ENCLOSURE 2

BSC (Bechtel SAIC Company) 2004. Ash Fall Hazard for North Portal Operations Area Facilities. CAL-WHS-GS-000001 REV 00A. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20041116.0001; DOC.20050815.0004.

.

DOC.20050815.0004 **Engineering Change Notice** 1. QA: QA BSC 2. Page 1 of 1 Complete only applicable items. 3. Document Identifier: 5. Title: 6. ECN: 4. Rev.: 00A 001 CAL-WHS-GS-000001 Ash Fall Hazard for North Portal Operations Area Facilities 7. Reason for Change: Per LP-3.12Q-BSC Design Calculations and Analyses Section 5.1 [2] c, "The decision of the DEM, PCSA Manager, Criticality Manager, or PCA Manager to issue calculations or analyses with a "committed" status will be based on an experienced assessment of the likelihood that the results of the calculation or analysis will change, and the degree of impact those changes will have on designs that support the regulatory submittals or procurement activities, based on the design's bounding conservatism." the status designation of Ash Fall Hazard for North Portal Operations Area Facilities. (CAL-WHS-GS-000001) can be changed to "Committed" as the results are not expected to change in such a manner that will affect support of regulatory submittals. No No Yes If, Yes, Change Doc.: 8. Supersedes Change Document: 9. Change Impact: Yes No Yes No No Results Impacted: Inputs Changed: 🗌 Yes 🛛 No Yes No No Assumptions Changed: Design Impacted: 10. Description of Change: (Address any "Yes" answers) Add a "Committed" option in Block 7 on the cover sheet and change the "Document Status Designation" from Preliminary to "Committed". Block 7 on the cover sheet should read as follows: 7. Document Status Designation Preliminary Committed 🔄 Final Cancelled Note: An interdisciplinary review per LP-2.14Q-BSC is not required for this change to the document. 11. Originator: (Print/Sign/Dat 8/11 os Jo A. Ziegler Checker: (Print/Sign/Dat Farzin Nouri Approved: (Print/Sign/Date) Michael K. Cline

		••		•	<u></u> _			DOC	C.20041116	.0001
OCR	WM	Desig	in Ca	LCUL	ATION OF A	NALYSIS COV	/er Sheet		2A: QA Page 1 of 50	
3. Syst WHS				· · · ·	<u></u>	4. Document Ide CAL-WHS	antillor -CIS-000001 I	Rev. (DOA	
5. Title					A					• .
Ash . 8. Grou	Fall Hazard for N	onn Pon	al Ope	rations	Area Facilide	ð ⁻				
	ptive Events			• •						
	ument Status Designat	lon _								
		8	Preim	hary	Final	Cancelled				
RY	ounge was respon eman was respon	sible for sible for	concer calcula	ptual ap ational	pproach. work.			•		
		· .	;				`			
					. ·					
				•		•				
	· · ·									-
			·.				· . •		•	
		•			trionits				Total Number	r of Pages
	chment A - CD-R								N//	4
Atta	chment B -ASHE	LUME	rid Di	mensio	ons				Inclu	ded
						· · · · · · · · · · · · · · · · · · ·	······································			
					RECORD OF REV			r		
9. No.	10. Reason For Re	vision	11. Total # cl Pgs.	12. Last Pp.#	13. Originator (Print/Sign/Date)	14, Checker (Print/Sign/Date)	16. OER (Print/Sign/Date)		18. wed/Accepted Yint/Sign)	17. Dato
A00	initial hanc		48	48	Robert Youngs	William Imrie	Jerry Huaney			11 14
					Tim Nieman	WPhmm 11/12/04	Jenny Heamony 11/16/04	00 P. 11	Salhad a Cline 1 / 16 / 0	- · ·
					112/04			}		

erite.

INTENTIONALLY LEFT BLANK

CAL-WHS-GS-000001 Rev 00A

October 2004

CONTENTS

1.	PURPOSE	7
2.	METHOD	8
3.	ASSUMPTIONS	10
4.	COMPUTER AND SOFTWARE MODELS	10
	4.1 SOFTWARE APPROVED FOR QUALITY ASSURANCE (QA) WORK	10
	4.2 EXEMPT SOFTWARE	
5.	CALCULATION	11
	5.1 OVERVIEW OF CALCULATION PROCEDURE	11
	5.1.1 ASHPLUME Data on Common Grid	
	5.1.2 Grid Calculations	12
	5.1.3 Overall Frequency Versus Density Curve	13
	5.2 DETAILS OF CALCULATION PROCEDURE	14
	5.2.1 ASHPLUME Data on Common Grid	15
	5.2.2 Grid Calculations	
•	5.2.3 Overall Frequency Versus Ashfall Areal Density Curve	
	5.3 DUPLICATE CALCULATIONS IN MICROSOFT EXCEL	
	5.3.1 ASHPLUME Data on Common Grid	
	5.3.2 Grid Calculations	
	5.3.3 Overall Frequency Versus Density Curve for the Simulation	
6.	RESULTS	41
7.	REFERENCES	44
	7.1 DOCUMENTS CITED	44
	7.2 CODES, STANDARDS, REGULATIONS, AND PROCEDURES	45
	7.3 SOURCE DATA LISTED BY TRACKING NUMBER	
AT	TACHMENT A-CD-ROM OF COMPUTER FILES	46
AT	TACHMENT B-ASHPLUME GRID DIMENSIONS	47

October 2004

Page

FIGURES

1.	Schematic of Relationship Between Ashplume Grid and Volcano Grid	13
2.	Diagram of Overall Calculation Flow in Analytica	14
3.	Diagram of "Simulations / Calcs" Module in Analytica	16
4.	Diagram of Calculation Flow for Simulation 01 in Analytica	17
5.	Information and Partial Results for the Node "pc01 in" in Analytica	18
6.	Information and Partial Results for the Node "MDTable01" in Analytica	19
7.	Partial Results for the Node "MDTable61" in Analytica	20
8.	Information and Partial Results for the Node "pad01" in Analytica	21
9.	Information and Partial Results for the Node "interp01" in Analytica	22
10.	Information and Partial Results for the Node "extrap01" in Analytica	23
11.	Information and Partial Results for the Node "pc01 in near" in Analytica	24
12.	Information and Partial Results for the Node "pc01 near1" in Analytica	24
13.	Information and Partial Results for the Node "Ash01" in Analytica	25
14.	Diagram of Calculation Flow for "Grid Transforms" in Analytica	26
15.	Information and Partial Results for the Nodes "Vx" and "Vy" in Analytica	27
16.	Information and Partial Results for the Node "Va" in Analytica	28
17.	Information and Partial Results for the Node "d" in Analytica	28
18.	Information and Partial Results for the Node "Aa" in Analytica	29
19.	Information and Partial Results for the Node "Ax" in Analytica	29
20.	Information and Partial Results for the Node "Ay" in Analytica	30
21.	Information and Partial Results for the Node "Grid point for Ax" in Analytica	30
22.	Information and Partial Results for the Node "Grid Point for Ay" in Analytica	31
23.	Information and Partial Results for the Node "volc01" in Analytica	32
24.	Information and Partial Results for the Node "volc_hazard01" in Analytica	32
25.	Information and Partial Results for the Node "hazard01" in Analytica	33
26.	Information and Partial Results for the Node "Hazard Data by Simul - All" in Analytica	33

4

CAL-WHS-GS-000001 Rev 00A

October 2004

Page

27.	Information and Partial Results for the Node "Total Hazard – Mean Value" in	
27.	Analytica	. 34
28.	Diagram of Calculation Flow for "Percentile Results" in Analytica	34
29.	Information and Partial Results for the Node "Hazard Data by Simul & Wind - All" in Analytica	. 35
30.	Information and Partial Results for the Node "flatten" in Analytica	. 36
31.	Information and Partial Results for the Node "sort file" in Analytica	36
32.	Information and Partial Results for the Node "sort P()" in Analytica	. 37
33.	Information and Partial Results for the Node "Cumulate sort P()" in Analytica	. 37
34.	Information and Partial Results for the Node "Haz Data - Percentiles" in Analytica	38
35.	Hazard Curve (Frequency of Occurrence Versus Areal Ash Density) Using Expected Values	. 42
36	Frequency of exceeding ash areal density of 10 g/cm^2 (Cumulative Probability Curve)	43

TABLES

1.	Summary Results of the Ash Areal Density Calculations	42
A-1.	Description of files on attached CD-ROM	46
B-1.	Grid Dimensions of ASHPLUME Full-Grid Realizations	47

October 2004

Page

INTENTIONALLY LEFT BLANK

CAL-WHS-GS-000001 Rev 00A

October 2004

6

1. PURPOSE

The Analysis Report *Characterize Framework for Igneous Activity at Yucca Mountain Nevada* (BSC 2004a [DIRS 169989]) describes the frequency of basaltic volcanism in the Yucca Mountain Region. The purpose of this design calculation (hereafter referred to as the "design calculation" to distinguish from the more general use of the term calculation) is to provide an estimate of the ash fall hazard at the North Portal Operations area due to potential basaltic volcanism. The ash fall hazard, expressed as probability of deposition areal density, was calculated using Analytica®. The resultant hazard curve (frequency versus areal density) will be used to guide building design to withstand potential ash fall from basaltic volcanism. This design calculation is applicable for that intended use only.

Inputs this design calculation include ash deposition to calculations (DTN: LA0409WS831812.001 [DIRS 171768]) generated by the ASHPLUME computer code. The ASHPLUME computer code implements the mathematical model of Suzuki (1983 [DIRS 100489]) for estimation of the areal density of tephra deposits on the surface of the earth following a volcanic eruption. The code, developed by Jarzemba et al. (1997 [DIRS 100987]), includes estimation of the areal density of spent fuel particles incorporated into tephra particles due to a volcanic event that intersects the repository. ASHPLUME is used as a component of the Total Systems Performance Assessment (TSPA) model to assess hazards from possible volcanic activity at the Yucca Mountain site. The ash deposition calculation was conducted using ASHPLUME DLL LA Version 2.0 [STN: 11117-2.0-00].

In addition to ASHPLUME generated data, the design calculation also requires an estimate of predominant wind azimuths that would carry the ash to the facilities under consideration, and estimates of the frequency of potential eruptions in the vicinity of the repository. Wind directions used in the design calculation are taken from *Atmospheric Dispersal and Deposition of Tephra from a Volcanic Eruption at Yucca Mountain, Nevada* (BSC 2004b [DIRS 170026]). Eruption frequencies are taken from *Characterize Framework for Igneous Activity at Yucca Mountain Nevada* (BSC 2004a [DIRS 169989]).

The point used to represent the North Portal Operations Area Facilities is the southwest corner of the Canister Handling Facility. The location of this point in UTM is documented in *YMP Site Operations–Maintenance–Field Engineering–Survey Section, Coordinate Transformation* (BSC 2004c [DIRS 171769]).

This design calculation was developed under the Office of Civilian Radioactive Waste Management procedure AP-3.12Q and other applicable procedures. Development of this calculation and the supporting activities have been determined to be subject to the Yucca Mountain Project's quality assurance program (DOE 2004b [DIRS 171539]) and applicable Project procedures and guiding documents.

October 2004

2. METHOD

The annual frequency of exceeding a given areal ash fall density, $v^{A>n}(t)$, is computed for different values of n in order to create a hazard curve of ash fall areal density versus frequency. $v^{A>n}(t)$, is computed using the relationship:

$$v^{A>n}(t) = \iint_{R} \lambda(x, y, t) \cdot \int_{W} P(w) \cdot P^{A>n}(|w, x, y) \, dw \, dx \, dy \tag{Eq. 1}$$

where

$V^{a>n}(t)$	= annual frequency	y of exceeding	a given a	real ash fall density, n,
--------------	--------------------	----------------	-----------	---------------------------

A = mass of ash per unit area at Northern Portal Operations Area Facilities in g/cm^2

 $\lambda(x,y,t)$ = rate of volcanic events at location (x,y) for the current time t,

R = region surrounding the proposed facilities, defined in terms of x and y, with x and y in km

P(w) = probability of the wind blowing in direction w,

= wind direction, in degrees

 $P^{A>n}(|w,x,y)$ = conditional probability that the areal density of ash fall, A, at the facility associated with a volcanic event at point (x,y) and wind direction w exceeds the value n,

The actual calculation was performed on a 1-km \times 1-km grid spacing using the numerical summation:

$$v^{A>n}(t) = \sum_{i=500}^{600} \sum_{j=4000}^{4150} \lambda(x_{i_3}y_{j_1}t) \cdot \sum_{k=0}^{360} P(w_k) \cdot P^{A>n}(|w_k, x_{i_3}y_{j_1}\rangle \Delta w \Delta x \Delta y$$
 (Eq. 2)

The results from this summation, repeated for selected values of n, are used to generate a hazard curve of ash fall areal density at the North Portal Operations Area Facilities. All of the data required to perform these calculations have been previously generated; the calculations simply perform a set of grid manipulations to ensure that the proper ash fall areal density data for a given volcano location and wind direction are extracted from the ASHPLUME outputs and used for the probability calculation.

In practice, the design calculation requires that for any given volcano location and wind direction, we determine which part, if any, of the simulated ash plumes will fall on the fixed facilities location. Because the ash plume data are generated with respect to a fixed wind direction, the calculation essentially entails pinning the origin of the ash plume data at a given potential volcano location, rotating the ash plume grid with the wind direction, and determining

CAL-WHS-GS-000001 Rev 00A

October 2004.

what part of the resulting ash plume grid intersects the facilities location. The general set of steps for completing the design calculation is as follows:

- 1. Ash areal density data have been generated by ASHPLUME in a set of 110 simulations (Pre-closure Ash Distribution Density, DTN: LA0409WS831812.001 [DIRS 171768]). However, the simulations have varying grid dimensions and grid spacing. This first step involves interpolating and/or extrapolating the ash areal density data from each of the realizations onto a common grid so that a full set of simulated ash areal densities are available for all grid points.
- 2. For each hypothetical volcano and possible wind direction, perform the necessary grid calculations to extract the proper distribution of ash fall areal densities from the ASHPLUME gridded data at the facilities location. Each volcano/wind direction combination will have a value from each of the ASHPLUME simulations. From these ash areal density distributions, calculate the probabilities of exceeding various ash areal densities for the given volcano and wind direction, and sum over the probabilities of the wind directions to determine the overall probabilities for exceeding the ash areal density for that volcano.
- 3. Repeat step 2 for each possible volcano location and wind direction, multiply the results by the estimated frequency of eruption at each location, and sum over all locations to get the overall hazard curve for the facilities.

There are three input data sets required for performing the calculations.

1. ASHPLUME results. Input data consist of 110 simulations of ash fall from a hypothetical volcano under different conditions (Pre-closure Ash Distribution Density, DTN: LA0409WS831812.001 [DIRS 171768]). All data are represented relative to the prevailing wind direction. Results are represented spatially on a grid, whose dimensions and grid cell spacing very dependent on the simulation. These ash areal density calculations were performed using ASHPLUME DLL LA Version 2.0 [STN: 11117-2.0-00] and GoldSim Version 8.02 [STN: 10344-SVR-8.02-00]. The ASHPLUME DLL LA Version 2.0 code was implemented within a GoldSim model file and all model parameters were input using the GoldSim graphical user interface. The ASHPLUME parameter values used to run the simulations are discussed in Atmospheric Dispersal and Deposition of Tephra from a Volcanic Eruption at Yucca Mountain, Nevada, MDL-MGR-GS-000002 Revolt (BSC 2004b [DIRS 170026]). Wind direction distributions are also discussed in that AMR. All input data for these ASHPLUME runs were taken from the following DTNs:

ASHPLUME Parameters - DTN: LA0408GK831811.002 ([DIRS 171749]) Wind Directions – DTN: MO0408SPADRWSD ([DIRS 171803])

The GoldSim/ASHPLUME model was used to run 110 realizations of the Atmospheric Dispersal model with the results from each realization stored in separate files. The ASHPLUME output is contained in two files for each realization. One file contains ash areal densities on the full grid of receptor points for each realization. The other file

CAL-WHS-GS-000001 Rev 00A

October 2004

contains areal densities only at locations on a local grid defined by the points (0.0, +0.5), (0.0, -0.5), (0.5, +0.5), (0.5, 0.0), and (0.5, -0.5). Note that all grid dimensions used throughout the calculations are expressed in km. A total of 220 files of ASHPLUME output are contained in the included .zip file.

- 2. Wind direction: Wind direction probabilities are taken from *Atmospheric Dispersal* and Deposition of Tephra from a Volcanic Eruption at Yucca Mountain, Nevada (BSC 2004b [DIRS 170026]). Probabilities are represented in 30-degree increments of azimuth, and are provided for each 1 km increment of altitude from 0 to 13 km. The wind direction probabilities are contained in DTN MO0408SPADRWSD.002 ([DIRS 171803]). Consistent with the use in TSPA, the wind direction distribution used in this design calculation for any given ASHPLUME simulation is the one that corresponds to the maximum column height of the plume. TSPA also uses a wind speed that corresponds to the maximum column height of the plume, however the effect of wind speed is included in the Ashplume code calculation of ash deposition and is not separately required or used in these calculations. Wind direction data are considered to be consistent across the area under consideration.
- Volcano frequency: The frequency of volcanic events has been characterized for locations on a 100 x 150 km grid with 1 km grid spacing in *Characterize Framework for Igneous Activity at Yucca Mountain Nevada* (BSC 2004a [DIRS 169989]). This results in a total of 15,251 hypothetical volcanoes. The mean eruption frequencies at each of these points are contained in file CFRACSM.XY in DTN LA0009FP831811.001 ([DIRS 164712]).

All input files, output files, computer codes, and other supporting software were maintained and executed on a single dedicated PC secured by controlled access and password protection. Standard backup procedures were employed by the analyst to ensure data integrity.

3. ASSUMPTIONS

The underlying assumptions used in the ASHPLUME mathematical model and model runs are discussed in Suzuki (Suzuki 1983 [DIRS 100489]), Jarzemba *et al.* (Jarzemba 1997 [DIRS 100987]), and *Atmospheric Dispersal and Deposition of Tephra from a Volcanic Eruption at Yucca Mountain, Nevada* (BSC 2004b [DIRS 170026]). The underlying assumptions regarding the use of wind directions data are also discussed in that AMR. The underlying assumptions used in the volcano eruption frequency estimates are discussed in *Characterize Framework for Igneous Activity at Yucca Mountain Nevada* (BSC 2004a [DIRS 169989]). No additional data assumptions are required for this design calculation.

4. COMPUTER AND SOFTWARE MODELS

4.1 SOFTWARE APPROVED FOR QUALITY ASSURANCE (QA) WORK

The ash areal density calculations used as input to this design calculation were performed using ASHPLUME DLL LA Version 2.0 [STN: 11117-2.0-00] and GoldSim Version 8.02

CAL-WHS-GS-000001 Rev 00A

October 2004

[STN: 0344-SVR-8.02-00] on the computer WSB-152320, running Windows 2000, and located in the TSPA computer lab in Las Vegas.

The validation test report for ASHPLUME is found in *Validation Test Report for:* ASHPLUME_DLL_LA Version 2.0 (DOE 2003 [DIRS 166506]) and for GoldSim in Software Validation Report for: GoldSim v8.02, Rev. No.: 00 (DOE 2004a [DIRS 169878]).

4.2 EXEMPT SOFTWARE

The following commercial off-the-shelf software are exempt software products in accordance with *Software Management* (LP-SI.11Q-BSC, Subsection 2).

Analytica® Version 3.0.1, a commercially available decision analysis modeling software package, was used to calculate all results for this design calculation. Analytica is appropriate because simple mathematical expressions and operations that are standard in Analytica were used to derive the results.

Microsoft® Excel 2002, a commercially available spreadsheet software package, was used to parse ASHPLUME input files prior to importing to Analytica, and to perform a complete set of duplicate calculations on a subset of data. Excel is appropriate because simple mathematical expressions and operations that are standard in Excel were used to derive the results.

All software used in this calculation was executed on an IBM ThinkPad T41 laptop computer running under the Microsoft Windows XP Professional 2002 Service Pack 1 operating system. The system is located at the offices of Geomatrix Consultants, Inc. in Oakland, California and is identified with the inventory number 00045-122-114-399.

5. CALCULATION

As described in Section 2, the numerical summation for performing the design calculation is:

$$v^{A>n}(t) = \sum_{i=500}^{600} \sum_{j=4000}^{4150} \lambda(x_i, y_j, t) \cdot \sum_{k=0}^{360} P(w_k) \cdot P^{A>n}(|w_k, x_i, y_j|) \Delta w \Delta x \Delta y$$
(Eq. 2)

5.1 OVERVIEW OF CALCULATION PROCEDURE

This section discusses the general procedure used to implement the design calculation. The steps involved for implementation in Analytica are explained in detail in section 5.2.

5.1.1 ASHPLUME Data on Common Grid

The ASHPLUME code determines the appropriate grid spacing and dimensionality as part of each simulation run; therefore the results of the 110 simulations do not exist on a common grid. Grid spacing varies from 1 km to 10 km, while the sizes of the grids range from 20 km to 200 km along a dimension. Attachment B shows the grid dimensions for each of the simulation runs.

CAL-WHS-GS-000001 Rev 00A

11

This first step entails taking each of the simulation results and performing a set of interpolations, and in some cases, extrapolations, to put all of the data on a common grid. The maximum dimensions of the common grid are set to 100 km in both the x and y coordinates. The maximum distance from a potential volcano to the surface facilities is 93.5 km; the 100 km grid dimension therefore ensures that there is always an ASHPLUME data point for any potential volcano. The grid for interpolation therefore has dimensions of x = 0 to 100 km and y = -100 to 100 km, while the spacing is set to 0.5 km to provide an existing grid point for all ASHPLUME generated points. Note that the ASHPLUME data are symmetrical about the y axis, data points are not generated for negative x values to avoid duplication.

Also during this step, data are inspected for potential problems. Of the 110 ASHPLUME simulation runs, 13 were determined to have incorrect terminations because of not meeting a minimum ashfall criterion in the ASHPLUME code. These simulations were not used in the final results.

Interpolations and extrapolations are performed in ln-ln space. The method is relatively simple to implement in Analytica and Excel, and is considered to provide a reasonably good approximation for data that follow a power law curve.

Also within this step, data near the origin are treated with special consideration. ASHPLUME does not generate a value specifically at the origin due to the power law equations within its calculations. Also, because of the varying grids generated by ASHPLUME, the nearest data point to the origin is from 1 to 10 km away. Therefore, the second set of ASHPLUME runs was performed to generate data at 5 points surrounding the origin. The five points occur at x,y (km) coordinates (0, +0.5), (0.5, +0.5), (0.5, 0), (0.5, -0.5), and (0, -0.5).

To provide an ash areal density value at the origin itself, the nearest data value in the downwind direction (x = 0, y = +0.5) is used. That data point always represents the maximum areal density value generated by ASHPLUME. Nevertheless, the value is likely an under-estimation of the proper value that would be representative of the ash density at the origin. However, this conservative treatment is acceptable for this calculation, because the value at the origin is never used in the calculation. Because of how the grid points fall with respect to the facilities location, the closest hypothetical volcano to the facilities is approximately 0.5 km away. Since the ash areal density data are represented on a grid spacing of 0.5 km, there always exists a non-origin data point to be used for the nearest volcano to the facilities.

5.1.2 Grid Calculations

Determine the appropriate ASHPLUME grid point to extract for each potential volcano location and wind direction. For each of the 15,251 volcano points (100 x 150 km grid at 1 km spacing) and for each of 12 possible wind directions, calculations were done to determine the distance and direction to the facilities with respect to the wind direction. Those data were used to orient the ASHPLUME grid, and determine the ASHPLUME coordinates coinciding with the facilities location in order to extract the ash areal density values. For each potential volcano, this results in 1164 simulated ash areal densities (97 simulations x 12 wind directions).

This step essentially entails orienting the ASHPLUME gridded data on the volcano grid with respect to the volcano location and the wind direction, then determining the point on the oriented ASHPLUME grid that coincides with the facilities location. Figure 1 shows a schematic of what is involved for one of the volcano points and a wind direction of approximately 120 degrees. The desired outputs of this grid calculation are the x,y grid points, Ax and Ay, that provide the point to be extracted from the ASHPLUME simulations for a given volcano location and wind direction.

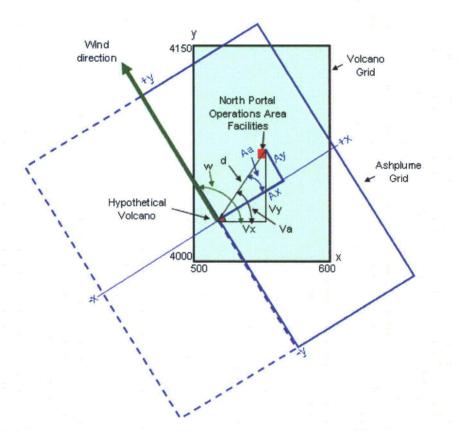


Figure 1. Schematic of Relationship Between Ashplume Grid and Volcano Grid

5.1.3 Overall Frequency Versus Density Curve

Calculate the probabilities of exceeding various ash densities for each potential volcano, multiply by the frequency of eruption, and sum over all potential volcanoes to determine the overall frequency versus density curve. Each potential volcano has 1164 simulated ash densities (97 simulations x 12 wind directions) with associated probabilities of occurrence; probabilities of exceeding a certain ash areal density were extracted from these distributions for each volcano prior to multiplying by the frequency of occurrence and summing.

5.2 DETAILS OF CALCULATION PROCEDURE

All calculations, with the exception of an initial data formatting step, were conducted in Analytica. Analytica is structured using influence diagrams that can be organized in a hierarchical sense to simplify the presentation of the design calculation. Figure 2 shows the overall flow of information in the design calculation at a high level.

Figure 2. Diagram of Overall Calculation Flow in Analytica

Each node in this diagram holds data or performs a part of the design calculation. The nodes shown are:

"Bldg X" - the x location of the facilities under consideration with respect to the volcano grid.

"Bldg Y" - the y location of the facilities under consideration with respect to the volcano grid.

"Grid Transforms" – Module of nodes to perform the set of calculations to determine the x and y coordinates on the ASHPLUME data grids for values to be extracted for each combination of volcano location and wind direction. Most of the calculations discussed in section 5.1.2 above are conducted in this module.

"Simulations / Calcs" – Module of nodes to perform the hazard calculations for each of the 110 ASHPLUME simulation data sets. Most of the calculations discussed in sections 5.1.1 and 5.1.3 above are conducted in this module. First, interpolation and extrapolation of each of the ASHPLUME data sets are performed to place the data on the common grid. Then the grid transformation information (from the "Grid Transforms" module) is used to extract the appropriate ash areal density values for each simulation data set. Then calculations are

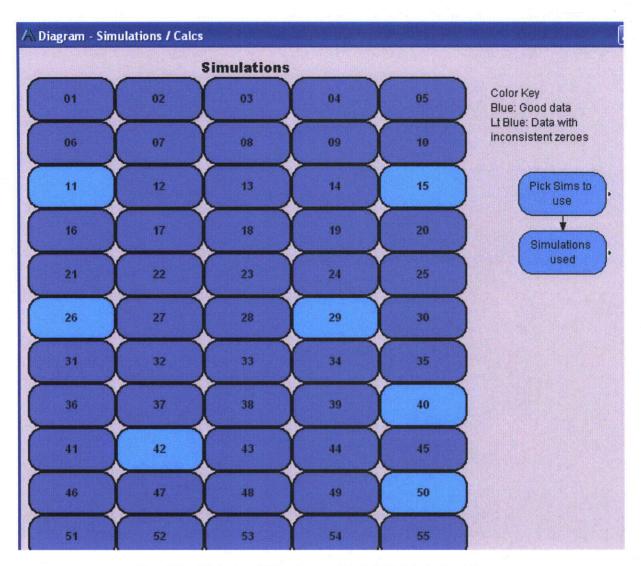
performed to determine the hazard curves for each simulation in turn. Note that the final step of using all of the simulations to calculate the total hazard curve is done outside of this module.

"Wind Data" – Module of nodes with probabilities for the 12 wind directions at each of 13 plume altitudes in 1-km increments. The same set of wind probabilities (for a given plume simulation) is assumed for all potential volcano locations.

"Volcano frequency" – Eruption frequency data for each of the 15,251 potential volcano locations.

"Hazard Data by Simul. – All" – Table showing hazard data for each simulation, summed over wind direction.

"Percentile Results" – Module of nodes used to extract and display percentiles of hazard curve results.


"Total Hazard – mean value" – Overall mean value for the hazard curve.

5.2.1 ASHPLUME Data on Common Grid

The calculations for this step in Analytica occur inside the module – "Simulations / Calcs". To manage the size of the calculation in Analytica and to make it easier to follow the calculation steps, calculations were constructed and performed on each of the 110 provided ASHPLUME simulations separately. A module exists to perform the calculations for each of the simulations. These modules are shown in Figure 3 as the numbered nodes with the bold edges.

15

October 2004

Calculations are performed inside each of the 110 simulation modules. Figure 4 shows the calculation flow for simulation 01 (inside the module labeled "01"). The remainder of this section will use simulation 01 to describe the sequence of calculation steps

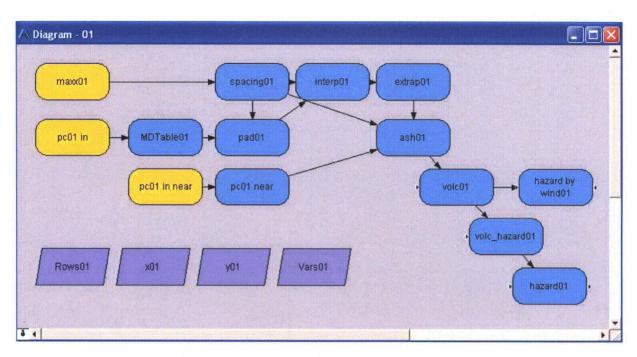


Figure 4. Diagram of Calculation Flow for Simulation 01 in Analytica

The steps involved are as follows:

- a) Open the "PCa-1.out" file from ASHPLUME in Excel. Convert text data into column format. ASHPLUME .out files were processed in groups of 10. The 11 Excel files are included with the attached CD-ROM; file names are of the form "PCa-OUT31-40.xls".
- b) Copy x, y, and xash data into Analytica. The maximum distance along the x-dimension is first entered into the node "maxx01". The results of this operation are not shown here. The nodes where the data are copied into Analytica are labeled "pcnn in", where nn ranges from 01 to 110. In Figure 4, data are copied into the node "pc01 in". Figure 5 shows the node information and partial results of this operation.

Description:				Rows01	and the second second	Totals	Totals
		old the ASHPLUME data from one of the 110	Lal	x(km)	headers V(km)	<u> </u>	n(g/cm^2)
		and xash data are copied into the table without	1	Albiny	0	60	0.03948
	modification.	, "imput basedaya" uubiah idantifias the data	2	· · · · · · · · · · · · · · · · · · ·	0	57	0.0438
		y "input_headers", which identifies the data I by "Rowsxx", which simply numbers the rows	3		0	54	0.05019
		heeded to accommodate all input data.	4		0	51	0.05811
		interest in accounterest of a part data.	5		0	48	0.06729
			6		0	45	0.06342
Definition:	Edit Table inc	exed by input headers, Rows01	7		0	42	0.09383
			8		0	39	0.1139
Inputs:		ut headers	9		0	36	0.1383
	C Rows01 Ro	1 Rows01	10		0	33	0.1741
Outputs:	Motable01 MD	Table01	11		0	30	0.2217
		1451001	12		0	27	0.2908
			13		0	24	0.3921
			14		0	21	0.5594
			15		0	18	0.8295
			16		0	15	1.336
			17		0	12	2.221
			18		0	9	4.509
			19		Ó	6	10.65
			20		0	3	36.1
			21		0	-3	0
			22		3	60	0.03733

Figure 5. Information and Partial Results for the Node "pc01 in" in Analytica

c) Convert the flat file data into a 2-D grid, indexed in x and y by the original dimensions from the ASHPLUME runs. Figure 6 shows the node information and partial results of this operation.

Object - MDT	wiew i	isebili pi			esult - MDTa	mieu.		a linea a gan		NG THE
) Variable 🐨	Mdtable01		Units: g/cm^2	mid	Mid Value	of MD	Table01 (g/cn	n^2)		
Title:	MDTable01			1.2	y01	- 1	7 Totals			
				Lal	× x01		Tota	əls		
Description:			ts the flat file data in "pcnn_in" into a 2-D table			3		9	ANTANNA SHERE CONSTRUCT	1000000
			and "Ynn". These two indexes include the range of	0.0	0.0	3 3948	0.03733	0.03163	0.02417	The second second
	and the second second second second		r the grid in this simulation.	60		0438	0.03733	0.03183	0.02417	54 (54 (54 (55 0, 55 0, 55 0, 55 0, 55 0, 55 0, 55 0, 55 0, 55 0, 55 0, 56 0, 57 0, 58 0, 59 0, 50 0,
			the MDTable function are as follows:	57	DISTOCTORY AND A	5019	0.04675	0.03422	0.0254	
			ne input flat file array ne row index of the input array	54	and the second					
			is is the column index of the input array	51	and the second s	5811	0.05359	0.04222	0.0288	6
			the dimensions of the 2-D array created by the	48	and the second	6729	0.06135	0.04676	0.03043	
	function	11515	the dimensions of the 2-b array created by the	45		6342	0.07099	0.0519	0.03155	12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
		dicat	es the method for treating multiple instances of the	42		9383	0.08286	0.05765	0.0325	
			here should be no cases where multiple instances	39	and the second of the second se	1139	0.09819	0.06582	0.03384	
			equal to zero.	36	and the state of the	1383	0.1159	0.07064	0.03211	
			serted for any x,y pairs that do not have data in the	33	ACCELOR VIEWOOD	1741	0.1406	0.07632	0.03006	
	flat file input.				0.3	2217	0.1709	0.08161	0.02691	
	the second second		~	27	0.3	2908	0.2097	0.08407	0.02224	
	expr 🐨			24	0.3	3921	0.2602	0.08395	0.01664	
Definition:	MDTable(Pc	01 in	Rows01,input headers,Vars01,'max',0)	21	0.	5594	0.3167	0.07536	0.01064	
				18	0.	8295	0.3965	0.06127	0	
Inputs:	/ Input_	nea	input headers	15	1	.336	0.4672	0.04098	0	
	Mdtab	e	(T, Rows, Cols, Vars, conglomerationFunction, d	12	7	2.221	0.4969	0.02009	0	
	O Pc01_	n	pc01 in	9	4	1.509	0.4202	0	0	
	C Rows	01	Rows01	6	1	0.65	0.2186	0	0	
	/ Vars0	1	Vars01	3		36.1	0.04702	0	0	
			0		0	0	0	0		
Outputs:	Pad01 pad01		-3		0	0	0	0	0. (0. 0. 0. 0. 0.	
				-6	And the second s	0	0	0		

Figure 6. Information and Partial Results for the Node "MDTable01" in Analytica

d) Inspect the data for incomplete ASHPLUME data containing excess zero points. An example is shown in Figure 7 for simulation number 61. In this example, the data for x = +2 from y = +2 to y = +30 are inconsistent with the surrounding data. The data along x = +10 are also inconsistent. These inconsistencies are the result of the incorrect termination of some ASHPLUME calculation sweeps in the ydirection because of minimal ashfall. In these cases, one can either exclude the simulation, or attempt to fill in the data by interpolation and extrapolation. In order to maintain a consistent treatment of all simulations and to avoid the possibility of introducing additional uncertainty, any simulation that contains apparent incomplete data is excluded from the final calculations. The total number of simulations falling into this category is 13, or 12% of the total.

CAL-WHS-GS-000001 Rev 00A

19

mid	Mid Value of M y61 💌	DTable61 (g	/cm^2)				
Lal 🗢	and the second se	▼	otals				
	0	2	4	6	8	10	12
40	0.0306	0.03	0.0283	0.0257	0.0226	0.0193	0.01
38	0.0344	0.0337	0.0316	0.0284	0.0246	0.0206	0.0
36	0.0391	0.0381	0.0354	0.0314	0.0268	0.022	0.01
34	0.0447	0.0434	0.0399	0.0349	0.0291	0.0234	0.01
32	0.0516	0.0499	0.0454	0.0389	0.0317	0.0248	0.01
30	0.0602	0	0.0519	0.0435	0.0344	0.0261	0.01
28	0.0712	0	0.0599	0.0488	0.0373	0.0272	0.01
26	0.0854	0	0.0697	0.0549	0.0403	0	0.01
24	0.104	0	0.0819	0.0618	0.043	0	0.01
22	0.13	0	0.0969	0.0693	0.0454	0	0.01
20	0.165	0	0.116	0.0772	0.0467	0	0.01
18	0.216	0	0.14	0.0854	0.0466	0	0.01
16	0.293	0	0.167	0.091	0.0446	0	0.01
14	0.414	0	0.2	0.0932	0.0392	0	
12	0.617	0	0.233	0.0884	0.0311	0	
10	0.983	0	0.255	0.0737	0.0212	0	
8	1.69	0	0.245	0.0501	0.0117	0	
6	3.27	0	0.178	0.0246	0	0	
4	7.54	0	0.0786	0	0	0	
2	24.5	0	0.0162	0	0	0	
0	0	0	0	0	0	0	
	n (n	0	0	n	0	

Figure 7. Partial Results for the Node "MDTable61" in Analytica

e) Pad values around the edge of non-zero data. The purpose of padded values is to provide a very small, but non-zero, set of values around the edge of the data so that the ensuing ln-ln interpolation will ramp from the last non-zero value down to near zero. Attempting to interpolate the last non-zero value with the next generated zero value will not work in ln-ln space since ln(0) is not defined. The pad value is set to 0.001. This is one order of magnitude less than the smallest value output by ASHPLUME (once ASHPLUME detects values less than 0.01 g/cm², it sets values equal to zero). Figure 8 shows the node information and partial results of this operation. Note that in the figure, the suffix "m" means 1/1000, so that the value "1m" is the equivalent for 0.001.

🔿 Variable 💌	Pad01	Units: g/cm^2	mide Mie	d Value of pade)1 (a/cm^2)			
		onica. gron z	112 y0		Totals			
Title:	pad01		Statistics of the local division of the loca	and the second s		.11		
Description:	This node pads i	n a value of .001 at the first zero point outside the	Loll	x01 🔻				
	zone of non-zer	o data. This value is an order of magnitude less than		0 3	6	9	1.	the local division of
	the lowest ash t	nickness value generated from ASHPLUME runs. A	60	0.03948	0.03733	0.03163	0.02417	0.01683
	non-zero value i	s needed for the In-In interpolation to work along the	57	0.0438	0.04115	0.03422	0.0254	0.0173
		erated data (i.e. so the data grades down to zero	54	0.05019	0.04675	0.03792	0.02707	0.01729
	rather than being	(left with a "sharp" edge).	51	0.05811	0.05359	0.04222	0.0288	0.01735
	espir 🐨		48	0.06729	0.06135	0.04676	0.03043	0.01715
	Lafore de la del	175	45	0.06342	0.07099	0.0519	0.03155	0.01655
Definition:	pad(mdtable01,s	pacing01,×01,y01)	42	0.09383	0.08286	0.05765	0.0325	0.01547
Inputs:	Mdtable01	MDT-H-04	39			0.06582	0.03384	0.01389
inputs:			36	0.1383	0.1159	0.07064	0.03211	0.01188
			33	0.1741	0.1406	0.07632	0.03006	1m
	O Spacing01		30	0.2217	0.1709	0.08161	0.02691	1m
	☐ X01		27	0.2908	0.2097	0.08407	0.02224	1m
	☐ Y01	y01	24	0.3921	0.2602	0.08395	0.01664	1m
Outputs:	O Interp01	39 0.1139 0.09819 0.06582 0.03384 Pad 36 0.1383 0.1159 0.07064 0.0321* ng01 spacing01 33 0.1741 0.1406 0.07532 0.0300 x01 30 0.2217 0.1709 0.08161 0.0223* y01 27 0.2908 0.2097 0.08407 0.0222* 01 interp01 24 0.3921 0.2025 0.0395 0.0166* 01 interp01 16 0.8295 0.3965 0.01627 1 15 1.336 0.4672 0.04098 1	0.01064	1m				
			18	0.8295	0.3965	0.06127	1m	0
			15	1.336	0.4672	0.04098	1m	0
			12	2.221	0.4969	0.02009	1m	0
			9	4.509	0.4202	1m	0	0
			6	10.65	0.2186	1 m	0	0
			3	36.1	0.04702	1m	0	0
			0	1	1m	0	0	0
			-3	1m	0	0	0	0
			-6	0	0	0	0	0

Figure 8. Information and Partial Results for the Node "pad01" in Analytica

f) Expand to the full grid dimensions and perform ln-ln interpolations to fill in data for new grid points that fall between existing data points. Interpolations are done first in the x-direction, then in the y-direction. The equation for the interpolation along x (or y) is:

$$xash_{i} = \exp\{\frac{\ln(dist_{i}) - \ln(dist_{L})}{\ln(dist_{H}) - \ln(dist_{L})} * [\ln(xash_{H}) - \ln(xash_{L})] + \ln(xash_{L})\}$$

where:

xashi = ash areal density value at the interpolated data point

 $dist_i$ = distance from volcano to the new point

 $dist_{L}$ = distance from volcano to the nearest data point in the negative x (or y) direction from the new point

 $dist_{H}$ = distance from volcano to the nearest data point in the positive x (or y) direction from the new point

 $xash_{L}$ = ash areal density value at the nearest data point in the negative x (or y) direction from the new point

 $xash_{H}$ = ash areal density value at the nearest data point in the positive x (or y) direction from the new point

Figure 9 shows the node information and partial results of this operation. Note that the interpolation does not work for the data near the origin, resulting in values of NAN (not a number). The data near the origin are treated separately in a later step.

Object - inter	'p01		A Res	ult - ir	iterp01				
🔿 Variable 💌	Interp01	Units: g/cm^2	mid	Mid Va	lue of inte	erp01 (g/cm^2)		
Title:	interp01		1.2	ashy	-	Totals			
			Lal		ashx `	Total	*		
Description:		ult after performing a In-In interpolation along the	-			and Shanna and the		and contraction of Lance	
	x-direction, follo	wed by a In-In interpolation along the y-direction.		0	0	.5 1	1.5	2.100 2	
	expr 💚		8.5		5.090	4.715	3.755	2.583	1.5
D. (1. 141	An		8		5.788	5.322	4.145	2.753	1.5
Definition:	Interpy(Interpx()	pad01,spacing01,x01,y01),spacing01,x01,y01)	7.5		6.636	6.053	4.605	2.944	1.6
Inputs:	☐ Interpx	interpx	7		7.682	6.946	5.151	3.163	1.6
	D Interpy	interpy	6.5		8.989	8.051	5.808	3.414	1.6
	O Pad01	pad01	6		10.651	9.442	6.609	3.706	1.7
	O Spacing01		5.5		12.415	10.822	7.223	3.774	1.5
	Z X01	x01	5		14.684	12.563	7.957	3.850	1.4
	7 Y01	y01	4.5		17.678	14.810	8.848	3.934	1.3
			4		21.753	17.793	9.949	4.028	1.2
Outputs:	C Extrap01	extrap01	3.5		27.521	21.890	11.343	4.133	1.1
			3		36.105	27.766	13.152	4.253	1.54 1.54 1.60 1.63 1.66 1.70 1.59 1.48 1.38 1.27 1.16 1.06 NAI NAI NAI NAI NAI NAI
		200 · · · · · · · · · · · · · · · · · ·	2.5		NAN	NAN	NAN	NAN	N
			2		NAN	NAN	NAN	NAN	N/
			1.5		NAN	NAN	NAN	NAN	N.
			1		NAN	NAN	NAN	NAN	N
			0.5		NAN	NAN	NAN	NAN	N.
			0		1.000	NAN	NAN	NAN	N.
			-0.5		NAN	NAN	NAN	NAN	N.
			-1		NAN	NAN	NAN	NAN	N
			Contractor Contractor	CONSTRUCTION OF	NIANI	516 BI	NIGNI	NIANI	ы

Figure 9. Information and Partial Results for the Node "interp01" in Analytica

g) Perform ln-ln extrapolations to extend data for new grid points in the positive y (downwind) direction. In cases where the ASHPLUME grid does not extend to the full 100 km in the +y direction, the data often do not terminate at near-zero values. Therefore, to avoid an abrupt an unrealistic drop off to zero, the data are extrapolated out to 100 km using the last two non-zero values along +y. The equation for the extrapolation is:

$$xash = \exp\{\frac{\ln(dist) - \ln(distM)}{\ln(distM) - \ln(distM-1)} * [\ln(xashM) - \ln(xashM-1)] + \ln(xashM)\}$$

where:

xashi = ash areal density value at the extrapolated data point

dist^{*i*} = distance from volcano to the new point

 $dist_M$ = distance from volcano to the last valid (non-zero) data point in the positive y direction towards the new point

 $dist_{M-1}$ = distance from volcano to the second to last valid (non-zero) data point in the positive y direction towards the new point

 $xash_M$ = ash areal density value at the last valid (non-zero) data point in the positive y direction towards the new point

 $xash_{M-1}$ = ash areal density value at the second to last valid (non-zero) data point in the positive y direction towards the new point

Figure 10 shows the node information and partial results of this operation.

CAL-WHS-GS-000001 Rev 00A

No					Contraction of the	en opposite Mar					
) Variable 🔍	Extra	ipU1	Units: g/cm^2	mid			strap01 (g/cm^2	9			
Title:	extra	ip01		1.2	ash	у 🔻	Totals				
Description	: Intermediate result after performing a In-In extrapolation along the			Lall	ashx V Totals						
Description.		ection	a their performing a treat extrapolation along the		0		0.5 1	1	1.5		
				64		0.035	0.035	0.034	0.034		
	expr	W		63.5		0.035	0.035	0.035	0.035		
Definition:	extra	py(Interp01,	spacing01,×01,y01,ma××01)	63		0.036	0.036	0.036	0.035		
	0			62.5		0.036	0.036	0.036	0.036		
Inputs:		Extrapy	extrapy	62		0.037	0.037	0.037	0.036		
	0	Interp01	interp01	61.5	Contraction of	0.038	0.038	0.037	0.037		
	Q	Maxx01	maxx01	61		0.038	0.038	0.038	0.038		
	0	Spacing01	spacing01	60.5		0.039	0.039	0.039	0.038		
		X01	×01	60		0.039	0.039	0.039	0.039		
		Y01	y01	59.5		0.040	0.040	0.040	0.040		
Outputs:	\cap	Ash01	ash01	59		0.041	0.041	0.041	0.040		
oupuior	\smile	A3101	43101	58.5	A STATE	0.042	0.041	0.041	0.041		
				58		0.042	0.042	0.042	0.042		
				57.5		0.043	0.043	0.043	0.042		
				57	NAME T	0.044	0.044	0.043	0.043		
				56.5		0.045	0.045	0.044	0.044		
				56		0.046	0.046	0.045	0.045		
				55.5		0.047	0.047	0.046	0.046		
				55		0.048		0.048	0.047		
				54.5		0.049	0.049	0.049	0.048		
				54	The second	0.050		0.050	0.049		
				53.5	the states of	0.051	0.051	0.051	0.050		

Figure 10. Information and Partial Results for the Node "extrap01" in Analytica

h) Address the near-origin data. First, copy x, y, and xash data from the file "PCb-1.out" into Analytica for the ASHPLUME generated points around the origin. The nodes where data are copied into Analytica are labeled "pcnn in near", where nn ranges from 01 to 110. Figure 11 shows the node information and results of this operation.

Variable 💌	Pc01_in_near pc01 in near	Units:			Aid Va ynear	lue of pc0	1 in near Totals	
					_	mear 🖪		otals
Description:		to hold the ASHPLUME data 1 data near the origin. The x,				0	0.5	
		le without modification. The		0	.5	366.7	4.125	
		pied into the point at the origi			0	366.7	0.3411	
	The table is index	ed by "xnear" and "ynear" to l	hold the data prior to	-0	.5	0.04331	0.03317	
	insertion into the la	arger grid.		e.				
Definition:	Edit Table	indexed by xnear, ynear						
Inputs:	🗇 Xnear	xnear						
	🖉 Ynear	ynear						
Outputs:	Pc01_near	pc01 near						
		2	. E [

Figure 11. Information and Partial Results for the Node "pc01 in near" in Analytica

i) Expand this input grid to the full grid dimensions. Figure 12 shows the node information and partial results of this operation.

Object - pcO1	IIGAN	kan di sisa da kana kana kana kana kana kana kana	14 14 14 14 14 14 14 14 14 14 14 14 14 1	sult - pc01 nea		
🔵 Variable 🔍	Pc01_near	Units: g/cm^2	mid	Mid Value of po	01 near (g/cm	r^2)
Title:	pc01 near		1.2	ashy 🔻	Totals	
<u>.</u>			hall	ashx	🔻 🕨 🦵 Tota	als
Description:		to hold the ASHPLUME data from the y=0 axis from set of 100 simulations.		0	0.5 1	1.
		needed primarily to provide the close in point at	2.5	0	0	0
	x=0.5, y=0.		2	0	0	0
			1.5	0	0	0
	exton. 👞		1	0	0	0
Definition:	var xpand := pc0	l_in_near[xnear=ashx,ynear=ashy];	0.5	366.7	4.125	0
	if isundef(xpand)	then 0 else xpand	0	366.7	0.3411	0
	—	44 	-0.5	0.04331	0.03317	0
Inputs:	/ Ashx	ashx	-1	0	0	0
	Ashy	ashy	-1.5	0	0	0
	be lsundef	(X)	-2	0	0	0
	O Pc01_in		-2.5	0	. 0	0
	/ Xnear	xnear	-3	0	0	0
	/ Ynear	ynear	-3.5	0	0	0
Outputs:	C Ash01	ash01	-4	0	0	0
			-4.5	0	0	0

j) Insert the near-origin data into the previously interpolated and extrapolated data set, and re-interpolate from the near-origin data to the nearest points in original data that have ASHPLUME generated data. For example, if the grid spacing is 3.0 km, as is the case in simulation 01, the nearest set of ASHPLUME generated points in the each direction lies at x and y grid points equal to 3. The previous interpolation step

(see step f above) would have already attempted to interpolate between points at the origin and nearby points. This step replaces those points with the new data points near the origin, and re-interpolates using those points and the nearest existing data points. Figure 13 shows the node information and partial results of this operation.

) Variable 💚	Ash	01	Units: g/cm^2	Contract of the local division of the local		sh01 (g/cm^2)			
Title:	ashC	11		And the owner of the owner owne	shy 🔻	Totals			
_	_			Lal	ashx	🔻 🕨 🦵 Total	s .		
Description:			nterpolating, extrapolating, and and treating the	TITLE REAL PROPERTY	0	0.5 1	1.5	2	2.
	Value	es near the of	rigin to include the near data	7	7.682	a second s	5.151	3,163	1.632
	expor	w.		6.5	8.989	8.051	5.808	3,414	1.664
Definition:	Inter	onear(Extrapl	01,Pc01_near,spacing01)	6	10.651	9.442	6.609	3.706	1,700
				5.5	12.415	10.822	7.223	3.774	1,594
Inputs:	\bigcirc	Extrap01	extrap01	5	14.684	12.563	7.957	3.850	1.487
	\square	Interpnear	interpnear	4.5	17.678	14.810	8.848	3.934	1.380
	\circ	Pc01_near	pc01 near	4	21.753	17.793	9.949	4.028	1.273
	\bigcirc	Spacing01	spacing01	3.5	27.521	21.890	11.343	4.133	1.168
0.4	\sim	11.1.01		3	36.105	27.766	13.152	4.253	1.064
Outputs:	\bigcirc	Volc01	volc01	2.5	45.710	22.049	7.392	1.825	0.397
				2	61.009	16.704	3.798	0.722	0.142
				1.5	88.519	11.809	1.755	0.268	0.051
				1	149.577	7.508	0.735	0.100	0.020
				0.5	366.720	4.125	0.317	0.045	0.010
				0	366.720	0.341	0.036	0.010	0.004
				-0.5	0.043	0.033	0.000	0.000	0.000
				-1	0.010	0.000	0.000	0.000	0.000
				-1.5	0.004	0.000	0.000	0.000	0.000
				-2	0.002	0.000	0.000	0.000	0.000
				-2.5	0.001	0.000	0.000	0.000	0.000
				-3	0.001	0.000	0.000	0.000	0.000
				-3,5	0.000	0.000	0.000	0.000	0.000

Figure 13. Information and Partial Results for the Node "Ash01" in Analytica

The results of this step provide the fully interpolated and extrapolated set of ASHPLUME data for the given simulation.

5.2.2 Grid Calculations

The steps for determining the appropriate ASHPLUME grid point to extract for each potential volcano location and wind direction occur inside the module – "Grid Transforms". Figure 14 shows the calculation flow.

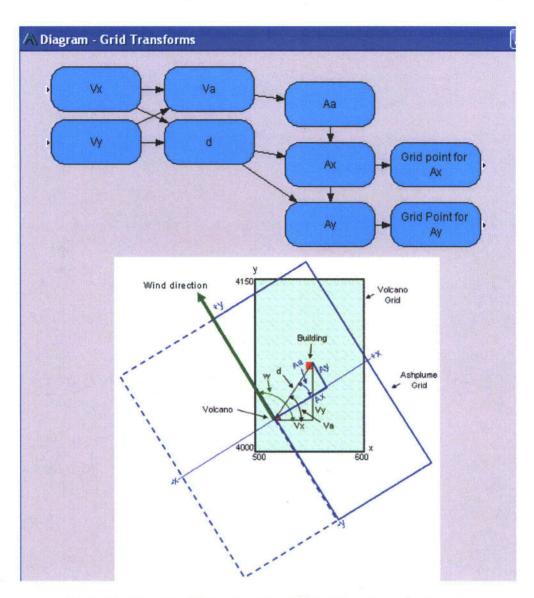


Figure 14. Diagram of Calculation Flow for "Grid Transforms" in Analytica

The steps involved are as follows:

a) For each volcano location, determine the distance along the x-axis and the distance along the y-axis to the facilities location, with respect to the grid of volcano points (Vx and Vy, respectively, in Figure 14). Figure 15 shows the node information and partial results of these operations.

				ult - Vx 💶	A MARKE	esult - Vy
) Variable 🤎 Title:		Units: km		Mid Value of Vx (km) Volcx V Totals	mid e 1122 Lall	Mid Value of Vy (km Volcy Volcy Tota
anna anna anna anna anna anna anna ann	building location.	ng the X dimension from each volcano grid point to the	500 501	51.25 50.25 49.25	4000 4001	78.45 77.45 76.45
Definition: Inputs:	bidg_x-volcx	Bldg X Volcx	502 503 504 505	48.25 48.25 47.25 46.25	4002 4003 4004 4005	75.45 75.45 74.45 73.45
Outputs:		d Va	506 507 508	45.25 44.25 43.25	4005 4006 4007 4008	72.45 71.45 70.45
Object - Vy			509 510 511	42.25 41.25 40.25	4009 4010 4011	69.45 68.45 67.45
⊃ Variable 🤎 Title:	Vy Vy	Units: km	512 513 514	39.25 38.25 37.25	4012 4013	66.45 65.45 64.45
Description:	The distance ald building location	ng the Y dimension from each volcano grid point to the	515 516	36.25 35.25	4014 4015 4016	63.45 62.45
Definition:	bidg_y-volcy		517 518 519	34.25 33.25 32.25	4017 4018 4019	61.45 60.45 59.45
Inputs:	☐ Bldg_y ☐ Volcy	Bldg Y Volcy	520 521	31 25 30 25 29 25	4020 4021	58.45 57.45
Outputs:		d Va	522 523 524	28.25	4022 4023 4024	56.45 55.45 54.45

Figure 15. Information and Partial Results for the Nodes "Vx" and "Vy" in Analytica

b) Calculate the angle from each volcano location to the facilities location, with respect to the grid of volcano points (Va, in Figure 14). Figure 16 shows the node information and partial results of this operation.

27

Variable 💌 Title:			Units: degrees	mid		Mid Value of V Volcy 🔻	a (degrees)			
Description:	The	angle (in deg	rees) from the volcano grid point to the building	. The Lad		Volcx		otals		
	angle	e is set with	respect to the x-axis having an angle of zero			500	501		503	504
	degr	ees.		400	D	56.85	57.36	57.88	58.41	
				400	1	56.51	57.03	57.55	58.08	
	expr			400	2	56.16	56.68	57.21	57.74	
Definition:	arcta	an2(Vy,Vx)		400	3	55.81	56.34	56.87	57.4	
				400	4	55.46	55.98	56.52	57.05	
Inputs:		Arctan2	(Y,X)	400	5	55.1	55.62	56.16	56.7	
	X	Vx	Vx	400	6	54.73	55.26	55.79	56.34	
	\bigcirc	Vy	Vy	400	T	54.35	54.88	55.42	55.97	
Outputs:	\bigcirc	Aa	Aa	400	B	53.97	54.5	55.04	55.59	
		0.77		400	9	53.58	54.11	54.66	55.21	
				401	D	53.18	53.72	54.27	54.82	
				401	1	52.77	53.32	53.87	54.42	
				401	2	52.36	52.9	53.46	54.02	
				401	3	51.94	52.49	53.04	53.6	
				401	4	51.51	52.06	52.62	53.18	
				401	5	51.07	51.62	52.18	52.75	
				401	6	50.63	51.18	51.74	52.31	
				401		50.17	50.73	51.29	51.86	

Figure 16. Information and Partial Results for the Node "Va" in Analytica

c) Calculate the distance from each volcano location to the facilities location, with respect to the grid of volcano points (d, in Figure 14). Figure 17 shows the node information and partial results of this operation.

A Object - d				AR	esult	- d				
🔿 Variable 💌	D		Units: km	mid v	Mi	d Value of d (km	1)			
Title:	d			1.2	-	and the second	Totals			
		distance (in	km) from the volcano grid point to the building	1		Volex 🔻	D □ Tota			
	exar	12211		Contracts		500 501	the second s	and the second se	03	504
	11. A. 12.		5°	4000		93.71	93.16	92.63	92.1	91
Definition:	sqrt(Vx^2+Vy^2)	4001		92.87	92.32	91.78	91.25	90
Inputs:	\frown	Vx	Vx	4002		92.04	91.49	90.94	90.4	89
mpuca	X			4003		91.21	90.65	90.1	89.56	89
	\bigcirc	Vy	Vy	4004	T-In-Ben	90.38	89.82	89.27	88.72	88
Outputs:	\cap	Ax	Ax	4005	ar de la	89.56	88.99	88.43	87.88	87
	õ	Ay	Ay	4006		88.74	88.17	87.6	87.05	8
	\sim		~,	4007		87.93	87.35	86.78	86.22	85
				4008		87.12	86.53	85.96	85.39	84
				4009		86.31	85.72	85.14	84.57	
				4010		85.51	84.91	84.33	83.75	83
				4011		84.71	84.11	83.52	82.93	82
				4012	N. S. S. S.	83.92	83.31	82.71	82.12	81
				4013		83.13	82.51	81.91	81.31	80
				4014		82.34	81.72	81.11	80.51	79
				4015		81.56	80.94	80.32	79.71	79
				4016		80.79	80.16	79.53	78.92	78

Figure 17. Information and Partial Results for the Node "d" in Analytica

d) For each volcano location and wind direction, calculate the angle from the volcano location to the facilities location, with respect to the oriented grid of ASHPLUME

🔵 Variable 🐨	Aa		Units: degrees	mid v	Mi	id Valu	e of Aa (de	egrees)			
Title:	Aa		ter i me no non ce st quem n	1.2	Wind	direc	tion (deg	rees) 🖓	120	្រជ	
					V	olcy		-	Totals		
Description:			no location and a given wind direction, this grid point to the building. This angle is req			Vo	lex			Totals	
			e ASHPLUME grid with respect to the volca			500	501	502	50:	3	504
				4000	1993		26.85	27.36	27.88	28.41	
	expr	T		4001			26.51	27.03	27.55	28.08	
Definition:	Va-V	Vind_direction	ר+90	4002			26.16	26.68	27.21	27.74	
Inputs:	\frown	Va	Va	4003			25.81	26.34	26.87	27.4	
mputs.	Y			4004			25.46	25.98	26.52	27.05	
	\Box	Wind_dir	Wind direction	4005			25.1	25.62	26.16	26.7	
Outputs:	\bigcirc	Ax	Ax	4006			24.73	25.26	25.79	26.34	
	\overline{O}	Ay	Ay	4007			24.35	24.88	25.42	25.97	
			1999 -	4008			23.97	24.5	25.04	25.59	
				4009			23.58	24.11	24.66	25.21	
				4010			23.18	23.72	24.27	24.82	
				4011			22.77	23.32	23.87	24.42	
				4012			22.36	22.9	23.46	24.02	1
				4013			21.94	22.49	23.04	23.6	, The second sec
				4014			21.51	22.06	22.62	23.18	1
				10.15			21 07	21 62	11 19	77 75	

points (Aa, in Figure 14). Figure 18 shows the node information and partial results of this operation.

Figure 18. Information and Partial Results for the Node "Aa" in Analytica

e) For each volcano location and wind direction, determine the distance along the xaxis and the distance along the y-axis to the facilities location, with respect to the grid of ASHPLUME points (Ax and Ay, respectively, in Figure 14). Figures 19 and 20 show the node information and partial results of these operations.

⊃ Variable 👻 Title:	Ax Ax		Units: km	mid v	Mid Value of Ax (km) Wind direction (degrees) & 120 문의								
				Lall	V	olcy	1000	-	Tot	als			
Description:			no location and a given wind direction, this computes the X coordinate (on the ASHPLUME grid) to the	Research (Volcx			-	Totals			
			equired to extract the proper ash thicknesses from			500	501	51)2	503	504	an a	
	the A	ASHPLUME gr	id.	4000		83.61	1	82.74	81.88	81.01		80.14	
	man	*		4001		83.11		82.24	81.38	80.51		79.64	
	expr	lane and		4002		82.61		81.74	80.88	80.01		79.14	
Definition:	cos(Aa)*D		4003		82.11		81.24	80.38	79.51		78.64	
Inputs:	\cap	Аа	Aa	4004		81.61		80.74	79.88	79.01		78.14	
mputa	X	D		4005		81.11		80.24	79.38	78.51		77.64	
	\bigcirc	U	d	4006		80.61		79.74	78.88	78.01		77.14	
Outputs:	\bigcirc	Grid poin	Grid point for Ax	4007		80.11		79.24	78.38	77.51		76.64	
				4008		79.61		78.74	77.88	77.01		76.14	
				4009		79.11		78.24	77.38	76.51		75.64	
				4010		78.61		77.74	76.88	76.01		75.14	
				4011		78.11		77.24	76.38	75.51		74.64	
				4012		77.61		76.74	75.88	75.01		74.14	
				4013	And the second second second second	77.11		76.24	75.38	74.51		73.64	

Figure 19. Information and Partial Results for the Node "Ax" in Analytica

🔵 Variable 🚿	Ay Units: km	mid	d Value of Ay (
Title:		1.2	 direction (de	grees) 🎸	120	្រដ	
Decerintians	For a styles relates location and a styles wind direction this services	Lall	olcy	-	Total:		
Description:	For a given volcano location and a given wind direction, this computes the distance along the Y coordinate (on the ASHPLUME grid) to the		Volcx		- D L	Totals	
	building. This is required to extract the proper ash thicknesses from	Balland	500 50	1 502	5	3 504	
	the ASHPLUME grid.	4000	42.32	42.82	43.32	43.82	44.32
		4001	41.45	41.95	42.45	42.95	43.45
		4002	40.58	41.08	41.58	42.08	42.58
Definition:	sin(Aa)*D	4003	39.72	40.22	40.72	41.22	41.72
Inputs:	🔿 Aa Aa	4004	38.85	39.35	39.85	40.35	40.85
niputs.		4005	37.99	38.49	38.99	39.49	39.99
	000	4006	37.12	37.62	38.12	38.62	39.12
Outputs:	Grid_poin Grid Point for Ay	4007	36.25	36.75	37.25	37.75	38.25
	alan an d a na mara an	4008	35.39	35.89	36.39	36.89	37.39
	100 100 100	4009	34.52	35.02	35.52	36.02	36.52
		4010	33.66	34.16	34.66	35.16	35.66
		4011	32.79	33.29	33.79	34.29	34.79
		4012	31.92	32.42	32.92	33.42	33.92
		4013	31.06	31.56	32.06	32.56	33.06

Figure 20. Information and Partial Results for the Node "Ay" in Analytica

f) For each volcano location and wind direction, determine the grid coordinates with respect to the ASHPLUME grid that correspond to the distances along x and y. This operation involves rounding off the x and y distances to the nearest 0.5. Figures 21 and 22 show the node information and partial results of these operations.

Variable 🤎 Title:		point_for_a		KIII	nid v 1.2		d Value of (I direction			120	ធ	
Description:	For a	aiven volc	ano location and a giver	wind direction, this converts	Lal	-	olcy		-	Totals		
		1177 - 11 - 11 - 11 - 11 - 11 - 11 - 11		the ASHPLUME grid) to the			Volcx				otals	
				This is done by rounding to the	100		500	501	502	503	504	1943
					1000		83.	5	82.5	82.0	81.0	80.
	prope	er ash thick	nesses from the ASHPL	.UME grid.	1001		83.	0	82.0	81.5	80.5	79.
	exar	*			1002		82.	5	81.5	81.0	80.0	79.
D (2 14)	Contraction of				1003		82.	D	81.0	80.5	79.5	78.
Definition:	abs(r	ound(Ax*2)/2)		1004		81.	5	80.5	80.0	79.0	78.
Inputs:	\cap	Ax	Ax	2	1005		81.	0	80.0	79.5	78.5	77.
	_	1.10	110		1006		80.	5	79.5	79.0	78.0	77.
Outputs:	\bigcirc	Volc01	volc01		1007		80.	0	79.0	78.5	77.5	76.
	\bigcirc	Volc02	volc02		1008		79.	5	78.5	78.0	77.0	76.
	\bigcirc	Volc03	volc03	4	1009		79,	D	78.0	77.5	76.5	75.
	\bigcirc	Volc04	volc04		1010		78.	5	77.5	77.0	76.0	75.
	\bigcirc	Volc05	volc05		4011		78.	0	77.0	76.5	75.5	74.
	\bigcirc	Volc06	volc06		4012		77.	5	76.5	76.0	75.0	74.
	\bigcirc	Volc07	volc07		4013		77.	D	76.0	75.5	74.5	73.

Figure 21. Information and Partial Results for the Node "Grid point for Ax" in Analytica

) Variable 🤝 Title:		_point_for_e Point for Ay		mide 1.2	d Value of G I direction			(km) 120	្រខ	
	-			Lal	olcy		•	Totals	r .	
Description:			ano location and a given wind direction, this conve ng the Y coordinate (on the ASHPLUME grid) to the		Volcx				Totals	
			listance to a grid point. This is done by rounding to	he m	500	501	50	2 50	13	504
	near	est 0.5 (the	spacing on the grid) This is required to extract the	4000	42.50	1	43.00	43.50	44.00	44.50
	prop	er ash thick	nesses from the ASHPLUME grid.	4001	41.50	I	42.00	42.50	43.00	43.50
	exor			4002	40.50	1	41.00	41.50	42.00	42.50
	Providence of the second			4003	39.50	1	40.00	40.50	41.00	41.50
Definition:	roun	id(Ay*2)/2		4004	39.00	1	39.50	40.00	40.50	41.00
Inputs:	\bigcirc	Av	Ay	4005	38.00	1	38.50	39.00	39.50	40.00
	\sim	с),	-1	4006	37.00	l.	37.50	38.00	38.50	39.00
Outputs:	\bigcirc	Volc01	volc01	4007	36.50	1.	37.00	37.50	38.00	38.50
	\bigcirc	Volc02	volc02	4008	35.50		36.00	36.50	37.00	37.50
	\bigcirc	Volc03	volc03	4009	34.50	1	35.00	35.50	36.00	36.50
	\bigcirc	Volc04	volc04	4010	33.50	1	34.00	34.50	35.00	35.50
	\bigcirc	Volc05	volc05	4011	33.00)	33.50	34.00	34.50	35.00
	\bigcirc	Volc06	volc06	4012	32.00	1	32.50	33.00	33.50	34.00
	\bigcirc	Volc07	volc07	4013	31.00	1	31.50	32.00	32.50	33.00

Figure 22. Information and Partial Results for the Node "Grid Point for Ay" in Analytica

The end result of this step is the set of coordinates (with respect to the ASHPLUME grid) for every volcano location and every wind direction needed to extract ASHPLUME values from the simulation data.

5.2.3 Overall Frequency Versus Ashfall Areal Density Curve

For each volcano location, extract the probabilistic ash areal densities that an eruption could contribute to the facilities. This entails extracting a density for each of the possible 12 wind directions from each of the 97 simulations used. Wind direction probabilities are provided in the *Atmospheric Dispersal and Deposition of Tephra from a Potential Volcanic Eruption at Yucca Mountain, Nevada* (BSC 2004b [DIRS 170026]) for each 1 km increment of altitude from 0 to 13 km. In keeping with the methodology used in TSPA, the wind direction probabilities used for a simulation are those that correspond to the highest elevation of the plume for the simulation.

Within each simulation, the ASHPLUME ashfall areal density data are extracted, the probability of exceeding a pre-defined set of areal densities is determined for each potential volcano location (incorporating the wind direction probabilities), and those probabilities of exceeding are combined with the eruption frequency estimates to get the overall hazard curve (frequency versus areal density) for that particular simulation. Finally, those data are combined for all simulations to get the overall hazard curve. The steps to perform these operations are as follows:

a) For each volcano location and wind direction, extract the ash areal density from the gridded ASHPLUME data. Figure 23 shows the node information and partial results of this operation (refer to Figure 4 to see where this (node "volc01") fits into the calculation flow).

🕽 Variable 👻	Volc01	Units: g/cm^2	mid	Mie	d Value of					
Title:	volc01		1.2	Wind	direction	(degrees			្រជ	
			Lall	Ve	olcy		•	Totals	8	
Description:		in the volcano grid, finds the closest point in the ash icts the ash thickness.			Volcx				Totals	
			A Part		1	537	538	539	54	10
	expr 🐨		4077	T COL	1.023	1.155	1.3	316	1.514	1.74
Definition:	getash(ash01,	Grid_point_for_ax, Grid_point_for_ay)	4078		1.297	1.511	1.7	782	2.128	2.6
	_		4079		1.297	1.511	1.7	782	2.128	2.6
Inputs:		ash01	4080		1.023	1.155	1.3	316	1.514	1.7
	Cetash	Getash	4081		0.6413	0.6809	0.7	26	0.7777	0.79
	Grid_poi		4082		0.3436	0.3387	0.33	335	0.3281	0.27
	O Grid_poi	Grid Point for Ay	4083		0.1641	0.1497	0.13	358	0.1225	0.0773
Outputs:	O Hazard	hazard by wind01	4084		0.06733	0.05626	0.046	656 0	0.03814	0.0174
	-	volc_hazard01	4085		0.02359	0.01937	0.015	576	0.0127	
	/ / //di		4086		7.162m	6.297m	5.50	17m	4.792m	
			4087		1.968m	1.879m	1.79	1m	1.705m	
			4088		0	0		0	0	
				Southern South	1 0	0		0	0	

Figure 23. Information and Partial Results for the Node "volc01" in Analytica

b) For each potential volcano location, determine the likelihood of exceeding various ash areal densities. To do this, the densities associated with each wind direction are tested to see if they exceed the given density, then the probabilities associated with the wind directions where the areal density is exceeded are summed to get the overall probabilities used for a given simulation are dependent on the height of the modeled ash plume for the simulation, consistent with the modeling approach used for TSPA. For example, the ash plume in simulation 1 reaches a modeled column height of 7.8 km. Therefore, the wind direction probabilities from the increment '7-8' km are used for this simulation. Figure 24 shows the node information and partial results of this operation.

⊃ Variable ▼ Title:	Volc_hazard01 Units: volc_hazard01	mid v		d Value of vo rd points (g		3	្រខ
Description:	For each point in the volcano grid, calculates the probability of exceeding a given ash density (as defined by the list - hazard points).	Ld	Ve	Volcx	•	Totals	Totals
				550	551	552	553 54
		4067		0	0	0	0
Definition:	sum((volc01>hazard_points)*P_Wind[simulation=1],wind_direction)	4068		0	0.0525	0	0
Inputs:	17 Harrand as theread a sinte	4069		0.0525	0.0525	0.0525	0
mputs.		4070		0.0525	0.0525	0.0525	0
	P_wind P-wind Circulation	4071		0.0525	0.0525	0.0525	0
	Simulation Simulation	4072		0.0525	0.0525	0.0525	0.0205
	Volc01 volc01	4073		0.1743	0.0525	0.0525	0.0205
	Vind_dir Wind direction	4074		0.1743	0.0525	0.073	0.0205
Outputs:	Hazard01 hazard01	4075		0.1743	0.1743	0.073	0.0205
-		4076		0.1743	0.1743	0.073	0.0325
	490 (P)	4077		0.3441	0.1743	0.0205	0.0325

Figure 24. Information and Partial Results for the Node "volc hazard01" in Analytica

c) Multiply each of the volcano hazard curves by the estimated eruption frequency, and sum over all volcano locations, to get the overall hazard curve estimate for this

simulation. Figure 25 shows the node information and partial results of this operation.

Variable 🔻	Hazard01 Units: hazard01		Aid Value of hazard01 Hazard points (g/cm^2) 💌 🦵 Tota
	Performs the weighted sum of all possible volcano frequencies and		
	their hazard curves to get the total hazard curve for this simulation.	0.01	1.289e-006
	extre. 🔉	0.03	1.067e-006
Definition:	sum(sum((Volc_hazard01*volcano_frequency),volcx),volcy)	0.06	8.954e-007
		0.1	7.530e-007
Inputs:		0.3	4.880e-007
	Volex Volex	0.6	2.923e-007
	Volcy Volcy	1	1.664e-007
	Volc_haz volc_hazard01	3	3.586e-008
Outputs:	🔿 Hazard d Hazard Data by Simul All	6	1.337e-008
o aquator	 Instance_a Instance Data by Simular - Air 	10	6.820e-009
		30	1.198e-009
		60	6.283e-010
		100	2.419e-010

Figure 25. Information and Partial Results for the Node "hazard01" in Analytica

d) Collect the hazard curve data for all of the simulations in one table. Figure 26 shows the node information and partial results of this operation.

A Object - Hazard Data by Simul All		Result	- Hazard D	ata by Sim	ul All				
Variable Hazard_data_by_simul Title: Hazard Data by Simul All	Units: gm/cm^2 is	Ha	d Value of Ha izard points (simulatio	g/cm^2) 🔻	Simul All				
Description: Hazard curve data for each sim	nulation		1.5	2	3	4	5	6	
	0.01	1	1.29e-006	1.35e-006	1.09e-006	8.73e-007	1.48e-006	1.07	
Definition: Edit Table indexed by s	simulation 0.03	3	1.07e-006	1.23e-006	9.84e-007	7.53e-007	1.29e-006	7.60	
	0.00	5	8.95e-007	1.13e-006	8.94e-007	6.70e-007	1.12e-006	5.4=	
Inputs: 🔘 Hazard01 hazard01	0.1		7.53e-007	1.06e-006	8.43e-007	6.42e-007	9.66e-007	4.05	
🔘 Hazard02 hazard02	0.3		4.88e-007	9.34e-007	7.13e-007	4.80e-007	6.44e-007	1.06	
🔘 Hazard03 hazard03	0.6		2.92e-007	8.44e-007	6.57e-007	3.78e-007	4.61e-007	3.46	
🔘 Hazard04 hazard04	1		1.66e-007	7.61e-007	6.03e-007	3.14e-007	3.27e-007	1.47	
🔘 Hazard05 hazard05	3		3.59e-008	5.47e-007	4.22e-007	1.51e-007	9.30e-008	3.7*	
🔿 Hazard06 hazard06	6		1.34e-008	3.89e-007	3.08e-007	5.54e-008	3.55e-008	1.90	
🔘 Hazard07 hazard07	10		6.82e-009	2.61e-007	2.18e-007	2.28e-008	1.52e-008	6.25	
🔘 Hazard08 hazard08	30		1.20e-009	1.99e-008	3.94e-008	1.92e-009	3.44e-009	3.01	
🔘 Hazard09 hazard09	60		6.28e-010	1.80e-009	4.63e-009	1.07e-009	1.39e-009	3.01	
🔘 Hazard10 hazard10	100		2.42e-010	1.30e-009	1.85e-009	6.28e-010	1.11e-009	3.01	
🔘 Hazard100 hazard100									

e) Average across all simulations used to get the expected (probability weighted) hazard curve. This result is one of the key outputs of this design calculation report; it provides the overall probability weighted hazard curve for the facilities in question. Figure 27 shows the node information and results of this operation.

	Total_hazardmean_ Units: Total Hazard - mean value	mid v	Mid Value of Total Hazard - mean value Hazard points (g/cm^2) V Totals
	Total hazard curve using all selected simulations.		
	expr 🐨	0.01	1.645e-006
Definition:	sum(Hazard_data_by_simul*Pick_sims_to_use,simulation)/sum(Pick_sims_to_use, simulation)	0.03	1.346e-006
		0.06	1.122e-006
		0.1	9.612e-007
Inputs:	 Hazard_d Hazard Data by Simul All Pick_sims Pick Sims to use Simulation simulation 	0.3	6.325e-007
		0.6	4.546e-007
		1	3.439e-007
		3	1.756e-007
		6	1.036e-007
		10	6.412e-008
		30	1.327e-008
		60	3.268e-009
		100	1.386e-009

Figure 27. Information and Partial Results for the Node "Total Hazard - Mean Value" in Analytica

f) Extract percentiles for each point on the total hazard curve. This is done in a series of nodes in the module "Percentile Results" (see Figure 28). First, the data are reduced to include only the 97 simulations used. Then those data are sorted from lowest frequency to highest frequency. Then the values at given percentiles are extracted.

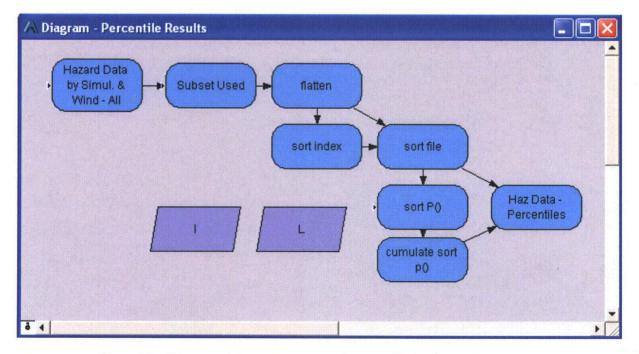


Figure 28. Diagram of Calculation Flow for "Percentile Results" in Analytica

34

g) Accumulate the hazard curve information for each simulation and wind direction into one table. Figure 29 shows the node information and partial results of this operation.

Variable Hazard_data_by_simu1 Units: gm/cm^2 Title: Hazard Data by Simul. & Wind - All			Vind	Value of Ha directionleg zard points (rees) 🖓 🦳		nd - All (gm/ci 尽업 s	m*2)
Description:	Hazard curve data for each simulation and wind direction.		Hazard points (g/cm*2) Hazard points (g/cm*2) Totals					
			-	1	2	3	4	5
Definition:	Edit Table indexed by simulation	0.01		9.97e-007	1.24e-006	8.86e-007	7.34e-007	1.14e-00
		0.03		8.58e-007	1.13e-006	8.62e-007	5.85e-007	9.77e-00
Inputs:		0.06		7.46e-007	9.89e-007	7.18e-007	5.75e-007	8.67e-00
	Hazard_b hazard by wind02	0.1		6.58e-007	9.65e-007	7.15e-007	5.64e-007	7.65e-00
	Hazard_b hazard by wind03	0.3		4.66e-007	8.19e-007	5.68e-007	4.24e-007	5.80e-00
	Hazard_b hazard by wind04	0.6		3.47e-007	7.71e-007	5.62e-007	3.95e-007	4.68e-00
	Hazard_b hazard by wind05	1		2.14e-007	6.61e-007	5.37e-007	3.31e-007	3.78e-00
	Hazard_b hazard by wind06	3		5.91e-008	5.00e-007	3.93e-007	1.98e-007	1.79e-00
	Hazard_b hazard by wind07	6		1.57e-008	3.66e-007	3.26e-007	9.75e-008	7.82e-00
	Hazard_b hazard by wind08	10	R.S.	7.25e-009	2.78e-007	2.36e-007	4.02e-008	1.90e-00
	Hazard_b hazard by wind09	30		0.00e+000	4.00e-008	6.73e-008	0.00e+000	4.09e-00
	Hazard_b hazard by wind10	60		0.00e+000	0.00e+000	3.94e-009	0.00e+000	0.00e+00
	 Hazard_b hazard by wind100 Hazard_b hazard by wind101 	100		0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+00

h) Select only the 97 simulations to be used. This is done in the node labeled "Subset Used". The figure and results for this step are not shown; the results are the same as the previous step (Figure 29) for the simulations that are included. Next, "flatten" this 3-dimensional table into a series of 2 dimensional lists for each hazard value. This step is required to be able to extract percentiles from the 1164 data points associated with each hazard value. The 1164 points (97 simulations x 12 wind directions) will subsequently be sorted and the associated probabilities of each of those points carried along so that the value corresponding to a given cumulative percentile can be extracted from the list. Figure 30 shows the node information and partial results of this operation. Note that in the syntax used in the figure, the suffix "u" is the equivalent of 10^{-6} and the suffix "n" is the equivalent of 10^{-9} .

🔿 Variable 💌	Flatten	Units:	mid .		id Value of flatten	а. <u>а. а. а.</u>	ខ្ម
Title:	flatten		1.2	naza	ard points (g/cm^)	2) 🕂 0.01	wц
		It table into 2 dimensions so that subsequent performed in order to extract percentiles for each	Lall	-	L		otals
	value in the list of l	nazard points to be used.	Cost and		Wind_direction	Simulations_us s	ub_used
	exar 🐨		1		C	1	997.3
	1		2		C	2	1.236
Definition: for x := hazard_points do			3		(3	886.3
	Mdarraytotable(St	ubset_used[hazard_points=x], I, L)	4		() 4	734.1
Inputs:	/7 Hazard n	Hazard points	5		(5	1.14
inputor	/7 I		6		(6	837.
			7		() 7	687.
	Modarrayt		8			8	1.25
		Subset Used	9		(9	882.
	C Subset_u	Subset Used	10		(10	2.08
Outputs:	Sort_file	sort file	11		(12	1.32
	O Sort_index	sort index	12		(13	1.34
			13		() 14	613.
			14		(16	732.
			15		() 17	1.30
			16			18	799.

Figure 30. Information and Partial Results for the Node "flatten" in Analytica

i) Next, sort the file by frequency, from lowest to highest value. This is done in two steps. The node labeled "sort index" returns the original row numbers sorted from the lowest associated value to the highest, for each of the columns of data. We are only concerned with the sorted values for the frequency data. The output of this step is not shown here. Next, that information is used to generate the original data sorted by frequency. Figure 31 shows the node information and partial results of this operation; the column labeled "sub_used" contains the frequency data. Note that in the syntax used in the figure, the suffix "n" is the equivalent of 10⁻⁹.

Object - sort file				lesult	- sort file		
🔿 Variable 🔻	Sort_file	Units:	mid	Mi	id Value of sort file		
Title	sort file		1.2	Haza	rd points (g/cm^2	2) 🖓 0.01 🚺	3 21
THE.	SULTING		1			Totals	
Description:	Shows the result	of sorting the original file in terms of frequency	Lall	-			
	(sub_used) from lowest to highest value.				L		tals
	(COLORING)				Wind_direction	Simulations_used	sub_used
	expr		1		150	101	71.50
Definition:	Flatten[i=Sort_ind	ex[l='sub_used']]	2		180	101	72.03
_	_		3		180	92	78.
Inputs:	Flatten	flatten	4		180	91	79.5
	<u> </u>	1	5		150	24	81.
	<u> </u>		6		150	91	82.9
	O Sort_index	sort index	7		150	92	85.8
Outputs:	- Har data	Haz Data - Percentiles	8		150	14	87.3
ouplies	Sort_p	sort P()	9		150	23	88.0
		Solution	10		180	24	88.3
			11		180	23	91.9
			12		150	88	95.4
			13		180	14	95.
			14		180	105	95.6
			15		-150	101	95.8

Figure 31. Information and Partial Results for the Node "sort file" in Analytica

j) Generate a list of overall probabilities of occurrence for each data point, sorted in the same order as the values in the "sort file" data set. For example, the value of 71.56n in row 1 (for hazard point 0.01) has a probability of occurrence of 0.00028. Figure 32 shows the node information and partial results of this operation.

) Variable 💌	Sort p Units:	mid	Mid Value of s	ort P()			
		1.2	T	•	🔽 Totals		
nue:	sort P()	Lat	Hazard n	oints (g/cm	12) V	Totals	
Description:	Shows the probabilities for each of the data points sorted to mat	ch the	0.01	0.03	r	0.1	0.:
	points in the file "sort file". The overall probability of occurrence		0.00028	0.00028	0.00024	0.00031	Co. And Co.
	any point is the probability of the wind direction divided by the nu of simulation samples (note that we can make this division becau		0.00024	0.00024	0.00026	0.00026	t-
	each simulation has equal probability of occurrence).	3	0.00024	0.00013	0.00031	0.00024	
	outrainduction nos equal probability of occurrence).	4	0.00013	0.00029	0.00029	0.00031	
	expr 🥣	5	0.00030	0.00030	0.00028	0.00026	
Definition:	sum(sum((Sort_file[I=Wind_direction'] = wind_direction) *	6	0.00013	0.00030	0.00026	0.00029	
	(Sort_file[I='Simulations_used'] = simulation) *	7	0.00028	0.00024	0.00013	0.00049	1
	(p_wind/size(simulations_used)), wind_direction), simulation)	8	0.00030	0.00013	0.00030	0.00049	
-		9	0.00032	0.00028	0.00029	0.00029	
Inputs:		10	0.00029	0.00032	0.00013	0.00029	
	P_wind P-wind	11	0.00026	0.00029	0.00026	0.00026	
		12	0.00030	0.00026	0.00032	0.00049	
	Simulatio Simulations used	13	0.00029	0.00029	0.00029	0.00032	
	Sort_file sort file	14	0.00004	0.00015	0.00030	0.00029	I
	// Wind_dir Wind direction	15	0.00028	0.00026	0.00031	0.00028	
Outputs:	Cumulate cumulate sort p()	16	0.00020	0.00020	0.00049	0.00031	
		17	0.00019	0.00030	0.00024	0.00048	

Figure 32. Information and Partial Results for the Node "sort P()" in Analytica

k) Now, we cumulate the probabilities of the sorted data sets so that we can extract any given percentile data point that we choose. Figure 33 shows the node information and partial results of this operation.

A Object - cumulate sort p()	A Result	- cumulate	e sort p()			
Variable Cumulate_sort_p Units: Title: cumulate sort p()	1.2		umulate sort	Totals	s Totals	
Description: Running cumulation of the sorted probabilities.	Lal	0.01	oints (g/cm ⁴ 0.03	0.06	0.1	0.3
expr 🐨	1	0.00028	0.00028	0.00024	0.00031	0.0003
Definition: cumulate(Sort p,I)	2	0.00052	0.00052	0.00050	0.00057	0.0008
	3	0.00076	0.00065	0.00081	0.00081	0.001:
Inputs: 💋 🛛	4	0.00089	0.00093	0.00110	0.00112	0.001:
Sort_p sort P()	5	0.00118	0.00123	0.00138	0.00138	0.0018
	6	0.00131	0.00152	0.00164	0.00167	0.0023
Outputs: 🔘 Haz_data Haz Data - Percentiles	7	0.00159	0.00176	0.00177	0.00216	0.0026
	8	0.00189	0.00190	0.00206	0.00264	0.0034
	9	0.00221	0.00218	0.00235	0.00293	0.0037

1) Finally, extract the final set of desired percentile frequencies from the data. Figure 34 shows the node information and partial results of this operation.

Variable 🤎 Title:	Haz_dataperc		mid*	Mid Value of Ha: Percentiles	2 Data - Perce	ntiles Totals		
Description: Frequency values for a user-defined set of percentiles.			Lal	tals				
bescription:	Frequency values	for a user-defined set of percentiles.		0.01	0.03	0.06	0.1	0.3
	espr 🐨		0.01	1.162e-007	9.409e-008	7.448e-008	5.875e-008	2.740e-0
Definition:	Definition: Stepinterp(Cumulate_sort_p, Sort_file[L='sub_used'], percentiles, I		0.05	1.835e-007	1.497e-007	1.206e-007	9.469e-008	5.124e-0
			0.16	4.856e-007	3.992e-007	2.999e-007	2.236e-007	9.770e-0
Inputs:	Cumulate	cumulate sort p()	0.25	7.617e-007	5.786e-007	4.509e-007	3.522e-007	1.635e-0
	\Box 1	1	0.5	1.322e-006	1.129e-006	9.448e-007	7.892e-007	4.839e-
	ΔL	L	0.75	2.157e-006	1.826e-006	1.622e-006	1.371e-006	9.208e-0
	Percentiles	Percentiles	0.84	2.791e-006	2.325e-006	1.914e-006	1.668e-006	1.244e-0
	Sort_file	sort file	0.95	4.500e-006	3.474e-006	2.823e-006	2.448e-006	1.784e-0
			0.99	5.458e-006	4.489e-006	3.714e-006	3.144e-006	2.226e-0

Figure 34. Information and Partial Results for the Node "Haz Data - Percentiles" in Analytica

Along with the expected value hazard curve (Figure 27), this result is a primary output of this design calculation.

5.3 DUPLICATE CALCULATIONS IN MICROSOFT EXCEL

In order to corroborate the calculations in Analytica, a selected set of calculations were duplicated in Microsoft Excel. These calculations correspond to those done in Analytica for simulations 01, 02, and 80 and are carried out through step 3c described above (see Figure 25). The calculations can only be duplicated this far in Excel, since going farther would require calculation of all 97 used simulations. These three simulations were selected to represent different grid dimensions generated by the ASHPLUME runs. The maximum grid dimensions of the three runs are 60, 200 and 20 km, respectively. These correspond to grid spacings of 3, 10, and 1 km, respectively. The excel files for these duplicate calculations are included with this report (pc-1.xls, pc-2.xls, pc-80.xls, global.xls).

The following describes the calculation in Excel, using simulation 01 as the illustrative example (see attached files pc-1.xls and global.xls).

5.3.1 ASHPLUME Data on Common Grid

The steps involved for performing the calculation in Excel are as follows:

- a. Open PCa-1.out file as excel workbook (see sheet "PC data" in pc-1.xls).
- b. Convert column A by "text to columns" under the Data menu in Excel.
- c. Pad data values to bottom of list to ensure that all possible values for x and y are represented. This requires creating dummy points for x coordinates that are not represented, and is needed to ensure that the PivotTable in the next step expands as needed.
- d. Create PivotTable (in sheet "PivotTable") to convert x, y, xash data from the flat file in "PC data" to a 2-D table.

e. Copy pivot table data to appropriate cells in larger (201x401) grid, in a new sheet ("Full_grid"). Doing this requires use of Index and Match functions to perform lookup of existing data, and an IF and OR statement to place zeros at values outside of the given ASHPLUME grid. Copied data are shown in red text in the worksheet. The following general equation is used to transfer existing ASHPLUME data and put zeros outside the grid:

=IF(OR(\$A196>'PC data'!\$E\$9, \$A196<'PC data'!\$E\$10, B\$1>'PC data'!\$E\$8), 0, INDEX(PivotTable!\$A\$4:\$V\$45, MATCH(\$A196, PivotTable!\$A\$4:\$A\$45,), MATCH(B\$1,PivotTable!\$A\$4:\$V\$4,)))

- f. Pad values around the edge of non-zero data. The purpose of padded values is to provide a very small, but non-zero, set of values around the edge of the data so that the ensuing ln-ln interpolation will ramp from the last non-zero value down to near zero. Attempting to interpolate the last non-zero value with the next zero value will not work in ln-ln space since ln(0) is not defined. The pad value is set to 0.001 and the cells where padded values were inserted are shown by text in red italics.
- g. Perform interpolations in ln-ln space to fill in data between existing data points. Note that the region around the origin will be handled separately (described below). Interpolations are performed in two steps, first in the x dimension, then in the y dimension. The equation for the x dimension is of the form:

=IF(OR(B196=0,H196=0), 0, EXP((LN(SQRT(\$A196^2+C\$1^2))-LN(SQRT(\$A196^2+B\$1^2))) / (LN(SQRT(\$A196^2+H\$1^2))-LN(SQRT(\$A196^2+B\$1^2))) * (LN(H196)-LN(B196))+LN(B196)))

The equation for the y dimension is of the form:

=IF(OR(B190=0,B196=0), 0, EXP((LN(SQRT(\$A195^2+B\$1^2))-LN(SQRT(\$A196^2+B\$1^2))) / (LN(SQRT(\$A190^2+B\$1^2))-LN(SQRT(\$A196^2+B\$1^2))) * (LN(B190)-LN(B196))+LN(B196)))

- h. Copy values for the data points near the origin from the file PCb-1.out. Use the value from the point (x = 0, y = +0.5) for the origin. If any of the values are zero, use the value of 0.001 (consistent with the padding argument described above). These data points (six total) are shown in red.
- i. Interpolate (in ln-ln space) along the x dimension from the three new data points at (0.5, +0.5), (0.5, 0), and (0.5, -0.5) to the nearest set of existing data points from the previous interpolation. For simulation 01, the nearest data points are at (3.0, +0.5), (3.0, 0), and (3.0, -0.5). The equation is of the form:

=IF(OR(C201=0,H201=0), 0, EXP((LN(SQRT(\$A201^2+D\$1^2))-LN(SQRT(\$A201^2+C\$1^2))) / (LN(SQRT(\$A201^2+H\$1^2))-LN(SQRT(\$A201^2+C\$1^2))) * (LN(H201)-LN(C201))+LN(C201)))

CAL-WHS-GS-000001 Rev 00A

j. Interpolate (in ln-ln space) along the y dimension from the data just created along y = 0.5 and y = -0.5 to the nearest set of existing data points from the previous interpolations (from step g). The equation is of the form:

=IF(OR(D196=0,D201=0), 0, EXP((LN(SQRT(\$A200^2+D\$1^2))-LN(SQRT(\$A201^2+D\$1^2))) / (LN(SQRT(\$A196^2+D\$1^2))-LN(SQRT(\$A201^2+D\$1^2))) * (LN(D196)-LN(D201))+LN(D201)))

k. Perform In-In extrapolations to extend data for new grid points in the positive y (downwind) direction. In cases where the ASHPLUME grid does not extend to the full 100 km in the +y direction, the data do not terminate at near-zero values. Therefore, to avoid an abrupt and unrealistic drop off to zero, the data are extrapolated out to 100 km using the last two non-zero values along +y. These new points are shown by cells shaded in green. The equation for the extrapolation is:

=EXP((LN(SQRT(\$A81^2+B\$1^2)) - LN(SQRT(\$A\$82^2+B\$1^2))) / (LN(SQRT(\$A\$82^2+B\$1^2)) - LN(SQRT(\$A\$88^2+B\$1^2))) * (LN(B\$82)-LN(B\$88))+LN(B\$82))

1. Plot data in 3-D view to check results visually (see sheet "Chart").

5.3.2 Grid Calculations

a. For each volcano location, determine the distance along the x-axis and the distance along the y-axis to the facilities location, with respect to the grid of volcano points. In the sheet "Calc", the equations are of the form (example from cells C6 and D6):

=\$B\$2-A6, =\$C\$2-B6

b. Calculate the angle from each volcano location to the facilities location, with respect to the grid of volcano points. The equation is of the form (example from cell F6):

=ATAN2(C6,D6)

c. Calculate the distance from each volcano location to the facilities location. The equation is of the form (example from cell G6):

=SQRT(C6^2+D6^2)

- d. For each of the 12 wind directions, perform the following calculations. Note that the wind direction probabilities are dependent on the column height of the plume, and are pulled in from the linked spreadsheet, global.xls.
- e. Calculate the angular difference between the given wind direction and the direction to the facilities. The equation is of the form (from cell J6):

=\$F6-K\$3+RADIANS(90)

CAL-WHS-GS-000001 Rev 00A

f. Using that angle and the distance to the facilities, convert to x and y distances (with respect to the ASHPLUME grid). The equations are of the form (example from cells H6 and I6):

=COS(J6)*G6, =SIN(J6)*G6

g. Round the x and y distances to the nearest 0.5 km to determine the x and y coordinates. The equations are of the form (example from cells K6 and L6):

=ABS(ROUND(H6*2,0)/2), =ROUND(16*2,0)/2

5.3.3 Overall Frequency Versus Density Curve for the Simulation

a. Using the x, y coordinates, extract the ash density from the "Full-data" sheet. The equation is of the form (example from cell M6):

=IF(OR(K6>100, K6<0, ABS(L6-0.5)>100), 0, INDEX(Full_grid!\$A\$1:\$GT\$402, MATCH(L6,Full_grid!\$A\$1:\$A\$402,), MATCH(K6,Full_grid!\$A\$1:\$GT\$1,)))

b. Calculate the probability of exceeding different ash densities for each of the volcano locations, incorporating the wind direction probabilities. The equation is of the form (example from cell BG6):

=IF(\$M6>BG\$5,\$J\$1,0) + IF(\$Q6>BG\$5,\$P\$1,0) + IF(\$U6>BG\$5,\$T\$1,0) + IF(\$Y6>BG\$5,\$X\$1,0) + IF(\$AC6>BG\$5,\$AB\$1,0) + IF(\$AG6>BG\$5,\$AF\$1,0) + IF(\$AK6>BG\$5,\$AJ\$1,0) + IF(\$AO6>BG\$5,\$AN\$1,0) + IF(\$AS6>BG\$5,\$AR\$1,0) + IF(\$AW6> BG\$5,\$AV\$1,0) + IF(\$BA6>BG\$5,\$AZ\$1,0) + IF(\$BE6>BG\$5,\$BD\$1,0)

c. Calculate the overall frequency of exceeding different ash densities by multiplying the volcano frequencies by the hazard curves for each, then summing over all volcanoes. The equation is of the form (example from cell BG2):

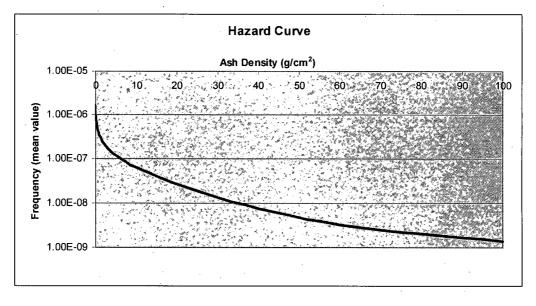
=SUMPRODUCT(BG6:BG15256,\$BP6:\$BP15256)

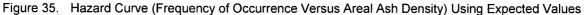
Comparison of the results of the calculations performed in Analytica and Excel show equivalency in the two sets of results for the three simulations where calculations were completed in Excel. The calculations were conducted to provide corroboration in a separate calculation platform that the results in Analytica are behaving as expected.

6. **RESULTS**

The following table summarizes the results of the final full calculation. This table includes the results presented as the probability-weighted mean (see Figure 27) and in terms of percentiles (see Figure 34) of the frequency of exceeding various ash densities.

CAL-WHS-GS-000001 Rev 00A


41


The outputs are reasonable compared to the inputs. The estimate of the thickness hazard at the North Portal Operations Area, as calculated in this document, is suitable to be used in the building design to withstand potential ash fall from basaltic volcanism.

			Frequency of exceeding given ash density at building location									
				Percentile								
		<u>Mean</u>	<u>0.01</u>	<u>0.05</u>	<u>0.16</u>	<u>0.25</u>	<u>0.5</u>	<u>0.75</u>	<u>0.84</u>	<u>0.95</u>	<u>0.99</u>	
	0.01	1.65E-06	1.16E-07	1.84E-07	4.86E-07	7.62E-07	1.32E-06	2.16E-06	2.79E-06	4.50E-06	5.46E-06	
.	0.03	1.35E-06	9.41E-08	1.50E-07	3.99E-07	5.79E-07	1.13E-06	1.83E-06	2.33E-06	3.47E-06	4.49E-06	
5	0.06	1.12E-06	7.45E-08	1.21E-07	3.00E-07	4.51E-07	9.45E-07	1.62E-06	1.91E-06	2.82E-06	3.71E-06	
ι ζ	0.1	9.61E-07	5.88E-08	9.47E-08	2.24E-07	3.52E-07	7.89E-07	1.37E-06	1.67E-06	2.45E-06	3.14E-06	
(g/cm^1	0.3	6.33E-07	2.74E-08	5.12E-08	9.77E-08	1.64E-07	4.84E-07	9.21E-07	1.24E-06	1.78E-06	2.23E-06	
	0.6	4.55E-07	1.73E-08	3.01E-08	5.60E-08	8.26E-08	3.07E-07	6.75E-07	8.92E-07	1.41E-06	1.86E-06	
density	1	3.44E-07	1.13E-08	1.68E-08	3.49E-08	5.56E-08	1.74E-07	5.23E-07	6.91E-07	1.23E-06	1.70E-06	
sua	3	1.76E-07	2.70E-09	5.73E-09	1.39E-08	1.84E-08	4.70E-08	2.03E-07	3.75E-07	8.51E-07	1.28E-06	
	6	1.04E-07	1.36E-09	2.56E-09	6.25E-09	9.63E-09	2.14E-08	8.20E-08	1.79E-07	5.97E-07	8.55E-07	
Ash	10	6.41E-08	0.00E+00	1.36E-09	3.27E-09	5.16E-09	1.21E-08	3.63E-08	9.75E-08	3.53E-07	6.79E-07	
1	30	1.33E-08	0.00E+00	0.00E+00	6.81E-10	1.36E-09	3.03E-09	8.34E-09	1.42E-08	6.10E-08	1.65E-07	
	60	3.27E-09	0.00E+00	0.00E+00	0.00E+00	6.54E-10	1.40E-09	2.48E-09	3.40E-09	7.30E-09	2.22E-08	
	100	1.39E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.81E-10	1.48E-09	2.17E-09	3.38E-09	5.50E-09	

Table 1.	Summary Results of the Ash Areal Der	sity Calculations
----------	--------------------------------------	-------------------

The following hazard curve (Figure 35) shows the frequency of exceeding any given areal ash density in a graphical form. The data used here are the probability weighted mean values (the column labeled "Mean" in Table 1).

Of particular importance for design consideration are the frequency calculations corresponding to the ash areal density of 10 g/cm^2 . Using a specific gravity of approximately 1 for ash, the current facilities' design load of 20 pounds/ft² corresponds to an ash areal density of 9.8 g/cm².

CAL-WHS-GS-000001 Rev 00A

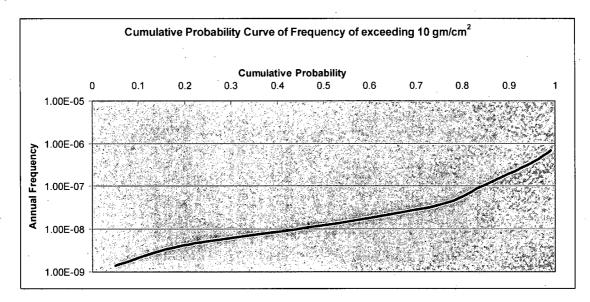


Figure 35 shows the frequency of exceeding an ash areal density of 10 g/cm^2 plotted against the probability of the frequency being less than that value.

CAL-WHS-GS-000001 Rev 00A

The results indicate that the mean annual frequency of exceeding an ash areal density of 10 g/cm² is 6.4×10^{-8} . Because these results incorporate uncertainty, we can also look at the results from a more conservative standpoint, and conclude that there is a 99% probability that the mean annual frequency of exceeding a density of 10 g/cm² will not exceed 6.8 x 10⁻⁷.

7. **REFERENCES**

7.1 DOCUMENTS CITED

BSC (Bechtel SAIC Company) 2004a. <i>Characterize Framework for Igneous Activity at Yucca Mountain, Nevada</i> . ANL-MGR-GS-000001 REV 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: <u>DOC.20041015.0002</u> .	169989
BSC 2004b. Atmospheric Dispersal and Deposition of Tephra from a Potential Volcanic Eruption at Yucca Mountain, Nevada. MDL-MGR-GS-000002 REV 01. Las Vegas, Nevada: Bechtel SAIC Company.	170026
BSC 2004c. YMP Site Operations-Maintenance - Field Engineering-Survey Section, Coordinate Transformation-SPC to UTM (NAD27). Las Vegas, Nevada: Bechtel SAIC Company. ACC: SIT.20040914.0001.	171769
DOE (U.S. Department of Energy) 2003. Validation Test Report for: ASHPLUME_DLL_LA Version 2.0. 11117-VTR-2.0-00. Las Vegas, Nevada: U.S. Department of Energy, Office of Repository Development. ACC: MOL.20031212.0443.	166506
DOE 2004a. Software Validation Report for: GoldSim v8.02, Rev. No.: 00. Document ID: 10344-SVR-8.02-00. Las Vegas, Nevada: U.S. Department of Energy, Office of Repository Development. ACC: MOL.20040623.0266.	169878
DOE 2004b. <i>Quality Assurance Requirements and Description</i> . DOE/RW-0333P, Rev. 16. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20040907.0002.	171539
Jarzemba, M.S.; La Plante, P.A.; and Poor, K.J. 1997. ASHPLUME Version 1.0—A Code for Contaminated Ash Dispersal and Deposition, Technical Description and User's Guide. CNWRA 97-004, Rev. 1. San Antonio, Texas: Center for Nuclear Waste Regulatory Analyses. ACC: MOL.20010727.0162.	100987
Suzuki, T. 1983. "A Theoretical Model for Dispersion of Tephra." Arc Volcanism: Physics and Tectonics, Proceedings of a 1981 IAVCEI Symposium, August-September, 1981, Tokyo and Hakone. Shimozuru, D. and Yokoyama, I., eds. Pages 95–113. Tokyo, Japan: Terra Scientific Publishing Company. TIC: 238307.	100489

44

7.2 CODES, STANDARDS, REGULATIONS, AND PROCEDURES

AP-3.12Q, Rev. 2, ICN 2. Design Calculations and Analyses. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20030403.0003.

LP-SI.11Q-BSC, Rev. 0, ICN 1. *Software Management*. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20040225.0007.

7.3 SOURCE DATA LISTED BY TRACKING NUMBER

LA0009FP831811.001. Compilation and Summaries of Data Supporting Computation of Volcanic Event Intersection Frequencies. Submittal date: 09/01/2000.	164712
LA0408GK831811.002. Input Parameter Values for the ASHPLUME_DLL_LA V 2.0 Model for TSPA-LA. Submittal date: 08/26/2004.	171749
LA0409WS831812.001. Pre-Closure Ash Distribution Data. Submittal date: 09/16/2004.	171768
MO0408SPADRWSD.002. Desert Rock Wind Speed and Wind Direction	171803

Analysis for Years 1978-2003. Submittal date: 08/19/2004.

CAL-WHS-GS-000001 Rev 00A

ATTACHMENT A-CD-ROM OF COMPUTER FILES

All computer files used for this calculation are contained on the attached CD-ROM. Table A-1 lists the files contained on the CD and provides file size, date, time, and a description of the purpose of the files.

Filename	Size (KB)	Date	Time	Description
PC_ash.ana	2,657	9/14/2004	8:33 am	Analytica model file used to perform calculations. File contains all input data, intermediate calculations, and results.
Setupana30.exe	12,924	9/14/2004	9:54 am	Set up file for installing free Player version of Analytica for running "pc_ash.ana" model calculation.
PCa-OUT1-10.xls	139	8/27/2004	1:52 pm	File to parse ASHPLUME files PCa-1 out through PCa-10 out prior to importing into Analytica
PCa-OUT11-20.xls	144	8/25/2004	12:55 pm	File to parse ASHPLUME files PCa-11.out through PCa-20.out prior to importing into Analytica
PCa-OUT21-30 xls	136	8/24/2004	12:21 pm	File to parse ASHPLUME files PCa-21.out through PCa-30.out prior to importing into Analytica
PCa-OUT31-40.xls	163	8/24/2004	1:44 pm	File to parse ASHPLUME files PCa-31.out through PCa-40.out prior to importing into Analytica
PCa-OUT41-50.xls	180	8/24/2004	2:46 pm	File to parse ASHPLUME files PCa-41.out through PCa-50.out prior to importing into Analytica
PCa-OUT51-60.xls	199	8/24/2004	2:58 pm	File to parse ASHPLUME files PCa-51.out through PCa-60.out prior to importing into Analytica
PCa-OUT61-70.xls	209	8/25/2004	7:56 am	File to parse ASHPLUME files PCa-61.out through PCa-70.out prior to importing into Analytica
PCa-OUT71-80.xls	274	8/25/2004	8:02 am	File to parse ASHPLUME files PCa-71.out through PCa-80.out prior to importing into Analytica
PCa-OUT81-90.xls	201	8/25/2004	8:06 am	File to parse ASHPLUME files PCa-81.out through PCa-90.out prior to importing into Analytica
PCa-OUT91-100.xls	223	8/25/2004	8:12 am	File to parse ASHPLUME files PCa-91.out through PCa-100.out prior to importing into Analytica
PCa-OUT101-110.xls	223	8/25/2004	8:16 am	File to parse ASHPLUME files PCa-101.out through PCa-110.out prior to importing into Analytica
pc-1.xls	65,718	9/14/2004	9:04 am	Duplicate complete calculation in Excel of hazard curve for ASHPLUME simulation 1
pc-2.xls	61,253	9/14/2004	8:53 am	Duplicate complete calculation in Excel of hazard curve for ASHPLUME simulation 2
pc-80.xls	58,838	9/14/2004	9:03 am	Duplicate complete calculation in Excel of hazard curve for ASHPLUME simulation 80
global.xis	19	8/27/2004	1:52 pm	Wind probability data for use in Excel calculations
CFRACSM.XY	552	4/16/2000	9:07 pm	Output file from DTN LA0009FP831811.001 containing volcano frequency data for grid points.
Ashplume_PreClose_ 8-23-04.zip	386	8/23/2004	11:21 am	Zip file containing the 220 output files of ASHPLUME runs

ATTACHMENT B-ASHPLUME GRID DIMENSIONS

File	Spacing (km)	Min x 、(km)	Max x (km)	# points	Min y (km)	Max y (km)	# points
PCa-1.out	3	0	60	21	-60	60	41
PCa-2.out	10	0	200	21	-200	200	41
PCa-3.out	7	0 ·	140	21	-140	140	41
PCa-4.out	5.5	0	110	21	-110	110	41
PCa-5.out	4.5	0	90	21	-90	90	:41
PCa-6.out	2	0	40	21	-40	40	41
PCa-7.out	3.5	0	70	21	-70	70	41
PCa-8.out	2	0	40	21	-40	40	41
PCa-9.out	3	0	60	21	-60	60	41 .
PCa-10.out	4	0	80	21	-80	80	41
PCa-11.out	5	0	100	21	-100	100	41
PCa-12.out	10	0	200	21	-200	200	41
PCa-13.out	6.5	0	130	21	-130	130	41
PCa-14.out	3	0	60	21	-60	60	41
PCa-15.out	2	0	40	21	-40	40	41
PCa-16.out	6.5	0	130	21	-130	130	41
PCa-17.out	10	0	200	21 .	-200	200	41
PCa-18.out	2.5	0	50	21	-50	50	41
PCa-19.out	6	0	120	21	-120	120	41
PCa-20.out	8.5	0	170	21	-170	170	41
PCa-21.out	7	0	140	21	-140	140	41
PCa-22.out	4	0	80	21	-80	80	41
PCa-23.out	3.5	0	70	21	-70	70	41
PCa-24.out	3.5	0	70	21	-70	70	41 ·
PCa-25.out	7	0	140	21	-140	140	41
PCa-26.out	4	0	80	21	-80	80	41
PCa-27.out	5.5	0	110	21	-110	110 [.]	41
PCa-28.out	5	0	100	21	-100	100	41
PCa-29.out	1.5	0	30	21	-30	30	41
PCa-30.out	2	0	40	21	-40	40	41
PCa-31.out	5	0	100	21	-100	100	41
PCa-32.out	4.5	0	90	21	-90	90	41
PCa-33.out	10	0	200	21	-200	200	41
PCa-34.out	7.	0	140	21	-140	140	41
PCa-35.out	3	0	60	21	-60	60	41
PCa-36.out	6.5	0	130	21	-130	130	41
PCa-37.out	3.5	0.	70	21	-70	70	41

Table B-1.

Grid Dimensions of ASHPLUME Full-Grid Realizations

CAL-WHS-GS-000001 Rev 00A

47

Table B-1.

Grid Dimensions of ASHPLUME Full-Grid Realizations (Continued)

File	Spacing (km)	Min x (km)	Max x (km)	# points	Min y (km)	Max y (km)	∽# points
PCa-38.out	3.5	0	70	21	-70	70	41
PCa-39.out	6	0 .	120	21	-120	120	41
PCa-40.out	2	0	40	21	-40	40	41
PCa-41.out	4	0	80	21	-80	80	41 ·
PCa-42.out	2.5	0	50 [.]	21	-50	50	41
PCa-43.out	3.5	0	70	21	-70	70	41
PCa-44.out	3	0	60	21	-60	60	41
PCa-45.out	4	0	80	21	-80	80	41
PCa-46.out.	10	0	200	21	-200	200	.41
PCa-47.out	2.5	0	50	21	-50	50	41
PCa-48 out	2.5	0	50	21	-50	50	41
PCa-49.out	3	0.	60	21	-60	60	41
PCa-50.out	7.5	0	150	21	-150	150	41
PCa-51 out	6	0	120	21	-120	120	41
PCa-52.out	4	0	80	21	-80	80	41
PCa-53.out	3.5	0	70	21	-70	70	41
PCa-54.out	1.5	0	30	21	-30	30	41
PCa-55.out	2	0	40	21	-40	40	41
PCa-56.out	4	0	80	21	-80	80	41
PCa-57.out	2.5	0	50	21 ·	-50	50	41
PCa-58.out	2.5	0	50	21	-50	50	41
PCa-59.out	4	0	80	21	-80	80	41 .
PCa-60.out	4	0	80	21	-80	80	41
PCa-61.out	2	0	40	21	-40	40	41
PCa-62.out	6	0	120	21	-120	120	41
PCa-63.out	5	0	100	21	-100	100	41
PCa-64.out	2.5	0	50	21	-50	50	41
PCa-65.out	2	0 .	40	21	-40	40	41
PCa-66.out	5.5	0	110	21	-110	110	41
PCa-67.out	8.5	0	170	21	-170	170	41
PCa-68.out	9.5	0	190	21	-190	190	41
PCa-69.out	9.5	0	190	21	-190	190	41
PCa-70.out	2.5	0	50	21	-50	50	41
PCa-71.out	3	0	60	21	-60	60	41
PCa-72.out	2	0	40	21	40	40	41
PCa-73.out	10	0	200	21	-200	200	41
PCa-74.out	10	0	200	21	-200	200	41
PCa-75.out	2.5	0	50	21	-50	50	41
PCa-76.out	3	0	60	21	-60	60	41
PCa-77.out	5	0	100	21	-100	100	41

CAL-WHS-GS-000001 Rev 00A

File	Spacing (km)	Min x (km)	Max x (km)	# points	Min y (km)	Max y (km)	# points
PCa-78.out	9.5	0 '	190	21	-190	190	.41
PCa-79.out	10	0	200	21	-200	200	41
PCa-80.out	1	0	20	21	-20	20	41
PCa-81.out	4.5	0	90	21	-90	90	41
PCa-82.out	5	0	100	21	-100	100	41
PCa-83.out	10	0	200	21	-200	200	41
PCa-84.out	3	0	60	21	-60	60	41
PCa-85.out	10	o	200	.21	-200	200	41
PCa-86.out	4	0	80	21	-80	80	41
PCa-87.out	5.5	0	110	21	-110	110	41
PCa-88.out	4.5	0	90	21	-90	90	41
PCa-89.out	6 [.]	0	120	21	-120	120	41
PCa-90.out	6	0 .	120	21	-120	120	41
PCa-91.out	4	0	80	- 21	-80	80	41
PCa-92.out	5.	Ö	100	21	-100	100	41
PCa-93.out	7	0	140	21	-140	140	41
PCa-94.out	5.5	0	110	21	-110	110	41
PCa-95.out	3	0	60	21	-60	60	41
PCa-96.out	3	0	60	21	-60	60	41
PCa-97 out	3	.0	60	21	-60	60	41
PCa-98.out	2	0	40	21	-40	40	41
PCa-99.out	7.5	0	150	21	-150	150	41
PCa-100.out	3	0	60	21	-60	60	41
PCa-101.out	3.5	0	70	21	-70	70	42
PCa-102.out	2.5	0	50	21	-50	50	43
PCa-103.out	3	0	60	21	-60	60 ·	44
PCa-104.out	6	0	120	21	-120	120	45
PCa-105.out	6.5	0	130	21	-130	130	46
PCa-106.out	2	0	40	21	-40	40	47
PCa-107.out	8	0 .	160	21	-160	160	48
PCa-108.out	2	0.	40	21	-40	40	49
PCa-109.out	7.5	0	150	21	-150	150	50
PCa-110.out	2.5	0	50	21	-50	50	51

 Table B-1.
 Grid Dimensions of ASHPLUME Full-Grid Realizations (Continued)

CAL-WHS-GS-000001 Rev 00A

October 2004

INTENTIONALLY LEFT BLANK