RAS E-236

DOCKETED USNRC

March 20, 2009 (8:00am)

OFFICE OF SECRETARY RULEMAKINGS AND ADJUDICATIONS STAFF

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION ATOMIC SAFETY AND LICENSING BOARD

In the Matter of

Entergy Nuclear Operations, Inc. (Indian Point Nuclear Generating Station Units 2 and 3) Docket Nos 50-247-LR and 50-286-LR

March 19, 2009

HUDSON RIVER SLOOP CLEARWATER INC.'S MOTION FOR LEAVE TO FILE A NEW CONTENTION REGARDING ENVIRONMENTAL IMPACTS AND PUBLIC HEALTH IMPACTS OF INDIAN POINT ON THE HUDSON WATER <u>AS A SOURCE OF DRINKING WATER SUPPLY</u>

Pursuant to 10 C.F.R. § 2.309(f)(2), Hudson River Sloop Clearwater, Inc.

("Clearwater") hereby moves the Atomic Safety and Licensing Board ("ASLB") for

leave to file the attached new contention that:

The Environmental Report submitted by Entergy and Supplement 38 to Generic Environmental Impact Statement for License Renewal for Nuclear Plants, Regarding Indian Point Generating Units 2 and 3 (hereinafter referred to as "DSEIS") issued by the NRC Staff on December 22, 2008 fail to satisfy the requirements of NEPA, 42 U.S.C. §4332 *et seq.*, and NRC regulations implementing NEPA, because the ER and DSEIS do not assess the impacts of the license renewal on drinking water quality and drinking water degradation as it relates to the use of the Hudson River as a source of drinking water.

This contention is based on a decision issued by the New York State Department of Environmental Conservation ("DEC") to assume lead agency status in the petition filed by United Water New York to an application to build a desalination plant that will extract water from the Hudson River to be used as a source of municipal drinking water for Rockland County.

Implate Serg-041

As discussed in the attached statement of Clearwater's contention, Entergy and the NRC Staff must assess the impacts upon the Hudson River as a source of drinking water in making their environmental assessments. National Environmental Policy Act ("NEPA") requires a "hard-look" at such issues that have an environmental impact and threaten public health because of that impact. Clearwater may submit this contention as of right.

In the event that the ASLB determines that Clearwater does not have the right to submit its contention, Clearwater asks that the ASLB consider and grant this motion. Clearwater satisfies the criteria for the filing of new a contention, because the contention is based on newly available information released by the DEC that is materially different from any previously available document, and because the motion is timely Clearwater is submitting the motion within 30 days of learning of the issuance of the DEC letter.

In conformance with 10 C.F.R. § 2.323(b), and as discussed in Certification of consultation, Clearwater has contacted counsel for the NRC Staff and Entergy in a sincere attempt to resolve the issues raised by this motion. Counsel for Entergy stated that Entergy believed that seeking leave of the ALSB to file the attached petition was a request and not a petition requiring consultation and reserved the right to respond to Clearwater's contentions. Counsel for agreed with the position taken by Entergy.

Respectfully submitted,

A Martin Contraction of the

Manna Jo Greene Environmental Director Hudson River Sloop Clearwater, Inc. 112 Market St. Poughkeepsie, NY 12601 845 454-7673 x 113

CERTIFICATION PURSUANT TO 10 C.F.R. § 2.323(b)

Pursuant to 10 C.F.R. § 2.323(b), I certify that on September 5, 2008, Clearwater contacted counsel for Entergy and the NRC Staff in a sincere attempt to resolve the issues raised by this motion. Counsel for Entergy stated that Entergy believed that seeking leave of the ALSB to file the attached petition was a request and not a petition requiring consultation and reserved the right to respond to Clearwater's contentions. Counsel for agreed with the position taken by Entergy.

neene Manna

Manna Jo Greene March 19, 2009

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

BEFORE THE ATOMIC SAFETY AND LICENSING BOARD

In the Matter of

Docket Nos. 50-247-LR and 50-286-LR

ENTERGY NUCLEAR OPERATIONS, INC.

March 19, 2009

(Indian Point Nuclear Generating Units 2 and 3)

HUDSON RIVER SLOOP CLEARWATER, INC.'S PETITION TO FILE A NEW CONTENTION BASED UPON NEW INFORMATION

Hudson River Sloop Clearwater, Inc. ("Clearwater") submits this contention because it has discovered that the New York State Department of Conservation ("DEC") has received, and has issued a letter that it will take lead agency status on, an application of United Water of New York ("UWNY") to build a desalination plant to extract water from the Hudson River for use as municipal drinking water for Rockland County. As a result of the application and this letter, Entergy Nuclear Operations, Inc. ("Entergy") and the Nuclear Regulatory Commission Staff ("NRC Staff") must assess the environmental impacts of the license renewal application ("LRA") on drinking water and water quality. This contention is timely filed as set forth in the Board's Order dated February 4, 2009.

As discussed below, Clearwater's proposed new contention meets the standard for admissibility because Entergy's environmental report ("ER") submitted with the LRA and the Supplement 38 to Generic Environmental Impact Statement for License Renewal for Nuclear Plants, Regarding Indian Point Generating Units 2 and 3 (hereinafter referred to as "DSEIS") fail to make a complete and thorough analysis of the impacts of license renewal upon the Hudson River as a source of drinking water and the potential for future degradation of the Hudson River as a drinking water source. Clearwater demonstrates below that the "proposed new contention meets the standard admissibility requirements of 10 C.F.R. § 2.309(f) (1) (i) – (vi)." <u>Entergy Nuclear Vermont Yankee L.L.C. (Vermont</u> <u>Yankee Nuclear Station</u>), 62 N.R.C. 813, 819. As a result, the Board must admit the proposed contention for adjudication.

NEW INFORMATION

UWNY filed an application with the DEC to build a desalination plant to extract potable water from the Hudson River to meet a portion of municipal water demand for Rockland County. UWNY proposes a Long-Term Water Supply Project ("LTWSP") to include a desalination facility in the Town of Haverstraw, Rockland County. See DEC letter dated January 26, 2009 annexed hereto as Exhibit 1. The desalination plant will produce potable water from the Hudson River. Id. The LTWSP proposal includes a raw water intake unit that would be located along the Hudson River, near the former US Gypsum dock, in Haverstraw Bay. Id. The water intake for the plant would be situated 3.5 miles southwest of Indian Point and slightly downstream (see Map of Westchester County showing proximity of Indian Point to United Water of NY's proposed desalination plant in Rockland County, annexed hereto as Exhibit 2). From its location the desalination plant will extract contaminated water on a continuing and regular basis According to the DEC, the plan

for the proposed pilot desalination plant intake would withdraw water at a rate between 170 and 300 gallons per minute. The intake would extend into the Hudson River adjacent to an existing pier and would be anchored to the river bottom.

Id. Significantly, at the completion of the pilot program, UWNY will build a full sized desalination plant to extract 10 million gallons per day from the Hudson River and provide 7.5 million gallons per day of useable water to Rockland County. The plant will use reverse osmosis ("RO") to filter the water extracted from the Hudson River. See Declaration of Manna Jo Greene dated March 19, 2009 ("Greene Dec.") at § 6. RO is not an effective process for removing tritium, cesium-137 and strontium-90 Id. at ¶¶ 6 and 11-13. In addition, several water authorities along the lower Hudson already extract water from the Hudson River to meet daily municipal demand, including the Poughkeepsie Water Treatment Facility that provides drinking water to 75,000 individuals within the City and Town of Poughkeepsie, the Dutchess County Water Authority, and the Village of Wappingers Falls; the Highland Water District in the Town of Lloyd; the Port Ewen Water District in the Town of Esopus; and the Rhinebeck Water Treatment Facility that provides water to the Town and Village of Rhinebeck. In addition, the Chelsea Pump Station at New Hamburg provides an emergency water supply station for New York City. The impacts of license renewal on the water quality of these water supplies are not assessed or even mentioned in the ER or the DSEIS.

The Hudson River is a tidal estuary, which coupled with diffusion effects, is capable of transporting potentially harmful substances upriver, as well as downriver and cross-river. The distances that radioactive isotopes or other toxic substances released from Indian Point may travel must be evaluated.

Additionally, the impacts of the hazardous waste products created by the desalination process must be assessed. The extracted radiation will be treated at a

wastewater treatment plant resulting in a more concentrated hazardous material that must be disposed.

It is clear that the Hudson River is currently, and during the period of the renewed license will be, used as a source of drinking water. As such, Entergy and the NRC Staff must assess the impacts upon the Hudson River as a source of drinking water in making their environmental assessments.

The need for this assessment is further mandated by the fact that strontium-90 and cesium-137 have been detected in the groundwater at Indian Point at concentrations many times the Maximum Contaminant Level ("MCL") allowed by the Environmental Protection Agency ("EPA") in drinking water.¹ Entergy's own internal status reports indicate the presence of at least two groundwater plumes containing highly contaminated water underlying the site, one of tritium and the other of strontium-90 and cesium-137. This contamination has also been confirmed by DEC. DSEIS at p. 2-109.

Recent monitoring-well sample results show that the levels of contamination in some areas have remained well above the EPA drinking water limits for both strontium-90 and cesium-137. For example, extremely high levels of cesium-137 have been found in MW-42. In April 2006, cesium-137 was detected in MW-42 at 51,400 pCi/l, 257 times the drinking water limit of 200 pCi/l.² In addition, in October 2005, MW-111 detected

¹ EPA limits for radionuclides in drinking water are as follows; Tritium, 20,000 pCi/l. Strontium-90, 8 pCi/l. Cesium-137, 200 pCi/l. Information on MCLs and health effects of radionuclides can be found on the EPA website at <u>http://vww.epa.gov/rpdweb00/radionuclides/index.html</u>, last accessed March 10, 2009. MCLs are also listed in *Radionuclides in Drinking Water, A Small Entity Compliance Guide*, U.S. EPA (February 2002).

² E-mail from James Noggle, NRC to Timothy Rice, DEC with attached NRC Data from Indian Pt. Split Monitoring Well Samples (August 23, 2007), annexed hereto as Exhibit 3.

the presence of 211,000 pCi/l of Tritium in groundwater on the site - - over 10 times the EPA standard for drinking water.³ ER at 5-4. Moreover, according to the ER:

[p]reliminary results indicate that tritium contaminated groundwater exists at the site. During the course of delineating the sources of tritium, Stontium-90, Cesium-137, and Nickel-63 have been detected in low concentrations in some onsite groundwater monitoring well samples.

ER at 5-4.

The topography of the land at Indian Point slopes from the plant toward the river. ER p 2-18. Indeed, "surface drainage is toward the Hudson River." <u>Id.</u> Any contaminated water will migrate into the Hudson River. Contaminated groundwater is migrating to the Hudson. In its ER, Entergy found that:

[b]ased on the results of the preliminary hydrogeologic characterization of the site, Entergy has concluded that some contaminated groundwater has likely migrated to the Hudson River. This release pathway is now being monitored and is included in the site effluents offsite dose calculation.

ER at 5-4. Additionally, in a January 2007 internal Entergy memorandum discussing preliminary dose assessments from Sr-90 in Hudson River fish and invertebrates, the author concludes that following a conservative analysis of fish consumption based on the 24.5 pCi/kg of Sr-90 in the white perch sample from Roseton, the maximum individual annual dose would equal 44% of the annual allowable bone dose to an A adult male.⁴ Additionally, other reports indicate that the chemicals in ground water at Indian Point include cobalt-60 and nickel-63, as well as tritium at 30 times the EPA drinking water limit. See Luby, Abby, "New Leaks Taint Hudson," Regional Report, March 2006.

³ The EPA's standard established under the Safe Drinking Water Act is 20,000 pCi/l.

⁴ IPEC-CHM-07-002, Memorandum from S. Sandike, Sr. Chemistry Specialist to T. Bums, NEM Supervisor, re: "Dose Assessments from Sr-90 in the Hudson River for Fish and Invertebrates-January 2007 Results" (January 17, 2007), annexed hereto as Exhibit 4

ENTERGY'S ER AND THE NRC STAFF' DSEIS

Despite the fact that a the pilot desalination plant across the river from Indian Point will extract 170 to 300 gallons of river water per minute (244,800 to 432,000 gallons per day) for potable water and a fully operational facility built shortly thereafter would extract 10-15 million gallons per day to provide 7.5 million gallons per day of useable water to Rockland County, neither the ER nor the DSEIS mention this plan nor assess the impact on the quality of this water.

In fact, both explicitly ignore the impact of the known radioactive groundwater or potential future groundwater contamination on the quality of the Hudson River as a source of drinking water. In section 5.1 titled "New and Significant Information: Groundwater Contamination," Entergy concludes that groundwater is not used in the vicinity of the plant and that "[t]his is expected to be true during the IP2 and IP3 license renewal term." ER at 5-4 and 5-5. Entergy further asserts that:

[b]ased on currently available information and the sampling data that have been analyzed and assessed to date, the NRC and Entergy have not found any condition that indicates that occupational or public health and safety have been, or likely will be, affected by the current onsite groundwater contamination. This assessment is based on the fact that there is no drinking water pathway associated with groundwater or the Hudson River in the region surrounding Indian Point...

Id. at 5-5 (emphasis added).

By improperly assuming that the Hudson River is not a source of drinking water, Entergy finds that there is no reason to study the impacts of the LRA on drinking water. Entergy concludes that:

no NRC dose limits have been exceeded and EPA drinking water limits are not applicable since no drinking water pathway exists. Although impacts to site groundwater quality have occurred Entergy concludes that although the existence of radionuclides in the groundwater during the license renewal period are potentially a new issue, the impacts would be SMALL and not significant.

<u>Id.</u>

The NRC Staff also incorrectly concludes that "there is no drinking water exposure pathway to humans that is affected by the contaminated ground water conditions at the IP2 and IP3 site." DSEIS at 2-108. In analyzing the impact on the Hudson River the DSEIS also incorrectly concludes that "the only noteworthy pathway resulting from contaminated ground water migration to the river is through the consumption of fish and invertebrates from the Hudson River." DSEIS at 2-107. Indeed, the DSEIS incorrectly states that the "EPA drinking water limits are not applicable since no drinking water pathway exists." As set forth above, the leaks to groundwater at Indian Point have been significant and are also likely to increase during period of the renewal license from this aging facility.

ARGUMENT

I. Legal Requirements for Contentions

This section summarizes the four legal requirements for a contention; a specific statement of the contention, an explanation of basis, a demonstration that it is within the scope of the proceedings, and a demonstration of materiality. In addition, this section shows that the proposed new contention is within the scope of the proceeding and meets

the requirements for a new contention, because it was triggered by new and significant information.

A. Specific Statement of the Contention

In order to bring a contention before the Commissioners, Clearwater must "provide a specific statement of the issue of law or fact raised or controverted." 10 C.F.R. § 2.309 (f)(1)(i). The new contention is that

The Environmental Report submitted by Entergy and Supplement 38 to Generic Environmental Impact Statement for License Renewal for Nuclear Plants, Regarding Indian Point Generating Units 2 and 3 (hereinafter referred to as "DSEIS") issued by the NRC Staff on December 22, 2008 fail to satisfy the requirements of NEPA, 42 U.S.C. §4332 *et seq.*, and NRC regulations implementing NEPA, because the ER and DSEIS do not assess the impacts of the license renewal on drinking water quality and drinking water degradation as it relates to the use of the Hudson River as a source of drinking water.

B. Issues Beyond Dispute

As recognized by the Atomic Safety and Licensing Board ("ASLB") in its decisions admitting the initial contention, Clearwater has ample basis for the following points, which are also included in the basis for the new contention:

- i) there is a genuine dispute regarding the significance of the environmental impacts from the leaks LBP 08-13 at 192;
- ii) sufficient information and expert opinion exist to raise the question whether Entergy's conclusions, contained in the ER regarding the significance of the groundwater contamination, are incomplete and legally insufficient for purposes of satisfying 10 C.F.R. Part 51 Id;
- iii) There are serious factual differences between the positions of the Applicant and Petitioner regarding the radiological leaks. <u>Id</u>; and
- iv) Clearwater has adequately demonstrated standing. Id at 5.

C. Basis of the Contention

At this preliminary stage, Clearwater does not have to submit admissible evidence to support their contention; rather it has to "provide a brief explanation of the basis for the contention," 10 C.F.R. § 2.309(f)(1)(ii), and "a concise statement of the alleged facts or expert opinions which support the petitioner's position." 10 C.F.R. § 2.309(f)(1)(v). This rule ensures that "full adjudicatory hearings are triggered only by those able to offer <u>minimal factual and legal foundation</u> in support of their contentions." <u>Duke Energy</u> <u>Corp. (Oconoee Nuclear Station Units 1, 2, and 3)</u>, 49 N.R.C. 328, 334 (emphasis added). The Commission has clarified that, "an intervenor need not … prove its case at the contention stage… The factual support necessary to show a genuine dispute exists need not be in affidavit or formal evidentiary form, or by the quality necessary to withstand a summary disposition motion." <u>In the Matter of Georgia Institute of Technology</u>, 42 N.R.C. 111 (October 12, 1995).

All that is required for a contention to be acceptable for litigation is that it be specific and have a basis; whether or not the contention is sustainable is left to litigation on the merits in the licensing proceeding. <u>Washington Public Power Supply System</u> (<u>WPPSS Nuclear Project No. 2</u>), ALAB-722, 17 NRC 546, 551 n.5 (1983), citing <u>Houston Lighting and Power Co. (Allens Creek Nuclear Generating Station, Unit 1),</u> ALAB-590, 11 NRC 542 (1980).

Thus, although the Commission has stated that it "is unwilling to open its hearing doors to petitioners who have done little in the way of research or analysis, provide no expert opinion, and rest merely on unsupported conclusions," <u>Duke Energy Corporation</u> (McGuire Nuclear Station, Units 1 and Catawba Nuclear Station, Units 1 and 2), CLI-02-

17, 56 N.R.C. 1, 8 (2002), it has indicated that where petitioners make technically meritorious contentions based upon diligent research and supported by valid information, the requirement for an adequate basis is more than satisfied.

This new contention is based upon new information discussed above. In addition, Clearwater has performed independent and diligent research to establish that the desalination plants cannot effectively and economically extract the various radionuclides that have been found in contaminated water and fish in the Hudson River. *See generally* Greene Dec. Treatment performed by the desalination plant cannot remove the contaminants. As set forth in greater detail in the Greene Dec., tritium bonds with oxygen to form tritiated water and is chemically similar to H₂O and cannot be filtered from water. This is a source of public health concern and an environmental impact that must be assessed under NEPA. Based upon this new information Entergy and NRC Staff must evaluate the impact and the ASLB should not make a decision on the LRA until those reviews are completed.

The contention is based on the ER, the DSEIS, information previously submitted by parties to this LRA proceeding and found in the NRC Staff Hearing file, and the information contained above in the Background section relating to the migration of radioactive groundwater into the Hudson River. In addition, the contention is supported by investigations conducted by Entergy, including a January 2007 internal Entergy memorandum discussing preliminary dose assessments from Sr-90 in Hudson River fish and invertebrates, that concludes that following a conservative analysis of fish consumption based on the 24.5 pCi/kg of Sr-90 in the white perch sample from Roseton,

the maximum individual annual dose would equal 44% of the annual allowable bone dose to an adult male.

This contention is also based upon publicly available information from experts in drinking water quality, radiation and the effects of radiation on the environment and public health, See http://www.epa.gov/rpdweb00/radionuclides/index.html and (NRC Fact Sheet on Tritium, Radiation Protection Limits. and Drinking Water) http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/tritium-radiation-fs.html visited on March 10, 2009. In addition, Clearwater bases this contention on the Certification of Joseph Mangano annexed to Clearwater's Petition to Intervene dated December 10, 2007 and the report, Public Health Risks of Extending Licenses of the Indian Point 2 and 3 Nuclear Reactors, (Radiation and Public Health Project, Revised December 7, 2007) (attached as Exhibit 4 to Mangano Decl. submitted as part of Clearwater's Petition to Intervene)("Public Health Risks"). This contention is also supported by exhibits attached hereto. Exposure to tritium, cesium -137 and strontium -90 impacts the environment and public health. Strontium-90 accumulates in the body and continued exposure via drinking water may damage the health of individuals, especially the young. Indeed, the EPA warns that people who drink water in excess of standards increase their risk getting See of cancer. http://www.epa.gov/OGWDW/radionuclides/basicinformation.html.

Entergy has plainly stated the levels of tritium in groundwater at IP are about 211, 000 pCi/l. This is clearly significant because it shows that contaminated water that is known to be 10 times above the acceptable EPA standards for safety has migrated or is in the process of migrating toward the Hudson River and because of the new information

that the Hudson River will be used as a municipal drinking water supply. As such, a complete review of the impact of leaks and planned releases on the quality of water in the Hudson River, including the health impacts of drinking that water must be performed.

D. The Scope of License Renewal Proceedings Includes the Subject Matter Raised in the Contention

The new potential contention concerns the environmental and public health impacts on the water quality and drinking water quality degradation of the Hudson River in the vicinity of IP. The ASLB held that a review of environmental issues in this proceeding set forth in 10 C.F.R. §§ 51.71(a) and 51.95(c) constitutes a proper contention for a hearing. LBP 08-13 at 14.

Moreover, "[c]ompliance with the environmental quality standards and requirements of the Federal Water Pollution Control Act (imposed by EPA or designated permitting states) is not a substitute for, and does not negate the requirement for NRC to weigh all environmental effects of the proposed action, including the degradation, if any, of water quality, and to consider alternatives to the proposed action that are available for reducing adverse effects." 10 C.F.R. § 51.71(d) (fn)(3). Neither Entergy's ER nor NRC Staff's DSEIS have met this requirement.

E. The New Contention Raises A Material Dispute

The regulations require petitioners to "[d]emonstrate that the issue raised in the contention is material to the findings the N.R.C. must make to support the action that is involved in the proceeding." 10 C.F.R. § 2.309(f)(1)(iv). A showing of materiality is not

an onerous requirement, because all that is needed is a "minimal showing that material facts are in dispute, indicating that a further inquiry is appropriate." <u>Georgia Institute of Technology</u>, CLI-95-12, 42 N.R.C. 111, 118 (1995); <u>Final Rule, Rules of Practice for Domestic Licensing Proceedings – Procedural Changes in the Hearing Process</u>, 54 Fed. Reg. 33,171 (Aug. 11, 1989).

The new contention raises a number of disputes. These disputes are material because they cut to the heart of relicensing proceedings, which are designed to ensure that the operation of the nuclear generating facility does not endanger the health, safety or the environment, and demonstrate that Indian Point cannot be operated without adversely affecting the health of the public that live in the vicinity of the plant. The new contention is also material because the NRC Staff must fully assess and adequately account for the risks associated with using the Hudson River water in the vicinity of IP 2 and IP 3 as a source of municipal drinking water. The failure to assess the impact of these risks violates NEPA's requirement that environmental decisions must contain an evaluation of those aspects of a proposed action that will affect the quality of the human environment "in a significant manner or to a significant extent not already considered." <u>Marsh v.</u> <u>Oregon Natural Resources Council</u>, 490 U.S. 360, 374 (1989) ("Marsh").

Both Entergy and NRC Staff state that the Hudson River is not a source of drinking water. Clearwater has presented clear evidence that the Hudson River, across the river from IP, will be a source of drinking water. Therefore a dispute exists, and as discussed above, the dispute is material.

As it is clear that the Hudson River will be used as a source of drinking water supply during the term of the license renewal, Entergy and the NRC Staff must broaden

their environmental assessments to determine the impact on drinking water quality and study the health impacts of drinking water containing the chemicals found in IP's groundwater contamination. Without this assessment neither Entergy nor the NRC satisfy the requirements set forth under NRC Rules and Regulations and NEPA.

F. This Request is Timely

This request is timely because the Board's oral order on January 14, 2009, memorialized in its written order dated February 4, 2009 provides intervenors in this license renewal proceeding 25 days from the date of the notice of the occurrence to file a new contention.

Additionally, Petitioners may add new contentions after filing their initial petition, so long as they act in accordance with 10 C.F.R. § 2.309(f)(2). <u>Entergy Nuclear Vermont</u> <u>Yankee, L.L.C.</u> (Vermont Yankee Nuclear Power Station), LBP-05-32, 62 NRC 813 (2005). The Commission's regulations allow for a "new contention" to be filed upon a showing that:

(i) The information upon which the amended or new contention is based was not previously available;
(ii) The information upon which the amended or new contention is based is materially different than information previously available; and
(iii) The amended or new contention has been submitted in a timely fashion based on the availability of the subsequent information.

10 C.F.R. § 2.309(f)(2)(i)-(iii).

Here, as set forth above, Clearwater bases its new contention upon new information discovered on February 25, 2009. This information is materially different from information stating that the Hudson River is not a source of drinking water supply,

which was the previously available information. Finally, this motion is being filed on March 19, 2009, 22 days from the date that the new information was available.

K.

Thus, like <u>Vermont Yankee</u> and in accordance with rulings in other proceedings, the ASLB should now find that the new contention meets the requirements of 10 C.F.R. § 2.309(f)(2)(i) and (ii) because it is based upon new information that was "not previously available," and is "materially different than information previously available."

CONCLUSION

For the foregoing reasons, the ASLB should grant leave for Clearwater to add the proposed new contention and admit the new contention into this proceeding.

Manna Dipere

Manna Jo Greene Environmental Director Hudson Clearwater Sloop, Inc. 112 Market St. Poughkeepsie, NY 12601 845 454-7673 x 113

HUDSON RIVER SLOOP CLEARWATER, INC.'S PETITION TO FILE A NEW CONTENTION BASED UPON NEW INFORMATION

LIST OF EXHIBITS

Exhibit 1. NYS DEC letter dated January 26, 2009.

<u>Exhibit 2</u>. Map of Westchester County showing proximity of Indian Point to Potential Environmental Justice Areas (PEJA) in purple, with approximate location of United Water of NY's proposed desalination plant in Rockland County.

Exhibit 3. E-mail from James Noggle, NRC to Timothy Rice, DEC with attached NRC Data from Indian Pt. Split Monitoring Well Samples (August 23, 2007).

Exhibit 4 IPEC-CHM-07-002, Memorandum from S. Sandike, Sr. Chemistry Specialist to T. Bums, NEM Supervisor, re: "Dose Assessments from Sr-90 in the Hudson River for Fish and Invertebrates-January 2007 Results" (January 17, 2007).

Exhibit 1. NYS DEC letter dated January 26, 2009.

New York State Department of Environmental Conservation Division of Environmental Permits, 4th Floor 625 Broadway, Albany, New York 12233-1750 Phone: (518) 402-9167 FAX: (518) 402-9168 Website: www.dec.ny.gov

Alexander B. Grannis Commissioner

January 26, 2009

Re: Coordination to Establish SEQR Lead Agency Proposed Long-Term Water Supply Project by United Water New York, Inc. Town of Haverstraw, Rockland County DEC #3-3922-0021

Dear Involved Agency:

The New York State Department of Environmental Conservation (DEC) has received a Joint Application for Permit from United Water New York Inc. (UWNY) for its proposed Long-term Water Supply Project (LTWSP), and by this letter is initiating review of that project under the New York State Environmental Quality Review Act (SEQR). DEC has also received a separate Joint Application for Permit from UWNY for a proposed pilot desalination plant (additional discussion below).

Proposed Long-Term Water Supply Project (LTWSP)

The UWNY LTWSP is a proposal to construct a desalination facility in the Town of Haverstraw, Rockland County, intended to produce potable water from the Hudson River. The LTWSP proposal includes a raw water intake unit which would be located along the Hudson River, near the former US Gypsum dock; a desalination facility which would be located upslope, on lands of the former Haverstraw landfill; and a raw water transmission line between the two facilities. The application for the LTWSP was accompanied by a preliminary draft of a proposed Environmental Impact Statement ("pre-draft EIS"). Based upon records provided by UWNY, a copy of the pre-draft EIS was already sent to you directly from UWNY, and so that document is not included in this mailing. Please advise my staff promptly if you have not already received the pre-draft EIS.

DEC has preliminarily classified the proposed LTWSP, as described in the Joint Application for Permit for the LTWSP and in the pre-draft EIS, as a Type I action under SEQR. Further, based on its concerns about potential impacts of statewide and regional importance from the LTWSP, including effects on natural resources of the Hudson River system, issues related to deployment of a technology which would be unique in New York State, and the implications of the proposed project for ongoing interstate water allocation discussions, DEC proposes to serve as lead agency for the SEQR review of this proposal. Assuming that DEC is confirmed as lead agency for this proposed project, it intends to treat the pre-draft EIS as an expanded environmental assessment form pursuant to 6 NYCRR 617.6(a)(4). Further, DEC intends to issue a positive declaration, requiring that the environmental review include an Environmental Impact Statement (EIS). DEC also intends to conduct formal scoping to expand upon the pre-draft EIS submitted by UWNY. Specific topics that DEC has identified as needing additional study and discussion in the EIS for the LTWSP include, but are not limited to, the following:

- More detailed discussions of alternatives to desalination, specifically including implementation of enhanced water conservation and loss minimization measures;
- Quantification and comparison of water volumes needed to serve existing demands, projected build-outs under existing adopted plans and zoning, and opportunities to minimize future demands;
- Any design, management or impact mitigation implications for the proposed full-scale desalination operation based on data developed from operation of a proposed pilot desalination plant (further discussion below);
- Suitability of the former Haverstraw landfill site as the proposed LTWSP desalination plant site, addressing both physical and legal considerations;
- Legal and technical issues relating to use of waters classified as "SB" under 6 NYCRR 701.11 (see <u>http://www.dec.ny.gov/regs/4592.html#15984</u>) as the source of a potable water supply; and
- Environmental and regulatory information needs of all other involved agencies.

Based on an initial review of the Joint Application for Permit for the LTWSP and the accompanying pre-draft EIS, DEC staff have preliminarily determined that the following permits or approvals would be required from DEC to enable the proposed LTWSP to proceed:

- Water Supply permit (Environmental Conservation Law [ECL] Article 15, Title 15) -Required whenever a new water district is formed, or additional water is taken from a new source of supply. (DEC recognizes that the point of withdrawal for the proposed project is not now an approved source, as indicated in the note above on scoping.)
- Protection of Waters permit (ECL Article 15, Title 5) Required for disturbance of the bed or banks of a protected waterbody.
- Excavation or Placement of Fill permit (ECL Article 15, Title 5) Required for the placement of fill, or for excavation that occurs below the mean high water level of a navigable waterway.
- State Pollutant Discharge Elimination System permit (SPDES; ECL Article 17) -Required for wastewater discharges greater than 1000 gallons per day. The Joint Regional Sewage Treatment Plant has a current SPDES permit that may require modification if it is to receive discharges from the proposed LTWSP. A SPDES permit could also be required for discharges associated with dewatering which could be required during possible construction activities.
- State Pollution Discharge Elimination System Stormwater permit (ECL Article 17) -Required to control runoff from all LTWSP sites.
- Water Quality Certification (WQC; U.S. Clean Water Act, Section 401; 6 NYCRR Part 608) - DEC must review proposed activities requiring a federal permit under Section 404 of the U.S. Clean Water Act, and other federal authorities, to determine whether the proposed activity as authorized by the federal approval would satisfy NYS water quality

Long-Term Water Supply Project: Lead Agency Coordination DEC# 3-3922-00217

standards. Depending upon what permitting may be required from the U.S. Army Corps of Engineers for the LTWSP, a NYS WQC could be necessary.

The lead agency for the LTWSP must be established by **FEBRUARY 27, 2009**. I am requesting, however, that you please provide your response sooner, if possible. In your response, please specifically indicate whether you consent to DEC serving as lead agency, and provide an outline of your agency's jurisdiction(s) over UWNY's proposed LTWSP. Additionally, DEC is very interested in learning what resources, impacts, or issues your agency concludes should be addressed in developing a determination of significance. DEC would also like to receive your agency's preliminary identification of any studies or data which you would recommend be included as part of a fully-scoped draft EIS for the proposed project.

If we do not receive any response from you by February 27, 2009, we will assume that you concur with DEC serving as lead agency where the traditional states are the states of the traditional states are the states are the states of the traditional states are the states of the traditional states are the states

DEC has also received a Joint Application for Permit for a "pilot" desalination plant, with a stated purpose of gathering data in support of UWNY's application to develop its proposed LTWSP desalination project. UWNY has indicated to DEC that data from the pilot desalination plant is necessary for UWNY to proceed with design and reviews of its proposed LTWSP, to help establish parameters for operation as well as design of the LTWSP, and to provide DEC with information required for development of draft permits for the LTWSP.

Therefore, although DEC considers the pilot desalination plant to be a segment of the proposed LTWSP, DEC has concluded that regulatory review of the proposed pilot desalination plant may be segmented from review of the application for the LTWSP. The pilot desalination plant is being proposed only to gather data in support of design, regulatory applications and the draft EIS for the proposed LTWSP, and the pilot desalination plant is a temporary activity which is proposed to operate for no more than twelve to eighteen months.

DEC has, therefore, classified the proposed pilot desalination plant as a Type II action under SEQR, pursuant to 6 NYCRR 617.5(c)(18). This classification is supported by UWNY's representation that it intends to operate the pilot desalination plant for basic data collection in partial support of its application for the LTWSP, specifically including undertaking water quality, pollution, and engineering studies. Further, consistent with 6 NYCRR 617.3(g)(1), DEC concludes that its classification of the proposed pilot desalination plant as Type II, along with the direct incorporation into the draft EIS and public review process of the data developed through operation of that plant, will result in an environmental review of the entire project, as a whole, which is clearly no less protective of the environment than a single review. Further, the Type II classification of the proposed pilot desalination plant, and the integration of the pilot desalination plant's operational results and data into the draft EIS and SEQR public review process for the proposed LTWSP, does not commit the DEC to commence, engage in or approve the proposed LTWSP. A more detailed discussion of the status of the pending joint application for DEC

Long-Term Water Supply Project: Lead Agency Coordination DEC# 3-3922-00217

permits for the pilot desalination plant will be set forth in a separate letter to be sent to UWNY, with copies to other agencies having jurisdiction over the proposed pilot desalination plant.

We look forward to your response concerning lead agency status for and potential environmental issues related to the proposed LTWSP. Please address your responses directly to Jeremy Rosenthal of my staff, at the address above. Mr. Rosenthal is the project manager for the review of the proposed LTWSP and pilot desalination plant. If you have questions, please feel free to contact him at the telephone number above, or at <u>ixrosent@ew.dcc.state.ny.us</u>

Sincerely, belly A

Betty Ann Hughes ^O Chief, SEQR & Training Unit DEC Environmental Permits, Albany

To: Attached

Long-Term Water Supply Project: Lead Agency Coordination DEC# 3-3922-00217

DISTRIBUTION LIST

Annette Torres, Secretary, Town of Haverstraw ZBA, Planning Board, Architectural Review Board
Alan C. Bauder, OGS
Honorable Jaclyn A. Brilling, PSC
Kenneth W. Caffrey, NYSDOH
Daniel Miller, Rockland Co. DOH
Andrew M. Conners, Rockland Co. Highway Dept.
Arlene Miller, Deputy Commissioner Rockland Co. Dept. of Planning
Philip A. Marino, Supervisor, T-Stony Point
Patrick Brady, Executive Director, Haverstraw Joint Regional Sewer Board

Edward Devine, Director Rockland Co. Drainage Agency

Howard T. Phillips, Jr., Supervisor T-Haverstraw

TO:

CC:

Sameet Master, UWNY John Dillon, Esq., UWNY Robert J. Alessi, Esq. John Feingold William M. Stein, Esq. Richard Tomer - USACE C. Spitz-USACE Rebecca M. Newell, DOS Arlene Miller, Rockland County Dept. of Planning Honorable Jaclyn A. Brilling, Secretary New York Public Service Commission Ruth Pierpont, Director Bureau of Field Services, NYS OPRHP

ECC: William Janeway, Region 3 Director, NYS DEC
John Parker, Esq., Region 3, NYS DEC
Lara Quintillani, Esq., Region 3, NYS DEC
Margaret Duke, Regional Permit Administrator, Region 3, NYS DEC
Jack Issacs, Region 3, NYS DEC
Larry Wilson, Region 3, NYS DEC
Thomas Rudolph, Region 3, NYS DEC
Lawrence H. Weintraub, Esq., Counsel's Office, NYS DEC, Albany
Mike Holt, Division of Water, NYS DEC, Albany
Jeremy Rosenthal, Environmental Permits, NYS DEC, Albany

Long-Term Water Supply Project: Lead Agency Coordination DEC# 3-3922-00217

Exhibit 2. Map of Westchester County showing proximity of Indian Point to Potential Environmental Justice Areas (PEJA) in purple, with approximate location of United Water of NY's proposed desalination plant in Rockland County.

Courtesy of NYS DEC Office of Environmental Justice.

Exhibit 3. E-mail from James Noggle, NRC to Timothy Rice, DEC with attached NRC Data from Indian Pt. Split Monitoring Well Samples (August 23, 2007).

Page

B-84

James Noggle - Fwd: NRC Data from Indian Pt. Split Monitoring Well Samples

From: To: Date: Subject: James Noggle Rice, Timothy 08/23/2007 4:10:59 PM Fwd: NRC Data from Indian Pt. Split Monitoring Well Samples

FYI.

ORISE Miscellaneous Semple Results (pCill for water or pCl/g for sed. or pCl/g wet wt. for veg. and fish) &/08/07

A .	A	8	C	D	e -	F	Ģ	H .									•	· · ·		
1 .											<u> </u>					P	Q	R	1 1	
2																	· · · · · · · · · · · · · · · · · · ·		+	┢┯╌╩╼╾┥
3	Semple ID	Sample Date	H-3	CI4	Sr-90	C=117	Contro	En Ste	· A7.60									1	<u> </u>	+
4										PRP-CL3	10-69	Np-Z37	_Pu-238	Pu-238/240	Pu-241	Am-241	Cm-242	Ca.243074	1.000	h
5	U-2 MH-5	04/17/08	120+230	BIA	0 12+0 44	10.34	1 7.2 9											0000000244	0-2.54	0-238
	Hudson (04011				0.1210.40	- ALLO	1.122	10000	21.000.3	-1.225.8	2±19	-0.03+0.05	0.13:0.10	-0.01±0.06	0+14	-0.07+0 +1	0.04-0.04	0.000		<u> </u>
6	Discharge	04/18/06	-210:210	2±16	0.58±0.56	-3.644.0	1.142.2	-5435	1.515.8	1 5-5 0	-1+10	0.0140.04					0.0410.05	-0.0380.13	0.20±0.10	0.20±0.10
	Conferent C										-1210	0.0110.00	0.1020.10	0.0520.04	6214	0.05±0.10	0.01±0.05	-0.0210.00	0.04+0.08	0.05-0.04
	Comment G	مشمعينه						}. 1									<u> </u>			0.0080.04
		BORLADO	4.322.7	40.3±1.3	0.01±0.13	0.06±0.04	0.0000.04	Not Analyzed	-0.39±0.91	-0.05±1.1	0.25+0.18	0.0010.01	0000	0.0140.04			1	1	(
	Uscharge						· ·	1. 1	•					- 0.0 (20.01	4283.5	0.0640.04	0.09±0.04	0.14±0.05	0.4810.07	0.56:0.08
	U-1 Cont, Spray						-				· · · · ·							1		1
	Sumo Bottom	05/03/06	1,580±310	-0+16	352+11	7.895+01	25+37		م حيد هـ					1. 1. N. N.						
	Liner								-212.0	24.223.5	1.920.9	0.0350.02	0.0940.09	0.01±0.03	-2±13	-0.01±0.12	0.03+0.06	1 -0 01+0 +1	0.4240.43	lassia.
	ILI Cont Carter	· · · · · · · · · · · · · · · · · · ·								<u> </u>			· · ·	· · · ·	11.0				0.4.200.12	U.5120.13
	Sumo D.+					مه محمد م							~							
•		000000	1,0002310	1210	348211	2,070290	41.122.3	-43#278	-7.242.6	24.413.5	240±21	-0.06±0.06	0.07±0.10	0.0010.05	2414	0.04+0.44	0.0440.00			1. 1
	Luyer		<u> </u>							1	1	•-				0.0120.11	0.0120.00	0.0040.09	0.41±0.13	0.41±0.12
10_	U-2 MH-5	05/04/08	2,210:330	-15±18	0.18±0.55	0.1±2.7	-0.2+1.6	-60±28	-0.6+2.7	-1.4+2 B	10 7+9 2	-0.0540 PA	011-000	0.05.0.05						í I
	Sectiment							1				4.00.00.00	4.1720.03	0,000,05	3#13	0.04±0.20	-0.14:0.13	0.02=0.15	0.32:0.11	0.33+0.11
11	Verplank	05/10/06	0.011./	0A510.87	-0.0230.10	0.21±0.03	0.0140.02	Not Analyzed	0.70±0.95	-1.0±1.1	0.1210.18	0.00±0.01	0.01±0.02	0.01+0.01	\$ 7+3 5	0.0000.00	0.00.000			
	Sectorent			1				1								0.0210.04	UNIZED UZ	0.0120.04	0.42±0.07	0,40±0,07
12	White Dearb	05/10/08	0.8±1.7	0.59±0.86	0.01±0.11	0.01±0.01	0.03±0.02	Not Analyzed	-0.71±0.93	-0.5±1.1	0.03+0 18	0 0010 01	001-002	0.0140.01	44440					h
	Coffeender	t					·							0.07.00.01		CONTRO DE	-9-01:40.02	-0.02±0.03	0.25±0.05	0.340.06
13	Screening	05/10/08	-0.411.5	0.51±0.82	0.12:0.12	0.10+0.02	1 -0 D1 +0 H2	Not Acathenad	-1 20+0 90	أدسدها	0 0740 10	0.0140.00	0.00.0							h
	Manibu	·							-12020,00		0.0720.15	ATTONIAN A	01000000	0.00±0.02	1.3:62	-0.02±0.03	-0.01±0.01	0.01±0.02	1.42±0.14	1.3710 14
14	Sedimenta	05/10/06	05418	0 20-0 97	0.00-0.11	0.00000	1.0000	New Assessed	0.7000.01											
	Lont's Cove		0	vizit bille		v.umus		NAME AND ADDREED	AL IVELIAL	0.121,1	0.1320.17	0.01±0.01	0.05±0.03	0.00:00.01	-0.3±4.0	0.02±0.04	0.01±0.02	0.01±0.04	1 53+0 16	4140.48
15	LoFarge MW-1	06/06/06	150±230		-0.4±0.53	2.9±2.3	-0.8:2.3	-26+23	-19.8±5.9	51+72	23+19									1.411.0.10
16	LoFarge MW-2	06/06/08	80:220	F	0.54:0.60	-1.4+3.5	-0.7+2.2	-9123	-132+6.0	18+71	14+10			· · · · · · · · · · · · · · · · · · ·						
17	LaFaron MW-3	06/06/08	190+230		0.1810 58	01+23	-17+24	-2+21		1 247 1	13.10						·			
	Water 6			1						<u> • 1257.1</u>	1.3210							-		
18	Verslank	06/14/06	1	L ·	Į –	1.3±4.9	0.354.9	· ۱	ſ	{ · · ·	i .			•	1.1.1.1.1					
	Variation	+	+			<u> </u>	·	<u> </u>									· ·			, (
19	Vegezaurre	05/14/05	36.418.0	1	1.0.01±0.01	0.15±0.13	0.08±0.10		-0.02+0.02	0.02+0.03			5 a. 6 a. 6		· · · · · ·					
}	Verpare	<u></u>	h	ļ							·	·]					1 N N 1			1 · 1
20	Mapa, & reaula	05/14/06		1	1	04+71	3.6.7.5	1	[
L	Cove		L			-							1	•••	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1		· · ·		,)
-	Vegetation @		00.0444		0.00-0.04	0.000.004	0.000		0.0000											
_	Lent's Cove	00714000	12.000.1		0.00000.04	0.0000.04	-0.013005	1 · · · ·	-0.1000.07	0.0000.12			· ·			•	' i			
	Discharge																			
24	Canal	06/07/06	-50±200	0.1±9.0-	0.2010.45	1.341.5	j -1ABZA	8:25	-13.325.4	10.5±8.7	4.3±9.3	0.00+0.02	0.05±0.04	0.03±0.03	2:12	0.05+0.05	0.02+0 m	000000	0 1440 07	0.17.0.00
	Fich Pert A	+		1	t	t		+			·				-				0.1420.01	0.1120.00
23	Index Onint	09/15/06		l ·	0.01±0.01	0.00±0.00	0.0010.00	1 .	1							· •				
}	Cab Catho		<u>+</u>	f		<u></u>	<u> </u>	<u> </u>								-				i t
24	renecation of	09/15/08	1	1 ×	0.01±0.01	10.0110.01	0.01±0.01	1	1	ł .		· · · · · · · · · · · ·		· ·			· ·			
	arcan Fore		+					<u> </u>				····				S	1	(· . [
2	Lateringe May-1	0971906	-9422.50	0.569.7	0.1050.52	1292.1	3.022.9	40219	10001	0.348.2	-2.7±9.0	0.00±0.01	0.01+0.03	0.03±0.02	-2.7±7.9	0.03±0.04	0.00+0.03	-0.02+0.04	0.87+0.10	0.23+0.+1
24	LaFarge MW-2	09/19/06	2201230	1.4:9.7	0.97±0.55	0.5+2.2	7.2:4.0	-1±19	-0.7±5.1	2.0±6.3	-0.5±9,1	0.00±0.04	0.04+0.05	0.03±0.03	-8.4±7.8	-0.02+0.04	6.00+0.01	0.00+0.02	28 342 4	17 441 6
27	LaFarge MW-3	80/21/20	40±240	8.349.8	-0.17±0.45	-0.7±1.6	1 0.7±1.6	2±19	-17.4±4.9	2.648.3	2.019.1	-0.06±0.04	0.03±0.03	0.00+0.02	-2.5+8.2	0.02+0.03	001+000	0.00+0.04	D Sauce and	0.4949.4
28	LaFarge MW-1	12/04/08	-50±220	7.919.6	0.32+0.52	-0.642.2	0.5#2.5	0±18	1	-1.816.2	1.616.9	-0.10:0.19	-0.10:0.24	0.16±0.12	14+30	0.00+0.10	0.00-0.11	0,0000	0.3050.12	0.4010,10
28	Lafarge MW-2	12/04/08	-80:220	3.7±9.4	0.36±0.48	22142	0.512.0	5±18		2728.3	8.9:9.1	-0.1010.71	0.1410 15	0.04+0.0*	1433	0.0000	0.00.0.0	0.0920.17	4.0010.54	Z.68±0.51
30	Laferon MW-3	12/04/08	130±230	5.0+9.5	0.1310.48	-021A	2.0116	-2±18	Ţ	-1,1+0.3	10 2+9 2	4 35-0 20	0 12+0 17	0.0540.00		0.1010.43		4.02021	24.0±2.4	18.241.7
M	RO.14	12/05/04	1 110+210	· 0+12	-0.10+0 17	0 2+3 1	0.9±24	1+19	t	1 0+6 7	-1 848 4	0 0240 00	00040-00	0.0320.09	- 35.30	0.1020.11	0.1010.09	-0.06±0.09	0.9810.29	0.68±0.24
1	T PO SALAKA	12000	2004270	4412	0 1840 20	1 0 4421	1 08+2 -	5410	1	4 446 7			UNITURA	-0.0400.03	3233	U.1120.18	0.00±0.09	0.07±0.17	0.14±0.11	0.00:0.09
1	00 642 000	10000		+	0.20-0.24	1 1 04 9	1 0 402 -		f	1.00.1	0.930.3		~0.0210.20	-0.0410.07	28±34	0.17±0.21	-0.02±0.10	0.06±0.16	0.6510.27	0.4510.19
	1 10-2400250	1 10000	2002210	1 12	0.000.00	1-100-3	1 UALCZ	- OLA	↓	-3.023.5	5.000.3	0.0210.08	-0.0210.18	-0.02±0.08	-13±35	0.20±0.19	0.05±0.05	0.03±0.08	1.31±0.35	0.78±0.26
. 34	FL Monigomer	12/05/08	501200	0±12	-0.0840.34	2.342.5	0.91.7	4±20	· · · ·	0.4±5.6	2.7±0.2	B0.0±0.08	80.0±0.05	0.0410.05	8:133	0.03±0.11	-0.02±0.09	0.07+0.10	-0 04+0 19	0 3140 10
35	P-1217	12/06/08	60±200	4212	1000020	-1.0±2.0	0.8+2.2	119	1	2.3±5.7	3,4#8.2	80.0±00.0	0.0000.22	0.00±0.05	8433	0.05±0.11	-0.05+0.11	-0.12+0.10	0 21+0 74	00000 m
38		1																	-2-10/23	ATT 100
37	1		1				1	1			(
30	1		1	1	1	1	1	· · · · ·	1	1	1 ·····	·								
10	<u>+</u>	+		1	1		1			1	<u> </u>							l	1	
			+	+	+	+	+	+	+	·	<u> </u>		<u> </u>							
			+	+	+	+	+			├ ───	t	h					·			
141		+	·		+	+	<u> </u>	+		f		L			7					
4			1				4	J	1	1										
40			1					1											~	
44					1	1	1		1							ļ				
45		1		1		1		_	1	1							+			
44	T		1	1	1	1			1	1							-			
1 47	+		- }		1	1	1	· /· · · · · · · · · · · · · · · · · ·		·	<u></u>							l		
1-10-	+		+	+	+	+	+	+	+	+	<u> </u>				1		1	T		
. 49				1	1		1			1	1			. –						

NOTE: Reported uncertainties are ± two sigma total propagated undertainties.

ORISE Results for Onsite Wells (pCI/I) (8/8/07)

	A	8	C	D	E	F	G	H	1	<u> </u>	K	L	M	N	0	8	0	R
1							_											
2										· · ·				1				·
3	Sample ID	Semple Date	H-3	C-14	Sr-90	Ce-137	Ço-60	Fe-65	NI-59	NI-63	Tc-09	Np-237	Pu-238	Pu-239/240	Pu-241	Am-241	Cm-242	Cm-243/244
4										•								
5	MW-111	09/29/05	216,800±2,800		1,4±1.2	0.9+2.9	3.5±3.1							ł				
6	MW-111	10/14/05	7,290±410	·	1.1±1.3	-2.1±3.6	1.8+2.2											
7 '	MW-101	12/08/05	70±120		0.2:1,1	-1.415.3	2.513.6									· · · · ·		
8	MW-105	12/08/05	-10±120		-0.2+1.2	0.4±2.9	1.5±3.3											
9	MW-107	12/08/05	130±120		0.8±1.2	-1.1±2.4	-0.2±2.8				•		·					
10	MW-38	12/08/05	740±130		0.4±1.2	-0.7±3.0	0.3±3.3											
11	MW-30	02/07/06	491,400±5,100		0.7±1.0	-0.515.2	1.015.9						·			· · · · · ·		
12	MW-31	02/07/06	`32,910±470		0.2+1.1	1.2±5.2	-4,4:8.4											
13	MW-32	02/07/06	17,900±310		0.2±1.1	+1.3±5.2	-1.8±5.8											
14	MW-33	02/07/08	222,700±2,400	· · ·	1.0±1.2	-0.1±4.5	1.814.8											
15	. MW-34	02/07/06	174,700±1,900		0.3±1.0	-1,7±5,3	1,3:5.4			-				<u> </u>				
18	MW-35	02/07/06	84,530±990		-0.1±1.1	-4±11	5,915.9							1				
. 17	MW-36	02/07/06	21,710±350		2.4\$1.2	-6±10	4.216.8	· · · ·		<u>. </u>				1				
18	MW-111	02/07/06	242,400±2,600		1.9±1.2	3.7±5.3	3.015,7							<u> </u>				
19	MW-38	02/08/06	310±130	ł	0.411.0	-0.1±4.9	0.615.4											
20	MW-48	02/08/06	70±120		0.6±1.1	-2:10	4,318.2					1.1.1						
21	MW-376722	02/28/06	14,470±360		2.311.2	0.4±4.8	5,415,6			19 - P.		1.122	-0.11±0.22	0.16±0.11		0.00±0.28	0.13:0.13	-0.06±0.17
22	MW-37@32	02/28/08	29,720±560		28.412.1	0.414.8	72:53				1 - N		0.0910.20	0.04±0.10		0.11±0.24	0.00±0.10	0.11±0.23
23	MW-376940	02/28/06	15,990±390		21.8±1.8	1.1±4.2	1,214.8				e server e		-0.02+0.22	0.0510.07	1.1	0.30±0.31	0.12±0.21	0.13±0.24
24	MW-376357	02/28/06	15,850±380		25.5±2.1	3.8±6.0	-4.3±6.3					and the second se	-0.12±0.18	0.04±0.11		-0.20±0.21	0.30±0.20	-0.04±0.15
25	MW-37@27	03/10/06	22,950±490		4.9±1.3	2.3±2.9	-1,7±3,1			5±11								
26	MW-37632	03/10/06	28,840±570		21.0±2.0	-1,1±2.4	-1.7±2.6			3±11		يعوانين المعديات	1			1 +		
27	MW-37640	03/10/06	16,140±400		17.6±1.9	2.7±3.1	2.243.2			-1±11			1					
28	MW-37@57	03/10/06	15,940±390		26.6±2.2	2.5±3.6	-1,1±3.9			5±11								
29	MW-49(25	03/22/08	14,240±740	L	18.7±1.3	3.2+2.1	-0.5±2,3	-48±72	3.4±5.2	6,3±5.4	-1±18	-0.24±0.32	0.65±0.48	0.14±0.31	-42±74	0.38±0.47	0.08±0.21	-0.41±0.38
	MW-49@42	03/72/06	9,130±580	Ľ	22.5±1.4	0.1±1.7	1.4±2.0	-30±72	7.3±5.3	5.615:4	1±18	0.10±0.15	0.40±0.41	0.03±0.11	8±79	0.31±0.41	0.04±0.18	0.00±0.38
31	MW-19065.5	03/22/08	6,290±490		21.5±1.5	0.3±2.3	-4.012.4	-33172	2.0+5.2	7.9±5,5	-7±18	0.18±0.23	0.20±0.47	0.20±0.18	-18:63	0.19±0.51	-0.08±0.19	0.12±0.40
32	MW-506942	03/22/06	8,190±550		24_5±1.8	12+2,3	-1,0±2,7	-14±72	4.2152	5.4±5.4	-3±18	0.31±0.21	0.51±0.48	0.03±0.15	6±77	0.08±0.52	0.04±0.13	-0.19±0.41
33	MW-506267	03/72/06	9,490±590		30.6±1.7	-1.824.1	3.122.7	-10172	-2.4±5.0	9.9±5.5	-8±18	0.00±0.19	0.48±0.47	0.08±0.24	-39±78	0.19±0.45	-0.08±0.16	0.08±0.33
- 34	MAN-366226	03/23/06	35,10011,300	<u> </u>	1.6940.60	0.2±1,9	0.211.8	39172	-3.915.0	67.3±8.0	6±18	0.29±0.30	0.37±0.44	0.29+0.22	-12+80	0.32±0.30	-0.04±0.18	-0.08±0.32
35	MVV-366052	03/23/06	25,900±1,100		5.7110.78	1.0±4,4	3,3±3,1	44172	-0.3±5.1	10.3±5.5	14±19	-0.34±0.30	0.15±0.42	0.08±0.19	0±79	0.82±0.68	0.25±0.31	0.0610.38
30	MVV-420249	03/23/08	2,2902340	+	00.512.7	4,7702150	38.115.1	-192/2	11.9213	1,397100	-0±18	-0.20±0.29	0.20±0.40	0.16±0.30	15±78	-0.04±0.45	-0.16±0.16	-0.04±0.39
3/	MVV-30001	03/2406	50,20041,800	1	4.0420.78	-1-324.2	-0.422.4	242/3	0,123.1	4/,41/.0	9419	-0.11±0.27	0.1120.43	0.00±0.18	-29±78	0.14±0.41	0.00±0.15	-0.04±0.28
	104/426041	04/07/06	1 860+310	8418	175 048 3	40 20041 600	20+20	48474	20132	53.417.3	-14218	0.33±0.29	0.3310.45	0.0820.28	8484	0.12±0.32	-0.15±0.22	0.12±0.30
40	MAN ADDAT	040000	2 050+720	0210	181 645 8	51 40041 600	57+17	1118.17	1412	5,7302350	0114	0.0110.05	0.1320.08	0.0410.05	5114	0.0820.15	0.0110.08	0.03300.09
	NW-426145 5	04/07/08	2.030+320	-1416	149.0+5.4	51 400+1 700	89+25	4.71	1210	5,8101370	310	-0.0410.05	0.1420.08	0.0010.00	-1214	0.0830.17	0.00±0.09	0.0220.13
1 42	MAN-426748	04/07/08	1.880+320	-1110	149.745 7	52 500+1 700	20+26		-422410	5,9002370	3210	0.0020.04	0.0910.08	-0.0120.05	4214	0.0020.13	0.01±0.08	-0.1120.10
1	MW-42051	04/07/08	2 180+330	4416	194 448 4	35 900+1 200	83+74	0+33	-220+10	6 260-220	11440	0.03±0.04	0.1010.09	0.0340.05	2214	0.0710.14	0.0120.08	0.0410.12
	MALA20078	040708	340+240	4418	0 8340 75	81417	1+10	6449	10 746 7	10 010 5	11218	0.0120.04	0.0010.07	0.0510.05	40214	-0.0310.15	-0.07±0.07	-0.10±0.14
1-1-	MAN AD 2000	04/11/06	1 100+220	19.10	0.0010.75	2044	23424	8475	4 946 9	10.010.5	12418	0.0120.04	0.0000.09	-0.01 -0.05	- 421	0.000.16	0.00±0.09	-0.0510.17
1	NW 518200	04/11/06	1001230	1744	0.14+0.49	0.0124	0 442 1	4475	9.015.9		411A	0.012005	0.0000.00	0.000000	414	0.01±0.08	0.0420.04	-0.0.90.08
	MW-416-41	04/12/04	400+250	1 ALLA	3 7340 45	0.642.0	01020	2426	10.800.	0,120,0	444	0.0020.00	0,1350.08	0.0210.06	0115	0.0220.09	0.01±0.03	0.0510.07
1	ANVA1002	04(12/00	4404750	2410	1 6 01 JO 00	2 142 1	0 342 3	21420	E 145 0	20150	1210	0.0310.03	0.0010.11	1.0.0210.04	1 -2218	0.02±0.13	0.0010.03	-0.02±0.11
40	MW_43/02#	04/12/00	220+220	8416	0.0120.01	03427	0.024.3	12475	0,110,9	1 4.010.U	1219	0.0220.05	0.1/20.10	0.0020.05	0115	0.08±0.18	0.02±0.07	-0.02±0.11
	MW 41847	04/12/00	40+220	17-10	1 20.0000.40	0.514.4	0 641 7	1443	0.120.0	3.020.9	9110	0.0010.04	0.1020.08	1-0.01±0.05	-0±14	0.0/20,10	0.0000.04	-0.02±0.08
	MW 466020	04/12/02	1 510+200	1 0+10	1 2240 50	V.021.0	1 147 2		0.120.9	11460	0219	0.0020.06	0.0080.08	1.0.0220.05	-32/2	-0.0000.09	0.00±0.04	0.03±0.08
1 52	NNL486137 5	1 04/12/06	90+230	11+14	04940 49	0.5+1.0	00+20	11475	8 846 0	1 745.0	DEIN	0.0300.05	0.0/20.09	0.0/±0.06	4113	0.07±0.18	0.0000.07	0.04±0.12
1 5	MW_48/057	04/12/04	220+230	1+18	0 49+0 49	0.017.0	0 5+2 3	9436	1 1 045 0	1.723.0	10219	0.0120.05	0.0120.08	0.0420.08	1-10214	0.1420.11	0.00±0.03	0.05±0.08
T	MW-47mm	D40+3/04	280+240	5+1P	1 10+0 44	-0.1+25	1.942 1	25+28	80460	0246.0	-0210	0.00120.02	0.0020.08	0.0420.04	2413	10.0/10.07	0.0310.04	-0.0220.08
	MW-4760-PM	04/13/04	1 980+120	0+16	4 0840 74	0.642.2	1 4+2 5	1 .1476	2046 0	2846.0	12440	0.0020.02		0.0420.04	1 414	-0.0020.15	0.0320.08	0.03±0.13
ليتشب		1 0.0 10000	1 1.004 LUCO		1-1-10100.(4	1 0.014.6	1,744.0		0,6,1,1,1,2	T 37510'9	L IJZIA		L 0.0300.11	10.0000.04	2214	10.0120.14	U.U1±0.08	-0.04±0.12

٠

.

.

...

•

24.4.5

0

•;-

NOTE: Reported uncertainties are ± two sigms total propagated uncertainties

••••

۰.

. . .

. ____

ORISE Results for Onsite Wells (pCi/l) (8/8/07)

	A	8	C	D	E	F	0	H		J	K	L.	M	N I	0	P	Q	R
56	Sample ID	Sample Date	H-3	C-14	Sr-90	Cs-137	Co-60	Fe-55	NI-59	NI-63	To-09	Np-237	Pu-238	Pu-239/240	Pu-241	Am-241	Cm-242	Cm-243/244
57	MW-48625	06/09/06	2201230		-0.02+0.58	5.3±3.9	22+2.1	-1±23	-8.2:6.0	-1.2±7.1	14±19							
55	MW-48@35	06/08/06	80±220		0.71+0.55	28+22	0.1+2.2	2+73	-11.916.0	1.9±7.2	9+19							
														t				
. 29	FIV-40 Hover Fro	05/09/06	190+230		-0.11+0.53	8.0±3.1	0.4±1.8	-21+23	-5.916.1	-0.2±7.1	24±19				(· · · · · · · · · · · · · · · · · · ·			
60	MW-40(0200"	06/20/06	150+230		0 95+0 82	10+23	1 8+2 5	-8+74	46+4.4	-18:55	3+18	·			·			
61	LOW-38640"	06/21/06	840+270		0 68+0 93	14+21	20+12	4+74	-1 544 3	24+56	7+1A			t				
62	MW30678	06/22/06	304 100+8 400		-0 40+0 75	45 6+4 0	1 3+1 8	-4+74	0.0+4.3	12 3+5 8	10+18			t				
63	MW-30-943	08/22/06	180 100+5 300		0 40+0 72	60 1+5 3	1 8+7 5	9474	34444	17 2+5 8	14+18		·	<u>╊┈</u> ────				
64	MW-30@77	08/23/06	398 000+11 000		0 33+0 77	21451	1 544 3	2+24	ARIAA	9 3+6 A	5+18			f	t		[
65	MW-30-974	08/22/08	397 000+11 000		0 34+0 81	28 544 1	01+12	24	0 344 3	120+68	18418	<u></u>	h	<u>+</u>				
84	MALAGE 25	07/12/06	12 740-600	67401	10.041 7	0.342.7	4 447 6	284.28		11 147 7	10000			+	<u> </u>		<u>}</u>	
- m-	MALADOA7	07/12/00	12,740030	0.720.1	20.011.0	2044	17.75	20120	20 244 7	100.70	0.010.0		h	<u>├</u>	<u>├</u>		{	
	LAN ADDET	07/12/06	0,0001340	0.019.1	22.911.9	2.000.0	-1./122	21.00	-20.224.1	40.76	a 0.00.7	f	 	+	<u> </u>	Į	<u>}</u>	
	LANI ADDAS	07/12/08	JU2210	3.423.1	0.2410.00	-0,1122.0	2.021.0	20,20	-0.137.8	4.01/.2	0.920.9	<u> </u>		<u> </u>	<u>+</u>	┠	}	
	NIVY-680200	0//12/00	4,70014.30	1.019.0	10.UT1./	-0.122.1	0.222.1	20120	-1.134.0	10.027.7	8.428.0			0.0000	-	0.000.000	0.0210.00	0.01.000
1	MYV-450225	00/01/00	12,0601/40	-7.019.0	11.721.0	0.221.6	0.021.0	-32/3	-0.000.0	12.310./	-0.349.0	-0.0520.06	-0.0450.08	0.01±0.05	6444	0.0010.00	0.0310.03	0.0120.00
1	MILY AUGUNZ	00/01/06	0,3001380	3.528.9	19.721.4	-2.194.3	0.3122	1 81.00	13.3534	13.320.0	0.010.0	1-0.1420.10	0.0300.03	1-0.0120.06	3443	0.0000.11	-0.01±0.05	0.0010.00
14	MYV-46000	08/01/08	4,6501430	2.009.0	16.321.2	0.512.1	0.917.3		(-16.213.4	13.828.8	-8.529.0	0.0130.02	0.050.07	0.0000.04	7.44	0.1080.10	0.0210.02	0.050007
1-2-	SHOULD STOR	08/01/08	2/01/20	0.419.0	4./bt0.//	-2.614.5	2.122.1	01/0	1-15.010.4	10.514./	0.129.2	1-0.0120.02	0.0000.08	0.0420.04	-/214	0.0310.09	1-0.02-0.00	-0.0200.07
	1 NW-500007	08/01/06	8,1701570	0219.1	30.0±1.7	2.012.5	0.712.8	111120	-18.125.4	14.028.8	-3.919.1	-0.12±0.08	0.05±0.07	1-0.02#0.07	-4213	0.0200.08	0.01±0.04	0.0210.08
1-13	Max-2002/1	08/02/06	2104220	-1.019.0	0.65±0.51	1.1±2.1	3.012.3	1-3125	15.923.4	11.7±8.7	1-0.419.1	-0.07±0.08	0.01±0.07	-0.0120.05	-10212	-0.0200.07	-0.0120.04	-0.0050.00
<u> </u>	NW-38	08/07/08	190±220	2.6±9.0	0.37±0.45	3.8±2.3	-0.5±2.8	1-12425	-1.125	7.318.6	-4.019.1	-0.08±0.05	0.0000.05	0.04±0.05	-4212	0.06±0.07	0.0310.04	0.0010.00
	MINY-40	08/09/06	7201220	3.1±9.1	1.241.1	-0.6±1.9	0.4±1.7	-12423	-9.450.5	10.818.7	-5.219.1	-0.1320.09	0.0320.08	0.01±0.05	B213	0.0210.08	-0.02	0.0010.08
18	MW-302074	08/18/06	259,20018,700	-5±10	1.0±1.1	10.6±4.6	4.714.2	9+28	-16±13	15±22	2419	-0.07±0.14	0.42±0.40	0.10±0.15	16231	0.1120.34	0.04±0.17	0.0410.24
178	MW-306988	08/22/06	14,610±580	_4±10	0.5±1.1	2.3±2.9	-2.7±3.2	7±28	-0±13	8422	7±19	-0.04±0.13	0.19±0.37	0.23±0.19	27±31	0.0810.24	0.19±0.17	0.0010.15
60	ATW-53680	08/23/06	13,260±540	-4±10	8.61±0.73	0.1±1.6	1.5±1.7	10+28	-6.915.2	9,1±8.7.	1.9±9.3	10.00±0.05	-0.10±0.18	0.05±0.08	7±16	0.06±0.08	0.02±0.04	-0.04±0.05
81	NW-57@45	08/24/06	4,200±240	-4±10	21.8±1.2	2.2±3.9	0.2+2.2	-13±28	-10.1±5.1	7.9±8.7	7.8±9.5	0.04±0.09	0.22±0.18	0.04±0.05	8±15	0.02±0.14	0.08±0,10	0.06±0.13
82	MW-556078	08/25/06	16,7001650	0111	28.2+1.3	3.7±2.7	1.2+2.2	9±28	-2.845.3	7.7+8.7	3.1±9.4	-0.10±0.09	0.14±0.19	0.06±0.07	11±15	0.07±0.15	-0.0210.08	0.06±0.08
83	MW-53-21207	08/30/06	4,320±250	3±11	16.9±1.0	1.4±3.3	1.4+2.4	7±28	-1.615.3	12.418.8	6.8+9.5	[-0.04±0.10	0.11±0.17	0.09±0.09	4±14	-0.07±0.21	-0.02±0.06	-0.11±0.15
84	M.Y-5461206	09/07/08	2,180±350	-2+11	14.8±1.2	0.6±1,6	1.0±1.8	-15±19	-3.3±5.0	5.9±8.4	-1.2±9.0	0.04±0.10	0.13±0.19	0.05±0.10	15215	0.00±0.12	0.10±0.10	0.00±0.12
85	MW-566285	09/08/00	900±290	1±11	2.96±0.76	8.1±3.0	28+22	-10±19	-0.314.9	5.2+8.3	3.519.2	0.04±0.08	0.06±0.14	0,12±0.10	17±16	0.04±0.13	-0.06±0.13	0.04±0.10
88	MW-65680	09/08/06	-120±230_	-2+11	0.56±0.49	0.2+2.2	0.3±2.4	-15±19	2.845.0	3.2+8.3	-1.8±9.0	0.02±0.08	0.11±0.13	0.00±0.05	3214	0.04±0.15	0.00±0.06	0.04±0.10
87	LIVI-42@40	09/15/08	1,500±320	0.219.6	32.8±2.4	20,260±650	11.7±9.9	-3±19	15±13	1207±85	-1±18	0.03±0.06	0.11±0.08	0.01±0.03	-10116	0.04±0.08	0.0300.06	-0.0000.07
68	NW-426048	09/15/06	1.370±310	-0.619.6	35.0±2.3	21,650±750	15±11	-2±19	-73+12	1272±89	5±18	1-0.04±0.05	-0.01±0.07	0.03±0.06	-10±15	0.06±0.07	0.03±0.03	0.01±0.07
89	MW-590070	09/15/06	130±250	6.919.8	0.14±0.50	-3.8±4.1	0.314,1	-4±19	2.0±5.1	-0.4±8.2	-4,7±8.9	0.02+0.02	0.04±0.03	0.04±0.03	1.2.549.	0.00±0.05	0.0220.02	-0.01±0.04
80	MVV-420041	09/18/06	2,830±380	0.8±9.7	20.2±2.0	13,730±470	4±13	1-10+18	.72:12	452+40	4±18	0.01±0.02	0.0840.09	0.0340.04	-311/	0.0340.09	0.01±0.04	0.01±0.08
81	10W-426545	09/18/08	2,350:360	8.819.8	15.7±1.7	15,1401510	3±12	-1/+18	<u>- 3±13</u>	435±39	8218	10.01±0.02	0.0000.13	0.01±0.04	-8118	0.07±0.09	0.07±0.00	0.01±0.09
1 NZ	- MW-Sages	11/09/06	5/0±240	4.919.4	-0.1820.34	0.3#2.1	0.342.1	1 19219		5,013,8	0.345.1	0.00±0.05	0.0040.20	0.0510.08	-212.2	0.17±0.20	0.1120.13	-0.0410.12
1	MITT-OSETIZU	11/09/06	8,21045/0	0.529.5	34.321.5	0.311.9	2.011.7	42.4	1.10.924.1	21.110.5	-0.028.1	1-0.0800.11	10.1950.19	0.0/10.08	1 12.03	10.1120.16	0.0020.12	0.04.00.05
	MIV-33024	11/08/08	1.0901310	1-1.129.5	10.021.0	1.314.2	0.122.1	1 5140	0.079.2	3.125.8	-3.328.0	10.1020.09	1-02120.20	1.0.0020.09		0.0010.10	0.0010.04	1 0.0150.10
12	MVV-33(233)	11/09/08	9,4501620	4.3±9.6	43.621.8	1.8±2.2	1-0.122.4	-0110	4.3242	J.823.8	-2.7±8.1	10.0210.08	0.1280.19	0.0240.08	39130	1-0.0310.13	0.00000	0.0680.12
	MUT-DOIDSA	11/09/08	12,8402750	1.219.6	34.821.8	1.221./	U.4±1.8	4±19	-1.523.6	9.013.4	4.518.0	0.0010.08	0.2580.28	0.0240.04	20130	10.0920.13	10.000008	-0.0500.11
	C652920-7VM	11/09/08	210±220	1.3±9.5	1-0.0240.60	U.415.F	3.0t3.1	-4±18	2.9:3.7	1.245.2	11,1±0.2	10.04±0.08	10.0010.00	0.08±0.08	34±30	U.11±0.18	0.0000.11	0.0240.12
60	MYV410042	11/13/06	600±240	1-11.1#9.	3 3.45±0.48	-1.2±3.5_	1.1+2.1	75±18	-7.1242	2.415.8	1-1.6±8.1	0.00±0.05	-0.18±0.20	0.02±0.08	-5±38	1-0.02±0.17	0.04±0.13	0.00±0.11
89	MW416264	11/13/00	300±220	-7.8±9.3	1 Z.12±0.43	0.9±2.1	2.8+2.3	16±18	-7.0±4.2	2.9±5.8	J-J.0#8.1	0.02±0.04	0.02±0.23	-0.02+0.09	0 -15±34	0.04±0.19	0.00±0.10	0:02±0.07
100	MW45@43	11/13/06	710±250	2.5±9.5	0.02+0.72	0.5±1.5	-0.1±1.8	3 16±16	-8.844.2	4.7±5.8	0.7±8.1	0.02±0.04	0.14±0.11	0.02±0.04	6±34	0.07±0.17	0.08±0.10	-0.07±0.09
101	MW45@62	11/13/06	1,140±270	-2.519.4	1 0.21±0.34	1.9±3.5	1.9+2.2	11±18	-12.8±4.	1 <u>5.0±5.8</u>	4.0±8.2	0.05±0.09	0.10±0.19	0.09±0.09	7±36	0.02±0.17	0.00±0.06	0.04±0.13
102	MW49@26	11/15/06	9,070±610	0.5±9.5	15.27±0.92	-1.5±3.5	2.4+2.5	-11±1	1 .2.3+2.8	7.915.3	1-2.728.1	0.02±0.09	0.15±0.24	0.09±0.11	14±28	0.22+0.21	0.10±0.17	0.04±0.22
103	MW-49@42	11/15/08	6,300±500	-0.4±9.5	5 23.6±1.3	1.8±2.1	1.9±2.4	2±19	2.3+3.7	4.7±5.2	-3.8±8.0	0.06±0.09	0.06±0.21	0.12±0.11	16±30	0.08±0.15	0,11±0.11	0.02±0.08
104	MW-49265	11/15/06	3,590±390	-1.6±9.4	19.6±1,1	0.4±1,5	0.6±1.9	-8+18	-5.5±3.8	8.6±5.4	-5.7±8.0	0.04±0.09	-0.11±0.2	1 0.11±0.12	8±27	0.13±0.15	0.06±0.07	-0.02±0.09
105	MW-50042	11/15/06	2,740±350	-1,3+9.4	12.48±0.8	-1.5±1.0	1.7±1.7	7±19	1.0±3.7	4.425.2	-3.428.0	0.08+0.07	0.02±0.25	5 0.00±0.08	27±31	0.06±0.13	0.06±0.09	0.00±0.09
106	MW-500067	11/15/06	5,620±470	-0.7±9.	5 27.111.3	-0.1±2,1	0.1+2.2	2 9±19	0.123.6	7.9#5.3	-5.7#8.0	0.02±0.09	0.03±0.18	0.07±0:07	28+31	0.04±0.14	0.0210.07	-0.11±0.14
107	MW-42@43	11/16/08	2,100±340	3.419.3	11.2+2.5	8,380±270	2.3±3.5	i 0±40	13.3±9.9	295±25	5±15	0.09±0.10	-0.13±0.1	6 0.1310.16	5138	0.06±0.15	0.0610.07	-0.06±0.09
108	MW-42045.5	11/16/08	2,590±370	4.919.	2 11.9±2.2	8,270±260	2.7:2.	1 19:40	9.1+9.8	290±25	14:15	0,12:0.11	-0.02±0.0	9 0.08±0.08	-10±3	0.1510.16	0.03±0.17	0.00±0.18
. 109	MW-42@48	11/16/08	2,200±350	4,419.	2 8.9±2.9	7,730±250	3.8±3.1	5140	29±10	249123	8±15	0.02±0.14	0.15+0.15	5 0.07±0.07	28:41	0.02+0.14	0.25±0.16	0.00±0.10
110	MW-58@28	11/16/06	10±240	2.7±9.3	0.37±0.32	-0,7±2.2	1.5±2.5	5 3±20	3.1#3.9	0.1±5.6	9.8:8.7	0.02±0.04	0.02±0.16	5 0.08±0.10	8140	0.04±0.22	-0.10±0.16	-0.02±0.25

ORISE Results for Onsite Wells (pCi/l) (8/8/07)

	· A	B	C	D	Ē	F	G	H I	1	J	K	L	M	N .	0	9	0	P
111	Sample ID	Sample Date	H3	C-14	Sr-90	Cp-137	Co-60	Fe-65	NI-69	NI-83	To 99	Np-237	P1-738	8-239/240	Di-241	Am 241	Cm 242	012430244
112	MW-58@65	11/16/08	120±250	7.1±9.4	0.12±0.31	1.6±3.7	1.0±2.3	8+20	23+3.9	05458	6 8+7 7	0.02+0.12	0 24+0 20	0.11+0.10	12443	-0 18+0 24	011+018	0.91+0.26
113	MW-59@31	11/16/08	70±240	-0,419.2	0.32±0.34	1.914.8	1.8+2.1	4±20	04+3.9	14+58	9 2+7 8	-0.09+0.16	0 00+0 10	0.04+0.03	72478	0 10-0 17	0.1110.10	007-013
-114	MW-69@45	11/18/08	130±250	-1,1+9.2	0.25±0.33	1.6±2.0	0.3±1.7	-10±20	-5.4+3.8	4.8+5.7	23476	-0 53+0 29	0 28+0 24	0.00+0.13	12468	0.1840.17	0.2410.17	0.0710.17
115	MW-59@68	11/16/08	90±240	4.219.3	0.56±0.33	0.3±2.3	0.2+2.3	8+20	00+39	12+56	2 8+7 8	007+0 14	0 07+0 14	0.02+0.08	-20+41	0.1010.13	0.1020.13	0.0010.12
116	MW-39@200"	11/17/08	10±240	-0.319.2	1.97±0.41	-1.2+2.6	-1.0+2.8	-5+20	6 8+4 0	3055	92-78	0.05+0.00	0.09+0.18	0.0210.00	20142	0.05+0.42	0.2020.17	0.0010.00
117	MW-426941'	11/17/06	2.080±340	1,1±9,3	8.8±2.6	8.270±280	1.9:34	-3+40	10.0+9.9	201+21	17414	0.0510.09	0.0440.10	0.0130.05	0140	0.000.02	0.0510.10	0.0020.07
118	MW-38	11/22/05	40±220	5.019.5	0.19+0.50	4.9+2.8	1.9+7.3	12+19	10.010.0	15483	5 040 0	0.0000,05	0.0420.10	0.0020.00	20435	0.000.16	0.0310.14	0.0090.08
119	MW-48023	11/22/08	190±230	9.3:9.6	0.13+0.33	0.4+1.8	13+1.8	43+20		07463	4 740.0	0.78.0.14	0.0000.21	0.0010.07	20235	0.3820.24	-0.0210.09	-0.0000.20
120	MW-486938"	11/22/06	80±230	1.3±9.4	-0.10+0.32	-1.8±4.3	24+21	-3+18	`	A 148 A	7 140 1	0.0230.08	0.1220.24	0.0310.05	47422	0.1120.23	-0.0240.07	0.0320.16
121	MW-60	11/30/06	180±230	12.4+9.7	0.41+0.54	1.3+1.7	-1.2+1.7	1+18		8 6+8 A	7,129,1	0.0000.00	0.1720.24	0.07±0.03	1/2.34	0.2580.22	0.0210.06	0.0210.17
122	MW-62	11/30/08	6201260	0.7+9.4	0.70+0.54	0.0+3.4	0.3+2.5	_R+18		38464	20.029.1	0.0410.10	0.1020.24	0.0210.07	3133	0.1800.21	0.0910.14	0.07±0.20
123	MW-51(2200"	12/06/08	70±200	0±12	0.37+0.36	-1 0+4 5	11+23	-2+10		0.246.8	3.813.0	0.0920.10	0.1120.17	0.0220.08	-2230	0.14±0.15	0.0240.08	0.0/10.14
124	MW-40	12/07/06	290±220	1+12	0.61+0.35	0.2+1 R	0 341 7	13420		0.2.0.0	-2.7 10.1	40.0000.10	0.2120.20	0.0420.06	232.34	0.09±0.15	80.05±0.08	-0.05±0.11
125	MW-306274'	D1/16/07	82 700+3 000		0.2+1.0	1 242 8	0.021,7	13220		1.025.7	3.220.3	0.0620.07	0.2410.24	0.0820.08	14235	0.23±0.21	0.02±0.09	-0.02±0.13
128	MW-306968"	01/16/07	7 280+440		08411	02423		{		9.023.4	<u> </u>							
127	MW-31@53	01/16/07	1 340+230		0.011.1	2 246 7		{		10.015.4	·	·						· .
128	MW-31(087	01/18/07	17.660+660		-0.021.0	2.010.1	<u> </u>			9.125.4	<u> </u>			L		L		
129	MW-31@89	01/18/07	2 270+270		0.311.0	1.012.0				8.5±5.4				L				
130	MW-126082	01/10/07	7 360+440		0.411	0,0121	<u> </u>			5.825.4			· · · ·				· ·	·
131	MM-12/092	01/10/07	10 520+550		0.221,1	1.322.9				5.1±7.5				·		L		
122	NW. 1260140	01/10/07	10,0201350	 	-0.121,1	0.713.5	——		·	9.225.4	· · · ·							
11	MM-1201607	01/10/07	10,4001000		0.410	4.879.5		 		3.8±5.4	· · · ·	<u> </u>		• <u>•</u>				
134	MW-3209197	01/10/07	11 000+571		0.411.1	-0.732.1	[<u> </u>		9.3±5.4		<u>, ir</u>				8.6 L	4.5	
135	MALAS POT	070007	420+260	3740 4	0.021.1	<u></u>				5.1±5.4					· · · · ·			·
134	MALAS TO 18	02/09/07	4301230 804220	2000	0.12:0.43	0.212,1	0.712.4	-30145		3.5±3.0	11.3±7.9	0.02±0.09	0.02±0.14	0.04±0.08	-7±30	-0.07±0.22	0.02±0.10	-0.05±0.18
177	MW-38(2)19	0203/07	2 200+250	2.519.1	0.3910.45	0.411.0	0.7:00	30243		0,1 <u>+3.0</u>	6.4±7.8	-0.11±0.11	0.15±0.17	0.11±0.11	-14±32	-0.05±0.21	-0.09±0.10	0.13±0.16
138	MW-54038	05/12/07	1.000+210	3.020,1	12 244	40.322.2	<u>u/12.6</u>	-25145		3.4±3.0	7.7±7.8	0.05±0.09	0.18±0.17	0.00±0.06	27±32	0.14±0.18	-0.03±0.10	-0.02±0.13
139	NW-540059	05/03/07	420+190		12.201.1	10,22				5.5±4.4			· · · ·	·				
140	MW-540125	05/03/07	1 390+220		21 241 5	21410			• • • •	5.314.3								· · · · ·
141	MW-5460148	05/03/07	1 720+240		18 041 3	-10-23				5.244.3	· · · ·		11 A. 1		-			
142	MW-5400174'	05/03/07	1 830+240		10.441.4	1 201 6				3.124.3				·				
143	MW-5460192	05/03/07	1 850+240		22 541 8	0 642 2				0.914.4						·		
144	MW-600037	05/08/07	-40+160			A				0.414.4		<u>`</u>		<u> </u>				
145	MW-600254"	05/08/07	240±170			20+11	<u> </u>				·	·				· · · · · · · · · · · · · · · · · · ·	·	
148	MW-600274	05/08/07	250±170			-25+33									<u> </u>		ļ	
147	MW-60(2137"	05/08/07	290±170			0 2+2 1				——————————————————————————————————————				<u> </u>				
148	MW-60@156	05/08/07	170±170			-0.6+1.7										<u> </u>		
149	MW-60(2)178	05/08/07	840±200			0.0+2.9							<u> </u>					
150	MW-62@55'	05/10/07	340±180			-1.8+3.8	<u> </u>					·			<u> </u>		ļ	
151	MW-62@73	05/10/07	500±180			19+2.2					— —	· · · · · ·					ļ	
152	MW-62@94"	05/10/07	430±180			07+2.3	·										· · · · · ·	
153	MW-62(0140'	05/10/07	410±180			01+16		<u> </u>										
154	MW-62@184'	05/10/07	430±180			21+23	— —	f							· · · ·			
155	MW-83@52	05/15/07	390±180			-3.1+3.6	· · · · · ·									<u> </u>		i
156	MW-63@93"	05/15/07	270±170			-0.5+2.1										·		
157	MW-83@114	05/15/07	390±180			-0.3+1.7									<u> </u>			
158	MW-63@124	05/15/07	630±190			-4.1+3.6						<u> </u>		·			L	
159	MW-63@164	05/15/07	580±190			07+22												
160	MW-630176	05/15/07	680±190			0.2±1.7		· · · ·					· · · · · · · · · · · · · · · · · · ·			<u>}</u>		
161	MW-52(215'	05/17/07	270±170			-2.2+3.5		t						<u>├</u>		·		
162	MW-62@38	05/17/07	190±160			0.0+1.6	<u> </u>							h		ł		
103	MW-83019	05/18/07	250±170			-0.4+2.3	h	1.						h		<u> </u>		
164									-				h	<u> </u>		<u> </u>	ļ	
165	•									·		I	h		}			
166							· · · · · ·	· · · · ·								<u> </u>	1	
167							<u> </u>			·	<u> </u>		h	<u>}</u>	 	I	<u></u>	<u> </u>
168	X0000X					i	r	t			}		<u> </u>		<u> </u>	!		L

. .

NOTE: Reported uncertainties are ± two sigms total propagated uncertainties

Exhibit 4 IPEC-CHM-07-002, Memorandum from S. Sandike, Sr. Chemistry Specialist 10 1. Bums, NEM Supervisor, re: "Dose Assessments from Sr-90 in the Hudson River for Fish and Invertebrates-January 2007 Results" (January 17, 2007).

"Sandike, Steven Richard" <SSandik@entergy.com>

To: "Burns, Thomas F"

dburns1@entergy.com>, "Sachatello, Ronald " <rsach90@entergy.com>, "Adler, Joseph J." <adler@entergy.com>, "Hollenbeck, Peter" <pholl91@entergy.com>, "Quinn; Dennis-M" <dquin91@entergy.com>, <dquinn@daq-inc.com>; "Wilson; Daniel" <DWilson@entergy.com>, "Hinrichs, Gary H" <ghinric@entergy.com>, "Donahue, Patrick J" <PDonahu@entergy.com>, "Gray, Dara F" <DGray@entergy.com> 01/19/2007 5:59:08 PM Date:

Subject:

From:

Assessment of Sr-90 results in fish/inv

All... Dennis Quinn and I have evaluated the lish/inv analyses results with an eye toward a conservative evaluation of dose impact, assuming of course, the recent analytical results are valid. This assessment is by no means final, but this doc provides an initial determination of worst case dose impact, and what IPEC would have to be releasing to produce this kind of concentration in fish.

<<p><<<hr/>chm-07-002.pdf>>

Steve Sandike Effluents / RMS ENN Indian Point Energy Center Buchanan, NY 10511-0308 phone: 914-736-8455 914-734-6010 fax; email: ssandik@entergy.com

CONFIDENTIALITY NOTICE: This electronic message contains information CONFIDENTIALLY NOTICE: This electronic message contains informatic which may be legally confidential and/or privileged and does not in any case represent a firm ENERGY COMMODIPY bid or offer relating thereto which binds the sender without an additional express written confirmation to that effect. The information is intended solely for the individual or entity named above and access by anyone else is unauthorized. If you are not the intended recipient, any disclosure, copying, distribution, or use of the contents of this information is prohibited and may be unauthorized. If you are not used of the contents of this information is prohibited and may be unlawful. If you have received this electronic transmission in error, please reply immediately to the sender that you have received the message in error, and delete it. Thank you. Have a pleasant day.

CC:

<idn@nro.gov>, <dwinslow@gza.com>, "Croulet, Donald K" <dcroule@entergy.com> <mbarvenik@gza.com>

Entergy

Indian Point NPP

Jan 17, 2007 IPEC-CHM-07-002

MEMORANDUM TO:	T. BURNS -NEM SUPERVISOR
FROM:	S. SANDIKE - Sr. CHEMISTRY SPECIALIST
SUBJECT:	DOSE ASSESSMENTS FROM Sr-90 IN THE HUDSON RIV
· · · · ·	FOR FISH AND INVERTEBRATES - JANUARY 2007 RESU

This report summarizes some worst-case assessments of the Sr-90 identified in early reports of the fail, 2006 batch of REMP samples sent to Areva. I used the 24.5 pCl/kg value in white perch and the 13.9 pCl/kg value in blue crab to bound the dose assessment.

This simple evaluation does NOT account or discuss any of the finer elements of error propagation, critical level, environmental BKGD, constants for non-random error, or other improvements we are discussing with labs. It conservatively assumes all fish and crab identified in the recent lab results are consumed by humans at the RG1.109 consumption rate, and at the highest concentrations reported from this batch of samples. Furthermore, we are assuming that these initially reported concentrations are accurate.

Reg Guide 1.109 and ODCM human total Fish Inv percent Fish/Inv mrem/pCl dose usage usage of Conc, Ingestion expected. factor factor annual pCi/kg dose factor annually, kg/yr limit kg/yr mrem Adult 25/14 7.58E-03 21 5 4.41 44.1% Teen 25/14 8.30E-03 16 3.8 3.68 38.8 % 3.27 32.7 % Child 25/14 1.70E-02 8.9 1.7 1.85E-02 0.00 n/a Infant 25/14 Ô 0

With these bounding conditions, we can obtain annual doses as follows:

The dose and usage factors above, obtained from Reg Guide 1.109 are identical to those used in the IPEC ODCMs (we do NOT use site specific data for these values).

This evaluation indicates that should all edible aquatic food in this location be consumed at the rates identified in Regulatory Guide 1.109 (at the highest reported concentrations of Sr-90), the maximum individual annual dose would be about 4.4 mrem, or 44% of the annual bone dose (combining the fish and invertebrate dose contribution at this concentration). If we evaluate ALL the Sr-90 released in liquid effluent from IPEC since 2000, and INCLUDE a conservative assessment of Ground Water's contribution, we can project the IPEC-induced worst case concentration in fish. From the annual effluent reports (Reg Guide 1.21) and the ODCM's Bio-Accumulation Factor for Sr-90, we can conservatively produce the following table:

year	Routine . Sr.90	GW SF903	Totaj Si Si S	Antice Discharge In Cental Onution	Aqriua Di Indri Volume Determinedi	Diured Sr.98 Concentration	Fish Bio-	cell inner expected
	Curies	Curies	Gunder	Volumes	Nater	oligida theo	factor.	fan och dar Second
2000	4.00E-03	3.35E-04	4.34E-03	2.78E+12	2.21E+11	2.95E-03	30	8 865.02.
2001-	5.00E-03	3.35E-04	5.34E-03	2.78E+12	2.21E+11	3.31E-03	30	
2002	2.45E-03	3.35E-04	2.79E-03	2.78E+12	2.21E+11	2.40E-03	30	a.su: 0.5
2003	7.30E-03	3.35E-04	7.84E-03	2.78E+12	2.21E+11	4.14E-03	30	
2004	1.74E-02	3.35E-04	1.77E-02	2.78E+12	2.21E+11	7.77E-03	30	stal ford.
2005	6.42E-04	3.35E-04	9.77E-04	2.78E+12	2.21E+11	1.75E-03	30	
2008	3.80E-04	5.00E-04	8.80E-04	2.78E+12	2.21E+11	2.40E-03	30	3720E9D2
Units	curles	olines.	cutes	filers to	Marere	e) pon-	pCVkg2 per L pGVL	ec.vec

Note: 2006 data is estimated, but should be relatively accurate.

While we should NOT discount the value originally determined by Areva, this evaluation indicates that we must perform additional investigation in an attempt to validate and understand the 25 pCI/L recently identified at our control location in Roseton.

Even in a very conservative model, total IPEC effluent of Sr-90 would need to approach 1.9 curies in a year to produce this concentration in fish. This is over 100 times the highest annual total and higher than the last 7 years combined.

Certainly, a small amount of Strontium can build up in fish over many years. However, since the average age of Hudson Valley White Perch is 3-4 years (and a maximum of approximately 7 years ¹), it is NOT reasonable to assume that IPEC is releasing Sr-90 several hundred times that of the combined conservative measurements without a single effluent or other REMP sample showing this concentration, or the accompanying gamma concentrations. Nonetheless, this scenario should be evaluated along with other, more reasonable possibilities, such as lab error and environmental background components.

Also attached is an independent evaluation from D. Quinn, itemizing dose from each species analyzed.

SS/ss

CC:

J. Adler

P. Donahue D. Gray

D. Wilson

1) Wong, Russell, NC State University, Zoology Dept, 2002; Cooper, 1939; Normandeau, 2007

Evaluation submitted by D. Quinn, of DAQ-inc, Jan 16, 2007

Evaluating 2005 data from the annual effluent report;

Based on ODCM values and 2005 1.21 Report Data

•	•	
Total Sr-90 Released	6.40E-04	CI
Volume of Dilution Water	2.78E+12	flow (L)
		· · · ·
Ci Sr-90 per L of water	2.30E-16	•
Ci - pCi conversion factor	1.00E+12	
Total Sr-90 Released	2.30E-04	pCI/L
	30	BFI (pCI/Kg/pCi/L)
Calculated expected Sr90 in Fish	6.91E-03	pCi/kg

Dennis then evaluated the Strontium dose in ALL species from the last batch of sample results from Areva:

Sample Description	pCl/kg Sr-90 in fish	pCi/kg measured MDC	UF (402/377)	Dfl (mrem/pCl)	Dose (mrem/yr)	Organ	Limit (mrem/yr)	Percent of Limit
IP White Perch - IP 08-575	18.8	9.0	21	7.58E-03	3.0	Bone	10.0	. 30%
IP Oat Fish - IP 06-577	-1.0	8.4	21	7.58E-03	ND	Bone	10.0	NA
IP American Eel - JP 08-579	2.3	7.1	21	7.58E-03	ND	Bone	10.0	NA
IP Sun Fish - IP 08-576	10.2	15.0	21	7.58E-05	NO	Bone	10.0	NA
IP Striped Bass- IP 06-578	42	8.5	21	7.58E-03	ND	Bone	10.0	NÁ
IP Blue Crab - 08-580	4.5	5.7	5	7.58E-03	ND	Bone	10.0	NA
and the second secon			Santo and and a st	STATE CONTRACTOR STATE	arease as to	820.01190.000	CONSTRUCTION OF	19140-1946
Roseton White Perch - IP 08-581	24,5	8.7	21	7.56E-03	3.9	Bone	10.0	39%
Roseton Cat Fish - IP 08-583	2.4	7.8	21	7.58E-03	ND	Bone	10.0	NA
Roseton American Eel - IP 08-585	3.5	4.3	21	7.58E-03	ND	Bone	10.0	NÁ
Roseton Sun Fish IP 08-582	17.1	8.8	21	7.58E-03	2.7	Bone	10.0	27%
Roseton Striped Bass - IP 08-584	2.1	42	. 21	7.58E-00	ND.	Bona	10.0	N/A
Roseton Blue Crab IP 08-582	13.6	11	5	7.58E-03	0.5	Bone	10.0	5%
IF = Usage Factor = 21 kg/yr for adult fi	sh consumption	Unit 3 ODCA	I. Part II. secto	on 2.4.3, and from	n RG 1.109	Table E-5	· · · · ·	
K= Dose conversion factor for nuclide t	(in this case, Sr	-90) for adult (mrem/pCI inge	sted), RG 1.109	Table E-11	and U3 Of	DCM, Table :	3-38
D = Not detectable				11				
A = Not applicable		OF . Does con	weiston taptor for much organie 17, in immediaC	de i, for agé groupe es p (, tions-Tables E-11, 12 i	ī., <u> </u>			
		of Regula	any Guide 1.109			<u> </u>		

Dose from Sr-90 in Fish assuming RG 1.109 Parameters

DECLARATION OF MANNA JO GREENE

I, Manna Jo Greene, declare as follows:

1. My name is Manna Jo Greene; I live at 148 Cottekill Road, Cottekill, NY, and I am a long-standing member of, and now the Environmental Director for, Hudson River Sloop Clearwater, Inc. ("Clearwater") a position I have held since 2000. I served on the Board of Directors for Clearwater for a year before accepting this position.

2. Clearwater is one of the petitioners and has admitted contentions in the above referenced action and I have personal knowledge of the facts stated herein. In my position as Environmental Director, I am directed with responsibility for leading Clearwater's advocacy campaign as it relates to Indian Point. In that role, I have reviewed the environmental report ("ER") submitted by Entergy Nuclear Operations, Inc. with its license renewal application and the Supplement 38 to Generic Environmental Impact Statement for License Renewal for Nuclear Plants, Regarding Indian Point Generating Units 2 and 3 (hereinafter referred to as "DSEIS").

3. Neither the ER nor the DSEIS assess the Hudson River as a source of drinking water.

4. On February 25, 2009, I learned that the New York State Department of Environmental Conservation ("DEC") had sought lead agency status in response to receiving a permit application from United Water New York ("UWNY") seeking to build a desalination plant to extract potable water from the Hudson River and therefore the Hudson River would become a source of drinking water.

5. Under my instructions, we performed research into UWNY's plans and the details about precise proposed plant processes. In addition, Clearwater researched the ability of desalination plants to extract cesium-137, strontium-90 and tritium from contaminated water. Our findings are set forth in this declaration and the annexed motion for leave to add a new contention based on new information.

6. UWNY proposes to desalinate the water using reverse osmosis ("RO"). RO does not remove a noticeable amount of tritium contamination.

7. Since tritium is present as water its concentration will be unchanged by any standard water purification system, which requires the chemical component to be different from pure water. At a WCF (Waste Concentration Facility), suspended solids are removed from the liquid along with a high percentage of radionuclides using a reverse osmosis process. However, because of its chemical properties, tritium is not removed during the process. (www.bnl.gov/ewms/ser/ser_2007.asp).

8. Like normal hydrogen, tritium, an isotope of hydrogen, can bond with oxygen to form water. When this happens, the resulting water (called "tritiated water") is radioactive. Tritiated water (not to be confused with heavy water) is chemically identical to normal water and the tritium cannot be filtered out of the water. (NRC Fact Sheet on Tritium, Radiation Protection Limits, and Drinking Water) <u>http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/tritium-</u>

radiation-fs.html, visited on March 10, 2009.

9. Water purification systems that rely on a coagulation-flocculation process can remove uranium, thorium, plutonium and polonium while the water soluble cations of cesium, strontium and radium pass through the purification process with almost unchanged activity concentrations. (Journal of Environmental Radioactivity, 63, (2002) 105-115). Cesium-137 and strontium-90 are present as water soluble cations and thus cannot be removed by filters based on particle size.

10. Most RO systems are composed of a series of filters. The sediment pre-filter filters by particle size (~larger than 5 microns) and is designed to improve the appearance of water and thus will have no effect on the removal of radioactive materials. The carbon filters, designed to filter chlorine and organic contaminants also will have no effect on radionuclides. Only the reverse osmosis (RO) filter can effectively remove soluble inorganic salts, both naturally occurring as well as those from non-natural sources, for example nuclear power plants.

11. Because the RO filters are semi-permeable membranes that allow water to flow through the membrane the overall salt content of the inflow is decreased. As a result the sodium chloride and calcium chloride concentrations are decreased (key in desalination plants) as well as the concentrations of uranium, radium, strontium and cesium salts (salts of interest in radionuclide contamination).

12. It has been found that the addition of sodium chloride to fresh water samples decreases the effectiveness of removing cesium-137 and strontium-90 (Desalination 157 (2003) 403-407).

13. Given the fact that tritium, strontium-90 and cesium-137 are all beta-emitters, with halflives of 12.26 years, 30.23 years, and 28.1 years, respectively, there is sufficient time for transport prior to significant decay. Any ingested radioisotope is a cause for concern and since tritium, strontium-90 and cesium-137 have been detected in leaks to the Hudson River from IP

an evaluation of their effect on the Hudson River as a drinking source must be evaluated. It is critical that NRC assures a zero margin of error in evaluating Entergy's renewal application, especially in terms of the environmental and health impacts associated with municipal drinking water supplies.

I declare under penalty of perjury that the foregoing is true and correct. Executed this 19th day of March, 2009, at Poughkeepsie, NY.

Manna b Scere Manna Jo Greene

March 19, 2009

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION ATOMIC SAFETY AND LICENSING BOARD

In the	Matter of		Υ.
Enter	gy Nuclear	Operat	tions, Inc.
(India	in Point Nuc	clear G	enerating

Units 2 and 3).

Docket Nos. 50-247-LR and 50-286-LR

CERTIFICATE OF SERVICE

I certify that on March 19, 2009 copies of the foregoing Motion, Petition for New Contention, Declaration of Manna Jo Greene dated March 19, 2009 were served on the following by firstclass mail and e-mail:

Atomic Safety and Licensing Board PanelAtomic Safety and Licensing BoardI	190 Cedar Lane East Ridgeway, CO 81432
Atomic Safety and Licensing Board	Ridgeway, CO 81432
U.S. Nuclear Regulatory Commission	E-mail: <u>Kaye_Lathrop(a)nrc.gov</u>
Washington, D.C. 20555	
E-mail: Lawrence.McDade@nrc.gov	
Richard E. Wardwell	Michael J. Delaney, V.P. – Energy
Atomic Safety and Licensing Board	New York City Econ. Development Corp.
U.S. Nuclear Regulatory Commission	110 William Street
Washington, D.C. 20555	New York, NY 10038
E-mail: <u>Richard.Wardwell@nrc.gov</u> J	E-mail: mdelaney@nycedc.com
John J. Sipos, Esq.	Martin J. O'Neill, Esq.
Assistant Attorney General	Kathryn M. Sutton, Esq.
Office of the New York Attorney General	Paul M. Bessette, Esq.
for the State of New York	Mauri T. Lemoncelli, Esq.
The Capitol	Morgan, Lewis & Bockius, LLP
Albany, NY 12224	1111 Pennsylvania Ave. N.W.
E-mail: John.Sipos@oag.state.ny.us	Washington, D.C. 20004
]	E-mail:
I	martin.oneill@morganlewis.com
	pbessette@morganlewis.com
1	ksutton@morganlewis.com
5. m	

	· · · · · · · · · · · · · · · · · · ·
Diane Curran, Esq.	Office of Commission Appellate Adjudication
Harmon, Curran, Spielberg & Eisenberg, LLP	U.S. Nuclear Regulatory Commission
1726 M. Street NW. Suite 600	Washington, D.C. 20555
Washington, DC 20036	E-mail: OCAAMAIL@nrc.gov
E-mail: dcurran@harmoncurran.com	
Office of the Secretary	William C. Dennis, Esq.
Rulemakings and Adjudications Staff	Entergy Nuclear Operations, Inc.
U.S. Nuclear Regulatory Commission	440 Hamilton Avenue
Washington, D.C. 20555	White Plains, NY 10601
E-mail: <u>HEARINGDOCKET@nrc.gov</u>	E-mail: wdennis@entergy.com
Justin D. Prixme Eco	Ioan Leary Matthews Esa
Assistant County Attorney Litigation Bureau	Senior Attorney for Special Projects
Of Counsel to Charlene M Indelicato Esa	New York State Department
Westchester County Attorney	of Environmental Conservation
148 Martine Avenue 6 th Floor	625 Broadway, 14 th floor
White Plains, NY 10601	Albany, New York 12233-5500
E-mail: jdp3@westchestergov.com	E-mail: jlmatthe@gw.dec.state.ny.us
······································	× · · · · · · · · · · · · · · · · · · ·
Zachary S. Kahn, Esq., Law Clerk	Thomas F. Wood, Esq.
Atomic Safety and Licensing Board Panel	Daniel Riesel, Esq.
U.S. Nuclear Regulatory Commission	Ms. Jessica Steinberg, J.D.
Washington, D.C. 20555	Sive, Paget and Riesel, P.C.
E-mail: Zachary.Kahn@nrc.gov	460 Park Avenue
	New York, NY 10022
	E-mail: driesel@sprlaw.com
Dahard D. Casala Ess	Isteinberg@spriaw.com
Assistant Attorney General	Perional Attorney Region 3
55 Elm Street B.O. Dox 120	New Vork State Department of
Hartford CT 06141.0120	Environmental Conservation
F-mail: Robert Spock@no state et us	21 South Putt Corners
L-man. Robert.Shook@po.state.et.us	New Paltz NV 12561
	F-mail: illuarker@gw.dec.state.nv.us
	D-man. <u>Inparkonogew.doc.stato.ny.us</u>
Elise N. Zoli, Esq.	Janice A. Dean, Esq.
Goodwin Procter, LLP	Assistant Attorney General
53 State Street	Office of the Attorney General
Boston, MA 02109	120 Broadway, 26 th Floor
E-mail: ezoli@goodwinprocter.com	New York, NY 10271
	E-mail: Janice.dean@oag.state.ny.us

Sherwin E. Turk	Daniel E. O'Neill, Mayor
Beth N. Mizuno	James Seirmarco, M.S.
Brian G. Harris	Village of Buchanan
David E. Roth	Municipal Building
Andrea Z. Jones	236 Tate Avenue
Office of General Counsel	Buchanan, NY 10511-1298
Mail Stop: 0-15D21	E-mail: vob@bestweb.net
U.S. Nuclear Regulatory Commission	
Washington, D.C. 20555-0001	There exists where is a final second
E-mail: <u>Sherwin.Turk@nrc.gov;</u>	and and granting at the state
Beth.Mizuno@nrc.gov; brian.harris@nrc.gov;	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
David.Roth@nrc.gov; andrea.jones@nrc.gov;	
Mulan I. Denerstein Esa	Phillin Musegaas Esg
Executive Deputy Attorney General as a start	Victor M Tafur. Esg
120 Broadway 25 th Floor	Deborah Brancato, Esg.
New York, NY 10271	Riverkeeper, Inc.
E-mail: mylan.denerstein@oag.state.ny.us	828 South Broadway
	Tarrytown, NY 10591
	E-Mail: phillip@riverkeeper.org
	vtafur@riverkeeper.org
	dbrancato@riverkeeper.org

3.

Manna & Greene Manna Jo Greene

March 19, 2009