>Del<br>/C d1                                                       | Prog<br>Adj<br>Fact                                              | inatio<br>Lane<br>Grp<br>Cap                                       | n<br>Increm<br>Factor<br>k                               | nental<br>Del<br>d2                              | Res<br>Del<br>d3                                           | Lane                                                | Group<br>ay LOS                          | Appro                                          |        |
| Control<br>Appr/<br>Lane<br>Erp v,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Delay<br>Ratio<br>/c g                                                                  | and LOS<br>s Unf<br>Del                                                                | Prog<br>Adj                                                      | inatio<br>Lane<br>Grp                                              | n<br>Increm<br>Factor                                    | nental<br>Del                                    | Res<br>Del                                                 | Lane                                                | Group                                    | Appro                                          |        |
| Control<br>Appr/<br>Lane<br>Erp v,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Delay<br>Ratio<br>/c g                                                                  | and LOS<br>s Unf<br>Del                                                                | Prog<br>Adj                                                      | inatio<br>Lane<br>Grp                                              | n<br>Increm<br>Factor                                    | nental<br>Del                                    | Res<br>Del                                                 | Lane                                                | Group                                    | Appro                                          |        |
| Control<br>Appr/<br>Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Delay<br>Ratio                                                                          | and LOS<br>s Unf<br>Del                                                                | Prog<br>Adj                                                      | inatio<br>Lane<br>Grp                                              | n<br>Increm<br>Factor                                    | nental<br>Del                                    | Res<br>Del                                                 | Lane                                                | Group                                    | Appro                                          |        |
| Control<br>Appr/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Delay                                                                                   | and LOS<br>s Unf                                                                       | Prog                                                             | inatio<br>Lane                                                     | n<br>Increm                                              | nental                                           | Res                                                        |                                                     |                                          |                                                | bach   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                                        | Determ                                                           |                                                                    |                                                          | Xc                                               | : = (Yo                                                    | c)(C)/                                              | (C-L) =                                  | 0.43                                           |        |
| Cotal lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         | me per c<br>rate to                                                                    |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         | atios fo:                                                                              |                                                                  |                                                                    |                                                          |                                                  | = 5                                                        | Sum (v                                              | /s) =                                    | 0.39                                           |        |
| Thru<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         | :                                                                                      | 351                                                              | 34                                                                 | 18                                                       | 0.10                                             | 0.                                                         | 63                                                  | 2203                                     | 0.16                                           |        |
| Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        | 0 - 1                                                            | ~ ·                                                                | 70                                                       | 0 4 5                                            |                                                            | 6.2                                                 | 0000                                     | 0                                              |        |
| Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        | - 1                                                              | 54                                                                 | <i>_ ,</i>                                               | 0.01                                             | υ.                                                         |                                                     | 313                                      | 0.10                                           |        |
| Southbou<br>Prot<br>Perm<br>Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                                        | 47                                                               | 34                                                                 | 37 <del> </del>                                          | • 0.01                                           | 0                                                          | 09                                                  | 315                                      | 0.15                                           |        |
| Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         | -                                                                                      | 111                                                              | 15                                                                 | 83                                                       | 0.07                                             | 0.                                                         | 84                                                  | 1332                                     | 0.08                                           |        |
| Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        | 339                                                              |                                                                    |                                                          | 0.10                                             |                                                            | 51                                                  | 1768                                     | 0.19                                           |        |
| Left<br>Prot<br>Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| Prot<br>Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| lorthbou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t R                                                                                     | 4                                                                                      | 405                                                              | 15                                                                 | 83                                                       | 0.26                                             | 0.                                                         | 43                                                  | 673                                      | 0.60                                           |        |
| Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| Prot<br>Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        | 947                                                              | 34                                                                 | 37 #                                                     | 0.28                                             | 0.                                                         | 30                                                  | 1031                                     | 0.92                                           |        |
| Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| lestbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| Right<br>Iestbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| Thru<br>Right<br>Vestbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |
| Right<br>Iestbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                                        |                                                                  |                                                                    |                                                          |                                                  |                                                            |                                                     |                                          |                                                |        |

TWO-WAY STOP CONTROL SUMMARY\_\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/11/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & Operations Access Jurisdiction: FDOT Units: U. S. Customary Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 East/West Street: Operations Access U.S. 19 North/South Street: Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ Major Street: Approach Northbound Southbound Movement 1 2 3 5 4 б  $\mathbf{L}$ Т R L Т R 9 Volume 392 4 1229 0.95 . 0.95 Peak-Hour Factor, PHF 0.95 0.95 Hourly Flow Rate, HFR 412 9 4 1293 Percent Heavy Vehicles --2 - ------Median Type/Storage Raised curb / 2 RT Channelized? No Lanes 2 1 1 2 Configuration т т R L Upstream Signal? No No Minor Street: Approach Westbound Eastbound 7 Movement 8 9 10 11 12 L Т R.  $\mathbf{L}$ т R Volume 80 35 Peak Hour Factor, PHF 0.95 0.95 Hourly Flow Rate, HFR 84 36 Percent Heavy Vehicles 2 2 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage Lanes 1 1 L Configuration R \_Delay, Queue Length, and Level of Service\_ Approach NB SB Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Config  $\mathbf{L}$ L R v (vph) 4 84 36

C(m) (vph) 1135 405 833 v/c 0.00 0.21 0.04 95% queue length 0.01 0.77 0.14 Control Delay 8.2 16.2 9.5 LOS А С А Approach Delay 14.2 Approach LOS в

Phone: E-Mail: Fax:

\_TWO-WAY STOP CONTROL(TWSC) ANALYSIS\_\_ Analyst: KHA Agency/Co.: KHA Date Performed: 12/11/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & Operations Access Jurisdiction: FDOT Units: U. S. Customary 2015 Peak Construction Traffic Analysis Year: Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 Operations Access East/West Street: North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ 5 Major Street Movements 1 6 2 3 4 т R Τ.  $\mathbf{L}$ т R Volume 392 9 4 1229 Peak-Hour Factor, PHF 0.95 0.95 0.95 0.95 Peak-15 Minute Volume 103 2 1 323 Hourly Flow Rate, HFR 412 9 4 1293 Percent Heavy Vehicles -----2 -----Median Type/Storage / 2 Raised curb RT Channelized? No Lanes 2 2 1 1 Configuration т R т T<sub>1</sub> Upstream Signal? No No Minor Street Movements 7 8 9 10 11 12 R L т г т R Volume 80 35 Peak Hour Factor, PHF 0.95 0.95 Peak-15 Minute Volume 21 9 Hourly Flow Rate, HFR 84 36 Percent Heavy Vehicles 2 2 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage RT Channelized? No Lanes 1 1 Configuration L R Pedestrian Volumes and Adjustments Movements 13 14 15 16 Flow (ped/hr) 0 0 0 0 Lane Width (ft) 12.0 12.0 12.0 12.0 Walking Speed (ft/sec) 4.0 4.0 4.0 4.0 Percent Blockage 0 0 0 0

|                                                                                           |                                                                  | Prog.<br>Flow<br>vph              | Sat<br>Flow<br>vph                                     | Arriv<br>Type                                                    | e Ti                   |                                                           | Cycle<br>Length<br>sec  | Prog.<br>Speed<br>mph | Distance<br>to Signal<br>feet |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|------------------------------------------------------------------|------------------------|-----------------------------------------------------------|-------------------------|-----------------------|-------------------------------|
|                                                                                           | t-Turn<br>ough                                                   |                                   |                                                        |                                                                  |                        |                                                           |                         |                       |                               |
| S5 Lef                                                                                    | t-Turn<br>ough                                                   | ·                                 |                                                        |                                                                  |                        |                                                           |                         |                       |                               |
| Workshe                                                                                   | et 3-Data                                                        | for Co                            | mputing                                                | Effect                                                           | : of Del               | lay to                                                    | Major :                 | Street V              | ehicles                       |
|                                                                                           |                                                                  |                                   |                                                        |                                                                  | 1                      | Moveme                                                    | nt 2                    | Moveme                | nt 5                          |
| Sat flo<br>Sat flo<br>Number                                                              | <pre>ln volume w rate, ma w rate, ma of major s et 4-Crit.</pre> | ajor th<br>ajor rt<br>street      | vehicle<br>vehicle<br>through                          | es:<br>es:<br>lanes:                                             | <u>.</u>               | Calcu                                                     | lation                  |                       |                               |
| ·                                                                                         | 1 Gap Cal                                                        |                                   | _                                                      |                                                                  |                        |                                                           |                         |                       |                               |
| Movemen                                                                                   |                                                                  | L<br>L                            | 4<br>L                                                 | 7<br>L                                                           | 8<br>T                 | 9<br>R                                                    | 10<br>L                 | 11<br>T               | 12<br>R                       |
| t(c,bas                                                                                   | e)                                                               |                                   | 4.1                                                    | 7.5                                                              |                        | 6.2                                                       |                         | ·····                 |                               |
| t(c,hv)<br>P(hv)                                                                          |                                                                  | 2.00                              | 2.00<br>2                                              | 2.00<br>2                                                        | 2.00                   | 2.00<br>2                                                 | 2.00                    | 2.00                  | 2.00                          |
| 1 (110)                                                                                   |                                                                  |                                   |                                                        | 0.20                                                             | 0.20                   | 0.10                                                      | 0.20                    |                       | 0.10                          |
| t(c,g)                                                                                    |                                                                  |                                   |                                                        | 0.00                                                             | 0.00                   | 0.00                                                      | 0.00                    | 0.00                  | 0.00                          |
| t(c,g)<br>Percent                                                                         | Grade                                                            |                                   | 0 00                                                   | 0 70                                                             |                        |                                                           |                         |                       |                               |
| t(c,g)<br>Percent<br>t(3,lt)                                                              |                                                                  | 0 00                              | 0.00                                                   | 0.70                                                             | 0 00                   |                                                           |                         | 0 00                  | 0 00                          |
| t(c,g)                                                                                    | 1-stage                                                          |                                   | 0.00                                                   | 0.00                                                             | 0.00                   | 0.00                                                      | 0.00                    |                       | 0.00                          |
| t(c,g)<br>Percent<br>t(3,1t)<br>t(c,T):                                                   | 1-stage<br>2-stage                                               | 0.00                              | 0.00<br>0.00                                           | 0.00<br>1.00                                                     | 0.00<br>1.00           | 0.00<br>0.00                                              | 0.00                    |                       | 0.00<br>0.00                  |
| t(c,g)<br>Percent<br>t(3,lt)                                                              | 1-stage                                                          | 0.00                              | 0.00                                                   | 0.00                                                             |                        | 0.00                                                      | 0.00                    |                       |                               |
| <pre>t(c,g) Percent t(3,lt) t(c,T): t(c) Follow-</pre>                                    | 1-stage<br>2-stage<br>1-stage<br>2-stage<br>Up Time C            | 0.00<br>alculat                   | 0.00<br>0.00<br>4.1<br>4.1                             | 0.00<br>1.00<br>6.8<br>5.8                                       | 1.00                   | 0.00<br>0.00<br>6.2                                       | 0.00                    |                       |                               |
| <pre>t(c,g) Percent t(3,lt) t(c,T): t(c) Follow-</pre>                                    | 1-stage<br>2-stage<br>1-stage<br>2-stage<br>Up Time C            | 0.00                              | 0.00<br>0.00<br>4.1<br>4.1                             | 0.00<br>1.00<br>6.8                                              |                        | 0.00<br>0.00<br>6.2                                       | 0.00                    |                       |                               |
| <pre>t(c,g) Percent t(3,lt) t(c,T): t(c) Follow- Movemen t(f,bas t(f,HV)</pre>            | 1-stage<br>2-stage<br>1-stage<br>2-stage<br>Up Time C.           | 0.00<br>alculat<br>1              | 0.00<br>0.00<br>4.1<br>4.1<br>L<br>2.20                | 0.00<br>1.00<br>6.8<br>5.8<br>7                                  | 1.00                   | 0.00<br>0.00<br>6.2<br>6.2<br>9                           | 0.00<br>1.00<br>10<br>L | 1.00<br>11<br>T       | 0.00                          |
| <pre>t(c,g) Percent t(3,lt) t(c,T): t(c) Follow- Movemen t(f,bas</pre>                    | 1-stage<br>2-stage<br>1-stage<br>2-stage<br>Up Time C.           | 0.00<br>alculat<br>1<br>L         | 0.00<br>0.00<br>4.1<br>4.1<br>L<br>2.20<br>1.00        | 0.00<br>1.00<br>6.8<br>5.8<br>7<br>L<br>3.50<br>1.00             | 1.00<br>8<br>T         | 0.00<br>0.00<br>6.2<br>6.2<br>9<br>R<br>3.30<br>1.00      | 10<br>10<br>L           | 1.00<br>11<br>T       | 0.00<br>12<br>R               |
| <pre>t(c,g) Percent t(3,lt) t(c,T): t(c) Follow- Movemen t(f,bas t(f,HV) P(HV) t(f)</pre> | 1-stage<br>2-stage<br>1-stage<br>2-stage<br>Up Time C.           | 0.00<br>alculat<br>1<br>L<br>1.00 | 0.00<br>0.00<br>4.1<br>4.1<br>2.20<br>1.00<br>2<br>2.2 | 0.00<br>1.00<br>6.8<br>5.8<br>7<br>L<br>3.50<br>1.00<br>2<br>3.5 | 1.00<br>8<br>T<br>1.00 | 0.00<br>0.00<br>6.2<br>6.2<br>9<br>R<br>3.30<br>1.00<br>2 | 10<br>10<br>L           | 1.00<br>11<br>T       | 0.00<br>12<br>R               |

V(t) V(l,prot) V(t) V(l,prot)

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P



g(q1) g(q2) g(q)

| (a) (se<br>or, F<br>conflic<br>flow, V<br>flow, V<br>ocked p<br>e block | ting flo<br>(c,max)<br>(c,min)                  | w, f                                                    | V (                                                                                   |                                                                                                                                                                       | nent 2<br>7(1,prot                                                                                                                                          |                                                                                                                                                                                                                  | Movement<br>) V(l,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| or, F<br>conflic<br>flow, V<br>flow, V<br>ocked p                       | ting flo<br>(c,max)<br>(c,min)                  | w, f                                                    |                                                                                       |                                                                                                                                                                       | -                                                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| or, F<br>conflic<br>flow, V<br>flow, V<br>ocked p                       | ting flo<br>(c,max)<br>(c,min)                  | w, f                                                    |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| or, F<br>conflic<br>flow, V<br>flow, V<br>ocked p                       | ting flo<br>(c,max)<br>(c,min)                  | w, f                                                    |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| or, F<br>conflic<br>flow, V<br>flow, V<br>ocked p                       | ting flo<br>(c,max)<br>(c,min)                  | w, f                                                    |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| conflic<br>flow, V<br>flow, V<br>ocked.p                                | (c,max)<br>(c,min)                              | w, f                                                    |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| flow, V<br>flow, V<br>ocked.p                                           | (c,max)<br>(c,min)                              | w, ±                                                    |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| flow, V<br>ocked.p                                                      | (c,min)                                         |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| ocked.p                                                                 |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 | ( )                                                     |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| e prock                                                                 |                                                 | (p)                                                     |                                                                                       | ~ ~ ~                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                  | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                      |
|                                                                         | ea, p                                           |                                                         |                                                                                       | 0.0                                                                                                                                                                   | 100                                                                                                                                                         |                                                                                                                                                                                                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                      |
| Platoon                                                                 | Event P                                         | eriods                                                  | Res                                                                                   | ult                                                                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         | 0.0                                                                                   | 00                                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| uncons                                                                  | trained?                                        |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       | •                                                                                                                                                                     |                                                                                                                                                             | <u>.</u>                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         | (1                                              | )                                                       |                                                                                       | (2)                                                                                                                                                                   |                                                                                                                                                             | (3)                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         | Single                                          | -stage                                                  |                                                                                       | Two-S                                                                                                                                                                 | Stage Pr                                                                                                                                                    | ocess                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| )                                                                       | Proc                                            | ess                                                     | Sta                                                                                   | ge I                                                                                                                                                                  |                                                                                                                                                             | Stage                                                                                                                                                                                                            | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -;                                                                                                                                                                                                                                                   |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 | •                                                       |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 | •                                                       |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| and 5                                                                   |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         | 1                                               | 4                                                       | 7                                                                                     | 8                                                                                                                                                                     | 9                                                                                                                                                           | . 10                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                   |
|                                                                         | L                                               | $\mathbf{L}$                                            | L                                                                                     | т                                                                                                                                                                     | R                                                                                                                                                           | $\mathbf{L}$                                                                                                                                                                                                     | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R                                                                                                                                                                                                                                                    |
|                                                                         |                                                 |                                                         | •                                                                                     | -                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 | 421                                                     | 1066                                                                                  |                                                                                                                                                                       | 206                                                                                                                                                         |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         | 7                                               |                                                         | 8                                                                                     |                                                                                                                                                                       |                                                                                                                                                             | _                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
| Stagel                                                                  | Stage2                                          | Stage1                                                  | Stage                                                                                 | 2 Sta                                                                                                                                                                 | agel St                                                                                                                                                     | tage2                                                                                                                                                                                                            | Stage1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stage2                                                                                                                                                                                                                                               |
| 412                                                                     | 654                                             |                                                         |                                                                                       | · · · · · ·                                                                                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |
|                                                                         | 3000                                            |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       | ·····                                                                                                                                                       |                                                                                                                                                                                                                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                      |
|                                                                         |                                                 |                                                         |                                                                                       |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|                                                                         | uncons<br>)<br>and 5<br>rocess<br>Stagel<br>412 | (1<br>Single<br>Proc<br>and 5<br>Process<br>1<br>L<br>L | and 5<br>Process<br>1 4<br>L L<br>421<br>*ess<br>7<br>Stage1 Stage2 Stage1<br>412 654 | 0.0<br>unconstrained?<br>(1)<br>Single-stage<br>Process Sta<br>and 5<br>Process<br>1 4 7<br>L L L<br>421 1066<br>ress<br>7 8<br>Stagel Stage2 Stagel Stage<br>412 654 | (1) (2)<br>Single-stage Two-S<br>Process Stage I<br>and 5<br>Process<br>1 4 7 8<br>L L L T<br>421 1066<br>ress<br>7 8<br>Stagel Stage2 Stage1 Stage2 Stage1 | 0.000<br>unconstrained?<br>(1) (2)<br>Single-stage Two-Stage Pr<br>Process Stage I<br>and 5<br>Process 1 4 7 8 9<br>L L L T R<br>421 1066 206<br>ress 7 8 10<br>Stagel Stage2 Stagel Stage2 Stage1 St<br>412 654 | 0.000<br>unconstrained?<br>(1) (2) (3)<br>Single-stage Two-Stage Process<br>) Process Stage I Stage<br>(1) (2) (3)<br>Two-Stage Process<br>Stage I Stage I Stage<br>(1) (2) (3)<br>Two-Stage Process<br>(1) (2) (3)<br>Stage I Stage Process<br>(1) (2) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3)<br>(3) (3) | 0.000<br>unconstrained?<br>(1) (2) (3)<br>Single-stage Two-Stage Process<br>Process Stage I Stage II<br>and 5<br>rocess<br>1 4 7 8 9 10 11<br>L L L T R L T<br>421 1066 206<br>ress<br>7 8 10 11<br>Stagel Stage2 Stagel Stage2 Stage1 Stage2 Stage1 |

C(plat, x)

Step 1: RT from Minor St. 9 12 Conflicting Flows 206 Potential Capacity 833 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 833 Probability of Queue free St. 0.96 1.00 Step 2: LT from Major St. 4 1 Conflicting Flows 421 Potential Capacity 1135 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 1135 Probability of Queue free St. 1.00 1.00 Maj L-Shared Prob Q free St. Step 3: TH from Minor St. 8 11 Conflicting Flows Potential Capacity Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mymnt 1.00 1.00 Movement Capacity Probability of Queue free St. 1.00 1.00 Step 4: LT from Minor St. 7 10 Conflicting Flows 1066 Potential Capacity 217 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 1.00 Maj. L, Min T Adj. Imp Factor. 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.95 Movement Capacity 216

Worksheet 6-Impedance and Capacity Equations

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8    | 11   |
|----------------------------------------|------|------|
| Part 1 - First Stage                   |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 598  | 233  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 1.00 |
| Movement Capacity                      | 598  | 232  |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Part 2 - Second Stage                  |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 233  | 592  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 1.00 |
| Movement Capacity                      | 232  | 592  |

Part 3 - Single Stage Conflicting Flows

| Volume (vph)<br>Movement Capacity (vph)<br>Shared Lane Capacity (vph) | 84<br>405 |          | 36<br>833    |     |              |    |
|-----------------------------------------------------------------------|-----------|----------|--------------|-----|--------------|----|
|                                                                       | Ĺ         | Т        | R            | L · | T            | R  |
| Movement                                                              | 7         | 8        | 9            | 10  | 11           | 12 |
| Worksheet 8-Shared Lane Calculati                                     | 015       |          |              |     |              |    |
| Ct                                                                    |           |          | 405          |     |              |    |
| У                                                                     |           |          | 1.61         |     |              |    |
| a                                                                     |           |          | 0.95         | •   | 0.95         |    |
| Results for Two-stage process:                                        |           | <u> </u> |              |     |              |    |
| Movement Capacity                                                     |           | :        | 216          |     |              |    |
| Cap. Adj. factor due to Impeding m                                    | mvmnt     |          | 1.00         |     | 0.95         |    |
| Maj. L, Min T Adj. Imp Factor.                                        |           |          |              |     | 1.00         |    |
| Maj. L, Min T Impedance factor                                        |           |          |              |     | 1.00         |    |
| Pedestrian Impedance Factor                                           |           |          | 1.00         |     | 1.00         |    |
| Potential Capacity                                                    |           | -        | 217          |     |              |    |
| Conflicting Flows                                                     |           |          | 1066         |     |              |    |
| Part 3 - Single Stage                                                 |           |          |              |     |              |    |
| Movement Capacity                                                     |           | 4        | 477          |     | 779          |    |
| Cap. Adj. factor due to Impeding m                                    | mvmnt     |          | 1.00         |     | 0.96         |    |
| Pedestrian Impedance Factor                                           |           |          | 1.00         |     | 1.00         |    |
| Potential Capacity                                                    |           |          | 179          |     | 814          |    |
| Conflicting Flows                                                     |           |          | 554          |     |              |    |
| Part 2 - Second Stage                                                 |           |          |              |     |              |    |
|                                                                       |           | ·        |              |     |              |    |
| Movement Capacity                                                     |           |          | 537          |     | 222          |    |
| Cap. Adj. factor due to Impeding r                                    | mvmnt     |          | 1.00         |     | 1.00         |    |
| Pedestrian Impedance Factor                                           |           |          | L.00         |     | 1.00         |    |
| Potential Capacity                                                    |           |          | 537          |     | 223          |    |
| Part 1 - First Stage<br>Conflicting Flows                             |           | 2        | 112          |     |              |    |
|                                                                       |           |          |              |     |              |    |
| Step 4: LT from Minor St.                                             |           |          | 7            |     | 10           |    |
| Probability of Queue free St.                                         | ·         | 1        | L.00         |     | 1.00         |    |
| Y<br>C t                                                              |           |          |              |     |              |    |
| a                                                                     |           | l        | 1.95         |     | 0.95         |    |
| Result for 2 stage process:                                           |           | ,        | ).95         |     | 0.95         |    |
|                                                                       |           |          |              |     |              |    |
| Movement Capacity                                                     |           | _        |              |     | 1.00         |    |
| Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding m     | m mn t    |          | L.00<br>L.00 |     | 1.00<br>1.00 |    |
|                                                                       |           |          |              |     |              |    |

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

Movement Capacity (vph) Shared Lane Capacity (vph)

| Movement        | 7   | 8 | 9   | 10           | 11 | 12 |
|-----------------|-----|---|-----|--------------|----|----|
|                 | L   | Т | R   | $\mathbf{L}$ | т  | R  |
| Csep            | 405 |   | 833 |              |    |    |
| Volume          | 84  |   | 36  |              |    |    |
| Delay           |     |   |     |              |    |    |
| Q sep           |     |   |     |              |    |    |
| Q sep +1        |     |   |     |              |    |    |
| round (Qsep +1) |     | • |     |              |    |    |

n max C sh SUM C sep n C act

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10      | 11 | 12 |
|------------------|---|------|------|------|------|---------|----|----|
| Lane Config      |   | L    | L    |      | R    |         |    |    |
| v (vph)          |   | 4    | 84   |      | 36   | · · · · |    |    |
| C(m) (vph)       |   | 1135 | 405  |      | 833  |         |    |    |
| v/c              |   | 0.00 | 0.21 |      | 0.04 |         |    |    |
| 95% queue length |   | 0.01 | 0.77 |      | 0.14 |         |    |    |
| Control Delay    |   | 8.2  | 16.2 |      | 9.5  |         |    |    |
| LOS              |   | A    | C,   |      | А    |         |    |    |
| Approach Delay   |   |      |      | 14.2 |      |         |    |    |
| Approach LOS     |   |      |      | B    |      |         |    |    |

Worksheet 11-Shared Major LT Impedance and Delay

Movement 2Movement 5p(oj)1.00v(il), Volume for stream 2 or 5v(i2), Volume for stream 3 or 6s(il), Saturation flow rate for stream 2 or 5s(i2), Saturation flow rate for stream 3 or 6P\*(oj)d(M,LT), Delay for stream 1 or 4N, Number of major street through lanesd(rank,1) Delay for stream 2 or 5

\_\_\_\_TWO-WAY STOP CONTROL SUMMARY\_\_\_\_

| _                                                       |                                                   |                                                  |             |                                         |           |       |            |                                               |    |
|---------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-------------|-----------------------------------------|-----------|-------|------------|-----------------------------------------------|----|
| Analyst:                                                | КНА<br>КНА                                        |                                                  |             |                                         |           |       |            |                                               |    |
| Agency/Co.:<br>Date Performed:                          |                                                   | 5/2008                                           |             |                                         |           |       |            |                                               |    |
| Analysis Time Per:                                      |                                                   | -                                                | NU 75       |                                         |           |       |            |                                               |    |
| Intersection:                                           |                                                   |                                                  | ry Haul     | Drivou                                  | ~~~       |       |            |                                               |    |
| Jurisdiction:                                           |                                                   | County                                           | /y naui     | DTTVEW                                  | dy        |       |            |                                               |    |
| Units: U. S. Custo                                      |                                                   | county                                           |             |                                         |           |       |            |                                               |    |
| Analysis Year:                                          |                                                   | Deals Co                                         | onstruct    | ion ma                                  | ~ ~ ~ ~ : | ~     |            |                                               |    |
| Project ID: Levy                                        |                                                   |                                                  |             |                                         |           |       | outo 1     |                                               |    |
| East/West Street:                                       | COUNCY AC                                         |                                                  | Reactor     | - nea                                   | vуn       | aui K | Juce I     |                                               |    |
| North/South Street                                      |                                                   |                                                  | Driveway    | 7                                       |           |       |            |                                               |    |
| Intersection Orien                                      | -                                                 |                                                  | JT T V CWOJ |                                         | udv ·     | nerio | d (hrs)    | : 0.25                                        |    |
| incerbección orien                                      |                                                   |                                                  |             | DE                                      | uuy .     | perro | . (111.5)  | . 0.2.                                        | ,  |
|                                                         |                                                   |                                                  | umes and    | l Adjus                                 | tmen      |       |            |                                               |    |
| • •                                                     | proach                                            |                                                  | stbound     | 2                                       | 1         |       | stbound    |                                               |    |
| MO                                                      | vement                                            | 1                                                | 2           | 3                                       | 1         | 4     | 5          | 6                                             |    |
|                                                         |                                                   | L                                                | т           | R                                       | Į -       | L     | т          | R                                             |    |
| Volume                                                  | <u></u>                                           | 0                                                | 147         | 15                                      |           | 0     | 106        | 0                                             |    |
| Peak-Hour Factor,                                       | PHF                                               | 0.95                                             | 0.95        | 0.95                                    |           | 0.95  | 0.95       | 0.95                                          |    |
| Hourly Flow Rate,                                       | HFR                                               | 0                                                | 154         | 15                                      |           | 0     | 111        | 0                                             |    |
| Percent Heavy Veh                                       |                                                   | 100                                              |             |                                         |           | 100   |            |                                               |    |
| Median Type/Storag                                      | ge                                                | Undivi                                           | lded        |                                         | /         |       |            |                                               |    |
| RT Channelized?                                         |                                                   | 0                                                | 1 1         | No                                      |           | 0     | 1          | 0                                             |    |
| Lanes                                                   |                                                   | 0                                                |             | _                                       |           | 0     | 1          | 0                                             |    |
| Configuration                                           |                                                   | $\Gamma_{1}$                                     |             |                                         |           | Ъ     | TR         |                                               |    |
| Upstream Signal?                                        |                                                   |                                                  | No          |                                         |           |       | No         |                                               |    |
| Minor Street: App                                       | proach                                            |                                                  | thbound     |                                         |           |       | uthbour    |                                               |    |
| Mo                                                      | vement                                            | 7                                                | 8           | 9                                       |           | 10    | 11         | 12                                            |    |
|                                                         |                                                   | L                                                | т           | R                                       | Ι         | L     | т          | R                                             |    |
| Volume                                                  |                                                   | 0                                                | 1           | 0                                       |           | 0     | 1          | 0                                             |    |
| Peak Hour Factor,                                       | PHF                                               | 0.95                                             | 0.95        | 0.95                                    |           | 0.95  | 0.95       | 0.95                                          |    |
| Hourly Flow Rate,                                       | HFR                                               | 0                                                | 1           | 0                                       |           | 0     | 1          | 0                                             |    |
| Percent Heavy Veh                                       | icles                                             | 100                                              | 100         | 100                                     |           | 100   | 100        | 100                                           |    |
| Percent Grade (%)                                       |                                                   |                                                  | 0           |                                         |           |       | 0          |                                               |    |
| Flared Approach:                                        | Exists?/S                                         | Storage                                          |             | No                                      | /         |       |            | No                                            | 1  |
| Lanes                                                   |                                                   | 0                                                | 1 (         | )                                       |           | 0     | 1          | 0                                             |    |
| Configuration                                           |                                                   |                                                  | LTR         |                                         |           |       | LTR        |                                               |    |
|                                                         | ·····                                             |                                                  |             |                                         |           |       |            |                                               |    |
|                                                         |                                                   | -                                                | ngth, an    | nd Leve                                 | l of      | Serv  |            |                                               |    |
|                                                         | _Delay, Qu                                        |                                                  |             |                                         |           |       |            | - h h a a d                                   |    |
| Approach                                                | EB                                                | WB                                               | Nort        | hbound                                  |           |       |            | thbound                                       |    |
| Movement                                                | EB<br>1                                           |                                                  |             |                                         |           | ]     | Sout<br>10 | 11                                            | 12 |
|                                                         | EB                                                | WB                                               | Nort        | hbound                                  |           |       |            |                                               | 12 |
| Movement                                                | EB<br>1                                           | WB<br>4                                          | Nort        | hbound<br>8                             |           |       |            | 11                                            | 12 |
| Movement<br>Lane Config                                 | EB<br>1<br>LT                                     | WB<br>4  <br>LTR                                 | Nort        | thbound<br>8<br>LTR                     |           |       |            | 11<br>LTR                                     | 12 |
| Movement<br>Lane Config<br>v (vph)                      | EB<br>1<br>LT<br>0                                | WB<br>4  <br>LTR  <br>0                          | Nort        | thbound<br>8<br>LTR<br>1                |           |       |            | 11<br>LTR<br>1                                | 12 |
| Movement<br>Lane Config<br>v (vph)<br>C(m) (vph)        | EB<br>1<br>LT<br>0<br>1040                        | WB<br>4  <br>LTR  <br>0<br>982                   | Nort        | thbound<br>8<br>LTR<br>1<br>504         |           |       |            | 11<br>LTR<br>1<br>493                         | 12 |
| Movement<br>Lane Config<br>v (vph)<br>C(m) (vph)<br>v/c | EB<br>1<br>LT<br>0<br>1040<br>0.00                | WB<br>4<br>LTR<br>0<br>982<br>0.00               | Nort        | 2hbound<br>8<br>LTR<br>1<br>504<br>0.00 |           |       |            | 11<br>LTR<br>1<br>493<br>0.00                 | 12 |
| Movement<br>Lane Config<br>                             | EB<br>1<br>LT<br>0<br>1040<br>0.00<br>0.00        | WB<br>4  <br>LTR  <br>982<br>0.00<br>0.00        | Nort        | 1<br>504<br>0.00<br>12.2<br>B           |           |       |            | 11<br>LTR<br>1<br>493<br>0.00<br>0.01         | 12 |
| Movement<br>Lane Config<br>                             | EB<br>1<br>LT<br>0<br>1040<br>0.00<br>0.00<br>8.5 | WB<br>4  <br>LTR  <br>982<br>0.00<br>0.00<br>8.7 | Nort        | 1<br>504<br>0.00<br>12.2                |           |       |            | 11<br>LTR<br>1<br>493<br>0.00<br>0.01<br>12.3 | 12 |

Phone: E-Mail: Fax:

\_TWO-WAY STOP CONTROL(TWSC) ANALYSIS\_ Analyst: KHA Agency/Co.: KHA Date Performed: 12/15/2008 Analysis Time Period: P.M. Peak Hour Intersection: CR 40 & Heavy Haul Driveway Jurisdiction: Levy County Units: U. S. Customary 2015 Peak Construction Traffic Analysis Year: Project ID: Levy County Advanced Reactor - Heavy Haul Route 1 East/West Street: CR 40 Heavy Haul Driveway North/South Street: Intersection Orientation: EW Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ 5 6 Major Street Movements 1 2 3 4  $\mathbf{L}$ т R L  $\mathbf{T}$ R Volûme 0 147 0 106 0 15 Peak-Hour Factor, PHF 0.95 0.95 0.95 0.95 0.95 0.95 Peak-15 Minute Volume 39 0 4 0 28 0 Hourly Flow Rate, HFR 0 154 15 0 111 0 Percent Heavy Vehicles 100 - -100 ----------\_ \_ Median Type/Storage Undivided RT Channelized? No Lanes 0 1 1 0 1 0 Configuration LTŔ LTR Upstream Signal? No No 7 8 9 Minor Street Movements 10 11 12 L т R L Т R Volume 0 0 1 0 1 0 Peak Hour Factor, PHF 0.95 0.95 0.95 0.95 0.95 0.95 Peak-15 Minute Volume 0 0 0 0 0 0 Hourly Flow Rate, HFR 0 1 0 0 1 0 Percent Heavy Vehicles 100 100 100 100 100 100 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage No 1 No 1 RT Channelized? Lanes 0 1 0 0 0 1 Configuration LTR LTR \_Pedestrian Volumes and Adjustments\_\_\_ Movements 13 14 15 16 Flow (ped/hr) 0 0 0 0 Lane Width (ft) 12.0 12.0 12.0 12.0 Walking Speed (ft/sec) 4.0 4.0 4.0 4.0 Percent Blockage 0 0 0 0

| Prog.       | Sat         | Arrival | Green       | Cycle         | Prog.        | Distance          |
|-------------|-------------|---------|-------------|---------------|--------------|-------------------|
| Flow<br>Vph | Flow<br>vph | Туре    | Time<br>sec | Length<br>sec | Speed<br>mph | to Signal<br>feet |

Through

S5 Left-Turn

Through

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

|                                       | Movement 2 | Movement 5 |
|---------------------------------------|------------|------------|
| Shared ln volume, major th vehicles:  | 154        | 111        |
| Shared ln volume, major rt vehicles:  | 0          | 0          |
| Sat flow rate, major th vehicles:     | 1700       | 1700       |
| Sat flow rate, major rt vehicles:     | 1700       | 1700       |
| Number of major street through lanes: | 1          | 1          |

Worksheet 4-Critical Gap and Follow-up Time Calculation

| Critical | Gap Calo   | culatio | on    |      |      |                |      |      |      |
|----------|------------|---------|-------|------|------|----------------|------|------|------|
| Movement | -          | 1       | 4     | 7    | 8    | 9 <sup>`</sup> | 10   | 11   | 12   |
|          |            | L       | L     | L    | т    | R              | L    | т    | R    |
| t(c,base | e )        | 4.1     | 4.1   | 7.1  | 6.5  | 6.2            | 7.1  | 6.5  | 6.2  |
| t(c,hv)  |            | 1.00    | 1.00  | 1.00 | 1.00 | 1.00           | 1.00 | 1.00 | 1.00 |
| P(hv)    |            | 100     | 100   | 100  | 100  | 100            | 100  | 100  | 100  |
| t(c,g)   |            |         |       | 0.20 | 0.20 | 0.10           | 0.20 | 0.20 | 0.10 |
| Percent  | Grade      |         |       | 0.00 | 0.00 | 0.00           | 0.00 | 0.00 | 0.00 |
| t(3,lt)  |            | 0.00    | 0.00  | 0.00 | 0.00 | 0.00           | 0.00 | 0.00 | 0.00 |
| t(c,T):  | 1-stage    | 0.00    | 0.00  | 0.00 | 0.00 | 0.00           | 0.00 | 0.00 | 0.00 |
|          | 2-stage    | 0.00    | 0.00  | 1.00 | 1.00 | 0.00           | 1.00 | 1.00 | 0.00 |
| t(c)     | 1-stage    | 5.1     | 5.1   | 8.1  | 7.5  | 7.2            | 8.1  | 7.5  | 7.2  |
|          | 2-stage    |         |       |      |      |                |      |      |      |
| Follow-U | Jp Time Ca | alcula  | tions |      |      |                |      |      |      |
| Movement |            | 1       | 4     | 7    | 8    | 9              | 10   | 11   | 12   |
|          |            | L       | L     | L    | т    | R              | L    | т    | R    |
| t(f,base | 2)         | 2.20    | 2.20  | 3.50 | 4.00 | 3.30           | 3.50 | 4.00 | 3.30 |
| t(f,HV)  |            | 0.90    | 0.90  | 0.90 | 0.90 | 0.90           | 0.90 | 0.90 | 0.90 |
| P(HV)    |            | 100     | 100   | 100  | 100  | 100            | 100  | 100  | 100  |
| t(f)     |            | 3.1     | 3.1   | 4.4  | 4.9  | 4.2            | 4.4  | 4.9  | 4.2  |

Worksheet 5-Effect of Upstream Signals

| Computation  | 1-Queue   | Clearance  | Time | at | -          | 4         | Manager 5  |           |  |
|--------------|-----------|------------|------|----|------------|-----------|------------|-----------|--|
|              |           |            |      |    | Movement 2 |           | Movement 5 |           |  |
|              |           |            |      |    | V(t)       | V(l,prot) | V(t)       | V(l,prot) |  |
|              |           |            |      |    |            |           |            |           |  |
| V prog       |           |            |      |    |            |           |            |           |  |
| Total Satura | ation Flo | ow Rate, s | (vph | )  |            |           |            | ,         |  |

Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P g(q1) g(q2) g(q)

|                                                                | LODOLO  | .1011 01 1 | WSC Int  | CLOCCC | Movem  |         |       | Notionar         | + 5    |
|----------------------------------------------------------------|---------|------------|----------|--------|--------|---------|-------|------------------|--------|
|                                                                |         |            |          | v      |        | (1,prot |       | Movemen<br>) V(1 | ,prot) |
| lpha                                                           |         | · . ·      |          |        |        |         |       |                  |        |
| beta                                                           |         |            |          |        |        |         |       |                  |        |
| Fravel time, t                                                 | (a) (se | ec)        |          |        |        |         |       |                  |        |
| Smoothing Facto                                                |         |            |          |        |        |         |       |                  |        |
| Proportion of a                                                |         | ting flo   | w f      |        |        |         |       |                  |        |
| Max platooned i                                                |         |            | , _      |        |        |         |       |                  |        |
| Min platooned i                                                |         |            |          | •      |        |         |       |                  |        |
|                                                                |         |            | - (~)    |        |        |         | ,     |                  |        |
| Duration of blocked period, t(p)<br>Proportion time blocked, p |         |            |          |        | 0.0    | 0.0     |       | 0 000            |        |
| Proportion time                                                | S DTOCK | tea, p     |          |        | 0.0    | 00      |       | 0.000            |        |
| Computation 3-1                                                | Platoor | n Event H  | Periods  | Re     | sult   |         |       |                  |        |
| p(2)                                                           |         |            |          | 0.     | 000    |         |       |                  |        |
| p(5)                                                           |         |            |          | Ο.     | 000    |         |       |                  |        |
| p(dom)                                                         |         |            |          |        |        |         |       |                  |        |
| p(subo)                                                        |         |            |          |        |        |         |       |                  |        |
| Constrained or                                                 | uncons  | trained    | ?        |        |        |         |       |                  |        |
| Proportion                                                     |         |            |          |        |        |         |       |                  |        |
| unblocked                                                      |         | (1         | L)       |        | (2)    |         | (3)   |                  |        |
| for minor                                                      |         |            | e-stage  |        |        | tage Pr |       |                  |        |
|                                                                | N       | Proc       |          | · st   |        | -       |       | тт               |        |
| movements, p(x)                                                | ,       | PLOC       |          | · 50   | age I  |         | Stage |                  |        |
| p(1)                                                           |         |            |          |        |        |         |       |                  |        |
| p(4)                                                           |         |            |          |        |        |         |       |                  |        |
| p(7)                                                           |         |            |          |        |        |         |       |                  |        |
| p(8)                                                           |         |            |          |        |        |         |       |                  |        |
| p(9)                                                           |         |            |          |        |        |         |       |                  |        |
| p(10)                                                          |         |            |          |        |        |         |       |                  |        |
| p(11)                                                          |         |            |          |        |        |         |       |                  |        |
| p(12)                                                          |         |            |          |        |        |         |       | ,                |        |
| Computation 4 a                                                | and 5   |            | · · · ·  |        |        |         |       |                  |        |
| Single-Stage P:                                                |         |            |          |        |        |         |       |                  |        |
| Movement                                                       | 200000  | 1          | 4        | 7      | 8      | 9       | 10    | 11               | 12     |
| HOV EMBIL                                                      |         | L          | а<br>L   | ,<br>L | T      | R       | L     | T                |        |
|                                                                |         | Ц          | <u>ц</u> | L      | 1      | ĸ       | L     | 1.               | R      |
| Vc,x                                                           |         | 111        | 169      | 266    | 265    | 154     | 273   | 280              | 111    |
| S                                                              |         |            |          |        |        |         |       |                  |        |
| Px                                                             |         |            |          |        |        |         |       |                  |        |
| V c,u,x                                                        |         |            |          |        |        |         |       |                  |        |
| C r,x                                                          |         |            |          |        |        |         |       |                  |        |
| C plat,x                                                       |         |            |          |        |        |         |       |                  |        |
| Two-Stage Proc                                                 | ess     |            |          |        |        |         |       |                  |        |
|                                                                |         | 7          |          | 8      |        | 10      |       | 1                | 1      |
| :                                                              | Stage1  | Stage2     | Stage1   | . Stag | e2 Sta | gel St  | age2  | Stage1           | Stage2 |
| V(c,x)                                                         |         |            |          |        |        |         |       |                  |        |
|                                                                |         | 1500       |          | 1500   |        | 15      | 00    |                  | 1500   |
| S                                                              |         |            |          |        |        |         |       |                  |        |
|                                                                |         |            |          |        |        |         |       |                  |        |
| S<br>P(x)<br>V(cux)                                            |         |            |          |        |        |         |       |                  |        |
|                                                                |         |            |          |        | · -    |         |       |                  |        |

### C(plat,x)

Worksheet 6-Impedance and Capacity Equations

| Step 1: RT from Minor St.              | 9    | 12   |
|----------------------------------------|------|------|
| Conflicting Flows                      | 154  | 111  |
| Potential Capacity                     | 688  | 732  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Movement Capacity                      | 688  | 732  |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Step 2: LT from Major St.              | 4    | 1    |
| Conflicting Flows                      | 169  | 111  |
| Potential Capacity                     | 982  | 1040 |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Movement Capacity                      | 982  | 1040 |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Maj L-Shared Prob Q free St.           | 1.00 | 1.00 |
| Step 3: TH from Minor St.              | . 8  | 11   |
| Conflicting Flows                      | 265  | 280  |
| Potential Capacity                     | 504  | 493  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 1.00 |
| Movement Capacity                      | 504  | 493  |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Step 4: LT from Minor St.              | 7    | 10   |
| Conflicting Flows                      | 266  | 273  |
| Potential Capacity                     | 527  | 521  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Maj. L, Min T Impedance factor         | 1.00 | 1.00 |
| Maj. L, Mín T Adj. Imp Factor.         | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 1.00 |
| Movement Capacity                      | 526  | 520  |
|                                        |      |      |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

Step 3: TH from Minor St.

Conflicting Flows

8

280

11

| Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding mv<br>Movement Capacity                                                                                                                   | mnt      | 1<br>1                                  | 04<br>.00<br>.00<br>04                              |          | 493<br>1.00<br>1.00<br>493                        |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------------------------------------|----------|---------------------------------------------------|----------|
| Result for 2 stage process:<br>a                                                                                                                                                                                                |          |                                         |                                                     |          |                                                   |          |
| y<br>C t<br>Probability of Queue free St.                                                                                                                                                                                       |          |                                         | 04                                                  |          | 493<br>1.00                                       |          |
| Step 4: LT from Minor St.                                                                                                                                                                                                       |          | ••••••••••••••••••••••••••••••••••••••• | 7                                                   |          | 10                                                |          |
| Part 1 - First Stage<br>Conflicting Flows<br>Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding mv<br>Movement Capacity                                                                      | mnt      |                                         |                                                     |          |                                                   |          |
| Part 2 - Second Stage<br>Conflicting Flows<br>Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding mv<br>Movement Capacity                                                                     | mnt      |                                         |                                                     |          |                                                   |          |
| Part 3 - Single Stage<br>Conflicting Flows<br>Potential Capacity<br>Pedestrian Impedance Factor<br>Maj. L, Min T Impedance factor<br>Maj. L, Min T Adj. Imp Factor.<br>Cap. Adj. factor due to Impeding mv<br>Movement Capacity | mnt      | 5<br>1<br>1<br>1<br>1                   | 266<br>27<br>.00<br>.00<br>.00<br>.00<br>.00<br>526 |          | 273<br>521<br>1.00<br>1.00<br>1.00<br>1.00<br>520 |          |
| Results for Two-stage process:<br>a<br>Y<br>C t                                                                                                                                                                                 |          | ,<br>2                                  | 526                                                 |          | 520                                               |          |
| Worksheet 8-Shared Lane Calculation                                                                                                                                                                                             | s        |                                         |                                                     |          |                                                   | ×        |
| Movement                                                                                                                                                                                                                        | 7<br>L   | 8<br>T                                  | 9<br>R                                              | 10<br>L  | 11<br>T                                           | 12<br>R  |
| Volume (vph)<br>Movement Capacity (vph)<br>Shared Lane Capacity (vph)                                                                                                                                                           | 0<br>526 | 1<br>504<br>504                         | 0<br>688                                            | 0<br>520 | 1<br>493<br>493                                   | 0<br>732 |
| Worksheet 9-Computation of Effect c                                                                                                                                                                                             | of Flare | d Minor                                 | Street                                              | Approa   | ches                                              |          |
| Movement                                                                                                                                                                                                                        | 7<br>L   | 8<br>T                                  | 9<br>R                                              | 10<br>L  | 11<br>T                                           | 12<br>R  |
| C sep<br>Volume<br>Delay                                                                                                                                                                                                        | 526<br>0 | 504<br>1                                | 688<br>0                                            | 520<br>0 | 493<br>1                                          | 732<br>0 |

- Delay Q sep

Q sep +1 round (Qsep +1)

n max C sh SUM C sep n C act

493

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1    | 4    | 7 | 8    | 9 | 10 | 11   | 12 |
|------------------|------|------|---|------|---|----|------|----|
| Lane Config      | LT   | LTR  |   | LTR  |   |    | LTR  |    |
| v (vph)          | 0    | 0    |   | 1    |   |    | 1    |    |
| C(m) (vph)       | 1040 | 982  |   | 504  |   |    | 493  |    |
| v/c              | 0.00 | 0.00 |   | 0.00 |   |    | 0.00 |    |
| 95% queue length | 0.00 | 0.00 |   | 0.01 |   |    | 0.01 |    |
| Control Delay    | 8.5  | 8.7  |   | 12.2 |   |    | 12.3 |    |
| LOS              | A    | А    |   | в    |   |    | В    |    |
| Approach Delay   |      |      |   | 12.2 |   |    | 12.3 |    |
| Approach LOS     |      |      |   | В    |   |    | в    |    |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
| p(oj)                                         | 1.00       | 1.00       |
| v(il), Volume for stream 2 or 5               | 154        | 111        |
| v(i2), Volume for stream 3 or 6               | 0          | 0          |
| s(il), Saturation flow rate for stream 2 or 5 | 1700       | 1700       |
| s(i2), Saturation flow rate for stream 3 or 6 | 1700       | 1700       |
| P*(oj)                                        | 1.00       | 1.00       |
| d(M,LT), Delay for stream 1 or 4              | 8.5        | 8.7        |
| N, Number of major street through lanes       | 1          | 1          |
| d(rank,1) Delay for stream 2 or 5             | 0.0        | 0.0        |

Analyst: KHAInter.: U.S. 19 & Construction AccessAgency: KHAArea Type: All other areasDate: 12/11/2008Jurisd: FDOTPeriod: A.M. Peak HourYear : 2015 Peak Construction TrafficProject ID: Levy County Advanced Reactor - Heavy Haul Route 2E/W St: Construction AccessN/S St: U.S. 19

|                                                                                                                         | Eas                                                                             | stbound                                                                                                    | Westh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ound                                         | CTION<br>Nor                                                | thbou                                                                       | nd l                                                               | Soi                                          | uthbou        | ınd        |           |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|---------------|------------|-----------|
|                                                                                                                         | L                                                                               | T R                                                                                                        | L I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | L                                                           | Т                                                                           | R                                                                  | L                                            | т             | R          |           |
| No. Lanes<br>LGConfig<br>Volume                                                                                         |                                                                                 | 0 0                                                                                                        | 2<br>L<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1<br>R<br>45                               | 1                                                           |                                                                             | 1<br>R<br>900                                                      | 2<br>L<br>385                                | 2<br>T<br>286 | 0          | <br> <br> |
| Lane Widt<br>RTOR Vol                                                                                                   | 1                                                                               |                                                                                                            | 12.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.0<br>0                                    | Y                                                           | 12.0                                                                        | 12.0<br>0                                                          | 12.0                                         | 12.0          |            |           |
| Duration                                                                                                                | 0.25                                                                            | Area                                                                                                       | Type: Al<br>Signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1 other<br>1 Operat                         |                                                             |                                                                             |                                                                    |                                              |               |            |           |
|                                                                                                                         | mbination                                                                       | 1 1 2                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                            |                                                             | 5                                                                           | 6                                                                  | 7                                            | 1             | 8          |           |
| EB Left                                                                                                                 |                                                                                 |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NB                                           | Left                                                        |                                                                             | _                                                                  |                                              |               |            |           |
| Thru                                                                                                                    |                                                                                 |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Thru                                                        |                                                                             | A                                                                  |                                              |               |            |           |
| Right                                                                                                                   | t                                                                               |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Right                                                       |                                                                             | A                                                                  |                                              |               |            |           |
| Peds                                                                                                                    |                                                                                 | 7                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Peds                                                        | 7                                                                           |                                                                    |                                              |               |            |           |
| WB Left<br>Thru                                                                                                         |                                                                                 | А                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB                                           | Left<br>Thru                                                | A<br>A                                                                      | A                                                                  |                                              |               |            |           |
| Right                                                                                                                   |                                                                                 | А                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            | Right                                                       |                                                                             | A                                                                  |                                              |               |            |           |
| Peds                                                                                                                    |                                                                                 | A                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Peds                                                        |                                                                             |                                                                    |                                              |               |            |           |
| NB Right                                                                                                                |                                                                                 | А                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EB                                           | Right                                                       |                                                                             |                                                                    |                                              |               |            |           |
| SB Right                                                                                                                |                                                                                 | 24                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WB                                           | Right                                                       |                                                                             |                                                                    |                                              |               |            |           |
|                                                                                                                         | 6                                                                               | 10.0                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 110                                        | 1129110                                                     |                                                                             |                                                                    | <b>`</b>                                     |               |            |           |
| Green                                                                                                                   |                                                                                 | 10.0                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                             | 20.0                                                                        | 75.0                                                               | )                                            |               |            |           |
|                                                                                                                         |                                                                                 |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                             | 20.0                                                                        |                                                                    | J                                            |               |            |           |
| Yellow                                                                                                                  |                                                                                 | 4.0<br>1.0                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                             | 20.0<br>4.0<br>1.0                                                          | 4.0<br>1.0                                                         | J                                            |               |            |           |
| Yellow                                                                                                                  |                                                                                 | 4.0<br>1.0                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                             | 4.0<br>1.0<br>Cyc                                                           | 4.0                                                                |                                              | 120.          | 0 s        | secs      |
| Yellow<br>All Red                                                                                                       |                                                                                 | 4.0<br>1.0<br>Inters                                                                                       | ection Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                                             | 4.0<br>1.0<br>Cyc<br>ary                                                    | 4.0<br>1.0<br>:le Ler                                              | ngth:                                        |               | 0 5        | secs      |
| Yellow<br>All Red<br>Appr/ 1                                                                                            | Lane                                                                            | 4.0<br>1.0<br>Inters<br>Adj Sat                                                                            | Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | ce Summ<br>Lane                                             | 4.0<br>1.0<br>Cyc<br>ary                                                    | 4.0<br>1.0<br>:le Ler                                              |                                              |               | 0 ន        | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane (                                                                                  | Group                                                                           | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat                                                                | Rati<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Los                                          | Lane                                                        | 4.0<br>1.0<br>Cyc<br>ary<br>Group                                           | 4.0<br>1.0<br>ele Ler                                              | ngth:<br>proac                               | h             | 0 s        | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane 0                                                                                  |                                                                                 | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat                                                                | Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                                             | 4.0<br>1.0<br>Cyc<br>ary<br>Group                                           | 4.0<br>1.0<br>ele Ler                                              | ngth:                                        | h             | 0 ≲<br>    | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane (<br>Grp (                                                                         | Group<br>Capacity                                                               | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat                                                                | Rati<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Los                                          | Lane                                                        | 4.0<br>1.0<br>Cyc<br>ary<br>Group                                           | 4.0<br>1.0<br>ele Ler                                              | ngth:<br>proac                               | h             | <u>ء</u> 0 | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane (<br>Grp (<br>Eastbound                                                            | Group<br>Capacity<br>d                                                          | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat                                                                | Rati<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Los                                          | Lane                                                        | 4.0<br>1.0<br>Cyc<br>ary<br>Group                                           | 4.0<br>1.0<br>ele Ler                                              | ngth:<br>proac                               | h             | 0 s        | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane (<br>Grp (<br>Eastbound<br>Westbound                                               | Group<br>Capacity<br>d<br>d                                                     | 4.0<br>1.0<br>Adj Sat<br>Flow Rat<br>(s)                                                                   | Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/C                                          | Lane<br><br>Delay                                           | 4.0<br>1.0<br>Cyc<br>ary<br>Group<br>LOS                                    | 4.0<br>1.0<br>ele Ler                                              | ngth:<br>proac                               | h             | ء 0<br>    | secs      |
| Lane (                                                                                                                  | Group<br>Capacity<br>d                                                          | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat                                                                | Rati<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Los                                          | Lane                                                        | 4.0<br>1.0<br>Cyc<br>ary<br>Group                                           | 4.0<br>1.0<br>the Ler<br>Dela                                      | oroac                                        | h<br>S        | <u>ء</u> 0 | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane (<br>Grp (<br>Eastbound<br>Westbound<br>L                                          | Group<br>Capacity<br>d<br>d<br>315                                              | 4.0<br>1.0<br>Adj Sat<br>Flow Rat<br>(s)<br>3437                                                           | Rati<br>v/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/C<br>0.09                                  | Lane<br><br>Delay<br>51.8                                   | 4.0<br>1.0<br>Cyc<br>Group<br>LOS                                           | 4.0<br>1.0<br>ele Ler                                              | oroac                                        | h<br>S        | 0 s        | Secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane (<br>Grp (<br>Eastbound<br>Westbound<br>L<br>R                                     | Group<br>Capacity<br>d<br>d<br>315<br>475                                       | 4.0<br>1.0<br>Adj Sat<br>Flow Rat<br>(s)                                                                   | Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/C                                          | Lane<br><br>Delay                                           | 4.0<br>1.0<br>Cyc<br>ary<br>Group<br>LOS                                    | 4.0<br>1.0<br>the Ler<br>Dela                                      | oroac                                        | h<br>S        | 0 s        | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane (<br>Grp (<br>Eastbound<br>Westbound<br>L<br>R                                     | Group<br>Capacity<br>d<br>d<br>315<br>475                                       | 4.0<br>1.0<br>Adj Sat<br>Flow Rat<br>(s)<br>3437                                                           | Rati<br>v/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/C<br>0.09                                  | Lane<br><br>Delay<br>51.8                                   | 4.0<br>1.0<br>Cyc<br>Group<br>LOS                                           | 4.0<br>1.0<br>the Ler<br>Dela                                      | oroac                                        | h<br>S        | 0 s        | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane 0<br>Grp 0<br>Eastbound<br>L<br>R<br>Northbour                                     | Group<br>Capacity<br>d<br>d<br>315<br>475                                       | 4.0<br>1.0<br>Adj Sat<br>Flow Rat<br>(s)<br>3437                                                           | Rati<br>v/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/C<br>0.09                                  | Lane<br><br>Delay<br>51.8                                   | 4.0<br>1.0<br>Cyc<br>Group<br>LOS                                           | 4.0<br>1.0<br>the Ler<br>Dela                                      | ngth:<br>proac<br>ay LO<br>5 D               | h<br>s        | 0 s        |           |
| Yellow<br>All Red<br>Appr/ 1<br>Lane 0<br>Grp 0<br>Eastbound<br>L<br>R<br>Northbour<br>T                                | Group<br>Capacity<br>d<br>315<br>475<br>nd                                      | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat<br>(s)<br>                                                     | Rati<br>v/c<br>0.35<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/C<br>g/C<br>0.09<br>0.30                   | Lane<br><br>Delay<br>51.8<br>30.4                           | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>D<br>C                                 | 4.0<br>1.0<br>21e Ler<br>0 App<br><br>Dela                         | ngth:<br>proac<br>ay LO<br>5 D               | h<br>s        | 0 s        | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane 0<br>Grp 0<br>Eastbound<br>L<br>R<br>Northbour                                     | Group<br>Capacity<br>d<br>315<br>475<br>nd<br>2203<br>1200                      | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat<br>(s)<br>3437<br>1583<br>3478                                 | Rati<br>v/c<br>0.35<br>0.10<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/C<br>0.09<br>0.30<br>0.63                  | Lane<br><br>Delay<br>51.8<br>30.4<br>8.9                    | 4.0<br>1.0<br>Cyc<br>ary<br>Group<br>LOS<br>D<br>C<br>A                     | 4.0<br>1.0<br>21e Ler<br>0 App<br><br>Dela                         | ngth:<br>proac<br>ay LO<br>5 D               | h<br>s        | 0 s        | secs      |
| Yellow<br>All Red<br>Appr/ 1<br>Lane 0<br>Grp 0<br>Eastbound<br>L<br>R<br>Northbour<br>T<br>R                           | Group<br>Capacity<br>d<br>315<br>475<br>nd<br>2203<br>1200                      | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat<br>(s)<br>3437<br>1583<br>3478                                 | Rati<br>v/c<br>0.35<br>0.10<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/C<br>0.09<br>0.30<br>0.63                  | Lane<br><br>Delay<br>51.8<br>30.4<br>8.9                    | 4.0<br>1.0<br>Cyc<br>ary<br>Group<br>LOS<br>D<br>C<br>A                     | 4.0<br>1.0<br>21e Ler<br>0 App<br><br>Dela                         | ngth:<br>proac<br>ay LO<br>5 D               | h<br>s        | 0 s        |           |
| Yellow<br>All Red<br>Appr/ D<br>Lane G<br>Grp G<br>Eastbound<br>Westbound<br>L<br>R<br>Northboun<br>T<br>R<br>Southboun | Group<br>Capacity<br>d<br>315<br>475<br>nd<br>2203<br>1200<br>nd                | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat<br>(s)<br>3437<br>1583<br>3478<br>1583                         | Rati<br>v/c<br>0.35<br>0.10<br>0.14<br>0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/C<br>0.09<br>0.30<br>0.63<br>0.76          | Lane<br>Delay<br>51.8<br>30.4<br>8.9<br>12.4                | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>D<br>C<br>A<br>B                       | 4.0<br>1.0<br>21e Ler<br>0 App<br><br>Dela                         | ngth:<br>proac<br>ay LO<br>5 D               | h<br>s        | 0 5        | Sec:      |
| Yellow<br>All Red<br>Appr/ D<br>Lane (<br>Grp (<br>Eastbound<br>L<br>R<br>Northbour<br>T<br>R<br>Southbour<br>L         | Group<br>Capacity<br>d<br>315<br>475<br>nd<br>2203<br>1200<br>nd<br>601<br>2927 | 4.0<br>1.0<br>Inters<br>Adj Sat<br>Flow Rat<br>(s)<br>3437<br>1583<br>3478<br>1583<br>3478<br>1583<br>3478 | Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rational Rat | 0.09<br>0.30<br>0.63<br>0.76<br>0.17<br>0.84 | Lane<br>Delay<br>51.8<br>30.4<br>8.9<br>12.4<br>49.3<br>1.7 | 4.0<br>1.0<br>Cyc<br>ary<br>Group<br>LOS<br>D<br>C<br>A<br>B<br>D<br>A<br>A | 4.0<br>1.0<br>1.0<br>2 le Ler<br>0 App<br><br>Dela<br>45.1<br>11.1 | ngth:<br>proac<br>ay LO<br>5 D<br>5 B<br>0 C | h<br>S        | 0 s        | secs      |

HCS+: Signalized Intersections Release 5.3

Phone: Fax: E-Mail: \_\_\_\_\_OPERATIONAL ANALYSIS\_\_\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/11/2008 Analysis Time Period: A.M. Peak Hour U.S. 19 & Construction Access Intersection: Area Type: All other areas Jurisdiction: FDOT Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor ~ Heavy Haul Route 2 E/W St: Construction Access N/S St: U.S. 19

\_\_\_\_\_VOLUME DATA\_

|                                   | Eastbound |   |      | Wes  | tbo | und       | No | rthbo | und       | So   | Southbound |   |  |
|-----------------------------------|-----------|---|------|------|-----|-----------|----|-------|-----------|------|------------|---|--|
|                                   | L         | т | R    | Ĺ    | т   | R         | L  | Т     | R         | L    | т          | R |  |
| Volume                            |           |   |      | 105  |     | 45        |    | 293   | 900       | 385  | 286        |   |  |
| % Heavy Veh                       |           |   |      | 2    |     | 2         | i  | 4     | 2         | 2    | 4          |   |  |
| PHF                               |           |   |      | 0.95 |     | 0.95      | j  | 0.95  | 0.95      | 0.95 | 0.95       |   |  |
| PK 15 Vol                         |           |   |      | 28   |     | 12        | Í  | 77    | 237       | 101  | 75         | ÷ |  |
| Hi Ln Vol<br>% Grade              |           |   |      |      | 0   |           |    | 0     |           |      | 0          |   |  |
| ideal Sat<br>ParkExist<br>NumPark |           |   |      | 1900 | U   | 1900      |    | -     | 1900      | 1900 | 0<br>1900  |   |  |
| No. Lanes                         | 0         | 0 | 0    | 2    | 0   | 1         |    | ) 2   | 1         | 2    | 2          | 0 |  |
| LGConfig                          |           |   |      | L    |     | R         | İ  | т     | R         | L    | т          |   |  |
| Lane Width<br>RTOR Vol            |           |   |      | 12.0 |     | 12.0<br>0 |    | 12.0  | 12.0<br>0 | 12.0 | 12.0       |   |  |
| Adj Flow                          |           |   |      | 111  |     | 47        | ĺ  | 308   | 947       | 405  | 301        |   |  |
| %InSharedLn<br>Prop L/Ts          |           |   |      |      |     |           |    | 0.0   | 00        |      | 0.00       | 0 |  |
| Prop RTs                          |           |   |      |      |     | 1.000     |    | 0.000 |           | 0    | .000       |   |  |
| Peds Bikes                        | 0         |   |      | 0    |     | 1.000     |    |       |           |      |            |   |  |
| Buses<br>%InProtPhase             |           |   |      | 0    |     | . 0       |    | 0     | 0         | 0    | 0          |   |  |
| Duration                          | 0.25      |   | Area |      | רות | other     | 1  | 4     |           | I    |            |   |  |

\_\_\_\_\_OPERATING PARAMETERS\_\_\_

|             | Eastbound |     | We | Westbound |      |         | Northbound |      |     | Southbound |       |   |
|-------------|-----------|-----|----|-----------|------|---------|------------|------|-----|------------|-------|---|
|             | L         | т   | R  | L         | т    | R       | L          | т    | R   | L          | T     | R |
| Init Unmet  |           |     |    | 0.0       |      | 0.0     |            | 0.0  | 0.0 | 0.0        | 0.0   |   |
| Arriv. Type |           |     |    | 3         |      | 3       | 1          | 3 ·  | 3   | 3          | 3     |   |
| Jnit Ext.   |           |     |    | 3.0       |      | 3.0     | Í          | 3.0  | 3.0 | 3.0        | 3.0   |   |
| I Factor    |           |     |    | İ         | 1.00 | 0       | İ          | 1.00 | 0   | i          | 1.000 | C |
| Lost Time   |           |     |    | 2.0       |      | 2.0     | İ          | 2.0  | 2.0 | 2.0        | 2.0   |   |
| Extofg      |           |     |    | 3.0       |      | 3.0     | İ          | 3.0  | 3.0 | 3.0        | 3.0   |   |
| Ped Min g   | :         | 3.2 |    | İ         | 3.2  |         | i          | 3.2  |     | Ì          |       |   |
|             |           |     |    |           | PHAS | SE DATA |            |      |     |            |       |   |

| EB         | Left<br>Thru<br>Right<br>Peds |             | N.<br> <br> | B Left<br>Thru<br>Right<br>Peds |             | A<br>A      |
|------------|-------------------------------|-------------|-------------|---------------------------------|-------------|-------------|
| WB         | Left<br>Thru<br>Diabt         | A           | S           | Thru                            | A<br>A      | A .         |
|            | Right<br>Peds                 | A           |             | Right<br>Peds                   |             |             |
| NB         | Right                         | А           | E           | B Right                         | :           |             |
| SB         | Right                         |             | W           | B Right                         | E A         |             |
| Gre<br>Yel |                               | 10.0<br>4.0 | · ·         |                                 | 20.0<br>4.0 | 75.0<br>4.0 |
|            | Red                           | 1.0         |             |                                 | 1.0         | 1.0         |

Cycle Length: 120.0 secs

| VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET |     |      |    |      |           |       |     |            |       |      |              |     |  |
|-------------------------------------------------|-----|------|----|------|-----------|-------|-----|------------|-------|------|--------------|-----|--|
| Volume Adjustment                               |     |      |    |      |           |       |     |            |       |      |              |     |  |
|                                                 | Eas | tbou | nd | Wes  | Westbound |       |     | Northbound |       |      | Southbound   |     |  |
|                                                 | L   | т    | R  | L    | Т         | R     | L   | т          | R     | L    | $\mathbf{T}$ | R   |  |
| Volume, V                                       |     |      |    | 105  |           | 45    |     | 293        | 900   | 385  | 286          |     |  |
| PHF                                             |     |      |    | 0.95 |           | 0.95  | İ   | 0.95       | 0.95  | 0.95 | 0.95         | Í   |  |
| Adj flow                                        | [   |      |    | 111  |           | 47    | 1   | 308        | 947   | 405  | 301          | j   |  |
| No. Lanes                                       | 0   | 0    | 0  | 2    | 0         | 1     | j o | 2          | 1     | 2    | 2            | 0 j |  |
| Lane group                                      | ł   |      |    | L    |           | R     | 1   | т          | R     | L    | т            | 1   |  |
| Adj flow                                        | [   |      |    | 111  |           | 47    | 1   | 308        | 947   | 405  | 301          |     |  |
| Prop LTs                                        |     |      |    |      |           |       | 1   | 0.0        | 00    | 1    | 0.00         | 0 0 |  |
| Prop RTs                                        |     |      |    |      |           | 1.000 | 0   | .000       | 1.000 | 0    | .000         | ĺ   |  |

| Saturatio | on Flow F | ate (see Exh | ibit 16-7 to | determine  | the adj | ustmen | t facto | ors) |
|-----------|-----------|--------------|--------------|------------|---------|--------|---------|------|
|           | Eastbour  | nd We        | stbound      | Northbou   | nd      | Sout   | thbound | 1    |
| LG        |           | L            | R            | т          | R       | L      | т       |      |
| So        |           | 1900         | 1900         | 1900       | 1900    | 1900   | 1900    |      |
| Lanes O   | · 0       | 0 2          | 0 1          | 0 2        | 1       | 2      | 2       | 0    |
| fW        |           | 1.000        | 1.000        | 1.00       | 0 1.000 | 1.000  | 1.000   |      |
| fhv       |           | 0.980        | 0.980        | 0.96       | 2 0.980 | 0.980  | 0.962   |      |
| fG        |           | 1.000        | 1.000        | 1.00       | 0 1.000 | 1.000  | 1.000   |      |
| fP        |           | 1.000        | 1.000        | 1.00       | 0 1.000 | 1.000  | 1.000   |      |
| fBB       |           | 1.000        | 1.000        | 1.00       | 0 1.000 | 1.000  | 1.000   |      |
| fA        |           | 1.000        | 1.000        | 1.00       | 0 1.000 | 1.000  | 1.000   |      |
| fLU       |           | 0.971        | 1.000        | 0.95       | 2 1.000 | 0.971  | 0.952   |      |
| fRT       |           |              | 0.850        | 1.00       | 0 0.850 |        | 1.000   |      |
| fLT       |           | 0.950        | )            | 1.00       | 0       | 0.950  | 1.000   |      |
| Sec.      |           |              |              |            |         |        |         |      |
| fLpb      |           | 1.000        | )            | 1.00       | 0       | 1.000  | 1.000   |      |
| fRpb      |           |              | 1.000        | 1.00       | 0 1.000 |        | 1.000   |      |
| S         |           | 3437         | 1583         | 3478       | 1583    | 3437   | 3478    |      |
| Sec.      |           |              |              |            |         |        |         |      |
|           |           | CAPA         | CITY AND LOS | WORKSHEET_ |         |        |         |      |
| Capacity  | Analysis  | and Lane Gr  | oup Capacity |            |         |        |         |      |
|           |           | Adj          | Adj Sat      | Flow Gr    | een     | Lane G | roup    |      |
| Appr/     | Lane      | Flow Rate    | Flow Rate    | Ratio Ra   | tio Ca  | pacity | v/c     |      |
| Mvmt      | Group     | (v)          | (s)          | (v/s) (g   | /C)     | (c)    | Ratio   | >    |

Eastbound

Prot

| Perm              |                                 |        |            |           |                 |              |     |                    |          |              |          |
|-------------------|---------------------------------|--------|------------|-----------|-----------------|--------------|-----|--------------------|----------|--------------|----------|
| Left              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Prot              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Perm              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Thru              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Right             |                                 |        |            |           |                 |              |     |                    |          |              |          |
| lestboun          | .d                              |        |            |           |                 |              |     |                    |          |              |          |
| Prot              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Perm              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Left              | $\mathbf{L}$                    | 1      | .11        | 343       | 37              | 0.03         | 0.  | 09                 | 315      | 0.35         |          |
| Prot              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Perm              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Thru              | _                               |        | -          |           |                 |              | -   |                    |          |              |          |
| Right             |                                 | 4      | .7         | 158       | 33              | 0.03         | Ο.  | 30                 | 475      | 0.10         |          |
| orthbou           | ind                             |        |            |           |                 |              |     |                    |          |              |          |
| Prot              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Perm              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Left              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Prot              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Perm<br>Thru      | т                               | -      | 100        | 3 / 1     | 70              | 0 00         | ^   | 63                 | 2202     | 0 1 4        |          |
| Thru<br>Right     | _                               |        | 308<br>947 | 34'<br>15 |                 | 0.09<br>0.60 |     |                    | 2203     | 0.14<br>0.79 |          |
| Right<br>Southbou |                                 |        | / 11 /     | 10        | ד נכ            | 0.00         | υ.  | 10                 | 1200     | 0.79         |          |
| Prot              | uiu                             |        |            |           |                 |              |     |                    |          |              |          |
| Prot              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Left              | L                               | /      | 105        | 343       | 37 4            | 0.12         | Δ   | .17                | 601      | 0.67         |          |
| Prot              | ы                               | 4      | 100        | 54.       | <del>آ</del> ر  | · U.12       | υ.  | . エ /              | 001      | 0.0/         |          |
| Perm              |                                 |        |            |           |                 |              |     |                    |          |              |          |
| Thru              | т                               | -      | 301        | · 34'     | 70 <sup>.</sup> | 0.09         | 0   | .84                | 2927     | 0.10         |          |
| Right             |                                 | -      |            | 9.4       | /0              | 0.05         | 0.  | .04                | 2921     | 0.10         |          |
| Cotal lo          | low rati<br>ost time<br>flow ra | per cy | vcle, 1    | L = 3.    | 00 sec          | 2            |     | Sum (v/<br>c)(C)/( |          | 0.72<br>0.73 |          |
|                   | Delay an                        |        | Determ     | inatio    | n               |              |     |                    |          |              |          |
|                   | Ratios                          | Unf    | Prog       | Lane      |                 | nental       |     | Lane               | Group    | Appro        | ach      |
| Jane              | a a/C                           | Del    | Adj        | Grp       | Factor          |              | Del | Dolo               |          | Delas        | . 100    |
| Srp v/            | 'c g/C                          | d1     | Fact       | Сар       | k               | d2           | d3  | Dera               | y LOS    | Delay        | LOS      |
| Eastboun          | ıd                              | ,      |            |           |                 |              |     |                    |          |              |          |
| Vestboun<br>L 0.3 |                                 | 51.2   | 1.000      | 315       | 0.11            | 0.7          | 0.0 | 51.8               | D        |              |          |
|                   | 0.05                            | 51.2   | 1.000      | 313       | 0.11            | 0.7          | 0.0 | 51.0               | Ъ        | 45.5         | D        |
| x 0.1             | 0.30                            | 30.3   | 1.000      | 475       | 0.11            | 0.1          | 0.0 | 30.4               | С        | 1010         | 2        |
| lorthbou          |                                 |        |            |           |                 |              |     |                    | -        |              |          |
| . 0.1             | .4 0.63                         | 8.9    | 1.000      | 2203      | 0.11            | 0.0          | 0.0 | 8.9                | А        | 11.5         | R        |
| . 0.1<br>. 0.7    |                                 | 8.7    | 1.000      |           | 0.34            | 3.6          | 0.0 | 12.4               | B        | тт.J.        | <u> </u> |
| Southbou          |                                 | 0.7    | 1.000      | 1200      | 0.04            | 5.0          | 0.0 | 10.4               | <u>د</u> |              |          |
| 0.6               |                                 | 46.3   | 1.000      | 601       | 0.25            | 3.0          | 0.0 | 49.3               | D        |              |          |
| 0.1               |                                 |        |            | 2927      | 0.11            |              |     | 49.5<br>1.7        | A        | 29.0         |          |
|                   | 0 0 84                          | n      | 1 . 11111  |           |                 | () ()        |     |                    |          |              | C        |
| 0.1               | .0 0.84                         | 1.6    | 1.000      | 2941      | 0.11            | 0.0          | 0.0 | 1.1                | А        | 25.0         | С        |
| 0.14              | .0 0.84                         | 1.0    | 1.000      | 2921      |                 | 0.0          | 0.0 | 1.7                |          |              | С        |
|                   |                                 |        | delay      |           |                 |              |     | rsectio            |          |              | С        |

•

TWO-WAY STOP CONTROL SUMMARY\_ Analyst: KHA Agency/Co.: KHA Date Performed: 12/11/2008 Analysis Time Period: A.M. Peak Hour U.S. 19 & Operations Access Intersection: Jurisdiction: FDOT Units: U. S. Customary Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 2 East/West Street: Operations Access North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments Northbound Southbound Major Street: Approach Movement 2 1 3 4 5 6 L т R L т R Volume 1189 93 351 40 Peak-Hour Factor, PHF 0.95 0.95 0.95 0.95 Hourly Flow Rate, HFR 1251 97 42 369 Percent Heavy Vehicles - ------2 ----Median Type/Storage / 2 Raised curb **RT** Channelized? No Lanes 2 1 1 2 Configuration т R L т Upstream Signal? No No Westbound Minor Street: Approach Eastbound Movement 7 8 9 10 11 12 L т R  $\mathbf{L}$ т R Volume 9 4 Peak Hour Factor, PHF 0.95 0.95 Hourly Flow Rate, HFR 9 4 Percent Heavy Vehicles 2 2 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage Lanes 1 1 Configuration  $\mathbf{L}$ R \_Delay, Queue Length, and Level of Service\_ Approach NB SB · Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Config L L R v (vph) 42 9 4 C(m) (vph) 507 216 482 v/c 0.08 0.04 0.01

95% queue length Control Delay LOS Approach Delay Approach LOS 0.27

12.7

В

0.13

22.4

С

0.03

12.5

В

19.4 C

Phone: E-Mail: Fax:

| c-Mall:                 |             |          |           |            |          |       |      |
|-------------------------|-------------|----------|-----------|------------|----------|-------|------|
| ŋ                       | WO-WAY STO  | OP CONTR | ROL (TWSC | C) ANAL    | YSIS     | ····· |      |
| Analyst: F              | CHA         |          |           |            |          |       |      |
|                         | AHA         |          |           |            |          |       |      |
|                         | 2/11/2008   |          |           |            |          |       |      |
| Analysis Time Period: A |             | Hour     |           |            |          |       |      |
|                         | J.S. 19 & ( |          | MS Acc    | 299        |          |       | ,    |
|                         | DOT         | operacra |           | 200        |          |       |      |
| Units: U. S. Customary  | DOI         |          |           |            |          |       |      |
|                         | 2015 Peak ( | onstruc  | tion T    | caffic     |          |       |      |
| Project ID: Levy Count  |             |          |           |            | 1 Route  | 2     |      |
|                         | perations   |          | <i></i>   |            | I nouse  | 2     |      |
|                         | J.S. 19     | 1100000  |           |            |          |       |      |
| Intersection Orientatio |             |          | S         | cudy pe    | riod (h: | rs):  | 0.25 |
|                         | _Vehicle V  |          | 224 Ad    | iustmon    | ta       |       |      |
| Major Street Movements  | 1           | 2        | 3 and Ad  | 4 Juschien | 5        | 6     |      |
| Major bereet Movements  | L           | T        | R         | Ľ          | л<br>Т   | R     |      |
|                         | Ц           | Ŧ        | IV.       | تىد        | T        | K     |      |
| Volume                  |             | 1189     | 93        | 40         | 351      |       |      |
| Peak-Hour Factor, PHF   |             | 0.95     | 0.95      | 0.95       | 0.95     |       |      |
| Peak-15 Minute Volume   |             | 313      | 24        | 11         | 92       |       |      |
| Hourly Flow Rate, HFR   |             | 1251     | 97        | 42         | 369      |       |      |
| Percent Heavy Vehicles  |             |          |           | 2          |          |       |      |
| Median Type/Storage     | Rais        | ed curb  |           | / 2        | 1        |       |      |
| RT Channelized?         | nais.       | cu curb  | No        | / 4        |          |       |      |
| Lanes                   |             | 2        | 1         | 1          | 2        |       |      |
| Configuration           |             | TR.      |           | Ĩ          |          |       |      |
| Upstream Signal?        |             | No       |           | -          | No       |       |      |
|                         |             |          |           |            |          |       |      |
| Minor Street Movements  | 7           | 8        | 9         | 10         | 11       | 12    |      |
|                         | L           | Т        | R         | L          | Т        | R     |      |
| Volume                  | 9           |          | 4         |            |          |       |      |
| Peak Hour Factor, PHF   | 0.95        |          | 0.95      |            |          |       |      |
| Peak-15 Minute Volume   | 2           |          | 1         |            |          |       |      |
| Hourly Flow Rate, HFR   | 9           |          | 4         |            |          |       |      |
| Percent Heavy Vehicles  | 2           |          | 2         |            |          |       |      |
| Percent Grade (%)       |             | 0        |           |            | 0        |       |      |
| Flared Approach: Exist  | cs?/Storag  | e        |           | 1          |          |       | /    |
| RT Channelized?         | 2           |          | No        |            |          |       |      |
| Lanes                   | 1           |          | 1         |            |          |       |      |
| Configuration           | . L         | R        |           |            |          |       |      |
|                         |             | •••••    | · · · · · |            | <u></u>  |       |      |
|                         | Pedestrian  | Volume   | s and A   | djustme    | ents     |       |      |
| Movements               | 13          | 14       | 15        | 16         |          |       |      |
| Flow (ped/hr)           | 0           | 0        | 0         | 0          |          |       |      |
| Lane Width (ft)         | 12.         |          |           |            | . 0      |       |      |
| Walking Speed (ft/sec)  | 4.0         |          |           |            |          |       |      |
| Percent Blockage        | 0           | 0        | 0         | 0          |          |       |      |
|                         | Ū.          | v        | . ~       | v          |          |       |      |

|     | Upstream Signal Data |                      |                    |                 |                      |                        |                       |                               |  |  |
|-----|----------------------|----------------------|--------------------|-----------------|----------------------|------------------------|-----------------------|-------------------------------|--|--|
|     |                      | Prog.<br>Flow<br>vph | Sat<br>Flow<br>vph | Arrival<br>Type | Green<br>Time<br>sec | Cycle<br>Length<br>sec | Prog.<br>Speed<br>mph | Distance<br>to Signal<br>feet |  |  |
| S2  | Left-Turn<br>Through |                      |                    |                 |                      |                        |                       |                               |  |  |
| \$5 | Left-Turn<br>Through |                      |                    |                 |                      |                        |                       |                               |  |  |

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

|                                                                                                                                                                                                 | Movement 2 | Movement 5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Shared ln volume, major th vehicles:<br>Shared ln volume, major rt vehicles:<br>Sat flow rate, major th vehicles:<br>Sat flow rate, major rt vehicles:<br>Number of major street through lanes: |            |            |

Worksheet 4-Critical Gap and Follow-up Time Calculation

| Critical | Gap Calc   | ulatio       | on           |              |      |      |      |      |              |
|----------|------------|--------------|--------------|--------------|------|------|------|------|--------------|
| Movement |            | 1            | 4            | 7            | 8    | 9    | 10   | 11   | 12           |
|          |            | L            | L            | L            | T    | R    | L    | . T  | R            |
| t(c,base | :)         |              | 4.1          | 7.5          |      | 6.2  |      |      |              |
| t(c,hv)  |            | 2.00         | 2.00         | 2.00         | 2.00 | 2.00 | 2.00 | 2.00 | 2.00         |
| P(hv)    |            |              | 2            | 2            |      | 2    |      |      |              |
| t(c,g)   |            |              |              | 0.20         | 0.20 | 0.10 | 0.20 | 0.20 | 0.10         |
| Percent  | Grade      |              |              | 0.00         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00         |
| t(3,lt)  |            |              | 0.00         | 0.70         |      | 0.00 |      |      |              |
| t(c,T):  | 1-stage    | 0.00         | 0.00         | 0.00         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00         |
|          | 2-stage    | 0.00         | 0.00         | 1.00         | 1.00 | 0.00 | 1.00 | 1.00 | 0.00         |
| t(c)     | 1-stage    |              | 4.1          | 6.8          |      | 6.2  |      |      |              |
|          | 2-stage    |              | 4.1          | 5.8          |      | 6.2  |      |      |              |
| Follow-U | Ip Time Ca | lcula        | tions        |              |      |      |      |      |              |
| Movement |            | 1            | 4            | 7            | 8    | 9    | 10   | 11   | 12           |
|          |            | $\mathbf{L}$ | $\mathbf{L}$ | $\mathbf{L}$ | Т    | R    | L    | т    | R            |
| t(f,base | :)         |              | 2.20         | 3.50         |      | 3.30 |      |      | <del>.</del> |
| t(f,HV)  |            | 1.00         | 1.00         | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00         |
| P(HV)    |            |              | 2            | 2            |      | 2    |      |      |              |
| t(f)     |            |              | 2.2          | 3.5          |      | 3.3  |      |      |              |

Worksheet 5-Effect of Upstream Signals

| Computation | 1-Queue | Clearance | Time | at | Upstream | Signal    |      |           |
|-------------|---------|-----------|------|----|----------|-----------|------|-----------|
|             |         |           |      |    | Mov      | vement 2  | Mov  | vement 5  |
|             |         |           |      |    | V(t)     | V(l,prot) | V(t) | V(l,prot) |
|             |         |           |      |    |          |           |      |           |

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P

| g(q)                                                                                                                       |                                                             |                                            |          |                |                      |               |                         |                  |            |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|----------|----------------|----------------------|---------------|-------------------------|------------------|------------|
| Computation 2                                                                                                              | ?-Proport.                                                  | ion of T                                   | WSC Inte | ersectio<br>V( | Movem                |               | Ν                       | Iovement<br>V(l, | 5<br>prot) |
| alpha                                                                                                                      |                                                             |                                            |          | <u></u>        |                      |               |                         |                  |            |
| beta<br>Travel time,<br>Smoothing Fac<br>Proportion of<br>Max platooned<br>Min platooned<br>Duration of l<br>Proportion t: | ctor, F<br>f conflic<br>d flow, V<br>d flow, V<br>plocked p | ting flo<br>(c,max)<br>(c,min)<br>eriod, t |          |                | 0.0                  | 00            |                         | 0.000            |            |
| Computation 3                                                                                                              | 3-Platoon                                                   | Event P                                    | eriods   | Res            | ılt                  |               |                         |                  | ·····,     |
| p(2)<br>p(5)<br>p(dom)<br>p(subo)<br>Constrained (                                                                         | or uncons                                                   | trained?                                   |          | 0.0            |                      |               |                         |                  |            |
| Proportion<br>unblocked<br>for minor<br>movements, p                                                                       | (x)                                                         | (1<br>Single<br>Proc                       | -stage   |                | (2)<br>Two-S<br>ge I | tage Pr       | (3)<br>ocess<br>Stage I | []               |            |
| p(1)<br>p(4)<br>p(7)<br>p(8)<br>p(9)<br>p(10)<br>p(11)<br>p(12)                                                            |                                                             |                                            |          |                |                      |               |                         |                  |            |
| Computation<br>Single-Stage<br>Movement                                                                                    |                                                             | 1<br>L                                     | 4 .<br>L | 7<br>L         | 8<br>T               | 9<br>R        | 10<br>L                 | 11<br>T          | 12<br>R    |
| V c,x<br>s<br>Px<br>V c,u,x                                                                                                |                                                             |                                            | 1348     | 1519           |                      | 626           |                         |                  |            |
| C r,x<br>C plat,x                                                                                                          |                                                             |                                            |          |                |                      |               |                         |                  |            |
| Two-Stage Pr                                                                                                               | ocess                                                       |                                            |          |                |                      |               |                         |                  | -          |
|                                                                                                                            | Stage1                                                      | 7<br>Stage2                                | Stage1   | 8<br>Stage     | 2 Sta                | 10<br>agel St | age2                    | 1<br>Stage1      |            |
| V(c,x)<br>s<br>P(x)                                                                                                        | 1251                                                        | 268<br>3000                                |          |                |                      |               |                         |                  |            |

C(plat, x)

| Worksheet 6-Impedance and Capacity Equation | ns   |                                       |
|---------------------------------------------|------|---------------------------------------|
| Step 1: RT from Minor St.                   | 9    | 12                                    |
| Conflicting Flows                           | 626  |                                       |
| Potential Capacity                          | 482  |                                       |
| Pedestrian Impedance Factor                 | 1.00 | 1.00                                  |
| Movement Capacity                           | 482  |                                       |
| Probability of Queue free St.               | 0.99 | 1.00                                  |
| Step 2: LT from Major St.                   | 4    | 1                                     |
| Conflicting Flows                           | 1348 |                                       |
| Potential Capacity                          | 507  |                                       |
| Pedestrian Impedance Factor                 | 1.00 | 1.00                                  |
| Movement Capacity                           | 507  |                                       |
| Probability of Queue free St.               | 0.92 | 1.00                                  |
| Maj L-Shared Prob Q free St.                |      |                                       |
| Step 3: TH from Minor St.                   | 8    | 11                                    |
| Conflicting Flows                           |      | · · · · · · · · · · · · · · · · · · · |
| Potential Capacity                          |      |                                       |
| Pedestrian Impedance Factor                 | 1.00 | 1.00                                  |
| Cap. Adj. factor due to Impeding mvmnt      | 0.92 | 0.92                                  |
| Movement Capacity                           |      |                                       |
| Probability of Queue free St.               | 1.00 | 1.00                                  |
| Step 4: LT from Minor St.                   | 7    | 10                                    |
| Conflicting Flows                           | 1519 |                                       |
| Potential Capacity                          | 110  |                                       |
| Pedestrian Impedance Factor                 | 1.00 | 1.00                                  |
| Maj. L, Min T Impedance factor              |      | 0.92                                  |
| Maj. L. Min T Adj. Imp Factor.              | •    | 0.94                                  |
| Cap. Adj. factor due to Impeding mvmnt      | 0.92 | 0.93                                  |
| Movement Capacity                           | 101  |                                       |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8    | 11   |
|----------------------------------------|------|------|
| Part 1 - First Stage                   | ,    |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 246  | 573  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 0.92 |
| Movement Capacity                      | 246  | 526  |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Part 2 - Second Stage                  |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 573  | 221  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 0.92 | 1.00 |
| Movement Capacity                      | 526  | 221  |

Part 3 - Single Stage Conflicting Flows



| Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity | 1.00<br>0.92 | 1.00<br>0.92 |
|------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Result for 2 stage process:                                                                                      |              |              |
| a                                                                                                                | 0.95         | 0.95         |
| У<br>С t                                                                                                         |              |              |
| Probability of Queue free St.                                                                                    | 1.00         | 1.00         |
|                                                                                                                  | 1.00         | 1.00         |
| Step 4: LT from Minor St.                                                                                        | 7            | 10           |
| Part 1 - First Stage                                                                                             |              |              |
| Conflicting Flows                                                                                                | 1251         |              |
| Potential Capacity                                                                                               | 233          | 613          |
| Pedestrian Impedance Factor                                                                                      | 1.00         | 1.00         |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 1.00         | 0.92         |
| Movement Capacity                                                                                                | 233          | 562          |
| Part 2 - Second Stage                                                                                            |              | n            |
| Conflicting Flows                                                                                                | 268          |              |
| Potential Capacity                                                                                               | 753          | 501          |
| Pedestrian Impedance Factor                                                                                      | 1.00         | 1.00         |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 0.92         | 0.99         |
| Movement Capacity                                                                                                | 691          | 497          |
| Part 3 - Single Stage                                                                                            |              |              |
| Conflicting Flows                                                                                                | 1519         |              |
| Potential Capacity                                                                                               | 110          |              |
| Pedestrian Impedance Factor                                                                                      | 1.00         | 1.00         |
| Maj. L, Min T Impedance factor                                                                                   |              | 0.92         |
| Maj. L, Min T Adj. Imp Factor.                                                                                   |              | 0.94         |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 0.92         | 0.93         |
| Movement Capacity                                                                                                | 101          |              |
| Results for Two-stage process:                                                                                   |              |              |
| a                                                                                                                | 0.95         | 0.95         |
| У                                                                                                                | 0.22         |              |
| Ct                                                                                                               | 216          |              |

## Worksheet 8-Shared Lane Calculations

| Movement                                              | 7            | 8 | 9   | 10 | 11 | 12 |
|-------------------------------------------------------|--------------|---|-----|----|----|----|
|                                                       | $\mathbf{L}$ | т | R   | L  | т  | R  |
| Volume (vph)                                          | 9            |   | 4   |    |    |    |
| Movement Capacity (vph)<br>Shared Lane Capacity (vph) | 216          |   | 482 |    |    |    |

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement | 7   | 8 | 9   | 10      | 11 | 12 |
|----------|-----|---|-----|---------|----|----|
|          | I,  | T | R   | L       | т  | R  |
| C sep    | 216 |   | 482 | <u></u> |    |    |
| Volume   | 9   |   | 4   |         |    |    |
| Delay    |     |   |     |         |    |    |
| Q sep    |     |   |     |         |    |    |
| Q sep +1 |     |   |     |         |    |    |
| 7 ( 7 )  |     |   |     |         |    |    |

round (Qsep +1)

n max C sh SUM C sep n C act

# Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10 | 11 | 12 |
|------------------|---|------|------|------|------|----|----|----|
| Lane Config      |   | L    | L    |      | R    |    |    |    |
| v (vph)          |   | 42   | 9    |      | 4    |    |    |    |
| C(m) (vph)       |   | 507  | 216  |      | 482  |    |    |    |
| v/c              |   | 0.08 | 0.04 |      | 0.01 |    |    |    |
| 95% queue length |   | 0.27 | 0.13 |      | 0.03 |    |    |    |
| Control Delay    |   | 12.7 | 22.4 |      | 12.5 |    |    |    |
| LOS              |   | В    | С    |      | В    |    |    |    |
| Approach Delay   |   |      |      | 19.4 |      |    |    |    |
| Approach LOS     |   |      |      | С    |      |    |    |    |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
| p(oj)                                         | 1.00       | 0.92       |
| v(il), Volume for stream 2 or 5               |            |            |
| v(i2), Volume for stream 3 or 6               |            |            |
| s(il), Saturation flow rate for stream 2 or 5 |            |            |
| s(i2), Saturation flow rate for stream 3 or 6 |            |            |
| P*(oj)                                        |            |            |
| d(M,LT), Delay for stream 1 or 4              |            | 12.7       |
| N, Number of major street through lanes       |            |            |
| d(rank,1) Delay for stream 2 or 5             |            |            |
|                                               |            |            |

TWO-WAY STOP CONTROL SUMMARY\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/15/2008 Analysis Time Period: A.M. Peak Hour Intersection: CR 40 & Heavy Haul Driveway Jurisdiction: Levy County Units: U. S. Customary Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 2 East/West Street: CR 40 North/South Street: Heavy Haul Driveway Intersection Orientation: EW Study period (hrs): 0.25

| Major Street:                                  | Approach    | Eas     | tbound |      | Wes  | stbound |      |   |
|------------------------------------------------|-------------|---------|--------|------|------|---------|------|---|
| ···· <b>j</b> ···· ··························· | Movement    | 1       | 2      | 3    | 4    | 5       | 6    |   |
|                                                |             | L       | T      | R    | L    | T       | R    |   |
| Volume                                         |             | 0       | 72     | 0    | 0    | 119     | 0    |   |
| Peak-Hour Fact                                 | or, PHF     | 0.95    | 0.95   | 0.95 | 0.95 | 0.95    | 0.95 |   |
| Hourly Flow Ra                                 | te, HFR     | 0       | 75     | 0    | 0    | 125     | 0    |   |
| Percent Heavy                                  | Vehicles    | 100     |        |      | 100  |         |      |   |
| Median Type/St                                 | orage       | Undivi  | .ded   |      | 1    |         |      |   |
| RT Channelized                                 |             |         |        | No   |      |         |      |   |
| Lanes                                          |             | 0       | 1      | 1    | 0    | 1       | 0    |   |
| Configuration                                  |             | LI      | R      |      | L    | ΓR      |      |   |
| Upstream Signa                                 | .1?         |         | No     |      |      | No      |      |   |
| Minor Street:                                  | Approach    | Nor     | thboun | d    | Soi  | uthboun | d    |   |
|                                                | Movement    | 7       | 8      | 9    | 10   | 11      | 12   |   |
|                                                |             | L       | Т      | R    | Ĺ    | т       | R    |   |
| Volume                                         |             | 15      | 0      | 0    | 0    | 1       | 0    |   |
| Peak Hour Fact                                 | or, PHF     | 0.95    | 0.95   | 0.95 | 0.95 | 0.95    | 0.95 |   |
| Hourly Flow Ra                                 | te, HFR     | 15      | 0      | 0    | 0    | 1       | 0    |   |
| Percent Heavy                                  | Vehicles    | 100     | 100    | 100  | 100  | 100     | 100  |   |
| Percent Grade                                  | (웅)         |         | 0      |      |      | 0       |      |   |
| Flared Approac                                 | h: Exists?/ | Storage |        | No   | /    |         | No   | 1 |
| Lanes                                          |             | Ō       | 1      | 0    | 0    | 1       | 0.   |   |
| Configuration                                  |             |         | LTR    |      |      | LTR     |      |   |

| Approach                | _Delay, (<br>EB | WB           | h, and Level of Northbound |    | hound         |
|-------------------------|-----------------|--------------|----------------------------|----|---------------|
| Movement<br>Lane Config | 1<br>LT         | 4   7<br>LTR | 8 9<br>LTR                 |    | L1. 12<br>GTR |
| v (vph)                 | 0               | 0            | 15                         |    | <u>.</u>      |
| C(m) (vph)              | 1026            | 1078         | 586                        | t, | 553           |
| v/c                     | 0.00            | 0.00         | 0.03                       | (  | 0.00          |
| 95% queue length        | 0.00            | 0.00         | 0.08                       | (  | 0.01          |
| Control Delay           | 8.5             | 8.3          | 11.3                       | -  | 11.5          |
| LOS                     | А               | А            | В                          |    | В             |
| Approach Delay          |                 |              | 11.3                       |    | 11.5          |
| Approach LOS            |                 |              | В                          |    | В             |

Phone: E-Mail: Fax:

\_\_TWO-WAY STOP CONTROL(TWSC) ANALYSIS\_\_

| KHA                      |                                                                                                              |                                                                                                                                                                                                       |
|--------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KHA                      |                                                                                                              |                                                                                                                                                                                                       |
| 12/15/2008               | ·                                                                                                            |                                                                                                                                                                                                       |
| A.M. Peak Hour           |                                                                                                              |                                                                                                                                                                                                       |
| CR 40 & Heavy Haul Driv  | veway                                                                                                        |                                                                                                                                                                                                       |
| Levy County .            |                                                                                                              |                                                                                                                                                                                                       |
| Z                        |                                                                                                              |                                                                                                                                                                                                       |
| 2015 Peak Construction   | Traffic                                                                                                      |                                                                                                                                                                                                       |
| nty Advanced Reactor - H | Heavy Haul Route 2                                                                                           |                                                                                                                                                                                                       |
| CR 40                    |                                                                                                              |                                                                                                                                                                                                       |
| Heavy Haul Driveway      |                                                                                                              |                                                                                                                                                                                                       |
| ion: EW                  | Study period (hrs):                                                                                          | 0.25                                                                                                                                                                                                  |
|                          | KHA<br>12/15/2008<br>A.M. Peak Hour<br>CR 40 & Heavy Haul Driv<br>Levy County<br>Y<br>2015 Peak Construction | KHA<br>12/15/2008<br>A.M. Peak Hour<br>CR 40 & Heavy Haul Driveway<br>Levy County<br>Y<br>2015 Peak Construction Traffic<br>nty Advanced Reactor - Heavy Haul Route 2<br>CR 40<br>Heavy Haul Driveway |

|                        | Vehicle V     | olumes | and Ad | justment | ts   |      |         |
|------------------------|---------------|--------|--------|----------|------|------|---------|
| Major Street Movements | 1             | 2      | 3      | 4        | 5    | 6    |         |
|                        | L             | Т      | R      | L        | т    | R    |         |
| Volume                 | 0             | 72     | 0      | 0        | 119  | 0    |         |
| Peak-Hour Factor, PHF  | 0.95          | 0.95   | 0.95   | 0.95     | 0.95 | 0.95 |         |
| Peak-15 Minute Volume  | 0             | 19     | 0      | 0        | 31   | 0    |         |
| Hourly Flow Rate, HFR  | 0             | 75     | 0      | 0        | 125  | 0    |         |
| Percent Heavy Vehicles | 100           |        |        | 100      |      |      |         |
| Median Type/Storage    | Undiv         | vided  |        | /        |      |      |         |
| RT Channelized?        |               |        | No     |          |      |      |         |
| Lanes                  | 0             | 1      | 1      | 0        | 1    | 0    |         |
| Configuration          | $^{\cdot}$ L1 | . I    | ર      | L        | ſR   |      |         |
| Upstream Signal?       |               | No     |        |          | No   |      |         |
| Minor Street Movements | 7             | 8      | 9      | 10       | 11   | 12   |         |
|                        | L             | T      | R      | L        | т    | R    |         |
| Volume                 | 15            | 0      | 0      | 0        | 1    | 0    | · · · · |
| Peak Hour Factor, PHF  | 0.95          | 0.95   | 0.95   | 0.95     | 0.95 | 0.95 |         |
| Peak-15 Minute Volume  | 4             | 0      | 0      | 0        | .0   | 0    |         |
| Hourly Flow Rate, HFR  | 15            | 0      | 0      | 0        | 1    | 0    |         |
| Percent Heavy Vehicles | 100           | 100    | 100    | 100      | 100  | 100  |         |
| Percent Grade (%)      |               | 0      |        |          | 0    |      |         |
| Flared Approach: Exist | s?/Storage    | 2      | No     | 1        |      | No   | /       |
| RT Channelized?        |               |        |        | •        |      |      |         |
| Lanes                  | 0             | 1      | 0      | 0        | 1    | 0    |         |
| Configuration          |               | LTR    |        |          | LTR  |      |         |

| edestrian Vo | olumes          | and Adju                             | ustments                                                                                                                                |                                                   |
|--------------|-----------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 13           | 14              | 15                                   | 16                                                                                                                                      |                                                   |
| 0            | 0               | 0                                    | 0                                                                                                                                       |                                                   |
| 12.0         | 12.0            | 12.0                                 | 12.0                                                                                                                                    |                                                   |
| 4.0          | 4.0             | 4.0                                  | 4.0                                                                                                                                     |                                                   |
| . 0          | 0               | 0                                    | 0                                                                                                                                       |                                                   |
|              | 13<br>0<br>12.0 | 13 14<br>0 0<br>12.0 12.0<br>4.0 4.0 | 13         14         15           0         0         0           12.0         12.0         12.0           4.0         4.0         4.0 | 0 0 0 0<br>12.0 12.0 12.0 12.0<br>4.0 4.0 4.0 4.0 |

|              |                      | Up                 | stream Sig | ynal Dat | a |   |                               |
|--------------|----------------------|--------------------|------------|----------|---|---|-------------------------------|
|              | Prog.<br>Flow<br>Vph | Sat<br>Flow<br>vph |            |          | - | - | Distance<br>to Signal<br>feet |
| S2 Left-Turn |                      |                    |            |          |   |   |                               |

Through

S5 Left-Turn

Through

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

|                                       | Movement 2 | Movement 5 |
|---------------------------------------|------------|------------|
| Shared ln volume, major th vehicles:  | 75         | 125        |
| Shared ln volume, major rt vehicles:  | 0          | 0          |
| Sat flow rate, major th vehicles:     | 1700       | 1700       |
| Sat flow rate, major rt vehicles:     | 1700       | 1700       |
| Number of major street through lanes: | 1          | 1          |

Worksheet 4-Critical Gap and Follow-up Time Calculation

| Critical Gap Cal | lculatio | on           |      |      |      |      |      |      |
|------------------|----------|--------------|------|------|------|------|------|------|
| Movement         | 1        | 4            | 7    | 8    | 9    | 10   | 11   | 12   |
|                  | L        | L            | L    | т    | R    | L    | т    | R    |
| t(c,base)        | 4.1      | 4.1          | 7.1  | 6.5  | 6.2  | 7.1  | 6.5  | 6.2  |
| t(c,hv)          | 1.00     | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| P(hv)            | 100      | 100          | 100  | 100  | 100  | 100  | 100  | 100  |
| t(c,g)           |          |              | 0.20 | 0.20 | 0.10 | 0.20 | 0.20 | 0.10 |
| Percent Grade    |          |              | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| t(3,1t)          | 0.00     | 0.00         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| t(c,T): 1-stage  | e 0.00   | 0.00         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2-stage          | e 0.00   | 0.00         | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 |
| t(c) 1-stage     | e 5.1    | 5.1          | 8.1  | 7.5  | 7.2  | 8.1  | 7.5  | 7.2  |
| 2-stag           | е        |              |      |      |      |      |      |      |
| Follow-Up Time   | Calculat | tions        |      |      |      |      |      |      |
| Movement         | 1        | 4            | 7    | 8    | 9    | 10   | 11   | 12   |
|                  | L        | $\mathbf{L}$ | L    | т    | R    | L    | Т    | R    |
| t(f,base)        | 2.20     | 2.20         | 3.50 | 4.00 | 3.30 | 3.50 | 4.00 | 3.30 |
| t(f,HV)          | 0.90     | 0.90         | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| P(HV)            | 100      | 100          | 100  | 100  | 100  | 100  | 100  | 100  |
| t(f)             | 3.1      | 3.1          | 4.4  | 4.9  | 4.2  | 4.4  | 4.9  | 4.2  |

Worksheet 5-Effect of Upstream Signals

| Computation | 1-Queue | Clearance | Time | at | Upstream | Signal    |      |           |
|-------------|---------|-----------|------|----|----------|-----------|------|-----------|
|             |         |           |      |    | Mov      | vement 2  | Mov  | vement 5  |
|             |         |           |      |    | V(t)     | V(l,prot) | V(t) | V(l,prot) |
|             |         |           |      |    |          |           |      |           |

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P



g(q1) g(q2) g(q)

| Computation 2-Proport        | ion of  | TWSC Int | ersect     |                |                  |                                       |                                       | ь <b>г</b>    |
|------------------------------|---------|----------|------------|----------------|------------------|---------------------------------------|---------------------------------------|---------------|
|                              |         |          | v          | Movem<br>(t) V | ent 2<br>(1,prot |                                       | Movemen                               | t 5<br>,prot) |
|                              |         |          |            |                | (=)p=0           |                                       | , , , , , , , , , , , , , , , , , , , | , proc,       |
| alpha                        |         |          |            |                |                  |                                       |                                       |               |
| beta<br>Translation t(s) (se | -       |          |            |                |                  |                                       |                                       |               |
| Travel time, t(a) (se        | C)      |          |            |                |                  |                                       |                                       |               |
| Smoothing Factor, F          |         |          |            |                |                  |                                       |                                       |               |
| Proportion of conflic        |         | ow, f    |            |                |                  |                                       |                                       |               |
| Max platooned flow, V        |         |          |            |                |                  |                                       |                                       |               |
| Min platooned flow, V        |         |          |            |                |                  |                                       |                                       |               |
| Duration of blocked p        |         | t(p)     |            |                |                  |                                       |                                       |               |
| Proportion time block        | ed, p   |          |            | 0.0            | 00               |                                       | 0.000                                 |               |
| Computation 3-Platoor        | Event   | Periods  | Re         | sult           |                  |                                       |                                       |               |
| <br>p(2)                     |         |          | 0          | 000            |                  |                                       | ÷                                     |               |
|                              |         |          |            |                |                  |                                       |                                       |               |
| p(5)                         |         |          | υ.         | 000            |                  |                                       |                                       |               |
| p(dom)                       |         |          |            |                |                  |                                       |                                       |               |
| p(subo)                      |         |          |            |                |                  |                                       |                                       | *             |
| Constrained or uncons        | trained | ?        |            |                |                  |                                       |                                       |               |
| Proportion                   |         |          |            | · ··· · ··· ·  |                  |                                       | ······                                |               |
| unblocked                    | (       | 1)       |            | (2)            |                  | (3)                                   |                                       |               |
| for minor                    |         | e-stage  |            |                | tage Pi          |                                       |                                       |               |
|                              |         |          | <u>0</u> + |                | caye P           |                                       | тт                                    |               |
| movements, p(x)              | P1.0    | cess     | SC         | age I          |                  | Stage                                 | τŢ                                    |               |
| p(1)                         |         |          |            | <u>_</u>       |                  |                                       |                                       |               |
| p(4)                         |         |          |            |                |                  |                                       |                                       |               |
| p(7)                         |         |          |            |                |                  |                                       |                                       |               |
| p(8)                         |         |          |            |                |                  |                                       |                                       |               |
| p(9)                         |         |          |            |                |                  |                                       |                                       |               |
| p(10)                        |         |          |            |                |                  |                                       |                                       |               |
| p(10)                        |         |          |            |                |                  |                                       |                                       |               |
|                              |         |          |            |                |                  |                                       |                                       |               |
| p(12)                        |         |          |            |                |                  |                                       |                                       |               |
| Computation 4 and 5          |         |          | ····       |                | _,_,             |                                       |                                       |               |
| Single-Stage Process         |         |          |            |                |                  |                                       |                                       |               |
| Movement                     | 1       | 4        | 7          | 8              | 9                | 10                                    | 11                                    | 12            |
|                              | L       | L        | L          | т              | R                | L                                     | т                                     | R             |
|                              |         |          |            | -              |                  |                                       |                                       |               |
| V c,x                        | 125     | 75       | 201        | 200            | 75               | 200                                   | 200                                   | 125           |
| S                            |         |          |            |                |                  |                                       |                                       |               |
| Px                           |         |          |            |                |                  |                                       |                                       |               |
| V c,u,x                      |         |          |            |                |                  |                                       |                                       |               |
| C r,x                        |         |          |            | <u> </u>       |                  |                                       |                                       |               |
| C plat,x                     |         |          |            |                |                  |                                       |                                       |               |
| Two-Stage Process            |         |          |            |                |                  | · · · · · · · · · · · · · · · · · · · |                                       |               |
| THE DEAGE TICEDD             | 7       |          | 8          |                | 10               |                                       | 1                                     | 1             |
| Stage1                       | Stage2  | Stage1   |            | e2 Sta         |                  | tage2                                 |                                       | Stage2        |
| V(c,x)                       |         |          |            |                |                  |                                       |                                       |               |
| S                            | 1500    |          | 1500       | •              | 1                | 500                                   |                                       | 1500          |
|                              |         |          |            |                |                  |                                       |                                       |               |
| P(x)                         |         |          |            |                |                  |                                       |                                       |               |
| P(x)<br>V(c,u,x)             |         |          |            |                |                  |                                       |                                       |               |

C(plat, x)

Worksheet 6-Impedance and Capacity Equations 9 12 Step 1: RT from Minor St. 75 Conflicting Flows 125 Potential Capacity 770 717 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 770 717 Probability of Queue free St. 1.00 1.00 Step 2: LT from Major St. 4 1 Conflicting Flows 75 125 1078 Potential Capacity 1026 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 1078 1026 Probability of Queue free St. 1.00 1.00 Maj L-Shared Prob Q free St. 1.00 1.00 Step 3: TH from Minor St. 8 11 Conflicting Flows 200 200 Potential Capacity 553 553 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 553 553 Probability of Queue free St. 1.00 1.00 Step 4: LT from Minor St. 7 10 Conflicting Flows 201 200 Potential Capacity 587 588 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 1.00 1.00 Maj. L, Min T Adj. Imp Factor. 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 586 588

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

Step 3: TH from Minor St. 8 11 Part 1 - First Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity Probability of Queue free St. Part 2 - Second Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity Part 3 - Single Stage Conflicting Flows 200 200

| 1<br>1<br>5<br> | 53<br>.00<br>.00<br>53<br>53<br>.00<br>7                                    |                                                                          | 553<br>1.00<br>1.00<br>553<br>553<br>1.00<br>10                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|-----------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1<br>5<br>5     | .00<br>53<br>53<br>.00                                                      |                                                                          | 1.00<br>553<br>553<br>1.00                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
| . 5             | 53<br>53<br>.00                                                             |                                                                          | 553<br>553<br>1.00                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| . 5             | 53                                                                          |                                                                          | 553                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|                 | .00                                                                         | · · · · · · · · · · · · · · · · · · ·                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                 | .00                                                                         | · · · · · · · · · · · · · · · · · · ·                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                 | .00                                                                         | · · · · · · · · · · · · · · · · · · ·                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                 | .00                                                                         |                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 | 7                                                                           |                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                 |                                                                             | •                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   | <u>.</u>                                               |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             | •<br>•<br>•                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   | <u>.</u>                                               |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 2               | 01                                                                          |                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
| 5               | 87                                                                          |                                                                          | 588                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
| 1               | 0.0                                                                         |                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 5               | 80                                                                          |                                                                          | 288                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|                 | · · · · · ·                                                                 | •                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 5               | 86                                                                          |                                                                          | 588                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| •               |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 8               | 9                                                                           | 10                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                     |
| т               | R                                                                           | L                                                                        | $\mathbf{T}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                 | R                                                      |
| · 0             | 0                                                                           | 0                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                      |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   | 717                                                    |
| 586             |                                                                             |                                                                          | 553                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| ed Minor        | Street                                                                      | Approa                                                                   | ches                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
| 8               | . 9                                                                         | 10                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                     |
| Т               | R                                                                           | L                                                                        | T                                                                                                                                                                                                                                                                                                                                                                                                 | R                                                      |
| 553             | 770                                                                         | 588                                                                      | 552                                                                                                                                                                                                                                                                                                                                                                                               | 717                                                    |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                      |
| v               | U                                                                           | J,                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |
|                 |                                                                             | •                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 1 (F            |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                 | 5<br>1<br>1<br>1<br>1<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>4<br>Minor<br>8 | T R<br>0 0<br>553 770<br>586<br>ed Minor Street<br>8 9<br>T R<br>553 770 | $     \begin{array}{r}       587 \\       1.00 \\       1.00 \\       1.00 \\       586 \\     \end{array}     $ $     \begin{array}{r}       586 \\       586 \\       \hline       53 770 588 \\       586 \\       \hline       6 & 9 10 \\       T R L \\       0 & 0 \\       553 770 588 \\       586 \\       \hline       8 & 9 10 \\       T R L \\       553 770 588 \\   \end{array} $ | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ |



n max C sh SUM C sep n C act

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1             | 4    | 7 | 8    | 9 | 10 | 11   | 12 |
|------------------|---------------|------|---|------|---|----|------|----|
| Lane Config      | $\mathbf{LT}$ | LTR  |   | LTR  |   |    | LTR  |    |
| v (vph)          | 0             | 0    | · | 15   |   |    | 1    |    |
| C(m) (vph)       | 1026          | 1078 |   | 586  |   |    | 553  |    |
| v/c              | 0.00          | 0.00 |   | 0.03 |   |    | 0.00 |    |
| 95% queue length | 0.00          | 0.00 |   | 0.08 |   |    | 0.01 |    |
| Control Delay    | 8.5           | 8.3  |   | 11.3 |   |    | 11.5 |    |
| LOS              | А             | А    |   | В    |   |    | В    |    |
| Approach Delay   |               |      |   | 11.3 |   |    | 11.5 |    |
| Approach LOS     |               |      |   | в    |   |    | В    |    |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
| p(oj)                                         | 1.00       | 1.00       |
| v(il), Volume for stream 2 or 5               | 75         | 125        |
| v(i2), Volume for stream 3 or 6               | 0          | 0          |
| s(il), Saturation flow rate for stream 2 or 5 | 1700       | 1700       |
| s(i2), Saturation flow rate for stream 3 or 6 | 1700       | 1700       |
| P*(oj)                                        | 1.00       | 1.00       |
| d(M,LT), Delay for stream 1 or 4              | 8.5        | 8.3        |
| N, Number of major street through lanes       | 1          | 1          |
| d(rank,1) Delay for stream 2 or 5             | 0.0        | 0.0        |

\_TWO-WAY STOP CONTROL SUMMARY\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour U.S. 19 & SR 121 Intersection: Jurisdiction: FDOT District 2 Units: U. S. Customary Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 2 SR 121 East/West Street: North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ Major Street: Approach Northbound Southbound 2 5 Movement 1 3 4 6  $\mathbf{L}$ Т R · L т R Volume 192 416 20 170 Peak-Hour Factor, PHF 0.97 0.97 0.97 0.97 Hourly Flow Rate, HFR 197 20 428 175 Percent Heavy Vehicles - --4 Median Type/Storage Raised curb / 2 RT Channelized? No Lanes 2 1 1 2 Configuration т R т L Upstream Signal? No No Minor Street: Approach Westbound Eastbound Movement 7 8 9 10 12 11 L т R L т R Volume 9 121 Peak Hour Factor, PHF 0.97 0.97 Hourly Flow Rate, HFR 124 9 Percent Heavy Vehicles 1 1 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage Lanes 1 1 Configuration R  $\mathbf{L}$ Delay, Queue Length, and Level of Service Approach NB SB Westbound Eastbound Movement 1 4 7 9 · 10 8 11 12 Lane Config L L R 20 9 v (vph) 124 C(m) (vph) 939 732 960 v/c 0.02 0.17 0.01 95% queue length 0.07 0.61 0.03 Control Delay 8.9 10.9 8.8 LOS А В А Approach Delay 10.8 Approach LOS В

Phone: E-Mail: Fax:

\_TWO-WAY STOP CONTROL(TWSC) ANALYSIS\_\_\_ Analyst: KHA Agency/Co.: KHA 12/8/2008 Date Performed: Analysis Time Period: P.M. Peak Hour U.S. 19 & SR 121 Intersection: Jurisdiction: FDOT District 2 Units: U. S. Customary 2015 Peak Construction Traffic Analysis Year: Project ID: Levy County Advanced Reactor - Heavy Haul Route 2 East/West Street: SR 121 North/South Street: U.S. 19 Study period (hrs): 0.25 Intersection Orientation: NS \_Vehicle Volumes and Adjustments\_ 5 Major Street Movements 1 2 3 4 6 L т R т L R Volume 20 170 192 416 Peak-Hour Factor, PHF 0.97 0.97 0.97 0.97 Peak-15 Minute Volume 107 44 49 5 Hourly Flow Rate, HFR 197 428 20 175 Percent Heavy Vehicles -----\_ \_ 4 Median Type/Storage Raised curb / 2 RT Channelized? No Lanes 2 1 1 2 Configuration т R L т Upstream Signal? No No Minor Street Movements 7 8 9 10 11 12 L т R т  $\mathbf{L}$ R Volume 121 9 Peak Hour Factor, PHF 0.97 0.97 Peak-15 Minute Volume 31 2 Hourly Flow Rate, HFR 124 9 Percent Heavy Vehicles 1 1 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage RT Channelized? No Lanes 1 1 Configuration R  $\mathbf{L}$ \_Pedestrian Volumes and Adjustments\_ Movements 13 14 15 16 Flow (ped/hr) 0 0 0 0 Lane Width (ft) 12.0 12.0 12.0 12.0 Walking Speed (ft/sec) 4.0 4.0 4.0 4.0 Percent Blockage 0 0 0 0

|                                                                                                                                            |                                                                                              | Prog.<br>Flow<br>vph                              | Sat<br>Flow<br>vph                                                                                           | Arriv<br>Type                                                                                                | $\mathbf{T}_{i}^{2}$                           |                                                                                                    | Cycle<br>Length<br>sec                  | Prog.<br>Speed<br>mph                   | Distance<br>to Signal<br>feet                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|
|                                                                                                                                            | left-Turn<br>Through                                                                         |                                                   |                                                                                                              |                                                                                                              |                                                |                                                                                                    |                                         |                                         |                                                 |
|                                                                                                                                            | eft-Turn<br>Through                                                                          |                                                   |                                                                                                              |                                                                                                              |                                                |                                                                                                    |                                         |                                         |                                                 |
| Works                                                                                                                                      | heet 3-Data                                                                                  | for Co                                            | omputing                                                                                                     | Effect                                                                                                       | of De                                          | lay to                                                                                             | Major S                                 | Street V                                | ehicles                                         |
|                                                                                                                                            |                                                                                              |                                                   |                                                                                                              |                                                                                                              | I                                              | loveme                                                                                             | nt 2                                    | Moveme                                  | nt 5                                            |
| Sat f<br>Sat f<br>Numbe                                                                                                                    | ed ln volume<br>low rate, ma<br>low rate, ma<br>er of major s<br>sheet 4-Crit.               | ajor th<br>ajor ru<br>street                      | n vehicl<br>t vehicl<br>through                                                                              | es:<br>es:<br>lanes:                                                                                         | n Time                                         | Calcu                                                                                              | lation                                  |                                         |                                                 |
|                                                                                                                                            | Cal Gap Cal                                                                                  |                                                   |                                                                                                              |                                                                                                              |                                                |                                                                                                    |                                         |                                         |                                                 |
| Movem                                                                                                                                      |                                                                                              |                                                   | 4                                                                                                            | 7                                                                                                            | 8                                              | 9                                                                                                  | 10                                      | 11                                      | 12                                              |
| 10000                                                                                                                                      |                                                                                              | Ĺ                                                 | L                                                                                                            | L                                                                                                            | т                                              | R                                                                                                  | L                                       | T                                       |                                                 |
|                                                                                                                                            |                                                                                              | Ц                                                 | ₩.,                                                                                                          | 1                                                                                                            | 1                                              | A                                                                                                  | 1                                       | T                                       | R                                               |
| t(c,k                                                                                                                                      |                                                                                              |                                                   | 4.1                                                                                                          | 7.5                                                                                                          |                                                | 6.2                                                                                                |                                         |                                         |                                                 |
| t(c,k<br>t(c,h<br>P(hv)                                                                                                                    | iv)                                                                                          | 2.00                                              |                                                                                                              |                                                                                                              | 2.00                                           | · · · ·                                                                                            | 2.00                                    | 2.00                                    | 2.00                                            |
| t(c,h<br>P(hv)<br>t(c,g                                                                                                                    | 1)                                                                                           |                                                   | 4.1 2.00                                                                                                     | 7.5<br>2.00<br>1<br>0.20                                                                                     | 2.00                                           | 6.2<br>2.00<br>1<br>0.10                                                                           | 2.00                                    | 2.00                                    | 2.00                                            |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce                                                                                                           | nv)<br>g)<br>ent Grade                                                                       |                                                   | 4.1<br>2.00<br>4                                                                                             | 7.5<br>2.00<br>1<br>0.20<br>0.00                                                                             | 2.00                                           | 6.2<br>2.00<br>1<br>0.10<br>0.00                                                                   | 2.00                                    | 2.00                                    | 2.00                                            |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,1                                                                                                  | uv)<br>ent Grade<br>.t)                                                                      | 2.00                                              | 4.1<br>2.00<br>4<br>0.00                                                                                     | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70                                                                     | 2.00<br>0.20<br>0.00                           | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00                                                           | 2.00<br>0.20<br>0.00                    | 2.00<br>0.20<br>0.00                    | 2.00<br>0.10<br>0.00                            |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce                                                                                                           | nv)<br>ent Grade<br>.t)<br>?): 1-stage                                                       | 2.00                                              | 4.1<br>2.00<br>4<br>0.00<br>0.00                                                                             | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00                                                             | 2.00<br>0.20<br>0.00<br>0.00                   | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00                                                   | 2.00<br>0.20<br>0.00<br>0.00            | 2.00<br>0.20<br>0.00<br>0.00            | 2.00<br>0.10<br>0.00<br>0.00                    |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,1<br>t(c,1                                                                                         | nv)<br>ent Grade<br>.t)<br>?): 1-stage<br>2-stage                                            | 2.00<br>0.00<br>0.00                              | 4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00                                                                     | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00                                                     | 2.00<br>0.20<br>0.00                           | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00<br>0.00                                           | 2.00<br>0.20<br>0.00                    | 2.00<br>0.20<br>0.00                    | 2.00<br>0.10<br>0.00                            |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,1                                                                                                  | nv)<br>ent Grade<br>.t)<br>?): 1-stage                                                       | 2.00<br>0.00<br>0.00                              | 4.1<br>2.00<br>4<br>0.00<br>0.00                                                                             | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00                                                             | 2.00<br>0.20<br>0.00<br>0.00                   | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00                                                   | 2.00<br>0.20<br>0.00<br>0.00            | 2.00<br>0.20<br>0.00<br>0.00            | 2.00<br>0.10<br>0.00<br>0.00                    |
| t(c,h)<br>P(hv)<br>t(c,g<br>Perce<br>t(3,1<br>t(c,T<br>t(c,T<br>t(c)                                                                       | ov)<br>ent Grade<br>.t)<br>C): 1-stage<br>2-stage<br>1-stage<br>2-stage<br>ow-Up Time C      | 2.00<br>0.00<br>0.00                              | 4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2                                                | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8                                       | 2.00<br>0.20<br>0.00<br>0.00<br>1.00           | $\begin{array}{c} 6.2\\ 2.00\\ 1\\ 0.10\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 6.2\\ 6.2\\ 6.2 \end{array}$ | 2.00<br>0.20<br>0.00<br>0.00<br>1.00    | 2.00<br>0.20<br>0.00<br>0.00<br>1.00    | 2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,1<br>t(c,T<br>t(c)                                                                                 | ov)<br>ent Grade<br>.t)<br>C): 1-stage<br>2-stage<br>1-stage<br>2-stage<br>ow-Up Time C      | 2.00<br>0.00<br>0.00                              | 4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2                                                       | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8                                              | 2.00<br>0.20<br>0.00<br>0.00                   | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00<br>0.00<br>6.2                                    | 2.00<br>0.20<br>0.00<br>0.00            | 2.00<br>0.20<br>0.00<br>0.00            | 2.00<br>0.10<br>0.00<br>0.00                    |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,l<br>t(c,T<br>t(c)<br>Follc<br>Movem                                                               | nv)<br>ent Grade<br>t)<br>c): 1-stage<br>2-stage<br>2-stage<br>ow-Up Time Conent             | 2.00<br>0.00<br>0.00<br>alculat                   | 4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4<br>L                             | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L                             | 2.00<br>0.20<br>0.00<br>0.00<br>1.00           | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00<br>6.2<br>6.2<br>9<br>R                           | 2.00<br>0.20<br>0.00<br>0.00<br>1.00    | 2.00<br>0.20<br>0.00<br>0.00<br>1.00    | 2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,1<br>t(c,T<br>t(c)<br>Follc<br>Moven<br>t(f,k                                                      | <pre>by) ent Grade t) f): 1-stage 2-stage 1-stage 2-stage bw-Up Time Comment base)</pre>     | 2.00<br>0.00<br>0.00<br>alculat<br>1<br>L         | 4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4<br>L<br>2.20                     | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L<br>3.50                     | 2.00<br>0.20<br>0.00<br>0.00<br>1.00           | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00<br>6.2<br>6.2<br>9<br>R<br>3.30                   | 2.00<br>0.20<br>0.00<br>1.00<br>10<br>L | 2.00<br>0.20<br>0.00<br>1.00<br>11<br>T | 2.00<br>0.10<br>0.00<br>0.00<br>0.00<br>12<br>R |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,l<br>t(c,T<br>t(c)<br>Follc<br>Movem                                                               | <pre>by) ent Grade t) f): 1-stage 2-stage 1-stage 2-stage bw-Up Time Consent base) IV)</pre> | 2.00<br>0.00<br>0.00<br>alculat                   | 4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4<br>L                             | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L                             | 2.00<br>0.20<br>0.00<br>0.00<br>1.00           | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00<br>6.2<br>6.2<br>9<br>R                           | 2.00<br>0.20<br>0.00<br>0.00<br>1.00    | 2.00<br>0.20<br>0.00<br>0.00<br>1.00    | 2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,1<br>t(c,T<br>t(c,T<br>t(c)<br>Follc<br>Moven<br>t(f,k<br>t(f,F                                    | <pre>by) ent Grade t) f): 1-stage 2-stage 1-stage 2-stage bw-Up Time Consent base) IV)</pre> | 2.00<br>0.00<br>0.00<br>alculat<br>1<br>L         | 4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4<br>L<br>2.20<br>1.00             | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L<br>3.50<br>1.00             | 2.00<br>0.20<br>0.00<br>0.00<br>1.00           | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00<br>6.2<br>6.2<br>9<br>R<br>3.30<br>1.00           | 2.00<br>0.20<br>0.00<br>1.00<br>10<br>L | 2.00<br>0.20<br>0.00<br>1.00<br>11<br>T | 2.00<br>0.10<br>0.00<br>0.00<br>0.00<br>12<br>R |
| t(c,h<br>P(hv)<br>t(c,g<br>Perce<br>t(3,1<br>t(c,T<br>t(c,T<br>t(c,T<br>t(c,T<br>t(c,T<br>t(c)<br>Moven<br>t(f,k<br>t(f,F<br>P(HV)<br>t(f) | <pre>by) ent Grade t) f): 1-stage 2-stage 1-stage 2-stage bw-Up Time Consent base) IV)</pre> | 2.00<br>0.00<br>0.00<br>alculat<br>1<br>L<br>1.00 | 4.1<br>2.00<br>4<br>0.00<br>0.00<br>0.00<br>4.2<br>4.2<br>4.2<br>tions<br>4<br>L<br>2.20<br>1.00<br>4<br>2.2 | 7.5<br>2.00<br>1<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L<br>3.50<br>1.00<br>1<br>3.5 | 2.00<br>0.20<br>0.00<br>1.00<br>8<br>T<br>1.00 | 6.2<br>2.00<br>1<br>0.10<br>0.00<br>0.00<br>0.00<br>6.2<br>6.2<br>9<br>R<br>3.30<br>1.00<br>1      | 2.00<br>0.20<br>0.00<br>1.00<br>10<br>L | 2.00<br>0.20<br>0.00<br>1.00<br>11<br>T | 2.00<br>0.10<br>0.00<br>0.00<br>0.00<br>12<br>R |

Movement 2

V(t) V(l,prot) V(t) V(l,prot)

Movement 5

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P g(q1) g(q2) g(q)

| Computation 2-F | roport  | ion of T | WSC Inte | ersecti     |              | ne bloc<br>nent 2 |       | Movemen | + 5    |
|-----------------|---------|----------|----------|-------------|--------------|-------------------|-------|---------|--------|
|                 |         |          |          | V (         |              | /(l,prot          |       |         | ,prot) |
|                 |         |          |          |             |              |                   |       |         |        |
| alpha<br>beta   |         |          |          |             |              |                   |       |         |        |
| Travel time, t( | a) (se  | c)       |          |             |              |                   |       |         |        |
| Smoothing Facto |         | -,       |          |             |              |                   |       |         |        |
| Proportion of c |         | ting flo | w.f      |             |              |                   |       |         |        |
| Max platooned f |         |          | ., -     |             |              |                   |       |         |        |
| Min platooned f |         |          |          |             |              |                   |       |         |        |
| Duration of blo |         |          | (n)      |             |              |                   |       |         |        |
| Proportion time |         |          | (2)      |             | 0 0          | 000               |       | 0.000   |        |
|                 |         |          |          |             |              |                   |       |         |        |
| Computation 3-E | Platoon | Event P  | eriods   | Res         | ılt          |                   |       |         |        |
| p(2)            |         |          |          | 0.0         |              |                   |       |         |        |
| p(5)            |         |          |          | 0.0         | 00           |                   |       |         |        |
| p(dom)          |         |          |          |             |              |                   |       |         |        |
| p(subo)         |         |          |          |             |              |                   |       |         |        |
| Constrained or  | uncons  | trained? |          |             |              |                   |       |         |        |
|                 |         |          |          |             |              |                   |       |         |        |
| Proportion      |         |          | `        |             | (0)          |                   |       |         |        |
| unblocked       |         | (1       |          |             | (2)          | ~· .              | (3)   |         |        |
| for minor       |         | _        | -stage   | <b>-</b> .  |              | Stage Pi          |       | -       |        |
| movements, p(x) |         | Proc     | ess      | Sta         | ge I         |                   | Stage | II      |        |
| p(1)            |         |          |          |             |              | <del>,</del>      |       |         |        |
| p(4)            |         |          |          |             |              |                   |       |         |        |
| p(7)            |         |          |          |             |              |                   |       |         |        |
| p(8)            |         |          |          |             |              |                   |       |         |        |
| p(9)            |         |          |          |             |              |                   |       |         |        |
| p(10)           |         |          |          |             |              |                   |       |         |        |
| p(11)           |         |          |          |             |              |                   |       |         |        |
| p(12)           |         |          |          |             |              |                   |       |         |        |
| D(12)           |         |          |          |             |              |                   |       |         |        |
| Computation 4 a |         |          |          |             |              |                   |       |         |        |
| Single-Stage Pr | ocess   |          |          |             |              |                   |       |         |        |
| Movement        |         | 1        | 4        | 7           | 8            | 9                 | 10    | 11      | 12     |
|                 |         | L        | L        | L           | $\mathbf{T}$ | R                 | L     | т       | R      |
|                 |         |          | <u> </u> | 204         |              | 0.0               |       |         |        |
| Vc,x            |         |          | 625      | 324         |              | 98                |       |         |        |
| S               |         |          |          |             |              |                   |       |         |        |
| Px              |         |          |          |             |              |                   |       |         |        |
| V c,u,x         |         |          |          |             |              |                   |       |         |        |
| C r,x           |         |          |          |             |              |                   |       |         | -      |
| C plat,x        |         |          |          |             |              |                   |       |         |        |
| Two-Stage Proce | ess     |          |          | <del></del> |              |                   |       |         |        |
| _               |         | 7        |          | 8           |              | 10                |       | 1       | 1      |
| 5               | Stage1  | Stage2   | Stage1   | Stage       | 2 St         | agel S            | tage2 | Stage1  | Stage2 |
| V(c,x)          | L97     | 127      |          |             |              |                   |       |         | ·····  |
| S               |         | 3000     |          |             |              |                   |       |         |        |
| P(x)            |         |          |          |             |              |                   |       |         |        |
| V(c,u,x)        |         |          |          |             |              |                   |       |         |        |
|                 |         |          |          |             |              |                   |       |         |        |

C(plat,x)

| Step 1: RT from Minor St.                                   | 9     | 12          |
|-------------------------------------------------------------|-------|-------------|
| Conflicting Flows                                           | 98    |             |
| Potential Capacity                                          | 960   | •           |
| Pedestrian Impedance Factor                                 | 1.00  | 1.00        |
| Movement Capacity                                           | 960   | • .         |
| Probability of Queue free St.                               | 0.99  | 1.00        |
| Step 2: LT from Major St.                                   | 4     | 1           |
| Conflicting Flows                                           | 625   |             |
| Potential Capacity                                          | 939   | •           |
| Pedestrian Impedance Factor                                 | 1.00  | 1.00        |
| Movement Capacity                                           | 939   |             |
| Probability of Queue free St.                               | 0.98  | 1.00        |
| Maj L-Shared Prob Q free St.                                | , -   |             |
| Step 3: TH from Minor St.                                   | 8     | 11          |
| Conflicting Flows                                           | · · · |             |
| Potential Capacity                                          |       |             |
| Pedestrian Impedance Factor                                 | 1.00  | 1.00        |
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity | 0.98  | 0.98        |
| Probability of Queue free St.                               | 1.00  | 1.00        |
| Step 4: LT from Minor St.                                   | 7     | 10          |
| Conflicting Flows                                           | 324   | · · · · · · |
| Potential Capacity                                          | 647   |             |
| Pedestrian Impedance Factor                                 | 1.00  | 1.00        |
| Maj. L, Min T Impedance factor                              |       | 0.98        |
| Maj. L, Min T Adj. Imp Factor.                              |       | 0.98        |
| Cap. Adj. factor due to Impeding mvmnt                      | 0.98  | 0.97        |
| Movement Capacity                                           | 633   | *           |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8    | 11                                    |
|----------------------------------------|------|---------------------------------------|
| Part 1 - First Stage                   |      | · · · · · · · · · · · · · · · · · · · |
| Conflicting Flows                      |      |                                       |
| Potential Capacity                     | 742  | 729                                   |
| Pedestrian Impedance Factor            | 1.00 | 1.00                                  |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 0.98                                  |
| Movement Capacity                      | 742  | 713                                   |
| Probability of Queue free St.          | 1.00 | 1.00                                  |
| Part 2 - Second Stage                  |      |                                       |
| Conflicting Flows                      |      |                                       |
| Potential Capacity                     | 729  | 480                                   |
| Pedestrian Impedance Factor            | 1.00 | 1.00                                  |
| Cap. Adj. factor due to Impeding mvmnt | 0.98 | 1.00                                  |
| Movement Capacity                      | 713  | 480                                   |

Conflicting Flows

| Potential Capacity                                          |      |      |
|-------------------------------------------------------------|------|------|
| Pedestrian Impedance Factor                                 | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity | 0.98 | 0.98 |
| Result for 2 stage process:                                 |      |      |
| a                                                           | 0.95 | 0.95 |
| У                                                           |      |      |
| Ct                                                          |      |      |
| Probability of Queue free St.                               | 1.00 | 1.00 |
| Step 4: LT from Minor St.                                   | 7    | 10   |
| Part 1 - First Stage                                        |      |      |
| Conflicting Flows                                           | 197  |      |
| Potential Capacity                                          | 820  | 806  |
| Pedestrian Impedance Factor                                 | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt                      | 1.00 | 0.98 |
| Movement Capacity                                           | 820  | 789  |
| Part 2 - Second Stage                                       |      |      |
| Conflicting Flows                                           | 127  |      |
| Potential Capacity                                          | 888  | 921  |
| Pedestrian Impedance Factor                                 | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt                      | 0.98 | 0.99 |
| Movement Capacity                                           | 869  | 912  |
| Part 3 - Single Stage                                       |      |      |
| Conflicting Flows                                           | 324  |      |
| Potential Capacity                                          | 647  |      |
| Pedestrian Impedance Factor                                 | 1.00 | 1.00 |
| Maj. L, Min T Impedance factor                              |      | 0.98 |
| Maj. L, Min T Adj. Imp Factor.                              |      | 0.98 |
| Cap. Adj. factor due to Impeding mvmnt                      | 0.98 | 0.97 |
| Movement Capacity                                           | 633  |      |
| Results for Two-stage process:                              |      |      |
| a                                                           | 0.95 | 0.95 |
| У                                                           | 0.79 |      |
| Ct                                                          | 732  |      |
|                                                             | 152  |      |

#### Worksheet 8-Shared Lane Calculations

| Movement                                              | 7            | 8 | 9   | 10 | 11 | 12 |
|-------------------------------------------------------|--------------|---|-----|----|----|----|
|                                                       | $\mathbf{L}$ | T | R   | L  | Т  | R  |
| Volume (vph)                                          | 124          |   | 9   |    |    |    |
| Movement Capacity (vph)<br>Shared Lane Capacity (vph) | 732          |   | 960 |    |    |    |

## Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement        | 7   | 8 | 9   | 10    | 11 | 12 |
|-----------------|-----|---|-----|-------|----|----|
|                 | L   | Ţ | R   | L     | Т  | R  |
| C sep           | 732 |   | 960 | ····· |    |    |
| C sep<br>Volume | 124 |   | 9   |       |    |    |
| Delay           |     |   |     |       |    |    |
| Q sep           |     |   |     |       |    |    |

Q sep +1

round (Qsep +1)

n max C sh SUM C sep n C act

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10 | 11 | 12 |
|------------------|---|------|------|------|------|----|----|----|
| Lane Config      |   | L    | L    |      | R    |    |    |    |
| v (vph)          |   | 20   | 124  |      | 9    |    |    |    |
| C(m) (vph)       |   | 939  | 732  |      | 960  |    |    |    |
| v/c              |   | 0.02 | 0.17 |      | 0.01 |    |    |    |
| 95% queue length |   | 0.07 | 0.61 |      | 0.03 |    |    |    |
| Control Delay    |   | 8.9  | 10.9 |      | 8.8  |    |    |    |
| LOS              |   | A    | В    |      | А    |    |    |    |
| Approach Delay   |   |      |      | 10.8 |      |    |    |    |
| Approach LOS     |   |      |      | В    |      |    |    |    |

Worksheet 11-Shared Major LT Impedance and Delay

Movement 2Movement 5p(oj)1.000.98v(i1), Volume for stream 2 or 51.000.98v(i2), Volume for stream 3 or 655s(i1), Saturation flow rate for stream 2 or 556s(i2), Saturation flow rate for stream 3 or 678.9P\*(oj)08.98.9N, Number of major street through lanes8.9d(rank,1) Delay for stream 2 or 55

Analyst: KHAInter.: U.S. 19 & CR 40Agency: KHAArea Type: All other areasDate: 12/8/2008Jurisd: FDOT District 2Period: P.M. Peak HourYear : 2015 Peak Construction TrafficProject ID: Levy County Advanced Reactor - Heavy Haul Route 2E/W St: CR 40/Follow That Dream PkwyN/S St: U.S. 19

|                                                                                                                  | Eas                                                                                    | stbound                                                                                        | Westh                                                       | bound                                                | Nor                                                           | thbou                                                           | nd                                    | Sou                                    | thbo    | und | - 1  |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|----------------------------------------|---------|-----|------|
|                                                                                                                  | L                                                                                      | TR                                                                                             | L I                                                         | r R                                                  | L                                                             | т                                                               | R                                     | L                                      | т       | R   |      |
| No. Lane                                                                                                         | es   0                                                                                 | 1 1                                                                                            | 0                                                           | 1 1                                                  | _                                                             | 2                                                               | 0                                     | 1                                      | 2       | 0   |      |
| LGConfig                                                                                                         |                                                                                        |                                                                                                | U                                                           | LT R                                                 |                                                               | Z<br>TR                                                         | · · ·                                 | Ľ                                      | Z<br>TR | U   |      |
| Volume                                                                                                           |                                                                                        | 1                                                                                              | 71 61                                                       |                                                      |                                                               |                                                                 | 100                                   |                                        |         | 20  |      |
|                                                                                                                  | 27                                                                                     |                                                                                                |                                                             |                                                      | 1                                                             |                                                                 |                                       | 124                                    | 1209    | 30  |      |
| Lane Wid                                                                                                         |                                                                                        | 12.0 12.0                                                                                      | 12                                                          | 2.0 12.0                                             | 12.0                                                          |                                                                 |                                       | 12.0                                   | 12.0    | _   | 1    |
| RTOR Vol                                                                                                         | • _  ,                                                                                 | 24                                                                                             |                                                             | 19                                                   | 1                                                             |                                                                 | 33                                    |                                        |         | 5   |      |
| Duration                                                                                                         | 0.25                                                                                   | Area I                                                                                         |                                                             | ll other<br>al Opera                                 |                                                               |                                                                 |                                       |                                        |         |     |      |
| Phase Co                                                                                                         | mbination                                                                              | n 1 2                                                                                          | Bigin                                                       | 4                                                    | <u></u>                                                       | 5                                                               | 6                                     | 7                                      |         | 8   |      |
| EB Left                                                                                                          | :                                                                                      | А                                                                                              |                                                             | NB                                                   | Left                                                          | А                                                               |                                       |                                        |         |     |      |
| Thru                                                                                                             | L                                                                                      | A                                                                                              |                                                             | Ì                                                    | Thru                                                          |                                                                 | А                                     |                                        |         |     |      |
| Righ                                                                                                             | it                                                                                     | A                                                                                              |                                                             |                                                      | Right                                                         |                                                                 | A                                     |                                        |         |     |      |
| Peds                                                                                                             |                                                                                        |                                                                                                |                                                             |                                                      | Peds                                                          |                                                                 |                                       |                                        |         |     |      |
| WB Left                                                                                                          |                                                                                        | А                                                                                              |                                                             | SB                                                   |                                                               | А                                                               |                                       |                                        |         |     |      |
| Thru                                                                                                             |                                                                                        | A                                                                                              |                                                             |                                                      | Thru                                                          | ~*                                                              | А                                     |                                        |         |     |      |
| Righ                                                                                                             | -                                                                                      | A                                                                                              |                                                             |                                                      | Right                                                         |                                                                 | A                                     |                                        |         |     |      |
| Peds                                                                                                             |                                                                                        |                                                                                                |                                                             |                                                      | Peds                                                          |                                                                 | 11                                    |                                        |         |     |      |
| NB Righ                                                                                                          |                                                                                        |                                                                                                |                                                             | EB                                                   |                                                               |                                                                 |                                       |                                        |         |     |      |
| SB Righ                                                                                                          |                                                                                        |                                                                                                |                                                             | WB                                                   |                                                               |                                                                 |                                       |                                        |         |     |      |
| SB RIGH<br>Green                                                                                                 | 1.                                                                                     | 9.5                                                                                            |                                                             | I MR                                                 | Right                                                         |                                                                 | 25.5                                  |                                        |         |     |      |
|                                                                                                                  |                                                                                        | 2.5                                                                                            |                                                             |                                                      |                                                               | 10.0                                                            | ∠⊃.⊃                                  |                                        |         |     |      |
| VOLLETT                                                                                                          |                                                                                        | 4 0                                                                                            |                                                             |                                                      |                                                               |                                                                 | 4 0                                   |                                        |         |     |      |
|                                                                                                                  |                                                                                        | 4.0                                                                                            |                                                             |                                                      |                                                               | 4.0                                                             | 4.0                                   |                                        |         |     |      |
|                                                                                                                  |                                                                                        | 4.0                                                                                            |                                                             |                                                      |                                                               | 4.0<br>1.0                                                      | 1.0                                   |                                        | 60.0    |     | sec  |
|                                                                                                                  |                                                                                        | 1.0<br>Intersec                                                                                | tion Pe                                                     | erforman                                             | ce Summ                                                       | 4.0<br>1.0<br>Cyc                                               | 1.0<br>le Len                         |                                        | 60.0    |     | sec  |
| All Red                                                                                                          | Lane                                                                                   | 1.0                                                                                            | tion Pe<br>Rat:                                             |                                                      | ce Summ<br>Lane                                               | 4.0<br>1.0<br>Cyc<br>ary                                        | 1.0<br>le Len                         |                                        |         |     | sec  |
| All Red                                                                                                          | Lane<br>Group                                                                          | 1.0<br>Intersec                                                                                |                                                             |                                                      | Lane                                                          | 4.0<br>1.0<br>Cyc<br>ary<br>Group                               | 1.0<br>le Len<br>App                  | gth:                                   |         |     | sec  |
| All Red<br><br>Appr/<br>Lane                                                                                     |                                                                                        | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate                                                        |                                                             |                                                      |                                                               | 4.0<br>1.0<br>Cyc<br>ary<br>Group                               | 1.0<br>le Len<br>App                  | gth:                                   | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp                                                                                  | Group<br>Capacity                                                                      | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate                                                        | Rat                                                         | ios                                                  | Lane                                                          | 4.0<br>1.0<br>Cyc<br>ary<br>Group                               | 1.0<br>le Len<br>App                  | gth:<br>proach                         | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun                                                                      | Group<br>Capacity                                                                      | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate                                                        | Rat                                                         | ios                                                  | Lane                                                          | 4.0<br>1.0<br>Cyc<br>ary<br>Group                               | 1.0<br>le Len<br>App                  | gth:<br>proach<br>y LOS                | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT                                                                | Group<br>Capacity<br>nd<br>287                                                         | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640                                         | Rat:<br>                                                    | ios<br><br>g/C<br>0.17                               | Lane<br>Delay<br>22.6                                         | 4.0<br>1.0<br>Cyc<br>ary<br>Group<br>LOS                        | 1.0<br>le Len<br>App<br>Dela          | gth:<br>proach<br>y LOS                | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R                                                           | Group<br>Capacity<br>nd<br>287<br>277                                                  | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)                                                 | Rat:<br>v/c                                                 | ios<br>g/C                                           | Lane<br><br>Delay                                             | 4.0<br>1.0<br>Cyc<br>ary<br>Group                               | 1.0<br>le Len<br>App<br>Dela          | gth:<br>proach<br>y LOS                | ב       |     | sec  |
| Lane<br>Grp<br>Eastboun<br>LT<br>R<br>Westboun                                                                   | Group<br>Capacity<br>nd<br>287<br>277<br>nd                                            | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583                                 | Rat:<br>v/c                                                 | 0.17<br>0.17                                         | Lane<br><br>Delay<br>22.6<br>21.7                             | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C                     | 1.0<br>le Len<br>App<br>Dela<br>22.3  | gth:<br>proach<br>y LOS<br>C           | ב       |     | Seci |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R<br>Westboun<br>LT                                         | Group<br>Capacity<br>nd<br>287<br>277<br>nd<br>253                                     | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583<br>1444                         | Rat:<br>v/c<br>0.37<br>0.23<br>0.56                         | ios<br>g/C<br>0.17<br>0.17<br>0.17                   | Lane<br>                                                      | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C                     | 1.0<br>le Len<br>App<br>Dela          | gth:<br>proach<br>y LOS<br>C           | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R<br>Westboun<br>LT<br>R                                    | Group<br>Capacity<br>ad<br>287<br>277<br>ad<br>253<br>277                              | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583                                 | Rat:<br>v/c                                                 | 0.17<br>0.17                                         | Lane<br><br>Delay<br>22.6<br>21.7                             | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C                     | 1.0<br>le Len<br>App<br>Dela<br>22.3  | gth:<br>proach<br>y LOS<br>C           | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R<br>Westboun<br>LT<br>R<br>Northbou                        | Group<br>Capacity<br>ad<br>287<br>277<br>ad<br>253<br>277<br>and                       | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583<br>1444<br>1583                 | Rat:<br>v/c<br>0.37<br>0.23<br>0.56<br>0.15                 | 0.17<br>0.17<br>0.17<br>0.17<br>0.17                 | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2                 | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C<br>C                | 1.0<br>le Len<br>App<br>Dela<br>22.3  | gth:<br>proach<br>y LOS<br>C           | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R<br>Westboun<br>LT<br>R<br>Northbou<br>L                   | Group<br>Capacity<br>id<br>287<br>277<br>id<br>253<br>277<br>ind<br>321                | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583<br>1444<br>1583<br>1752         | Rat:<br>v/c<br>0.37<br>0.23<br>0.56<br>0.15<br>0.41         | 0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.18         | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5         | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C<br>C<br>C           | 1.0<br>le Len<br>Dela<br>22.3<br>24.4 | gth:<br>roach<br>y LOS<br>C            | ב       |     | Sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R<br>Westboun<br>LT<br>R<br>Northbou<br>L                   | Group<br>Capacity<br>ad<br>287<br>277<br>ad<br>253<br>277<br>and                       | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583<br>1444<br>1583                 | Rat:<br>v/c<br>0.37<br>0.23<br>0.56<br>0.15                 | 0.17<br>0.17<br>0.17<br>0.17<br>0.17                 | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2                 | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C<br>C                | 1.0<br>le Len<br>App<br>Dela<br>22.3  | gth:<br>roach<br>y LOS<br>C            | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R<br>Westboun<br>LT<br>R<br>Northbou<br>L<br>TR             | Group<br>Capacity<br>ad<br>287<br>277<br>ad<br>253<br>277<br>and<br>321<br>1516        | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583<br>1444<br>1583<br>1752         | Rat:<br>v/c<br>0.37<br>0.23<br>0.56<br>0.15<br>0.41         | 0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.18         | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5         | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C<br>C<br>C           | 1.0<br>le Len<br>Dela<br>22.3<br>24.4 | gth:<br>roach<br>y LOS<br>C            | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R                                                           | Group<br>Capacity<br>ad<br>287<br>277<br>ad<br>253<br>277<br>and<br>321<br>1516        | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583<br>1444<br>1583<br>1752         | Rat:<br>v/c<br>0.37<br>0.23<br>0.56<br>0.15<br>0.41         | 0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.18         | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5         | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C<br>C<br>C           | 1.0<br>le Len<br>Dela<br>22.3<br>24.4 | gth:<br>roach<br>y LOS<br>C            | ב       |     | sec  |
| All Red<br>Appr/<br>Lane<br>Grp<br>Eastboun<br>LT<br>R<br>Westboun<br>LT<br>R<br>Northbou<br>L<br>TR<br>Southbou | Group<br>Capacity<br>ad<br>287<br>277<br>ad<br>253<br>277<br>and<br>321<br>1516<br>and | 1.0<br>Intersec<br>Adj Sat<br>Flow Rate<br>(s)<br>1640<br>1583<br>1444<br>1583<br>1752<br>3433 | Rat:<br>v/c<br>0.37<br>0.23<br>0.56<br>0.15<br>0.41<br>0.34 | 0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.18<br>0.44 | Lane<br>Delay<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5<br>11.1 | 4.0<br>1.0<br>Cyc<br>Group<br>LOS<br>C<br>C<br>C<br>C<br>C<br>B | 1.0<br>le Len<br>Dela<br>22.3<br>24.4 | gth:<br>proach<br>y LOS<br>C<br>C<br>B | ב       |     | sec  |

HCS+: Signalized Intersections Release 5.3

Phone: E-Mail: Fax:

\_OPERATIONAL ANALYSIS\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & CR 40 Area Type: All other areas Jurisdiction: FDOT District 2 Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 2 E/W St: CR 40/Follow That Dream Pkwy N/S St: U.S. 19

|                        |      |       |        | <u></u> r | JOLUMI | e data |       |       |      |      |        |      |
|------------------------|------|-------|--------|-----------|--------|--------|-------|-------|------|------|--------|------|
|                        | Eas  | stbou | nd     | Wes       | stbou  | nd     | No:   | rthbo | und  | So   | uthboi | ınd  |
|                        | ь    | т     | R      | L         | т      | R      | L     | Т     | R    | L    | т      | R    |
| Volume                 | 27   | 71    | 83     | 71        | 61     | 58     | 123   | 414   | 106  | 124  | 1209   | 30   |
| % Heavy Veh            | 2    | 2     | 2      | 2         | 2      | 2      | 3     | 3     | 3    | 3    | 3      | 3    |
| PHF                    | 0.94 | 0.94  | 0.94   | 0.94      | 0.94   | 0.94   | 0.94  | 0.94  | 0.94 | 0.94 | 0.94   | 0.94 |
| PK 15 Vol<br>Hi Ln Vol | 7    | 19    | 22     | 19<br>    | 16     | 15     | 33    | 110   | 28   | 33   | 322    | 8    |
| % Grade                | Ì    | 0     |        | İ.        | 0      |        | i     | 0     |      | İ    | 0      |      |
| Ideal Sat              | ĺ    | 1900  | 1900   | İ         | 1900   | 1900   | 1900  | 1900  |      | 1900 | 1900   |      |
| ParkExist              | 1    |       |        |           |        |        |       |       |      |      |        |      |
| NumPark                |      |       |        |           |        |        | 1     |       |      |      |        |      |
| No. Lanes              | 0    | 1     | 1      | 0         | 1      | 1      | 1     | 2     | 0    | 1    | 2      | 0    |
| LGConfig               |      | LT    | R      |           | LT     | R      | L     | TR    |      | L    | TR     |      |
| Lane Width             |      | 12.0  | 12.0   |           | 12.0   | 12.0   | 12.0  | 12.0  |      | 12.0 | 12.0   |      |
| RTOR Vol               | Ì    |       | 24     | ĺ         |        | 19     | İ     |       | 33   | i    |        | 5    |
| Adj Flow               | ĺ    | 105   | 63     | İ         | 141    | 41     | 131   | 518   |      | 132  | 1313   |      |
| %InSharedLn            | ĺ    |       |        | İ         |        |        | i i   |       |      | i    |        |      |
| Prop LTs               | İ    | 0.2   | 76     | İ         | 0.5    | 39     | i     | 0.0   | 00   | i    | 0.0    | 00   |
| Prop RTs               | 0    | .000  | 1.000  | j o       | .000   | 1.000  | j o   | .151  |      | j o  | .021   |      |
| Peds Bikes             | j o  |       |        | j o       |        |        | j o   |       |      | i o  |        |      |
| Buses                  | İ    | 0     | 0      | i         | 0      | 0      | 0     | 0     |      | İo   | 0      |      |
| %InProtPhase           | e    |       |        | i         |        |        | i i   |       |      | i    |        |      |
| Duration               | 0.25 |       | Area ' | Type:     | All (  | other  | areas |       |      |      |        |      |

\_OPERATING PARAMETERS\_

|              | Eastbound |      |     | We | Westbound |       | No  | Northbound |   |     | Southbound |   |  |
|--------------|-----------|------|-----|----|-----------|-------|-----|------------|---|-----|------------|---|--|
|              | L         | т    | R   | L  | T         | R     | L   | т          | R | L   | т          | R |  |
| Init Unmet   |           | 0.0  | 0.0 |    | 0.0       | 0.0   | -   | 0.0        |   | 0.0 | 0.0        |   |  |
| Arriv. Type  |           | 3    | 3   |    | 3         | 3     | 3   | 3          |   | 3   | 3          |   |  |
| Unit Ext.    |           | 3.0  | 3.0 | İ  | 3.0       | 3.0   | 3.0 | 3.0        |   | 3.0 | 3.0        | i |  |
| I Factor     |           | 1.00 | 0   | 1  | 1.00      | 0     | 1   | 1.000      | ) | 1   | 1.000      | ĺ |  |
| Lost Time    |           | 2.0  | 2.0 | }  | 2.0       | 2.0   | 2.0 | 2.0        |   | 2.0 | 2.0        | j |  |
| Ext of g     |           | 3.0  | 3.0 | 1  | 3.0       | 3.0   | 3.0 | 3.0        |   | 3.0 | 3.0        | j |  |
| Ped Min g    |           | 3.2  |     | 1  | 3.2       |       | 1   | 3.2        |   |     | 3.2        |   |  |
|              |           |      |     |    | PHAS      | E DAT | A   |            |   |     |            |   |  |
|              |           |      |     |    |           |       |     |            |   |     | · · ·      |   |  |
| Phase Combir | natic     | on 1 | 2   | 3  | 4         | :     |     | 5          | 6 | 7   | 8          |   |  |

| EB                | Left<br>Thru<br>Right<br>Peds | А<br>А<br>А       | NB | Left<br>Thru<br>Right<br>Peds | A                  | A<br>A             |
|-------------------|-------------------------------|-------------------|----|-------------------------------|--------------------|--------------------|
| WB                | Left<br>Thru<br>Right<br>Peds | A<br>A<br>A       | SB | Left<br>Thru<br>Right<br>Peds | А                  | A<br>A             |
| NB                | Right                         |                   | EB | Right                         |                    |                    |
| SB                | Right                         |                   | WB | Right                         |                    |                    |
| Gre<br>Yel<br>All |                               | 9.5<br>4.0<br>1.0 | I  |                               | 10.0<br>4.0<br>1.0 | 25.5<br>4.0<br>1.0 |

Cycle Length: 60.0 secs

| thbound     |
|-------------|
| TR          |
|             |
| 1209 30     |
| 0.94 0.94   |
| 1286 27     |
| 2 0         |
| TR          |
| 1313        |
| 0.000       |
| 021         |
| 1<br>1<br>1 |

| Saturatio | on Flow Ra | ate (see E: | xhibit 1  | 6-7 to | deteri       | mine the | adjustment | factors) |
|-----------|------------|-------------|-----------|--------|--------------|----------|------------|----------|
|           | Eastbound  | ı E         | Westbound | d      | Nort         | thbound  | Sout       | hbound   |
| LG        | LT         | R           | LT        | R      | $\mathbf{L}$ | TR       | L          | TR       |
| So        | 1900       | 1900        | 1900      | 1900   | 1900         | 1900     | 1900       | 1900     |
| Lanes O   | 1          | 1 0         | 1         | 1      | 1            | 2 0      | 1          | 2 0      |
| fW        | 1.000      | 1.000       | 1.000     | 1.000  | 1.000        | 1.000    | 1.000      | 1.000    |
| fHV       | 0.980      | 0.980       | 0.980     | 0.980  | 0.971        | 0.971    | 0.971      | 0.971    |
| fG        | 1.000      | 1.000       | 1.000     | 1.000  | 1.000        | 1.000    | 1.000      | 1.000    |
| fP        | 1.000      | 1.000       | 1.000     | 1.000  | 1.000        | 1.000    | 1.000      | 1.000    |
| fBB       | 1.000      | 1.000       | 1.000     | 1.000  | 1.000        | 1.000    | 1.000      | 1.000    |
| fA        | 1.000      | 1.000       | 1.000     | 1.000  | 1.000        | 1.000    | 1.000      | 1.000    |
| fLU       | 1.000      | 1.000       | 1.000     | 1.000  | 1.000        | 0.952    | 1.000      | 0.952    |
| fRT       | 1.000      | 0.850       | 1.000     | 0.850  |              | 0.977    |            | 0.997    |
| fLT       | 0.880      |             | 0.775     |        | 0.950        | 1.000    | 0.950      | 1.000    |
| Sec.      |            |             |           |        |              |          |            |          |
| fLpb      | 1.000      |             | 1.000     |        | 1.000        | 1.000    | 1.000      | 1.000    |
| fRpb      | 1.000      | 1.000       | 1.000     | 1.000  |              | 1.000    |            | 1.000    |
| S         | 1640       | 1583        | 1444      | 1583   | 1752         | 3433     | 1752       | 3501     |
| Sec.      |            |             |           |        |              |          |            |          |
|           |            | CA          | PACITY A  | ND LOS | WORKS        | HEET     |            |          |
| Capacity  | Analysis   | and Lane (  | Group Ca  | pacity |              |          |            |          |
|           |            | Adj         | Adj       | Sat :  | Flow         | Green    | Lane G     | roup     |
| Appr/     | Lane       | Flow Rat    | e Flow    | Rate : | Ratio        | Ratio    | Capacity   | v/c      |
| Mvmt      | Group      | (v)         | (s        | )      | (v/s)        | (g/C)    | (c)        | Ratio    |

Eastbound Prot

| • | R 0.23<br>Westbound<br>LT 0.56<br>R 0.15<br>Northbound<br>L 0.41<br>TR 0.34<br>Southbound<br>L 0.41<br>TR 0.85                                    | 0.17<br>0.17<br>0.17<br>0.18<br>0.44<br>0.18<br>0.44         | Del<br>d1<br>21.8<br>21.3<br>22.6<br>21.0<br>21.6<br>11.0<br>21.6<br>15.0 | Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | Lane<br>Grp<br>Cap<br>287<br>277<br>253<br>277<br>321<br>1516<br>321<br>1546 | Increm<br>Factor<br>k<br>0.11<br>0.11<br>0.15<br>0.11<br>0.11                         | Del<br>d2<br>0.8<br>0.4<br>2.7<br>0.2<br>0.8<br>0.1<br>0.9<br>4.7 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | Dela<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5<br>11.1<br>22.5<br>19.7 | C<br>C<br>C<br>B<br>C<br>B                                                                       | 24.4<br>13.4<br>19.9                  |             |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| • | Grp v/c<br>Eastbound<br>LT 0.37<br>R 0.23<br>Westbound<br>LT 0.56<br>R 0.15<br>Northbound<br>L 0.41<br>TR 0.34<br>Southbound<br>L 0.41<br>TR 0.85 | 0.17<br>0.17<br>0.17<br>0.17<br>0.18<br>0.44<br>0.18<br>0.44 | Del<br>d1<br>21.8<br>21.3<br>22.6<br>21.0<br>21.6<br>11.0<br>21.6<br>15.0 | Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | Lane<br>Grp<br>Cap<br>287<br>277<br>253<br>277<br>321<br>1516<br>321<br>1546 | Increm<br>Factor<br>k<br>0.11<br>0.11<br>0.15<br>0.11<br>0.11<br>0.11<br>0.11<br>0.38 | Del<br>d2<br>0.8<br>0.4<br>2.7<br>0.2<br>0.8<br>0.1<br>0.9<br>4.7 | Del<br>d3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | Dela<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5<br>11.1<br>22.5<br>19.7 | C<br>C<br>C<br>C<br>C<br>B<br>C<br>B<br>C<br>B                                                   | Delay<br>22.3<br>24.4<br>13.4<br>19.9 | C<br>C<br>B |
| • | Grp v/c<br>Eastbound<br>LT 0.37<br>R 0.23<br>Westbound<br>LT 0.56<br>R 0.15<br>Northbound<br>L 0.41<br>TR 0.34<br>Southbound<br>L 0.41            | 0.17<br>0.17<br>0.17<br>0.17<br>0.18<br>0.44<br>0.18         | Del<br>d1<br>21.8<br>21.3<br>22.6<br>21.0<br>21.6<br>11.0<br>21.6         | Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          | Lane<br>Grp<br>Cap<br>287<br>277<br>253<br>277<br>321<br>1516<br>321         | Increm<br>Factor<br>k<br>0.11<br>0.11<br>0.15<br>0.11<br>0.11<br>0.11<br>0.11         | Del<br>d2<br>0.8<br>0.4<br>2.7<br>0.2<br>0.8<br>0.1<br>0.9        | Del<br>d3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | Dela<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5<br>11.1<br>22.5         | C<br>C<br>C<br>C<br>C<br>C<br>B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | Delay<br>22.3<br>24.4<br>13.4         | C<br>C<br>B |
|   | Grp v/c<br>Eastbound<br>LT 0.37<br>R 0.23<br>Westbound<br>LT 0.56<br>R 0.15<br>Northbound<br>L 0.41<br>TR 0.34                                    | 0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.18<br>0.44         | Del<br>d1<br>21.8<br>21.3<br>22.6<br>21.0<br>21.6                         | Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                   | Lane<br>Grp<br>Cap<br>287<br>277<br>253<br>277<br>321                        | Increm<br>Factor<br>k<br>0.11<br>0.11<br>0.15<br>0.11<br>0.11                         | Del<br>d2<br>0.8<br>0.4<br>2.7<br>0.2<br>0.8                      | Del<br>d3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | Dela<br>22.6<br>21.7<br>25.4<br>21.2<br>22.5                         | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                        | Delay<br>22.3<br>24.4                 | C<br>C      |
|   | Grp v/c<br>Eastbound<br>LT 0.37<br>R 0.23<br>Westbound<br>LT 0.56<br>R 0.15<br>Northbound                                                         | 0.17<br>0.17<br>0.17<br>0.17                                 | Del<br>d1<br>21.8<br>21.3<br>22.6<br>21.0                                 | Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000                            | Lane<br>Grp<br>Cap<br>287<br>277<br>253<br>277                               | Increm<br>Factor<br>k<br>0.11<br>0.11<br>0.15<br>0.11                                 | Del<br>d2<br>0.8<br>0.4<br>2.7<br>0.2                             | Del<br>d3<br>0.0<br>0.0<br>0.0                                    | Dela<br>22.6<br>21.7<br>25.4<br>21.2                                 | C<br>C<br>C<br>C<br>C<br>C                                                                       | Delay<br>22.3<br>24.4                 | C LO        |
|   | Grp v/c<br>Eastbound<br>LT 0.37<br>R 0.23                                                                                                         | 0.17                                                         | Del<br>d1<br>21.8                                                         | Adj<br>Fact<br>1.000                                                       | Lane<br>Grp<br>Cap<br>287                                                    | Increm<br>Factor<br>k<br>0.11                                                         | Del<br>d2<br>0.8                                                  | Del<br>d3<br>0.0                                                  | <br>Dela<br>22.6                                                     | ty LOS                                                                                           | Delay                                 | r LO        |
|   | Grp v/c                                                                                                                                           | g/C                                                          | Del                                                                       | Adj                                                                        | Lane<br>Grp                                                                  | Increm<br>Factor                                                                      | Del                                                               | Del                                                               |                                                                      |                                                                                                  |                                       |             |
|   |                                                                                                                                                   | g/C                                                          | Del                                                                       | Adj                                                                        | Lane<br>Grp                                                                  | Increm<br>Factor                                                                      | Del                                                               | Del                                                               |                                                                      |                                                                                                  |                                       | <b>.</b>    |
|   | T.ane                                                                                                                                             |                                                              |                                                                           | ÷.                                                                         | Lane                                                                         | Increm                                                                                |                                                                   |                                                                   | Lane                                                                 | Group                                                                                            | Appro                                 | ach         |
|   | Total lost<br>Critical f<br>Control De<br>Appr/ Rat                                                                                               | low ra                                                       | te to                                                                     | capacit<br>Determi                                                         | y rat                                                                        | io,                                                                                   |                                                                   | : = (Yc                                                           | :)(C)/(                                                              | C-L) =                                                                                           | 0.69                                  |             |
|   | Sum of flow                                                                                                                                       |                                                              |                                                                           |                                                                            |                                                                              |                                                                                       |                                                                   | : = 5                                                             | Sum (v/                                                              | 's) =                                                                                            | 0.55                                  |             |
|   | Perm<br>Thru<br>Right                                                                                                                             | <b>P</b> R                                                   | 1                                                                         | 313 .                                                                      | 35                                                                           | 01 #                                                                                  | 0.38                                                              | 0.                                                                | 44                                                                   | 1546                                                                                             | 0.85                                  |             |
|   | Perm<br>Left I<br>Prot                                                                                                                            | L                                                            | 1                                                                         | 32                                                                         | 17                                                                           | 52 #                                                                                  | 0.08                                                              | 0.                                                                | 18 '                                                                 | 321                                                                                              | 0.41                                  |             |
|   | Southbound<br>Prot                                                                                                                                |                                                              |                                                                           |                                                                            |                                                                              | ·                                                                                     |                                                                   |                                                                   |                                                                      |                                                                                                  |                                       |             |
|   | Perm<br>Thru I<br>Right                                                                                                                           | R                                                            | 5                                                                         | 18                                                                         | 34                                                                           | 33 -                                                                                  | 0.15                                                              | 0.                                                                | 44                                                                   | 1516                                                                                             | 0.34                                  |             |
|   | Left I<br>Prot                                                                                                                                    | L                                                            | 1                                                                         | 31 ,                                                                       | 17!                                                                          | 52                                                                                    | 0.07                                                              | 0.                                                                | 18                                                                   | 321                                                                                              | 0.41                                  | ,           |
|   | Northbound<br>Prot<br>Perm                                                                                                                        |                                                              |                                                                           | · ,                                                                        |                                                                              |                                                                                       |                                                                   |                                                                   | •                                                                    |                                                                                                  |                                       |             |
|   | Thru I<br>Right F                                                                                                                                 | /Т<br>{                                                      | 1<br>4                                                                    | 41<br>1                                                                    | 144<br>158                                                                   |                                                                                       | 0.10<br>0.03                                                      |                                                                   |                                                                      | 253<br>277 .                                                                                     | 0.56<br>0.15                          |             |
|   | Left<br>Prot<br>Perm                                                                                                                              |                                                              |                                                                           |                                                                            |                                                                              |                                                                                       |                                                                   |                                                                   |                                                                      |                                                                                                  | · ,                                   |             |
|   | Westbound<br>Prot<br>Perm                                                                                                                         |                                                              |                                                                           |                                                                            | r                                                                            |                                                                                       |                                                                   |                                                                   | ×                                                                    | •                                                                                                |                                       |             |
|   | Thru I<br>Right F                                                                                                                                 | μ<br>T                                                       | 1<br>6                                                                    | 05<br>3                                                                    | 164<br>158                                                                   |                                                                                       | 0.06<br>0.04                                                      |                                                                   | 17<br>17                                                             | 287<br>277                                                                                       | 0.37<br>0.23                          |             |
|   | Perm                                                                                                                                              |                                                              |                                                                           |                                                                            |                                                                              |                                                                                       |                                                                   |                                                                   |                                                                      |                                                                                                  |                                       |             |
|   | Left<br>Prot                                                                                                                                      |                                                              |                                                                           |                                                                            |                                                                              |                                                                                       |                                                                   |                                                                   |                                                                      |                                                                                                  |                                       |             |

Analyst: KHAInter.: U.S. 19 & Construction AccessAgency: KHAArea Type: All other areasDate: 12/11/2008Jurisd: FDOTPeriod: P.M. Peak HourYear : 2015 Peak Construction TrafficProject ID: Levy County Advanced Reactor - Heavy Haul Route 2E/W St: Construction AccessN/S St: U.S. 19

|         |         | E      | ast        | bou | nd              | Wes   | stbou | nd          | Nor    | thbou | ind        | So    | lthbou | nd  |      |
|---------|---------|--------|------------|-----|-----------------|-------|-------|-------------|--------|-------|------------|-------|--------|-----|------|
|         |         | L      |            | Т   | R               | L     | т     | R           | L      | т     | R          | L     | т      | R   |      |
| No.     | Lanes   |        | 0          | 0   | 0               | 2     | 0     | 1           | 0      | 2     | 1          | 2     | 2      | 0   |      |
| LGCc    | onfig   | ĺ      |            |     |                 | L     |       | R           |        | т     | R          | ĹL    | т      |     | Ì    |
| Volu    | ıme     | Ì      |            |     |                 | 900   |       | 385         |        | 322   | 105        | 45    | 333    |     | i    |
| Lane    | e Width | ı İ    |            |     |                 | 12.0  |       | 12.0        | 1      | 12.0  | 12.0       | 12.0  | 12.0   |     | i    |
| RTOR    | R Vol   | 1      |            |     |                 | 1     |       | 0           | Ì      |       | 0          | Ì     |        |     | İ    |
| Dura    | ation   | 0.2    | 5          |     | Area 7          | Type: | A11   | other       | areas  |       |            |       |        |     |      |
| <u></u> |         |        |            |     |                 | Sig   | ynal  | Operat      | ions   |       |            |       |        |     |      |
|         | se Comb | oinati | on         | 1   | 2               | 3     | · 4   |             |        | 5     | 6          | 7     | 8      | }   |      |
|         | Left    |        |            |     |                 |       |       | NB          | Left   |       |            |       |        |     |      |
|         | Thru    |        |            |     |                 |       |       |             | Thru   |       | А          |       |        |     |      |
|         | Right   |        |            |     |                 |       |       |             | Right  |       | А          |       |        |     |      |
|         | Peds    |        |            |     |                 |       |       |             | Peds   |       |            |       |        |     |      |
| WB      | Left    |        |            | А   |                 |       |       | SB          | Left   |       |            |       |        |     |      |
|         | Thru    |        |            |     |                 |       |       |             | Thru   |       | A          |       |        |     |      |
|         | Right   |        |            | А   |                 |       |       |             | Right  |       |            |       |        |     |      |
|         | Peds    |        |            |     |                 |       |       |             | Peds   |       |            |       |        |     |      |
|         | Right   |        |            | A   |                 |       |       | EB          | Right  |       |            |       |        |     |      |
|         | Right   |        |            |     |                 |       |       | WB          | Right  |       |            | •     |        |     |      |
| Gree    |         |        | -          | 5.0 |                 |       |       |             |        | 10.0  |            | -     |        |     |      |
|         | Low     |        |            | .0  |                 |       |       |             |        | 4.0   |            |       |        |     |      |
| ALL     | Red     |        | Ŧ          | 0   |                 |       |       |             |        | 1.0   |            |       |        |     |      |
|         |         |        |            | -   | ~ + ~ ~ ~ ~ ~   | ation | Dowf  | ormone      | e Summ | .*    | cle Le     | -     | 120.0  | } 5 | secs |
| Appr    | c/ T.   | ane    |            |     |                 |       |       | ormanc<br>S |        |       |            | proac |        |     |      |
| Lane    |         | roup   |            |     | y Sat<br>w Rate |       |       | <b>b</b>    | Darre  | Grouj | é vh       | proac |        |     |      |
| Grp     |         | -      |            |     | (s)             |       | c     | 1/C         | Delay  | 1.0.5 | - <u>-</u> | ay LO | s      |     |      |
| 312     |         | ~pucit | - <u>x</u> |     | (0)             | v / C | S.    | ,, C        | Derdy  | 100   | DCT        | ~1 10 | ~      |     |      |

|        | _       |            |          |        |         |       |          |       |   |
|--------|---------|------------|----------|--------|---------|-------|----------|-------|---|
| Westbo |         |            |          |        |         |       |          |       |   |
| L      | 1031    | 3437       | 0.92     | 0.30   | 53.3    | D     |          |       |   |
|        |         |            |          |        |         |       | 45.8     | D     |   |
| R      | 673     | 1583       | 0.60     | 0.43   | 28.2    | С     |          |       |   |
| Northb | ound    |            |          |        |         |       |          |       |   |
|        |         |            | , š      |        |         |       |          |       |   |
| т      | 1768    | 3478       | 0.19     | 0.51   | 16.1    | В     | 12.6     | В     |   |
| R      | 1332    | 1583       | 0.08     | 0.84   | 1.6     | А     |          |       |   |
| Southb | ound    |            |          |        |         |       |          |       |   |
| L      | 315     | 3437       | 0.15     | 0.09   | 50.4    | D     |          |       |   |
| Т      | 2203    | 3478       | 0.16     | 0.63   | 9.0     | А     | 13.9     | В     |   |
|        |         |            |          |        |         |       |          |       |   |
|        | Interse | ction Dela | y = 33.2 | (sec/v | veh) II | nters | ection 1 | LOS = | С |

HCS+: Signalized Intersections Release 5.3

Phone: E-Mail: Fax:

\_OPERATIONAL ANALYSIS\_

Analyst: KHA KHA Agency/Co.: Date Performed: 12/11/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & Construction Access Area Type: All other areas Jurisdiction: FDOT 2015 Peak Construction Traffic Analysis Year: Project ID: Levy County Advanced Reactor - Heavy Haul Route 2 E/W St: Construction Access N/S St: U.S. 19

|              | Eas  | stbou | nd   | Wes   | tbo | und     | No    | rthbo | und   | So   | uthbou | ınd |
|--------------|------|-------|------|-------|-----|---------|-------|-------|-------|------|--------|-----|
|              | L    | т     | R    | L \   | Т   | R       | L     | т     | R     | L    | т      | R   |
| Volume       |      |       |      | 900   |     | 385     |       | 322   | 105   | 45   | 333    |     |
| % Heavy Veh  | ĺ    |       |      | 2     |     | 2       |       | 4     | 2     | 2    | 4      |     |
| PHF          | ĺ    |       |      | 0.95  |     | 0.95    |       | 0.95  | 0.95  | 0.95 | 0.95   |     |
| PK 15 Vol    | ĺ    |       |      | 237   |     | 101     |       | 85    | 28    | 12   | 88     |     |
| Hi Ln Vol    | ĺ    |       |      | ĺ     |     |         | ĺ     |       |       | j .  |        |     |
| % Grade      |      |       |      |       | 0   |         |       | 0 .   |       | -    | 0      |     |
| Ideal Sat    |      |       |      | 1900  |     | 1900    |       | 1900  | 1900  | 1900 | 1900   |     |
| ParkExist    |      |       |      |       |     |         |       |       |       |      |        |     |
| NumPark      |      |       |      |       |     |         |       |       |       | 1    |        |     |
| No. Lanes    | 0    | 0     | 0    | 2     | 0   | 1       | 0     | 2     | 1     | 2    | 2      | 0   |
| LGConfig     |      |       |      | L     |     | R       |       | т     | R     | L    | т      |     |
| Lane Width   |      |       |      | 12.0  |     | 12.0    | 1     | 12.0  | 12.0  | 12.0 | 12.0   |     |
| RTOR Vol     |      |       |      |       |     | 0       |       |       | 0     |      |        |     |
| Adj Flow     |      |       |      | 947   |     | 405     |       | 339   | 111 - | 47   | 351    |     |
| %InSharedLn  | l    |       |      |       |     |         |       |       |       |      |        |     |
| Prop LTs     |      |       |      |       |     |         |       | 0.0   | 00    |      | 0.00   | 00  |
| Prop RTs     |      |       |      |       |     | 1.000   | 0     | .000  | 1.000 | 0    | .000   |     |
| Peds Bikes   | 0    |       |      | 0     |     |         | 0     |       |       |      |        |     |
| Buses        |      |       |      | 0     |     | 0       |       | 0     | 0     | 0    | 0      |     |
| %InProtPhase | Ð    |       |      |       |     |         |       |       |       |      |        |     |
| Duration     | 0.25 |       | Area | Type: | A11 | other a | areas |       |       |      |        |     |

\_\_\_\_VOLUME DATA\_

\_OPERATING PARAMETERS\_

|             | Ea   | stbou | nd | We  | stboi | ınd | No      | orthbo | und | So  | uthbou | ind |
|-------------|------|-------|----|-----|-------|-----|---------|--------|-----|-----|--------|-----|
|             | L    | т     | R  | L   | т     | R   | L       | т      | R   | L   | т      | R   |
| Init Unmet  | <br> |       |    | 0.0 |       | 0.0 | .  <br> | 0.0    | 0.0 | 0.0 | 0.0    |     |
| Arriv. Type | İ    |       |    | 3   |       | 3   | Ì       | 3      | 3   | 3   | 3      |     |
| Unit Ext.   | Ì    |       |    | 3.0 |       | 3.0 | i       | 3.0    | 3.0 | 3.0 | 3.0    |     |
| I Factor    | Ì    |       |    | i   | 1.00  | 00  | i.      | 1.00   | 0   | İ   | 1.000  | )   |
| Lost Time   | İ    |       |    | 2.0 |       | 2.0 | i       | 2.0    | 2.0 | 2.0 | 2.0    |     |
| Ext of g    | İ    |       |    | 3.0 |       | 3.0 | Í       | 3.0    | 3.0 | 3.0 | 3.0    |     |
| Ped Min g   | İ    | 3.2   |    |     | 3.2   |     | İ       | 3.2    |     | İ   |        |     |

 Phase Combination 1
 2
 3
 4
 5
 6
 7
 8

| EB  | Left<br>Thru<br>Right<br>Peds |                    | NB<br> <br> <br> | Left<br>Thru<br>Right<br>Peds |                    | A<br>A             |
|-----|-------------------------------|--------------------|------------------|-------------------------------|--------------------|--------------------|
| WB  | Left<br>Thru<br>Right<br>Peds | A                  | SB<br> <br>      | Left<br>Thru<br>Right<br>Peds | A<br>A             | A                  |
| NB  | Right                         | А                  | '<br>  EB        | Right                         |                    |                    |
| ND. | itigiit                       | A.                 |                  | Rigiic                        |                    |                    |
| SB  | Right                         |                    | WB               | Right                         | A                  |                    |
|     | en<br>low<br>Red              | 35.0<br>4.0<br>1.0 | ļ                |                               | 10.0<br>4.0<br>1.0 | 60.0<br>4.0<br>1.0 |

Cycle Length: 120.0 secs

| Volume Adjus | stmen |       | ME AD | JUSTMEN | T AN | ID SATU | RATIC | ON FLO | W WORK | SHEET            |      |    |
|--------------|-------|-------|-------|---------|------|---------|-------|--------|--------|------------------|------|----|
|              |       | stbou | nd    | Wes     | tbou | ınd     | No    | orthbo | und    | Southbound       |      |    |
|              | L     | т     | R     | L       | Т    | R       | L     | т      | R      | L                | т    | R  |
| Volume, V    |       |       |       | 900     |      | 385     | <br>  | 322    | 105    | 45               | 333  |    |
| PHF          | İ     |       |       | 0.95    |      | 0.95    | Í     | 0.95   | 0.95   | 0.95             | 0.95 |    |
| Adj flow     | 1     |       |       | 947     |      | 405     | İ     | 339    | 111    | 47               | 351  |    |
| No. Lanes    | 0     | 0     | 0     | 2       | 0    | 1       | j     | ) 2    | 1      | j <sup>•</sup> 2 | 2    | 0  |
| Lane group   |       |       |       | L       |      | R       | İ     | т      | R      | ĹL               | т    |    |
| Adj flow     | 1     |       |       | 947     |      | 405     |       | 339    | 111    | 47               | 351  |    |
| Prop LTs     | ]     |       |       |         |      |         | 1     | 0.0    | 00     |                  | 0.0  | 00 |
| Prop RTs     | 1     |       |       | 1       |      | 1.000   | ) (   | 0.000  | 1.000  | 0                | .000 |    |

| Saturatio | n Flow R | ate (s | ee Exh       | ibit  | 16-7   | to | deter | nine t | he adju | ustmen | t facto | ors) |
|-----------|----------|--------|--------------|-------|--------|----|-------|--------|---------|--------|---------|------|
|           | Eastboun | d      | We           | stboı | ınd    |    | Nor   | thboun | d       | Sou    | thbound | E    |
| LG        |          |        | $\mathbf{L}$ |       | R      |    |       | т      | R       | L      | Т       |      |
| So        |          |        | 1900         |       | 1900   | 0  |       | 1900   | 1900    | 1900   | 1900    |      |
| Lanes O   | 0        | 0      | 2            | 0     | 1      |    | 0     | 2      | 1       | 2      | 2       | 0    |
| fW        |          |        | 1.000        |       | 1.00   | 00 |       | 1.000  | 1.000   | 1.000  | 1.000   |      |
| fhv       |          |        | 0.980        | •     | 0.9    | 80 |       | 0.962  | 0.980   | 0.980  | 0.962   |      |
| fG        |          |        | 1.000        |       | 1.0    | 00 |       | 1.000  | 1.000   | 1.000  | 1.000   |      |
| fP        |          |        | 1.000        |       | 1.0    | 00 |       | 1.000  | 1.000   | 1.000  | 1.000   |      |
| fBB       |          |        | 1.000        |       | 1.0    | 00 |       | 1.000  | 1.000   | 1.000  | 1.000   |      |
| fA        |          |        | 1.000        |       | 1.0    | 00 |       | 1.000  | 1.000   | 1.000  | 1.000   |      |
| fLU       |          |        | 0.971        |       | 1.0    | 00 |       | 0.952  | 1.000   | 0.971  | 0.952   |      |
| fRT       |          |        |              |       | 0.8    | 50 |       | 1.000  | 0.850   |        | 1.000   |      |
| fLT       |          |        | 0.950        |       |        |    |       | 1.000  |         | 0.950  | 1.000   |      |
| Sec.      |          |        |              |       |        |    |       |        |         |        |         |      |
| fLpb      |          |        | 1.000        |       |        |    |       | 1.000  |         | 1.000  | 1.000   | •    |
| fRpb      |          |        |              |       | 1.0    | 00 |       | 1.000  | 1.000   |        | 1.000   |      |
| S         |          |        | 3437         |       | 158    | 3  |       | 3478   | 1583    | 3437   | 3478    |      |
| Sec.      |          |        |              |       |        |    |       |        |         |        |         |      |
|           |          |        | CAPA         | CITY  | AND LO | os | WORKS | HEET   |         |        |         |      |
| Capacity  | Analysis | and L  | ane Gr       | oup ( | Capaci | ty |       |        |         |        |         |      |
|           |          | A      | dj           | Ad    | j Sat  | F  | low   | Gre    | en:     | Lane G | roup    |      |
| Appr/     | Lane     | Flow   | Rate         | Flow  | w Rate | R  | atio  | Rat    | io Caj  | pacity | v/c     |      |
| Mvmt      | Group    | (`     | V)           |       | (s)    | (  | v/s)  | (g/    | C)      | (c)    | Ratio   | C    |

Eastbound Prot

|                                                                                       | Prot<br>Perm                                                                                                                  |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|-------------------------------------------------------------------|-------------------------------------------------|--------------------------------|---|
|                                                                                       | Thru                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Right                                                                                                                         |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
| Wes                                                                                   | tbound                                                                                                                        | E                                                                                                                                     |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Prot                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Perm                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Left                                                                                                                          | L .                                                                                                                                   | 9                                                                                       | 47                                                                                                 | 34                                                                                        | 37 #                                                                                  | 0.28                                                | 0.                   | 30                                                                | 1031                                            | 0.92                           |   |
|                                                                                       | Prot                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Perm<br>Thru                                                                                                                  |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Right                                                                                                                         | R                                                                                                                                     | 1                                                                                       | 05                                                                                                 | 15                                                                                        | 02                                                                                    | 0.26                                                | 0                    | 43                                                                | 673                                             | 0.60                           |   |
|                                                                                       | thbour                                                                                                                        |                                                                                                                                       | 4                                                                                       | 05                                                                                                 | 15                                                                                        | 00                                                                                    | 0.20                                                | 0.                   | .43                                                               | 0/3                                             | 0.60                           |   |
| NOL                                                                                   | Prot                                                                                                                          | 10                                                                                                                                    |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Perm                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Left                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Prot                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Perm                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Thru                                                                                                                          | T                                                                                                                                     | 3                                                                                       | 39                                                                                                 | 34                                                                                        | 78 #                                                                                  | 0.10                                                | 0.                   | 51                                                                | 1768                                            | 0.19                           |   |
|                                                                                       | Right                                                                                                                         | R                                                                                                                                     | 1                                                                                       | 11                                                                                                 | 15                                                                                        | 83                                                                                    | 0.07                                                | 0.                   | 84                                                                | 1332                                            | 0.08                           |   |
| Sou                                                                                   | thbour                                                                                                                        | nd                                                                                                                                    |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Prot                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Perm                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Left                                                                                                                          | $\mathbf{L}$                                                                                                                          | . 4                                                                                     | .7                                                                                                 | 34                                                                                        | 37 #                                                                                  | 0.01                                                | 0.                   | .09                                                               | 315                                             | 0.15                           |   |
|                                                                                       | Prot                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       | Perm                                                                                                                          |                                                                                                                                       |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      |                                                                   |                                                 |                                |   |
|                                                                                       |                                                                                                                               | ~                                                                                                                                     | 2                                                                                       | <b>–</b> 1                                                                                         | 24                                                                                        |                                                                                       | 0 1 0                                               | ^                    | <b>C D</b>                                                        |                                                 | 0 1 6                          |   |
|                                                                                       | Thru<br>Right                                                                                                                 | T ·                                                                                                                                   | 3                                                                                       | 51                                                                                                 | 34                                                                                        | 78                                                                                    | 0.10                                                | 0.                   | . 63                                                              | 2203                                            | 0.16                           |   |
|                                                                                       | Thru<br>Right                                                                                                                 | T<br>low rati                                                                                                                         |                                                                                         |                                                                                                    |                                                                                           |                                                                                       |                                                     |                      | .63<br>Sum (v/                                                    |                                                 | 0.16                           |   |
| Sum<br>Tot                                                                            | Thru<br>Right<br>of fical los                                                                                                 | low rati<br>st time                                                                                                                   | os for<br>per cy                                                                        | critic                                                                                             | cal la<br>L = 12                                                                          | ne grou<br>.00 sec                                                                    | ips, Yo                                             | = \$                 | Sum (v/                                                           | s) =                                            | 0.39                           |   |
| Sum<br>Tot<br>Cri                                                                     | Thru<br>Right<br>n of fi<br>cal los<br>itical                                                                                 | low rati<br>st time<br>flow ra                                                                                                        | os for<br>per cy<br>ite to                                                              | c critic<br>cle, 1<br>capacit                                                                      | cal la<br>L = 12<br>ty rat                                                                | ne grou<br>.00 sec<br>io,                                                             | ips, Yo                                             | = \$                 |                                                                   | s) =                                            | 0.39                           |   |
| Sum<br>Tot<br>Cri                                                                     | Thru<br>Right<br>of fical los<br>itical                                                                                       | low rati<br>st time                                                                                                                   | os for<br>per cy<br>ite to                                                              | c critic<br>cle, 1<br>capacit                                                                      | cal la<br>L = 12<br>ty rat                                                                | ne gròu<br>.00 sec<br>io,<br>n                                                        | ps, Yo<br>Xo                                        | = \$                 | Sum (v/<br>c)(C)/(                                                | s) =                                            | 0.39                           | a |
| Sum<br>Tot<br>Cri<br>Con<br>App<br>Lar                                                | Thru<br>Right<br>of fical los<br>itical<br>htrol I<br>pr/ Fice                                                                | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios                                                                                  | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del                                      | critic<br>cle, 1<br>capacit<br>Determ:<br>Prog<br>Adj                                              | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp                                       | ne grou<br>.00 sec<br>io,<br>n<br>Factor                                              | ps, Yo<br>Xo<br>mental<br>Del                       | Res<br>Del           | Sum (v/<br>c)(C)/(<br>Lane                                        | s) =<br>C-L) =<br>Group                         | 0.39<br>0.43<br>Appro          |   |
| Sum<br>Tot<br>Cri<br>Cor<br>App                                                       | Thru<br>Right<br>of fical los<br>itical<br>htrol I<br>pr/ Fice                                                                | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios                                                                                  | os for<br>per cy<br>ite to<br>id LOS<br>Unf                                             | c critic<br>cle, l<br>capacit<br>Determ:<br>Prog                                                   | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane                                              | ne grou<br>.00 sec<br>io,<br>n<br>Increm                                              | ips, Yo<br>Xo<br>iental                             | = \$<br>= (Yo<br>Res | Sum (v/<br>c)(C)/(<br>Lane                                        | s) =<br>C-L) =                                  | 0.39                           |   |
| Sum<br>Tot<br>Cri<br>Cor<br>App<br>Lar<br>Grg                                         | Thru<br>Right<br>of fical los<br>itical<br>htrol I<br>pr/ Fice                                                                | low rati<br>st time<br>flow ra<br>Delay an<br>Ratios<br>c g/C                                                                         | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del                                      | critic<br>cle, 1<br>capacit<br>Determ:<br>Prog<br>Adj                                              | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp                                       | ne grou<br>.00 sec<br>io,<br>n<br>Factor                                              | ps, Yo<br>Xo<br>mental<br>Del                       | Res<br>Del           | Sum (v/<br>c)(C)/(<br>Lane                                        | s) =<br>C-L) =<br>Group                         | 0.39<br>0.43<br>Appro          |   |
| Sum<br>Tot<br>Cri<br>Cor<br>App<br>Lar<br>Grg                                         | Thru<br>Right<br>n of fical los<br>itical<br>htrol I<br>pr/ F<br>ne<br>p v/c                                                  | low rati<br>st time<br>flow ra<br>Delay an<br>Ratios<br>c g/C                                                                         | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del                                      | critic<br>cle, 1<br>capacit<br>Determ:<br>Prog<br>Adj                                              | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp                                       | ne grou<br>.00 sec<br>io,<br>n<br>Factor                                              | ps, Yo<br>Xo<br>mental<br>Del                       | Res<br>Del           | Sum (v/<br>c)(C)/(<br>Lane                                        | s) =<br>C-L) =<br>Group                         | 0.39<br>0.43<br>Appro          |   |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Grg<br>Eas                                         | Thru<br>Right<br>a of fical los<br>itical<br>htrol I<br>pr/ F<br>ne<br>o v/o                                                  | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C                                                                         | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del                                      | critic<br>cle, 1<br>capacit<br>Determ:<br>Prog<br>Adj                                              | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp                                       | ne grou<br>.00 sec<br>io,<br>n<br>Factor                                              | ps, Yo<br>Xo<br>mental<br>Del                       | Res<br>Del           | Sum (v/<br>c)(C)/(<br>Lane                                        | s) =<br>C-L) =<br>Group                         | 0.39<br>0.43<br>Appro          |   |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Grg<br>Eas                                         | Thru<br>Right<br>a of fical<br>los<br>itical<br>htrol I<br>pr/ F<br>ne<br>stbound                                             | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C<br>d                                                                    | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del<br>d1                                | c critic<br>ccle, l<br>capacit<br>Determ:<br>Prog<br>Adj<br>Fact                                   | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap                                | ne grou<br>.00 sec<br>io,<br>n<br>Increm<br>Factor<br>k                               | nps, Yo<br>Xo<br>nental<br>Del<br>d2                | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane<br>Dela                                | s) =<br>C-L) =<br>Group<br>Y LOS                | 0.39<br>0.43<br>Appro          |   |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Grg<br>Eas                                         | Thru<br>Right<br>a of fical<br>los<br>itical<br>htrol I<br>pr/ F<br>ne<br>stbound                                             | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C                                                                         | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del<br>d1                                | c critic<br>ccle, l<br>capacit<br>Determ:<br>Prog<br>Adj<br>Fact                                   | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap                                | ne grou<br>.00 sec<br>io,<br>n<br>Increm<br>Factor<br>k                               | ps, Yo<br>Xo<br>mental<br>Del                       | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane                                        | s) =<br>C-L) =<br>Group                         | 0.39<br>0.43<br>Appro<br>Delay | I |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Grg<br>Eas                                         | Thru<br>Right<br>a of fical los<br>itical<br>ntrol I<br>pr/ F<br>ne<br>stbound<br>stbound<br>0.92                             | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C<br>d<br>d<br>2 0.30                                                     | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del<br>d1<br>40.6                        | critic<br>capacit<br>Determ<br>Prog<br>Adj<br>Fact                                                 | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap<br>Cap                         | ne grou<br>.00 sec<br>io,<br>n<br>Factor<br>k<br>0.44                                 | nps, Yo<br>Xo<br>nental<br>Del<br>d2<br>12.7        | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane<br>Dela                                | s) =<br>C-L) =<br>Group<br>Ly LOS<br>D          | 0.39<br>0.43<br>Appro          | Ī |
| Sum<br>Tot<br>Cori<br>Lar<br>Grg<br>Eas<br>Wess<br>L<br>R                             | Thru<br>Right<br>a of fical<br>los<br>itical<br>ntrol I<br>pr/ F<br>ne<br>stbound<br>0.92<br>0.60                             | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C<br>d<br>d<br>2 0.30<br>0 0.43                                           | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del<br>d1<br>40.6                        | c critic<br>ccle, l<br>capacit<br>Determ:<br>Prog<br>Adj<br>Fact                                   | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap<br>Cap                         | ne grou<br>.00 sec<br>io,<br>n<br>Increm<br>Factor<br>k                               | nps, Yo<br>Xo<br>nental<br>Del<br>d2                | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane<br>Dela                                | s) =<br>C-L) =<br>Group<br>Y LOS                | 0.39<br>0.43<br>Appro<br>Delay | I |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Grg<br>Eas<br>Wess<br>L<br>R                       | Thru<br>Right<br>a of fical los<br>itical<br>ntrol I<br>pr/ F<br>ne<br>stbound<br>stbound<br>0.92                             | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C<br>d<br>d<br>2 0.30<br>0 0.43                                           | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del<br>d1<br>40.6                        | critic<br>capacit<br>Determ<br>Prog<br>Adj<br>Fact                                                 | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap<br>Cap                         | ne grou<br>.00 sec<br>io,<br>n<br>Factor<br>k<br>0.44                                 | nps, Yo<br>Xo<br>nental<br>Del<br>d2<br>12.7        | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane<br>Dela                                | s) =<br>C-L) =<br>Group<br>Ly LOS<br>D          | 0.39<br>0.43<br>Appro<br>Delay | Ī |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Gr <u>p</u><br>Eas<br>Wess<br>L<br>R               | Thru<br>Right<br>a of fical<br>los<br>itical<br>ntrol I<br>pr/ F<br>ne<br>stbound<br>0.92<br>0.60                             | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C<br>d<br>d<br>2 0.30<br>0 0.43<br>nd                                     | os for<br>per cy<br>ite to<br>id LOS<br>Unf<br>Del<br>d1<br>40.6                        | c critic<br>capacit<br>Determ<br>Prog<br>Adj<br>Fact<br>1.000<br>1.000                             | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap<br>Cap                         | ne grou<br>.00 sec<br>io,<br>n<br>Factor<br>k<br>0.44<br>0.19                         | nps, Yo<br>Xo<br>nental<br>Del<br>d2<br>12.7        | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane<br>Dela                                | s) =<br>C-L) =<br>Group<br>Ly LOS<br>D          | 0.39<br>0.43<br>Appro<br>Delay |   |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Grg<br>Eas<br>U<br>Wess<br>L<br>R<br>Nor<br>T<br>R | Thru<br>Right<br>a of filial<br>los<br>litical<br>htrol I<br>pr/ F<br>stbound<br>0.92<br>0.60<br>cthbour<br>0.19              | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C<br>d<br>d<br>2 0.30<br>0 0.43<br>nd<br>9 0.51<br>8 0.84                 | os for<br>per cy<br>nte to<br>dl LOS<br>Unf<br>Del<br>dl<br>40.6<br>26.7                | c critic<br>capacit<br>Determ<br>Prog<br>Adj<br>Fact<br>1.000<br>1.000                             | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673<br>1768         | ne grou<br>.00 sec<br>io,<br>n<br>Factor<br>k<br>0.44<br>0.19                         | nps, Yo<br>Xo<br>nental<br>Del<br>d2<br>12.7<br>1.5 | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane<br>Dela<br>53.3<br>28.2                | s) =<br>C-L) =<br>Group<br>Ay LOS<br>D<br>C     | 0.39<br>0.43<br>Appro<br>Delay | I |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Grg<br>Eas<br>L<br>R<br>Nor<br>T<br>R              | Thru<br>Right<br>a of fi-<br>cal los<br>itical<br>ntrol I<br>pr/ F<br>e<br>stbound<br>0.92<br>0.60<br>cthbour<br>0.19<br>0.08 | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C<br>d<br>d<br>2 0.30<br>0 0.43<br>nd<br>9 0.51<br>8 0.84<br>nd           | os for<br>per cy<br>ite to<br>dl LOS<br>Unf<br>Del<br>dl<br>40.6<br>26.7<br>16.1<br>1.6 | c critic<br>capacit<br>Determ:<br>Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000                   | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673<br>1768         | ne grou<br>.00 sec<br>io,<br>n<br>Factor<br>k<br>0.44<br>0.19<br>0.11                 | 12.7<br>1.5<br>0.1<br>0.0                           | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane<br>Dela<br>53.3<br>28.2<br>16.1<br>1.6 | s) =<br>C-L) =<br>Group<br>Y LOS<br>D<br>C<br>B | 0.39<br>0.43<br>Appro<br>Delay | I |
| Sum<br>Tot<br>Cri<br>Cor<br>Lar<br>Grg<br>Eas<br>L<br>R<br>Nor<br>T<br>R              | Thru<br>Right<br>a of fi-<br>cal los<br>itical<br>ntrol I<br>pr/ F<br>b v/c<br>stbound<br>0.92<br>0.60<br>cthbour<br>0.19     | low rati<br>st time<br>flow ra<br>Delay ar<br>Ratios<br>c g/C<br>d<br>d<br>2 0.30<br>0 0.43<br>nd<br>9 0.51<br>8 0.84<br>nd<br>5 0.09 | os for<br>per cy<br>ite to<br>dl LOS<br>Unf<br>Del<br>dl<br>40.6<br>26.7<br>16.1        | c critic<br>capacit<br>Determ:<br>Prog<br>Adj<br>Fact<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | cal la<br>L = 12<br>ty rat<br>inatio<br>Lane<br>Grp<br>Cap<br>1031<br>673<br>1768<br>1332 | ne grou<br>.00 sec<br>io,<br>n<br>Factor<br>k<br>0.44<br>0.19<br>0.11<br>0.11<br>0.11 | 12.7<br>1.5<br>0.1                                  | Res<br>Del<br>d3     | Sum (v/<br>c)(C)/(<br>Lane<br>Dela<br>53.3<br>28.2<br>16.1        | s) =<br>C-L) =<br>Group<br>Y LOS<br>D<br>C<br>B | 0.39<br>0.43<br>Appro<br>Delay | I |

\_TWO-WAY STOP CONTROL SUMMARY\_

Analyst: кна Agency/Co.: KHA Date Performed: 12/11/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & Operations Access Jurisdiction: FDOT Units: U. S. Customary Analysis Year: 2015 Peak Construction Traffic Project ID: Levy County Advanced Reactor - Heavy Haul Route 2 East/West Street: **Operations** Access North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ Southbound Major Street: Approach Northbound Movement 2 3 4 5 6 1 т R т L L R Volume 392 9 4 1229 Peak-Hour Factor, PHF 0.95 0.95 0.95 0.95 Hourly Flow Rate, HFR 412 9 1293 4 2 Percent Heavy Vehicles - -- -- -- -/ 2 Median Type/Storage Raised curb RT Channelized? No 2 Lanes 1 2 1 Configuration т R L т Upstream Signal? No No Minor Street: Westbound Eastbound Approach 7 9 12 Movement 8 10 11 т  $\mathbf{L}$ т R L R Volume 80 35 Peak Hour Factor, PHF 0.95 0.95 Hourly Flow Rate, HFR 84 36 Percent Heavy Vehicles 2 2 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage Lanes 1 1 Configuration L R Delay, Queue Length, and Level of Service Approach NB SB Westbound Eastbound Movement 4 7 9 1 8 10 11 12 Lane Config Г L R v (vph) 4 84 36 C(m) (vph) 1135 405 833 0.00 0.21 0.04 v/c 95% queue length 0.01 0.77 0.14 Control Delay 9.5 8.2 16.2 LOS С А А Approach Delay 14.2 Approach LOS В

Phone: E-Mail:

Fax:

| E-Mail:                                |                |         |            |         |         |     |      | •                                       |
|----------------------------------------|----------------|---------|------------|---------|---------|-----|------|-----------------------------------------|
|                                        | TWO-WAY STOP   | CONTRO  | L(TWSÇ)    | ANALY   | SIS     |     |      |                                         |
|                                        |                |         | ·          |         |         |     |      |                                         |
| ······································ | KHA            |         |            |         |         |     |      |                                         |
| Agency/Co.:                            | KHA            |         | •          |         |         |     |      |                                         |
| Date Performed:                        | 12/11/2008     |         | 1 <b>•</b> |         |         |     |      |                                         |
| malysis Time Period:                   | P.M. Peak Hou  | ir -    |            |         |         |     |      |                                         |
| Intersection:                          | U.S. 19 & Ope  | eration | s Acces    | s       |         |     |      |                                         |
| Jurisdiction:                          | FDOT           |         |            |         |         |     |      |                                         |
| Jnits: U. S. Customary                 |                |         |            |         |         |     |      |                                         |
| malysis Year:                          | 2015 Peak Cor  | istruct | ion Tra    | affic   |         |     |      |                                         |
| Project ID: Levy Coun                  | ty Advanced F  | Reactor | - Heav     | ry Haul | Route   | 2   |      |                                         |
|                                        | Operations Ac  |         |            | -       |         |     |      |                                         |
|                                        | U.S. 19        |         |            |         |         |     |      |                                         |
| Intersection Orientati                 | on: NS         |         | . Sti      | ıdy per | iod (hr | s): | 0.25 |                                         |
| :                                      | Vehicle Vol    | lumes a | ınd Adju   | istment | s       |     |      |                                         |
| Major Street Movements                 | 1              | 2       | 3          | 4       | 5       | 6   |      | · · · ·                                 |
|                                        | $\mathbf{L}$   | т       | R          | L       | т       | R   |      |                                         |
|                                        | · · ·          |         |            |         |         |     |      | ۰.<br>                                  |
| /olume                                 | 3              | 392     | 9          | 4       | 1229    |     |      |                                         |
| Peak-Hour Factor, PHF                  | ·              | ).95    | 0.95       | 0.95    | 0.95    |     |      |                                         |
| Peak-15 Minute Volume                  |                | L03     | 2          | 1       | 323 .   |     |      |                                         |
| ourly Flow Rate, HFR                   | 1              | 112     | 9          | 4       | 1293    |     |      |                                         |
| Percent Heavy Vehicles                 |                |         |            | 2       |         |     |      |                                         |
| fedian Type/Storage                    | Raised         | curb    |            | / 2     |         |     |      |                                         |
| T Channelized?                         | nuibeu         |         | No         | , 1     |         |     |      |                                         |
| Lanes                                  | . ,            | 2 1     | NO         | 1       | 2       |     |      |                                         |
| Configuration                          |                | r R     |            | L       | T       |     |      | •                                       |
| Jpstream Signal?                       | -              | No      |            | 11      | No      |     |      |                                         |
|                                        | 1<br>          |         |            |         |         |     |      |                                         |
| Ainor Street Movements                 | s. 7           | 8       | 9          | 10      | 11 .    | 12  |      |                                         |
|                                        | L              | т       | R          | L       | Т       | R   | 4    |                                         |
| Jolume                                 | 80             |         | 35         |         |         |     |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Peak Hour Factor, PHF                  | 0.95           |         | 0.95       |         |         |     |      |                                         |
| Peak-15 Minute Volume                  | 21             |         | 9          |         | •       |     |      |                                         |
| Hourly Flow Rate, HFR                  | 84             |         | 36         |         |         |     |      |                                         |
| Percent Heavy Vehicles                 | s 2            |         | 2          |         |         |     |      |                                         |
| Percent Grade (%)                      |                | 0       |            |         | 0       |     |      |                                         |
| Flared Approach: Exis                  | sts?/Storage   |         |            | /       |         |     |      | 1                                       |
| RT Channelized?                        | j-             |         | No         |         |         |     |      |                                         |
| Lanes                                  | 1              | 1       |            |         |         |     |      |                                         |
| Configuration                          | L              | R       |            |         |         |     |      |                                         |
|                                        | _              |         | ·          |         |         |     |      |                                         |
| · · · · · · · · · · · · · · · · · · ·  | _Pedestrian Vo | olumes  | and Ad     | justmen | ts      |     |      |                                         |
| Movements                              | 13             | 14      | 15         | 16      |         |     |      |                                         |
| Flow (ped/hr)                          | 0              | 0       | 0          | 0       |         |     |      |                                         |
| Lane Width (ft)                        | 12.0           | 12.0    | 12.0       | 12.0    |         |     |      |                                         |
| Valking Speed (ft/sec)                 | 4.0            | 4.0     | 4.0        | 4.0     |         |     |      |                                         |
| Percent Blockage                       | 0              | 0       | 0          | 0       |         |     |      |                                         |
|                                        | -              |         |            |         |         |     |      |                                         |

|    |                      |                      | Up                 | stream Sig      | gnal Dat             | a                      |                       |                               |
|----|----------------------|----------------------|--------------------|-----------------|----------------------|------------------------|-----------------------|-------------------------------|
|    |                      | Prog.<br>Flow<br>Vph | Sat<br>Flow<br>vph | Arrival<br>Type | Green<br>Time<br>sec | Cycle<br>Length<br>sec | Prog.<br>Speed<br>mph | Distance<br>to Signal<br>feet |
| S2 | Left-Turn<br>Through |                      |                    |                 |                      |                        |                       |                               |
| S5 | Left-Turn<br>Through |                      |                    |                 |                      |                        |                       | . •                           |

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

Movement 2 Movement 5

Shared ln volume, major th vehicles: Shared ln volume, major rt vehicles: Sat flow rate, major th vehicles: Sat flow rate, major rt vehicles: Number of major street through lanes:

Worksheet 4-Critical Gap and Follow-up Time Calculation

| Cap Calculati  | 00                                                                                                             |                                                                                                                                                                                           |                                                      |                                                       |                                                       |                                                       |                                                       |
|----------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| -              |                                                                                                                | 7                                                                                                                                                                                         | ß                                                    | a                                                     | 10                                                    | 11                                                    | 12                                                    |
| L              | L                                                                                                              | L                                                                                                                                                                                         | T                                                    | R                                                     | L                                                     | T                                                     | R                                                     |
| )              | 4.1                                                                                                            | 7.5                                                                                                                                                                                       |                                                      | 6.2                                                   |                                                       |                                                       | · · ·                                                 |
| 2.00           | 2.00                                                                                                           | 2.00                                                                                                                                                                                      | 2.00                                                 | 2.00                                                  | 2.00                                                  | 2.00                                                  | 2.00                                                  |
|                | 2                                                                                                              | 2                                                                                                                                                                                         |                                                      | 2                                                     |                                                       |                                                       |                                                       |
|                |                                                                                                                | 0.20                                                                                                                                                                                      | 0.20                                                 | 0.10                                                  | 0.20                                                  | 0.20                                                  | 0.10                                                  |
| Grade          |                                                                                                                | 0.00                                                                                                                                                                                      | 0.00                                                 | 0.00                                                  | 0.00                                                  | 0.00                                                  | 0.00                                                  |
|                | 0.00                                                                                                           | 0.70                                                                                                                                                                                      |                                                      | 0.00                                                  |                                                       |                                                       |                                                       |
| 1-stage 0.00   | 0.00                                                                                                           | 0.00                                                                                                                                                                                      | 0.00                                                 | 0.00                                                  | 0.00                                                  | 0.00                                                  | 0.00                                                  |
| 2-stage 0.00   | 0.00                                                                                                           | 1.00                                                                                                                                                                                      | 1.00                                                 | 0.00                                                  | 1.00                                                  | 1.00                                                  | 0.00                                                  |
| 1-stage        | 4.1                                                                                                            | 6.8                                                                                                                                                                                       |                                                      | 6.2                                                   |                                                       |                                                       | •                                                     |
| 2-stage        | 4.1                                                                                                            | 5.8                                                                                                                                                                                       |                                                      | 6.2                                                   |                                                       |                                                       |                                                       |
| p Time Calcula | tions                                                                                                          |                                                                                                                                                                                           |                                                      |                                                       |                                                       |                                                       |                                                       |
| 1              | 4                                                                                                              | 7                                                                                                                                                                                         | 8                                                    | 9                                                     | 10                                                    | 11                                                    | 12                                                    |
| L              | L                                                                                                              | L                                                                                                                                                                                         | т                                                    | R                                                     | L                                                     | т                                                     | R                                                     |
| )              | 2.20                                                                                                           | 3.50                                                                                                                                                                                      |                                                      | 3.30                                                  |                                                       |                                                       |                                                       |
| 1.00           | 1.00                                                                                                           | 1.00                                                                                                                                                                                      | 1.00                                                 | 1.00                                                  | 1.00                                                  | 1.00                                                  | 1.00                                                  |
|                | 2                                                                                                              | 2                                                                                                                                                                                         |                                                      | 2                                                     |                                                       |                                                       |                                                       |
|                | 2.2                                                                                                            | 3.5                                                                                                                                                                                       |                                                      | 3.3                                                   |                                                       |                                                       |                                                       |
|                | 1<br>L<br>J<br>2.00<br>Grade<br>1-stage 0.00<br>2-stage 0.00<br>1-stage<br>2-stage<br>p Time Calcula<br>1<br>L | L L<br>) 4.1<br>2.00 2.00<br>2<br>Grade 0.00<br>1-stage 0.00 0.00<br>2-stage 0.00 0.00<br>1-stage 4.1<br>2-stage 4.1<br>2-stage 4.1<br>2-stage 4.1<br>2-stage 1.0<br>1.00<br>1.00<br>2.20 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Worksheet 5-Effect of Upstream Signals

| Computation 1-Queue | Clearance | Time | at | Upstream | Signal    |      |           |  |
|---------------------|-----------|------|----|----------|-----------|------|-----------|--|
|                     |           |      |    | Mov      | vement 2  | Mov  | rement 5  |  |
|                     |           |      |    | V(t)     | V(l,prot) | V(t) | V(l,prot) |  |

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P

| Computation 2-I           | Proport | ion of T    | WSC Int   | ersecti    |        |                    |              | •                | -            |
|---------------------------|---------|-------------|-----------|------------|--------|--------------------|--------------|------------------|--------------|
|                           |         |             |           | V          |        | Nent 2<br>7(1,prot |              | iovement<br>V(1, | : 5<br>prot) |
| alpha                     |         |             |           |            |        |                    |              |                  |              |
| beta                      |         |             |           |            |        |                    |              |                  |              |
| Travel time, t            | (a) (se | c)          |           |            |        |                    |              |                  |              |
| Smoothing Facto           |         | ,           |           |            |        |                    |              |                  |              |
| Proportion of a           |         | ting flo    | w, f      |            |        |                    |              |                  |              |
| Max platooned t           |         |             |           |            |        |                    |              |                  |              |
| Min platooned :           | flow, V | (c,min)     |           |            |        |                    |              |                  |              |
| Duration of blo           | ocked p | eriod, t    | (p)       |            |        |                    |              |                  |              |
| Proportion time           | e block | ed, p       |           |            | 0.0    | 000                |              | 0.000            |              |
| Computation 3-1           | Platoon | Event H     | Periods   | Res        | sult   |                    |              |                  |              |
| (2)                       |         |             |           |            |        |                    |              |                  |              |
| p(2)                      |         |             |           | 0.0        |        |                    |              |                  |              |
| p(5)                      |         |             |           | 0.0        | 000    |                    |              |                  |              |
| p(dom)                    |         |             |           |            |        |                    |              |                  |              |
| p(subo)<br>Constrained or | uncore  | trainad     | )         |            |        |                    |              |                  |              |
| OISCLALIEU OI             |         | crained:    |           |            |        |                    |              |                  |              |
| Proportion                |         |             |           |            |        |                    |              |                  |              |
| unblocked                 |         | (1          |           |            | (2)    |                    | (3)          |                  |              |
| for minor                 |         | -           | e-stage   |            |        | Stage Pr           |              |                  |              |
| movements, p(x)           | )       | Proc        | cess      | Sta        | age I  |                    | Stage I      | II               |              |
| p(1)                      |         |             |           |            |        |                    |              |                  |              |
| p(4)                      |         |             |           |            |        |                    |              |                  |              |
| p(7)                      |         |             |           |            |        |                    |              |                  |              |
| p(8)                      |         |             |           |            |        |                    |              |                  |              |
| p(9)                      |         |             |           |            |        |                    |              |                  |              |
| p(10)                     |         |             |           |            |        |                    |              |                  |              |
| p(11)                     |         |             |           |            |        |                    |              |                  |              |
| p(12)                     |         |             |           |            |        |                    |              |                  |              |
| Computation 4             | and 5   |             |           |            | ·····  |                    |              |                  |              |
| Single-Stage P:           |         |             |           |            |        |                    |              |                  |              |
| Movement                  |         | 1           | 4         | 7          | 8      | 9                  | 10           | 11               | 12           |
|                           |         | L           | L         | L          | т      | R                  | $\mathbf{L}$ | т                | R            |
| V c,x                     | · · · · |             | 421       | 1066       |        | 206                |              |                  |              |
| s c,x                     |         |             | 744<br>1  | T000       |        | 200                |              |                  |              |
| Px                        |         |             |           |            |        |                    |              |                  |              |
| V c,u,x                   |         |             |           |            |        |                    |              |                  |              |
|                           |         |             |           |            |        |                    |              |                  |              |
| C r,x<br>C plat,x         |         |             |           |            |        |                    |              |                  |              |
| Two-Stage Proc            | ess     |             |           |            |        |                    |              | _                |              |
| ;                         | Stage1  | 7<br>Stage2 | Stage1    | 8<br>Stage | e2 Sta | 10<br>agel St      | age2 s       | 1:<br>Stage1     | l<br>Stage2  |
| V(c,x)                    | 412     | 654         | · · · · · |            |        |                    |              |                  |              |
| S                         |         | 3000        |           |            |        |                    |              |                  |              |
| P(x)                      |         |             |           |            |        |                    |              |                  |              |
| V(c,u,x)                  |         |             |           |            |        |                    |              |                  |              |
| C(r, x)                   |         |             |           |            |        |                    |              |                  |              |
| C(r,x)                    |         |             |           |            |        |                    |              |                  |              |

С

C(plat,x)

Worksheet 6-Impedance and Capacity Equations

|                                                            |          | 1.0  |
|------------------------------------------------------------|----------|------|
| tep 1: RT from Minor St.                                   | 9        | 12   |
| onflicting Flows                                           | 206      |      |
| otential Capacity                                          | 833      |      |
| edestrian Impedance Factor                                 | 1.00     | 1.00 |
| lovement Capacity                                          | 833      |      |
| robability of Queue free St.                               | 0.96     | 1.00 |
| tep 2: LT from Major St.                                   | 4        | 1    |
| onflicting Flows                                           | 421      | ···· |
| otential Capacity                                          | 1135     |      |
| edestrian Impedance Factor                                 | 1.00     | 1.00 |
| lovement Capacity                                          | 1135     |      |
| robability of Queue free St.                               | 1.00     | 1.00 |
| aj L-Shared Prob Q free St.                                |          |      |
| tep 3: TH from Minor St.                                   | 8        | 11   |
| onflicting Flows                                           | <u> </u> |      |
| Potential Capacity                                         |          |      |
| edestrian Impedance Factor                                 | 1.00     | 1.00 |
| ap. Adj. factor due to Impeding mvmnt<br>Novement Capacity | 1.00     | 1.00 |
| probability of Queue free St.                              | 1.00     | 1.00 |
| Step 4: LT from Minor St.                                  | 7        | 10   |
| onflicting Flows                                           | 1066     |      |
| Potential Capacity                                         | 217      |      |
| Pedestrian Impedance Factor                                | 1.00     | 1.00 |
| laj. L, Min T Impedance factor                             |          | 1.00 |
| laj. L, Min T Adj. Imp Factor.                             |          | 1.00 |
|                                                            |          |      |
| ap. Adj. factor due to Impeding mymnt                      | 1.00     | 0.95 |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8    | 11   |
|----------------------------------------|------|------|
| Part 1 - First Stage                   |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 598  | 233  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mymnt | 1.00 | 1.00 |
| Movement Capacity                      | 598  | 232  |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Part 2 - Second Stage                  |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 233  | 592  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 1.00 |
| Movement Capacity                      | 232  | 592  |
|                                        |      |      |

Part 3 - Single Stage Conflicting Flows

| Potential Capacity                     |   |           |    |      |    |
|----------------------------------------|---|-----------|----|------|----|
| Pedestrian Impedance Factor            |   | .00       |    | 1.00 |    |
| Cap. Adj. factor due to Impeding mvmnt | 1 | .00       |    | 1.00 |    |
| Novement Capacity                      |   |           |    |      |    |
| Result for 2 stage process:            |   |           |    |      |    |
| à                                      | 0 | .95       |    | 0.95 |    |
| ł                                      |   |           |    |      |    |
| 2 t                                    |   |           |    |      |    |
| Probability of Queue free St.          | 1 | .00       |    | 1.00 |    |
| Step 4: LT from Minor St.              |   | 7         |    | 10   |    |
| Part 1 - First Stage                   |   | . <u></u> |    |      |    |
| Conflicting Flows                      | 4 | 12        |    |      |    |
| Potential Capacity                     | 6 | 37        |    | 223  |    |
| Pedestrian Impedance Factor            | 1 | .00       |    | 1.00 |    |
| Cap. Adj. factor due to Impeding mvmnt | 1 | .00       |    | 1.00 |    |
| Movement Capacity                      | 6 | 37        |    | 222  |    |
| Part 2 - Second Stage                  |   |           |    |      |    |
| Conflicting Flows                      | 6 | 54        |    |      |    |
| Potential Capacity                     | 4 | 79        |    | 814  |    |
| Pedestrian Impedance Factor            | 1 | .00       |    | 1.00 |    |
| Cap. Adj. factor due to Impeding mymnt |   | .00       |    | 0.96 |    |
| Movement Capacity                      |   | 77        |    | 779  |    |
| Part 3 - Single Stage                  |   |           |    |      |    |
| Conflicting Flows                      | 1 | 066       |    |      |    |
| Potential Capacity                     |   | 17        |    |      |    |
| Pedestrian Impedance Factor            | _ | .00       |    | 1.00 |    |
| Maj. L, Min T Impedance factor         | - |           |    | 1.00 |    |
| Maj. L, Min T Adj. Imp Factor.         |   |           |    | 1.00 |    |
| Cap. Adj. factor due to Impeding mymnt | 1 | .00       |    | 0.95 |    |
| Movement Capacity                      |   | 16        |    | 0.95 |    |
| Results for Two-stage process:         |   |           |    |      |    |
| a                                      | 0 | .95       |    | 0.95 |    |
| a<br>Y                                 |   | .61       |    |      |    |
| r<br>Ct                                |   | .05       |    |      |    |
|                                        | 4 |           |    | ,,,, |    |
| Worksheet 8-Shared Lane Calculations   |   |           |    |      |    |
| Movement 7                             | 8 | 9         | 10 | 11   | 12 |
|                                        |   |           |    |      |    |

LTRLTRVolume (vph)8436Movement Capacity (vph)405833Shared Lane Capacity (vph)

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement | 7   | 8 | 9   | 10 | 11 | 12 |
|----------|-----|---|-----|----|----|----|
|          | L   | т | R   | L  | Т  | R  |
| C sep    | 405 |   | 833 |    |    |    |
| Volume   | 84  |   | 36  |    |    |    |
| Delay    |     |   |     |    |    |    |
| Q sep    |     |   |     |    |    |    |

Q sep +1

round (Qsep +1)

n max C sh SUM C sep n C act

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10 | 11 | 12 |
|------------------|---|------|------|------|------|----|----|----|
| Lane Config      |   | L    | L    |      | R    |    |    |    |
| v (vph)          |   | 4    | 84   |      | 36   |    |    |    |
| C(m) (vph)       |   | 1135 | 405  |      | 833  |    |    |    |
| v/c              |   | 0.00 | 0.21 |      | 0.04 |    |    |    |
| 95% queue length |   | 0.01 | 0.77 |      | 0.14 |    |    |    |
| Control Delay    |   | 8.2  | 16.2 |      | 9.5  |    |    |    |
| LOS              |   | ·A   | С    |      | А    |    |    |    |
| Approach Delay   |   |      |      | 14.2 |      |    |    |    |
| Approach LOS     |   |      |      | В    |      |    |    |    |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
| p(oj)                                         | 1.00       | 1.00       |
| v(il), Volume for stream 2 or 5               |            |            |
| v(i2), Volume for stream 3 or 6               |            |            |
| s(il), Saturation flow rate for stream 2 or 5 |            |            |
| s(i2), Saturation flow rate for stream 3 or 6 |            |            |
| P*(oj)                                        |            |            |
| d(M,LT), Delay for stream 1 or 4              |            | 8.2        |
| N, Number of major street through lanes       |            |            |
| d(rank,1) Delay for stream 2 or 5             |            |            |

TWO-WAY STOP CONTROL SUMMARY\_\_\_

Phone: E-Mail:

Fax:

| E-Mail:                                                                                                                                                                                                    |                                                               |                                                                   |                                             | •                                           |                                              |                        |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|------------------------|-----|
| т                                                                                                                                                                                                          | WO-WAY STO                                                    | P CONTRO                                                          | )L(TWSC)                                    | ANALYS                                      | SIS                                          |                        |     |
| Analyst: K                                                                                                                                                                                                 | HA                                                            |                                                                   |                                             |                                             |                                              |                        |     |
| -                                                                                                                                                                                                          | HA                                                            |                                                                   |                                             |                                             |                                              |                        |     |
|                                                                                                                                                                                                            | 2/15/2008                                                     |                                                                   |                                             |                                             |                                              |                        |     |
|                                                                                                                                                                                                            |                                                               |                                                                   |                                             |                                             |                                              |                        |     |
| Analysis Time Period: P                                                                                                                                                                                    |                                                               |                                                                   | <b>n</b> .                                  |                                             |                                              |                        |     |
|                                                                                                                                                                                                            | R 40 & Hea                                                    | -                                                                 | Drivewa                                     | чy                                          |                                              |                        |     |
|                                                                                                                                                                                                            | evy County                                                    |                                                                   |                                             |                                             |                                              |                        |     |
| Units: U. S. Customary                                                                                                                                                                                     |                                                               | •                                                                 |                                             |                                             |                                              |                        |     |
| -                                                                                                                                                                                                          | 015 Peak C                                                    |                                                                   |                                             |                                             |                                              |                        |     |
| Project ID: Levy Count                                                                                                                                                                                     |                                                               | Reactor                                                           | r - Heav                                    | <i>r</i> y Haul                             | Route                                        | e 2                    |     |
|                                                                                                                                                                                                            | R 40                                                          |                                                                   |                                             |                                             |                                              |                        |     |
| North/South Street: H                                                                                                                                                                                      | leavy Haul                                                    | Driveway                                                          | Į                                           |                                             |                                              |                        |     |
| Intersection Orientatio                                                                                                                                                                                    | n: EW                                                         |                                                                   | Sti                                         | udy per:                                    | iod ()                                       | nrs): 0.               | .25 |
|                                                                                                                                                                                                            | _Vehicle V                                                    |                                                                   | -                                           |                                             |                                              | ·····                  |     |
| Major Street Movements                                                                                                                                                                                     | 1                                                             | 2                                                                 | 3                                           | 4                                           | - 5                                          | 6                      |     |
|                                                                                                                                                                                                            | ${ m L}$                                                      | т                                                                 | R                                           | L                                           | . Т                                          | R                      |     |
| Jolume                                                                                                                                                                                                     | 0                                                             | 147                                                               | 15                                          | 0                                           | 106                                          | 0                      |     |
| Peak-Hour Factor, PHF                                                                                                                                                                                      | 0.95                                                          | 0.95                                                              | 0.95                                        | 0.95                                        | 0.95                                         | 0.95                   |     |
| Peak-15 Minute Volume                                                                                                                                                                                      | 0.95                                                          | 39                                                                | 4                                           | 0.95                                        | 28                                           | 0.95                   |     |
|                                                                                                                                                                                                            |                                                               |                                                                   | -                                           | 0                                           |                                              | 0                      |     |
| Hourly Flow Rate, HFR                                                                                                                                                                                      | 0                                                             | 154                                                               | 15                                          |                                             | 111                                          | U                      |     |
| Percent Heavy Vehicles                                                                                                                                                                                     | 100                                                           |                                                                   |                                             | 100                                         |                                              |                        |     |
| Median Type/Storage                                                                                                                                                                                        | Undiv                                                         | ided                                                              |                                             | /                                           |                                              |                        |     |
| RT Channelized?                                                                                                                                                                                            |                                                               |                                                                   | No                                          |                                             |                                              | _                      |     |
| Lanes                                                                                                                                                                                                      | 0                                                             | $1 \cdot 1$                                                       |                                             | 0                                           | 1                                            | 0                      |     |
| Configuration                                                                                                                                                                                              | LT                                                            | ' R                                                               |                                             | LT                                          |                                              |                        |     |
| Jpstream Signal?                                                                                                                                                                                           |                                                               | No                                                                |                                             |                                             | No                                           |                        |     |
| Minor Street Movements                                                                                                                                                                                     | 7                                                             | 8                                                                 | 9                                           | 10                                          | 11                                           | 12                     |     |
|                                                                                                                                                                                                            | $\mathbf{L}$                                                  | т                                                                 | R                                           | L                                           | т                                            | R                      |     |
|                                                                                                                                                                                                            |                                                               |                                                                   |                                             |                                             |                                              |                        |     |
| /olume                                                                                                                                                                                                     | 0                                                             | 1                                                                 | 0                                           | 0                                           | 1                                            | 0                      |     |
|                                                                                                                                                                                                            | -                                                             |                                                                   |                                             |                                             |                                              |                        |     |
| Peak Hour Factor, PHF                                                                                                                                                                                      | 0.95                                                          | 0.95                                                              | 0.95                                        | 0.95                                        | 0.95                                         | 0.95                   |     |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume                                                                                                                                                             | 0.95<br>0                                                     | 0.95<br>0                                                         | 0.95<br>0                                   | 0.95<br>0                                   | 0.95<br>0                                    | 0.95<br>0              |     |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR                                                                                                                                    | 0.95<br>0<br>0                                                | 0.95<br>0<br>1                                                    | 0.95<br>0<br>0                              | 0.95<br>0<br>0                              | 0.95<br>0<br>1                               | 0.95<br>0<br>0         |     |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles                                                                                                          | 0.95<br>0                                                     | 0.95<br>0<br>1<br>100                                             | 0.95<br>0                                   | 0.95<br>0                                   | 0.95<br>0<br>1<br>100                        | 0.95<br>0              |     |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)                                                                                     | 0.95<br>0<br>0<br>100                                         | 0.95<br>0<br>1<br>100<br>0                                        | 0.95<br>0<br>0<br>100                       | 0.95<br>0<br>0<br>100                       | 0.95<br>0<br>1                               | 0.95<br>0<br>0<br>100  |     |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist                                                           | 0.95<br>0<br>0                                                | 0.95<br>0<br>1<br>100<br>0                                        | 0.95<br>0<br>0                              | 0.95<br>0<br>0                              | 0.95<br>0<br>1<br>100                        | 0.95<br>0<br>0         | . / |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist<br>RT Channelized?                                        | 0.95<br>0<br>100<br>cs?/Storage                               | 0.95<br>0<br>1<br>100<br>0                                        | 0.95<br>0<br>100<br>No                      | 0.95<br>0<br>0<br>100<br>/                  | 0.95<br>0<br>1<br>100<br>0                   | 0.95<br>0<br>100<br>No | . / |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist<br>RT Channelized?<br>Lanes                               | 0.95<br>0<br>0<br>100                                         | 0.95<br>0<br>1<br>100<br>0<br>2<br>1 0                            | 0.95<br>0<br>100<br>No                      | 0.95<br>0<br>0<br>100                       | 0.95<br>0<br>1<br>100<br>0                   | 0.95<br>0<br>0<br>100  | . / |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist<br>RT Channelized?<br>Lanes                               | 0.95<br>0<br>0<br>100<br>cs?/Storage                          | 0.95<br>0<br>1<br>100<br>0                                        | 0.95<br>0<br>100<br>No                      | 0.95<br>0<br>0<br>100<br>/                  | 0.95<br>0<br>1<br>100<br>0                   | 0.95<br>0<br>100<br>No | . / |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist<br>RT Channelized?<br>Lanes<br>Configuration              | 0.95<br>0<br>100<br>cs?/Storage<br>0                          | 0.95<br>0<br>1<br>100<br>0<br>2<br>1 0<br>LTR                     | 0.95<br>0<br>100<br>No                      | 0.95<br>0<br>100<br>/<br>0                  | 0.95<br>0<br>1<br>100<br>0                   | 0.95<br>0<br>100<br>No | . / |
| RT Channelized?<br>Lanes<br>Configuration                                                                                                                                                                  | 0.95<br>0<br>100<br>cs?/Storage<br>0<br>Pedestrian            | 0.95<br>0<br>1<br>100<br>0<br>2<br>1 0<br>LTR<br>Volumes          | 0.95<br>0<br>100<br>No<br>and Ad            | 0.95<br>0<br>100<br>/<br>0<br>justmen       | 0.95<br>0<br>1<br>100<br>0                   | 0.95<br>0<br>100<br>No | · / |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist<br>RT Channelized?<br>Lanes<br>Configuration              | 0.95<br>0<br>100<br>cs?/Storage<br>0                          | 0.95<br>0<br>1<br>100<br>0<br>2<br>1 0<br>LTR                     | 0.95<br>0<br>100<br>No                      | 0.95<br>0<br>100<br>/<br>0                  | 0.95<br>0<br>1<br>100<br>0                   | 0.95<br>0<br>100<br>No | · / |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist<br>RT Channelized?<br>Lanes<br>Configuration              | 0.95<br>0<br>100<br>cs?/Storage<br>0<br>Pedestrian            | 0.95<br>0<br>1<br>100<br>0<br>2<br>1 0<br>LTR<br>Volumes          | 0.95<br>0<br>100<br>No<br>and Ad            | 0.95<br>0<br>100<br>/<br>0<br>justmen       | 0.95<br>0<br>1<br>100<br>0                   | 0.95<br>0<br>100<br>No | · / |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist<br>RT Channelized?<br>Lanes<br>Configuration<br>Movements | 0.95<br>0<br>100<br>cs?/Storage<br>0<br>Pedestrian<br>13      | 0.95<br>0<br>1<br>100<br>0<br>2<br>1<br>LTR<br>Volumes<br>14<br>0 | 0.95<br>0<br>100<br>No<br>and Ad<br>15<br>0 | 0.95<br>0<br>100<br>/<br>justmen<br>16<br>0 | 0.95<br>0<br>1<br>100<br>0<br>1<br>LTR<br>ts | 0.95<br>0<br>100<br>No | . / |
| Peak Hour Factor, PHF<br>Peak-15 Minute Volume<br>Hourly Flow Rate, HFR<br>Percent Heavy Vehicles<br>Percent Grade (%)<br>Flared Approach: Exist<br>RT Channelized?<br>Lanes<br>Configuration              | 0.95<br>0<br>100<br>cs?/Storage<br>0<br>Pedestrian<br>13<br>0 | 0.95<br>0<br>1<br>100<br>0<br>2<br>1<br>LTR<br>Volumes<br>14<br>0 | 0.95<br>0<br>100<br>No<br>and Ad<br>15<br>0 | 0.95<br>0<br>100<br>/<br>justmen<br>16<br>0 | 0.95<br>0<br>1<br>100<br>0<br>1<br>LTR<br>ts | 0.95<br>0<br>100<br>No | . / |

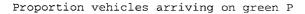
|    |                      |                                                                                                                      | <i>t</i>           | stream Sig      | J                    |                        |       |                               |
|----|----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|----------------------|------------------------|-------|-------------------------------|
|    |                      | Prog.<br>Flow<br>vph                                                                                                 | Sat<br>Flow<br>vph | Arrival<br>Type | Green<br>Time<br>sec | Cycle<br>Length<br>sec | Speed | Distance<br>to Signal<br>feet |
| S2 | Left-Turn<br>Through | n <u>, 1 <b>a</b>ut, 1</u> 20, <u>1</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>1</u> |                    |                 |                      |                        |       |                               |

S5 Left-Turn

DJ DELC-IUL

Through

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles


|                                       | Movement 2 | Movement 5 |
|---------------------------------------|------------|------------|
| Shared in volume, major th vehicles:  | 154        | 111        |
| Shared ln volume, major rt vehicles:  | 0          | 0          |
| Sat flow rate, major th vehicles:     | 1700       | 1700       |
| Sat flow rate, major rt vehicles:     | 1700       | 1700       |
| Number of major street through lanes: | 1          | 1          |

Worksheet 4-Critical Gap and Follow-up Time Calculation

| Critical | . Gap Cal | culatio | on    |      |      |      |      |      |      |
|----------|-----------|---------|-------|------|------|------|------|------|------|
| Movement |           | 1       | 4     | 7    | 8    | 9    | 10   | 11   | 12   |
|          |           | L       | L     | L    | т    | R    | L    | Т    | R    |
| t(c,base | 2)        | 4.1     | 4.1   | 7.1  | 6.5  | 6.2  | 7.1  | 6.5  | 6.2  |
| t(c,hv)  |           | 1.00    | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| P(hv)    |           | 100     | 100   | 100  | 100  | 100  | 100  | 100  | 100  |
| t(c,g)   |           |         |       | 0.20 | 0.20 | 0.10 | 0.20 | 0.20 | 0.10 |
| Percent  | Grade     |         |       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| t(3,1t)  |           | 0.00    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| t(c,T):  | 1-stage   | 0.00    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|          | 2-stage   | 0.00    | 0.00  | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 |
| t(c)     | 1-stage   | 5.1     | 5.1   | 8.1  | 7.5  | 7.2  | 8.1  | 7.5  | 7.2  |
|          | 2-stage   |         |       |      |      |      |      |      |      |
| Follow-U | Jp Time C | alcula  | tions |      |      |      |      |      |      |
| Movement | :         | 1       | 4     | 7    | 8    | 9    | 10   | 11   | 12   |
|          |           | L       | L     | L    | т    | R    | L    | Т    | R    |
| t(f,base | 2)        | 2.20    | 2.20  | 3.50 | 4.00 | 3.30 | 3.50 | 4.00 | 3.30 |
| t(f,HV)  |           | 0.90    | 0.90  | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| P(HV)    |           | 100     | 100   | 100  | 100  | 100  | 100  | 100  | 100  |
| t(f)     |           | 3.1     | 3.1   | 4.4  | 4.9  | 4.2  | 4.4  | 4.9  | 4.2  |

Worksheet 5-Effect of Upstream Signals

| Computation 1-Queue Clearance Time at U       | -    | Signal<br>vement 2 | Movement 5 |           |  |  |
|-----------------------------------------------|------|--------------------|------------|-----------|--|--|
|                                               | V(t) | V(l,prot)          | V(t)       | V(l,prot) |  |  |
| V prog<br>Total Saturation Flow Rate, s (vph) |      |                    |            |           |  |  |
| Arrival Type                                  |      |                    |            |           |  |  |



g(q1) g(q2) g(q)

| Computation 2-Proporti                |             | iwsc inc | ersect      |                                       |                  |           | orrom '        | - 5        |
|---------------------------------------|-------------|----------|-------------|---------------------------------------|------------------|-----------|----------------|------------|
| · · · · · · · · · · · · · · · · · · · |             |          | ۲7          | Movem<br>(t) V                        | ent 2<br>(1,prot |           | ovement<br>v(1 | prot)      |
|                                       |             |          | v           | () V                                  | (1,0100          | ) (()     | v (±,          | procy      |
| alpha                                 |             |          |             |                                       |                  | ,<br>,    |                |            |
| peta                                  |             |          |             | *                                     |                  |           |                |            |
| <b>Fravel time</b> , t(a) (see        | 2)          |          |             |                                       |                  |           |                |            |
| Smoothing Factor, F                   |             |          |             |                                       |                  |           |                |            |
| Proportion of conflict                |             | ow, f    |             |                                       |                  |           |                |            |
| Max platooned flow, V                 |             |          |             |                                       |                  |           |                |            |
| Min platooned flow, V                 |             |          |             |                                       |                  | •         |                |            |
| Duration of blocked pe                |             | t(p)     |             |                                       |                  |           |                |            |
| Proportion time blocks                | ed, p       |          |             | 0.0                                   | 00               |           | 0.000          |            |
| Computation 3-Platoon                 | Event       | Periods  | Re          | sult                                  |                  |           |                |            |
| o(2)                                  |             |          | . 0.        | 000                                   |                  |           |                |            |
| p(5)                                  |             |          |             | 000                                   |                  |           |                |            |
| o(dom)                                |             |          |             |                                       |                  |           |                |            |
| p(subo)                               |             |          |             |                                       |                  |           |                |            |
| Constrained or unconst                | rained      | ?        |             |                                       |                  |           |                |            |
|                                       |             |          |             | · · · · · · · · · · · · · · · · · · · |                  |           |                |            |
| Proportion                            |             | <i>.</i> |             |                                       |                  |           |                |            |
| unblocked                             |             | 1)       |             | (2)                                   |                  | (3)       |                |            |
| for minor                             |             | e-stage  | _           |                                       | tage Pr          |           |                |            |
| movements, p(x)                       | Pro         | Cess     | St          | age I                                 |                  | Stage I   | Ŧ              |            |
| p(1)                                  |             |          |             |                                       |                  |           |                |            |
| p(4)                                  |             |          |             |                                       |                  |           |                |            |
| p(7)                                  |             |          |             |                                       |                  |           |                |            |
| p(8)                                  |             |          |             |                                       |                  |           |                |            |
| p(9)                                  |             |          |             |                                       |                  |           |                |            |
| p(10)                                 |             |          |             |                                       |                  |           |                |            |
| p(11)                                 |             |          | •           |                                       |                  |           |                |            |
| p(12)                                 |             |          |             |                                       |                  |           |                |            |
| Computation 4 and 5                   |             |          |             |                                       |                  |           | ·              |            |
| Single-Stage Process                  |             |          |             |                                       |                  |           |                |            |
| Movement                              | 1           | . 4      | 7           | . 8                                   | 9                | 10        | 11             | 12         |
| Movement                              | L<br>L      | L.       | ,<br>L      | T                                     | R                | L         | T              | R          |
|                                       | Ц           |          | Ц           | Ţ                                     | K                | <u>با</u> | T              | К          |
| V c,x                                 | 111         | 169      | 266         | 265                                   | 154              | 273       | 280            | 111        |
| S                                     |             |          |             |                                       |                  |           |                |            |
| Px                                    |             |          |             |                                       |                  |           |                |            |
| V c,u,x                               |             |          |             |                                       |                  |           |                |            |
| Cr,x                                  |             |          |             |                                       |                  |           |                | - <u>.</u> |
| C plat,x                              |             |          |             |                                       |                  |           |                |            |
|                                       |             |          |             |                                       |                  |           |                |            |
| Two-Stage Process                     | 7           |          | 8           |                                       | 10               |           | 1              | 1          |
| Stage1                                | /<br>Stage2 | Stage1   | o<br>L Stag | ge2 Sta                               |                  | .age2 S   | tage1          |            |
|                                       |             |          | ·····       |                                       |                  |           |                |            |
| V(c,x)<br>s                           | 1500        |          | 1500        | ١                                     | 15               | .00       |                | 1500       |
|                                       | 1000        |          | 100         | ,                                     | ψL               |           |                | 1000       |
|                                       |             |          |             |                                       |                  |           |                |            |
| P(x)<br>V(c,u,x)                      |             |          |             |                                       |                  |           |                |            |

#### C(plat, x)

Movement Capacity

Worksheet 6-Impedance and Capacity Equations Step 1: RT from Minor St. 9 12 Conflicting Flows 154111 Potential Capacity 688 732 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 688 732 Probability of Queue free St. 1.00 1.00 Step 2: LT from Major St. 4 1 Conflicting Flows 169 111 Potential Capacity 982 1040 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 982 1040 Probability of Queue free St. 1.00 1.00 Maj L-Shared Prob Q free St. 1.00 1.00 8 Step 3: TH from Minor St. 11 Conflicting Flows 265 280 Potential Capacity 504 493 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mymnt 1.00 1.00 Movement Capacity 504 493 Probability of Queue free St. 1.00 1.00 Step 4: LT from Minor St. 7 10 273 Conflicting Flows 266 Potential Capacity 527 521 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 1.00 1.00 Maj. L, Min T Adj. Imp Factor. 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

Step 3: TH from Minor St. 8 11 Part 1 - First Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mymnt Movement Capacity Probability of Queue free St. Part 2 - Second Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity Part 3 - Single Stage Conflicting Flows 265 280

526

520

| Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding mvmn<br>Movement Capacity | it.      | 1<br>1                                | 04<br>.00<br>.00<br>04 |          | 493<br>1.00<br>1.00<br>493 |               |
|-----------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|------------------------|----------|----------------------------|---------------|
|                                                                                                                 |          |                                       | V4                     |          | 4JJ                        |               |
| Result for 2 stage process:<br>a                                                                                |          |                                       |                        |          |                            |               |
|                                                                                                                 |          |                                       |                        |          |                            |               |
| čt                                                                                                              | -        | 5                                     | 04 .                   |          | 493                        |               |
| Probability of Queue free St.                                                                                   |          | 1                                     | .00                    |          | 1.00                       |               |
| Step 4: LT from Minor St.                                                                                       |          |                                       | 7                      |          | 10                         |               |
| Part 1 - First Stage                                                                                            |          |                                       |                        |          |                            | · · · ·       |
| Conflicting Flows                                                                                               |          |                                       |                        |          |                            |               |
| Potential Capacity                                                                                              |          |                                       |                        |          |                            |               |
| Pedestrian Impedance Factor                                                                                     |          |                                       |                        |          |                            | •             |
| Cap. Adj. factor due to Impeding mvmr                                                                           | it       |                                       |                        |          |                            |               |
| Movement Capacity                                                                                               |          |                                       |                        |          |                            |               |
| Part 2 - Second Stage                                                                                           |          | · · · · · · · · · · · · · · · · · · · |                        |          |                            |               |
| Conflicting Flows                                                                                               |          |                                       |                        |          |                            |               |
| Potential Capacity                                                                                              |          |                                       |                        |          |                            |               |
| Pedestrian Impedance Factor                                                                                     |          |                                       |                        |          |                            |               |
| Cap. Adj. factor due to Impeding mvmr                                                                           | it       |                                       |                        |          |                            |               |
| Movement Capacity                                                                                               |          |                                       |                        |          |                            |               |
| Part 3 - Single Stage                                                                                           |          |                                       |                        | <u></u>  |                            |               |
| Conflicting Flows                                                                                               |          | 2                                     | 66                     |          | 273                        |               |
| Potential Capacity                                                                                              |          | 5                                     | 27                     |          | 521                        |               |
| Pedestrian Impedance Factor                                                                                     |          | 1                                     | .00                    |          | 1.00                       |               |
| Maj. L, Min T Impedance factor                                                                                  |          | . 1                                   | .00                    |          | 1.00                       |               |
| Maj. L, Min T Adj. Imp Factor.                                                                                  |          | 1                                     | .00                    |          | 1.00                       |               |
| Cap. Adj. factor due to Impeding mvmr                                                                           | ıt       |                                       | .00                    |          | 1.00                       |               |
| Movement Capacity                                                                                               |          | 5                                     | 26                     |          | 520                        |               |
| Results for Two-stage process:                                                                                  |          |                                       |                        |          |                            |               |
| a<br>Y                                                                                                          |          |                                       |                        |          |                            |               |
| C t                                                                                                             |          | 5                                     | 26                     | •        | 520                        |               |
| Worksheet 8-Shared Lane Calculations                                                                            |          |                                       |                        |          | , <u></u> ,,               |               |
| Movement                                                                                                        | 7        | 8                                     | 9                      | 10       | 11                         | 12            |
|                                                                                                                 | L        | Т                                     | R                      | L        | т                          | R             |
| Volume (vph)                                                                                                    | 0        | 1                                     | 0                      | 0        | 1                          | 0             |
| Movement Capacity (vph)                                                                                         | 526      | 504                                   | 688                    | 520      | 493                        | 732           |
| Shared Lane Capacity (vph)                                                                                      | · •      | 504                                   |                        | •        | 493                        |               |
|                                                                                                                 | Flare    | d Minor                               | Street                 | : Approa | iches                      |               |
| Worksheet 9-Computation of Effect of                                                                            |          | 8                                     | 9                      | 10       | 11                         | 12            |
| Worksheet 9-Computation of Effect of                                                                            | 7        |                                       |                        |          |                            | 12            |
|                                                                                                                 | 7<br>L   | 8<br>T                                | R                      | L        | Т                          | R             |
| Movement                                                                                                        |          |                                       |                        |          | т<br>493                   |               |
| Movement<br>C sep                                                                                               | L        | Т                                     | R                      | L        |                            | R<br>732<br>0 |
| Worksheet 9-Computation of Effect of<br>Movement<br>C sep<br>Volume<br>Delay                                    | L<br>526 | т<br>504                              | R<br>688               | L<br>520 | 493                        | 732           |
| Movement<br>C sep<br>Volume                                                                                     | L<br>526 | т<br>504                              | R<br>688               | L<br>520 | 493                        | 732           |

round (Qsep +1)



n màx C sh SUM C sep n C act

493

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1             | 4    | 7 | 8    | 9 | 10     | 11   | 12    |
|------------------|---------------|------|---|------|---|--------|------|-------|
| Lane Config      | $\mathbf{LT}$ | LTR  |   | LTR  |   |        | LTR  |       |
| v (vph)          | 0             | 0    |   | 1    |   | ······ | 1    | ····· |
| C(m) (vph)       | 1040          | 982  |   | 504  |   |        | 493  |       |
| v/c              | 0.00          | 0.00 |   | 0.00 |   |        | 0.00 |       |
| 95% queue length | 0.00          | 0.00 |   | 0.01 |   |        | 0.01 |       |
| Control Delay    | 8.5           | 8.7  |   | 12.2 |   |        | 12.3 |       |
| LOS              | А             | А    |   | в    |   |        | в    |       |
| Approach Delay   |               |      |   | 12.2 |   |        | 12.3 |       |
| Approach LOS     |               |      |   | В    |   |        | в    |       |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
| p(oj)                                         | 1.00       | 1.00       |
| v(il), Volume for stream 2 or 5               | 154        | 111        |
| v(i2), Volume for stream 3 or 6               | 0          | 0          |
| s(il), Saturation flow rate for stream 2 or 5 | 1700       | 1700       |
| s(i2), Saturation flow rate for stream 3 or 6 | 1700       | 1700       |
| P*(oj)                                        | 1.00       | 1.00       |
| d(M,LT), Delay for stream 1 or 4              | 8.5        | 8.7        |
| N, Number of major street through lanes       | 1          | 1          |
| d(rank,1) Delay for stream 2 or 5             | 0.0        | 0.0        |

# 2015 Roaday Analysis



| U.S. 19                                 | Adopted                     | Minimum              | P.N                                    | И. Peak-H                    | our Roadway T                  | affic Volumes       |         |  |
|-----------------------------------------|-----------------------------|----------------------|----------------------------------------|------------------------------|--------------------------------|---------------------|---------|--|
|                                         |                             | ndard                |                                        | 2015 Background<br>Traffic** |                                | 2015 Total Traffic  |         |  |
| Segment                                 | LOS                         | Volume<br>(Two-way)* | Volume<br>(Two-way)                    | LOS                          | Volume<br>(Two-way)            | Volume<br>(Two-way) | LOS     |  |
| SR 121 to Project Site                  | В                           | 2,800                | 510                                    | А                            | 469                            | 979                 | А       |  |
| Project Site to CR 40                   | В                           | 2,800                | 522                                    | A                            | 1,109                          | 1,631               | В       |  |
| SR 121                                  | Adopted                     | Minimum              | P.M. Peak-Hour Roadway Traffic Volumes |                              |                                |                     |         |  |
|                                         |                             | ndard                | 2015 Back<br>Traffic                   | -                            | Project Traffic                | 2015 Total          | Traffic |  |
| Segment                                 | LOS                         | Volume<br>(Two-way)* | Volume<br>(Two-way)                    | LOS                          | Volume<br>(Two-way)            | Volume<br>(Two-way) | LOS     |  |
| U.S. 19 to NW 27th Street               | с                           | 770                  | 160                                    | A                            | 406                            | 566                 | с       |  |
| US 41                                   | Adopted                     | Minimum              | P.M. Peak-Hour Roadway Traffic Volumes |                              |                                |                     |         |  |
|                                         | Adopted Minimum<br>Standard |                      | 2015 Background<br>Traffic**           |                              | Project Traffic 2015 Total Tra |                     | Traffic |  |
| Segment                                 | LOS                         | Volume<br>(Two-way)* | Volume<br>(Two-way)                    | LOS                          | Volume<br>(Two-way)            | Volume<br>(Two-way) | LOS     |  |
| SE 80th Street/NW 27th Street to CR 328 | с                           | 770                  | 449                                    | С                            | 326                            | 775                 | C***    |  |
| CR 40                                   | Adapted                     | Minimum              | P.1                                    | И. Peak-H                    | lour Roadway T                 | raffic Volumes      |         |  |
|                                         |                             | ndard                | 2015 Back<br>Traffic                   |                              | Project Traffic                | 2015 Total          | Traffic |  |
| Segment                                 | LOS                         | Volume<br>(Two-way)* | Volume<br>(Two-way)                    | LOS                          | Volume<br>(Two-way)            | Volume<br>(Two-way) | LOS     |  |
| U.S. 19 to Heavy Haul Driveway          | с                           | 1,070                | 199                                    | С                            | 79                             | 278                 | C       |  |

\*These volumes were attained from the FDOT 2007 Generalized Level of Service Tables.

\*\*These two-way volumes along segments between counted intersections were estimated based upon the average of the intersection volumes counted along the segment.

\*\*\*LOS is based on a detailed HIGHPLAN analysis of the segment.

# **HIGHPLAN 2007 Conceptual Planning Analysis**

| <b>Description/File Information</b> | Descri | ption | /File | Inform | ation |
|-------------------------------------|--------|-------|-------|--------|-------|
|-------------------------------------|--------|-------|-------|--------|-------|

| File Name     | HP_US 41.xml | Road Name             | US 41          | Study Period  | К100    |
|---------------|--------------|-----------------------|----------------|---------------|---------|
| Analyst       | КНА          | From                  | CR 328         | Analysis Type | Segment |
| Date Prepared | 2/24/2009    | То                    | NW 27th Street | Version Date  | 11/9/07 |
| Agency        | FDOT         | Peak Direction        | Northbound     |               |         |
| District      | 2            | Off Peak<br>Direction | Southbound     |               |         |
| User Notes    |              | ·····                 |                |               |         |

# Segment Data

|                    | Roadway              | Variables            |     |                             | Traffic Variables |                      |      |  |
|--------------------|----------------------|----------------------|-----|-----------------------------|-------------------|----------------------|------|--|
| Area Type          | Rural<br>Undeveloped | Segment Length       | 1   | AADT                        | 4400              | PHF                  | .93  |  |
| # Thru Lanes       | 2                    | Median               | No  | к                           | .111              | % Heavy<br>Vehicles  | 3    |  |
| Terrain            | Level                | Left Turn Lanes      | Yes | D                           | 5916              | Base Capacity        | 1700 |  |
| Posted Speed       | 60                   | Pass Lane<br>Spacing | N/A | Peak Dir. Hrly.<br>Vol.     | 289               | Local Adj.<br>Factor | 1    |  |
| Free Flow<br>Speed | 65                   | % NPZ                | 20  | Off Peak Dir.<br>Hrly. Vol. | 199               | Adjusted<br>Capacity | 1675 |  |

### **LOS Results**

| v/c Ratio | 0.18 | Density                 | N/A  | PTSF               | 53.66 | ATS | 58.8 | % FFS | 90.40 |
|-----------|------|-------------------------|------|--------------------|-------|-----|------|-------|-------|
| FFS Delay | 5.90 | LOS<br>Thresh.<br>Delay | 0.00 | Service<br>Measure | PTSF  | LOS | с    |       |       |

### **Service Volumes**

Note: The maximum normally acceptable directional service volume for LOS E in Florida for this facility type and area type is 1500 vphpl.

| Α    | В         | С                                                                                             | D                                                                                                                                                                    | Ξ                                                                                                                                                                                                  |
|------|-----------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Hourly Vo | lume In Peak Direc                                                                            | tion                                                                                                                                                                 |                                                                                                                                                                                                    |
| 130  | 250       | 460                                                                                           | 790                                                                                                                                                                  | 1570                                                                                                                                                                                               |
|      |           |                                                                                               | ·                                                                                                                                                                    |                                                                                                                                                                                                    |
|      |           |                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                    |
|      |           |                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                    |
|      | Hourly Vo | lume In Both Direct                                                                           | ions                                                                                                                                                                 |                                                                                                                                                                                                    |
| 220  | 420       | 780                                                                                           | 1340                                                                                                                                                                 | 2650                                                                                                                                                                                               |
|      |           |                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                    |
|      |           |                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                    |
|      |           |                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                    |
|      | Annual    | Average Daily Traff                                                                           | ïc                                                                                                                                                                   |                                                                                                                                                                                                    |
| 2000 | 3800      | 7000                                                                                          | 12100                                                                                                                                                                | 23900                                                                                                                                                                                              |
|      |           |                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                    |
|      |           |                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                    |
| 1    |           |                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                    |
|      |           | Hourly Vo           130         250           Hourly Vo         220           420         420 | Hourly Volume In Peak Direct         130       250       460         Hourly Volume In Both Direct         220       420       780         Annual Average Daily Traff | Hourly Volume In Peak Direction         130       250       460       790         Hourly Volume In Both Directions         220       420       780       1340         Annual Average Daily Traffic |

| Lanes |       | Service | e Measure Threshold | S     |       |
|-------|-------|---------|---------------------|-------|-------|
| 1     | 35.00 | 50.00   | 65.00               | 80.00 | 80.00 |
| 2     | ]     |         |                     |       |       |
| 3     | ]     |         |                     |       |       |
| 4     | 1     |         |                     |       |       |

be achieved based on input data provided.

# Peak Operational Workforce Traffic Conditions

\_TWO-WAY STOP CONTROL SUMMARY\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/11/2008 Analysis Time Period: A.M. Peak Hour Intersection: U.S. 19 & Operations Access Jurisdiction: FDOT Units: U. S. Customary Analysis Year: 2017 Peak Operations Traffic Project ID: Levy County Advanced Reactor East/West Street: **Operations Access** U.S. 19 North/South Street: Intersection Orientation: NS Study period (hrs): 0.25 \_Vehicle Volumes and Adjustments\_ Northbound Major Street: Approach Southbound

| Movement                            | 1<br>L | 2<br>T | 3<br>R |   | 4<br>L  | 5<br>T | 6<br>R |   |
|-------------------------------------|--------|--------|--------|---|---------|--------|--------|---|
|                                     |        |        | 1.1.0  | 1 | <i></i> | 0.50   |        |   |
| Volume                              |        | 298    | 148    |   | 64      | 253    |        |   |
| Peak-Hour Factor, PHF               |        | 0.95   | 0.95   |   | 0.95    | 0.95   |        |   |
| Hourly Flow Rate, HFR               |        | 313    | 155    |   | 67      | 266    |        |   |
| Percent Heavy Vehicles              |        |        |        |   | 2       |        |        |   |
| Median Type/Storage                 | Raised | curb   |        |   | / 2     |        |        |   |
| RT Channelized?                     |        |        | No     |   |         |        |        |   |
| Lanes                               |        | 2 1    |        |   | 1       | 2      |        |   |
| Configuration                       |        | TR     |        |   | L       | T      |        |   |
| Upstream Signal?                    |        | No     |        |   | _       | No     |        |   |
| opportoin prijnar,                  |        | 110    |        |   |         |        |        |   |
| Minor Street: Approach              | Wes    | tbound |        |   | Eas     | tbound |        |   |
| Movement                            | 7      | 8      | 9      | 1 | 10      | 11     | 12     |   |
|                                     | Ŀ      | Т      | R      | İ | L       | т      | R      |   |
| Volume                              | 14     | ·      | 6      |   |         |        |        |   |
| Peak Hour Factor, PHF               | 0.95   |        | 0.95   |   |         |        |        |   |
| Hourly Flow Rate, HFR               | 14     |        | 6      |   |         |        |        |   |
| Percent Heavy Vehicles              | 2      |        | 2      |   |         |        |        |   |
| Percent Grade (%)                   | 2      | 0      | 2      |   |         | 0      |        |   |
|                                     | 7      | U      |        | , |         | U      |        |   |
| Flared Approach: Exists?/S<br>Lanes | ÷      |        |        | / |         |        |        | / |
|                                     | 1      |        |        |   |         |        |        |   |
| Configuration                       | L      | R      | •      |   |         |        |        |   |

\_Delay, Queue Length, and Level of Service\_ Approach NB SBWestbound Eastbound Movement 1 4 7 8 9 10 11 12  $\mathbf{L}$ Lane Config L R 1 v (vph) 67 6 14 C(m) (vph) 1090 582 888 0.06 0.02 v/c 0.01 95% queue length 0.20 0.07 0.02 Control Delay 8.5 11.3 9.1 LOS А В А Approach Delay 10.7 Approach LOS в





Phone: E-Mail: Fax:

| E-Mail:                               |              |          |           |           | ,        |      |      |   |
|---------------------------------------|--------------|----------|-----------|-----------|----------|------|------|---|
|                                       |              |          |           | יז אזא אי | Vere     |      |      | • |
| · · · · · · · · · · · · · · · · · · · | TWO-WAY STO  | JP CONTR | OL (TWSC  | ) ANAL    | 1212     |      |      |   |
| Analyst:                              | KHA          |          |           |           | •        |      |      |   |
|                                       | KHA          |          |           |           |          |      |      |   |
|                                       | 12/11/2008   |          |           |           |          |      |      |   |
| Analysis Time Period:                 |              | Hour     |           |           |          |      |      |   |
|                                       |              |          | na 1 aa   |           |          |      |      |   |
|                                       | U.S. 19 & (  | operatio | IS ACCO   | 255       |          |      |      |   |
|                                       | FDOT         |          |           |           |          |      |      |   |
| Units: U. S. Customary                |              |          |           |           |          |      |      |   |
|                                       | 2017 Peak (  | -        |           | LIC       |          |      |      |   |
| Project ID: Levy Coun                 | -            |          | r         |           |          |      |      |   |
| • • • •                               | Operations   | Access   |           |           |          |      |      |   |
|                                       | U.S. 19      |          |           |           |          |      |      |   |
| Intersection Orientati                | on: NS       |          | S         | tudy pe   | riod (h: | rs): | 0.25 |   |
|                                       | Vehicle      | Volumes  | and Ad    | iustmon   | te       |      |      |   |
| Major Street Movements                |              | 2        | 3         | 4         | 5        | 6    |      |   |
|                                       | L.           | -<br>ጥ   | R         | Ľ         | T        | R    |      |   |
|                                       |              | -        |           |           | *        |      |      |   |
| Volume                                |              | 298      | 148       | 64        | 253      |      |      |   |
| Peak-Hour Factor, PHF                 |              | 298      | 0.95      | 0.95      | 0.95     |      |      |   |
| Peak-15 Minute Volume                 |              | 78       | 39        | 17        | 67       |      |      |   |
| Hourly Flow Rate, HFR                 |              | 313      | 39<br>155 | 67        | 266      |      |      |   |
|                                       |              | 212      | 100       | 2         | 200      |      |      |   |
| Percent Heavy Vehicles                |              |          |           |           |          |      |      |   |
| Median Type/Storage                   | Rais         | ed curb  |           | / 2       |          |      |      |   |
| RT Channelized?                       |              | · ·      | No        |           | •        |      |      |   |
| Lanes                                 |              | 2 1      | •         | 1         | 2        |      |      |   |
| Configuration                         |              | T R      |           | L         |          |      |      |   |
| Upstream Signal?                      |              | No       |           |           | No       |      |      |   |
| Minor Street Movements                | ; 7          | 8        | 9         | 10        | 11       | 12   |      |   |
|                                       | $\mathbf{L}$ | Т        | R         | L         | т        | R    |      |   |
| Volume                                | . 14         |          | . 6       |           |          |      |      |   |
|                                       | 0.95         |          | 0.95      |           |          | 1    |      |   |
| Peak Hour Factor, PHF                 |              |          | 2         |           |          |      |      |   |
| Peak-15 Minute Volume                 | 4            |          |           |           |          |      |      |   |
| Hourly Flow Rate, HFR                 | 14           |          | 6         |           |          |      |      |   |
| Percent Heavy Vehicles                | s 2          | •        | 2         |           |          | •    |      |   |
| Percent Grade (%)                     |              | 0.       |           |           | 0        |      | ,    |   |
|                                       | sts?/Storag  | е        |           | /         |          |      | /    |   |
| RT Channelized?                       | -            |          | No        |           |          |      |      |   |
| Lanes                                 | 1            | _        | L         |           |          |      |      |   |
| Configuration                         | L            | R        |           |           |          |      |      | , |
|                                       |              |          |           | •         |          |      |      |   |
|                                       | Pedestrian   | Volumes  | s and A   | djustme   | nts      |      |      |   |
| Movements                             | 13           | 14       | 15        | 16        |          |      |      |   |
| Flow (ped/hr)                         | 0            | 0        | 0         | 0         |          |      |      |   |
| Lane Width (ft)                       | 12.          |          |           |           | 0        |      |      |   |
| Walking Speed (ft/sec)                |              |          | 4.0       |           |          |      |      |   |
| Percent Blockage                      | 0            | 0        | 0         | 0         |          |      |      |   |
| Leroche Drochage                      | U            | U        | U         | v         |          |      |      |   |

|            |                      | Upstream Signal Data |                    |                 |                      |                        |                       |                               |  |
|------------|----------------------|----------------------|--------------------|-----------------|----------------------|------------------------|-----------------------|-------------------------------|--|
|            |                      | Prog.<br>Flow<br>Vph | Sat<br>Flow<br>vph | Arrival<br>Type | Green<br>Time<br>sec | Cycle<br>Length<br>sec | Prog.<br>Speed<br>mph | Distance<br>to Signal<br>feet |  |
| S2         | Left-Turn<br>Through |                      |                    |                 |                      |                        |                       |                               |  |
| <i>S</i> 5 | Left-Turn<br>Through |                      |                    |                 |                      |                        |                       |                               |  |

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

|                                                                                                                                                                                                 | Movement 2 | Movement 5 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--|
| Shared ln volume, major th vehicles:<br>Shared ln volume, major rt vehicles:<br>Sat flow rate, major th vehicles:<br>Sat flow rate, major rt vehicles:<br>Number of major street through lanes: |            |            |  |

Worksheet 4-Critical Gap and Follow-up Time Calculation

| Critical                             | l Gap Cal | culatio | on                       |                          |                 |                          |              |      |      |  |
|--------------------------------------|-----------|---------|--------------------------|--------------------------|-----------------|--------------------------|--------------|------|------|--|
| Movement                             | 2         | 1       | 4                        | 7                        | 8               | 9                        | 10           | 11   | 12   |  |
|                                      |           | L       | $\mathbf{L}$             | $\mathbf{L}$             | Т               | R                        | $\mathbf{L}$ | T    | R    |  |
| t(c,base                             | e)        |         | 4.1                      | 7.5                      |                 | 6.2                      |              |      |      |  |
| t(c,hv)                              |           | 2.00    | 2.00                     | 2.00                     | 2.00            | 2.00                     | 2.00         | 2.00 | 2.00 |  |
| P(hv)                                |           |         | 2                        | 2                        |                 | <b>2</b> .               |              |      |      |  |
| t(c,g)                               |           |         |                          | 0.20                     | 0.20            | 0.10                     | 0.20         | 0.20 | 0.10 |  |
| Percent                              | Grade     |         |                          | 0.00                     | 0.00            | 0.00                     | 0.00         | 0.00 | 0.00 |  |
| t(3,1t)                              |           |         | 0.00                     | 0.70                     |                 | 0.00                     |              |      |      |  |
| t(c,T):                              | 1-stage   | 0.00    | 0.00                     | 0.00                     | 0.00            | 0.00                     | 0.00         | 0.00 | 0.00 |  |
|                                      | 2-stage   |         | 0.00                     | 1.00                     | 1.00            | 0.00                     | 1.00         | 1.00 | 0.00 |  |
| t(c)                                 | 1-stage   |         | 4.1                      | 6.8                      |                 | 6.2                      |              |      |      |  |
|                                      | 2-stage   |         | 4.1                      | 5.8                      |                 | 6.2                      |              |      |      |  |
| Follow-U                             | Jp Time C | alcula  | tions                    |                          | · · · · · · · · |                          |              |      |      |  |
| Movement                             | t         | 1       | 4                        | 7                        | 8               | 9                        | 10           | 11   | 12   |  |
|                                      |           | L       | L                        | L                        | т               | R                        | L            | т    | R    |  |
| t(f,base<br>t(f,HV)<br>P(HV)<br>t(f) | 2)        | 1.00    | 2.20<br>1.00<br>2<br>2.2 | 3.50<br>1.00<br>2<br>3.5 | 1.00            | 3.30<br>1.00<br>2<br>3.3 | 1.00         | 1.00 | 1.00 |  |
|                                      |           |         |                          |                          |                 |                          |              |      |      |  |

Worksheet 5-Effect of Upstream Signals

| Computation | 1-Queue | Clearance | Time | at | Upstream | Signal    |      |           |
|-------------|---------|-----------|------|----|----------|-----------|------|-----------|
| ·           |         |           |      |    | Mov      | vement 2  | Mov  | vement 5  |
|             |         |           |      |    | V(t)     | V(l,prot) | V(t) | V(l,prot) |
|             |         |           |      |    |          |           |      |           |

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P g(q1) g(q2) g(q)

|              |                                                                                                 |                                                                                                                                                                                     | v(t)                                                                                                                                                                                     |                                                                                      | nent 2                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                 |                                                                                                                                                                                     | V(L)                                                                                                                                                                                     |                                                                                      | /(1,pr                                                                                                                                                                                                                                                                                  | ot) V                                                                                                                                                                                                                                                                           | (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V(1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | prot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ~~\          |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2C)          |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| atima fl     | £                                                                                               |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | OW, I                                                                                           |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | +(n)                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          | 0 0                                                                                  | 000                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| icu, p       |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          | 0.0                                                                                  |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n Event      | Periods                                                                                         | R                                                                                                                                                                                   | .esu]                                                                                                                                                                                    | lt                                                                                   |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 | 0                                                                                                                                                                                   | .000                                                                                                                                                                                     | )                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 | 0                                                                                                                                                                                   | .000                                                                                                                                                                                     | D                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| strained     | ?                                                                                               |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1            | 1)                                                                                              |                                                                                                                                                                                     | 13                                                                                                                                                                                       | 2)                                                                                   |                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                               | 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •            | •                                                                                               |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      | Stage                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -            | -                                                                                               | .9                                                                                                                                                                                  |                                                                                                                                                                                          |                                                                                      | ugu                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         | Jeag                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1            | 4                                                                                               | 7                                                                                                                                                                                   |                                                                                                                                                                                          | 8                                                                                    | . 9                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathbf{L}$ | L                                                                                               | L                                                                                                                                                                                   |                                                                                                                                                                                          | т                                                                                    | R                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ween and     | 160                                                                                             | E 0 0                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                      | 150                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | 400                                                                                             | 500                                                                                                                                                                                 |                                                                                                                                                                                          |                                                                                      | 130                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 | ·                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7            |                                                                                                 | 8                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stage2       | Stage:                                                                                          | 1 Sta                                                                                                                                                                               | ge2                                                                                                                                                                                      | Sta                                                                                  | age1                                                                                                                                                                                                                                                                                    | Stage2                                                                                                                                                                                                                                                                          | St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | age1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stage2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 267          |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          | · · · · ·                                                                            |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | V(c,max)<br>V(c,min)<br>period,<br>ked, p<br>n Event<br>strained<br>(<br>Singl<br>Pro<br>1<br>L | cting flow, f<br>V(c,max)<br>V(c,min)<br>period, t(p)<br>ked, p<br>n Event Periods<br>strained?<br>(1)<br>Single-stage<br>Process<br>1 4<br>L L<br>468<br>7<br>Stage2 Stage2<br>267 | cting flow, f<br>V(c,max)<br>V(c,min)<br>period, t(p)<br>ked, p<br>n Event Periods R<br>(1)<br>Single-stage<br>Process S<br>1 4 7<br>L L L<br>468 580<br>7 8<br>Stage2 Stage1 Sta<br>267 | <pre>cting flow, f V(c,max) V(c,min) period, t(p) ked, p n Event Periods Resu:</pre> | <pre>cting flow, f<br/>V(c,max)<br/>V(c,min)<br/>period, t(p)<br/>ked, p 0.0<br/>n Event Periods Result<br/>0.000<br/>0.000<br/>strained?<br/>(1) (2)<br/>Single-stage Two-S<br/>Process Stage I<br/>1 4 7 8<br/>L L L T<br/>468 580<br/>7 8<br/>Stage2 Stage1 Stage2 Sta<br/>267</pre> | cting flow, f<br>V(c,max)<br>V(c,min)<br>period, t(p)<br>ked, p 0.000<br>n Event Periods Result<br>0.000<br>0.000<br>strained?<br>(1) (2)<br>Single-stage Two-Stage<br>Process Stage I<br>1 4 7 8 9<br>L L L T R<br>468 580 156<br>7 8 10<br>Stage2 Stage1 Stage2 Stage1<br>267 | cting flow, f         V(c,max)         V(c,min)         period, t(p)         ked, p       0.000         n Event Periods       Result         0.000         strained?         (1)       (2)         (1)       (2)         (1)       (2)         (1)       (2)         Single-stage       Two-Stage Process         Process       Stage I         1       4         468       580         156         7       8         5tage2       Stage1         5tage2       Stage1         5tage2       Stage1 | cting flow, f         V(c,max)         y(c,min)         period, t(p)         ked, p       0.000         n Event Periods       Result         0.000         strained?         (1)       (2)         (1)       (2)         (1)       (2)         (1)       (2)         (1)       (2)         (1)       (2)         (1)       (2)         (1)       (2)         (3)         Single-stage         Process         Stage I         Stage Stage         1       4         7       8         7       8         10         Stage2       Stage1         Stage2       Stage2         267 | cting flow, f         V(c,max)         V(c,min)         period, t(p)         ked, p       0.000         n Event Periods       Result         0.000         strained?         (1)       (2)         (1)       (2)         (1)       (2)         (1)       (2)         Single-stage       Two-Stage Process         Process       Stage I         1       4         7       8         7       8         7       8         7       8         10       11         7       8         7       8         7       8         7       8         5tage2       Stage1         267 |

C(plat,x)

| Worksheet 6-Impedance and Capacity Equation | ns   |                                       |
|---------------------------------------------|------|---------------------------------------|
| Step 1: RT from Minor St.                   | 9    | 12                                    |
| Conflicting Flows                           | 156  |                                       |
| Potential Capacity                          | 888  |                                       |
| Pedestrian Impedance Factor                 | 1.00 | 1.00                                  |
| Movement Capacity                           | 888  |                                       |
| Probability of Queue free St.               | 0.99 | 1.00                                  |
| Step 2: LT from Major St.                   | 4    | 1                                     |
| Conflicting Flows                           | 468  |                                       |
| Potential Capacity                          | 1090 |                                       |
| Pedestrian Impedance Factor                 | 1.00 | 1.00                                  |
| Movement Capacity                           | 1090 |                                       |
| Probability of Queue free St.               | 0.94 | 1.00                                  |
| Maj L-Shared Prob Q free St.                |      |                                       |
| Step 3: TH from Minor St.                   | 8    | 11                                    |
| Conflicting Flows                           |      |                                       |
| Potential Capacity                          |      |                                       |
| Pedestrian Impedance Factor                 | 1.00 | 1.00                                  |
| Cap. Adj. factor due to Impeding mvmnt      | 0.94 | 0.94                                  |
| Movement Capacity                           |      |                                       |
| Probability of Queue free St.               | 1.00 | 1.00                                  |
| Step 4: LT from Minor St.                   | 7    | 10                                    |
| Conflicting Flows                           | 580  | · · · · · · · · · · · · · · · · · · · |
| Potential Capacity                          | 445  |                                       |
| Pedestrian Impedance Factor                 | 1.00 | 1.00                                  |
| Maj. L, Min T Impedance factor              |      | 0:94                                  |
| Maj. L, Min T Adj. Imp Factor.              |      | 0.95                                  |
| Cap. Adj. factor due to Impeding mvmnt      | 0.94 | 0.95                                  |
| Movement Capacity                           | 418  |                                       |
|                                             |      |                                       |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8      | 11    |
|----------------------------------------|--------|-------|
| Part 1 - First Stage                   |        | ····· |
| Conflicting Flows                      |        |       |
| Potential Capacity                     | 661    | 605   |
| Pedestrian Impedance Factor            | 1.00   | 1.00  |
| Cap. Adj. factor due to Impeding mvmnt | 1.00   | 0.94  |
| Movement Capacity                      | 661    | 568   |
| Probability of Queue free St.          | 1.00   | 1.00  |
| Part 2 - Second Stage                  |        |       |
| Conflicting Flows                      |        |       |
| Potential Capacity                     | 605    | 565   |
| Pedestrian Impedance Factor            | 1.00 . | 1.00  |
| Cap. Adj. factor due to Impeding mvmnt | 0.94   | 1.00  |
| Movement Capacity                      | 568    | 565   |

Part 3 - Single Stage Conflicting Flows

| Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity | 1.00<br>0.94 | 1.00<br>0.94                           |
|------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|
| Result for 2 stage process:                                                                                      |              |                                        |
| a                                                                                                                | 0.95         | 0.95                                   |
| У                                                                                                                |              |                                        |
| Ct                                                                                                               | i            |                                        |
| Probability of Queue free St.                                                                                    | 1.00         | 1.00                                   |
| Step 4: LT from Minor St.                                                                                        | 7            | 10                                     |
| Part 1 - First Stage                                                                                             |              | ······································ |
| Conflicting Flows                                                                                                | 313          |                                        |
| Potential Capacity                                                                                               | 715          | 652                                    |
| Pedestrian Impedance Factor                                                                                      | 1.00         | 1.00                                   |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 1.00         | 0.94                                   |
| Movement Capacity                                                                                                | 715          | 612                                    |
| Part 2 - Second Stage                                                                                            |              |                                        |
| Conflicting Flows                                                                                                | 267          |                                        |
| Potential Capacity                                                                                               | 754          | 862                                    |
| Pedestrian Impedance Factor                                                                                      | 1.00         | 1.00                                   |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 0.94         | 0.99                                   |
| Movement Capacity                                                                                                | 708          | 856                                    |
| Part 3 - Single Stage                                                                                            |              |                                        |
| Conflicting Flows                                                                                                | 580          |                                        |
| Potential Capacity                                                                                               | 445          |                                        |
| Pedestrian Impedance Factor                                                                                      | 1.00         | 1.00                                   |
| Maj. L, Min T Impedance factor                                                                                   |              | 0.94                                   |
| Maj. L, Min T Adj. Imp Factor.                                                                                   |              | 0.95                                   |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 0.94         | 0.95                                   |
| Movement Capacity                                                                                                | 418          |                                        |
| Results for Two-stage process:                                                                                   |              |                                        |
| a                                                                                                                | 0.95         | 0.95                                   |
| У                                                                                                                | 1.02         |                                        |
| Ct                                                                                                               | 582          |                                        |
|                                                                                                                  |              | ·····                                  |

#### Worksheet 8-Shared Lane Calculations

| Movement                                              | 7   | 8 | 9   | 10           | 11       | 12 |
|-------------------------------------------------------|-----|---|-----|--------------|----------|----|
|                                                       | L   | Т | R   | $\mathbf{L}$ | т        | R  |
| Volume (vph)                                          | 14  |   | 6   |              | <u> </u> |    |
| Movement Capacity (vph)<br>Shared Lane Capacity (vph) | 582 |   | 888 |              |          |    |

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement | 7      | 8 | 9   | 10 | 11                   | 12 |
|----------|--------|---|-----|----|----------------------|----|
|          | L .    | т | R   | L  | $\mathbf{T}_{\perp}$ | R  |
| C sep    | 582    |   | 888 |    |                      |    |
| Volume   | <br>14 |   | 6   |    |                      |    |
| Delay    |        |   |     |    |                      |    |
| Q sep    |        |   |     |    |                      |    |

Q sep +1 round (Qsep +1) n max C sh SUM C sep n C act

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10 | 11 | 12 |
|------------------|---|------|------|------|------|----|----|----|
| Lane Config      |   | L    | L    |      | R    |    |    |    |
| v (vph)          |   | 67   | 14   |      | 6    |    |    |    |
| C(m) (vph)       |   | 1090 | 582  |      | 888  |    |    |    |
| v/c              |   | 0.06 | 0.02 |      | 0.01 |    |    |    |
| 95% queue length |   | 0.20 | 0.07 |      | 0.02 |    |    |    |
| Control Delay    |   | 8.5  | 11.3 |      | 9.1  |    |    |    |
| LOS              |   | А    | В    |      | А    |    |    |    |
| Approach Delay   |   |      |      | 10.7 |      |    |    |    |
| Approach LOS     |   |      |      | в    |      |    |    |    |

Worksheet 11-Shared Major LT Impedance and Delay

| Movement 2 | Movement 5 |
|------------|------------|
| 1.00       | 0.94       |
|            |            |
|            |            |
|            |            |
|            |            |
|            |            |
|            | 8.5        |
|            |            |
|            |            |
|            |            |

TWO-WAY STOP CONTROL SUMMARY\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & SR 121 Jurisdiction: FDOT District 2 Units: U. S. Customary Analysis Year: 2017 Peak Operations Traffic Project ID: Levy County Advanced Reactor East/West Street: SR 121 North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 Vehicle Volumes and Adjustments\_ Major Street: Southbound Approach Northbound Movement 1 2 3 5 4 6 т  $\mathbf{L}$ т L R R Volume 149 .103 21 171 Peak-Hour Factor, PHF 0.97 0.97 0.97 0.97 Hourly Flow Rate, HFR 153 106 21 176 Percent Heavy Vehicles 4 -----------Median Type/Storage / 2 Raised curb **RT** Channelized? No Lanes 2 1 1 2 Configuration т R L т Upstream Signal? No No Minor Street: Westbound Eastbound Approach 7 8 9 10 Movement 11 12 т т R L R  $\mathbf{L}$ Volume 88 10 Peak Hour Factor, PHF 0.97 0.97 Hourly Flow Rate, HFR 90 10 Percent Heavy Vehicles 1 1 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage Lanes 1 1 Configuration  $\mathbf{L}$ R Delay, Queue Length, and Level of Service Approach SB NB Westbound Eastbound Movement 1 4 7 8 9 10 11 12 Lane Config L L R 1 v (vph) 21 90 10 1288 C(m) (vph) 762 987 0.02 v/c 0.12 0.01 95% queue length 0.05 0.40 0.03 Control Delay 7.8 10.4 8.7

А

В

Α

10.2

В

LOS

Approach Delay

Approach LOS

Phone: E-Mail:

Percent Blockage

Fax:

TWO-WAY STOP CONTROL(TWSC) ANALYSIS\_\_\_\_ Analyst: KHA Agency/Co.: KHA Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & SR 121 Jurisdiction: FDOT District 2 Units: U. S. Customary Analysis Year: 2017 Peak Operations Traffic Project ID: Levy County Advanced Reactor East/West Street: SR 121 North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 Vehicle Volumes and Adjustments Major Street Movements 1 5 6 2 3 4 L т R L т R Volume 103 149 21 171 Peak-Hour Factor, PHF 0.97 0.97 0.97 0.97 Peak-15 Minute Volume 38 27 5 44 Hourly Flow Rate, HFR 153 106 21 176 Percent Heavy Vehicles \_ \_ \_ \_ 4 -----Median Type/Storage Raised curb / 2 RT Channelized? No Lanes 2 1 1 2 Configuration т R т L Upstream Signal? No No Minor Street Movements 7 8 9 10 11 12 L т R L т R Volume 88 10 Peak Hour Factor, PHF 0.97 0.97 Peak-15 Minute Volume 23 3 Hourly Flow Rate, HFR 90 10 Percent Heavy Vehicles 1 1 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage RT Channelized? No Lanes 1 1 Configuration L R \_Pedestrian Volumes and Adjustments\_ Movements 13 14 15 16 Flow (ped/hr) 0 0 0 0 Lane Width (ft) 12.0 12.0 12.0 12.0 Walking Speed (ft/sec) 4.0 4.0 4.0 4.0

0

0

0

0

|    |           | Prog.<br>Flow<br>vph | Sat<br>Flow<br>vph | Arrival<br>Type | Green<br>Time<br>sec | Cycle<br>Length<br>sec | Prog.<br>Speed<br>mph | Distance<br>to Signal<br>feet |
|----|-----------|----------------------|--------------------|-----------------|----------------------|------------------------|-----------------------|-------------------------------|
| s2 | Left-Turn |                      |                    |                 |                      |                        |                       |                               |
|    | Through   |                      |                    |                 |                      |                        |                       |                               |
| S5 | Left-Turn |                      |                    |                 |                      |                        |                       |                               |
|    | Through   |                      |                    |                 |                      |                        |                       |                               |

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

Movement 2

Movement 5

Shared ln volume, major th vehicles: Shared ln volume, major rt vehicles: Sat flow rate, major th vehicles: Sat flow rate, major rt vehicles: Number of major street through lanes:

Worksheet 4-Critical Gap and Follow-up Time Calculation

| Critical                     | Gap Calc   | ulatio | on                |                   |      | *****             |         |      |      |
|------------------------------|------------|--------|-------------------|-------------------|------|-------------------|---------|------|------|
| Movement                     |            | 1      | 4                 | 7                 | . 8  | 9                 | 10      | 11   | 12   |
|                              |            | L      | L                 | L                 | т    | R                 | L       | т    | R    |
| t(c,base                     | :)         |        | 4.1               | 7.5               |      | 6.2               | • • • • |      |      |
| t(c,hv)                      |            | 2.00   | 2.00              | 2.00              | 2.00 | 2.00              | 2.00    | 2.00 | 2.00 |
| P(hv)                        |            |        | 4                 | 1                 |      | 1                 |         |      |      |
| t(c,g)                       |            |        |                   | 0.20              | 0.20 | 0.10              | 0.20    | 0.20 | 0.10 |
| Percent                      | Grade      |        |                   | 0.00              | 0.00 | 0.00              | 0.00    | 0.00 | 0.00 |
| t(3,1t)                      |            |        | 0.00              | 0.70              |      | 0.00              |         |      |      |
| t(c,T):                      | 1-stage    | 0.00   | 0.00              | 0.00              | 0.00 | 0.00              | 0.00    | 0.00 | 0.00 |
|                              | 2-stage    | 0.00   | 0.00              | 1.00              | 1.00 | 0.00              | 1.00    | 1.00 | 0.00 |
| t(c)                         | 1-stage    |        | 4.2               | 6.8               |      | 6.2               |         |      |      |
|                              | 2-stage    |        | 4.2               | 5.8               |      | 6.2               |         |      |      |
| Follow-U                     | Jp Time Ca | lcula  | tions             |                   |      |                   |         |      |      |
| Movement                     |            | 1      | 4                 | 7                 | 8    | 9                 | 10      | 11   | 12   |
|                              |            | L      | L                 | L                 | т    | R                 | L       | т    | R    |
| t(f,base<br>t(f,HV)<br>P(HV) | 2)         | 1.00   | 2.20<br>1.00<br>4 | 3.50<br>1.00<br>1 | 1.00 | 3.30<br>1.00<br>1 | 1.00    | 1.00 | 1.00 |
| t(f)                         |            |        | 4<br>2.2          | 1<br>3.5          |      | 1<br>3.3          |         |      |      |

Worksheet 5-Effect of Upstream Signals

| Computation | 1-Queue | Clearance | Time | at | Upstream | Signal    |      |           |
|-------------|---------|-----------|------|----|----------|-----------|------|-----------|
|             |         |           |      |    | Mov      | vement 2  | Mov  | vement 5  |
|             |         |           |      |    | V(t)     | V(l,prot) | V(t) | V(l,prot) |

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11) Proportion vehicles arriving on green P

g(q1) g(q2) g(q)

| Computation 2-Pro                     | oport | ion of 1    | wsc Int | ersect       |       | ne bloc:<br>nent 2                                                                                              |       | Movement | - 5     |
|---------------------------------------|-------|-------------|---------|--------------|-------|-----------------------------------------------------------------------------------------------------------------|-------|----------|---------|
|                                       |       |             |         | · v          |       | V(l,prot                                                                                                        |       |          | prot)   |
| •                                     |       | -           |         |              |       |                                                                                                                 | , ,,  | , v(±    | , proc, |
| alpha                                 |       |             |         |              |       |                                                                                                                 |       |          |         |
| peta                                  |       |             |         |              |       |                                                                                                                 |       |          |         |
| Fravel time, t(a                      | ) (se | c)          |         |              |       |                                                                                                                 |       |          |         |
| Smoothing Factor                      |       |             |         |              |       |                                                                                                                 |       |          |         |
| Proportion of con                     | nflic | ting flo    | w, f    |              |       |                                                                                                                 |       |          |         |
| Max platooned flo                     | ow, V | (c,max)     | · ·     |              |       |                                                                                                                 |       |          |         |
| Min platooned flo                     | ow, V | (c,min)     |         |              |       |                                                                                                                 |       |          |         |
| Duration of bloc                      | ked p | eriod, t    | (p)     |              |       |                                                                                                                 |       |          |         |
| Proportion time 1                     |       |             |         |              | 0.0   | 000                                                                                                             |       | 0.000    |         |
| Computation 3-Pla                     | atoon | Event F     | Periods | Re           | sult  | · · · · · · · · · · · · · · · · · · ·                                                                           |       |          |         |
|                                       |       |             |         |              |       |                                                                                                                 |       |          |         |
| p(2)                                  |       |             |         |              | 000   |                                                                                                                 |       |          |         |
| p(5)                                  |       |             |         | 0.           | 000   |                                                                                                                 |       |          |         |
| o (dom)                               |       |             |         |              |       |                                                                                                                 |       |          |         |
| o(subo)                               |       |             |         |              |       | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |       |          |         |
| Constrained or u                      | ncons | trained?    |         |              |       |                                                                                                                 |       |          |         |
|                                       |       |             |         |              |       |                                                                                                                 |       |          |         |
| Proportion                            |       | 11          |         |              | (0)   |                                                                                                                 | (2)   |          |         |
| unblocked                             |       | (1          |         |              | (2)   | · -                                                                                                             | (3)   |          |         |
| for minor                             |       |             | e-stage |              |       | Stage Pr                                                                                                        |       |          |         |
| movements, p(x)                       |       | Proc        | cess    | St           | age I |                                                                                                                 | Stage | II       |         |
| p(1)                                  |       |             |         |              |       |                                                                                                                 |       |          |         |
| p(4)                                  |       |             |         |              |       | •                                                                                                               |       |          |         |
| p(7)                                  |       |             |         |              |       |                                                                                                                 |       |          |         |
| 2(7)<br>2(8)                          |       |             |         |              |       |                                                                                                                 |       |          |         |
| p(0)                                  |       |             |         |              |       |                                                                                                                 |       |          |         |
| p(10)                                 |       |             |         |              |       |                                                                                                                 |       |          |         |
| p(11)                                 |       |             |         |              |       |                                                                                                                 |       |          |         |
| -                                     |       |             |         |              |       |                                                                                                                 |       |          |         |
| p(12)                                 |       |             |         |              |       |                                                                                                                 |       |          |         |
| Computation 4 and                     | d 5   |             |         |              |       |                                                                                                                 |       | * * *    |         |
| Single-Stage Pro                      | cess  |             |         |              |       |                                                                                                                 |       |          |         |
| Movement                              |       | 1           | 4       | 7            | 8     | 9                                                                                                               | 10    | 11       | 12      |
|                                       |       | г           | L       | $\mathbf{L}$ | т     | R                                                                                                               | L     | Ť        | R       |
|                                       |       |             |         |              |       |                                                                                                                 |       |          |         |
| Vc,x                                  |       |             | 259     | 283          |       | 76                                                                                                              |       |          |         |
| 5                                     |       |             |         |              |       |                                                                                                                 |       |          |         |
| Px ·                                  |       | •           |         |              |       |                                                                                                                 |       |          |         |
| Vc,u,x                                |       |             |         |              |       | ÷                                                                                                               |       |          |         |
| Cr,x                                  |       |             |         |              | i     |                                                                                                                 |       |          |         |
| C plat,x                              |       |             |         |              |       |                                                                                                                 |       |          |         |
|                                       |       |             |         |              |       |                                                                                                                 |       |          |         |
| Iwo-Stage Proces                      |       | 7           |         | 8 -          |       | 10                                                                                                              |       | 1        | 1       |
| ,<br>,                                | age1  | ,<br>Stage2 | Stage1  |              | 6) C+ |                                                                                                                 | 200)  |          |         |
| SU                                    | uyei  | Scayez      | Stage1  | . stag       | 54 DC | agel St                                                                                                         | ayez  | Stage1   | Scagez  |
| V(c,x) 15                             | 3     | 130         |         |              |       |                                                                                                                 |       |          |         |
| 5                                     |       | 3000        |         |              |       |                                                                                                                 | •     |          |         |
| P(x)                                  |       |             |         |              |       |                                                                                                                 |       |          |         |
| V(c,u,x)                              |       | •           |         |              |       |                                                                                                                 |       |          |         |
| · · · · · · · · · · · · · · · · · · · |       |             |         |              |       |                                                                                                                 |       |          |         |
|                                       |       |             |         |              |       |                                                                                                                 |       |          |         |

C(plat,x)

| worksheet 6-impedance and capacity Equation                                                                     | 15                                    |                                               |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|
| Step 1: RT from Minor St.                                                                                       | 9                                     | 12                                            |
| Conflicting Flows                                                                                               | 76                                    |                                               |
| Potential Capacity                                                                                              | 987                                   |                                               |
| Pedestrian Impedance Factor                                                                                     | 1.00                                  | 1.00                                          |
| Movement Capacity                                                                                               | 987                                   |                                               |
| Probability of Queue free St.                                                                                   | 0.99                                  | 1.00                                          |
| Step 2: LT from Major St.                                                                                       | 4                                     | 1                                             |
| Conflicting Flows                                                                                               | 259                                   | , <u>, , , , , , , , , , , , , , , , , , </u> |
| Potential Capacity                                                                                              | 1288                                  |                                               |
| Pedestrian Impedance Factor                                                                                     | 1.00                                  | 1.00                                          |
| Movement Capacity                                                                                               | 1288                                  |                                               |
| Probability of Queue free St.                                                                                   | 0.98                                  | 1.00                                          |
| Maj L-Shared Prob Q free St.                                                                                    |                                       |                                               |
| Step 3: TH from Minor St.                                                                                       | 8                                     | 11                                            |
| Conflicting Flows                                                                                               | · · · · · · · · · · · · · · · · · · · |                                               |
| Potential Capacity                                                                                              |                                       |                                               |
| Pedestrian Impedance Factor                                                                                     | 1.00                                  | 1.00                                          |
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity                                                     | 0.98                                  | 0.98                                          |
| Probability of Queue free St.                                                                                   | 1.00                                  | 1.00                                          |
| Step 4: LT from Minor St.                                                                                       | 7                                     | 10                                            |
| Conflicting Flows                                                                                               | 283                                   |                                               |
| Potential Capacity                                                                                              | 687                                   |                                               |
| Pedestrian Impedance Factor                                                                                     | 1.00                                  | 1.00                                          |
| Maj. L, Min T Impedance factor                                                                                  |                                       | 0.98                                          |
| Maj. L, Min T Adj. Imp Factor.                                                                                  |                                       | 0.99                                          |
| Cap. Adj. factor due to Impeding mymnt                                                                          | 0.98                                  | 0.98                                          |
| Movement Capacity                                                                                               | 676                                   |                                               |
| The second second second second second second second second second second second second second second second se |                                       |                                               |

Worksheet 6-Impedance and Capacity Equations

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8    | 11   |
|----------------------------------------|------|------|
| Part 1 - First Stage                   |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 775  | 726  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00 | 0.98 |
| Movement Capacity                      | 775  | 714  |
| Probability of Queue free St.          | 1.00 | 1.00 |
| Part 2 - Second Stage                  |      |      |
| Conflicting Flows                      |      |      |
| Potential Capacity                     | 726  | 697  |
| Pedestrian Impedance Factor            | 1.00 | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 0.98 | 1.00 |
| Movement Capacity                      | 714  | 697  |

Part 3 - Single Stage Conflicting Flows

| Potential Capacity<br>Pedestrian Impedance Factor<br>Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity | 1.00<br>0.98                          | 1.00<br>0.98 |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|
| Result for 2 stage process:                                                                                      |                                       | ·            |
| a                                                                                                                | 0.95                                  | 0.95         |
| Y<br>C t                                                                                                         |                                       |              |
| Probability of Queue free St.                                                                                    | 1.00                                  | 1.00         |
| Step 4: LT from Minor St.                                                                                        | 7                                     | 10           |
| Part 1 - First Stage                                                                                             | · · · · · · · · · · · · · · · · · · · |              |
| Conflicting Flows                                                                                                | 153                                   |              |
| Potential Capacity                                                                                               | 862                                   | 803          |
| Pedestrian Impedance Factor                                                                                      | 1.00                                  | 1.00         |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 1.00                                  | 0.98         |
| Movement Capacity                                                                                                | 862                                   | 790          |
| Part 2 - Second Stage                                                                                            | · · · · · · · · · · · · · · · · · · · |              |
| Conflicting Flows                                                                                                | 130                                   |              |
| Potential Capacity                                                                                               | 885                                   | 944          |
| Pedestrian Impedance Factor                                                                                      | 1.00                                  | 1.00         |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 0.98                                  | 0.99         |
| Movement Capacity                                                                                                | 871                                   | 934          |
| Part 3 - Single Stage                                                                                            |                                       |              |
| Conflicting Flows                                                                                                | 283                                   |              |
| Potential Capacity                                                                                               | 687                                   |              |
| Pedestrian Impedance Factor                                                                                      | 1.00                                  | 1.00         |
| Maj. L, Min T Impedance factor                                                                                   |                                       | 0.98         |
| Maj. L, Min T Adj. Imp Factor.                                                                                   |                                       | 0.99         |
| Cap. Adj. factor due to Impeding mvmnt                                                                           | 0.98                                  | 0.98         |
| Movement Capacity                                                                                                | 676                                   |              |
| Results for Two-stage process:                                                                                   | M.                                    |              |
| a                                                                                                                | 0.95                                  | 0.95         |
| У                                                                                                                | 0.95                                  |              |
| Ct                                                                                                               | 762                                   |              |
|                                                                                                                  |                                       |              |

#### Worksheet 8-Shared Lane Calculations

| Movement                                              | 7            | 8 | 9   | 10           | 11 | 12 |
|-------------------------------------------------------|--------------|---|-----|--------------|----|----|
|                                                       | $\mathbf{L}$ | T | R   | $\mathbf{L}$ | Т  | R  |
| Volume (vph)                                          | 90           |   | 10  |              |    |    |
| Movement Capacity (vph)<br>Shared Lane Capacity (vph) | 762          |   | 987 |              |    |    |

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement | 7   |   | 9   | 10 | 11 | 12 |
|----------|-----|---|-----|----|----|----|
| •        | L   | T | R   | L  | Т  | R  |
| C sep    | 762 |   | 987 | ·  |    |    |
| Volume   | 90  |   | 10  |    |    |    |
| Delay    |     |   |     |    |    |    |
| 0 sep    |     |   |     |    |    |    |

Q sep

Q sep +1 round (Qsep +1)



n max C sh SUM C sep n C act

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10 | 11 | 12 |
|------------------|---|------|------|------|------|----|----|----|
| Lane Config      |   | L    | L    |      | R    |    |    |    |
| v (vph)          |   | 21   | 90   |      | 10   |    |    | •  |
| C(m) (vph)       |   | 1288 | 762  |      | 987  |    |    |    |
| v/c              |   | 0.02 | 0.12 |      | 0.01 |    |    |    |
| 95% queue length |   | 0.05 | 0.40 |      | 0.03 |    |    |    |
| Control Delay    |   | 7.8  | 10.4 |      | 8.7  |    |    |    |
| LOS              |   | A    | В    |      | А    |    |    |    |
| Approach Delay   |   |      |      | 10.2 |      |    |    |    |
| Approach LOS     |   |      |      | в    |      |    |    |    |

Worksheet 11-Shared Major LT Impedance and Delay

Movement 2Movement 5p(oj)1.000.98v(il), Volume for stream 2 or 51.000.98v(i2), Volume for stream 3 or 651.00s(il), Saturation flow rate for stream 2 or 551.00s(i2), Saturation flow rate for stream 3 or 67.8P\*(oj)7.8d(M,LT), Delay for stream 1 or 47.8N, Number of major street through lanes7.8

Analyst: KHAInter.: U.S. 19 & CR 40Agency: KHAArea Type: All other areasDate: 12/8/2008Jurisd: FDOT District 2Period: P.M. Peak HourYear : 2017 Peak Operations TrafficProject ID: Levy County Advanced ReactorE/W St: CR 40/Follow That Dream PkwyN/S St: U.S. 19

|          |          |      |       | SIC    | GNALI | ZED I | NTERSE          | CTION | SUMMA    | NRY    |       |                  |      |      |
|----------|----------|------|-------|--------|-------|-------|-----------------|-------|----------|--------|-------|------------------|------|------|
|          |          | Eas  | tbour | nd     | We    | stbou | ind             | Nor   | thbou    | ınd    | Sc    | uthbo            | ound | · [  |
|          | I        | -    | Т     | R      | L     | т     | R               | L     | т        | R      | L     | т                | R    |      |
| No. Lar  | nes      | 0    | 1     | 1      | 0     | 1     | 1               |       | 2        | 0      |       | . 2              | 0    |      |
| LGConfi  |          |      | LT    | R      | -     | LI    |                 | L     | TR       |        | L L   | - <u>-</u><br>TF | -    | ł    |
| Volume   | 21       | 7    | 74    | 86     | 74    | 63    | 55              | 129   | 334      | 111    | 62    | 433              | . 18 |      |
| Lane Wi  | 1        |      | 12.0  |        | • -   |       | 12.0            | 12.0  |          | ***    | 1     | 12.0             |      |      |
| RTOR Vo  |          |      | 12.0  | 24     |       | 12.0  | 12.0            | 12.0  | 12.0     | 33     | 12.0  | 12.0             | 5    | 1    |
| <b>—</b> |          | 0.5  |       |        |       | ~ 7 7 |                 |       |          |        |       |                  |      |      |
| Duratio  | on U     | .25  |       | Area ' |       |       | other<br>Operat |       |          |        |       |                  |      |      |
|          | Combinat | cior |       | 2      | 3     | 4     |                 |       | 5        | 6      | 7     |                  | 8    |      |
| EB Lef   |          |      | A     |        |       |       | NB              | Left  | А        |        |       |                  |      |      |
| Thr      | cu       |      | А     |        |       |       |                 | Thru  |          | А      |       |                  |      |      |
| Rig      | ght      |      | А     |        |       |       |                 | Right | 2        | А      |       |                  |      |      |
| Pec      | ls       |      |       |        |       |       | İ               | Peds  |          |        |       |                  |      |      |
| WB Lef   | Et       |      | А     |        |       |       | SB              | Left  | А        |        |       |                  |      |      |
| Thr      | cu       |      | А     |        |       |       | Ì               | Thru  |          | А      |       |                  |      |      |
| Rig      | ght      |      | А     |        |       |       | i               | Right |          | A      |       |                  |      |      |
| Ped      |          |      |       |        |       |       | i               | Peds  |          |        |       |                  |      |      |
| NB Rig   |          |      |       |        |       |       | EB              | Right | =        |        |       |                  |      |      |
| SB Rig   | -        |      |       |        |       |       | WB              | Right |          |        |       |                  |      |      |
| Green    | <i>_</i> |      | 10.0  |        |       |       | 1 112           |       | 10.0     | 25.    | 0     |                  |      |      |
| Yellow   |          |      | 4.0   |        |       |       |                 |       | 4.0      | 4.0    |       |                  |      |      |
| All Red  | 4        |      | 1.0   |        |       |       |                 |       | 1.0      | 1.0    |       |                  |      |      |
|          | ~        |      | 1.0   |        |       |       |                 |       |          | cle Le |       | 60.0             | 0    | secs |
| ·        |          |      |       |        |       |       | ormanc          |       | -        |        |       |                  |      |      |
| Appr/    | Lane     |      | -     | j Sat  | R     | atios | 5               | Lane  | Grou     | o Ap   | proad | ch               |      |      |
| Lane     | Group    |      |       | v Rate |       |       |                 |       |          |        |       |                  |      |      |
| Grp      | Capac    | ity  |       | (s)    | v/c   | ç     | J/C             | Delay | 7 LOS    | Del    | ay LO | DS               |      |      |
| Eastbou  | und      | •    |       |        |       |       |                 | •.•   |          |        |       |                  |      |      |
| LT       | 302      |      | 164   | 18     | 0.3   | 6 (   | ).18            | 22.1  | с        | 21.    | 8 (   | -                |      |      |
| R        | . 290    |      | 158   |        | 0.2   |       | ).18            | 21.3  | C        | 22.    | 0     | -                |      |      |
| Westbou  |          |      | 100   |        | 0.2   | 5 0   |                 | 21.5  | C C      |        |       |                  |      |      |
| westbou  | Inc      |      |       |        |       |       |                 |       |          |        |       |                  |      |      |
| LT       | 264      |      | 144   | 10     | 0.5   | 5 (   | ).18            | 24.8  | С        | 23.    | 9 (   | 2                |      |      |
| R        | 290      |      | 158   |        | 0.1   |       | 0.18            | 20.7  | C        |        |       |                  |      |      |
| Northbo  | ound     |      |       |        |       |       |                 |       |          |        |       |                  |      |      |
| L        | 321      |      | 175   | 52     | 0.4   | 3 (   | 0.18            | 22.6  | С        |        |       |                  |      |      |
| TR       | 1479     |      | 343   |        | 0.3   |       | ).43            | 11.2  |          | 13.    | 9 1   | 3                |      |      |
|          | 1117     |      | 54.   |        | 0.0   | 5 (   |                 | ±±.2  | <u>د</u> | 19.    |       | ~                |      |      |
| Southbo  |          |      |       |        |       |       |                 |       |          |        |       |                  |      |      |
| L        | 321      |      | 17    | 52     | 0.2   | 1 (   | ).18            | 21.1  | С        |        |       |                  |      |      |
| TR       | 1515     |      | 349   | 97     | 0.3   | 1 (   | ).43            | 11.3  | В        | 12.    | 5 I   | 3                |      |      |
|          | Inte     | rsed | ction | Delay  | = 15  | .6    | (sec/ve         | eh) : | Inter    | sectio | n LOS | 5 = B            |      |      |
|          |          |      |       |        |       |       |                 |       |          |        |       |                  |      |      |

\_\_\_\_SIGNALIZED INTERSECTION SUMMARY

Phone: E-Mail: Fax:

## \_\_\_\_OPERATIONAL ANALYSIS\_\_\_

Analyst: KHA Agency/Co.: KHA Date Performed: 12/8/2008 Analysis Time Period: P.M. Peak Hour Intersection: U.S. 19 & CR 40 Area Type: All other areas Jurisdiction: FDOT District 2 Analysis Year: 2017 Peak Operations Traffic Project ID: Levy County Advanced Reactor E/W St: CR 40/Follow That Dream Pkwy N/S St: U.S. 19

#### \_\_\_\_VOLUME DATA\_\_

|              | Eas  | stbour | nd     | Wes   | stbou         | nd      | No    | rthbou | und  | Sou  | lthbo        | ind  |
|--------------|------|--------|--------|-------|---------------|---------|-------|--------|------|------|--------------|------|
|              | L    | т      | R      | L     | т             | R       | L     | т      | R    | L    | $\mathbf{T}$ | R    |
| Volume       | 27   | 74     | 86     | 74    | 63            | 55      | 129   | 334    | 111  | 62   | 433          | 18   |
| % Heavy Veh  | 2    | 2      | 2      | 2     | 2             | 2       | 3     | 3      | 3    | 3    | 3            | 3    |
| PHF          | 0.94 | 0.94   | 0.94   | 0.94  | 0.94          | 0.94    | 0.94  | 0.94   | 0.94 | 0.94 | 0.94         | 0.94 |
| PK 15 Vol    | 7    | 20     | 23     | 20    | 17            | 15      | 34    | 89     | 30   | 16   | 115          | 5    |
| Hi Ln Vol    | ĺ    |        |        | ĺ     |               |         | Ì     |        |      | ĺ    |              |      |
| % Grade      | ĺ    | 0      |        | ĺ     | 0             |         | Ì     | 0      |      | İ    | 0            |      |
| Ideal Sat    |      | 1900   | 1900   |       | 1900          | 1900    | 1900  | 1900   |      | 1900 | 1900         |      |
| ParkExist    |      |        |        |       |               |         | · ·   |        |      | ĺ    |              |      |
| NumPark      |      | •      |        | 1     |               |         |       |        |      |      |              |      |
| No. Lanes    | 0    | 1      | 1      | 0     | 1             | 1       | 1     | 2      | 0    | 1    | 2            | 0    |
| LGConfig     |      | LT     | R      |       | $\mathbf{LT}$ | R       | L     | TR     |      | L    | ΤR           |      |
| Lane Width   |      | 12.0   | 12.0   |       | 12.0          | 12.0    | 12.0  | 12.0   |      | 12.0 | 12.0         |      |
| RTOR Vol     |      |        | 24     |       |               | 19      |       |        | 33   |      |              | 5    |
| Adj Flow     |      | 108    | 66     |       | 146           | 38      | 137   | 438    |      | 66   | 475          |      |
| %InSharedLn  |      |        |        |       |               |         |       |        |      |      |              |      |
| Prop LTs     |      | 0.20   |        |       | 0.5           |         |       | 0.0    | 00   |      | 0.0          | 00   |
| Prop RTs     | 0    | .000   | 1.000  | 0     | .000          | 1.000   | 0     | .189   |      | 0    | .029         |      |
| Peds Bikes   | 0    |        |        | 0     |               |         | 0     |        |      | 0    |              |      |
| Buses        |      | 0      | 0      | 1     | 0             | 0       | 0     | 0      |      | 0    | 0            |      |
| %InProtPhase | 9    |        |        |       |               |         | 1     |        |      |      |              |      |
| Duration     | 0.25 |        | Area ' | Type: | All           | other . | areas |        |      |      |              |      |

|             | Eastbound | Westbound  | Northbound | Southbound |
|-------------|-----------|------------|------------|------------|
|             | LTR       | LTR        | LTR        | LTR        |
| Init Unmet  | 0.0 0.0   | 0.0 0.0    | 0.0 0.0    | 0.0 0.0    |
| Arriv. Type | 3 3       | 3 3        | 3 3        | 3 3        |
| Unit Ext.   | 3.0 3.0   | 3.0 3.0    | 3.0 3.0    | 3.0 3.0    |
| I Factor    | 1.000     | 1.000      | 1.000      | 1.000      |
| Lost Time   | 2.0 2.0   | 2.0 2.0    | 2.0 2.0    | 2.0 2.0    |
| Ext of g    | 3.0 3.0   | 3.0 3.0    | 3.0 3.0    | 3.0 3.0    |
| Ped Min g   | 3.2       | 3.2        | 3.2        | 3.2        |
|             | ,<br>,    |            |            | 1          |
|             |           | PHASE DATA | ·          |            |

#### \_\_\_OPERATING PARAMETERS\_

| Pha | se Combination                | 1                  | 2 | 3 | 4                           |    |                               | 5                  | 6                  | 7  | 8 |
|-----|-------------------------------|--------------------|---|---|-----------------------------|----|-------------------------------|--------------------|--------------------|----|---|
| EB  | Left<br>Thru<br>Right<br>Peds | `А<br>А<br>А       |   |   | and decided Statistics Made | NB | Left<br>Thru<br>Right<br>Peds | А                  | A<br>A             |    |   |
| WB  | Left<br>Thru<br>Right<br>Peds | A<br>A<br>A        |   |   | -                           | SB | Left<br>Thru<br>Right<br>Peds | A                  | A<br>A             |    |   |
| NB  | Right                         |                    |   |   |                             | EB | Right                         |                    |                    |    |   |
| SB  | Right                         |                    |   |   |                             | WB | Right                         |                    |                    |    |   |
|     |                               | 10.0<br>4.0<br>1.0 |   |   | I                           |    |                               | 10.0<br>4.0<br>1.0 | 25.0<br>4.0<br>1.0 | ۰. |   |

Cycle Length: 60.0 secs

| Volume Adju | stment | t.            |       |      |        |       |            |      |      |            |      |      |
|-------------|--------|---------------|-------|------|--------|-------|------------|------|------|------------|------|------|
|             | Eas    | stbou         | nd    | Wes  | stbour | nđ    | Northbound |      |      | Southbound |      |      |
|             | L      | т             | R     | L'   | т      | R     | L          | T.   | R    | L          | т    | R    |
| Volume, V   | 27     | 74            | 86    | 74   | 63     | 55    | 129        | 334  | 111  | 62         | 433  | 18   |
| PHF         | 0.94   | 0.94          | 0.94  | 0.94 | 0.94   | 0.94  | 0.94       | 0.94 | 0.94 | 0.94       | 0.94 | 0.94 |
| Adj flow    | 29     | 79            | 66    | 79   | 67     | 38    | 137        | 355  | 83   | 66         | 461  | 14   |
| No. Lanes   | 0      | 1             | 1     | 0    | 1      | 1     | 1          | 2    | 0    | 1          | 2    | 0    |
| Lane group  | 1      | $\mathbf{LT}$ | R     | Ì.   | LT     | R     | L          | TR   |      | L          | TR   |      |
| Adj flow    | i      | 108           | 66    | Ì    | 146    | 38    | 137        | 438  |      | 66         | 475  |      |
| Prop LTs    | İ      | 0.2           | 69    |      | 0.54   | 41    | 1          | 0.0  | 00   | ļ          | 0.0  | 00   |
| Prop RTs    | j 0    | .000          | 1.000 | 0    | .000   | 1.000 | j 0        | .189 |      | 0          | .029 |      |

\_VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET\_

| Saturation 1 | Flow Ra | ate (se | ee Exhi | ibit 1  | 6-7 to | deterr | nine the | e adju | stment | facto  | ors) |
|--------------|---------|---------|---------|---------|--------|--------|----------|--------|--------|--------|------|
| Eas          | stbound | 1 ·     | Wes     | stbound | đ      | Nort   | hbound   | · .    | Sout   | hbound | 9    |
| LG           |         |         |         |         |        |        | TR       |        |        |        |      |
| So           | 1900    | 1900    |         | 1900    | 1900   | 1900   | 1900     |        | 1900   | 1900   |      |
|              | 1       |         |         |         |        |        | 2 (      |        |        | 2      | 0    |
| fW           | 1.000   | 1.000   |         | 1.000   | 1.000  | 1.000  | 1.000    |        | 1.000  | 1.000  |      |
|              |         |         |         |         |        |        | 0.971    |        |        |        |      |
| fG           | 1.000   | 1.000   |         | 1.000   | 1.000  | 1.000  | 1.000    |        | 1.000  | 1.000  |      |
| fP           | 1.000   |         |         |         |        |        | 1.000    |        |        |        |      |
| fBB          | 1.000   | 1.000   |         | 1.000   | 1.000  | 1.000  | 1.000    |        | 1.000  | 1.000  |      |
| fA           | 1.000   | 1.000   |         | 1.000   | 1.000  | 1.000  | 1.000    |        | 1.000  | 1.000  |      |
| fLU          | 1.000   | 1.000   |         | 1.000   | 1.000  | 1.000  | 0.952    |        | 1.000  | 0.952  |      |
| fRT          | 1.000   | 0.850   |         | 1.000   | 0.850  |        | 0.972    |        |        | 0.996  |      |
| flt          |         |         |         |         |        |        | 1.000    |        |        |        |      |
| Sec.         |         |         |         |         |        |        |          |        |        |        |      |
| fLpb         | 1.000   |         |         | 1.000   |        | 1.000  | 1.000    |        | 1.000  | 1.000  |      |
| fRpb         | 1.000   | 1.000   |         | 1.000   | 1.000  |        | 1.000    |        |        | 1.000  |      |
| S            | 1648    | 1583    |         | 1440    | ·1583  | 1752   | 3412     |        | 1752   | 3497   |      |
| Sec.         |         |         |         |         |        |        |          |        |        |        |      |
|              |         |         |         |         | ND LOS |        |          |        |        |        |      |
| Capacity An  | alysis  | and La  | ane Gr  | oup Caj | pacity |        |          |        |        |        |      |
|              |         | A       | dj      | Adj     | Sat 1  | Flow   | Green    | 1I     | Jane G | roup   |      |
| Appr/ L      | ané     | Flow    | Rate    | Flow 1  | Rate 1 | Ratio  | Ratio    | o Car  | pacity | v/c    |      |
| Mvmt G       | roup    | ()      | V)      | (s      | )      | (v/s)  | (g/C)    | )      | (c)    | Ratio  | C    |

| Right R       66       1583 $0.04$ $0.18$ $290$ $0.23$ Westbound       Prot         Perm       Left       Prot         Perm       146       1440       # 0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       Perm       Left L       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Left L       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Left L       66       1752       0.04       0.18       321       0.21         Southbound       Prot       Perm       Left L       66       1752       0.04       0.18       321       0.21         Southbound       Prot       Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Sum of flow ratios for critical lane groups, Yc =       Sum (v/s) = 0.32       0.21       Total lost time per cycle, L = 12.00 sec       Critical flow rate to capacity ratio,       Xc = (Yc) (C)/(C-L) = 0.39       Delay LOS       Delay LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R 0.2<br>Westboun<br>LT 0.5<br>R 0.1<br>Northbou<br>L 0.4<br>IR 0.3<br>Southbou<br>L 0.2 | 5 0.18<br>3 0.18<br>and<br>3 0.18<br>4 0.43<br>and<br>2 0.18 | 20.5<br>21.7<br>11.1<br>20.8 | 1.000<br>1.000<br>1.000 | 290<br>321<br>1479<br>321 | 0.11<br>0.11<br>0.11 | 0.2<br>0.9<br>0.1<br>0.3 | 0.0<br>0.0<br>0.0 | 20.7<br>22.6<br>11.2<br>21.1 | C<br>C<br>B<br>C | 13.9       | B        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|-------------------------|---------------------------|----------------------|--------------------------|-------------------|------------------------------|------------------|------------|----------|
| Right R661583 $0.04$ $0.18$ $290$ $0.23$ WestboundProtPermLeftProtPermThru LT1461440 $\ddagger$ 0.10 $0.18$ 264 $0.55$ Right R381583 $0.02$ $0.18$ 290 $0.13$ NorthboundProtPermLeft L1371752 $\ddagger$ 0.08 $0.18$ 321 $0.43$ ProtPermThru TR4383412 $0.13$ $0.43$ 1479 $0.30$ RightSouthboundProtPermLeft L661752 $0.04$ $0.18$ 321 $0.21$ ProtPermThru TR4753497 $\ddagger$ 0.14 $0.43$ 1515 $0.31$ RightSum of flow ratios for critical lane groups, Yc =Sum (v/s) = 0.32 $0.32$ Control Delay and LOS DeterminationAppr/RatiosUfProgLaneIncrementalResLane GroupApproachLaneDel AdjGrpFactor DelDelDelay LOSDelay LOSDelay LOSEastboundLT0.360.1821.41.0003020.110.70.022.1C21.8CR0.130.1820.91.0002900.110.40.021.3CNorthboundLaneCol1.0002900.110.7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R 0.2<br>Westboun<br>LT 0.5<br>R 0.1<br>Northbou<br>L 0.4<br>TR 0.3<br>Southbou          | 5 0.18<br>3 0.18<br>ind<br>3 0.18<br>0 0.43<br>ind           | 20.5<br>21.7<br>11.1         | 1.000<br>1.000<br>1.000 | 290<br>321<br>1479        | 0.11<br>0.11<br>0.11 | 0.2<br>0.9<br>0.1        | 0.0<br>0.0<br>0.0 | 20.7<br>22.6<br>11.2         | C<br>C           |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Perot       Perm       Left       Prot       Perm       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       Perm       146       1440       # 0.10       0.18       264       0.55         Northbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Thru TR       438       3412       0.13       0.43       1479       0.30         Right       Southbound       Prot       Perm       0.43       1479       0.30         Right       66       1752       0.04       0.18       321       0.21         Prot       Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Sum of flow ratios for critical lane groups, Yc =       Sum (v/s)       = 0.32       0.12       0.14       1515       0.31         Control Delay and LOS Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R 0.2<br>Westboun<br>LT 0.5<br>R 0.1<br>Northbou<br>L 0.4                                | 5 0.18<br>3 0.18<br>and<br>3 0.18                            | 20.5<br>21.7                 | 1.000                   | 290<br>321                | 0.11                 | 0.2<br>0.9               | 0.0               | 20.7<br>22.6                 | C<br>C           |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Pertor       Perm       Left       Prot       Perm       0.10       0.18       264       0.55         Perm       Thru LT       146       1440       # 0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Thru TR       438       3412       0.13       0.43       1479       0.30         Right       Bouthbound       Prot       Perm       0.43       1479       0.30         Right       Go       1752       0.04       0.18       321       0.21         Prot       Perm       Left L       66       1752       0.04       0.18       321       0.21         Prot       Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Right       Sum of flow ratios for critical lane groups, Yc =       Sum (v/s) = 0.32       0.12       1100       10.43       1515<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R 0.2<br>Westboun<br>LT 0.5<br>R 0.1<br>Northbou<br>L 0.4                                | 5 0.18<br>3 0.18<br>and<br>3 0.18                            | 20.5<br>21.7                 | 1.000                   | 290<br>321                | 0.11                 | 0.2<br>0.9               | 0.0               | 20.7<br>22.6                 | C<br>C           |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Perto       Perm       Left       Prot       Perm       0.02       0.18       290       0.23         Perm       Left       Prot       Perm       0.00       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Left L       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Thru TR       438       3412       0.13       0.43       1479       0.30         Right       66       1752       0.04       0.18       321       0.21         Perm       Left L       66       1752       0.04       0.18       321       0.21         Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Right       Subouthbound       Perm       Left L       0.17       0.02       C(C)/(C-L) = 0.39         Sum of flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>0.2</li> <li>Vestboun</li> <li>T</li> <li>0.5</li> <li>0.1</li> </ul>           | 5 0.18<br>3 0.18                                             |                              |                         |                           |                      |                          |                   |                              |                  | 23.9       | С        |
| Right R6615830.040.182900.23PersboundProtPermLeftProtPermThru LT1461440# 0.100.182640.55Right R3815830.020.182900.13IorthboundProtPermLeft L1371752# 0.080.183210.43ProtPermThru TR43834120.130.4314790.30RightSouthboundProtPermLeft L6617520.040.183210.21PermLeft L6617520.040.183210.21PermLeft L6617520.040.183210.21PermThru TR4753497# 0.140.4315150.31RightSum of flow ratios for critical lane groups, Yc =Sum (v/s) = 0.320.39Control Delay and LOS Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R 0.2<br>Vestboun                                                                        | 5 0.18                                                       |                              |                         |                           |                      |                          |                   |                              |                  | 23.9       | С        |
| Right R       66       1583       0.04       0.18       290       0.23         Prot       Perm       Left       Prot       Perm       0.18       290       0.18         Perm       Left       Prot       Perm       0.02       0.18       290       0.13         Northbound       Prot       Perm       146       1440       # 0.02       0.18       290       0.13         Northbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Perm       Left L       137       1752       # 0.08       0.18       321       0.43         Perm       Left L       137       1752       # 0.08       0.18       321       0.43         Perm       Left L       66       1752       0.04       0.18       321       0.21         Prot       Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Right       Southbound       Prot       Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Sum of flow ratios for critical lane groups, Yc =       Sum (v/s) = 0.32 <td< td=""><td>R 0.2<br/>Westboun</td><td></td><td>22.3</td><td>1.000</td><td>264</td><td>0.15</td><td>2.5</td><td>0.0</td><td>24.8</td><td>С</td><td>23.9</td><td>С</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R 0.2<br>Westboun                                                                        |                                                              | 22.3                         | 1.000                   | 264                       | 0.15                 | 2.5                      | 0.0               | 24.8                         | С                | 23.9       | С        |
| Right R       66       1583       0.04       0.18       290       0.23         Pert       Perm       Image: Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Se | २ 0.2                                                                                    |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R661583 $0.04$ $0.18$ $290$ $0.23$ PersProtPermLeftProtPermThru LT1461440# $0.10$ $0.18$ 264 $0.55$ Right R381583 $0.02$ $0.18$ 290 $0.13$ NorthboundProtPermLeft L1371752# $0.08$ $0.18$ 321 $0.43$ ProtPermThru TR4383412 $0.13$ $0.43$ 1479 $0.30$ RightSouthboundProtPermLeft L661752 $0.04$ $0.18$ 321 $0.21$ PermThru TR4753497# $0.14$ $0.43$ 1515 $0.31$ RightSoun of flow ratios for critical lane groups, Yc =Sum (v/s) = $0.32$ $0.32$ $0.14$ $0.43$ 1515 $0.31$ RightSoun of flow ratios for critical lane groups, Yc = (Yc)(C)/(C-L) = $0.39$ $0.13$ $0.14$ $0.43$ $1515$ $0.31$ Control Delay and LOS DeterminationAppr/RatiosUnfProgLaneIncrementalResLane GroupApproachAppr/RatiosUnfProgLaneIncrementalResLane GroupApproachAppr/RatiosUnfProgLaneIncrementalResLane GroupApproachControl Delay and LOS DeterminationIncrementa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R 0.2                                                                                    | D.                                                           |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Perst       Perm       Left       Prot       Perm       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       Perm       146       1440       # 0.10       0.18       264       0.55         Northbound       Prot       Perm       1752       # 0.08       0.18       321       0.43         Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Thru       TR       438       3412       0.13       0.43       1479       0.30         Right       Southbound       Prot       Perm       14       0.43       1479       0.30         Right       Southbound       Perm       Thru       TR       438       3412       0.14       0.43       1479       0.30         Southbound       Perm       Thru       TR       475       3497       # 0.14       0.43       1515       0.31         Southbound       Perm       Thru       TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |                                                              | 20.9                         | 1.000                   | 290                       | 0.11                 | 0.4                      | 0.0               | 21.3                         | С                |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Pertound       Port       Perm       0.18       290       0.23         Perm       Left       Perm       0.00       0.18       290       0.23         Perm       Left       Perm       0.00       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Perm       146       1440       # 0.08       0.18       221       0.43         Prot       Perm       Thru TR       438       3412       0.13       0.43       1479       0.30         Right       Southbound       Prot       Perm       0.18       321       0.21         Prot       Perm       Eeft L       66       1752       0.04       0.18       321       0.21         Prot       Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Right       Sum of flow ratios for critical lane groups, Yc =       Sum (v/s) = 0.32       0.32       0.14       0.43       1515       0.31         Sum of flow rate to capacity ratio, <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>21.8</td><td>С</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  | 21.8       | С        |
| Right R6615830.040.182900.23Pestbound<br>Prot<br>Perm<br>Left<br>Prot<br>Perm14614400.100.182640.55Right R3815830.020.182900.13Northbound<br>Prot<br>Perm<br>Left L1371752#0.080.183210.43Prot<br>Perm<br>Thru TR43834120.130.4314790.300.30Right<br>Southbound<br>Prot<br>Perm<br>Thru TR43834120.130.4314790.30Right<br>Southbound<br>Prot<br>Perm<br>Thru TR6617520.040.183210.21Southbound<br>Prot<br>Perm<br>Thru TR4753497#0.140.4315150.31Southbound<br>Prot<br>Perm<br>Control Delay and LOS Determination<br>Lane<br>Perm<br>Thru TRA753497#0.140.4315150.32Control Delay and LOS Determination<br>Lane<br>Perm<br>DelAdjGrpFactor DelDelApproach<br>Approach<br>Delay LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sastboun                                                                                 |                                                              |                              |                         |                           |                      | •                        |                   |                              |                  | •          |          |
| Right R       66       1583 $0.04$ $0.18$ $290$ $0.23$ Jestbound       Prot         Perm       Left       Prot         Perm       146       1440       # $0.10$ $0.18$ $290$ $0.23$ Thru       LT       146       1440       # $0.10$ $0.18$ $264$ $0.55$ Right R       38       1583 $0.02$ $0.18$ $290$ $0.13$ Northbound       Perm       Left L       137 $1752$ # $0.08$ $0.18$ $321$ $0.43$ Prot       Perm       Left L       137 $1752$ # $0.08$ $0.18$ $321$ $0.43$ Post       Perm       Left L       66 $1752$ $0.04$ $0.18$ $321$ $0.21$ Prot       Perm       Left L       66 $1752$ $0.04$ $0.18$ $321$ $0.21$ Prot       Perm       Left L       66 $1752$ $0.04$ $0.18$ $321$ $0.21$ Perm       Left L       66 $1752$ $0.04$ $0.18$ $321$ </td <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><b>_</b>_</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                                                              |                              |                         | •                         |                      |                          |                   |                              |                  | <b>_</b> _ |          |
| Right R       66       1583       0.04       0.18       290       0.23         Westbound       Prot       Perm       146       1440       0.10       0.18       290       0.23         Perm       Left       Prot       Perm       146       1440       # 0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Left L       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Thru TR       438       3412       0.13       0.43       1479       0.30         Right       Southbound       Prot       Perm       140       143       1479       0.30         Right       Southbound       Prot       Perm       1475       3497       # 0.14       0.43       1515       0.31         Right       Southbound       Prot       Perm       1515       0.31       1479       0.30         Pot       Perm       Left L       66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          | c q/C                                                        |                              | -                       | -                         |                      |                          |                   | Dela                         | y LOS            | Delay      | , LOS    |
| Right R       66       1583       0.04       0.18       290       0.23         Vestbound       Prot         Perm       Left         Prot       Perm         Left       Prot         Perm       146       1440       0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Pot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Left L       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Thru TR       438       3412       0.13       0.43       1479       0.30         Right       Bouthbound       Prot       Perm       Left L       66       1752       0.04       0.18       321       0.21         Prot       Perm       Left L       66       1752       0.04       0.18       321       0.21         Prot       Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Right       time per cycle, L = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          | Ratios                                                       |                              | -                       |                           |                      |                          |                   | Lane                         | Group            | Appro      | ach      |
| Right R661583 $0.04$ $0.18$ $290$ $0.23$ PestboundProtPermLeftProtPermThru LT1461440 # 0.10 $0.18$ 264 $0.55$ Right R381583 $0.02$ $0.18$ 290 $0.13$ NorthboundProtPermLeft L1371752# $0.08$ $0.18$ 321 $0.43$ ProtPermThru TR4383412 $0.13$ $0.43$ 1479 $0.30$ RightSouthboundProtPermLeft L661752 $0.04$ $0.18$ 321 $0.21$ ProtPermThru TR4753497# $0.14$ $0.43$ 1515 $0.31$ SouthboundProtPermContraction for critical lane groups, Yc =Sum (v/s) = $0.32$ $0.32$ Fotal lost time per cycle, L = $12.00$ secCritical flow rate to capacity ratio,Xc = (Yc)(C)/(C-L) = $0.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            | <u> </u> |
| Right R       66       1583       0.04       0.18       290       0.23         Vestbound       Prot         Perm       Left       Prot         Perm       146       1440       # 0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Thru       TR       438       3412       0.13       0.43       1479       0.30         Right       Southbound       Prot       Perm       145       0.43       1479       0.31         Prot       Perm       145       0.66       1752       0.04       0.18       321       0.21         Prot       Perm       Thru       TR       475       3497       # 0.14       0.43       1515       0.31         Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          | id                                                           |                              | capacit                 | -y rat                    | -0,                  | AC                       | . – (10           | ., (0,) (                    | - 10 -           | 0.32       |          |
| Right R       66       1583       0.04       0.18       290       0.23         Westbound       Prot       Perm       146       1440       0.10       0.18       264       0.55         Perm       Thru LT       146       1440       # 0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       Thru TR       438       3412       0.13       0.43       1479       0.30         Right       Southbound       Prot       Perm       145       0.18       321       0.21         Prot       Perm       Thru TR       438       3412       0.13       0.43       1479       0.30         Right       Southbound       Prot       Perm       1475       0.04       0.18       321       0.21         Prot       Perm       Thru TR       475       3497       # 0.14       0.43       1515       0.31         Sum of flow ratios for critical lane groups, Yc =       Sum (v/s)       = 0.32       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          |                                                              |                              |                         |                           |                      |                          | r = 1 V c         | 1 (C) / /                    | (C-T.) -         | 0 30       |          |
| Right R       66       1583       0.04       0.18       290       0.23         Westbound       Prot       Perm       146       140       10.01       0.18       264       0.55         Perm       146       1440       # 0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         Northbound       Prot       9       0.18       290       0.13         Prot       137       1752       # 0.08       0.18       321       0.43         Prot       9       137       1752       # 0.08       0.18       321       0.43         Prot       9       9       0.13       0.43       1479       0.30         Right       3412       0.13       0.43       1479       0.30         Southbound       Prot       9       9       1479       0.30         Prot       9       66       1752       0.04       0.18       321       0.21         Prot       9       9       1475       3497       # 0.14       0.43       1515       0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                              |                              |                         |                           |                      |                          | 2 = 5             | Sum (v/                      | 's) =            | 0.32       |          |
| Right R       66       1583       0.04       0.18       290       0.23         Mestbound       Prot       Perm       146       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140 </td <td>Right</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Right                                                                                    |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Jestbound       Prot       Perm       146       1440       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       150       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110       110<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          |                                                              | 4                            | 75                      | 34                        | 97 ;                 | # 0.14                   | 0.                | 43                           | 1515             | 0.31       |          |
| Right R       66       1583       0.04       0.18       290       0.23         estbound       Prot       Perm       146       1440       146       147       146         Perm       146       1440       # 0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         orthbound       Prot       Perm       146       1440       # 0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         orthbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       1479       0.30       1479       0.30         Right       Outhbound       Prot       Perm       Perm       1479       0.30         Perm       Left       L       66       1752       0.04       0.18       321       0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         estbound       Prot       Perm       146       1440       140       146       0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         orthbound       Prot       Perm       146       1440       0.10       0.18       264       0.55         Right R       38       1583       0.02       0.18       290       0.13         orthbound       Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       137       1752       # 0.08       0.18       321       0.43         Prot       Perm       137       1752       # 0.13       0.43       1479       0.30         Right       outhbound       Prot       Perm       Perm       Perm       Perm       Perm       Perm       Perm       Perm       Perm       Perm       Perm       Perot       Perot       Perot       Perm </td <td></td> <td>ų</td> <td>6</td> <td>0</td> <td>17</td> <td>52</td> <td>0.04</td> <td>υ.</td> <td>тα</td> <td>J∠⊥</td> <td>0.21</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          | ų                                                            | 6                            | 0                       | 17                        | 52                   | 0.04                     | υ.                | тα                           | J∠⊥              | 0.21       |          |
| Right R       66       1583       0.04       0.18       290       0.23         estbound       Prot       Perm       146       1440       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140 </td <td></td> <td>T</td> <td>-</td> <td>6</td> <td>1 7</td> <td>50</td> <td>0.04</td> <td>0</td> <td>10</td> <td>201</td> <td>0 21</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          | T                                                            | -                            | 6                       | 1 7                       | 50                   | 0.04                     | 0                 | 10                           | 201              | 0 21       |          |
| Right R       66       1583       0.04       0.18       290       0.23         estbound       Prot       Perm       146       1440       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140 </td <td>Prot</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prot                                                                                     |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         estbound       Prot       Perm       146       1440       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       153       153       153       153       153       153       153       153       153       153       153       153       153       153       153       153       153       153       153       153       155 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         estbound       Prot       Perm       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                              | 4                            | 50                      | 54                        | Ju 44                | 0.10                     | 0.                |                              | ***              | 0.00       |          |
| Right R       66       1583       0.04       0.18       290       0.23         estbound       Prot       Perm       146       1440       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150 </td <td></td> <td>TR</td> <td>Δ</td> <td>38</td> <td>34</td> <td>12</td> <td>0.13</td> <td>Ο</td> <td>43</td> <td>1479</td> <td>0.30</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          | TR                                                           | Δ                            | 38                      | 34                        | 12                   | 0.13                     | Ο                 | 43                           | 1479             | 0.30       |          |
| Right R       66       1583       0.04       0.18       290       0.23         estbound       Prot       Perm       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Westbound       Prot       Perm       146       1440       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          | L                                                            | 1                            | 37                      | 17                        | 52 1                 | ŧ 0.08                   | 0.                | 18                           | 321              | 0.43       |          |
| Right R       66       1583       0.04       0.18       290       0.23         Jestbound       Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Nestbound       Prot       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prot                                                                                     |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Vestbound       Prot       Perm       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100 </td <td>-</td> <td></td> <td>-</td> <td></td> <td>_•</td> <td>-</td> <td></td> <td>- •</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                        |                                                              | -                            |                         | _•                        | -                    |                          | - •               |                              |                  |            |          |
| Right R 66 1583 0.04 0.18 290 0.23<br>Jestbound<br>Prot<br>Perm<br>Left<br>Prot<br>Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R       66       1583       0.04       0.18       290       0.23         Jestbound       Prot         Perm       Left         Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          | T.T                                                          | 1                            | 46                      | 14                        | 40 ±                 | ŧ 0.10                   | 0                 | 18                           | 264              | 0.55       |          |
| Right R 66 1583 0.04 0.18 290 0.23<br>Westbound<br>Prot<br>Perm<br>Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |                                                              |                              |                         |                           | :                    |                          |                   |                              |                  |            |          |
| Right R 66 1583 0.04 0.18 290 0.23<br>Vestbound<br>Prot<br>Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R 66 1583 0.04 0.18 290 0.23<br>Vestbound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Right R 66 1583 0.04 0.18 290 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prot                                                                                     |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lestbound                                                                                |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                        |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Thru LT 108 1648 0.07 0.18 302 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          | LT                                                           | 1                            | 08                      | 16                        | 48                   | 0.07                     | 0.                | 18                           | 302              | 0.36       |          |
| Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thru                                                                                     |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Perm<br>Thru                                                                             |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prot<br>Perm<br>Thru                                                                     |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Perm<br>Thru                                                                             |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Left<br>Prot<br>Perm<br>Thru                                                             |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |
| astbound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Perm<br>Left<br>Prot<br>Perm<br>Thru                                                     |                                                              |                              |                         |                           |                      |                          |                   |                              |                  |            |          |

Intersection delay = 15.6 (sec/veh) Intersection LOS = B

.

\_TWO-WAY STOP CONTROL SUMMARY\_\_\_ Analyst: KHA KHA Agency/Co.: 12/11/2008 Date Performed: Analysis Time Period: P.M. Peak Hour U.S. 19 & Operations Access Intersection: FDOT Jurisdiction: Units: U. S. Customary Analysis Year: 2017 Peak Operations Traffic Project ID: Levy County Advanced Reactor East/West Street: Operations Access North/South Street: U.S. 19 Intersection Orientation: NS Study period (hrs): 0.25 Vehicle Volumes and Adjustments\_ Southbound Major Street: Approach Northbound 2 3 5 6 Movement 1 4 т  $\mathbf{L}$ т R  $\mathbf{L}$ R Volume 298 14 6 341 0.95 0.95 0.95 Peak-Hour Factor, PHF 0.95 Hourly Flow Rate, HFR 313 14 6 358 Percent Heavy Vehicles 2 --/ 2 Median Type/Storage Raised curb RT Channelized? No 2 2 Lanes 1 1 Configuration т R т Ŀ Upstream Signal? No No Minor Street: Approach Westbound Eastbound 7 Movement 8 9 10 11 12 т  $\mathbf{L}$ т R  $\mathbf{L}$ R Volume 130 55 Peak Hour Factor, PHF 0.95 0.95 Hourly Flow Rate, HFR 136 57 Percent Heavy Vehicles 2 2 Percent Grade (%) 0 0 Exists?/Storage Flared Approach: Lanes 1 1 Configuration  $\mathbf{L}$ R Delay, Queue Length, and Level of Service\_ Eastbound Approach NB SB Westbound 4 7 8 9 10 11 12 Movement 1 R Lane Config L L v (vph) 6 136 57 C(m) (vph) 1229 633 888 0.00 0.21 0.06 v/c 95% queue length 0.01 0.81 0.21 7.9 12.2 9.3 Control Delay LOS А В А Approach Delay 11.4 Approach LOS В

Phone: E-Mail: Fax:

|                       | TWO-WAY ST   | TOP CONTR | ROL (TWS | SC) ANAL | YSIS    |       |      |  |
|-----------------------|--------------|-----------|----------|----------|---------|-------|------|--|
|                       |              |           |          |          |         |       |      |  |
| Analyst:              | KHA          |           |          |          |         |       |      |  |
| Agency/Co.:           | KHA          |           |          |          |         |       |      |  |
| Date Performed:       | 12/11/200    | 8         |          |          |         |       |      |  |
| Analysis Time Period: | P.M. Peak    | Hour      |          |          |         |       |      |  |
| Intersection:         | U.S. 19 &    | Operatio  | ons Aco  | cess     |         |       |      |  |
| Jurisdiction:         | FDOT         |           |          |          |         |       |      |  |
| Units: U. S. Customar | У            |           |          |          |         |       |      |  |
| Analysis Year:        | 2017 Peak    | Operatio  | ons Tra  | affic    |         |       |      |  |
| Project ID: Levy Cou  | nty Advance  | ed Reacto | or       |          |         |       |      |  |
| East/West Street:     | Operation    | s Access  |          |          |         |       |      |  |
| North/South Street:   | U.S. 19      |           |          |          |         |       |      |  |
| Intersection Orientat | ion: NS      |           | :        | Study pe | riod () | hrs): | 0.25 |  |
|                       |              |           |          |          |         |       |      |  |
|                       | Vehicle      | Volumes   | and A    | djustmen | its     |       |      |  |
| Major Street Movement | s 1          | 2         | 3        | 4        | 5       | 6     |      |  |
|                       | $\mathbf{L}$ | т         | R        | L        | Т       | R     |      |  |
|                       |              |           |          |          |         |       |      |  |

| Major Street Movements  | 1         | 2    | 3      | 4    | 5    | 6  |   |
|-------------------------|-----------|------|--------|------|------|----|---|
|                         | L         | т    | R      | L    | Т    | R  |   |
| Volume                  |           | 298  | 14     | 6    | 341  |    |   |
| Peak-Hour Factor, PHF   |           | 0.9  | 5 0.95 | 0.95 | 0.95 |    |   |
| Peak-15 Minute Volume   |           | 78   | 4      | 2    | 90   |    |   |
| Hourly Flow Rate, HFR   |           | 313  | 14     | 6    | 358  |    |   |
| Percent Heavy Vehicles  |           |      |        | 2    |      |    |   |
| Median Type/Storage     | Raise     | d cu | rb     | / 2  |      |    |   |
| RT Channelized?         |           |      | No     |      |      |    |   |
| Lanes                   |           | 2    | 1      | 1    | 2    |    |   |
| Configuration           |           | т    | R      | L    | т    |    |   |
| Upstream Signal?        |           | No   |        |      | No   |    |   |
| Minor Street Movements  | 7         | 8    | 9      | 10   | 11   | 12 |   |
|                         | L         | т    | R      | L    | т    | R  |   |
| Volume                  | 130       |      | 55     |      |      |    |   |
| Peak Hour Factor, PHF   | 0.95      |      | 0.95   |      |      |    |   |
| Peak-15 Minute Volume   | 34        |      | 14     |      |      |    |   |
| Hourly Flow Rate, HFR   | 136       |      | 57     |      |      |    |   |
| Percent Heavy Vehicles  | 2         |      | 2      |      |      |    |   |
| Percent Grade (%)       |           | 0    |        |      | 0    |    |   |
| Flared Approach: Exists | ?/Storage | •    |        | /    |      |    | / |
| RT Channelized?         |           |      | No     |      |      |    |   |
| Lanes                   | 1         |      | 1      |      |      |    |   |
| Configuration           | L         |      | R      |      |      |    |   |

| Pedestrian Volumes and Adjustments |      |      |      |      |  |
|------------------------------------|------|------|------|------|--|
| Movements                          | 13   | 14   | 15   | 16   |  |
| Flow (ped/hr)                      | 0    | 0    | 0    | 0    |  |
| Lane Width (ft)                    | 12.0 | 12.0 | 12.0 | 12.0 |  |
| Walking Speed (ft/sec)             | 4.0  | 4.0  | 4.0  | 4.0  |  |

Percent Blockage 0 0 0

|                                                                                                                                 |                                                                            | Prog.                                                        | Sat                                                                                                            | Arriv                                                                                              | ral 4                                                | Green                                                                                              | Cycle                                                                           | Prog.                                     | Distance                                             |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|
|                                                                                                                                 |                                                                            | Flow                                                         | Flow                                                                                                           | л Туре                                                                                             | е і                                                  | Time                                                                                               | Length                                                                          | Speed                                     | to Signal                                            |
|                                                                                                                                 |                                                                            | vph                                                          | vph                                                                                                            |                                                                                                    |                                                      | sec                                                                                                | sec                                                                             | mph                                       | feet                                                 |
| S2 Left                                                                                                                         | -Turn                                                                      |                                                              |                                                                                                                |                                                                                                    |                                                      |                                                                                                    |                                                                                 |                                           | ·····                                                |
| Thro                                                                                                                            | 5                                                                          |                                                              |                                                                                                                |                                                                                                    |                                                      |                                                                                                    |                                                                                 |                                           |                                                      |
| S5 Left                                                                                                                         | -Turn                                                                      |                                                              |                                                                                                                |                                                                                                    |                                                      |                                                                                                    |                                                                                 |                                           |                                                      |
| Thro                                                                                                                            | ough                                                                       |                                                              |                                                                                                                |                                                                                                    |                                                      |                                                                                                    |                                                                                 |                                           |                                                      |
| Workshee                                                                                                                        | et 3-Data                                                                  | for C                                                        | omputing                                                                                                       | f Effect                                                                                           | t of D                                               | elay to                                                                                            | o Major                                                                         | Street N                                  | Vehicles                                             |
| ······                                                                                                                          |                                                                            |                                                              |                                                                                                                |                                                                                                    |                                                      | Movem                                                                                              | ent 2                                                                           | Moveme                                    | ent 5                                                |
|                                                                                                                                 |                                                                            |                                                              |                                                                                                                |                                                                                                    |                                                      |                                                                                                    |                                                                                 |                                           |                                                      |
| Workshee                                                                                                                        | et 4-Criti                                                                 | ical G                                                       | ap and H                                                                                                       | Follow-1                                                                                           | up Tim                                               | e Calc                                                                                             | ulation                                                                         |                                           |                                                      |
|                                                                                                                                 | et 4-Crit                                                                  |                                                              |                                                                                                                | rollow-u                                                                                           | up Tim                                               | e Calc                                                                                             | ulation                                                                         |                                           |                                                      |
| Critical                                                                                                                        | Gap Calo                                                                   | culati                                                       | .on                                                                                                            | <u></u>                                                                                            | -                                                    |                                                                                                    |                                                                                 | 11                                        | 12                                                   |
|                                                                                                                                 | Gap Calo                                                                   |                                                              |                                                                                                                | Follow-1<br>7<br>L                                                                                 | up Tim<br>8<br>T                                     | e Calc<br>9<br>R                                                                                   | ulation<br>10<br>L                                                              | 11<br>T                                   | 12<br>R                                              |
| Critical                                                                                                                        | Gap Calo                                                                   | culati<br>1<br>L                                             | .on<br>4<br>L<br>4.1                                                                                           | 7<br>L<br>7.5                                                                                      | 8<br>T                                               | 9<br>R<br>6.2                                                                                      | 10<br>L                                                                         | Т                                         | R                                                    |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)                                                                                     | Gap Calo                                                                   | culati<br>1                                                  | .on<br>4<br>L<br>4.1<br>2.00                                                                                   | 7<br>L<br>7.5<br>2.00                                                                              | - 8                                                  | 9<br>R<br>6.2<br>2.0                                                                               | 10<br>L                                                                         | Т                                         | R                                                    |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)                                                                            | Gap Calo                                                                   | culati<br>1<br>L                                             | .on<br>4<br>L<br>4.1                                                                                           | 7<br>L<br>7.5<br>2.00<br>2                                                                         | 8<br>T<br>2.00                                       | 9<br>R<br>6.2<br>2.0<br>2                                                                          | 10<br>L<br>0 2.00                                                               | т<br>2.00                                 | R<br>2.00                                            |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)                                                                  | Gap Calo                                                                   | culati<br>1<br>L                                             | .on<br>4<br>L<br>4.1<br>2.00                                                                                   | 7<br>L<br>7.5<br>2.00<br>2<br>0.20                                                                 | 8<br>T<br>2.00<br>0.20                               | 9<br>R<br>6.2<br>2.0<br>2<br>0.1                                                                   | 10<br>L<br>0 2.00<br>0 0.20                                                     | T<br>2.00<br>0.20                         | R<br>2.00<br>0.10                                    |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent                                                       | Gap Calo                                                                   | culati<br>1<br>L                                             | L<br>4.1<br>2.00<br>2                                                                                          | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00                                                         | 8<br>T<br>2.00                                       | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0                                                            | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.20                                           | T<br>2.00<br>0.20                         | R<br>2.00<br>0.10                                    |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)                                            | Grade                                                                      | culati<br>1<br>L<br>2.00                                     | .on<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00                                                                      | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70                                                 | 8<br>T<br>2.00<br>0.20<br>0.00                       | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0                                                     | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0                                      | T<br>2.00<br>0.20<br>0.00                 | R<br>2.00<br>0.10<br>0.00                            |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent                                                       | Grade                                                                      | culati<br>1<br>2.00                                          | .on<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00                                                              | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00                                         | 8<br>T<br>2.00<br>0.20<br>0.00<br>0.00               | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0                                              | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00                                 | T<br>2.00<br>0.20<br>0.00<br>0.00         | R<br>2.00<br>0.10<br>0.00<br>0.00                    |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,1t)<br>t(c,T):                                 | Grade<br>1-stage<br>2-stage                                                | culati<br>1<br>2.00                                          | .on<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00<br>0.00<br>0.00                                              | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00                                 | 8<br>T<br>2.00<br>0.20<br>0.00                       | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0                                       | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 0.00<br>0 1.00             | T<br>2.00<br>0.20<br>0.00<br>0.00         | R<br>2.00<br>0.10<br>0.00<br>0.00                    |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)                                            | Grade                                                                      | culati<br>1<br>2.00                                          | .on<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00                                                              | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00                                         | 8<br>T<br>2.00<br>0.20<br>0.00<br>0.00               | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0                                              | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 0.00<br>0 1.00             | T<br>2.00<br>0.20<br>0.00<br>0.00         | R<br>2.00<br>0.10<br>0.00<br>0.00                    |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)<br>t(c,T):<br>t(c)                         | Grade<br>1-stage<br>2-stage<br>2-stage<br>2-stage                          | Culati<br>1<br>2.00<br>0.00<br>0.00                          | .on<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00<br>0.00<br>4.1<br>4.1                                        | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8                          | 8<br>T<br>2.00<br>0.20<br>0.00<br>0.00               | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>6.2                         | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 0.00<br>0 1.00             | T<br>2.00<br>0.20<br>0.00<br>0.00         | R<br>2.00<br>0.10<br>0.00<br>0.00                    |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-U             | Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage<br>2-stage<br>2-stage    | Culati<br>1<br>2.00<br>0.00<br>0.00                          | Con<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00<br>0.00<br>4.1<br>4.1<br>4.1                                 | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8                   | 8<br>T<br>2.000<br>0.20<br>0.00<br>0.00<br>1.00      | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>6.2<br>6.2                         | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00                       | T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00 | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)<br>t(c,T):<br>t(c)                         | Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage<br>2-stage<br>2-stage    | Culati<br>1<br>2.00<br>0.00<br>0.00<br>alcula<br>1           | Con<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00<br>0.00<br>4.1<br>4.1<br>4.1                                 | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7              | 8<br>T<br>2.000<br>0.200<br>0.000<br>0.000<br>1.000  | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>6.2<br>6.2<br>9                    | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00                       | T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00 | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-U             | Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage<br>2-stage<br>2-stage    | Culati<br>1<br>2.00<br>0.00<br>0.00                          | Con<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00<br>0.00<br>4.1<br>4.1<br>4.1                                 | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8                   | 8<br>T<br>2.000<br>0.20<br>0.00<br>0.00<br>1.00      | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>6.2<br>6.2                         | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00                       | T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00 | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00            |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-t<br>Movement | Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage<br>2-stage<br>Jp Time Ca | Culati<br>1<br>L<br>2.00<br>0.00<br>0.00<br>alcula<br>1<br>L | 2.00<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00<br>0.00<br>0.00<br>4.1<br>4.1<br>0.00<br>4.1<br>4.1<br>2.20 | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L<br>3.50 | 8<br>T<br>2.000<br>0.200<br>0.000<br>1.000<br>8<br>T | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>6.2<br>6.2<br>9<br>R<br>3.3        | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00<br>10<br>L<br>0       | T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00 | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00<br>12<br>R |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-U             | Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage<br>2-stage<br>Jp Time Ca | Culati<br>1<br>2.00<br>0.00<br>0.00<br>alcula<br>1           | Con<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00<br>0.00<br>4.1<br>4.1<br>4.1<br>Ctions<br>4<br>L             | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L         | 8<br>T<br>2.000<br>0.200<br>0.000<br>0.000<br>1.000  | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>6.2<br>6.2<br>9<br>R<br>3.3<br>1.0 | 10<br>L<br>0 2.00<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00<br>10<br>L<br>0       | T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00 | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00<br>12<br>R |
| Critical<br>Movement<br>t(c,base<br>t(c,hv)<br>P(hv)<br>t(c,g)<br>Percent<br>t(3,lt)<br>t(c,T):<br>t(c)<br>Follow-t<br>Movement | Grade<br>1-stage<br>2-stage<br>1-stage<br>2-stage<br>2-stage<br>Jp Time Ca | Culati<br>1<br>L<br>2.00<br>0.00<br>0.00<br>alcula<br>1<br>L | 2.00<br>4<br>L<br>4.1<br>2.00<br>2<br>0.00<br>0.00<br>0.00<br>0.00<br>4.1<br>4.1<br>0.00<br>4.1<br>4.1<br>2.20 | 7<br>L<br>7.5<br>2.00<br>2<br>0.20<br>0.00<br>0.70<br>0.00<br>1.00<br>6.8<br>5.8<br>7<br>L<br>3.50 | 8<br>T<br>2.000<br>0.200<br>0.000<br>1.000<br>8<br>T | 9<br>R<br>6.2<br>2.0<br>2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>6.2<br>6.2<br>9<br>R<br>3.3        | 10<br>L<br>0 2.000<br>0 0.20<br>0 0.00<br>0 0.00<br>0 1.00<br>10<br>L<br>0 1.00 | T<br>2.00<br>0.20<br>0.00<br>0.00<br>1.00 | R<br>2.00<br>0.10<br>0.00<br>0.00<br>0.00<br>12<br>R |

0

Worksheet 5-Effect of Upstream Signals

| Computation 1 | l-Queue | Clearance | Time | at | Upstream | Signal    |      |           |
|---------------|---------|-----------|------|----|----------|-----------|------|-----------|
|               |         |           |      |    | Mov      | vement 2  | Mov  | ement 5   |
|               |         |           |      |    | V(t)     | V(l,prot) | V(t) | V(l,prot) |

V prog Total Saturation Flow Rate, s (vph) Arrival Type Effective Green, g (sec) Cycle Length, C (sec)

# Rp (from Exhibit 16-11) Proportion vehicles arriving on green P g(q1) g(q2) g(q)

| Movement 2 Moveme<br>V(t) V(1, prot) V(t) V<br>alpha<br>beta<br>Travel time, t(a) (sec)<br>Smoothing Factor, F<br>Proportion of conflicting flow, f<br>Max platooned flow, V(c,max)<br>Min platooned flow, V(c,min)<br>Duration of blocked period, t(p)<br>Proportion time blocked, p 0.000 0.0<br>Computation 3-Platoon Event Periods Result<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                | (l,prot) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Alpha         Deta         Cravel time, t(a) (sec)         Smoothing Factor, F         Proportion of conflicting flow, f         Max platooned flow, V(c,max)         fin platooned flow, V(c,min)         Duration of blocked period, t(p)         Proportion time blocked, p         Outputation 3-Platoon Event Periods         Result         Decision         D(2)         O(2)         O(3)         O(40m)         O(40m)         O(5)         O(5)         Constrained or unconstrained?         Proportion         mblocked       (1)         (2)       (3)         for minor       Single-stage |          |
| beta         Pravel time, t(a) (sec)         Smoothing Factor, F         Proportion of conflicting flow, f         Max platooned flow, V(c,max)         Min platooned flow, V(c,min)         Duration of blocked period, t(p)         Proportion time blocked, p       0.000         Computation 3-Platoon Event Periods       Result         p(2)       0.000         p(5)       0.000         p(dom)       0.000         p(subo)       Constrained or unconstrained?         Proportion       (1)       (2)       (3)         for minor       Single-stage       Two-Stage Process                     | 00       |
| Travel time, t(a) (sec)Smoothing Factor, FProportion of conflicting flow, fMax platooned flow, V(c,max)Min platooned flow, V(c,min)Duration of blocked period, t(p)Proportion time blocked, p0.000Computation 3-Platoon Event PeriodsResultp(2)p(5)p(dom)p(subo)Constrained or unconstrained?Proportionunblocked(1)(2)(3)for minorSingle-stageTwo-Stage Process                                                                                                                                                                                                                                          | 00       |
| Smoothing Factor, F         Proportion of conflicting flow, f         Max platooned flow, V(c,max)         Min platooned flow, V(c,min)         Duration of blocked period, t(p)         Proportion time blocked, p       0.000         Computation 3-Platoon Event Periods       Result         p(2)       0.000         p(5)       0.000         p(dom)       0.000         p(subo)       Constrained or unconstrained?         Proportion       (1)       (2)       (3)         for minor       Single-stage       Two-Stage Process                                                                  | 00       |
| Proportion of conflicting flow, f<br>Max platooned flow, V(c,max)<br>Min platooned flow, V(c,min)<br>Duration of blocked period, t(p)<br>Proportion time blocked, p 0.000 0.0<br>Computation 3-Platoon Event Periods Result<br>p(2) 0.000<br>p(5) 0.000<br>p(dom)<br>p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                         | 00       |
| Max platooned flow, V(c,max)<br>Min platooned flow, V(c,min)<br>Duration of blocked period, t(p)<br>Proportion time blocked, p 0.000 0.0<br>Computation 3-Platoon Event Periods Result<br>p(2) 0.000<br>p(5) 0.000<br>p(dom)<br>p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                              | 00       |
| Min platooned flow, V(c,min)<br>Duration of blocked period, t(p)<br>Proportion time blocked, p 0.000 0.0<br>Computation 3-Platoon Event Periods Result<br>p(2) 0.000<br>p(5) 0.000<br>p(dom)<br>p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                              | 00       |
| Duration of blocked period, t(p)<br>Proportion time blocked, p 0.000 0.0<br>Computation 3-Platoon Event Periods Result<br>p(2) 0.000<br>p(5) 0.000<br>p(dom)<br>p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                              | 00       |
| Proportion time blocked, p0.0000.0Computation 3-Platoon Event PeriodsResultp(2)0.000p(5)0.000p(dom)0.000p(subo)Constrained or unconstrained?Proportion(1)unblocked(1)for minorSingle-stageTwo-Stage Process                                                                                                                                                                                                                                                                                                                                                                                              | 00       |
| p(2) 0.000<br>p(5) 0.000<br>p(dom)<br>p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| p(2) 0.000<br>p(5) 0.000<br>p(dom)<br>p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| p(5) 0.000<br>p(dom)<br>p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| p(dom)<br>p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| p(subo)<br>Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Constrained or unconstrained?<br>Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| Proportion<br>unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| unblocked (1) (2) (3)<br>for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| for minor Single-stage Two-Stage Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| movements, p(x) Process Stage I Stage II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| p(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| p(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| p(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| p(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| p(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| p(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| p(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| p(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Computation 4 and 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Single-Stage Process<br>Movement 1 4 7 8 9 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 12     |
| Movement 1 4 7 8 9 10 11<br>L L L T R L T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| V c,x 327 504 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| Px<br>V c,u,x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Cr,x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| C plat,x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Two-Stage Process<br>7 8 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11       |
| 7 8 10<br>Stage1 Stage2 Stage1 Stage2 Stage1 Stage2 Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| V(c,x) = 313 + 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |



#### C(r,x) C(plat,x)

| Step 1: RT from Minor St.              | 9                                     | 12   |
|----------------------------------------|---------------------------------------|------|
| Conflicting Flows                      | 156                                   |      |
| Potential Capacity                     | 888                                   |      |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00 |
| Movement Capacity                      | 888                                   |      |
| Probability of Queue free St.          | 0.94                                  | 1.00 |
| Step 2: LT from Major St.              | 4                                     | 1    |
| Conflicting Flows                      | 327                                   |      |
| Potential Capacity                     | 1229                                  |      |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00 |
| Movement Capacity                      | 1229                                  |      |
| Probability of Queue free St.          | 1.00                                  | 1.00 |
| Maj L-Shared Prob Q free St.           |                                       |      |
| Step 3: TH from Minor St.              | 8                                     | 11   |
| Conflicting Flows                      | · · · · · · · · · · · · · · · · · · · |      |
| Potential Capacity                     |                                       |      |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00                                  | 1.00 |
| Movement Capacity                      |                                       |      |
| Probability of Queue free St.          | 1.00                                  | 1.00 |
| Step 4: LT from Minor St.              | 7                                     | 10   |
| Conflicting Flows                      | 504                                   |      |
| Potential Capacity                     | 497                                   |      |
| Pedestrian Impedance Factor            | 1.00                                  | 1.00 |
| Maj. L, Min T Impedance factor         |                                       | 1.00 |
| Maj. L, Min T Adj. Imp Factor.         | .1                                    | 1.00 |
| Cap. Adj. factor due to Impeding mvmnt | 1.00                                  | 0.93 |
| Movement Capacity                      | 495                                   |      |

Worksheet 7-Computation of the Effect of Two-stage Gap Acceptance

| Step 3: TH from Minor St.              | 8       | 11                                    |
|----------------------------------------|---------|---------------------------------------|
| Part 1 - First Stage                   |         | •                                     |
| Conflicting Flows                      |         |                                       |
| Potential Capacity                     | 661     | 624                                   |
| Pedestrian Impedance Factor            | 1.00    | 1.00                                  |
| Cap. Adj. factor due to Impeding mvmnt | 1.00    | 1.00                                  |
| Movement Capacity                      | 661     | 621                                   |
| Probability of Queue free St.          | 1.00    | 1.00                                  |
| Part 2 - Second Stage                  |         | · · · · · · · · · · · · · · · · · · · |
| Conflicting Flows                      | <i></i> | 67.                                   |
| Potential Capacity                     | 624     | . 651                                 |
| Pedestrian Impedance Factor            | 1.00    | 1.00                                  |
| Cap. Adj. factor due to Impeding mymnt | 1.00    | 1.00                                  |
| Movement Capacity                      | 621     | 651                                   |



| Part 3 - Single Stage                  |        |                    |
|----------------------------------------|--------|--------------------|
| Conflicting Flows                      |        |                    |
| Potential Capacity                     |        |                    |
| Pedestrian Impedance Factor            | 1.00   | 1.00               |
| Cap. Adj. factor due to Impeding mvmnt | 1.00   | 1.00               |
| Movement Capacity                      |        |                    |
|                                        |        |                    |
| Result for 2 stage process:            |        |                    |
| a                                      | 0.95   | 0.95               |
| Y                                      |        |                    |
| Ct                                     |        |                    |
| Probability of Queue free St.          | 1.00   | 1.00               |
| Step 4: LT from Minor St.              | 7      | 10                 |
| Step 4: Di from Minor St.              | 7      | 10                 |
| Part 1 - First Stage                   |        |                    |
| Conflicting Flows                      | 313    |                    |
| Potential Capacity                     | 715    | 675                |
| Pedestrian Impedance Factor            | 1.00   | 1.00               |
| Cap. Adj. factor due to Impeding mymnt | 1.00   | 1.00               |
|                                        |        |                    |
| Movement Capacity                      | 715    | 672                |
| Part 2 - Second Stage                  |        |                    |
| Conflicting Flows                      | 191    |                    |
| Potential Capacity                     | 822    | 862                |
| Pedestrian Impedance Factor            | 1.00   | 1.00               |
| -                                      |        |                    |
| Cap. Adj. factor due to Impeding mvmnt | 1.00   | 0.94               |
| Movement Capacity                      | 818    | 807                |
| Part 3 - Single Stage                  | ·· ··· | B <b>AR. M.ARM</b> |
| Conflicting Flows                      | 504    |                    |
| Potential Capacity                     | 497    |                    |
| Pedestrian Impedance Factor            | 1.00   | 1.00               |
| Maj. L, Min T Impedance factor         | 1.00   | 1.00               |
|                                        |        |                    |
| Maj. L, Min T Adj. Imp Factor.         | 1 00   | 1.00               |
| Cap. Adj. factor due to Impeding mvmnt | 1.00   | 0.93               |
| Movement Capacity                      | 495    |                    |
| Results for Two-stage process:         |        |                    |
| a                                      | 0.95   | 0.95               |
|                                        | 0.68   | 0.75               |
| Y<br>C F                               |        |                    |
| Ct                                     | 633    |                    |
| Worksheet 8-Shared Lane Calculations   |        |                    |
|                                        |        |                    |
| Movement 7                             | 8 9 10 |                    |

| ,            | U   | 2          | 10     |                   | 12                  |                       |
|--------------|-----|------------|--------|-------------------|---------------------|-----------------------|
| $\mathbf{L}$ | т   | R          | L      | т                 | R                   |                       |
| 136          |     | 57         |        |                   |                     |                       |
| 633          |     | 888        |        |                   |                     |                       |
|              | 136 | L T<br>136 | 136 57 | L T R L<br>136 57 | L T R L T<br>136 57 | L T R L T R<br>136 57 |

Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement        | 7        | 8 | 9   | 10           | 11 | 12 |
|-----------------|----------|---|-----|--------------|----|----|
|                 | ${ m L}$ | т | R   | $\mathbf{L}$ | Т  | R  |
| C sep           | 633      |   | 888 |              |    |    |
| C sep<br>Volume | 136      |   | 57  |              |    |    |
| Delay           |          |   |     |              |    |    |

Q sep



Q sep +1 round (Qsep +1)

|               | <br> |  |
|---------------|------|--|
| n max         |      |  |
| n max<br>C sh |      |  |
| SUM C sep     |      |  |
| n             |      |  |
| C act         |      |  |
|               |      |  |

Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9    | 10 | 11 | 12 |
|------------------|---|------|------|------|------|----|----|----|
| Lane Config      |   | L    | L    |      | R    |    |    |    |
| v (vph)          |   | 6    | 136  |      | 57   |    |    |    |
| C(m) (vph)       |   | 1229 | 633  |      | 888  |    |    |    |
| v/c              |   | 0.00 | 0.21 |      | 0.06 |    |    |    |
| 95% queue length |   | 0.01 | 0.81 |      | 0.21 |    |    |    |
| Control Delay    |   | 7.9  | 12.2 |      | 9.3  |    |    |    |
| LOS              |   | А    | в    |      | А    |    |    |    |
| Approach Delay   |   |      |      | 11.4 |      |    |    |    |
| Approach LOS     |   |      |      | В    |      |    |    |    |

Worksheet 11-Shared Major LT Impedance and Delay

Movement 2Movement 5p(oj)1.00v(il), Volume for stream 2 or 5v(i2), Volume for stream 3 or 6s(i1), Saturation flow rate for stream 2 or 5s(i2), Saturation flow rate for stream 3 or 6P\*(oj)d(M,LT), Delay for stream 1 or 4N, Number of major street through lanesd(rank,1) Delay for stream 2 or 5

## 2017 Road Analysis



| U.S. 19                                 | Adopted Minimum |                      |                                        | P.M. Peak-Hour Roadway Traffic Volumes |                     |                     |         |  |  |
|-----------------------------------------|-----------------|----------------------|----------------------------------------|----------------------------------------|---------------------|---------------------|---------|--|--|
|                                         | Standard        |                      | Background<br>Traffic**                |                                        | Project Traffic     | 2017 Total Traffic  |         |  |  |
| Segment                                 | LOS             | Volume<br>(Two-way)* | Volume<br>(Two-way)                    | LOS                                    | Volume<br>(Two-way) | Volume<br>(Two-way) | LOS     |  |  |
| SR 121 to Project Site                  | В               | 2,800                | 533                                    | А                                      | 61                  | 594                 | А       |  |  |
| Project Site to CR 40                   | В               | 2,800                | 545                                    | А                                      | 144                 | 689                 | А       |  |  |
| SR 121                                  | Adopted         | Minimum              | P.N                                    | Л. Peak-H                              | our Roadway T       | raffic Volumes      |         |  |  |
|                                         |                 | ndard                | 2017 Back<br>Traffic                   | ground<br>c**                          | Project Traffic     | 2017 Total          | Traffic |  |  |
| Segment                                 | LOS             | Volume<br>(Two-way)* | Volume<br>(Two-way)                    | LOS                                    | Volume<br>(Two-way) | Volume<br>(Two-way) | LOS     |  |  |
| U.S. 19 to NW 27th Street               | С               | 770                  | 169                                    | А                                      | 53                  | 222                 | А       |  |  |
| US 41                                   | Adopted Minimum |                      | P.M. Peak-Hour Roadway Traffic Volumes |                                        |                     |                     |         |  |  |
|                                         | •               | ndard                | 2017 Background<br>Traffic**           |                                        | Project Traffic     | 2017 Total          | Traffic |  |  |
| Segment                                 | LOS             | Volume<br>(Two-way)* | Volume<br>(Two-way)                    | LOS                                    | Volume<br>(Two-way) | Volume<br>(Two-way) | LOS     |  |  |
| SE 80th Street/NW 27th Street to CR 328 | C               | 770                  | 474                                    | С                                      | 42                  | 516                 | с       |  |  |
| CR 40                                   | Adopted Minimum |                      | P.M. Peak-Hour Roadway Traffic Volumes |                                        |                     |                     |         |  |  |
|                                         |                 | ndard                | 2017 Background<br>Traffic**           |                                        | Project Traffic     | 2017 Total          | Traffic |  |  |
| Segment                                 | LOS             | Volume<br>(Two-way)* | .Volume<br>(Two-way)                   | LOS                                    | Volume<br>(Two-way) | Volume<br>(Two-way) | LOS     |  |  |
| U.S. 19 to Heavy Haul Driveway          | С               | 1,070                | 208                                    | с                                      | 8                   | 216                 | C       |  |  |

\*These volumes were attained from the FDOT 2007 Generalized Level of Service Tables.

\*\*These two-way volumes along segments between counted intersections were estimated based upon the average of the intersection volumes counted along the segment.

## APPENDIX F: Turn-Lane Length Requirements Worksheets

Calculations based upon FDOT Guidelines

| Intersection:     | U.S. 19 & Construction Driveway       |
|-------------------|---------------------------------------|
| Scenario:         | Peak Construction, Heavy Haul Route 2 |
| Date of Analysis: | 12/17/2008                            |
| Analyst:          | KHA                                   |

| GENERAL INFORMATION   |                         |  |
|-----------------------|-------------------------|--|
| Time of Day:          | AM Peak Hour            |  |
| Approach:             | Northbound              |  |
| Traffic Control:      | Signalized Intersection |  |
| Geometric Conditions: | Rural Conditions        |  |
| Turn Lane Type:       | Right-Turn Lane         |  |
| Number of Lanes:      | 1                       |  |
| Design Speed:         | 65 Miles per Hour       |  |

| SIGNALIZED INPUT PARAMETERS |         |  |
|-----------------------------|---------|--|
| Turning Traffic Volume:     | 700 vph |  |
| Cycle Length:               | 120 sec |  |
| Peak Factor:                | 2       |  |
|                             |         |  |
|                             |         |  |

| SIGNALIZED TURN LANE CALCULATIONS     |            |  |
|---------------------------------------|------------|--|
| Turning Traffic Volume:               | 700 vph    |  |
| Cycle Length:                         | 120 sec    |  |
| Seconds per Hour:                     | 3600 sec   |  |
| Cycles Per Hour:                      | 30         |  |
| Vehicles per Cycle:                   | 23.3       |  |
| Vehicle Length:                       | 25 feet    |  |
| Average Vehicle Queue:                | 582.5 feet |  |
| Peak Factor:                          | 2          |  |
| Peak Storage Length:                  | 1165 feet  |  |
| Minimum Storage Length:               | 25 feet    |  |
| Number of Lanes:                      | 1          |  |
| Required Design Storage per Lane:     | 1150 feet  |  |
| Total Deceleration Distance:          | 460 feet   |  |
| Total Turn Lane Length (incl. Taper): | 1610 feet  |  |

| TURN LANE CALCULATION R               | ESULTS    |
|---------------------------------------|-----------|
| Design Storage Length:                | 1150 feet |
| Total Deceleration Distance:          | 460 feet  |
| Total Turn Lane Length (incl. Taper): | 1610 feet |

Calculations based upon FDOT Guidelines

| Intersection:     | U.S. 19 & Construction Driveway       |  |
|-------------------|---------------------------------------|--|
| Scenario:         | Peak Construction, Heavy Haul Route 2 |  |
| Date of Analysis: | 12/17/2008                            |  |
| Analyst:          | КНА                                   |  |

| GENERAL INFORMATION   |                         |  |
|-----------------------|-------------------------|--|
| Time of Day:          | AM Peak Hour            |  |
| Approach:             | Southbound              |  |
| Traffic Control:      | Signalized Intersection |  |
| Geometric Conditions: | Rural Conditions        |  |
| Turn Lane Type:       | Left-Turn Lane          |  |
| Number of Lanes:      | 2                       |  |
| Design Speed:         | 65 Miles per Hour       |  |

| SIGNALIZED INPUT PARAMET | TERS    |
|--------------------------|---------|
| Turning Traffic Volume:  | 385 vph |
| Cycle Length:            | 120 sec |
| Peak Factor:             | 2       |
|                          |         |
|                          |         |

| SIGNALIZED TURN LANE CALCULATIONS     |          |  |
|---------------------------------------|----------|--|
| Turning Traffic Volume:               | 385 vph  |  |
| Cycle Length:                         | 120 sec  |  |
| Seconds per Hour:                     | 3600 sec |  |
| Cycles Per Hour:                      | 30       |  |
| Vehicles per Cycle:                   | 12.8     |  |
| Vehicle Length:                       | 25 feet  |  |
| Average Vehicle Queue:                | 320 feet |  |
| Peak Factor:                          | 2        |  |
| Peak Storage Length:                  | 640 feet |  |
| Minimum Storage Length:               | 50 feet  |  |
| Number of Lanes:                      | 2        |  |
| Required Design Storage per Lane:     | 325 feet |  |
| Total Deceleration Distance:          | 460 feet |  |
| Total Turn Lane Length (incl. Taper): | 785 feet |  |

| TURN LANE CALCULATION RESULTS         |          |  |
|---------------------------------------|----------|--|
| Design Storage Length:                | 325 feet |  |
| Total Deceleration Distance:          | 460 feet |  |
| Total Turn Lane Length (incl. Taper): | 785 feet |  |

Calculations based upon FDOT Guidelines

| Intersection:     | U.S. 19 & Operations Driveway |  |
|-------------------|-------------------------------|--|
| Scenario:         | Peak Operations               |  |
| Date of Analysis: | 12/17/2008                    |  |
| Analyst:          | KHA                           |  |

| GENERAL INFORMATION   |                           |  |
|-----------------------|---------------------------|--|
| Time of Day:          | AM Peak Hour              |  |
| Approach:             | Northbound                |  |
| Traffic Control:      | Unsignalized Intersection |  |
| Geometric Conditions: | Rural Conditions          |  |
| Turn Lane Type:       | Right-Turn Lane           |  |
| Number of Lanes:      | 1                         |  |
| Design Speed:         | 65 Miles per Hour         |  |

| UNSIGNALIZED INPUT PARAMETERS |         |  |
|-------------------------------|---------|--|
| Turning Traffic Volume:       | 148 vph |  |
| Peak Cycle Factor:            | 30      |  |
|                               |         |  |
|                               |         |  |
|                               |         |  |

| UNSIGNALIZED TURN LANE CALCULATIONS |          |  |
|-------------------------------------|----------|--|
| Turning Traffic Volume:             | 148 vph  |  |
| Peak Cycle Factor:                  | 30       |  |
| Expected Vehicle Queue:             | N/A      |  |
| Vehicle Length:                     | 25 feet  |  |
| Peak Storage Length:                | N/A feet |  |
| Minimum Storage Length:             | 0 feet   |  |
| Number of Lanes:                    | 1        |  |
| Required Design Storage per Lane:   | 0 feet   |  |
| Total Deceleration Distance:        | 460 feet |  |
| Total Turn Lane Length:             | 460 feet |  |
|                                     |          |  |
|                                     |          |  |
|                                     |          |  |
|                                     |          |  |

| TURN LANE CALCULATION RESULTS         |          |  |
|---------------------------------------|----------|--|
| Design Storage Length:                | 0 feet   |  |
| Total Deceleration Distance:          | 460 feet |  |
| Total Turn Lane Length (incl. Taper): | 460 feet |  |

Calculations based upon FDOT Guidelines

| Intersection:     | U.S. 19 & Operations Driveway |
|-------------------|-------------------------------|
| Scenario:         | Peak Operations               |
| Date of Analysis: | 12/17/2008                    |
| Analyst:          | KHA                           |

| GENERAL INFORMATION   |                           |  |
|-----------------------|---------------------------|--|
| Time of Day:          | AM Peak Hour              |  |
| Approach:             | Northbound                |  |
| Traffic Control:      | Unsignalized Intersection |  |
| Geometric Conditions: | Rural Conditions          |  |
| Turn Lane Type:       | Left-Turn Lane            |  |
| Number of Lanes:      | 1                         |  |
| Design Speed:         | 65 Miles per Hour         |  |

| UNSIGNALIZED INPUT PARAMETERS |                                       |  |
|-------------------------------|---------------------------------------|--|
| Turning Traffic Volume:       | 64 vph                                |  |
| Peak Cycle Factor:            | 30                                    |  |
|                               |                                       |  |
|                               |                                       |  |
|                               | · · · · · · · · · · · · · · · · · · · |  |

| UNSIGNALIZED TURN LANE CALCULATIONS |      |      |
|-------------------------------------|------|------|
| Turning Traffic Volume:             | 64   | vph  |
| Peak Cycle Factor:                  | 30   |      |
| Expected Vehicle Queue:             | 2.1  |      |
| Vehicle Length:                     | 25   | feet |
| Peak Storage Length:                | 52.5 | feet |
| Minimum Storage Length:             | 50   | feet |
| Number of Lanes:                    | 1    |      |
| Required Design Storage per Lane;   | 50   | feet |
| Total Deceleration Distance:        | 460  | feet |
| Total Turn Lane Length:             | 510  | feet |
|                                     |      |      |
|                                     |      |      |
|                                     |      |      |
|                                     |      |      |

| TURN LANE CALCULATION RE              | SULTS    |
|---------------------------------------|----------|
| Design Storage Length:                | 50 feet  |
| Total Deceleration Distance:          | 460 feet |
| Total Turn Lane Length (incl. Taper): | 510 feet |

Calculations based upon FDOT Guidelines

| Intersection:     | CR 40 & Heavy Haul Driveway               |  |
|-------------------|-------------------------------------------|--|
| Scenario:         | Peak Construction, Heavy Haul Route 1 & 2 |  |
| Date of Analysis: | 12/17/2008                                |  |
| Analyst:          | KHA                                       |  |

| GENERAL INFORMATION   |                           |  |
|-----------------------|---------------------------|--|
| Time of Day:          | PM Peak Hour              |  |
| Approach:             | Eastbound                 |  |
| Traffic Control:      | Unsignalized Intersection |  |
| Geometric Conditions: | Rural Conditions          |  |
| Turn Lane Type:       | Right-Turn Lane           |  |
| Number of Lanes:      | 1                         |  |
| Design Speed:         | 60 Miles per Hour         |  |

| UNSIGNALIZED INPUT PARAMETERS |        |  |
|-------------------------------|--------|--|
| Turning Traffic Volume:       | 15 vph |  |
| Peak Cycle Factor:            | 30     |  |
|                               |        |  |
|                               |        |  |
|                               | ,      |  |

| UNSIGNALIZED TURN LANE CALCULATIONS |          |  |
|-------------------------------------|----------|--|
| Turning Traffic Volume:             | 15 vph   |  |
| Peak Cycle Factor:                  | 30       |  |
| Expected Vehicle Queue:             | N/A      |  |
| Vehicle Length:                     | 25 feet  |  |
| Peak Storage Length:                | N/A feet |  |
| Minimum Storage Length:             | 0 feet   |  |
| Number of Lanes:                    | 1        |  |
| Required Design Storage per Lane:   | 0 feet   |  |
| Total Deceleration Distance:        | 405 feet |  |
| Total Turn Lane Length:             | 405 feet |  |
|                                     |          |  |
|                                     |          |  |
|                                     |          |  |
|                                     |          |  |

| TURN LANE CALCULATION RES             | SULTS    |
|---------------------------------------|----------|
| Design Storage Length:                | 0 feet   |
| Total Deceleration Distance:          | 405 feet |
| Total Turn Lane Length (incl. Taper): | 405 feet |

Calculations based upon FDOT Guidelines

| Intersection:     | U.S. 19 & CR 40                           |
|-------------------|-------------------------------------------|
| Scenario:         | Peak Construction, Heavy Haul Route 1 & 2 |
| Date of Analysis: | 12/17/2008                                |
| Analyst:          | KHA                                       |

| GENERAL INFORMATION   |                         |
|-----------------------|-------------------------|
| Time of Day:          | PM Peak Hour            |
| Approach:             | Southbound              |
| Traffic Control:      | Signalized Intersection |
| Geometric Conditions: | Rural Conditions        |
| Turn Lane Type:       | Left-Turn Lane          |
| Number of Lanes:      | 1                       |
| Design Speed:         | 55 Miles per Hour       |

| SIGNALIZED INPUT PARAME | TERS    |
|-------------------------|---------|
| Turning Traffic Volume: | 124 vph |
| Cycle Length:           | 60 sec  |
| Peak Factor:            | 2       |
|                         |         |
|                         |         |

| SIGNALIZED TURN LANE CALC             | JLATIONS  |
|---------------------------------------|-----------|
| Turning Traffic Volume:               | 124 vph   |
| Cycle Length:                         | 60 sec    |
| Seconds per Hour:                     | 3600 sec  |
| Cycles Per Hour:                      | 60        |
| Vehicles per Cycle:                   | 2.1       |
| Vehicle Length:                       | 25 feet   |
| Average Vehicle Queue:                | 52.5 feet |
| Peak Factor:                          | 2         |
| Peak Storage Length:                  | 105 feet  |
| Minimum Storage Length:               | 50 feet   |
| Number of Lanes:                      | 1         |
| Required Design Storage per Lane:     | 100 feet  |
| Total Deceleration Distance:          | 350 feet  |
| Total Turn Lane Length (incl. Taper): | 450 feet  |

| TURN LANE CALCULATION R               | ESULTS   |
|---------------------------------------|----------|
| Design Storage Length:                | 100 feet |
| Total Deceleration Distance:          | 350 feet |
| Total Turn Lane Length (incl. Taper): | 450 feet |

Calculations based upon FDOT Guidelines

| Intersection:                                   | U.S. 19 & CR 40 |
|-------------------------------------------------|-----------------|
| Scenario: Peak Construction, Heavy Haul Route 2 |                 |
| Date of Analysis: 12/17/2008                    |                 |
| Analyst:                                        | KHA             |

| GENERAL INFORMATION   |                         |  |
|-----------------------|-------------------------|--|
| Time of Day:          | PM Peak Hour            |  |
| Approach:             | Westbound               |  |
| Traffic Control:      | Signalized Intersection |  |
| Geometric Conditions: | Rural Conditions        |  |
| Turn Lane Type:       | Right-Turn Lane         |  |
| Number of Lanes:      | 1                       |  |
| Design Speed:         | 40 Miles per Hour       |  |

| SIGNALIZED INPUT PARAMETERS |        |  |
|-----------------------------|--------|--|
| Turning Traffic Volume:     | 58 vph |  |
| Cycle Length:               | 60 sec |  |
| Peak Factor:                | 2      |  |
|                             |        |  |
|                             |        |  |

| SIGNALIZED TURN LANE CALCULATIONS     |          |  |
|---------------------------------------|----------|--|
| Turning Traffic Volume:               | 58 vph   |  |
| Cycle Length:                         | 60 sec   |  |
| Seconds per Hour:                     | 3600 sec |  |
| Cycles Per Hour:                      | 60       |  |
| Vehicles per Cycle:                   | 1        |  |
| Vehicle Length:                       | 25 feet  |  |
| Average Vehicle Queue:                | 25 feet  |  |
| Peak Factor:                          | 2        |  |
| Peak Storage Length:                  | 50 feet  |  |
| Minimum Storage Length:               | 25 feet  |  |
| Number of Lanes:                      | 1        |  |
| Required Design Storage per Lane:     | 50 feet  |  |
| Total Deceleration Distance:          | 290 feet |  |
| Total Turn Lane Length (incl. Taper): | 340 feet |  |

| TURN LANE CALCULATION RESULTS         |          |  |
|---------------------------------------|----------|--|
| Design Storage Length:                | 50 feet  |  |
| Total Deceleration Distance:          | 290 feet |  |
| Total Turn Lane Length (incl. Taper): | 340 feet |  |