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Clarification…

� This presentation is adapted, 
� with permission from the author (Rod Schmidt), 

� from a presentation made on Jan. 12-14, 2009 in Idaho Falls, ID
♦ at the INL Workshop on Verification and Validation, Sensitivity Analysis, and 

Uncertainty Quantification of Next Generation System Safety Analysis Codes

� titled, “BRISC Development: Insights and Experience”

� which was approved at SNL
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� However, 
� this presentation has not been officially reviewed by the Sandia National 

Laboratories and 

� may not accurately reflect their views, 

� thus should be considered accordingly.



History and Background

� FY2007-2009 Sandia LDRD Project
� “Foundational Development of an Advanced Burner Reactor Integrated Safety Code”

� Development Strategy
� Three revisions to progressively improve. 

� Integrated Performance and Safety Codes
� Function:

♦ Treat all important system components and physical processes 
♦ During normal, off-normal or hypothetical accident scenarios.

� Significance:
♦ Design: performance, design margins, etc. 
♦ Licensing: safety, PRA, etc.
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♦ Licensing: safety, PRA, etc.

� History:
♦ IPSCs developed and used by National Labs, the NRC, and Industry.

• MELCOR, RELAP, TRAC, SASSYS, . . .
♦ These tools are, in large measure, decades old.

� Need:
♦ New and better tools are needed, for new reactor types and designs
♦ We can leverage advanced computational tools and techniques

� Why am I here today talking about this?
� You (TAMU-UM-OSU, NRC, DOE) may find things we’re doing that you can leverage
� We (SNL-ORNL) would love to get your feedback on our vision/path

Code Dev. Cycle 1 Cycle 2 Cycle 3
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Project Synopsis
Primary Objective: To develop and demonstrate foundational
aspects of a next-generation nuclear reactor safety code
(BRISC) that leverages advanced computational 
technology. 

Target Reactor System:
Liquid Sodium Fast Reactor

Modest Funding:
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Modest Funding:
~2.5 FTEs for 3 years (FY07-09)

Diverse Team:
3 Institutions: SNL, ORNL, SUNYSB

Many Departments within Sandia: 1400, 1500, 2900, 6700, 8300

Constraint: This project is not intended to produce a complete, validated 
code that is ready-to-use by the DOE or NRC.

Pre-conceptual design of a pool-type
sodium-cooled fast burner reactor



What is “advanced computational 
technology” and how can it help?
� Modern software engineering

� Incorporate software from independent developers an d languages
� Allow efficient portability to many platforms
� Efficiently utilize 2009-era moderate-sized clusters

♦ Small clusters today, will be desktops in 7 years
♦ Leadership-class hardware will be moderate in 7 yea rs

� Advanced computational ‘tools’
� Mathematics, visualization, CAD, meshing, …
� ASC-developed ‘physics’ solvers
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� ASC-developed ‘physics’ solvers

� Improved resolution
� 3D (where necessary) and 1D (when reasonable)
� Less ‘effective’ flow and heat transfer
� Higher resolution neutronics

� Leveraging existing software (MELCOR, SCALE)
� Extensive data, quality assurance, and validation
� Sufficiently accurate in many situations 



Modeling Scope was limited to the Physics of the 

“Initial Transient” Phase of an Accident*

� Physics
�Fluid Flow and Heat Transfer

♦ 1D and 3D conduction
♦ Single phase turbulent flow and convective heat tra nsfer

• 3D in the vessel
• 1D in secondary loop

�Neutronics
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�Neutronics
�Thermal Mechanics
�Material Properties and Equation of State

� Reactor System Components
�All important components of the reactor vessel 

and secondary coolant loop. 

Severe accident physics is significantly more diffi cult to address and typically 

requires more “engineering” or “phenomenological” t ype modeling approaches.
*



Rotatable
Plug

Fission gas 
Plenum

end plug

Fuel-pins and control rods
- 0.5 - 10 mm-scale features
- conduction, fission heating …
- 2D or 3D representative models

In-vessel Reactor Components
- 10 cm to 10 m scale geomtry
- Neutronics, Turb flow & heat transfer,
thermal-mechanics, conduction, …

- 3D Modeling Framework

Balance of Plant Reactor System
Components (& Containment)
- 1 - 50 m scale
- Pipes, pumps, valves, heat 
exchangers, turbines, rooms, 

- 0D MELCOR models
- 3D Fire Modeling with RIO

pump

Structures and physics 
whose features are too small 
for resolution on 3D grid

Structures and 
physics whose 
features are 
too large for 
resolution on 

“Meso-scale” resolved by 3D grid

3-Tiered Multi-Scale Modeling Strategy
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How can/should we couple the codes?

� Non-intrusive/black box
� Communication through file I/O
� Codes compiled as executables
� Code developed and maintained independently
� Con:

♦ File I/O will severely restrict parallelization 
♦ Maintaining consistency is difficult 
♦ Restricted to simple computational math

� Semi-intrusive
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� Single-driver code that can link with others at com pile-time
� Communication through memory
� Code relatively easy to develop and maintain indepe ndently 
� Allows use of existing codes
� Con:

♦ Modifications to “interface” with the “driver”
♦ Codes must cleanup after themselves

� Fully-intrusive
� A no-go for this project as it will require nearly discarding existing code



A BRISC Multi-Physics Modeling and 
Coupling Strategy

� Different codes for 
different physics
� Thermal-Fluids 

♦ RIO, MELCOR 

� Neutronics
♦ SCALE…

� Thermal Mechanics
♦ ARIA

� Fuel pin heat transfer

3D CFD Solvers

Input
Processing

Output
Graphics, etc.

3D Thermal-
Hydraulics:

(RIO)Neutronics

Solid
Mechanics

Sub Component
Models:

Pins, rods, etc.

1D Thermal-
Hydraulics:
MELCOR.

1D CFD Solvers

Sub C. Solvers

Neut. Solvers

Solvers

System
Driver

Input
Processing

Output
Graphics, etc.

Thermal
Mechanics

Neutronics

Thermal-
Hydraulics:

3-D, 1D

Sub Component
Models:

Pins, rods, etc.

COUPLED
PHYSICS

ĥStateÓ & ĥResidualÓ
  vectors
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* JFNK is a Newton method that employs Krylov-based l inear solves (eg. CG, GMRES) 

without requiring formation of the Jacobian matrix .

♦ Simple code, 
complex data

� Loose coupling in BRISC- αααα using RIO for overall time integration

� Strong Coupling being developed using JFNK, orchest rated by a 
Multi-Physics Driver/Solver Code
� Designed to accept multiple PhysicsModules (codes).  
� Primary job of PhysicsModules is to take a complete  state vector and return a 

partial residual.

Sub C. Solvers

A stepping stone Our ultimate goal



BRISC-α: Loose coupling of different codes 
and models for different physics

� 3D thermal-fluid flow (In-vessel)
� RIO, a lightweight, parallel, unstructured mesh FV cod e

� Brinkmann Forchheimer Equation Set
♦ Core region treated as a 3D anisotropic non-equilib rium porous media
♦ Inter-pin flow not resolved - Correlations from lite rature must be applied
♦ Non-core region flow treated with transient RANS ty pe turbulence models

� 1D thermal-fluid flow (Balance of Plant)
� MELCOR (modified for Sodium properties and Eq. of State)
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� MELCOR (modified for Sodium properties and Eq. of State)
♦ Not version 2.1, but version (?)1.67(?)

� Subgrid-scale pin and control rod modeling
� Simple BRISC-specific code

� Neutronics
� Simple Point Kinetics model with specified reactivi ty coefficients 

� Thermal Mechanics
� Not separately modeled - affect included in Neutroni cs model

� Miscellaneous in-vessel components (e.g. pumps)
� Time-dependent, user controlled function calls 



BRISC-α: A RIO-Centric Integrated Code

� RIO: 
� A “light-weight” Cell-Centered Finite Volume CFD Co de for 

Unstructured Meshes written by C. Moen (SNL).
� Treats multicomponent transport for both laminar an d turbulent 

flows.
� Leverages Sandia Parallel Libraries Trilinos, Zolta n
� Source code available and written in standard c
� Wide range of user -written subroutines can be created to customize 
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� Wide range of user -written subroutines can be created to customize 
problem definition

� Coupling: 
� Neutronics point-kinetics and subgrid heat transfer  models added 

through user subroutines. 
� Coupling to MELCOR enabled by passing heat flux and  

temperatures through small files.
� Minor modifications to source to implement parallel  aspects of 

BRISC specific user subroutine features.



Illustrative 2D Calculation of a 
Unprotected Loss of Flow Sequence
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QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

ANL ABR Preconceptual Design Report

~ 10000 element mesh
~ 30 min transient



Both 2D and 3D Solid models, and then associated 
meshes, were created to test BRISC- αααα
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Illustrative in-vessel components and regions
(simplified)



Illustration of a meso-scale 3D mesh 
used to represent the in-vessel regions

“Representative” pin
is modeled at the sub-
grid scale.
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Illustrative Snapshots of 3D Model for 
Unprotected Loss of Flow Sequence
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BRISC-β: 
Lightweight Multi-scale Multi-Physics Coupling

� Overall solution orchestrated by Multi-Physics Driv er
� Multiple PhysicsModules (codes) interacting through  a flexible API. 
� PhysicsModules compute residuals, perform Physics-b ased 

preconditioning, . . .

� Strong coupling enabled through JFNK

� Different codes for different physics
� RIO - enhanced with subgrid physics

Solvers

System
Driver

Input
Processing

Output
Graphics, etc.

Thermal-
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� RIO - enhanced with subgrid physics

� TRITON-RASCAL - ORNL/SNL collaboration 

� MELCOR - balance of plant 

� 3D solid modeling and meshing of 
major reactor components and regions

� Solid-fluid non-conformal mesh interactions enabled  by adapting RocStar 
utilities from UIUC ASC Center to our needs.  

Thermal
Mechanics

Neutronics

Thermal-
Hydraulics:

3-D, 1D

Sub Component
Models:

Pins, rods, etc.

COUPLED
PHYSICS



Key Tasks of the Multi-Physics Driver

� Identify and register each physics code

� Set-up global problem and physics-code interfaces

� Create global state vector X

� Define physics-specific state vectors (X A, X*BA , X*CA , . . )

� Initialize each physics code and negotiate initial time step

� Loop over time
Multi -Physics 
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� Obtain converged solution (NOX, JFNK)
♦ Request residuals from physics codes
♦ Request physics-based preconditioning
♦ Update state vector

� Perform output (each physics code)

� Time-step control: Negotiate/calculate                                                      
based on all the physics

� End simulation

Multi -Physics 
Driver

Physics A

Physics B

Physics C



Physics-Code Changes/Additions needed 
for the Multi-Physics Driver
� Code must be revised so the driver can link to it. (i.e. like a library)

� Code must be organized into several key parts that can be called 
independently
� Initialize: allocate memory, read inputs
� Solve: compute solution for a given time step and ‘s tate’
� Advance: copy the final ‘state’ and solution into in itial
� Modify: change properties set at initialization
� Output: print to file (in parallel)

� Additional routines must be added
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� Additional routines must be added
� Register coupling capabilities: “who I depend on”
� Pass control variables “I’m converged now”
� Compute and pass data for coupling to other physics
� Compute residuals
� Perform preconditioning

� Code-dependent challenge
� For most, these are already there, just not spelled  out
� For some, it may require reengineering the software



“Physics Codes” in BRISC-β

Physics Code 
3D In-vessel flow and HT RIO - enhanced 
Sub-grid fuel and control rods  Simple 1D  
3D In-vessel conduction in 
solid structures  

RIO 

Solid -flui d coupling at d omain new 
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� Each must be written/revised to properly interact w ith the MP Driver

Solid -flui d coupling at d omain 
interface  

new 

Neutronics Rascal-Scale (2D) 
Nestle-Scale (3D) 

Balance of Plant -  MELCOR  

 



BRISC-β will use separate unstructured 
meshes for the solid and fluid regions 
that are not conformal at the interfaces:

Structured vs Unstructured Conformal vs Non-conformal
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Unstructured mesh of Solid Structure 

Regions for Conduction Heat transfer

Non-conformal mesh of fluid flow 

regions



Improved Solid and Fluid region meshes generated 
(using CUBIT) from solid models created with ProE.
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Meso-scale“Solid”region mesh Meso-scale “fluid” region mesh



Comments on Neutronics

� BRISC-αααα: “First, get an answer”
� Point-kinetics 
� Coefficients derived from SCALE and literature

� BRISC-ββββ: “Then, make it better”
� SCALE(TRITON) cross section generation
� 2D finite-difference diffusion (RASCAL) for cross-s ection changes
� Point-kinetics for geometric changes
� 3D power-distribution provided to the MP driver
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� BRISC-γγγγ: “Next, tackle the toughest problem”
� SCALE(TRITON) cross section generation
� NESTLE diffusion for cross-section changes

♦ Investigation of NESTLE for geometric changes 
♦ Thermo-mechanics may not be ready

� Future? “But always look ahead”
� Model every fuel pin:  fine-mesh diffusion or trans port
� Account for geometric changes: unstructured-mesh so lver
� Get the initial state right: steady-state depletion



Comments on Status

� MP Driver development and testing on each physics c ode is ongoing
� Target completion is Mar. 1
� Converted to C++ (from Python)
� Can currently drive RIO, MELCOR, and neutronics
� Additional interface/control capability needed

� All major RIO modifications needed are complete
� High-level code restructuring
� Compute Residual
� Perform Preconditioning
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� Perform Preconditioning

� Neutronics for BRISC- ββββ is complete
� SCALE(TRITON): Cross-section generation
� RASCAL:  2D diffusion on hexahedron (fixed geometry )
� Point-Kinetics: To account for geometric changes

� Code to compute residuals needed for tight-coupling  across a non-conformal 
surface mesh not yet complete.

� An illustrative 3D problem is in progress
� Presentation at a SIAM meeting in early March 



Opportunities?

�Can TAMU-UM utilize BRISC software?
�By this summer, yes.

♦ Needs ORNL/SNL ‘user-support’ as it’s still develop mental
♦ After this summer may be too late (is there follow- on funding?)

�UM/TAMU-student at ORNL during summer 2009           
to implement coupling with PARCS/NESTLE?

�Can RIO model VHTR?
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�Can RIO model VHTR?
�Absolutely (so I’m told) 

♦ What does “can it model” really mean?

�Still requires experiments/CFD to define coefficien ts

� Is this the right path for enhancing existing 
software at the NRC and/or DOE/NE?
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Example Meso-scale Physics in BRISC- αααα
3D Convective Flow and HT Model

Governing NS Equations:
∂
∂t

ρ f( )+ ∇ • ρ f u ( )= 0

∂
∂t

ρ f u ( )+ ∇• ρ f u u ( )= −∇P + ∇• µ f ∇u ( )+ ρ f g 

∂
∂t

ρ fCfTf( )+ ∇ • u ρ fCfTf( )= ∇ • k f∇Tf( )+ Ý Q f

Brinkmann-Forchheimer Model Equations:
∂
∂t

ϕρ f( )+ ∇ • ρ f v ( )+ Ý ρ src = 0

∂
∂t

ρ fv ( )+ ∇ • 1
ϕ

ρ fv v 
 

 
 

 

 
 = −∇P − ϕµ

K
v − Bϕ

K 1/ 2
ρ f v v 

 
  

 
  

∂
∂t

ρ fϕCfTf( )+ ∇ • v ρ fCfTf( )= ∇ • ϕk f ,eff ∇Tf( )+ϕ Ý Q f

+∇ • µ eff ∇v ( )+ϕρ f g +
Ý ρ srcv src

ϕ
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Modeling Notes:
• The density, specific heat, and thermal conductivity must be known as 

functions of temperature for all fluids
• Source terms (energy, mass, momentum) imply coupling to other models.
• The model equations require closure relationships (e.g. B, K, kf,eff, µeff. . . )
• A separate energy equation, not shown, is solved in the “solid” region and the 

associated sub-componant model (e.g. for fuel pins  and control rods)

Boundary Conditions:
• No-slip velocity
• Specified temperature
• Specified heat flux (or gradient of T)
• Heat transfer coefficient

∂t
ρ fCfTf( )+ ∇ • u ρ fCfTf( )= ∇ • k f∇Tf( )+Q f ∂t

ρ fϕCfTf( )+ ∇ • v ρ fCfTf( )= ∇ • ϕk f ,eff ∇Tf( )+ϕQ f

+ Ý ρ srcCsrcTsrc + Afs(x )hfs Ts −Tf( )



Some comments about using the 
B.F. Equations

• Variations of this type of approach has been around for many years 
in a variety of forms. These equations cast them in a very general 
form.

• Numerous recent papers have appeared in the literature concerning 
the use of these specific equations. For example:
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L. Betchen, A. G. Straatman, and B. E. Thompson, “A NonEquilibrium Finite-Volume Model for
Conjugate Fluid/Porous/Solid Domains,” Numerical Heat Transfer, Part A, 49: 543-565, 2006.

• Standard Friction Factor correlations can be re-written in a form that 
can be directly implemented.

• Sophisticated correlations developed specifically for wire-wrapped 
pin bundles, heat exchangers, and so forth are available.

• Improved correlations from DNS simulations can easily be 
incorporated.



TRITON: “lattice-physics” in SCALE

TRITON 
Input
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Processed 
Nuclear

Data

2-D Neutron 
Transport

NEWTNEWT

1-D Neutron 
Transport

CENTRMCENTRM

SCALESCALE
Isotopic 

Transmutation

ORIGENORIGEN

Advanced Reactor Analysis

SCALE 
Output



End-to-End reactor analysis 
with open-source codes is difficult

3-D Neutron 
Transport, 

Transmutation, 
Expansion
NESTLE, NESTLE, 

PARCS, etc. PARCS, etc. 

T/H code 

RELAP,  RELAP,  
TRACE, etcTRACE, etcSystem 

Response  
Data

Geometry 
Data

Heat 

TRITON 
Input
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Processed 
Nuclear

Data
Cross 

Section 
Library

T2N, T2N, 
PXS, PXS, 
etc.etc.

2-D Neutron 
Transport

NEWTNEWT

1-D Neutron 
Transport

CENTRMCENTRM

SCALESCALE

Data Heat 
Transfer  

Data

Isotopic 
Transmutation

ORIGENORIGEN

Advanced Reactor Analysis

SCALE 
Output



NESTLE is being integrated with SCALE 
to make the whole process easier

TRITON-
NESTLE 

Input

� To “upscale” consistently

� To ensure the consistency is 
maintained

� To enable S/U analysis

� For steady -state analyses
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Processed 
Nuclear

Data
SCALESCALE

All In-Core 
Physics

NESTLENESTLE

2-D Neutron 
Transport

NEWTNEWT

1-D Neutron 
Transport

CENTRMCENTRM

Isotopic 
Transmutation

ORIGENORIGEN

SCALESCALE

� For steady -state analyses



Loose Coupling: Successive Substitution

A

B

A

B

A

B

Why Use JFNK ?

JFNK can provide Newton-like 
convergence using loose-

coupling information.
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While not converged:

=
Strong (Monolithic) Coupling: 
Traditional Newton’s Method



Why Use JFNK ?
(continued)

(1) At a minimum it requires no additional information from each code 
beyond what is required for weak coupling; 

(2) any additional information a code can provide can be used to 
enrich the performance of JFNK; 

(3) any specialized solution technology embodied in a code can be 
preserved and leveraged; and 
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preserved and leveraged; and 

(4) the nominal order of
convergence compared 
to weak coupling is 
improved from linear 
to quadratic.

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

0 2 4 6 8 10 12 14 16 18 20

# Coupling Iters

Weak

JFNK_BlkD

However: Preconditioning is a key to realizing good convergence


