

Preliminary Test Plan

VHTR Cooperative Agreement Program Review Meeting February 25, 2009

2 PRELIMINARY TEST MATRIX

Test Number	Test	Initial Conditions	Transient	Data Requirements	
	Depressurized Conduction Cooldown Reference Case (Prismatic Block Core)				
	All DCC Reference Cases.	 Core Power: 320kW Reference power shapes. Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	 Reference decay heat power curve and distribution. Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate. 	
NRC-VHTR-001	Double Ended Inlet-Outlet Duct Break			Duct exchange flow rate.Duct flow distribution.	
NRC-VHTR-002	Control Rod Drive Nozzle Break			Break flow rate.	
NRC-VHTR-003	Instrumentation Tube Break			 Break flow rate. 	
NRC-VHTR-004	Inlet Duct Break			Break flow rate.	
NRC-VHTR-005	Small break(s)			Break flow rate.	
NRC-VHTR-006	Double Ended Inlet-Outlet Duct Break Check Case			Duct exchange flow rate.Duct flow distribution.	
Depressurized Conduction Cooldown Case (Prismatic Block Core) with Upper Plenum Gas Injection					
	All DCC Gas Injection Cases.	Core Power: 320kW Reference power shapes. Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection.	 Reference decay heat power curve and distribution. Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate. 	
NRC-VHTR-007	Double Ended Inlet-Outlet Duct Break		 Inject gas into upper plenum. Test can be repeated at different gas injection rates. 	Duct exchange flow rate.Duct flow distribution.	

Test Number	Test	Initial Conditions	Transient	Data Requirements
Depressurized Conduction Cooldown			ismatic Block Core) without Scra	am
	All DCC ATWS Cases.	 Core Power: 600kW Reference power shapes. Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	 Integrated decay heat power curve and distribution. Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-008	Double Ended Inlet-Outlet Duct Break			Duct exchange flow rate.Duct flow distribution.
NRC-VHTR-009	Control Rod Drive Nozzle Break			Break flow rate.
Depressurized Conduction Cooldown Case (Prismatic Block Core) with Failed or Degraded				RCCS Channels
	All DCC with failed or degraded RCCS cases.	 Core Power: 320kW Reference power shapes. Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	 Reference decay heat power curve and distribution. Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-010	Double Ended Inlet-Outlet Duct Break		Failure of one RCCS channel.	Duct exchange flow rate.Duct flow distribution.
NRC-VHTR-011	Double Ended Inlet-Outlet Duct Break		Failure of multiple RCCS channels.	Duct exchange flow rate.Duct flow distribution.
NRC-VHTR-012	Double Ended Inlet-Outlet Duct Break		Off reference RCCS emissivity.	Duct exchange flow rate.Duct flow distribution.

Test Number	Test	Initial Conditions	Transient	Data Requirements
Depressurized Conduction Cooldown Case (Prismatic Block Core) with Off Reference Spatial and Temporal Decay Power Distributions				
	All DCC with off reference spatial and temporal decay power distribution cases.	 Core Power: up to 600kW Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	 Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-013	Double Ended Inlet-Outlet Duct Break	Off reference power shape(s).	 Off reference decay heat power curve and distribution. Test can be repeated at different shapes and distributions. 	Duct exchange flow rate.Duct flow distribution.
NRC-VHTR-014	Control Rod Drive Nozzle Break	Off reference power shape(s).	 Off reference decay heat power curve and distribution. Test can be repeated at different shapes and distributions. 	Break flow rate.

Test Number	Test	Initial Conditions	Transient	Data Requirements
	Pre	essurized Conduction Cooldown Ca	se (Prismatic Block Core)	
	All PCC cases.	 Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	Stop forced convection.	 Temperature distribution in core and reflector. Gas temperature distribution in inlet plenum. Core flow rate. Core coolant flow distributions. Bypass flow. Reactor cavity air flow. Temperature distribution in upper head, vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-015	Complete loss of flow	 Core Power: 18kW Reference power shapes. 	Reference decay heat power curve and distribution.	
NRC-VHTR-016	Complete loss of flow with failed or degraded RCCS channels.	Core Power: 18kW Reference power shapes.	 Reference decay heat power curve and distribution. Failure of one RCCS channel. 	
NRC-VHTR-017	Complete loss of flow with failed or degraded RCCS channels.	Core Power: 18kW Reference power shapes.	 Reference decay heat power curve and distribution. Failure of multiple RCCS channels. 	
NRC-VHTR-018	Complete loss of flow with failed or degraded RCCS channels.	Core Power: 18kW Reference power shapes.	 Reference decay heat power curve and distribution. Off reference RCCS emissivity. 	
NRC-VHTR-019	Complete loss of flow with spatial and temporal power distribution.	Core Power: up to 600kWOff reference power shape(s).	 Off reference decay heat power curve and distribution. Test can be repeated at different shapes and distributions. 	
NRC-VHTR-020	Complete loss of flow without scram.	Core Power: 600kWReference power shapes.	 Integrated decay heat power curve and distribution. 	
NRC-VHTR-021	Outlet Duct Break	Core Power: up to 18kW Reference power shapes.	 Open break valve(s). Reference decay heat power curve and distribution. Power and forced convection can be adjusted based on design RPS response. 	 Break flow rate. Pressure drop across break.

Test Number	Test	Initial Conditions	Transient	Data Requirements
		Normal Operations Case (Pris	matic Block Core)	
	All normal operations cases.	 Core Power: 600kW Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 		 Temperature distribution in core and reflector. Gas temperature distribution in outlet plenum. Core coolant flow distributions. Bypass flow. Reactor cavity air flow. Temperature distribution in upper head, vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-022	Normal operations reference case.	Reference power shapes.		
NRC-VHTR-023	Partial loss of flow.	Reference power shapes.	 Block one or multiple flow channels. Test can be repeated at different shapes and distributions. 	
NRC-VHTR-024	Normal operations with spatial and temporal power distribution.	Off reference power shape(s).		
NRC-VHTR-025	Partial loss of flow with spatial and temporal power distribution.	Off reference power shape(s).	 Block one or multiple flow channels. Test can be repeated at different shapes and distributions. 	
	Depress	surized Conduction Cooldown Refe	rence Case (Pebble Bed Core)	
	All DCC Reference Cases.	 Core Power: 320kW Reference power shapes. Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	 Reference decay heat power curve and distribution. Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-026	Double Ended Inlet-Outlet Duct Break			Duct exchange flow rate.Duct flow distribution.
NRC-VHTR-027	Control Rod Drive Nozzle Break	The second secon		Break flow rate.
NRC-VHTR-028	Instrumentation Tube Break			Break flow rate.
NRC-VHTR-029	Inlet Duct Break			Break flow rate.
NRC-VHTR-030	Small break(s)			Break flow rate.
NRC-VHTR-031	Double Ended Inlet-Outlet Duct Break Check Case			Duct exchange flow rate.Duct flow distribution.

Test Number	Test	Initial Conditions	Transient	Data Requirements
	Depressurized Con	duction Cooldown Case (Pebble Be	ed Core) with Upper Plenum Gas	Injection
	All DCC Gas Injection Cases.	 Core Power: 320kW Reference power shapes. Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection. 	 Reference decay heat power curve and distribution. Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-032	Double Ended Inlet-Outlet Duct Break		 Inject gas into upper plenum. Test can be repeated at different gas injection rates. 	Duct exchange flow rate.Duct flow distribution.
	Depressu	rized Conduction Cooldown Case (I	Pebble Bed Core) without Scram	
	All DCC ATWS Cases.	 Core Power: 600kW Reference power shapes. Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	 Integrated decay heat power curve and distribution. Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-033	Double Ended Inlet-Outlet Duct Break			Duct exchange flow rate.Duct flow distribution.
NRC-VHTR-034	Control Rod Drive Nozzle Break			Break flow rate.
	Depressurized Conduc	tion Cooldown Case (Pebble Bed C	ore) with Failed or Degraded RC	CS Channels
	All DCC with failed or degraded RCCS cases.	 Core Power: 320kW Reference power shapes. Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	 Reference decay heat power curve and distribution. Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-035	Double Ended Inlet-Outlet Duct Break		Failure of one RCCS channel.	 Duct exchange flow rate. Duct flow distribution.
NRC-VHTR-036	Double Ended Inlet-Outlet Duct Break		Failure of multiple RCCS channels.	Duct exchange flow rate.Duct flow distribution.
NRC-VHTR-037	Double Ended Inlet-Outlet Duct Break		Off reference RCCS emissivity.	Duct exchange flow rate.Duct flow distribution.

Test Number	Test	Initial Conditions	Transient	Data Requirements
Depressurized Conduction Cooldown Case (Pebble Bed Core) with Off Reference Spatial and Temporal Decay Power Distributions				
	All DCC with off reference spatial and temporal decay power distribution cases.	 Core Power: up to 600kW Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	 Stop forced convection. Open break valve(s). 	 Oxygen content distribution in vessel and cavity. Temperature distribution in core and reflector. Core flow rate. Reactor cavity air flow. Temperature distribution on vessel and RCCS walls. RCCS flow rate.
NRC-VHTR-038	Double Ended Inlet-Outlet Duct Break	Off reference power shape(s).	 Off reference decay heat power curve and distribution. Test can be repeated at different shapes and distributions. 	Duct exchange flow rate.Duct flow distribution.
NRC-VHTR-039	Control Rod Drive Nozzle Break	Off reference power shape(s).	 Off reference decay heat power curve and distribution. Test can be repeated at different shapes and distributions. 	Break flow rate.

Test Number	Test	Initial Conditions	Transient	Data Requirements	
	Pressurized Conduction Cooldown Case (Pebble Bed Core)				
	All PCC cases.	 Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 	Stop forced convection.	 Temperature distribution in core and reflector. Gas temperature distribution in inlet plenum. Core flow rate. Core coolant flow distributions. Annulus wall flow. Reactor cavity air flow. Temperature distribution in upper head, vessel and RCCS walls. RCCS flow rate. 	
NRC-VHTR-040	Complete loss of flow	Core Power: 18kW Reference power shapes	Reference decay heat power curve and distribution.		
NRC-VHTR-041	Complete loss of flow with failed or degraded RCCS channels.	Core Power: 18kW Reference power shapes.	 Reference decay heat power curve and distribution. Failure of one RCCS channel. 		
NRC-VHTR-042	Complete loss of flow with failed or degraded RCCS channels.	Core Power: 18kW Reference power shapes.	 Reference decay heat power curve and distribution. Failure of multiple RCCS channels. 		
NRC-VHTR-043	Complete loss of flow with failed or degraded RCCS channels.	Core Power: 18kW Reference power shapes.	 Reference decay heat power curve and distribution. Off reference RCCS emissivity. 		
NRC-VHTR-044	Complete loss of flow with spatial and temporal power distribution.	Core Power: up to 600kWOff reference power shape(s).	 Off reference decay heat power curve and distribution. Test can be repeated at different shapes and distributions. 		
NRC-VHTR-045	Complete loss of flow without scram.	Core Power: 600kWReference power shapes.	 Integrated decay heat power curve and distribution. 		
NRC-VHTR-046	Outlet Duct Break	Core Power: up to 18kW Reference power shapes.	 Open break valve(s). Reference decay heat power curve and distribution. Power and forced convection can be adjusted based on design RPS response. 	 Break flow rate. Pressure drop across break. 	

Test Number	Test	Initial Conditions	Transient	Data Requirements	
	Normal Operations Case (Pebble Bed Core)				
	All normal operations cases.	 Core Power: 600kW Pressure: 0.4Mpa Core Exit Temperature: 1000°C Forced Convection 		 Temperature distribution in core and reflector. Gas temperature distribution in outlet plenum. Core coolant flow distributions. Annulus wall flow. Reactor cavity air flow. Temperature distribution in upper head, vessel and RCCS walls. RCCS flow rate. 	
NRC-VHTR-047	Normal operations reference case.	Reference power shapes.			
NRC-VHTR-048	Partial loss of flow.	Reference power shapes.	 Block one or multiple sections of the core. Test can be repeated at different shapes and distributions. 		
NRC-VHTR-049	Normal operations with spatial and temporal power distribution.	Off reference power shape(s).			
NRC-VHTR-050	Partial loss of flow with spatial and temporal power distribution.	Off reference power shape(s).	 Block one or multiple sections of the core. Test can be repeated at different shapes and distributions. 		

Questions?

