Table 2.6-1

Antelope and JAB Drill Holes

	Rng	Sec	$\text { Map.hole } 10$	North NAD27	EastNAB27	$\text { Log } 1 \mathrm{BD}$	Broject	Area
26	94	13	42	568380.9	701132.5	132	JAB	Carbide
26	94	13	46	568330.8	701136.9	134	JAB	Carbide
26	94	13	47	568173.9	701337.9	190	JAB	Carbide
26	94	13	50	568226.8	701337.8	190	JAB	Carbide
26	94	13	51	568280.9	701339.7	188	JAB	Carbide
26	94	13	52	568183.2	701646.6	188	JAB	Carbide
26	94	13	53	568175.4	701591.3	194	JAB	Carbide
26	94	13	54	568329.0	701339.7	191	JAB	Carbide
26	94	13	55	568381.5	701340.8	188	JAB	Carbide
26	94	13	56	568178.4	701534.1		JAB	Carbide
26	94	13	57	568181.7	701434.0	175	JAB	Carbide
26	94	13	71	568424.7	701232.7	192	JAB	Carbide
26	94	13	72	568434.4	701285.7	190	JAB	Carbide
26	94	13	75	568134.1	701638.6	182	JAB	Carbide
26	94	13	76	567728.1	701442.1	173	JAB	Carbide
26	94	13	77	567791.1	701834.8	182	$J A B$	Carbide
26	94	13	78	567790.5	701636.5	176	JAB	Carbide
26	94	13	79	567840.2	701833.6	183	JAB	Carbide
26	94	13	80	567782.5	701540.7	190	$J A B$.	Carbide
26	94	13	81	567889.8	701834.3	185	JAB	Carbide
26	94	13	82	567787.6	701738.3	187	JAB	Carbide
26	94	13	83	568084.1	701837.6	187	JAB	Carbide
26	94	13	84	567680.6	701089.0	187	JAB	Carbide
26	94	13	85	567676.5	701236.7	191	JAB	Carbide
26	94	13	86	567680.0	701333.3	192	JAB	Carbide
26	94	13	87	567686.5	701448.8	192	$J A B$	Carbide
26	94	13	88	567781.2	701137.9	188	$J A B$	Carbide
26	94	13	89	567825.0	701144.0	189	JAB	Carbide
26	94	13	112	568348.9	702183.7	133	JAB	Carbide
26	94	13	113	568426.2	701789.9	133	$J A B$	Carbide
26	94	13	114	567937.8	701133.6	190	$J A B$	Carbide
26	94	13	119	567984.0	701138.0	189	$J A B$	Carbide
26	94	13	120	568029.7	701136.8	191	$J A B$	Carbide
26	94	13	122	567985.3	701336.0	80	JAB	Carbide
26	94	13	123	568034.3	701335.2	188	JAB	Carbide
26	94	13	124	568131.2	701139.1	190	JAB	Carbide
26	94	13	125	568179.7	701139.0	191	JAB	Carbide
26	94	13	126	567932.4	701239.8	191	JAB	Carbide
26	94	13	127	567983.7	701241.4	190	JAB	Carbide
26	94	13	128	568080.8	701334.4	185	JAB	Carbide
26	94	13	129	567883.2	701430.6	185	JAB	Carbide
26	94	13	130	568031.9	701242.9	190	JAB	Carbide
26	94	13	131	567930.3	701431.3	190	JAB	Carbide
26	94	13	132	567984.0	701432.0	187	$J A B$	Carbide
26	94	13	133	568084.4	701432.2	187	JAB	Carbide
26	94	13	134	568175.4	701240.1	191	JAB	Carbide
26	94	13	135	567986.0	701535.8	189	JAB	Carbide
26	94	13	136	568081.8	701534.2		JAB	Carbide
26	94	13	137	568218.4	701683.3	191	$J A B$	Carbide
26	94	13	138	568216.5	701639.8	189	JAB	Carbide
26	94	13	139	568220.7	701597.0	189	JAB	Carbide
26	94	13	140	568032.9	701637.6	191	$J A B$	Carbide
26	94	13	141	568081.3	701735.7	190	JAB	Carbide
26	94	13	186	567938.1	702138.8	94	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map inole ID	North NAD27	East NAD27	Wekg Tis	Prolect	Areà
26	94	13	187	567986.8	702183.8	95	JAB	Carbide
26	94	13	188	567983.7	702138.4	94	JAB	Carbide
26	94	13	189	568043.1	702137.9	89	JAB	Carbide
26	94	13	190	568096.4	702140.1	96	JAB	Carbide
26	94	13	191	568040.8	702182.6	71	JAB	Carbide
26	94	13	192	568139.3	702140.5	93	JAB	Carbide
26	94	13	193	568195.2	702137.3	96	JAB	Carbide
26	94	13	194	568093.7	702182.5	96	JAB	Carbide
26	94	13	195	567926.7	702235.5	96	JAB	Carbide
26	94	13	196	567981.5	702235.0		JAB	Carbide
26	94	13	197	568139.6	702180.6	96	JAB	Carbide
26	94	13	198	568038.2	702231.8	94	JAB	Carbide
26	94	13	199	568091.0	702227.2	93	JAB	Carbide
26	94	13	200	568139.3	702227.1	82	JAB	Carbide
26	94	13	201	568195.6	702181.6	95	JAB	Carbide
26	94	13	202	568202.3	702285.0	77	JAB	Carbide
26	94	13	203	568197.9	702228.1	96	JAB	Carbide
26	94	13	204	568194.2	701982.8	95	$J A B$	Carbide
26	94	13	205	568193.2	702085.4	95	JAB	Carbide
26	94	13	206	568097.2	701929.4	91	JAB	Carbide
26	94	13	207	568139.7	701926.8	40	JAB	Carbide
26	94	13	208	568089.3	702038.6	95	JAB	Carbide
26	94	13	209	568195.6	701926.6	95	JAB	Carbide
26	94	13	210	568139.1	702032.5	96	$J A B$	Carbide
26	94	13	211	568189.9	701883.6	96	JAB	Carbide
26	94	13	212	568190.5	702037.0	93	JAB	Carbide
26	94	13	213	568138.9	701836.3	96	JAB	Carbide
26	94	13	214	568189.5	701835.1	90	JAB	Carbide
26	94	13	215	568225.6	701540.1		JAB	Carbide
26	94	13	216	568138.0	701781.4	95	JAB	Carbide
26	94	13	217	568188.3	701785.1	95	JAB	Carbide
26	94	13	218	568235.4	701435.1	95	JAB	Carbide
26	94	13	219	568138.4	701734.8	96	JAB	Carbide
26	94	13	220	568285.6	701436.6	95	JAB	Carbide
26	94	13	221	568184.7	701733.2	95	JAB	Carbide
26	94	13	222	567641.9	701946.5	96	$J A B$	Carbide
26	94	13	223	567643.8	702044.1	96	JAB	Carbide
26	94	13	224	567691.0	702041.5	90	JAB	Carbide
26	94	13	225	567686.8	701945.0	95	JAB	Carbide
26	94	13	226	567739.2	701941.2	96	JAB	Carbide
26	94	13	227	567739.4	701836.0	95	JAB	Carbide
26	94	13	228	567737.9	701746.2	95	JAB	Carbide
26	94	13	229	567742.3	702041.8	93	JAB	Carbide
26	94	13	230	567890.8	701733.2	99	$J A B$	Carbide
26	94	13	231	567740.2	702138.7	93	JAB	Carbide
26	94	13	345	567464.6	701808.6	354	$J A B$	Carbide
26	94	13	347	567464.8	701915.6	197	$J A B$	Carbide
26	94	13	348	567465.9	702004.7	352	JAB	Carbide
26	94	13	349	567467.1	702097.5	193	$J A B$	Carbide
26	94	13	351	568387.1	702003.2	353	JAB	Carbide
26	94	13	352	567580.2	702043.2	198	JAB	Carbide
26	94	13	353	567591.6	701938.0	195	JAB	Carbide
26	94	13	354	567586.7	701889.6	195	JAB	Carbide
26	94	13	355	568464.8	701599.9		JAB	Carbide

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Mapgole, ID	North NAD 27	East NAB27	LogTD	Project	Area
26	94	13	373	566839.3	701155.0	255	JAB	Carbide
26	94	13	375	566845.3	701973.3	255	JAB	Carbide
26	94	13	380	567920.3	701725.6	103	JAB	Carbide
26	94	13	425	568727.2	701077.2	137	JAB	Carbide
26	94	13	427	568637.8	701080.3	137	JAB	Carbide
26	94	13	428	568644.6	701180.1	137	JAB	Carbide
26	94	13	429	568733.0	701279.5	109	JAB	Carbide
26	94	13	430	568735.8	701478.8	137	JAB	Carbide
26	94	13	431	568484.3	701133.6	137	$J A B$	Carbide
26	94	13	432	568489.2	701234.5	137	JAB	Carbide
26	94	13	433	568494.1	701335.5	137	JAB	Carbide
26	94	13	434	568742.1	701678.3	137	JAB	Carbide
26	94	13	435	568346.0	701681.8	137	JAB	Carbide
26	94	13	436	568436.5	701479.5	137	JAB	Carbide
26	94	13	437	568341.3	701581.5	137	JAB	Carbide
26	94	13	438	568295.6	701882.2	132	JAB	Carbide
26	94	13	439	568306.4	702104.3	135	JAB	Carbide
26	94	13	440	568390.6	702484.1	285	JAB	Carbide
26	94	13	441	568041.4	702384.5	155	JAB	Carbide
26	94	13	442	568191.4	702485.8	156	JAB	Carbide
26	94	13	443	568241.0	702382.7	154	$J A B$	Carbide
26	94	13	444	568140.6	702381.7	155	JAB	Carbide
26	94	13	471	566752.0	702397.2	157	JAB	Carbide
26	94	13	477	566942.8	702198.3		JAB	Carbide
26	94	13	667	568971.3	701289.3	138	JAB	Carbide
26	94	13	668	568971.2	701187.1	138	JAB	Carbide
26	94	13	670	568970.7	701084.9	138	JAB	Carbide
26	94	13	673	568875.0	701280.6	137	JAB	Carbide
26	94	13	675	568874.1	701180.8	138	JAB	Carbide
26	94	13	677	568873.2	701077.4	138	$J A B$	Carbide
26	94	13	731	569199.6	701330.8	300	JAB	Carbide
26	94	13	732	569211.2	701731.4	300	JAB	Carbide
26	94	13	733	569224.0	702135.5	300	JAB	Carbide
26	94	13	762	570014.3	701320.8	300	JAB	Carbide
26.	94	13	763	570027.5	70.1725 .1	301	$J A B$	Carbide
26	94	13	764	570038.5	702126.5	300	$J A B$	Carbide
26	94	13	927	568568.8	701110.6	140	JAB	Carbide
26	94	13	929	568671.7	701275.7	140	$J A B$	Carbide
26	94	13	931	568580.7	701282.4	23	$J A B$	Carbide
26	94	13	1075	568480.1	701426.4	139	$J A B$	Carbide
26	94	13	1076	568384.0	701427.7	150	JAB	Carbide
26	94	13	1077	568486.0	701523.0		JAB	Carbide
26	94	13	1078	568385.6	701524.6		JAB	Carbide
26	94	13	1079	568388.4	701622.3		JAB	Carbide
26	94	13	1080	568441.3	701668.4		JAB	Carbide
26	94	13	1081	568280.7	701582.4	140	$J A B$	Carbide
26	94	13	1082	568285.8	701675.1	140	JAB	Carbide
26	94	13	1083	568383.9	701723.8		JAB	Carbide
26	94	13	1084	568313.5	701784.0	139	$J A B$	Carbide
26	94	13	1085	568338.3	701935.3	140	JAB	Carbide
26	94	13	6-39	566946.5	702491.0	139	JAB	Carbide
26	94	13	7-39	567043.6	702492.3	119	JAB	Carbide
26	94	13	8-39	567146.2	702490.7	119	JAB	Carbide
26	94	13	9-39	567250.3	702490.5	122	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 1 D	North NAD 27	East NAB27.	LogTB	Prolect	Area
26	94	13	10-39	567343.9	702487.5	119	JAB	Carbide
26	94	13	11-39	567445.1	702487.3		JAB	Carbide
26	94	13	12-39	567539.1	702486.1	120	JAB	Carbide
26	94	13	6-40	566945.7	702395.2	119	JAB	Carbide
26	94	13	7-40	567043.8	702393.9	119	JAB	Carbide
26	94	13	8-40	567144.6	702392.7	119	JAB	Carbide
26	94	13	11-40	567442.3	702388.9	120	JAB	Carbide
26	94	13	12-40	567545.0	702387.6	120	JAB	Carbide
26	94	13	6-41	566944.0	702294.1	119	JAB	Carbide
26	94	13	7-41	567042.9	702291.4	129	JAB	Carbide
26	94	13	8-41	567144.0	702288.6	118	JAB	Carbide
26	94	13	9-41	567242.9	702290.8	119	JAB	Carbide
26	94	13	10-41	567343.7	702290.2	120	JAB	Carbide
26	94	13	11-41	567441.8	702289.0	118	JAB	Carbide
26	94	13	12-41	567546.0	702289.2	120	JAB	Carbide
26	94	13	12-48	567536.1	701589.1		JAB	Carbide
26	94	13	12-49	567535.2	701489.6		JAB	Carbide
26	94	13	10.5-39	567392.3	702487.8	129	JAB	Carbide
26	94	13	10.5-40	567391.8	702389.7	120	JAB	Carbide
26	94	13	10.5-41	567392.8	702288.3	119	JAB	Carbide
26	94	13	11.5-39	567493.0	702485.0	120	JAB	Carbide
26	94	13	11.5-40	567491.0	702387.7	120	JAB	Carbide
26	94	13	11.5-41	567490.5	702287.8	118	$J A B$	Carbide
26	94	13	12.5-39	567592.3	702486.0	120	JAB	Carbide
26	94	13	12.5-41	567596.9	702288.4		JAB	Carbide
26	94	13	12.5-42	567594.9	702187.7		JAB	Carbide
26	94	13	12.5-43	567578.7	702088.7		$J A B$	Carbide
26	94	13	12.5-44	567584.2	701987.3		JAB	Carbide
26	94	13	12.5-48	567586.6	701589.4		JAB	Carbide
26	94	13	12.5-49	567587.3	701490.6		$J A B$	Carbide
26	94	13	13.5-39	567694.6	702485.1	119	JAB	Carbide
26	94	13	13.5-39.5	567704.6	702433.9		JAB	Carbide
26	94	13	13.5-40	567694.1	702385.6	118	JAB	Carbide
26	94	13	13.5-41	567693.6	702286.4		JAB	Carbide
26	94	13	13.5-42	567695.3	702187.2		$J A B$	Carbide
26	94	13	13.5-43	567688.8	702087.0		JAB	Carbide
26	94	13	13.5-44	567689.1	701988.9	123	JAB	Carbide
26	94	13	13.5-45	567690.0	701887.5	121	$J A B$	Carbide
26	94	13	13.5-46	567691.0	701786.9		$J \mathrm{AB}$	Carbide
26	94	13	13.5-48	567685.9	701587.8		JAB	Carbide
26	94	13	13.5-49	567686.1	701487.5	119	JAB	Carbide
26	94	13	13.5-50	567682.6	701386.9		JAB	Carbide
26	94	13	13.5-51	567678.0	701282.9		JAB	Carbide
26	94	13	13.5-52	567681.5	701189.6		JAB	Carbide
26	94	13	13.5-52.5	567674.9	701148.0	115	JAB	Carbide
26	94	13	13-39	567645.5	702484.8	105	JAB	Carbide
26	94	13	13-40	567644.6	702387.9	119	JAB	Carbide
26	94	13	13-41	567643.7	702286.8		JAB	Carbide
26	94	13	13-43	567643.5	702087.4		JAB	Carbide
26	94	13	13-44	567640.0	701988.6	119	$J A B$	Carbide
26	94	13	13-45	567639.1	701889.8	121	$J A B$	Carbide
26	94	13	13-48	567633.5	701589.0		JAB	Carbide
26	94	13	14.5-39	567805.8	702483.0	120	JAB	Carbide
26	94	13	14.5-41	567798.5	702288.1		JAB	Carbide

Uranium One Americas

Table 2.6-1
Antelope and JAB Drill Holes

	Ring	Sec	Map. HolesiD	North NAD27	East NAB2?	LogTD	Project	Area
26	94	13	14.5-41.5	567794.6	702232.6		JAB	Carbide
26	94	13	14.5-42	567788.6	702185.7		JAB	Carbide
26	94	13	14.5-42.5	567790.8	702137.2		JAB	Carbide
26	94	13	14.5-43	567792.9	702086.8		JAB	Carbide
26	94	13	14.5-43.5.	567786.9	702038.0		JAB	Carbide
26	94	13	14.5-44	567790.2	701986.9	120	JAB	Carbide
26	94	13	14.5-44.5	567787.9	701941.1	97	JAB	Carbide
26	94	13	14.5-45	567790.4	701886.3	120	JAB	Carbide
26	94	13	14.5-46	567789.5	701786.7	120	JAB	Carbide
26	94	13	14.5-47	567784.9	701688.4	119	JAB	Carbide
26	94	13	14.5-48	567786.3	701586.9	118	JAB	Carbide
26	94	13	14.5-49	567784.3	701485.5	120	JAB	Carbide
26	94	13	14.5-49.5	567785.0	701437.1	100	JAB	Carbide
26	94	13	14.5-50	567784.1	701386.4	120	$J A B$	Carbide
26	94	13	14.5-50.5	567786.4	701335.9	88	JAB	Carbide
26	94	13	14.5-51	567783.3	701289.3	120	JAB	Carbide
26	94	13	14.5-51.5	567779.4	701243.8	93	JAB	Carbide
26	94	13	14.5-52	567784.4	701187.5	120	JAB	Carbide
26	94	13	14-39	567747.0	702483.5	120	JAB	Carbide
26	94	13	14-40	567744.3	702387.4	119	$J A B$	Carbide
26	94	13	14-41	567746.4	702286.7		$J A B$	Carbide
26	94	13	14-42	567745.9	702186.0		JAB	Carbide
26	94	13	14-43	567740.5	702086.9		$J A B$	Carbide
26	94	13	14-44	567738.9	701987.4	119	JAB	Carbide
26	94	13	14-45	567740.2	701887.1	120	JAB	Carbide
26	94	13	14-46	567737.1	701787.9		JAB	Carbide
26	94	13	14-47	567735.0	701671.3		JAB	Carbide
26	94	13	14-48	567736.8	701587.7	119	JAB	Carbide
26	94	13	14-49	567734.4	701486.0	120	$J A B$	Carbide
26	94	13	14-50.5	567736.1	701331.7	96	JAB	Carbide
26	94	13	14-51	567732.3	701290.1	120	JAB	Carbide
26	94	13	14-51.5	567731.8	701.238 .9	115	$J A B$	Carbide
26	94	13	14-52	567732.2	701189.5	119	JAB	Carbide
26	94	13	14-52.5	567728.2	701140.6	115	JAB	Carbide
26.	94	13	14-53	567730.5	701089.0	.	JAB	Carbide
26	94	13	15.5-41	567891.1	702283.1		JAB	Carbide
26	94	13	15.5-41.5	567887.6	702231.6	100	JAB	Carbide
26	94	13	15.5-42	567896.4	702183.8		$J A B$	Carbide
26	94	13	15.5-42.5	567891.3	702136.2		JAB	Carbide
26	94	13	15.5-43	567887.1	702085.1		$J A B$	Carbide
26	94	13	15.5-43.5	567893.1	702035.8	97	$J A B$	Carbide
26	94	13	15.5-44	567890.4	701987.3	120	JAB	Carbide
26	94	13	15.5-44.5	567886.5	701930.5	159	JAB	Carbide
26	94	13	15:5-45	567888.7	701884.7	120	JAB	Carbide
26	94	13	15.5-46	567887.9	701785.5	119	JAB	Carbide
26	94	13	15.5-47	567887.4	701686.2	119	JAB	Carbide
26	94	13	15.5-47.5	567885.7	701633.6		JAB	Carbide
26	94	13	15.5-48	567882.7	701587.1	117	$J A B$	Carbide
26	94	13	15.5-48.5	567889.5	701537.8	99	JAB	Carbide
26	94	13	15.5-49	567883.7	701486.3	119	JAB	Carbide
26	94	13	15.5-50	567881.6	701385.2	120	$J A B$	Carbide
26	94	13	15.5-50.5	567884.8	701340.5	97	JAB	Carbide
26	94	13	15.5-51	567887.9	701290.1	120	JAB	Carbide
26	94	13	15.5-51.5	567885.9	701245.8	96	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

	Rng	Sec	Map Hole. ID	North NAD27	East NAB27	logeD	Project	Area
26	94	13	15.5-52	567877.4	701186.8	120	JAB	Carbide
26	94	13	15.5-52.5	567880.2	701142.9	96	JAB	Carbide
26	94	13	15.5-53	567884.1	701088.2	119	JAB	Carbide
26	94	13	15-39.5	567850.3	702427.1	84	$J A B$	Carbide
26	94	13	15-41	567845.3	702285.4		JAB	Carbide
26	94	13	15-41.5	567844.8	702230.6		$J A B$	Carbide
26	94	13	15-42	567842.1	702183.7		JAB	Carbide
26	94	13	15-42.5	567845.5	702138.2		JAB	Carbide
26	94	13	15-43	567843.1	702087.1		$J A B$	Carbide
26	94	13	15-43.5	567840.8	702036.8	100	JAB	Carbide
26	94	13	15-44	567840.8	701987.2	117	JAB	Carbide
26	94	13	15-44.5	567842.9	701933.9	116	JAB	Carbide
26	94	13	15-45	567841.4	701886.2	120	JAB	Carbide
26	94	13	15-46	567840.5	701786.3	119	JAB	Carbide
26	94	13	15-46.5	567838.9	701736.3	97	JAB	Carbide
26	94	13	15-47	567837.7	701687.9	119	JAB	Carbide
26	94	13	15-47.5	567835.8	701637.6	96	JAB	Carbide
26	94	13	15-48	567834.2	701586.5	118	JAB	Carbide
26	94	13	15-48.5	567834.2	701538.4	98	JAB	Carbide
26	94	13	15-49	567834.8	701486.6	120	JAB	Carbide
26	94	13	15-49.5	567832.1	701434.4	101	$J A B$	Carbide
26	94	13	15-50	567833.9	701384.5	120	JAB	Carbide
26	94	13	15-50.5	567831.0	701337.8	100	JAB	Carbide
26	94	13	15-51	567832.5	701288.1	120	$J A B$	Carbide
26	94	13	15-51.5	567826.7	701244.2	96	$J A B$	Carbide
26	94	13	15-52	567833.1	701186.3	120	JAB	Carbide
26	94	13	15-53	567831.1	701088.9	117	JAB	Carbide
26	94	13	16.5-41	567988.4	702283.4	120	JAB	Carbide
26	94	13	16.5-43	567988:6	702084.6		$J A B$	Carbide
26	94	13	16.5-43.5	567985.5	702037.3	92	JAB	Carbide
26	94	13	16.5-44	567991.5	701985.3	120	JAB	Carbide
26	94	13	16.5-44.5	567985.7	701929.6	103	$J A B$	Carbide
26	94	13	16.5-45	567986.4	701884.6	120	$J A B$	Carbide
26	94	13	16.5-45.5	567984.8	701834.6	97	JAB	Carbide
26	94	13	16.5-46	567983.3	701785.0	121	JAB	Carbide
26	94	13.	16.5-46.5	567983.2	701730.8	97	JAB	Carbide
26	94	13	16.5-47	567983.5	701683.9	118	JAB	Carbide
26	94	13	16.5-47.5	567990.7	701631.5	97	JAB	Carbide
26	94	13	16.5-48	567982.6	701584.3	118	JAB	Carbide
26	94	13	16.5-49	567981.0	701483.1	120	JAB	Carbide
26	94	13	16.5-50	567983.6	701385.0	120	$J A B$	Carbide
26	94	13	16.5-51	567983.3	701287.3	119	JAB	Carbide
26	94	13	16.5-52	567983.2	701187.9	120	JAB	Carbide
26	94	13	16.5-53	567978.8	701088.5	120	JAB	Carbide
26	94	13	16-39.5	567941.1	702433.4		$J A B$	Carbide
26	94	13	16-41	567941.7	702283.4		JAB	Carbide
26	94	13	16-42	567937.4	702186.2		JAB	Carbide
26	94	13	16-43	567941.1	702085.4		JAB	Carbide
26	94	13	16-43.5	567937.6	702038.5	98	$J A B$	Carbide
26	94	13	16-44	567941.3	701985.4	119	JAB	Carbide
26	94	13	16-44.5	567943.6	701931.2	96	JAB	Carbide
26	94	13	16-45	567938.2	701883.9	115	JAB	Carbide
26	94	13	16-45.5	567932.3	701833.5	97	$J A B$	Carbide
26	94	13	16-46	567934.2	701785.8	119	JAB	Carbide

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole, II	North NA D27	East NAD27	WhegTher	Project	Area
26	94	13	16-46.5	567934.1	701731.6	96	$J A B$	Carbide
26	94	13	16-47	567935.6	701684.3	117	JAB	Carbide
26	94	13	16-47.5	567939.8	701632.3	211	JAB	Carbide
26	94	13	16-48	567939.0	701584.6	118	JAB	Carbide
26	94	13	16-48.5	567934.3	701538.9	83	$J A B$	Carbide
26	94	13	16-49	567931.2	701484.7	121	JAB	Carbide
26	94	13	16-50	567932.2	701384.7	121	JAB	Carbide
26	94	13	16-50.5	567928.5	701336.5	97	JAB	Carbide
26	94	13	16-51	567930.4	701287.4	120	JAB	Carbide
26	94	13	16-52	567931.1	701188.3	119	JAB	Carbide
26	94	13	16-53	567930.6	701086.2	120	JAB	Carbide
26	94	13	17.5-39	568095.9	702483.2	19	JAB	Carbide
26	94	13	17.5-41	568089.2	702283.3	119	JAB	Carbide
26	94	13	17.5-43	568095.2	702092.8		JAB	Carbide
26	94	13	17.5-44	568089.6	701983.7		JAB	Carbide
26	94	13	17.5-45	568086.1	701883.3		JAB	Carbide
26	94	13	17.5-46	568083.3	701783.7		JAB	Carbide
26	94	13	17.5-47	568087.0	701684.9	117	JAB	Carbide
26	94	13	17.5-47.5	568084.6	701636.0	93	JAB	Carbide
26	94	13	17.5-48	568081.9	701586.1	119	$J A B$	Carbide
26	94	13	17.5-49	568083.3	701483.8	120	JAB	Carbide
26	94	13	17.5-50	568082.0	701384.5	120	JAB	Carbide
26	94	13	17.5-51	568082.8	701286.4	119	JAB	Carbide
26	94	13	17.5-51.5	568083.9	701241.3	96	JAB	Carbide
26	94	13	17.5-52	568085.1	701186.6	120	JAB	Carbide
26	94	13	17.5-52.5	568085.0	701136.3	97	JAB	Carbide
26	94	13	17.5-53	568081.8	701088.4	119	JAB	Carbide
26	94	13	17-41	568039.4	702282.2	119	JAB	Carbide
26	94	13	17-43	568040.3	702084.9		$J A B$	Carbide
26	94	13	17-43.5	568034.9	702035.3	88	JAB	Carbide
26	94	13	17-44	568039.4	701984.9	119	JAB	Carbide
26	94	13	17-44.5	568035.9	701929.2	96	JAB	Carbide
26	94	13	17-45	568035.9	701883.4	95	JAB	Carbide
26	94	13	17-45.5	568037.0	701834.9	95	JAB	Carbide
26	94	13	17-46	568035.8	701784.9	118	JAB	Carbide
26	94	13	17-46.5	568033.8	701732.3	97	JAB	Carbide
26	94	13	17-47	568034.9	701682.7	118	JAB	Carbide
26	94	13	17-48	568031.2	701577.3	118	JAB	Carbide
26	94	13	17-48.5	568036.2	701531.9	96	JAB	Carbide
26	94	13	17-49	568037.3	701486.1	120	JAB	Carbide
26	94	13	17-49.5	568034.6	701432.7	97	JAB	Carbide
26	94	13	17-50	568034.1	701386.1	120	JAB	Carbide
26	94	13	17-51	568033.0	701286.5		JAB	Carbide
26	94	13	17-52	568032.5	701185.5	121	JAB	Carbide
26	94	13	17-53	568030.1	701087.7	120	JAB	Carbide
26	94	13	18.5-47	568186.2	701682.5		$J A B$	Carbide
26	94	13	18.5-49	568181.4	701481.0		JAB	Carbide
26	94	13	18.5-50	568183.2	701383.3		$J A B$	Carbide
26	94	13	18.5-51	568181.8	701284.0	121	JAB	Carbide
26	94	13	18.5-52	568180.9	701187.3	120	JAB	Carbide
26	94	13	18.5-53	568182.4	701084.7	119	JAB	Carbide
26	94	13	18-41	568140.5	702282.1	119	JAB	Carbide
26	94	13	18-43	568138.0	702084.0		JAB	Carbide
26	94	13	18-44	568140.2	701983.6		JAB	Carbide

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Ring	Sec	Maphole 1 D	North NAD27	East NAD27		Project	Area
26	94	13	18-45	568136.6	701881.7		JAB	Carbide
26	94	13	18-47	568136.0	701684.4		JAB	Carbide
26	94	13	18-48	568135.2	701586.3	119	JAB	Carbide
26	94	13	18-48.5	568123.6	701536.1		$J A B$	Carbide
26	94	13	18-49	568130.4	701482.6	120	$J A B$	Carbide
26	94	13	18-49.5	568133.4	701433.7	97	JAB	Carbide
26	94	13	18-50	568133.7	701382.2	119	JAB	Carbide
26	94	13	18-50.5	568128.5	701334.3	97	JAB	Carbide
26	94	13	18-51	568136.8	701284.0	119	JAB	Carbide
26	94	13	18-51.5	568130.1	701242.0	86	JAB	Carbide
26	94	13	18-52	568128.4	701186.2	119	JAB	Carbide
26	94	13	18-53	568131.5	701086.4	120	JAB	Carbide
26	94	13	19.5-49	568281.8	701482.0		$J A B$	Carbide
26	94	13	19.5-50	568282.0	701382.0		JAB	Carbide
26	94	13	19.5-51	568278.8	701283.5	119	JAB	Carbide
26	94	13	19.5-51.5	568274.8	701237.6	95	$J A B$	Carbide
26	94	13	19.5-52	568284.3	701185.6		JAB	Carbide
26	94	13	19.5-52.5	568287.4	701134.9	96	$J A B$	Carbide
26	94	13	19.5-53	568282.6	701085.0	119	JAB	Carbide
26	94	13	19-47	568237.2	701683.2		JAB	Carbide
26	94	13	19-49	568233.1	701480.1		$J A B$	Carbide
26	94	13	19-50	568232.2	701382.8		JAB	Carbide
26	94	13	19-51	568231.9	701283.1	120	JAB	Carbide
26	94	13	19-51.5	568231.1	701238.8	96	JAB	Carbide
26	94	13	19-52	568229.0	701186.1		JAB	Carbide
26	94	13	19-52.5	568225.0	701134.3	92	$J A B$	Carbide
26	94	13	19-53.	568230.5	701084.3	120	JAB	Carbide
26	94	13	20.5-51	568380.3	701285.0		$J A B$	Carbide
26	94	13	20.5-51.5	568383.0	701231.9	97	$J A B$	Carbide
26.	94	13	20.5-52	568380.9	701180.8		JAB	Carbide
26	94	13	20.5-53	568377.7	701082.2 .		$J A B$	Carbide
26	94	13	20-49	568334.2	701480.4		$J A B$	Carbide
26	94	13	20-51	568330.5	701283.4	120	JAB	Carbide
26	94	13	20-51.5	568328.1	701234.7		$J A B$	Carbide
26	94	13	20-52	568328.5	701184.4		$J A B$	Carbide
26	94	13	20-53	568329.1	701082.2	118	JAB	Carbide
26	94	13	21.5-53	568479.9	701082.9		JAB	Carbide
26	94	13	21-52	568429.1	701181.6		JAB	Carbide
26	94	13	21-52.5	568423.1	701134.9	96	JAB	Carbide
26	94	13	21-53	568427.0	701082.2		JAB	Carbide
26	94	13	22-46	568535.4	701783.2		JAB	Carbide
26	94	13	22-46.5	568530.0	701730.9		JAB	Carbide
26	94	13	22-47	568534.9	701680.9		JAB	Carbide
26	94	13	22-47.5	568534.0	701630.5		JAB	Carbide
26	94	13	22-48	568534.4	701582.4		JAB	Carbide
26	94	13	22-48.5	568532.7	701525.6		JAB	Carbide
26	94	13	22-50	568532.2	701378.7		JAB	Carbide
26	94	13	22-51	568529.8	701280.1		$J A B$	Carbide
26	94	13	22-51.5	568528.0	701214.0		JAB	Carbide
26	94	13	22-52.5	568529.3	701140.3		JAB	Carbide
26	94	13	22-53	568529.6	701084.8		JAB	Carbide
26	94	13	6.5-39	566993.7	702493.2	118	JAB	Carbide
26	94	13	6.5-40	566996.6	702394.0	119	$J A B$	Carbide
26	94	13	6.5-41	566992.3	702293.3	118	$J A B$	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

		Sec	Map Hole ID	North NAD27	East NAD27	$\log 10$	Project	Area
26	94	13	-7.5-39	567094.5	702491.9	-118	JAB	Carbide
26	94	13	7.5-40	567094.4	702393.8	119	JAB	Carbide
26	94	13	7.5-41	567094.2	702293.2	129	JAB	Carbide
26	94	13	8.5-39	567195.6	702489.9	120	JAB	Carbide
26	94	13	8.5-40	567196.6	702391.8	119	JAB	Carbide
26	94	13	8.5-41	567192.8	702291.9	118	JAB	Carbide
26	94	13	9.5-39	567291.5	702488.7	119	JAB	Carbide
26	94	13	9.5-41	567282.6	702284.4	118	JAB	Carbide
26	94	14	1	567867.8	700541.3	114	JAB	Carbide
26	94	14	2	567925.8	700542.8	129	JAB	Carbide
26	94	14	3	568047.7	700289.4	186	JAB	Carbide
26	94	14	4	568028.6	700292.0	188	$J A B$	Carbide
26	94	14	5	568023.7	700541.9	130	$J A B$	Carbide
26	94	14	6	568009.9	700289.7		JAB	Carbide
26	94	14	7	567985.7	700290.0	190	JAB	Carbide
26	94	14	8	567948.7	700291.5	186	JAB	Carbide
26	94	14	9	567928.4	700290.5	142	$J A B$	Carbide
26	94	14	10	568069.0	700538.4	130	JAB	Carbide
26	94	14	11	567778.8	700733.7	130	JAB	Carbide
26	94	14	12	567827.2	700734.4	130	JAB	Carbide
26	94	14	15	567873.9	700737.3	103	JAB	Carbide
26	94	14	16	567929.9	700735.6	129	JAB	Carbide
26	94	14	17	567828.2	700934.8	130	JAB	Carbide
26	94	14	18	567876.0	700934.9	130	JAB	Carbide
26	94	14	19	567926.9	700936.5	131	JAB	Carbide
26	94	14	20	567975.3	700738.0	130	JAB	Carbide
26	94	14	21	568030.2	700737.1	130	JAB	Carbide
26	94	14	22	567979.8	700935.6	126	JAB	Carbide
26	94	14	23	568024.4	700936.4	128	JAB	Carbide
26	94	14	24	568081.5	700738.7	130	JAB	Carbide
26	94	14	25	568130.0	700736.3	131	JAB	Carbide
26	94	14	26	568080.4	700932.7	128	JAB	Carbide
26	94	14	27	568129.0	700933.1	130	JAB	Carbide
26	94	14	28	568173.4	700735.9	130	JAB	Carbide
26	94	14	29	568227.8	700735.8	130	JAB	Carbide
26	94	14	30	568179.5	700933.5		JAB	Carbide
26	94	14	31	568274.8	700733.0		JAB	Carbide
26	94	14	43	568378.4	701029.9	139	JAB	Caribide
26	94	14	44	568231.6	700932.6	130	JAB	Carbide
26	94	14	45	568274.5	700931.8	130	JAB	Carbide
26	94	14	48	568327.4	700932.5	129	JAB	Carbide
26	94	14	49	567.780 .8	701042.3	132	JAB	Carbide
26	94	14	58	567841.0	700395.4	287	$J A B$	Carbide
26	94	14	59	567975.4	700391.4	285	JAB	Carbide
26	94	14	60	567886.7	700341.1	195	JAB	Carbide
26	94	14	61	567924.5	700341.6	190	JAB	Carbide
26	94	14	62	567975.7	700339.2	196	JAB	Carbide
26	94	14	63	568025.9	700337.9	195	JAB	Carbide
26	94	14	64	568072.4	700338.3	195	JAB	Carbide
26	94	14	65	568024.7	700391.0	176	JAB	Carbide
26	94	14	66	568073.6	700389.8	293	JAB	Carbide
26	94	14	67	567877.0	700239.4	180	JAB	Carbide
26	94	14	68	568022.4	700438.6	194	JAB	Carbide
26	94	14	70	567974.9	700242.9	195	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole iD	North NAD 27	East NAD27	loggo	Project	Area
26	94	14	73	568021.8	700240.1	180	JAB	Carbide
26	94	14	74	567962.8	700271.2	185	$J A B$	Carbide
26	94	14	115	567982.3	701037.0	190	JAB	Carbide
26	94	14	116	568027.6	701036.2	189	JAB	Carbide
26	94	14	117	568129.9	701036.1	189	JAB	Carbide
26	94	14	118	568183.1	701034.8	189	JAB	Carbide
26	94	14	121	568281.4	701031.2	183	$J A B$	Carbide
26	94	14	142	567835.5	700841.8	191	JAB	Carbide
26	94	14	143	567875.6	700840.7	190	JAB	Carbide
26	94	14	144	567879.9	700650.5	186	JAB	Carbide
26	94	14	145	567935.5	700646.5	187	JAB	Carbide
26	94	14	146	567982.4	700645.3	190	JAB	Carbide
26	94	14	147	567934.4	700840.2	192	JAB	Carbide
26	94	14	148	567974.6	700838.6	191	JAB	Carbide
26	94	14	149	568026.3	700837.4	189	JAB	Carbide
26	94	14	150	568027.0	700643.7	187	$J A B$	Carbide
26	94	14	151	568075.1	700642.9	212	$J A B$	Carbide
26	94	14	152	568124.4	700638.9	190	$J A B$	Carbide
26	94	14	153	568074.8	700836.6	189	JAB	Carbide
26	94	14	154	568123.7	700833.7	191	JAB	Carbide
26	94	14	155	568175.0	700834.1		JAB	Carbide
26	94	14	156	568177.3	700637.6	188	JAB	Carbide
26	94	14	157	568229.3	700634.4	191	JAB	Carbide
26	94	14	158	568124.7	700541.0	190	JAB	Carbide
26	94	14	159	568174.0	700539.8		JAB	Carbide
26	94	14	160	568231.9	700831.6	188	$J A B$	Carbide
26	94	14	161	568277.2	700830.8	186	JAB	Carbide
26	94	14	162	568329.7	700831.9		JAB	Carbide
26	94	14	163	568073.5	700288.8	246	JAB	Carbide
26	94	14	164	568130.4	700289.1	253	JAB	Carbide
26	94	14	165	568126.2	700437.6	273	JAB	Carbide
26	94	14	166	568125.3	700388.9	264	JAB	Carbide
26	94	14	167	568127.7	700336.6	267	JAB	Carbide
26	94	14	168	567904.3	700264.1	266	JAB	Carbide
26	94	14	169	567873.4	700129.0	254	JAB	Carbide
26	94	14	170	567928.3	700135.9	253	JAB	Carbide
26	94	14	171	567979.0	700140.1	257	JAB	Carbide
26	94	14	172	568025.7	700141.4	256	JAB	Carbide
26	94	14	173	567997.4	700266.5	277	JAB	Carbide
26	94	14	174	567876.6	700190.3	198	JAB	Carbide
26	94	14	176	568069.9	700143.9	151	JAB	Carbide
26	94	14	178	568070.8	700198.9	190	JAB	Carbide
26	94	14	179	568070.0	700242.1	187	JAB	Carbide
26	94	14	181	568027.4	700195.3	188	JAB	Carbide
26	94	14	183	567773.8	700428.9	190	JAB	Carbide
26	94	14	184	567818.3	700342.2	190	JAB	Carbide
26	94	14	232	567995.7	700842.4	134	JAB	Carbide
26	94	14	233	568175.1	700432.9	214	JAB	Carbide
26	94	14	234	568226.2	700330.2	195	JAB	Carbide
26	94	14	235	568225.5	700287.4	192	JAB	Carbide
26	94	14	236	568223.8	700233.2	195	JAB	Carbide
26	94	14	237	568229.1	700384.1	215	JAB	Carbide
26.	94	14	238	568223.4	700186.9	195	JAB	Carbide
26	94	14	239	568223.9	700138.6	195	JAB	Carbide

Uranium One Americas

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	North NAD27	East NAD27	LogTD	Project	Area
26	94	14	240	568177.4	700386.9	195	JAB	Carbide
26	94	14	241	568176.5	700331.4	195	$J A B$	Carbide
26	94	14	242	568357.4	700029.8	193	JAB	Carbide
26	94	14	243	568303.2	700027.1	195	$J A B$	Carbide
26	94	14	244	568247.3	700028.3	194	JAB	Carbide
26	94	14	245	568175.3	700286.3	195	JAB	Carbide
26	94	14	246	568193.9	700028.4	195	$J A B$	Carbide
26	94	14	247	568176.5	700234.4	193	JAB	Carbide
26	94	14	248	568135.5	700029.0	195	JAB	Carbide
26	94	14	249	568174.9	700190.5	191	JAB	Carbide
26	94	14	250	568066.5	700030.3	195	JAB	Carbide
26	94	14	251	568021.5	700031.7	195	JAB	Carbide
26	94	14	252	568125.2	700192.9	195	JAB	Carbide
26	94	14	253	567959.9	700031.9	195	JAB	Carbide
26	94	14	254	567909.3	700032.0	195	JAB	Carbide
26	94	14	255	567985.1	700183.8	195	JAB	Carbide
26	94	14	256	567848.4	700030.4	195	JAB	Carbide
26	94	14	257	567938.5	700179.1	267	JAB	Carbide
26	94	14	258	567803.2	700033.0	195	JAB	Carbide
26	94	14	259	567754.1	700032.4	195	JAB	Carbide
26	94	14	260	567818.9	700190.4	194	JAB	Carbide
26	94	14	261	567696.8	700030.6	195	JAB	Carbide
26	94	14	262	567804.8	700131.1	195	JAB	Carbide
26	94	14	263	567644.4	700030.3	190	JAB	Carbide
26	94	14	264	567825.9	700239.7	195	JAB	Carbide
26	94	14	265	567766.6	700130.7	193	JAB	Carbide
26	94	14	266	567771.7	700239.8	195	JAB	Carbide
26	94	14	267	567772.1	700191.2	195	JAB	Carbide
26	94	14	268	567837.3	700293.3	195	JAB	Carbide
26	94	14	269	567848.4	700337.1	195	JAB	Carbide
26	94	14	270	567775.3	700287.1	195	JAB	Carbide
26	94	14	271	567896.9	700288.8	195	JAB	Carbide
26	94	14	272	567768.4	700341.1	195	JAB	Carbide
26	94	14	273	567936.6	700232.6	195	JAB	Carbide
26	94	14	274	567875.2	700393.9	195	JAB	Carbide
26	94	14	275	568128.0	700234.8	189	JAB	Carbide
26	94	14	276	568126.9	700140.9	195	JAB	Carbide
26	94	14	277	568175.0	700136.9		JAB	Carbide
26	94	14	278	567450.7	699691.9	358	JAB	Carbide
26	94	14	279	567534.6	699691.2	216	$J A B$	Carbide
26	94	14	280	567717.0	699688.8	232	JAB	Carbide
26	94	14	281	567629.0	699687.0	213	JAB	Carbide
26	94	14	282	567765.7	699687.6	212	JAB	Carbide
26	94	14	283	567916.9	699687.3	355	JAB	Carbide
26	94	14	284	567966.4	699685.4	196	JAB	Carbide
26	94	14	285	567815.5	699686.1	215	JAB	Carbide
26	94	14	286	567867.3	699686.6	196	JAB	Carbide
26	94	14	287	568017.0	699684.3	196	JAB	Carbide
26	94	14	288	568068.7	699687.0		JAB	Carbide
26	94	14	289	568165.0	699680.1	193	JAB	Carbide
26	94	14	290	568337.7	699683.5	351	$J A B$	Carbide
26	94	14	291	568213.8	699682.2	353	JAB	Carbide
26	94	14	292	568113.7	699687.3	193	JAB	Carbide
26	94	14	293	567452.3	699747.5	234	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

	Rng	Sec	$\text { Map Hole } \mathrm{m}$	NorthNAD27	East NAD27	LogTD	Project	Area
26	94	14	294	567397.5	699691.6	234	JAB	Carbide
26	94	14	295	567338.4	699695.5	233	JAB	Carbide
26	94	14	296	567283.0	699695.2	350	JAB	Carbide
26	94	14	297	567396.9	699751.3	232	JAB	Carbide
26	94	14	298	567393.7	699636.1	234	JAB	Carbide
26	94	14	299	567453.2	699803.0	235	JAB	Carbide
26	94	14	300	567445.0	699637.1	234	JAB	Carbide
26	94	14	301	567455.9	699856.0	236	JAB	Carbide
26	94	14	302	567579.9	700024.6	230	JAB	Carbide
26	94	14	303	567462.2	699967.4	235	JAB	Carbide
26	94	14	304	567524.1	700024.3	233	JAB	Carbide
26	94	14	305	567464.5	700023.7	253	JAB	Carbide
26	94	14	306	567460.5	699907.4	234	JAB	Carbide
26	94	14	307	567771.6	698707.1	348	JAB	Carbide
26	94	14	308	567416.0	698666.5	347	JAB	Carbide
26	94	14	309	567955.6	698734.1	354	JAB	Carbide
26	94	14	310	567587.8	698685.1	293	JAB	Carbide
26	94	14	311	568138.7	698722.4	344	$J \mathrm{AB}$	Carbide
26	94	14	312	568327.4	698727.2	336	JAB	Carbide
26	94	14	313	567868.5	698703.8	227	$J A B$	Carbide
26	94	14	314	567980.7	698611.3	229	JAB	Carbide
26	94	14	315	568032.5	698720.4	227	JAB	Carbide
26	94	14	316	567938.0	698798.9	236	JAB	Carbide
26	94	14	317	567857.0	698808.0	196	JAB	Carbide
26	94	14	318	567877.5	698613.3	190	$J A B$	Carbide
26	94	14	320	567594.5	698589.6	239	JAB	Carbide
26	94	14	321	567682.2	698697.9	223	$J A B$	Carbide
26	94	14	322	567579.0	698777.8	236	$J A B$	Carbide
26	94	14	323	567497.1	698590.3	215	JAB	Carbide
26	94	14	324	567499.2	698779.4	235	$J A B$	Carbide
26	94	14	325	567723.0	700323.4	198	$J A B$	Carbide
26	94	14	326	568283.2	700340.8	196	JAB	Carbide
26	94	14	327	567673.0	700321.5	197	JAB	Carbide
26	94	14	328	568280.4	700288.2	194	JAB	Carbide
26	94	14	329	567727.5	700268.3	194	$J A B$	Carbide
26	94	14	330	567788.5	700167.9	149	$J A B$	Carbide
26	94	14	331	567674.1	700269.1	197	JAB	Carbide
26	94	14	332	568280.9	700254.1	196	JAB	Carbide
26	94	14	333	567722.0	700218.6	195	JAB	Carbide
26	94	14	334	568281.2	700196.7	193	JAB	Carbide
26	94	14	335	567669.5	700226.8	198	JAB	Carbide
26	94	14	336	567349.9	700791.8	220	JAB	Carbide
26	94	14	337	567718.5	700168.9	197	JAB	Carbide
26	94	14	338	567719.0	700132.3	195	JAB	Carbide
26	94	14	339	567670.4	700135.3	195	$J A B$	Carbide
26	94	14	340	568354.0	700289.9	354	JAB	Carbide
26	94	14	341	567673.3	700178.2	353	$J A B$	Carbide
26	94	14	342	568341.1	700405.3	194	$J A B$	Carbide
26	94	14	343	567507.3	700175.0	355	JAB	Carbide
26	94	14	344	568274.6	700403.9	186	JAB	Carbide
26	94	14	346	568344.7	700188.2	195	JAB	Carbide
26	94	14	350	567411.1	699658.7	207	$J A B$	Carbide
26	94	14	356	568497.2	699671.9	350	$J A B$	Carbide
26	94	14	357	568429.9	699623.5	355	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Wigk	Sec	Map Hole ID	North NAD27	EastNAD27	$\log T D$	Project	Area
26	94	14	358	568416.5	699787.3	353	JAB	Carbide
26	94	14	359	568284.4	699615.6	350	JAB	Carbide
26	94	14	360	567973.9	698661.6	137	JAB	Carbide
26	94	14	361	567769.2	698241.2	352	JAB	Carbide
26	94	14	362	568268.0	698182.3	354	JAB	Carbide
26	94	14	363	568790.5	698165.8	330	JAB	Carbide
26	94	14	364	567292.2	698247.8		JAB	Carbide
26	94	14	365	566783.3	698251.9	339	JAB	Carbide
26	94	14	367	568302.9	699830.3	232	JAB	Carbide
26	94	14	368	566826.3	699935.7	222	JAB	Carbide
26	94	14	369	566826.2	699550.5	250	JAB	Carbide
26	94	14	370	567967.2	700311.9	118	JAB	Carbide
26	94	14	371	566841.6	700140.0	254	JAB	Carbide
26	94	14	372	566842.0	700761.6	249	JAB	Carbide
26	94	14	374	567349.0	700996.4	257	JAB	Carbide
26	94	14	377	567350.5	700602.6	250	JAB	Carbide
26	94	14	378	567355.8	700406.8	252	JAB	Carbide
26	94	14	379	567357.5	700209.9	254	JAB	Carbide
26	94	14	381	567561.8	700996.1	253	JAB	Carbide
26	94	14	382	567554.1	700791.5	254	JAB	Carbide
26	94	14	383	567546.6	700598.9	252	JAB	Carbide
26	94	14	384	568089.9	697763.2	256	JAB	Carbide
26	94	14	385	567546.4	700396.3	249	JAB	Carbide
26	94	14	386	567107.9	697744.4	257	JAB	Carbide
26	94	14	387	567612.2	697741.5	255	JAB	Carbide
26	94	14	388	567353.5	699203.4	356	JAB	Carbide
26	94	14	389	568727.9	699183.0	354	JAB	Carbide
26	94	14	390	567552.3	699195.7	236	JAB	Carbide
26	94	14	391	568131.6	699185.8	157	JAB	Carbide
26	94	14	392	568530.8	699184.0	155	JAB	Carbide
26	94	14	393	567933.0	699187.2	157	JAB	Carbide
26	94	14	394	568330.5	699185.5	151	JAB	Carbide
26	94	14	395	567746.3	699189.9	235	JAB	Carbide
26	94	14	396	567350.7	697750.7	254	JAB	Carbide
26	94	14	397	567590.0	697497.8	257.	JAB	Carbide
26	94	14	398	567859.7	697728.7	257	JAB	Carbide
26	94	14	399	567534.2	698246.1	246	JAB	Carbide
26	94	14	400	567615.2	697973.7	253	JAB	Carbide
26	94	14	401	568419.2	699890.6	154	JAB	Carbide
26	94	14	402	567547.7	699897.7	236	JAB	Carbide
26	94	14	403	568421.4	699986.9	155	JAB	Carbide
26	94	14	404	567645.8	699893.1	141	JAB	Carbide
26	94	14	405	567744.6	699890.3	224	JAB	Carbide
26	94	14	406	568301.3	699932.2	155	$J A B$	Carbide
26	94	14	407	567845.7	699879.5	156	JAB	Carbide
26	94	14	408	567947.3	699882.8	153	JAB	Carbide
26	94	14	409	568695.7	699657.5	153	JAB	Carbide
26	94	14	410	568419.9	700188.3	136	JAB	Carbide
26	94	14	411	568422.7	700285.7	137	JAB	Carbide
26	94	14	412	568700.1	699882.5	156	JAB	Carbide
26	94	14	413	568707.9	700083.9	155	JAB	Carbide
26	94	14	414	568422.8	700387.5	137	JAB	Carbide
26	94	14	415	568423.3	700485.7	134	JAB	Carbide
26	94	14	416	568711.5	700282.0	136	JAB	Carbide

Table 2.6-1

Antelope and JAB Drill Holes

Twn		Sec	Maphole ID	North NAD27	Bast NAD27	$\log 10$	Project	Area
26	94	14	417	568714.8	700482.0	134	JAB	Carbide
26	94	14	418	568699.1	700678.9	137	JAB	Carbide
26	94	14	419	568424.2	700585.1	136	JAB	Carbide
26	94	14	420	568425.1	700685.3	138	JAB	Carbide
26	94	14	421	568430.4	700791.8	132	JAB	Carbide
26	94	14	422	568724.3	700879.9	137	JAB	Carbide
26	94	14	423	568426.0	700880.6	137	JAB	Carbide
26	94	14	424	568476.1	700881.3	137	JAB	Carbide
26	94	14	426	568633.7	700978.2	137	JAB	Carbide
26	94	14	489	567775.8	696896.5	220	JAB	Carbide
26	94	14	490	567592.9	697302.1	237	JAB	Carbide
26	94	14	491	567766.9	696501.0	234	JAB	Carbide
26	94	14	492	567579.0	696904.8	237	JAB	Carbide
26	94	14	494	567568.6	696503.8	238	JAB	Carbide
26	94	14	496	567557.6	696105.6	237	JAB	Carbide
26	94	14	499	567359.0	696110.1	235	$J A B$	Carbide
26	94	14	501	567369.7	696508.3	235	JAB	Carbide
26	94	14	502	567162.5	696117.6	237	JAB	Carbide
26	94	14	503	567379.2	696915.4	237	JAB	Carbide
26	94	14	504	567168.7	696513.8	234	JAB	Carbide
26	94	14	505	567178.5	696924.8	237	JAB	Carbide
26	94	14	506	567191.5	697307.2	237	JAB	Carbide
26	94	14	507	567393.8	697305.8	236	JAB	Carbide
26	94	14	552	566344.2	695816.5	277	$J A B$	Carbide
26	94	14	554	566742.1	695811.6	237	JAB	Carbide
26	94	14	556	567457.2	696114.0	215	JAB	Carbide
26	94	14	557	567358.0	696305.7	215	JAB	Carbide
26	94	14	558	567550.1	695907.4	219	JAB	Carbide
26	94	14	559	567561.8	696303.9	218	JAB	Carbide
26	94	14	560	567658.1	696102.7	236	JAB	Carbide
26	94	14	561	567571.5	696704.2	232	JAB	Carbide
26	94	14	562	567678.8	696903.9	215	JAB	Carbide
26	94	14	563	567366.9	696703.8	206	JAB	Carbide
26	94	14	576	567444.3	697747.2	225	$J A B$	Carbide
26	94	14	577	567415.7	697969.0	230.	JAB	Carbide
26	94	14	578	567434.0	698243.2	210	JAB	Carbide
26	94	14	579	567170.1	698613.9	237	JAB	Carbide
26	94	14	580	567337.1	698598.9	221	JAB	Carbide
26	94	14	581	567362.6	699003.8	228	$J A B$	Carbide
26	94	14	582	567159.4	699020.9	229	JAB	Carbide
26	94	14	583	567254.3	699211.8	220	JAB	Carbide
26	94	14	636	567544.8	695809.3	320	JAB	Carbide
26	94	14	637	567644.2	695802.0	220	JAB	Carbide
26	94	14	638	567641.6	695894.7	221	JAB	Carbide
26	94	14	639	567450.3	695910.7	201	$J A B$	Carbide
26	94	14	640	567453.2	696005.7	220	JAB	Carbide
26	94	14	641	567553.4	696007.9	220	JAB	Carbide
26	94	14	642	567648.0	696003.6	221	$J A B$	Carbide
26	94	14	643	567658.6	696199.1	220	JAB	Carbide
26	94	14	644	567553.7	696201.4	221	JAB	Carbide
26	94	14	645	567468.5	696202.8	220	JAB	Carbide
26	94	14	646	567363.6	696205.8	38	JAB	Carbide
26	94	14	647	567268.8	696310.9	240	JAB	Carbide
26	94	14	648	567464.0	696305.4	220	$J A B$	Carbide

Uranium One Americas

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rag	$1 \mathrm{Sec}$	Map nole ID	North NAD27	East NAD27	Log TD	Project	Area
26	94	14	649	567269.0	696409.4	240	JAB	Carbide
26	94	14	650	567363.0	696403.1	240	JAB	Carbide
26	94	14	651	568617.3	700380.2	117	JAB	Carbide
26	94	14	652	568716.6	700180.9	56	JAB	Carbide
26	94	14	653	568620.0	700284.0	156	JAB	Carbide
26	94	14	654	568756.3	700180.2	138	JAB	Carbide
26	94	14	655	568615.1	700180.2	137	JAB	Carbide
26	94	14	656	568622.9	700481.2	137	JAB	Carbide
26	94	14	657	568709.2	700379.8	138	JAB	Carbide
26	94	14	658	568623.8	700575.0	138	JAB	Carbide
26	94	14	659	568626.7	700683.5	138	JAB	Carbide
26	94	14	660	568627.6	700778.2	138	JAB	Carbide
26	94	14	661	568765.2	700375.8	134	JAB	Carbide
26	94	14	662	568627.2	700876.0	138	JAB	Carbide
26	94	14	663	568770.1	700567.8	138	JAB	Carbide
26	94	14	664	568665.4	701011.2	139	JAB	Carbide
26	94	14	665	568681.1	701124.7	137	JAB	Carbide
26	94	14	666	568721.6	700572.2	138	JAB	Carbide
26	94	14	669	568709.5	700776.3	143	JAB	Carbide
26	94	14	671	568759.6	700776.6	138	JAB	Carbide
26	94	14	672	568969.1	700985.9	138	JAB	Carbide
26	94	14	674	568967.8	700881.7	138	JAB	Carbide
26	94	14	676	568964.8	700773.6	138	JAB	Carbide
26	94	14	678	568964.8	700686.5	140	$J A B$	Carbide
26	94	14	679	568869.9	700972.1	130	JAB	Carbide
26	94	14	680	568964.7	700584.3	138	JAB	Carbide
26	94	14	681	568868.3	700879.5	137	JAB	Carbide
26	94	14	682	568867.8	700775.3	128	JAB	Carbide
26	94	14	683	568865.8	700683.4	128	JAB	Carbide
26	94	14	684	567724.0	696702.9	216	JAB	Carbide
26	94	14	685	567726.2	696901.2	234	JAB	Carbide
26	94	14	686	567829.7	696894.3	177	JAB	Carbide
26	94	14	687	567281.1	697112.3	236	$J A B$	Carbide
26	94	14	688	567486.8	697103.2	237	JAB	Carbide
26	94	14	689	567684.4	697099.1	239	$J A B$	Carbide
26	94	14	690	567887.2	697091.4	182	JAB	Carbide
26	94	14	691	567149.8	697552.3	237	JAB	Carbide
26	94	14	692	567248.9	697650.4	240	$J A B$	Carbide
26	94	14	693	567348.7	697651.4		JAB	Carbide
26	94	14	694	567456.1	697646.6		$J A B$	Carbide
26	94	14	695	567344.7	697546.0		JAB	Carbide
26	94	14	696	567453.3	697546.9	218	JAB	Carbide
26	94	14	697	567249.2	697550.6	238	JAB	Carbide
26	94	14	698	567357.8	697848.6	240	JAB	Carbide
26	94	14	699	567458.7	697844.7	221	JAB	Carbide
26	94	14	700	567254.8	697849.6	233	JAB	Carbide
26	94	14	701	567466.9	696404.2	220	JAB	Carbide
26	94	14	702	567570.8	696400.9	220	JAB	Carbide
26	94	14	703	567669.6	696395.3	220	JAB	Carbide
26	94	14	704	567769.7	696390.3	180	JAB	Carbide
26	94	14	705	567871.2	696387.0	180	JAB	Carbide
26	94	14	706	567274.0	696507.4	240	JAB	Carbide
26	94	14	707	567471.2	696507.1	222	JAB	Carbide
26	94	14	708	567675.5	696494.7	217	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole ID	North NAD27	East NAD27	Log TD	Project	Area
26	94	14	709	567862.5	696497.4	177	JAB	Carbide
26	94	14	710	567968.0	696494.3	173	JAB	Carbide
26	94	14	711	567752.6	696298.3		JAB	Carbide
26	94	14	712	567275.9	696611.0	240	JAB	Carbide
26	94	14	713	567370.3	696608.2	240	JAB	Carbide
26	94	14	714	567473.5	696605.4	225	JAB	Carbide
26	94	14	715	567575.2	696600.3	201	JAB	Carbide
26	94	14	716	567674.6	696598.2	217	JAB	Carbide
26	94	14	717	567782.0	696591.1	210	JAB	Carbide
26	94	14	718	567879.4	696585.8	253	JAB	Carbide
26	94	14	719	569092.0	697319.1	300	$J A B$	Carbide
26	94	14	720	569117.3	698123.9	300	$J A B$	Carbide
26	94	14	721	569101.4	696512.9	320	JAB	Carbide
26	94	14	723	569083.5	696916.5	261	JAB	Carbide
26	94	14	724	569103.6	697722.4	280	JAB	Carbide
26	94	14	725	569136.4	698926.4	260	JAB	Carbide
26	94	14	726	569145.8	699322.6	261	JAB	Carbide
26	94	14	727	569159.6	699726.4	260	JAB	Carbide
26	94	14	728	569170.2	700129.9	350	JAB	Carbide
26	94	14	729	569181.0	700532.1	320	JAB	Carbide
26	94	14	730	569190.5	700926.5	13	JAB	Carbide
26	94	14	735	569125.2	698520.3	260	JAB	Carbide
26	94	14	756	569073.4	696103.6	260	JAB	Carbide
26	94	14	757	570000.8	699335.4	300	JAB	Carbide
26	94	14	758	570010.2	699735.0	300	$J A B$	Carbide
26	94	14	759	570022.4	700140.6	300	JAB	Carbide
26	94	14	760	569987.0	700520.6	300	JAB	Carbide
26	94	14	761	570004.4	700920.9	300	$J A B$	Carbide
26	94	14	781	567561.8	697842.3	253	$J A B$	Carbide
26	94	14	782	567558.7	697743.5	236	JAB	Carbide
26	94	14	783	567555.9	697643.8	236	$J A B$	Carbide
26	94	14	784	567443.1	697440.7	218	JAB	Carbide
26	94	14	785	567344.6	697449.7	217	JAB	Carbide
26	94	14	786	567244.1	697454.0	235	JAB	Carbide
26	94	14	787	567447.4	697361.3	217 \ldots	JAB	Carbide
26	94	14	788	568323.5	696888.8	349	$J A B$	Carbide
26	94	14	789	567548.0	697357.3	216	JAB	Carbide
26	94	14	790	568318.3	697270.7	295	$J A B$	Carbide
26	94	14	802	567346.4	695915.0	240	JAB	Carbide
26	94	14	803	567348.2	696006.3		JAB	Carbide
26	94	14	821	567645.4	697351.9	216	JAB	Carbide
26	94	14	822	568346.2	697683.5	298	$J A B$	Carbide
26	94	14	823	567652.0	697448.5	225	JAB	Carbide
26	94	14	824	567654.0	697547.1	218	JAB	Carbide
26	94	14	825	568705.3	697933.1	300	JAB	Carbide
26	94	14	826	567655.3	697648.3	232	JAB	Carbide
26	94	14	827	567658.9	697745.7	214	JAB	Carbide
26	94	14	828	568698.8	697532.9	329	JAB	Carbide
26	94	14	829	568692.7	697136.1	292	JAB	Carbide
26	94	14	830	567659.3	697848.7		$J A B$	Carbide
26	94	14	843	567489.9	695805.0	219	JAB	Carbide
26	94	14	848	567697.0	695801.5	220	JAB	Carbide
26	94	14	849	567392.8	695803.8	240	JAB	Carbide
26	94	14	850	567693.5	695906.1	220	J AB	Carbide

Uranium One Americas

Table 2.6-1

Antelope and JAB Drill Holes

		Sec	Map Hole in	North NAD27	East NAD27	$\log \operatorname{se}$	Project	Area
26	94	14	851	567592.0	695909.1	220	JAB	Carbide
26	94	14	853	567497.7	695912.6	219	JAB	Carbide
26	94	14	854	567697.4	696000.1	220	JAB	Carbide
26	94	14	855	567711.6	696104.3	220	JAB	Carbide
26	94	14	856	567713.8	696197.9	221	JAB	Carbide
26	94	14	859	567258.4	696211.2	240	JAB	Carbide
26	94	14	861	567714.0	696298.8	220	JAB	Carbide
26	94	14	862	567616.6	696298.6	220	JAB	Carbide
26	94	14	863	567559.3	696254.5	221	JAB	Carbide
26	94	14	864	567510.7	696304.7	221	JAB	Carbide
26	94	14	865	567562.3	696355.4	220	JAB	Carbide
26	94	14	866	567719.6	696394.8	220	JAB	Carbide
26	94	14	867	567762.7	696444.5	200	JAB	Carbide
26	94	14	868	567721.4	696445.6	220	JAB	Carbide
26	94	14	869	567813.7	696498.9	180	JAB	Carbide
26	94	14	870	567767.3	696548.1	232	JAB	Carbide
26	94	14	871	567716.2	697974.4	221	JAB	Carbide
26	94	14	872	567667.9	696554.0	220	JAB	Carbide
26	94	14	873	567567.1	696559.4	220	JAB	Carbide
26	94	14	874	567572.9	696644.4	220	JAB	Carbide
26	94	14	875	567474.0	696700.5	220	JAB	Carbide
26	94	14	876	567319.1	696608.7	241	JAB	Carbide
26	94	14	877	567318.9	696506.4	240	JAB	Carbide
26	94	14	878	568693.2	696741.2	290	JAB	Carbide
26	94	14	880	568337.5	696421.1	292	JAB	Carbide
26	94	14	881	567516.8	697979.9	236	JAB	Carbide
26	94	14	882	567413.0	698026.2	235	JAB	Carbide
26	94	14	883	567660.0	698880.5	228	$J A B$	Carbide
26	94	14	884	567553.4	698879.9	230	JAB	Carbide
26	94	14	885	567458.1	698880.1	227	JAB	Carbide
26	94	14	886	567524.0	698049.7	234	JAB	Carbide
26	94	14	887	567583.8	698148.0	236	JAB	Carbide
26	94	14	888	567444.7	698455.7	231	JAB	Carbide
26	94	14	889	567545.7	698455.0	229	JAB	Carbide
26	94	14	890	567638.7	698245.3	235	JAB	Carbide
26	94	14	891	567647.3	698448.8	224	JAB	Carbide
26	94	14	892	567479.0	698153.3	235	JAB	Carbide
26	94	14	893	567588.1	698349.0	231	JAB	Carbide
26	94	14	894	567417.7	697911.5	237	JAB	Carbide
26	94	14	895	567481.6	698356.8	238	JAB	Carbide
26	94	14	896	567303.7	697907.0	232	JAB	Carbide
26	94	14	897	567666.2	698981.7	209	JAB	Carbide
26	94	14	898	567746.7	698429.9		JAB	Carbide
26	94	14	899	567562.1	698981.5	236	JAB	Carbide
26	94	14	900	567767.0	698983.4	240	JAB	Carbide
26	94	14	901	567460.9	698980.6	240	JAB	Carbide
26	94	14	902	567761.7	698879.9	240	JAB	Carbide
26	94	14	903	567666.4	699093.6	240	JAB	Carbide
26	94	14	904	567356.1	698879.4	240	$J A B$	Carbide
26	94	14	905	567362.9	699079.9	240	JAB	Carbide
26	94	14	906	567668.8	699193.2	240	JAB	Carbide
26	94	14	907	567671.9	699292.4	240	JAB	Carbide
26	94	14	908	567369.2	699281.6	240	JAB	Carbide
26	94	14	909	567369.0	699380.4	40	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

6mwn	Rug	Sec	Map Hole 10	North NAD27.	East NAD27	$\log 10$	Project	Area
26	94	14	910	567676.9	699394.1	240	JAB	Carbide
26	94	14	911	568961.0	700479.4	140	JAB	Carbide
26	94	14	912	568863.3	700579.3	137	JAB	Carbide
26	94	14	913	568961.3	700376.0	140	JAB	Carbide
26	94	14	914	568861.6	700487.4	140	JAB	Carbide
26	94	14	915	568960.9	700280.6	140	JAB	Carbide
26	94	14	916	568861.2	700389.2	140	JAB	Carbide
26	94	14	917	568959.1	700174.8	150	JAB	Carbide
26	94	14	918	568856.5	700176.9	139	$J A B B$	Carbide
26	94	14	919	568859.5	700284.6	140	JAB	Carbide
26	94	14	920	568484.5	700522.8	140	JAB	Carbide
26	94	14	921	568487.4	700625.8	140	JAB	Carbide
26	94	14	922	568479.8	700220.2	79	JAB	Carbide
26	94	14	923	568479.5	700723.3	140	JAB	Carbide
26	94	14	924	568492.0	700828.1	140	JAB	Carbide
26	94	14	925	568480.3	700320.1	140	JAB	Carbide
26	94	14	926	568527.6	700901.9	140	JAB	Carbide
26	94	14	928	568482.0	700419.5	140	JAB	Carbide
26	94	14	930	567676.3	700993.5	1020	JAB	Carbide
26	94	14	932	567370.9	699479.3	240	JAB	Carbide
26	94	14	933	567677.4	699491.9	240	JAB	Carbide
26	94	14	934	567473.6	699476.9	191	JAB	Carbide
26	94	14	935	567581.3	699587.8	240	JAB	Carbide
26	94	14	936	567471.6	699387.0	240	JAB	Carbide
26	94	14	937	567577.7	699484.2	240	JAB	Carbide
26	94	14	938	567472.2	699284.8	240	JAB	Carbide
26	94	14	939	567575.0	699389.8	240	JAB	Carbide
26	94	14	940	567556.5	699280.3	240	JAB	Carbide
26	94	14	941	567466.5	699187.1	240	JAB	Carbide
26	94	14	942	567710.0	699021.2	357	JAB	Carbide
26	94	14	943	567502.7	698923.2	220	JAB	Carbide
26	94	14	944	567601.2	698918.3	220	JAB	Carbide
26	94	14	945	567706.7	698912.0	197	JAB	Carbide
26	94	14	946	567503.4	698823.2	221	JAB	Carbide
26	94	14	947	567600.5	698819.4	210	JAB	Carbide
26	94	14	948	567702.3	698839.4	220	JAB	Carbide
26	94	14	949	567460.1	698722.2	221	JAB	Carbide
26	94	14	950	567417.8	698571.4	240	JAB	Carbide
26	94	14	951	567561.9	699088.9	241	JAB	Carbide
26	94	14	952	567464.9	699085.3	240	JAB	Carbide
26	94	14	953	567680.5	698799.3	240	JAB	Carbide
26	94	14	954	567658.4	698099.9	240	$J A B$	Carbide
26	94	14	955	567675.5	698595.1	240	JAB	Carbide
26	94	14	956	567664.4	698201.9	250	JAB	Carbide
26	94	14	957	567260.2	699278.1	240	JAB	Carbide
26	94	14	958	567666.9	698395.6	240	JAB	Carbide
26	94	14	959	567261.8	699381.0	140	JAB	Carbide
26	94	14	961	567164.9	699478.5		JAB	Carbide
26	94	14	962	567519.4	696648.7	240	$J A B$	Carbide
26	94	14	963	567418.9	696654.6	240	$J A B$	Carbide
26	94	14	964	567427.1	696798.4	240	$J A B$	Carbide
26	94	14	965	567323.9	696803.5	240	JAB	Carbide
26	94	14	966	567523.7	696796.0	236	JAB	Carbide
26	94	14	967	567479.3	696910.7	240	JAB	Carbide

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Mäp Hole in	North NAD27	East NAD27	$\mathrm{Log} T \mathrm{O}$	Project	Area
26	94	14	968	567443.2	697017.6	240	JAB	Carbide
26	94	14	969	567541.1	697015.2	240	JAB	Carbide
26	94	14	970	567591.5	697097.6	240	JAB	Carbide
26	94	14	971	567382.4	697109.5	240	JAB	Carbide
26	94	14	972	567339.2	697226.8	240	JAB	Carbide
26	94	14	973	567440.1	697222.9	240	JAB	Carbide
26	94	14	974	567536.7	697215.9	240	JAB	Carbide
26	94	14	975	567523.2	696603.4		JAB	Carbide
26	94	14	976	567420.0	696607.8	253	JAB	Carbide
26	94	14	977	567419.5	696509.9	238	JAB	Carbide
26	94	14	978	567620.1	696502.7	220	JAB	Carbide
26	94	14	979	567718.5	696500.4	220	JAB	Carbide
26	94	14	980	567417.8	696401.9	240	JAB	Carbide
26	94	14	981	567521.7	696402.0	221	JAB	Carbide
26	94	14	982	567621.9	696398.4	222	JAB	Carbide
26	94	14	983	567411.5	696301.8	240	JAB	Carbide
26	94	14	984	567411.4	696209.5	240	$J A B$	Carbide
26	94	14	985	567511.5	696203.8	221	JAB	Carbide
26	94	14	986	567604.8	696202.0	221	JAB	Carbide
26	94	14	987	567405.7	696105.6	240	JAB	Carbide
26	94	14	988	567506.5	696106.1	220	JAB	Carbide
26	94	14	989	567605.3	696105.9	220	JAB	Carbide
26	94	14	990	567343.9	697021.2	238	JAB	Carbide
26	94	14	991	567400.4	696007.2	220	JAB	Carbide
26	94	14	992	567499.5	696007.3	222	JAB	Carbide
26	94	14	993	567599.0	696001.7	236	JAB	Carbide
26	94	14	995	567337.2	695803.6	235	JAB	Carbide
26	94	14	1040	567252.5	695815.3	240	JAB	Carbide
26	94	14	1041	567258.9	695920.9	240	JAB	Carbide
26	94	14	1042	567266.2	696018.9	240	$J A B$	Carbide
26	94	14	1043	567156.9	696214.1	239	$J A B$	Carbide
26	94	14	1044	567056.4	696215.0	349	JAB	Carbide
26	94	14	1045	567747.7	696149.6	201	JAB	Carbide
26	94	14	1046	567771.8	696241.4	179	JAB	Carbide
26	94	14	1047	567865.2	696190.3	361	$J A B$	Carbide
26	94	14	1049	567737.0	695855.3	221	$J A B$	Carbide
26	94	14	1086	567471.0	700124.7	199	JAB	Carbide
26	94	14	1087	567376.2	700119.2	221	JAB	Carbide
26	94	14	1088	567568.5	700129.9	199	JAB	Carbide
26	94	14	1089	567384.0	699983.0	220	JAB	Carbide
26	94	14	1090	567188.2	699994.1	200	JAB	Carbide
26	94	14	1091	567295.0	700086.4	221	$J A B$	Carbide
26	94	14	1092	567277.5	699887.4	220	JAB	Carbide
26	94	14	1093	567550.6	699971.5	201	JAB	Carbide
26	94	14	1094	567647.5	699966.9	195	$J A B$	Carbide
26	94	14	1095	567746.8	699962.7	201	JAB	Carbide
26	94	14	1096	567547.1	699794.4	220	JAB	Carbide
26	94	14	1097	567656.1	699796.0	200	$J A B$	Carbide
26	94	14	1098	567753.9	699795.5	139	JAB	Carbide
26	94	14	1099	567268.8	699580.9	221	JAB	Carbide
26	94	14	1100	567153.6	699593.8	221	JAB	Carbide
26	94	14	1101	567151.3	699499.9	221	$J A B$	Carbide
26	94	14	1102	567144.0	699400.3	221	JAB	Carbide
26	94	14	1103	567720.0	699092.4	140	$J A B$	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

		Sec	Maj Hole ID	North NAD27	East NAD27	Log TD	Project	Area
26	94	14	1104	567632.2	698778.7	221	JAB	Carbide
26	94	14	1105	567711.8	698141.1	219	JAB	Carbide
26	94	14	1106	567703.4	698239.8	220	JAB	Carbide
26	94	14	1107	567634.1	698049.3	222	JAB	Carbide
26	94	14	1108	567697.9	698450.7	218	JAB	Carbide
26	94	14	1109	567638.4	698537.6	218	$J A B$	Carbide
26	94	14	1110	567639.8	698350.9	220	$J A B$	Carbide
26	94	14	1111	567709.7	697744.5	241	JAB	Carbide
26	94	14	1112	567505.1	697783.2	240	JAB	Carbide
26	94	14	1113	567412.6	697784.2	221	JAB	Carbide
26	94	14	1114	567312.7	697786.6	221	JAB	Carbide
26	94	14	1115	567256.3	697742.8	221	JAB	Carbide
26	94	14	1116	567306.6	697687.1	220	JAB	Carbide
26	94	14	1117	567412.5	697681.5	221	JAB	Carbide
26	94	14	1118	567511.5	697681.4	220	JAB	Carbide
26	94	14	1119	567506.8	697580.2	221	JAB	Carbide
26	94	14	1120	567623.5	697574.2	220	JAB	Carbide
26	94	14	1121	567412.4	697583.3	242	$J A B$	Carbide
26	94	14	1122	567302.7	697588.5	241	JAB	Carbide
26	94	14	1123	567549.6	697544.9	220	$J A B$	Carbide
26	94	14	1124	567602.9	696451.4	221	$J A B$	Carbide
26	94	14	1125	567534.8	696450.3	220	JAB	Carbide
26	94	14	1126	567424.5	696461.5	240	JAB	Carbide
26	94	14	1127	567322.7	696466.1	241	JAB	Carbide
26	94	14	1128	567410.1	697494.7	221	JAB	Carbide
26	94	14	1129	567303.4	697494.9	221	JAB	Carbide
26	94	14	1130	567543.8	697449.8	220	$J A B$	Carbide
26	94	14	1131	567495.8	697299.1	220	JAB	Carbide
26	94	14	1132	567388.0	697222.6	221	$J A B$	Carbide
26	94	14	1133	567437.1	697107.4	221	$J A B$	Carbide
26	94	14	1134	567491.1	697154.2	221	JAB	Carbide
26	94	14	1135	567588.3	697212.4	220	JAB	Carbide
26	94	14	1136	567404.1	696856.9	221	$J A B$	Carbide
26	94	14	1137	567505.7	696845.6	221	$J A B$	Carbide
26.	94	14	1138	567418.0	696728.2	221	$J A B$	Carbide
26	94	14	1139	567512.8	696735.8	221	$J A B$	Carbide
26	94	14	1140	567621.6	696792.8	220	JAB	Carbide
26	94	14	1141	567592.1	695806.2	221	$J A B$	Carbide
26	94	14	1151	567621.5	696702.3	221	JAB	Carbide
26	94	14	1152	567623.7	696599.8	221	JAB	Carbide
26	94	14	1153	567682.1	696044.9	220	$J A B$	Carbide
26	94	14	1154	567579.9	696045.1	220	$J A B$	Carbide
26	94	14	1155	567481.4	696043.9		$J A B$	Carbide
26	94	14	1156	567550.2	695953.7	220	$J A B$	Carbide
26	94	14	1157	567476.0	695850.5	220	$J A B$	Carbide
26	94	14	1213	568135.1	698606.4	158	$J A B$	Carbide
26	94	14	1214	568333.9	698599.9	155	$J A B$	Carbide
26	94	14	1215	568537.4	698593.8	157	$J A B$	Carbide
26	94	14	1216	568737.6	698586.2	158	$J A B$	Carbide
26	94	14	1217	568938.5	698578.3	158	$J A B$	Carbide
26	94	14	1218	568545.1	698806.6		$J A B$	Carbide
26	94	14	1219	568743.0	698787.1	157	JAB	Carbide
26	94	14	1220	568942.4	698780.7	156	JAB	Carbide
26	94	14	1221	568552.8	698992.3	158	JAB	Carbide

Table 2.6-1

Antelope and JAB Drill Holes

Twn		Sec	Map: IolemID	North NA1027	East NAD27	log TD	Project	Area
26	94	14	1222	568753.1	698987.7	158	JAB	Carbide
26	94	14	1224	568351.1	698996.5	156	JAB	Carbide
26	94	14	1225	568151.5	698999.0	157	JAB	Carbide
26	94	14	1226	567962.0	699018.0		$J A B$	Carbide
26	94	14	1227	568570.8	699388.0	158	JAB	Carbide
26	94	14	1228	568373.0	699393.6	90	JAB	Carbide
26	94	14	1229	568172.7	699399.2	157	JAB	Carbide
26	94	14	1230	567974.6	699403.8	163	JAB	Carbide
26	94	14	1231	568782.5	699384.3	157	$J A B$	Carbide
26	94	14	1232	568961.5	699379.2	154	JAB	Carbide
26	94	14	1233	568964.3	699579.2	157	JAB	Carbide
26	94	14	1234	567363.2	699913.1		JAB	Carbide
26	94	14	1235	567359.3	699813.2		$J A B$	Carbide
26	94	14	1236	567420.8	695854.7	203	JAB	Carbide
26	94	14	1238	567795.9	699841.8	157	JAB	Carbide
26	94	14	1240	567798.6	699935.7		JAB	Carbide
26	94	14	1241	567312.5	699432.4		JAB	Carbide
26	94	14	1242	567214.7	699435.1	197	JAB	Carbide
26	94	14	1243	567216.4	699535.1	193	JAB	Carbide
26	94	14	1244	567316.3	699530.8	215	JAB	Carbide
26	94	14	1245	567410.9	699427.1		JAB	Carbide
26	94	14	1246	567511.3	699421.7		JAB	Carbide
26	94	14	1247	567312.4	699334.0	215	JAB	Carbide
26	94	14	1248	567310.7	699234.4	236	JAB	Carbide
26	94	14	1249	567308.3	699131.8	234	JAB	Carbide
26	94	14	1250	567410.8	699328.6	215	JAB	Carbide
26	94	14	1251	567410.3	699228.3	217	JAB	Carbide
26	94	14	1252	567406.8	699130.6	237	JAB	Carbide
26	94	14	1254	567405.3	698925.6	220	JAB	Carbide
26	94	14	1255	567403.5	698825.9	240	JAB	Carbide
26	94	14	1256	567521.0	699332.1	216	JAB	Carbide
26	94	14	1257	567506.8	699127.8	212	$J A B$	Carbide
26	94	14	1258	567606.0	699124.0	219	JAB	Carbide
26	94	14	1259	567506.3	699026.4		JAB	Carbide
26	94	14	1260	567606.2	699020.7		JAB	Carbide
26	94	14	1261	567540.3	698729.1	240	JAB	Carbide
26	94	14	1262	567637.0	698669.5	220	JAB	Carbide
26	94	14	1263	567543.5	698632.6	188	JAB	Carbide
26	94	14	1264	567701.0	698148.9		$J A B$	Carbide
26	94	14	1265	567527.9	697524.4	221	JAB	Carbide
26	94	14	1266	567500.0	697428.3	220	$J A B$	Carbide
26	94	14	1267	567592.2	697437.1	221	JAB	Carbide
26	94	14	1268	567492.0	697214.8		JAB	Carbide
26	94	14	1269	567413.5	696965.3		JAB	Carbide
26	94	14	1270	567624.1	696908.2	217	$J A B$	Carbide
26	94	14	1271	567708.2	696785.5	219	JAB	Carbide
26	94	14	1272	567461.5	696259.1		JAB	Carbide
26	94	14	1280	567611.4	700390.7		JAB	Carbide
26	94	14	1281	567446.3	700405.6	182	$J A B$	Carbide
26	94	14	1282	567620.9	700590.6	140	JAB	Carbide
26	94	14	1283	567452.2	700599.4	180	JAB	Carbide
26	94	14	1284	567462.5	700797.4	160	JAB	Carbide
26	94	14	1285	567470.1	700997.7	161	$J A B$	Carbide
26	94	14	1286	567652.7	700783.7		$J A B$	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

	Rng	Sec	Map Hole ID	North NAD27	East NAD27	$\log \mathrm{IN}$	Project:	Area
26	94	14	1288	569054.6	698983.3	154	JAB	Carbide
26	94	14	1290	568857.8	698982.2	154	JAB	Carbide
26	94	14	1291	567709.3	696151.6	190	JAB	Carbide
26	94	14	1293	567732.9	695951.8		JAB	Carbide
26	94	14	1296	568598.4	699669.6		JAB	Carbide
26	94	14	1297	568952.1	698890.5		$J A B$	Carbide
26	94	14	1301	567647.0	696152.9	194	JAB	Carbide
26	94	14	1302	567679.0	696149.9	194	JAB	Carbide
26	94	14	1303	567759.8	696155.3	238	JAB	Carbide
26	94	14	1272C	567546.2	696260.1	217	JAB	Carbide
26	94	14	13.5-55	567675.3	700889.1		$J A B$	Carbide
26	94	14	13.5-60	567675.2	700391.3		JAB	Carbide
26	94	14	14.5-53	567779.6	701090.5	116	JAB	Carbide
26	94	14	14.5-54	567780.7	700988.7	118	JAB	Carbide
26	94	14	14.5-55	567781.4	700890.1		JAB	Carbide
26	94	14	14.5-55.5	567779.0	700839.3	117	JAB	Carbide
26	94	14	14.5-56	567777.0	700788.4		JAB	Carbide
26	94	14	14.5-57	567777.3	700689.0		JAB	Carbide
26	94	14	14.5-58	567780.3	700594.2	195	JAB	Carbide
26	94	14	14.5-59	567776.6	700485.2		JAB	Carbide
26	94	14	14.5-60	567776.2	700390.0		JAB	Carbide
26	94	14	14.5-63	567773.0	700091.1		$J A B$	Carbide
26	94	14	14-53.5	567729.3	701038.5		JAB	Carbide
26	94	14	14-55	567728.3	700889.4		JAB	Carbide
26	94	14	14-55.5	567724.8	700842.4	116	JAB	Carbide
26	94	14	14-56	567728.2	700790.4		JAB	Carbide
26	94	14	14-57	567725.0	700690.2		JAB	Carbide
26	94	14	14-59	567725.2	700486.8		JAB	Carbide
26	94	14	14-60	567725.9	700391.2		JAB	Carbide
26	94	14	14-63	567723.9	700090.8		JAB	Carbide
26	94	14	15.5-53.5	567879.3	701037.5	96	JAB	Carbide
26	94	14	15.5-54	567877.7	700988.4	98	JAB	Carbide
26	94	14	15.5-55	567877.2	700891.0	120	JAB	Carbide
26	94	14	15.5-56	567875.9	700789.6	120	JAB	Carbide
26	94	14	15.5-57	567876.2	700688.2	115	JAB	Carbide
26	94	14	15.5-58	567875.0	700590.8	130	JAB	Carbide
26	94	14	15.5-59	567860.1	700482.0	139	JAB	Carbide
26	94	14	15.5-59.5	567876.3	700432.3	121	JAB	Carbide
26	94	14	15.5-63	567866.6	700086.7		JAB	Carbide
26	94	14	15-54	567829.0	700989.1	113	JAB	Carbide
26	94	14	15-55	567825.8	700890.1	115	JAB	Carbide
26	94	14	15-56	567827.7	700788.4	119	JAB	Carbide
26	94	14	15-57	567825.6	700687.8		JAB	Carbide
26	94	14	15-58	567829.0	700590.3	140	JAB	Carbide
26	94	14	15-58.5	567830.9	700540.2	137	JAB	Carbide
26	94	14	15-59	567826.1	700485.1	137	JAB	Carbide
26	94	14	15-59.5	567821.4	700430.8	136	JAB	Carbide
26	94	14	15-63	567822.1	700090.7		JAB	Carbide
26	94	14	16.5-54	567980.3	700989.9	119	JAB	Carbide
26	94	14	16.5-55	567962.7	700892.2	121	$J A B$	Carbide
26	94	14	16.5-56	567975.7	700786.7	119	JAB	Carbide
26	94	14	16.5-57	567976.4	700687.7	117	JAB	Carbide
26	94	14	16.5-58	567976.8	700590.3	120	JAB	Carbide
26	94	14	16.5-58.5	567974.7	700540.8	120	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole, ID	North NAD27	East NAD27		Project	Area
26	94	14	16.5-59	567975.1	700487.3	119	JAB	Carbide
26	94	14	16.5-59.5	567975.0	700435.0	115	JAB	Carbide
26	94	14	16.5-61	567965.4	700289.0		JAB	Carbide
26	94	14	16.5-63	567974.6	700087.5		JAB	Carbide
26	94	14	16-53.5	567927.8	701035.9	98	JAB	Carbide
26	94	14	16-54	567929.8	700989.1	140	$J A B$	Carbide
26	94	14	16-55	567928.1	700887.0	117	JAB	Carbide
26	94	14	16-56	567928.4	700789.1	118	JAB	Carbide
26	94	14	16-57	567927.9	700688.1	117	JAB	Carbide
26	94	14	16-58	567929.4	700589.5	129	JAB	Carbide
26	94	14	16-59	567928.1	700486.9	117	JAB	Carbide
26	94	14	16-59.5	567922.9	700434.7	237	JAB	Carbide
26	94	14	16-60	567922.9	700391.9		JAB	Carbide
26	94	14	16-63	567922.9	700088.0		JAB	Carbide
26	94	14	17.5-53.5	568076.9	701032.6	96	$J A B$	Carbide
26	94	14	17.5-54	568078.9	700987.0	117	JAB	Carbide
26	94	14	17.5-55	568078.8	700887.2	116	JAB	Carbide
26	94	14	17.5-56	568077.6	700788.6	118	$J A B$	Carbide
26	94	14	17.5-57	568079.9	700688.0	120	$J A B$	Carbide
26	94	14	17.5-58	568074.2	700591.8	118	$J A B$	Carbide
26	94	14	17.5-59	568075.3	700485.2	120	JAB	Carbide
26	94	14	17.5-59.5	568070.4	700433.0	116	JAB	Carbide
26	94	14	17.5-63	568071.9	700089.9		JAB	Carbide
26	94	14	17-54	568028.4	700987.1	120	JAB	Carbide
26	94	14	17-55	568027.9	700886.1	117	JAB	Carbide
26	94	14	17-56	568029.4	700788.6	118	JAB	Carbide
26	94	14	17-57	568028.6	700690.0	117	JAB	Carbide
26	94	14	17-58	568025.7	700589.0		JAB	Carbide
26	94	14	17-59	568026.0	700484.9	121	JAB	Carbide
26	94	14	17-63	568022.7	700087.1		JAB	Carbide
26	94	14	18.5-54	568176.8	700985.8	119	JAB	Carbide
26	94	14	18.5-55	568177.1	700886.3	115	JAB	Carbide
26	94	14	18.5-56	568176.6	700785.0	119	JAB	Carbide
26	94	14	18.5-57	568178.5	700686.3	120	JAB	Carbide
26	94	14	18.5-58	568175.6	700586.5	119	JAB	Carbide
26	94	14	18.5-59	568175.5	700487.5	118	JAB	Carbide
26	94	14	18.5-63	568171.4	700086.5		JAB	Carbide
26	94	14	18-54	568129.8	700987.0	119	$J A B$	Carbide
26	94	14	18-55	568127.0	700887.6	117	JAB	Carbide
26	94	14	18-56	568126.1	700787.0	118	$J A B$	Carbide
26	94	14	18-57	568127.6	700687.6	121	$J A B$	Carbide
26	94	14	18-58	568125.1	700587.0	117	JAB	Carbide
26	94	14	18-59	568124.6	700484.8	117	JAB	Carbide
26	94	14	18-63	568123.6	700085.5		JAB	Carbide
26	94	14	19.5-54	568274.6	700984.9	119	JAB	Carbide
26	94	14	19.5-55	568277.7	700885.9	118	JAB	Carbide
26	94	14	19.5-56	568278.0	700785.6	118	$J A B$	Carbide
26	94	14	19.5-57	568275.9	700685.1	119	$J A B$	Carbide
26	94	14	19.5-58	568275.0	700584.5		$J A B$	Carbide
26	94	14	19.5-59	568273.8	700485.9		$J A B$	Carbide
26	94	14	19.5-63	568267.9	700071.9		$J A B$	Carbide
26	94	14	19-53.5	568234.4	701029.6	97	$J A B$	Carbide
26	94	14	19-54	568227.3	700984.9	119	$J A B$	Carbide
26	94	14	19-55	568228.4	700885.9	120	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	Map Hole LD	North NAD27	East NAD27	LogTB	Project	Area
26	94	14	19-56	568230.6	700783.3	118	JAB	Carbide
26	94	14	19-57	568229.0	700687.5	120	JAB	Carbide
26	94	14	19-58	568226.5	700586.5	119	JAB	Carbide
26	94	14	19-59	568227.6	700487.1		JAB	Carbide
26	94	14	19-59.5	568227.5	700432.4		JAB	Carbide
26	94	14	19-63	568222.0	700086.8		JAB	Carbide
26	94	14	20.5-54	568376.4	700984.8		JAB	Carbide
26	94	14	20.5-55	568377.1	700878.2		JAB	Carbide
26	94	14	20-53.5	568327.5	701028.0		JAB	Carbide
26	94	14	20-54	568327.1	700984.0	119	JAB	Carbide
26	94	14	20-55	568327.8	700884.2	102	JAB	Carbide
26	94	14	20-56	568328.1	700786.0	119	JAB	Carbide
26	94	14	20-57	568325.7	700687.0		JAB	Carbide
26	94	14	20-58	568326.7	700585.2		JAB	Carbide
26	94	14	20-59	568325.9	700485.4		JAB	Carbide
26	94	14	20-63	568321.1	700085.5		JAB	Carbide
26	94	14	21.5-54	568475.4	700983.1		JAB	Carbide
26	94	14	21-54	568423.3	700983.2		JAB	Carbide
26	94	14	21-63	568420.5	700084.3		JAB	Carbide
26	94	14	22-54	568529.9	700983.8		JAB	Carbide
26	94	14	22-55	568528.6	700879.3		JAB	Carbide
26	94	14	22-56	568526.7	700782.5		$J A B$	Carbide
26	94	14	22-57	568525.3	700682.9		JAB	Carbide
26	94	14	22-58	568524.6	700782.7		JAB	Carbide
26	94	14	22-59	568522.0	700485.6		JAB	Carbide
26	94	14	22-60	568521.9	700385.4		JAB	Carbide
26	94	14	22-61	568520.6	700289.6		JAB	Carbide
26	94	14	22-62	568518.5	700185.8		$J A B$	Carbide
26^{\prime}	94	14	22-63	568517.9	700083.1		$J A B$	Carbide
26	94	14	370C	567964.9	700109.5		JAB	Carbide
26	94	14	MW1291	567706.7	696148.5	192	JAB	Carbide
26	94	14	OW1301	567644.9	696149.1	197	JAB	Carbide
26	94	14	OW1302	565676.5	696147.7	192	JAB	Carbide
26	94	14	OW1303	567756.7	696152.1	235	JAB	Carbide
26	94	15	495	567745.2	695702.3	233	JAB	Carbide
26	94	15	497	567347.3	695710.2	237	JAB	Carbide
26	94	15	498	567543.9	695707.4	238	JAB	Carbide
26	94	15	500	567140.9	695718.2	237	JAB	Carbide
26	94	15	508	567645.1	695705.5	237	JAB	Carbide
26	94	15	509	567526.2	695306.2	237	$J A B$	Carbide
26	94	15	510	567731.6	695307.2	231	JAB	Carbide
26	94	15	514	567713.8	694904.2	235	JAB	Carbide
26	94	15	515	567698.5	694505.7	236	JAB	Carbide
26	94	15	518	567682.5	694107.4	237	JAB	Carbide
26	94	15	519	567665.5	693708.3	237	JAB	Carbide
26	94	15	521	567445.8	695707.6	237	JAB	Carbide
26	94	15	522	567128.8	695310.1	236	JAB	Carbide
26	94	15	523	567326.6	695309.0	237	JAB	Carbide
26	94	15	524	567113.5	694914.8	236	JAB	Carbide
26	94	15	525	567313.1	694911.2	237	JAB	Carbide
26	94	15	526	567097.6	694518.8	246	JAB	Carbide
26	94	15	527	567296.8	694513.8	236	JAB	Carbide
26	94	15	528	567496.8	694513.1	235	JAB	Carbide
26	94	15	529	567396.3	694515.1	236	$J A B$	Carbide

Uranium One Americas

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 1 D	North NAD2 2	EastNAD27	Log ID	Project	Area
26	94	15	530	567412.2	694905.0	237	JAB	Carbide
26	94	15	531	567509.5	694902.1	219	JAB	Carbide
26	94	15	532	567271.9	694122.7	257	JAB	Carbide
26	94	15	533	567477.7	694113.4	230	JAB	Carbide
26	94	15	534	567266.8	693715.7	254	JAB	Carbide
26	94	15	535	567461.4	693711.2	233	JAB	Carbide
26	94	15	536	567239.5	693313.2	252	JAB	Carbide
26	94	15	537	567440.4	693310.7	236	JAB	Carbide
26	94	15	538	567214.7	692920.9	256	JAB	Carbide
26	94	15	539	567033.3	693319.3	275	JAB	Carbide
26	94	15	540	567126.1	692895.6	275	JAB	Carbide
26	94	15	541	567038.0	693131.9	275	JAB	Carbide
26	94	15	542	567063.8	693723.5	256	JAB	Carbide
26	94	15	543	567069.6	694134.7	259	JAB	Carbide
26	94	15	544	566527.4	693171.0	296	$J A B$	Carbide
26	94	15	555	567445.9	695799.3	237	JAB	Carbide
26	94	15	564	566526.0	692969.0	297	JAB	Carbide
26	94	15	565	566832.4	692950.9	295	JAB	Carbide
26	94	15	566	566849.5	693375.9	269	JAB	Carbide
26	94	15	567	566734.3	693155.8	287	JAB	Carbide
26	94	15	568	566937.5	693528.9	272	JAB	Carbide
26	94	15	569	566937.9	693144.9	297	JAB	Carbide
26	94	15	570	567143.4	693523.2	269	JAB	Carbide
26	94	15	571	567172.6	693934.5	259	JAB	Carbide
26	94	15	572	567331.8	694322.4	233	JAB	Carbide
26	94	15	573	567359.0	694734.6	226	JAB	Carbide
26	94	15	574	567441.6	695509.4		$J A B$	Carbide
26	94	15	575	567421.1	695105.3	218	JAB	Carbide
26	94	15	584	566828.8	693250.9	300	JAB	Carbide
26	94	15	585	566926.5	693247.9	301	$J A B$	Carbide
26	94	15	586	567024.8	693248.1	280	JAB	Carbide
26	94	15	587	567125.3	693248.3	320	JAB	Carbide
26	94	15	588	566932.4	693317.7	301	JAB	Carbide
26	94	15	589	567131.9	693317.3	279	JAB	Carbide
26	94	15	590	566934.0	693422.1	298	$J A B$	Carbide
26	94	15	591	567033.8	693421.5	300	JAB	Carbide
26	94	15	592	567131.8	693420.3	300	JAB	Carbide
26	94	15	593	567038.2	693522.7	282	$J A B$	Carbide
26	94	15	594	567243.1	693519.5	260	JAB	Carbide
26	94	15	595	566941.5	693627.3	280	JAB	Carbide
26	94	15	596	567041.7	693627.4	281	JAB	Carbide
26	94	15	597	567138.6	693626.2	281	JAB	Carbide
26	94	15	598	567162.8	693718.1	281	JAB	Carbide
26	94	15	599	566962.6	693721.6	300	JAB	Carbide
26	94	15	600	566861.1	693723.9	300	JAB	Carbide
26	94	15	601	567065.7	693820.8	278	JAB	Carbide
26	94	15	602	567165.5	693820.3	280	JAB	Carbide
26	94	15	603	566967.9	693924.7	280	JAB	Carbide
26	94	15	604	567069.1	693923.1	281	JAB	Carbide
26	94	15	605	567071.4	694024.6	280	JAB	Carbide
26	94	15	606	567171.9	694017.0	280	JAB	Carbide
26	94	15	607	567270.2	694014.8	280	JAB	Carbide
26	94	15	608	567174.3	694132.3	260	JAB	Carbide
26	94	15	609	567374.5	694122.1	260	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

		Sec	Maphole ID	North NAD27	EastNAD27	FetLogTB	Project	Area
26	94	15	610	567270.7	694225.7	260	JAB	Carbide
26	94	15	611	567172.4	694230.2	260	JAB	Carbide
26	94	15	612	567229.5	694322.9	260	$J A B$	Carbide
26	94	15	613	567131.9	694326.6	260	JAB	Carbide
26	94	15	614	567191.1	694416.5	261	JAB	Carbide
26	94	15	615	567291.6	694415.3	259	JAB	Carbide
26	94	15	616	567343.5	694514.1	240	JAB	Carbide
26	94	15	617	567195.9	694514.4	260	JAB	Carbide
26	94	15	618	567344.1	694619.1	261	JAB	Carbide
26	94	15	619	567245.0	694617.8	260	JAB	Carbide
26	94	15	620	567249.0	694718.2	259	JAB	Carbide
26	94	15	621	567311.2	694814.4	180	JAB	Carbide
26	94	15	622	567406.0	694806.2	241	JAB	Carbide
26	94	15	623	567503.2	694802.8	240	JAB	Carbide
26	94	15	624	567210.5	694917.8	240	JAB	Carbide
26	94	15	625	567315.1	695012.3	240	JAB	Carbide
26	94	15	626	567414.9	695008.6	241	JAB	Carbide
26	94	15	627	567510.7	694998.5	240	JAB	Carbide
26	94	15	628	567515.5	695103.1	241	JAB	Carbide
26	94	15	629	567320.3	695116.2	241	JAB	Carbide
26	94	15	630	567413.8	695205.8	237	JAB	Carbide
26	94	15	631	567422.5	695305.3	240	JAB	Carbide
26	94	15	632	567339.1	695513.0		JAB	Carbide
26	94	15	633	567342.0	695611.1	240	JAB	Carbide
26	94	15	634	567441.1	695607.5	239	JAB	Carbide
26	94	15	635	567494.8	695706.8	219	JAB	Carbide
26	94	15	755	569058.7	695702.8	261	JAB	Carbide
26	94	15	765	567395.4	695713.2	240	JAB	Carbide
26	94	15	766	567389.5	695512.5		JAB	Carbide
26	94	15	767	567529.8	695506.2	240	JAB	Carbide
26	94	15	768	567329.0	695409.8	240	JAB	Carbide
26	94	15	769	567426.1	695408.0	240	JAB	Carbide
26	94	15	770	567527.6	695403.7	240	JAB	Carbide
26	94	15	771	567469.2	695306.3	240	JAB	Carbide
26	94	15	772	567371.2	695308.3	240	JAB	Carbide
26	94	15	773	567315.4	695207.0	240	JAB	Carbide
26	94	15	774	567512.1	695201.0	240	$J A B$	Carbide
26	94	15	775	567457.7	694730.2	230	$J A B$	Carbide
26	94	15	776	567441.3	694613.6	240	JAB	Carbide
26	94	15	777	567389.3	694415.5	240	JAB	Carbide
26	94	15	778	567365.6	694231.3	260	JAB	Carbide
26	94	15	779	567487.0	694413.9	265	JAB	Carbide
26	94	15	780	567270.2	693931.2	260	JAB	Carbide
26	94	15	791	567262.0	693813.5	260	JAB	Carbide
26	94	15	792	567238.0	693620.8	260	JAB	Carbide
26	94	15	793	567082.3	693318.8	280	JAB	Carbide
26	94	15	794	567071.7	693246.6	280	JAB	Carbide
26	94	15	795	567343.6	693519.3	280	JAB	Carbide
26	94	15	796	567452.4	693519.4	260	$J A B$	Carbide
26	94	15	797	567230.5	693417.7	260	JAB	Carbide
26	94	15	798	567337.3	694415.2	240	JAB	Carbide
26	94	15	800	567365.6	695203.7	240	JAB	Carbide
26	94	15	801	567239.5	695610.3	240	JAB	Carbide
26	94	15	804	566881.5	693425.7	280	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole. 1 l	North NAD27	East NAD27	Log.1b	Project	Area
26	94	15	805	567017.4	693973.3	280	JAB	Carbide
26	94	15	806	566985.3	693520.7	270	$J A B$	Carbide
26	94	15	807	567015.5	693923.5	280	JAB	Carbide
26	94	15	808	567113.9	693922.0	260	JAB	Carbide
26	94	15	809	566964.0	693797.7	289	JAB	Carbide
26	94	15	810	567216.4	693916.8	260	JAB	Carbide
26	94	15	811	567321.4	694017.8	260	JAB	Carbide
26	94	15	812	567219.4	694013.8	260	JAB	Carbide
:26	94	15	813	567120.8	694020.3	260	JAB	Carbide
26	94	15	814	567120.4	694136.7		JAB	Carbide
26	94	15	815	567223.3	694134.4	260	JAB	Carbide
26	94	15	816	567322.0	694219.3	240	JAB	Carbide
26	94	15	817	567217.6	694225.9	260	JAB	Carbide
26	94	15	818	567281.6	694326.0	240	JAB	Carbide
26	94	15	819	567176.1	694325.9	260	JAB	Carbide
26	94	15	820	567241.0	694417.5	260	JAB	Carbide
26	94	15	831	567203.2	695018.6	240	JAB	Carbide
26	94	15	832	567194.7	694618.6	260	JAB	Carbide
26	94	15	833	567295.6	694616.7	260	JAB	Carbide
26	94	15	834	567395.4	694617.6	240	JAB	Carbide
26	94	15	835	567410.7	694734.8	240	JAB	Carbide
26	94	15	836	567358.6	694816.1	240	$J \bar{A} B$	Carbide
26	94	15	837	567362.7	694910.8	240	JAB	Carbide
26	94	15	838	567463.1	694901.4	240	JAB	Carbide
26	94	15	839	567608.6	694901.2	220	JAB	Carbide
26	94	15	840	567464.1	695052.5	240	JAB	Carbide
26	94	15	841	567366.8	695059.7	240	JAB	Carbide
26	94	15	842	567372.6	695105.8	240	JAB	Carbide
26	94	15	844	567467.1	695104.9	241	$J A B$	Carbide
26	94	15	845	567471.1	695204.5	240	JAB	Carbide
26	94	15	846	567383.3	695419.9	240	JAB	Carbide
26	94	15	847	567694.8	695705.8	245	$J A B$	Carbide
26	94	15	852	567245.1	695710.8	240	$J A B$	Carbide
26	94	15	857	567382.6	695502.0		JAB	Carbide
26	94	15	858	567537.2	695606.0	241	$J A B$	Carbide
26	94	15	860	567594.3	695707.3	220	$J A B$	Carbide
26	94	15	996	567285.8	695613.3	241	$J A B$	Carbide
26	94	15	997	567386.3	695612.7	240	$J A B$	Carbide
26	94	15	998	567483.0	695602.7	239	$J \mathrm{AB}$	Carbide
26	94	15	999	567262.0	695013.5	235	$J A B$	Carbide
26	94	15	1000	567360.0	695013.0	238	JAB	Carbide
26	94	15	1001	567458.0	695004.3	235	$J A B$	Carbide
26	94	15	1002	567456.2	694805.4	236	JAB	Carbide
26	94	15	1003	567322.0	693931.4	261	$J A B$	Carbide
26	94	15	1004	567014.1	693808.6	281	$J A B$	Carbide
26	94	15	1005	567113.3	693814.4	281	$J A B$	Carbide
26	94	15	1006	567211.6	693812.8	261	JAB	Carbide
26	94	15	1007	567314.9	693814.8	261	JAB	Carbide
26	94	15	1008	567011.6	693721.5		$J A B$	Carbide
26	94	15	1009	567108.2	693722.1	280	JAB	Carbide
26	94	15	1010	567215.0	693717.9	241	JAB	Carbide
26	94	15	1011	567092.1	693626.3	260	$J A B$	Carbide
26	94	15	1012	567184.0	693621.2	281	$J A B$	Carbide
26	94	15	1013	567091.1	693521.5	260	JAB	Carbide

Table 2.6-1
Antelope and JAB Drill Holes

	Rug	Sec	$\text { Map Hole } 1 \mathrm{I}$	North NAD27	East NAD27	$\log 1 \mathrm{D}$	Proiect	- 3 drathrea
26	94	15	1014	567190.9	693519.3	280	JAB	Carbide
26	94	15	1015	567292.1	693520.1	260	JAB	Carbide
26	94	15	1016	566980.2	693421.7	280	JAB	Carbide
26	94	15	1017	567080.3	693418.0	279	JAB	Carbide
26	94	15	1018	567178.3	693415.7	260	JAB	Carbide
26	94	15	1019	566879.2	693323.1	281	$J A B$	Carbide
26	94	15	1020	566982.9	693321.1	281	JAB	Carbide
26	94	15	1021	566990.9	693627.5	281	$J A B$	Carbide
26	94	15	1022	567293.5	694466.7	240	JAB	Carbide
26	94	15	1023	567344.3	694570.2	240	JAB	Carbide
26	94	15	1024	567399.1	694677.8	240	JAB	Carbide
26	94	15	1025	567299.7	694678.7	240	$J A B$	Carbide
26	94	15	1026	567487.7	694772.8	240	JAB	Carbide
26	94	15	1027	567411.0	695059.3	241	$J A B$	Carbide
26	94	15	1028	567415.8	695155.0	210	JAB	Carbide
26	94	15	1029	567446.2	695250.5	241	JAB	Carbide
26	94	15	1030	567395.2	695362.0	241	JAB	Carbide
26	94	15	1031	567219.3	695310.3	240	JAB	Carbide
26	94	15	1032	567223.4	695415.5	239	$J A B$	Carbide
26	94	15	1033	567232.9	695519.4	240	$J A B$	Carbide
26	94	15	1034	567128.0	695527.8	237	JAB	Carbide
26	94	15	1035	567184.0	695615.6	240	$J A B$	Carbide
26	94	15	1036	567339.6	695564.1		$J A B$	Carbide
26	94	15	1037	567438.7	695559.5		JAB	Carbide
26	94	15	1038	567406.5	695461.6	241	JAB	Carbide
26	94	15	1039	567358.1	695466.1	241	$J A B$	Carbide
26	94	15	1048	567739.2	695753.4	240	JAB	Carbide
26	94	15	1142	567587.4	695658.7	221	JAB	Carbide
26	94	15	1143	567441.3	695661.0		$J A B$	Carbide
26	94	15	1144	567343.5	695660.8		$J A B$	Carbide
26	94	15	1146	567478.4	695558.6		JAB	Carbide
26	94	15	1147	567327.1	695562.4		JAB	Carbide
26	94	15	1148	567261.7	695471.1	241	JAB	Carbide
26	94	15	1149	567171.9	695482.1	240	JAB	Carbide
26	94	15	1150	567.181 .5	695379.1	238	$J A B$	Carbide
26	94	15	1161	567273.6	695357.0	238	JAB	Carbide
26	94	15	1162	567215.6	695209.3	41	JAB	Carbide
26	94	15	1163	567117.2	695212.6	241	JAB	Carbide
26	94	15	1164	567267.1	695105.6	241	JAB	Carbide
26	94	15	1165	567168.3	695106.5	241	JAB	Carbide
26	94	15	1166	567316.3	695068.3	241	$J A B$	Carbide
26	94	15	1167	567207.4	694970.0	238	$J A B$	Carbide
26	94	15	1168	567462.9	695154.6	240	JAB	Carbide
26	94	15	1169	567305.4	694968.4	37	JAB	Carbide
26	94	15	1170	567405.6	694967.5	241	JAB	Carbide
26	94	15	1171	567502.9	694964.5	238	JAB	Carbide
26	94	15	1172	567161.3	694916.5	240	JAB	Carbide
26	94	15	1173	567209.3	694823.5	241	$J A B$	Carbide
26	94	15	1174	567357.3	694866.2	240	JAB	Carbide
26	94	15	1175	567457.8	694860.0	241	JAB	Carbide
26	94	15	1176	567346.7	694677.9	241	JAB	Carbide
26	94	15	1177	567151.0	694721.2	240	$J A B$	Carbide
26	94	15	1178	567141.2	694574.1	261	JAB	Carbide
26	94	15	1179	567137.8	694474.5	261	$J A B$	Carbide

Uranium One Americas

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	Map Hole enid	North NAD27	East NAD27	LogTD	Project	Area
26	94	15	1180	567337.7	694464.2	240	JAB	Carbide
26	94	15	1181	567241.1	694469.3	261	JAB	Carbide
26	94	15	1182	567032.8	694334.2	261	JAB	Carbide
26	94	15	1183	567247.3	694278.4	258	JAB	Carbide
26	94	15	1184	567345.3	694274.0	237	JAB	Carbide
26	94	15	1185	567148.2	694282.9	257	$J A B$	Carbide
26	94	15	1186	567195.9	694082.8	261	JAB	Carbide
26	94	15	1187	566964.9	693978.7	281	JAB	Carbide
26	94	15	1188	566964.0	694125.0	280	JAB	Carbide
26	94	15	1189	566863.6	693930.2	281	JAB	Carbide
26	94	15	1190	566992.3	693868.4	278	JAB	Carbide
26	94	15	1191	567088.8	693864.0	278	JAB	Carbide
26	94	15	1192	567187.2	693861.4	277	JAB	Carbide
26	94	15	1193	567286.9	693857.7	257	JAB	Carbide
26	94	15	1194	567267.7	693767.6	260	JAB	Carbide
26	94	15	1195	567235.7	693569.3	260	JAB	Carbide
26	94	15	1196	566980.2	693582.1	280	JAB	Carbide
26	94	15	1197	566883.2	693541.7	280	$J A B$	Carbide
26	94	15	1198	566829.4	693551.7	300	JAB	Carbide
26	94	15	1199	566794.1	693376.4	300	$J A B$	Carbide
26	94	15	1200	566956.7	693372.5	280	JAB	Carbide
26	94	15	1201	566957.5	693471.6	277	$J A B$	Carbide
26	94	15	1202	567055.9	693468.3	258	JAB	Carbide
26	94	15	1203	567263.9	693467.2		$J A B$	Carbide
26	94	15	1204	567252.6	693465.5	260	$J A B$	Carbide
26	94	15	1205	566858.9	693477.4	296	JAB	Carbide
26	94	15	1206	567105.1	693372.2	278	JAB	Carbide
26	94	15	1207	567133.9	693132.2	279	JAB	Carbide
26	94	15	1208	567235.8	693130.8	269	JAB	Carbide
26	94	15	1209	566899.3	693023.2	297	$J A B$	Carbide
26	94	15	1210	567021.1	693029.5	279	JAB	Carbide
26	94	15	1211	567226.9	693023.3	277	JAB	Carbide
26	94	15	1212	566936.1	693042.3	298	JAB	Carbide
26	94	15	1237	567397.4	695250.6	241	$J A B$	Carbide
26	94	15	1239	567449.0	695357.9		JAB	Carbide
26	94	15	1253	567407.1	699031.8	238	$J A B$	Carbide
26	94	15	1273	567149.2	694830.1	240	JAB	Carbide
26	94	15	1274	567248.6	694874.2	241	JAB	Carbide
26	94	15	1275	567254.2	694773.1	241	$J A B$	Carbide
26	94	15	1276	567146.5	694080.0	237	JAB	Carbide
26	94	15	1277	567324.4	694076.7	261	JAB	Carbide
26	94	15	1278	566973.8	693137.5	281	JAB	Carbide
26	94	15	1279	566972.1	693033.1	280	$J A B$	Carbide
26	94	15	1294	567471.6	695255.3		JAB	Carbide
26	94	15	MW1292	566738.3	693373.7	272	$J A B$	Carbide
26	94	15	OW1304	566739.6	693434.0	263	$J A B$	Carbide
26	94	15	OW1305	566740.1	693343.0	265	$J A B$	Carbide
26	94	15	OW1307	566706.2	693377.5	298	JAB	Carbide
26	94	21	AX17			800	$J A B$	Climax Uranium
26	94	21	AX31	NE		1020	$J A B$	Climax Uranium
26	94	21	AX32	SW/NE		780	$J A B$	Climax Uranium
26	94	21	AX33	SW/NE		780	JAB	Climax Uranium
26	94	21	AX34	SW/NE		780	JAB	Climax Uranium
26	94	21	AX37	SW/NE		780	JAB	Climax Uranium

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	North NAD27	East NAD27		Project	Area
26	94	21	AX39	SWINE		780	JAB	Climax Uranium
26	94	21	AX42	NE		780	JAB	Climax Uranium
26	94	21	AX43	SE/NE		600	JAB	Climax Uranium
26	94	21	AX44	NE/NE		600	JAB	Climax Uranium
26	94	21	AX47	SW/NE		660	JAB	Climax Uranium
26	94	21	21-1			1500	$J A B$	Kerr-McGee
26	94	9	DJX11	SWISW		800	JAB	Teton Exp/DJ
26	94	9	DJX12	SWISW		640	JAB	Teton Exp/DJ
26	94	9	DJX23			1000	$J A B$	Teton Exp/DJ
26	94	9	DJX24			1000	JAB	Teton Exp/DJ
26	94	9	DJX25			100	JAB	Teton Exp/DJ
26	94	9	DJX26			100	$J A B$	Teton Exp/DJ
26	94	10	DJX22			1000	JAB	Teton Exp/DJ
26	94	15	Unknown10	567670	691055		JAB	Unknown
26	94	15	Unknown11	567682	691278		JAB	Unknown
26	94	15	Unknown12	567686	691473		JAB	Unknown
26	94	15	Unknown13	567433	690729		JAB	Unknown
26	94	15	Unknown14	567426	690919		$J A B$	Unknown
26	94	15	Unknown15	567463	691059		JAB	Unknown
26	94	15	Unknown16	567454	691277		JAB	Unknown
26	94	15	Unknown17	567444	691483		JAB	Unknown
26	94	15	Unknown18	567216	690747		JAB	Unknown
26	94	15	Unknown19	567208	690928		JAB	Unknown
26	94	15	Unknown20	567236	691084		JAB	Unknown
26	94	15	Unknown21	567241	691277		JAB	Unknown
26	94	15	Unknown22	567242	691496		JAB	Unknown
26	94	15	Unknown23	567004	690750		JAB	Unknown
26	94	15	Unknown24	567008	690940		JAB	Unknown
26	94	15	Unknown25	567020	691098		$J A B$	Unknown
26	94	15	Unknown26	567016	691295		$J A B$	Unknown
26	94	15	Unknown27	567016	691484		JAB	Unknown
26	94	15	Unknown28	566825	690762		$J A B$	Unknown
26	94	15	Unknown29	566825	690936		JAB	Unknown
26	94	15	Unknown30	566841	691092		JAB	Unknown
26	94	15	Unknown31	566770	691262		JAB	Unknown
26	94	15	Unknown32	566825	691479		$J A B$	Unknown
26	94	15	Unknown33	566578	690767		$J A B$	Unknown
26	94	15	Unknown34	566609	690947		JAB	Unknown
26	94	15	Unknown35	566630	691106		$J A B$	Unknown
26	94	15	Unknown36	566575	691312		JAB	Unknown
26	94	15	Unknown37	566596	691477		$J A B$	Unknown
26	94	15	Unknown38	566384	690776		JAB	Unknown
26	94	15	Unknown39	566397	690991		JAB	Unknown
26	94	15	Unknown40	566389	691110		$J A B$	Unknown
26	94	15	Unknown41	566400	691316		JAB	Unknown
26	94	15	Unknown42	566396	691483		JAB	Unknown
26	94	15	Unknown8	567670	690733		JAB	Unknown
26	94	15	Unknown9	567683	690883		JAB	Unknown
26	94	16	Unknown1	568054	690356		JAB	Unknown
26	94	16	Unknown2	567863	691362		JAB	Unknown
26	94	16	Unknown3	567464	690377		$J A B$	Unknown
26	94	16	Unknown4	567265	690384		$J A B$	Unknown
26	94	16	Unknown5	567061	690400		JAB	Unknown
26	94	16	Unknown6	566863	690400		$J A B$	Unknown

Table 2.6-1
Antelope and JAB Drill Holes

Kynume	Rng	Sec	Map Hole 10	North NAD27	East NAD27	LogTD	Project	Area
26	94	16	Unknown7	566657	690408		JAB	Unknown
26	94	22	Unknown43	566059	691601		JAB	Unknown
26	94	22	Unknown44	566068	691867		JAB	Unknown
26	94	22	Unknown45	566068	692129		JAB	Unknown
26	94	22	Unknown46	565794	691596		JAB	Unknown
26	94	22	Unknown47	565812	691865		JAB	Unknown
26	94	22	Unknown48	565812	692127		JAB	Unknown
26	94	22	Unknown49	565538	691599		JAB	Unknown
26	94	22	Unknown50	565549	691837		JAB	Unknown
26	94	22	Unknown51	565558	692131		JAB	Unknown
26	94	22	Unknown52	565300	691838		JAB	Unknown
26	94	22	Unknown53	565305	692129		JAB	Unknown
26	94	22	Unknown54	565054	691838		JAB	Unknown
26	94	22	Unknown55	565065	692108		JAB	Unknown
26	94	22	Unknown56	564815	691857		JAB	Unknown
26	94	13	2001	566528.5	701141.5	1000.6	JAB	Uranium 1
26	94	13	2002	566528.5	702741.5	999.7	JAB	Uranium 1
26	94	13	2003	566528.5	704341.5	1001.6	JAB	Uranium 1
26	94	13	2004	568928.5	701141.5	495.7	JAB	Uranium 1
26	94	13	2005	568928.5	701941.5	500.2	JAB	Uranium 1
26	94	13	2006	568928.5	702741.5	499.2	JAB	Uranium 1
26	94	13	2007	568928.5	703541.5	499.7	JAB	Uranium 1
26	94	13	2008	568928.5	704341.5	500.6	JAB	Uranium 1
26	94	14	2001	568728.5	699541.5	1000.5	JAB	Uranium 1
26	94	14	2002	568528.5	699541.5	200.3	JAB	Uranium 1
26	94	14	2003	568328.5	699541.5	202.8	JAB	Uranium 1
26	94	14	2004	568128.5	699541.5	203.6	$J A B$	Uranium 1
26	94	14	2005	567928.5	699541.5	996.4	JAB	Uranium 1
26	94	14	2006	567728.5	699541.5	230.7	JAB	Uranium 1
26	94	14	2007	567528.5	699541.5	227	JAB	Uranium 1
26	94	14	2008	567328.5	699541.5	230.8	JAB	Uranium 1
26	94	14	2009	568128.5	699141.5	203	$J A B$	Uranium 1
26	94	14	2010	567928.5	699141.5	237.7	JAB	Uranium 1
26	94	14	2011	567728.5	699141.5	242.3	$J A B$	Uranium 1
26	94	14	2012	567528.5	699141.5	410.7	JAB	Uranium 1
26	94	14	2013	567328.5	699141.5	378.8	JAB	Uranium 1
26	94	14	2014	568128.5	698741.5	1007.2	JAB	Uranium 1
26	94	14	2015	567928.5	698741.5	237.7	JAB	Uranium 1
26	94	14	2016	567728.5	698741.5	405.8	JAB	Uranium 1
26	94	14	2017	567528.5	698741.5	404	JAB	Uranium 1
26	94	14	2018	567328.5	698741.5	1000.2	JAB	Uranium 1
26	94	14	2019	567928.5	698341.5	402	$J A B$	Uranium 1
26	94	14	2020	567728.5	698341.5	405.6	JAB	Uranium 1
26	94	14	2021	567528.5	698341.5	404.3	JAB	Uranium 1
26	94	14	2022	567328.5	698341.5	405.6	$J A B$	Uranium 1
26	94	14	2023	567928.5	697941.5	1000.3	JAB	Uranium 1
26	94	14	2024	567728.5	697941.5	406.9	JAB	Uranium 1
26	94	14	2025	567528.5	697941.5	402.6	$J A B$	Uranium 1
26	94	14	2026	567328.5	697941.5	1000	JAB	Uranium 1
26	94	14	2027	567928.5	697541.5	402.9	$J A B$	Uranium 1
26	94	14	2028	567728.5	697541.5	404.8	JAB	Uranium 1
26	94	14	2029	567528.5	697541.5	403.9	$J A B$	Uranium 1
26	94	14	2030	567328.5	697541.5	403.6	JAB	Uranium 1
26	94	14	2031	567928.5	697141.5	1000	JAB	Uranium 1

Table 2.6-1
Antelope and JAB Drill Holes

riwn	Rng	Sec	Map Hole 1 D	North NAD27	East NAD27	Log 10	Project	Area
26	94	14	2032	567728.5	697141.5	402.9	JAB	Uranium 1
26	94	14	2033	567528.5	697141.5	403.2	JAB	Uranium 1
26	94	14	2034	567328.5	697141.5	1000.7	JAB	Uranium 1
26	94	14	2035	567928.5	696741.5	406.9	JAB	Uranium 1
26	94	14	2036	567728.5	696741.5	400	JAB	Uranium 1
26	94	14	2037	567528.5	696741.5	405	JAB	Uranium 1
26	94	14	2038	567328.5	696741.5	405.1	JAB	Uranium 1
26	94	14	2039	567928.5	696341.5	999.6	JAB	Uranium 1
26	94	14	2040	567728.5	696341.5	407.2	JAB	Uranium 1
26	94	14	2041	567528.5	696341.5	410.9	JAB	Uranium 1
26	94	14	2042	567328.5	696341.5	999.6	JAB	Uranium 1
26	94	14	2043	567928.5	695941.5	405.6	JAB	Uranium 1
26	94	14	2044	567728.5	695941.5	404.5	JAB	Uranium 1
26	94	14	2045	567528.5	695941.5	404.9	JAB	Uranium 1
26	94	14	2046	567328.5	695941.5	406.9	JAB	Uranium 1
26	94	14	2047C	567532.0	696338.0	219.2	JAB	Uranium 1
26	94	14	2048	566528.5	696341.5	1000.2	JAB	Uranium 1
26	94	14	2049	566528.5	697941.5	994.3	JAB	Uranium 1
26	94	14	2050	566528.5	699541.5	1000.2	JAB	Uranium 1
26	94	14	2051	567328.5	699941.5	640.2	$J A B$	Uranium 1
26	94	14	2052	567528.5	699941.5	642	JAB	Uranium 1
26	94	14	2053	567728.5	699941.5	599.3	JAB	Uranium 1
26	94	14	2054	567928.5	699941.5	555.8	$J A B$	Uranium 1
26	94	14	2055	568128.5	699941.5	497.5	JAB	Uranium 1
26	94	14	2056	568328.5	699941.5	499.9	JAB	Uranium 1
26	94	14	2057	568528.5	699941.5	499.8	JAB	Uranium 1
26	94	14	2058	568728.5	699941.5	499.7	JAB	Uranium 1
26	94	14	2059	568928.5	699541.5	500.2	JAB	Uranium 1
26	94	14	2060	568928.5	698741.5	500.5	JAB	Uranium 1
26	94	14	2061	568928.5	697941.5	505.1	JAB	Uranium 1
26	94	14	2062	568928.5	697141.5	503.1	JAB	Uranium 1
26	94	14	2063	568928.5	696341.5	507.4	JAB	Uranium 1
26	94	14	2064	568928.5	700341.5	500	JAB	Uranium 1
26	94	14	2065	566928.0	699541.0	659.9	JAB	Uranium 1
26	94	14	2066	566528.0	698741.0	659.9	JAB	Uranium 1
26	94	14	2067	568228.0	699941.0	499.4	$J A B$	Uranium 1
26	94	14	2068	568028.0	699941.0	540.1	JAB	Uranium 1
26	94	14	MP2069	567527.3	696142.4	205.5	JAB	Uranium 1
26	94	15	2001	567728.5	695541.5	999	JAB	Uranium 1
26	94	15	2002	567528.5	695541.5	405.7	JAB	Uranium 1
26	94	15	2003	567328.5	695541.5	412.9	$J A B$	Uranium 1
26	94	15	2004	567128.5	695541.5	999.6	$J A B$	Uranium 1
26	94	15	2005	567728.5	695141.5	410.6	$J A B$	Uranium 1
26	94	15	2006	567528.5	695141.5	410.2	JAB	Uranium 1
26	94	15	2007	567328.5	695141.5	406	$J A B$	Uranium 1
26	94	15	2008	567128.5	695141.5	699.3	$J A B$	Uranium 1
26	94	15	2009	567728.5	694741.5	298.7	$J A B$	Uranium 1
26	94	15	2010	567528.5	694741.5	410.4	JAB	Uranium 1
26	94	15	2011	567328.5	694741.5	411	$J A B$	Uranium 1
26	94	15	2012	567128.5	694741.5	998.5	$J A B$	Uranium 1
26	94	15	2013	567728.5	694341.5	471.4	JAB	Uranium 1
26	94	15	2014	567528.5	694341.5	411.5	$J A B$	Uranium 1
26	94	15	2015	567328.5	694341.5	410.6	$J A B$	Uranium 1
26	94	15	2016	567128.5	694341.5	407.4	$J A B$	Uranium 1

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	$\text { Map Hole } 1 \mathrm{~L}$	North NAD27	East NAD27		Proiect	Area
26	94	15	2017	567528.5	693941.5	999	JAB	Uranium 1
26	94	15	2018	567328.5	693941.5	410.9	$J A B$	Uranium 1
26	94	15	2019	567128.5	693941.5	410.2	JAB	Uranium 1
26	94	15	2020	566928.5	693941.5	998.7	JAB	Uranium 1
26	94	15	2021	567528.5	693541.5	410	JAB	Uranium 1
26	94	15	2022	567328.5	693541.5	410	JAB	Uranium 1
26	94	15	2023	567128.5	693541.5	412.8	JAB	Uranium 1
26	94	15	2024	566928.5	693541.5	411.3	JAB	Uranium 1
26	94	15	2025	567328.5	693141.5	408.5	JAB	Uranium 1
26	94	15	2026	567128.5	693141.5	409.3	JAB	Uranium 1
26	94	15	2027	566928.5	693141.5	1000.3	JAB	Uranium 1
26	94	15	2028	567728.5	692341.5	404.8	JAB	Uranium 1
26	94	15	2029	566928.5	692341.5	999.4	JAB	Uranium 1
26	94	15	2030	567728.5	691541.5	1000.6	JAB	Uranium 1
26	94	15	2031	566928.5	691541.5	999	JAB	Uranium 1
26	94	15	2032	567728.5	690741.5	998.2	JAB	Uranium 1
26	94	15	2033	566928.5	690741.5	412	JAB	Uranium 1
26	94	15	2034	566528.5	692741.5	407.4	JAB	Uranium 1
26	94	15	2035	567328.5	692741.5	410.2	JAB	Uranium 1
26	94	15	2036	567328.5	692341.5	411.1	JAB	Uranium 1
26	94	15	2037	566528.5	692341.5	410.6	$J A B$	Uranium 1
26	94	15	2038	566528.5	691941.5	410.5	JAB	Uranium 1
26	94	15	2039	567328.5	691941.5	409.9	JAB	Uranium 1
26	94	15	2040	567328.5	691541.5	411.3	JAB	Uranium 1
26	94	15	2041	566528.5	691541.5	409.4	JAB	Uranium 1
26	94	15	2042	566528.5	691141.5	409.3	JAB	Uranium 1
26	94	15	2043	567328.5	691141.5	411	JAB	Uranium 1
26	94	15	2044	567328.5	690741.5	484.9	JAB	Uranium 1
26	94	15	2045	566528.5	690741.5	410.5	JAB	Uranium 1
26	94	15	2046	567728.5	691941.5	506	JAB	Uranium 1
26	94	15	2047	567728.5	691141.5	507.9	JAB	Uranium 1
26	94	15	2048	566928.5	692741.5	410.1	JAB	Uranium 1
26	94	15	2049	566928.5	691941.5	411.1	JAB	Uranium 1
26	94	15	2050	566928.5	691141.5	411.1	JAB	Uranium 1
26	94	15	2051	566728.5	693541.5	425	JAB	Uranium 1
26	94	15	2052	566728.5	693141.5	434.5	JAB	Uranium 1
26	94	15	2053	566728.5	692741.5	410.4	JAB	Uranium 1
26	94	15	2054	566328.5	692741.5	425.6	JAB	Uranium 1
26	94	15	2055	566628.5	692341.5	400	JAB	Uranium 1
26	94	15	2056	566428.5	692341.5	390.3	JAB	Uranium 1
26	94	15	2057	567028.5	692341.5	400.5	JAB	Uranium 1
26	94	15	2058	567028.5	693541.5	410.4	JAB	Uranium 1
26	94	15	2059	567228.5	693541.5	401.2	JAB	Uranium 1
26	94	15	2060	567028.5	693141.5	365.5	JAB	Uranium 1
26	94	15	2061	566828.5	693141.5	365	JAB	Uranium 1
26	94	15	2062	567028.5	692741.5	365	JAB	Uranium 1
26	94	15	2063	566823.8	692741.5	364.9	JAB	Uranium 1
26	94	15	2064	566728.5	692341.5	378.7	JAB	Uranium 1
26	94	15	2065	566328.5	692341.5	411	JAB	Uranium 1
26	94	15	2066	566628.5	692741.5	400.8	JAB	Uranium 1
26	94	15	2067	567128.5	692741.5	400.4	JAB	Uranium 1
26	94	15	2068	566328.5	691941.5	470.1	JAB	Uranium 1
26	94	15	2069	566328.5	691541.5	493.8	$J A B$	Uranium 1
26	94	15	2070	566528.5	693141.5	404.1	JAB	Uranium 1

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	$5 \mathrm{Sec}$	$\text { Map Hole } 10$	North NAD27	East NAD27	Log TD	Project	Area
26	94	15	2071	566528.5	694741.5	1000.1	JAB	Uranium 1
26	94	15	2072	568928.5	695541.5	501.3	JAB	Uranium 1
26	94	15	2073	568928.5	694741.5	504.2	JAB	Uranium 1
26	94	15	2074	568928.5	693941.5	494.6	JAB	Uranium 1
26	94	15	2075	568928.5	693141.5	387.1	JAB	Uranium 1
26	94	15	2076	568928.5	692341.5	502	JAB	Uranium 1
26	94	15	2077	568928.5	691541.5	499.5	$J A B$	Uranium 1
26	94	15	2078	568928.5	690741.5	502.6	JAB	Uranium 1
26	94	15	2079	566428.5	692741.5	360.4	JAB	Uranium 1
26	94	15	2080	568728.0	693141.0	410.1	JAB	Uranium 1
26	94	15	2081	568528.0	693141.0	410.4	JAB	Uranium 1
26	94	15	2082	568528.0	692341.0	406.2	JAB	Uranium 1
26	94	15	2083	568528.0	691541.0	440.2	JAB	Uranium 1
26	94	15	2084	568528.0	690741.0	506	JAB	Uranium 1
26	94	15	2085	567128.5	692941.5	364.7	JAB	Uranium 1
26	94	15	2086	566928.5	692941.5	361.3	$J A B$	Uranium 1
26	94	15	2087	566728.5	692541.5	365	JAB	Uranium 1
26	94	15	2088	566928.0	694741.0	699.2	JAB	Uranium 1
26	94	15	2089	566928.5	692541.5	364.3	JAB	Uranium 1
26	94	15	2090	566828.5	692341.5	365.1	$J A B$	Uranium 1
26	94	15	2091	566528.5	692541.5	379.8	$J A B$	Uranium 1
26	94	15	2092	566978.5	692741.5	499.8	JAB	Uranium 1
26	94	15	2093	566878.5	692741.5	499.4	JAB	Uranium 1
26	94	15	2094	566773.8	692741.5	498.8	JAB	Uranium 1
26	94	15	2095	566328.5	690741.5	412.1	JAB	Uranium 1
26	94	15	2096	566828.5	692541.5	334.1	JAB	Uranium 1
26	94	15	2097	566628.5	692541.5	335.1	JAB	Uranium 1
26	94	15	2098	567028.5	692941.5	361.5	JAB	Uranium 1
26	94	15	2099	566832.4	692941.4	364.6	JAB	Uranium 1
26	94	15	2100	567078.5	692941.5	363	JAB	Uranium 1
26	94	15	2101	566978.5	692941.5	362.1	JAB	Uranium 1
26	94	15	2102	566882.4	692941.4	363	JAB	Uranium 1
26	94	15	MP-2103	567027.9	693518.7	257.9	JAB	Uranium 1
26	94	16	1003	568128.5	690241.5	999	JAB	Uranium 1
26	94	16	1004	566528.5	690241.5	999.8	JAB	Uranium 1
26	94	16	1008	566528.5	688641.5	1000	JAB	Uranium 1
26	94	16	1012	566528.5	687041.5	999.5	$J A B$	Uranium 1
26	94	16	1016	566528.5	685441.5	996.5	JAB	Uranium 1
26	94	16	1018	566928.5	688241.5	508	JAB	Uranium 1
26	94	16	1019	567328.5	688241.5	506	JAB	Uranium 1
26	94	16	1020	567328.5	688641.5	505	JAB	Uranium 1
26	94	16	1021	567328.5	689041.5	504.5	JAB	Uranium 1
26	94	16	1022	567328.5	689441.5	498.6	JAB	Uranium 1
26	94	16	1023	567328.5	689841.5	503.6	JAB	Uranium 1
26	94	16	1024	567328.5	690241.5	502	JAB	Uranium 1
26	94	16	1025	566928.5	690241.5	506	JAB	Uranium 1
26	94	16	1026	566928.5	689841.5	500	JAB	Uranium 1
26	94	16	1027	566528.5	689841.5	501.9	JAB	Uranium 1
26	94	16	1029	566928.5	689441.5	505.1	JAB	Uranium 1
26	94	16	1031	566928.5	689041.5	506	$J A B$	Uranium 1
26	94	16	1032	566928.5	688641.5	506	JAB	Uranium 1
26	94	21	1001	566128.5	689941.5	504.4	JAB	Uranium 1
26	94	21	1002	565328.5	689941.5	999.6	JAB	Uranium 1
26	94	21	1003	564528.5	689941.5	1006.2	$J A B$	Uranium 1

Uranium One Americas

Table 2.6-1

Antelope and JAB Drill Holes

Iwn	Rng	${ }^{\text {Sec }}$	Map Hole II	North NAD27	Cast NA D27	LogTD	\qquad	
26	94	21	1004	563728.5	689941.5	999.6	JAB	Uranium 1
26	94	21	1005	562928.5	689941.5	1198.9	JAB	Uranium 1
26	94	21	1007	566128.5	689141.5	498.4	JAB	Uranium 1
26	94	21	1008	565328.5	689141.5	1009.2	JAB	Uranium 1
26	94	21	1009	564528.5	689141.5	1000.8	JAB	Uranium 1
26	94	21	1010	563728.5	689141.5	1099.8	JAB	Uranium 1
26	94	21	1011	562928.5	689141.5	1200.1	JAB	Uranium 1
26	94	21	1014	565328.5	688341.5	998.9	JAB	Uranium 1
26	94	21	1015	564528.5	688341.5	999.7	$J A B$	Uranium 1
26	94	21	1016	563728.5	688341.5	1099.8	JAB	Uranium 1
26	94	21	1017	562928.5	688341.5	1200.5	JAB	Uranium 1
26	94	21	1020	565328.5	687541.5	996	JAB	Uranium 1
26	94	21	1021	564528.5	687541.5	998.8	JAB	Uranium 1
26	94	21	1022	563728.5	687541.5	1099.6	JAB	Uranium 1
26	94	21	1023	562928.5	687541.5	1199.1	JAB	Uranium 1
26	94	22	1001	566128.5	693141.5	1000.3	JAB	Uranium 1
26	94	22	1002	565328.5	693141.5	999.9	JAB	Uranium 1
26	94	22	1003	566128.5	692341.5	999	JAB	Uranium 1
26	94	22	1004	565328.5	692341.5	997.3	JAB	Uranium 1
26	94	22	1005	566128.5	691541.5	999.3	JAB	Uranium 1
26	94	22	1006	565328.5	691541.5	1002.6	JAB	Uranium 1
26	94	22	1007	566128.5	690741.5	686.8	JAB	Uranium 1
26	94	22	1008	565328.5	690741.5	999.4	JAB	Uranium 1
26	94	22	1009	564528.5	690741.5	997.3	JAB	Uranium 1
26.	94	22	1010	563928.5	690741.5	999.5	JAB	Uranium 1
26	94	22	1011	564528.5	691541.5	1007.6	JAB	Uranium 1
26	94	22	1012	563728.5	691541.5	989.8	JAB	Uranium 1
26	94	22	1013	564528.5	692341.5	998.3	JAB	Uranium 1
26	94	22	1014	563728.5	692341.5	989.7	JAB	Uranium 1
26	94	22	1015	564528.5	693141.5	1004.4	JAB	Uranium 1
26	94	22	1016	563728.5	693141.5	1003.5	JAB	Uranium 1
26	94	22	1017	565728.5	691941.5	408.1	JAB	Uranium 1
26	94	22	1018	565728.5	691541.5	407.4	JAB	Uranium 1
26	94	22	1019	565728.5	691141.5	410.3	JAB	Uranium 1
26	94	22	1020	565728.5	690741.5	463.1	JAB	Uranium 1
26	94	22	1021	566128.5	691141.5	411.2	JAB	Uranium 1
26	94	22	1022	566128.5	691941.5	410.4	JAB	Uranium 1
26	94	22	1023	564928.5	691541.5	999.5	JAB	Uranium 1
26	94	22	1024	564928.5	692341.5	998.9	JAB	Uranium 1
26	94	22	1025	564928.5	693141.5	998.8	JAB	Uranium 1
26	94	22	1026	565928.5	691941.5	504.7	JAB	Uranium 1
26	94	22	1027	565928.5	691541.5	504.8	$J A B$	Uranium 1
26	94	22	1028	565928.5	691141.5	502.2	JAB	Uranium 1
26	94	22	1029	566028.5	691941.5	440.1	JAB	Uranium 1
26	94	22	1030	564528.5	691941.5	1000.9	JAB	Uranium 1
26	94	22	1031	564528.5	691141.5	999.8	JAB	Uranium 1
26	94	22	1032	564228.5	690741.5	1098.5	JAB	Uranium 1
26	94	22	1033	565128.5	692341.5	899.1	JAB	Uranium 1
26	94	22	1034	565928.5	690741.5	503.9	JAB	Uranium 1
26	94	22	1035	565528.5	690741.5	500.4	JAB	Uranium 1
26	94	22	1036	565528.5	691141.5	500.3	JAB	Uranium 1
26	94	22	1037	565828.5	691941.5	454.4	JAB	Uranium 1
26	94	22	1038	565628.5	691941.5	467.7	JAB	Uranium 1
26	94	22	1039	565128.5	693141.5	900	JAB	Uranium 1

Table 2.6-1

Antelope and JAB Drill Holes

Rwn	Rng	Sec	Majhole. ID	NorthNAD27	East NAD27	$\log \mathrm{ID}$	Project	Area
26	94	22	1040	565528.5	692341.5	899.6	JAB	Uranium 1
26	94	22	1041	564678.5	691541.5	899.8	JAB	Uranium 1
26	94	22	1042	564528.5	691341.5	939.7	JAB	Uranium 1
26	94	22	1043	564078.5	690741.5	939.7	JAB	Uranium 1
26	94	22	1044	566228.5	692741.5	359.5	JAB	Uranium 1
26	94	22	1045	565528.5	693141.5	859.4	JAB	Uranium 1
26	94	22	1046	564528.5	691441.5	858.9	JAB	Uranium 1
26	94	22	1047	565028.0	692341.0	839.1	JAB	Uranium 1
26	94	22	1048	564828.0	692341.0	857.9	JAB	Uranium 1
26	94	22	1049	566128.5	692140.4	364.6	$J A B$	Uranium 1
26	94	22	1051	565128.5	692741.5	463.8	JAB	Uranium 1
26	94	22	1052	565428.5	693141.5	408.6	JAB	Uranium 1
26	94	21	ARROW191-1			940	JAB	Wold Nuclear
26	94	21	ARROW192-1			1000	JAB	Wold Nuclear
26	94	21	ARROW192-2			940	$J A B$	Wold Nuclear
26	94	21	ARROW193-1			940	JAB	Wold Nuclear
26	94	21	ARROW194-1			860	JAB	Wold Nuclear
26	94	21	ARROW194-2			940	JAB	Wold Nuiclear
26	94	21	ARROW196-1			900	JAB	Wold Nuclear
26	94	21	ARROW197-1			900	JAB	Wold Nuclear
26	94	21	ARROW221-1			1500	JAB	Wold Nuclear
26	94	21	C4-21-1			1500	JAB	Wold Nuclear
26	94	21	C4-21-2			1500	JAB	Wold Nuclear
26	94	21	C4-21-3			1500	JAB	Wold Nuclear
26	94	22	JAB48-1	NE/NE		1500	JAB	Wold Nuclear
26	94	22	RED75-1			1500	JAB	Wold Nuclear
26	94	22	RED77-1	SWINW		1500	JAB	Wold Nuclear
26	93	13	Cameco \#3	568338.6	737790.3	380	Antelope	Cameco
26	92	1	1-13	577842.7	765563.3	903	Antelope	KMcG/OsbrnDrw
26	92	1	1-18	577714.5	769289.8	1300	Antelope	KMcG/OsbrnDrw
26	92	1	1-19	579618.7	769181.1	1305	Antelope	KMcG/OsbrnDrw
26	92	1	1-20	578613.2	768691.9	1501	Antelope	KMcG/OsbrnDrw
26	92	1	1-21	578425.8	766872.7	1502	Antelope	KMcG/OsbrnDrw
26	92	1	1-22	578274.1	764464.7	1199	Antelope	KMcG/OsbrnDrw
26.	92	1	1-23	577738.6	764482.3	1199	Antelope	KMcG/OsbrnDrw
26	92	1	1-25	578187.8	766327.8	1300	Antelope	KMcG/OsbrnDrw
26	92	1	1-43	577643.4	765170.7	908	Antelope	KMcG/OsbrnDrw
26	92	2	2-1	578616.2	761951.3	1000	Antelope	KMcG/OsbrnDrw
26	92	2	2-2	579008.9	761142.8	1103	Antelope	KMcG/OsbrnDrw
26	92	2	2-3	579020.8	761547.0	1001	Antelope	KMcG/OsbrnDrw
26	92	2	2-4	579023.8	761951.3	1180	Antelope	KMcG/OsbrnDrw
26	92	2	2-6	579029.7	762754.0	1325	Antelope	KMCG/OsbrnDrw
26	92	2	2-8	578607.3	760357.7	1101	Antelope	KMcG/OsbrnDrw
26	92	2	2-10	578613.2	761552.9	1526	Antelope	KMcG/OsbrnDrw
26	92	2	2-11	578628.1	762361.4	1523	Antelope	KMcG/OsbrnDrw
26	92	2	2-13	578640.0	763562.5	1224	Antelope	KMcG/OsbrnDrw
26	92		2-16	578220.5	761960.1	1527	Antelope	KMcG/OsbrnDrw
26	92	2	2-17	578226.5	762370.2	1528	Antelope	KMcG/OsbrnDrw
26	92	,	2-24	577818.9	762364.3	995	Antelope	KMcG/OsbrnDrw
26	92	2	2-25	577836.8	762768.6	1000	Antelope	KMcG/OsbrnDrw
26	92	2	2-26	577836.8	763574.2	910	Antelope	KMcG/OsbrnDrw
26	92	2	2-27	578208.6	762162.2	860	Antelope	KMcG/OsbrnDrw
26	92	2	2-28	577827.8	762669.0	862	Antelope	KMcG/OsbrnDrw
26	92	2	2-155	576249.1	767976.4		Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	$\text { Map Hole } 10$	North NAD27	East NAB27	$\log \mathrm{TD}$	Project	Area
26	92	2	2-28A	577477.7	759020.6	1011	Antelope	KMcG/OsbrnDrw
26	92	3	3-1	579309.3	755506.6	1007	Antelope	KMcG/OsbrnDrw
26	92	3	3-2	577447.0	754563.3	1018	Antelope	KMcG/OsbrnDrw
26	92	3	3-4	577780.2	758764.1	995	Antelope	KMcG/OsbrnDrw
26	92	3	3-4	577778.0	758749.0		Antelope	KMcG/OsbrnDrw
26	92	3	3-5	577789.2	758368.6	1105	Antelope	KMcG/OsbrnDrw
26	92	3	3-6	578139.9	758734.2	996	Antelope	KMcG/OsbrnDrw
26	92	3	3-6A	577456.0	758723.1	1463	Antelope	KMcG/OsbrnDrw
26	92	4	4-9-3	577461.9	751059.8	1017	Antelope	KMcG/OsbrnDrw
26	91	6	6-3	578830.4	769752.3	93	Antelope	KMcG/OsbrnDrw
26	92	7	7-2	574091.8	742225.6	1001	Antelope	KMcG/OsbrnDrw
26	91	7	7-15	573197.3	769947.8	100	Antelope	KMcG/OsbrnDrw
26	92	8	8-ASH1	572010.0	747956.6	698	Antelope	KMcG/OsbrnDrw
26	92	8	8-ASH8	574771.8	747687.3	830	Antelope	KMcG/OsbrnDrw
26	92	9	9-9-40	572114.0	752098.9	900	Antelope	KMcG/OsbrnDrw
26	92	9	9-9-42	572123.6	752900.5	900	Antelope	KMcG/OsbrnDrw
26	92	9	9-44	575549.3	751790.9	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-45	575150.8	750995.8	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-47	574930.7	751009.9	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-48	574943.7	751801.1	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-49	574751.0	750196.9	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-50	574747.0	750998.4	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-52	574540.0	750195.6	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-53	574338.1	750196.9	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-54	574335.5	750993.3	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-55	574137.6	750195.6	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-56	574345.9	751808.8	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-58	573934.4	750194.3	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-59	573924.0	750997.1	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-65	574724.9	749795.5	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-66	574737.9	750794.5	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-67	575805.8	751796.0	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-68	574713.2	748404.2	787	Antelope	KMcG/OsbrnDrw
26	92	9	9-69	574332.9	750800.9	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-70	574644.2	750997.1	500	Antelope	KMcG/OsbrnDrw
26	92	9	9-71	574636.4	751097.1	485	Antelope	KMcG/OsbrnDrw
26	92	9	9-72	574636.4	750899.6	500	Antelope	KMcG/OsbrnDrw
26	92	9	9-73	575351.3	751127.9	500	Antelope	KMcG/OsbrnDrw
26	92	9	9-74	575808.4	751607.5	777	Antelope	KMcG/OsbrnDrw
26	92	9	$9-75$	572073.6	750969.6	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-76	572121.7	748462.6	790	Antelope	KMcG/OsbrnDrw
26	92	9	9-78	572210.2	748386.8	797	Antelope	KMcG/OsbrnDrw
26	92	9	9.79	572499.3	753247.6	977	Antelope	KMcG/OsbrnDrw
26	92	9	9-80	572793.6	748395.2	1000	Antelope	KMcG/OsbrnDrw
26	92	9	9-81	573390.1	748391.3	999	Antelope	KMcG/OsbrnDrw
26	92	9	9-82	572634.7	749428.8	1000	Antelope	KMcG/OsbrnDrw
26	92	9	9-83	573180.4	749442.9	1000	Antelope	KMicG/OsbrnDrw
26	92	9	9-84	572751.9	751935.8	1000	Antelope	KMcG/OsbrnDrw
26	92	9	9-85	573567.2	751871.7	1000	Antelope	KMcG/OsbrnDrw
26	92	9	9-86	572607.4	753432.3	998	Antelope	KMcG/OsbrnDrw
26	92	9	9-9-6	576352.3	751798.0		Antelope	KMcG/OsbrnDrw
26	92	9	9-1	572442.0	750975.3	1015	Antelope	KMcG/OsbrnDrw
26	92	9	9-2	574548.0	751004.0		Antelope	KMcG/OsbrnDrw
26	92	9	9-11	574542.0	751401.0		Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	Map Hole. 10	North NAD27	East NAD27	LoghD	Prolect	Area
26	92	9	9-12	574542.6	751811.4	801	Antelope	KMcG/OsbrnDrw
26	92	9	9-14	574145.4	751006.1	1016	Antelope	KMcG/OsbrnDrw
26	92	9	9-16	573733.9	750202.0	798	Antelope	KMcG/OsbrnDrw
26	92	9	9-20	574111.5	752082.0	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-22	574124.6	752875.8	1210	Antelope	KMcG/OsbrnDrw
26	92	9	9-A1	572102.4	748940.1		Antelope	KMcG/OsbrnDrw
26	92	9	9-A13	574915.0	749245.4	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-A14	574924.2	750243.1	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-A146	574973.6	752450.0		Antelope	KMcG/OsbrnDrw
26	92	9	9-A147	574948.9	752727.0	441	Antelope	KMcG/OsbrnDrw
26	92	9	9-A149	575450.3	752233.3	443	Antelope	KMcG/OsbrnDrw
26	92	9	9-A15	574945.0	751225.4	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-A150	575210.7	752234.6	444	Antelope	KMcG/OsbrnDrw
26	92	9	9-A151	574709.3	752229.5	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A152	574439.7	752242.3	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A153	574947.6	751979.4	424	Antelope	KMcG/OsbrnDrw
26	92	9	9-A154	574934.6	751729.3	422	Antelope	KMcG/OsbrnDrw
26	92	9	9-A155	574947.6	751474.1	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A156	575449.0	751229.2	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A157	575191.1	751219.0	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A158	574705.4	751227.9	444	Antelope	KMcG/OsbrnDrw
26	92	9	9-A159	574441.0	751233.1	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A16	574958.0	752235.9	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-A160	574942.4	750995.8	444	Antelope	KMcG/OsbrnDrw
26	92	9	9-A161	574934.6	750740.6	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A162	574951.5	750484.2	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A163	572079.3	749163.7	460	Antelope	KMcG/OsbrnDrw
26	92	9	9-A164	572088.9	749438.5	441	Antelope	KMcG/OsbrnDrw
26	92	9	9-A165	572083.2	749677.2	424	Antelope	KMcG/OsbrnDrw
26	92	9	9-A166	572337.8	749917.4	420	Antelope	KMcG/OsbrnDrw
26	92	9	9-A167	572081.3	750175.6	420	Antelope	KMcG/OsbrnDrw
26	92	9	9-A168	572098.6	750429.5	424	Antelope	KMcG/OsbrnDrw
26	92	9	9-A169	572088.9	750672.1	423	Antelope	KMcG/OsbrnDrw
26	92	9	9-A17	574977.6	753237.4	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-A170	572356.1	750924.0	420	Antelope	KMcG/OsbrnDrw
26	92	9	9-A171	572098.6	751159.1	422	Antelope	KMcG/OsbrnDrw
26	92	9	9-A172	572096.6	751413.0	483	Antelope	KMcG/OsbrnDrw
26	92	9	9-A173	572094.7	751668.8	480	Antelope	KMcG/OsbrnDrw
26	92	9	9-A174	572354.7	751929.4	420	Antelope	KMcG/OsbrnDrw
26	92	9	9-A175	572117.8	752144.4	420	Antelope	KMcG/OsbrnDrw
26	92	9	9-A176	572102.4	752411.6	420	Antelope	KMcG/OsbrnDrw
26	92	9	9-A177	572094.7	752673.1	420	Antelope	KMcG/OsbrnDrw
26.	92	9	9-A2	572106.3	749934.9	780	Antelope	KMcG/OsbrnDrw
26	92	9	9-A29	574102.4	750531.6	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A3	572112.0	750929.8	700	Antelope	KMcG/OsbrnDrw
26	92	9	9-A30	574123.3	751499.8	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A31	574150.6	752494.9	400	Antelope	KMcG/OsbrnDrw
26	92	9	9-A32	574166.2	753490.0	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A4	572117.8	751936.0	700	Antelope	KMcG/OsbrnDrw
26	92	9	9-A5	572117.8	752953.6	800	Antelope	KMcG/OsbrnDrw
26	92	9	9-A53	573179.1	753515.7	440	Antelope	KMcG/OsbrnDrw
26	92	9	9-A54	573154.4	752509.0	400	Antelope	KMcG/OsbrnDrw
26	92	9	9-A55	573145.2	751520.3	400	Antelope	KMcG/OsbrnDrw
26	92	9	9-A56	573120.5	750532.9	400	Antelope	KMcG/OsbrnDrw

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map hiole. IB	North NAD27	East NAB27	LogTD	Project	Area
26	92	9	9-BIR2	575924.3	750425.2	340	Antelope	KMcG/OsbrnDrw
26	92	9	9-BIR3	575951.7	751421.6	342	Antelope	KMcG/OsbrnDrw
26	92	9	9-BIR4	575966.0	752412.8	300	Antelope	KMcG/OsbrnDrw
26	92	9	9-BIR5	575995.9	753419.5	340	Antelope	KMcG/OsbrnDrw
26	92	10	35	574011.0	756429.0		Antelope	KMcG/OsbrnDrw
26	92	10	36	574231.0	757603.0		Antelope	KMcG/OsbrnDrw
26	92	10	138	572458.0	756000.0		Antelope	KMcG/OsbrnDrw
26	92	10	140	575204.0	757258.0		Antelope	KMcG/OsbrnDrw
26	92	10	143	574960.0	756767.0		Antelope	KMcG/OsbrnDrw
26	92	10	144	574971.0	756525.0		Antelope	KMcG/OsbrnDrw
26	92	10	146	572254.0	755107.0		Antelope	KMcG/OsbrnDrw
26	92	10	10-34	572539.7	754104.3	900	Antelope	KMcG/OsbrnDrw
26	92	10	10-35	572548.8	754512.1	776	Antelope	KMcG/OsbrnDrw
26	92	10	10-36	572548.8	754905.7	982	Antelope	KMcG/OsbrnDrw
26	92	10	10-37	572557.9	755304.6	695	Antelope	KMcG/OsbrnDrw
26	92	10	10-38	572557.9	755700.8	910	Antelope	KMcG/OsbrnDrw
26	92	10	10-39	572565.7	756100.9	915	Antelope	KMcG/OsbrnDrw
26	92	10	10-40	572563.1	756498.4	895	Antelope	KMcG/OsbrnDrw
26	92	10	10-42	572572.2	757302.5	505	Antelope	KMcG/OsbrnDrw
26	92	10	10-45	572587.9	758501.5	1195	Antelope	KMcG/OsbrnDrw
26	92	10	10-46	572144.8	754109.5	1020	Antelope	KMcG/OsbrnDrw
26	92	10	10-48	572154.4	754911.0	1015	Antelope	KMcG/OsbrnDrw
26	92	10	10-49	572156.3	755310.8	915	Antelope	KMcG/OsbrnDrw
26	92	10	10-50	572160.1	755705.0	917	Antelope	KMcG/OsbrnDrw
26	92	10	10-51	572164.0	756099.1	905	Antelope	KMcG/OsbrnDrw
26	92	10	10-59	572154.4	755113.8	921	Antelope	KMcG/OsbrnDrw
26	92	10	10-60	574929.4	753692.6	800	Antelope	KMcG/OsbrnDrw
26	92	10	10-61	574938.5	754079.9	784	Antelope	KMcG/OsbrnDrw
26	92	10	10-62	574935.9	754491.5	792	Antelope	KMcG/OsbrnDrw
26	92	10	10-63	574941.1	754887.8	799	Antelope	KMcG/OsbrnDrw
26	92	10	10-64	574948.9	755287.9	791	Antelope	KMcG/OsbrnDrw
26	92	10	10-66	574956.7	756086.8	1007	Antelope	KMcG/OsbrnDrw
26	92	10	10-67	574961.9	756485.6	1005	Antelope	KMcG/OsbrnDrw
26	92	10	10-69	572461.5	755216.1	358	Antelope	KMcG/OsbrnDrw
26	92	10	10-70	574534.8	754094.0	792	Antelope	KMcG/OsbrnDrw
26	92	10	10-71	574537.4	754494.1	790	Antelope	KMcG/OsbrnDrw
26	92	10	10-72	574540.0	754894.2	797	Antelope	KMcG/OsbrnDrw
26	92	10	10-75	574558.2	756085.5	807	Antelope	KMcG/OsbrnDrw
26	92	10	10-76	574559.5	756486.9	1005	Antelope	KMcG/OsbrnDrw
26	92	10	10-79	574128.5	754094.0	794	Antelope	KMcG/OsbrnDrw
26	92	10	10-84	574153.2	756089.4	915	Antelope	KMcG/OsbrnDrw
26	92	10	10-88	573737.8	754095.3	798	Antelope	KMcG/OsbrnDrw
26	92	10	10-97	572543.6	753700.3	945	Antelope	KMcG/OsbrnDrw
26	92	10	10-4	576974.0	757982.0	779	Antelope	KMcG/OsbrnDrw
26	92	10	10-13	575368.2	757276.8	1113	Antelope	KMcG/OsbrnDrw
26	92	10	10-19	574976.2	758478.4	1013	Antelope	KMcG/OsbrnDrw
26	92	10	10-20	574564.7	757284.5	910	Antelope	KMcG/OsbrnDrw
26	92	10	10-21	574969.7	757307.6	328	Antelope	KMcG/OsbrnDrw
26	92	10	10-26	573759.9	756492.0	884	Antelope	KMcG/OsbrnDrw
26	92	10	10-27	573769.0	757292.2	917	Antelope	KMcG/OsbrnDrw
26	92	10	10-30	572955.1	755698.2	1050	Antelope	KMcG/OsbrnDrw
26	92	10	10-101	573758.6	756093.2	907	Antelope	KMcG/OsbrnDrw
26	92	10	10-105	573360.1	756095.8	915	Antelope	KMcG/OsbrnDrw
26	92	10	10-124	572658.2	755700.8	506	Antelope	KMcG/OsbrnDrw

Table 2.6-1

Antelope and JAB Drill Holes

Twn		Sec	Map Hole ID	NorthNAD27	Gast NAD27	Loght	Project	Area
26	92	10	10-126	572660.8	756011.1	600	Antelope	KMcG/OsbrnDrw
26	92	10	10-128	572544.9	754006.8	875	Antelope	KMcG/OsbrnDrw
26	92	10	10-129	572555.3	755502.0	567	Antelope	KMcG/OsbrnDrw
26	92	10	10-130	572556.6	755602.1	505	Antelope	KMcG/OsbrnDrw
26	92	10	10-131	572559.2	755803.4	503	Antelope	KMcG/OsbrnDrw
26	92	10	10-132	572444.6	754110.7	902	Antelope	KMcG/OsbrnDrw
26	92	10	10-133	572455.0	755404.6	560	Antelope	KMcG/OsbrnDrw
26	92	10	10-133DupID	575197.0	758267.0		Antelope	KMcG/OsbrnDrw
26	92	10	10-134	572457.6	755505.9	560	Antelope	KMcG/OsbrnDrw
26	92	10	10-135	572456.3	755603.3	500	Antelope	KMcG/OsbrnDrw
26	92	10	10-136	572457.6	755703.4	500	Antelope	KMcG/OsbrnDrw
26	92	10	10-137	572458.9	755803.4	500	Antelope	KMcG/OsbrnDrw
26	92	10	10-137DuplD	574953.0	757515.0		Antelope	KMicG/OsbrnDrw
26	92	10	10-138	574706.7	757511.5	600	Antelope	KMcG/OsbrnDrw
26	92	10	10-139	574448.8	757516.6		Antelope	KMcG/OsbrnDrw
26	92	10	10-140	572354.7	755304.6	565	Antelope	KMicG/OsbrnDrw
26	92	10	10-141	574705.4	757271.7	500	Antelope	KMcG/OsbrnDrw
26	92	10	10-142	574965.8	757013.9		Antelope	KMcG/OsbrnDrw
26	92	10	10-143	572250.6	754810.8	600	Antelope	KMcG/OsbrnDrw
26	92	10	10-144	572251.9	754908.3	605	Antelope	KMcG/OsbrnDrw
26	92	10	10-145	572251.9	755009.6	600	Antelope	KMcG/OsbrnDrw
26	92	10	10-146	574721.0	756266.3	600	Antelope	KMcG/OsbrnDrw
26	92	10	10-149	572255.8	755404.6	600	Antelope	KMcG/OsbrnDrw
26	92	10	10-150	572257.1	755505.9	565	Antelope	KMcG/OsbrnDrw
26	92	10	10-151	572257.1	755607.2	905	Antelope	KMcG/OsbrnDrw
26	92	10	10-152	572152.5	754812.5	605	Antelope	KMcG/OsbrnDrw
26	92	10	10-153	572642.6	754210.7	903	Antelope	KMcG/OsbrnDrw
26	92	10	10-154	575331.8	754086.3	800	Antelope	KMcG/OsbrnDrw
26	92	10	10-155	575352.6	754890.4	795	Antelope	KMcG/OsbrnDrw
26	92	10	10-167	572860.0	755698.2	253	Antelope	KMcG/OsbrnDrw
26	92	10	10-168	572853.5	755904.7	522	Antelope	KMcG/OsbrnDrw
26	92	10	10-171	577363.0	758770.0	1107	Antelope	KMcG/OsbrnDrw
26	92	10	10-172	575350.0	755289.2	789	Antelope	KMcG/OsbrnDrw
26	92	10	10-173	572910.8	753982.4	1004	Antelope	KMcG/OsbrnDrw
26	92	10.	10-174	572860.0	758053.9	1007	Antelope	KMcG/OsbrnDrw
26	92	10	10-224	574467.1	756263.8		Antelope	KMcG/OsbrnDrw
26	92	10	10-225	574718.4	756519.0		Antelope	KMcG/OsbrnDrw
26	92	10	10-234	574441.0	757769.3		Antelope	KMcG/OsbrnDrw
26	92	10	10-251	574220.9	756268.9		Antelope	KMcG/OsbrnDrw
26	92	10	10-252	574602.5	756298.4	1000	Antelope	KMcG/OsbrnDrw
26	92	10	0-252_NO_LO	574411.1	756498.4		Antelope	KMcG/OsbrnDrw
26	92	10	10-268	575219.8	756760.0		Antelope	KMcG/OsbrnDrw
26	92	10	10-278	575473.7	756512.5		Antelope	KMcG/OsbrnDrw
26	92	10	10-288	575222.4	756511.3		Antelope	KMcG/OsbrnDrw
26	92	10	10-308	575217.2	756006.0		Antelope	KMcG/OsbrnDrw
26	92	10	10-58A	574955.4	755682.9	1000	Antelope	KMcG/OsbrnDrw
26	92	10	10-60A	572363.9	755119.9	378	Antelope	KMcG/OsbrnDrw
26	92	10	10-829	575519.3	756257.4		Antelope	KMcG/OsbrnDrw
26	92	10	10-A10	572245.4	757968.0		Antelope	KMcG/OsbrnDrw
26	92	10	10-A10A	572267.5	758174.5		Antelope	KMcG/OsbrnDrw
26	92	10	10-A10B	572444.6	757964.2	300	Antelope	KMcG/OsbrnDrw
26	92	10	10-A10C	572251.9	757783.4		Antelope	KMcG/OsbrnDrw
26	92	10	10-A135	574948.9	758009.1	600	Antelope	KMcG/OsbrnDrw
26	92	10	10-A136	574951.5	757764.1	600	Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

	Ring	Sec	Map Hole ID	North NAD27	East NAD27	$\log T \mathrm{D}$	Project	Area
26	92	10	10-A145	575222.4	756265.0	527	Antelope	KMcG/OsbrnDrw
26	92	10	10-A19	574952.8	755241.7	340	Antelope	KMcG/OsbrnDrw
26	92	10	10-A22	574947.6	758264.2	900	Antelope	KMcG/OsbrnDrw
26	92	10	10-A222	574721.0	756008.6		Antelope	KMcG/OsbrnDrw
26	92	10	10-A227	572225.8	755714.9		Antelope	KMcG/OsbrnDrw
26	92	10	10-A229	572218.0	756203.5		Antelope	KMcG/OsbrnDrw
26	92	10	10-A230	572227.1	756445.9		Antelope	KMcG/OsbrnDrw
26	92	10	10-A231	572231.0	756734.4		Antelope	KMCG/OsbrnDrw
26	92	10	10-A231-A	572318.3	756721.6		Antelope	KMcG/OsbrnDrw
26	92	10	10-A232	572250.6	757198.6		Antelope	KMcG/OsbrnDrw
26	92	10	10-A32	574089.4	753786.2	340	Antelope	KMcG/OsbrnDrw
26	92	10	10-A33	574114.1	754791.6	340	Antelope	KMcG/OsbrnDrw
26	92	10	10-A34	574098.5	755786.7	340	Antelope	KMcG/OsbrnDrw
26	92	10	10-A37	574260.0	758486.1	340	Antelope	KMcG/OsbrnDrw
26	92	10	10-A48	573245.5	758532.3	300	Antelope	KMcG/OsbrnDrw
26	92	10	10-A49	573220.8	757519.2	300	Antelope	KMcG/OsbrnDrw
26	92	10	10-A50	573206.4	756529.2	340	Antelope	KMcG/OsbrnDrw
26	92	10	10-A51	573175.2	755525.1	300	Antelope	KMcG/OsbrnDrw
26	92	10	10-A52	573147.8	754530.0	340	Antelope	KMcG/OsbrnDrw
26	92	10	10-A8	572220.6	755954.7	738	Antelope	KMcG/OsbrnDrw
26	92	10	10-A9	572246.7	756965.2	820	Antelope	KMcG/OsbrnDrw
26	92	10	10-B12	566373.6	756749.1		Antelope	KMcG/OsbrnDrw
26	92	10	10-B31	574968.4	756009.9		Antelope	KMcG/OsbrnDrw
26	92	10	10-BIR7	576028.5	755427.7	300	Antelope	KMcG/OsbrnDrw
26	92	10	10-BIR8	576036.3	756421.5	340	Antelope	KMcG/OsbrnDrw
26	92	10	10-BIR9	576037.6	757433.3	300	Antelope	KMcG/OsbrnDrw
26	92	10	10-X-25	575356.5	755680.3	1055	Antelope	KMcG/OsbrnDrw
26	92	10	10-X-26	575139.0	753886.3	795	Antelope	KMcG/OsbrnDrw
26	92	10	10-X-30	574532.2	755448.2	1010	Antelope	KMcG/OsbrnDrw
26	92	10	10-X-31	572961.6	756100.9	915	Antelope	KMcG/OsbrnDrw
26	92	10	11-A60	572133.2	753927.5		Antelope	KMcG/OsbrnDrw
26	92	10	15-38A	572358.7	755503.3		Antelope	KMcG/OsbrnDrw
26	92	10	15-47	572150.5	754507.4		Antelope	KMcG/OsbrnDrw
26	92	10	Birch10	576104.0	758307.0		Antelope	KMcG/OsbrnDrw
26	92	10	Birch6	576047.0	754353.0		Antelope	KMcG/OsbrnDrw
26	92	10	Unknown 1	574723.0	755753.0		Antelope	KMcG/OsbrnDrw
26	92	11	11-35	575394.3	759680.0	910	Antelope	KMcG/OsbrnDrw
26	92	11	11-36	575393.0	760387.8	815	Antelope	KMcG/OsbrnDrw
26	92	11	11-37	575406.0	761185.5	1015	Antelope	KMcG/OsbrnDrw
26	92	11	11-39	575411.2	761990.8	1000	Antelope	KMcG/OsbrnDrw
26	92	11	11-44	574988.0	759281.2	1000	Antelope	KMcG/OsbrnDrw
26	92	11	$11-45$	574575.1	758887.5	900	Antelope	KMcG/OsbrnDrw
26	92	11	11-48	574607.7	761285.5	1015	Antelope	KMcG/OsbrnDrw
26	92	11	11-51	574180.6	759291.4	900	Antelope	KMcG/OsbrnDrw
26	92	11	11.54	573792.5	759689.0	900	Antelope	KMcG/OsbrnDrw
26	92	11	11-56	573812.0	761281.6	515	Antelope	KMcG/OsbrnDrw
26	92	11	11-57	572987.7	758890.0	792	Antelope	KMcG/OsbrnDrw
26	92	11	11-58	572996.8	759687.7	1000	Antelope	KMcG/OsbrnDrw
26	92	11	11-60	572188.1	758900.3	996	Antelope	KMcG/OsbrnDrw
26	92	11	11-64	572735.0	761238.0	1000	Antelope	KMcG/OsbrnDrw
26	92	11	11-66	577036.5	763984.3	900	Antelope	KMcG/OsbrnDrw
26	92	11	11-69	576640.8	763984.3	1000	Antelope	KMcG/OsbrnDrw
26	92	11	11.71	576236.9	763986.1	1000	Antelope	KMcG/OsbrnDrw
26	92	11	11-77	-573828.9	763607.8	1000	Antelope	KMcG/OsbrnDrw

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	$\text { North NAD } 27$	EastNAD27	$\text { Log } 1 \text { D }$	Project	Area
26	92	11	11-78	573015.0	761212.4	1105	Antelope	KMcG/OsbrnDrw
26	92	11	11-2	574345.9	762394.7	1010	Antelope	KMcG/OsbrnDrw
26	92	11	11-3	575822.7	762387.0	995	Antelope	KMcG/OsbrnDrw
26	92	11	11-5	577411.3	761974.7	1220	Antelope	KMcG/OsbrnDrw
26	92	11	11-6	577060.3	763152.4	800	Antelope	KMcG/OsbrnDrw
26	92	11	11-7	577423.2	762777.4	1195	Antelope	KMcG/OsbrnDrw
26	92	11	11-9	577000.8	760375.3	810	Antelope	KMcG/OsbrnDrw
26	92	11	11-15	577030.6	763580.0	823	Antelope	KMcG/OsbrnDrw
26	92	11	11-21	575620.9	759582.5	800	Antelope	KMcG/OsbrnDrw
26	92	11	11-24	576216.0	761581.7	850	Antelope	KMcG/OsbrnDrw
26	92	11	11-25	576218.6	762385.8	995	Antelope	KMcG/OsbrnDrw
26	92	11	11-27	576238.2	763587.3	860	Antelope	KMcG/OsbrnDrw
26	92	11	11-30	575817.5	761990.8	1020	Antelope	KMcG/OsbrnDrw
26	92	11	10-A6	572238.8	763066.7	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-100	572464.1	759699.2	1103	Antelope	KMcG/OsbrnDrw
26	92	11	11-101	572643.9	759497.9	1100	Antelope	KMcG/OsbrnDrw
26	92	11	11-102	572771.5	759700.5	1105	Antelope	KMcG/OsbrnDrw
26	92	11	11-102A	576810.4	763577.1	724	Antelope	KMcG/OsbrnDrw
26	92	11	11-103	577432.2	763190.4	797	Antelope	KMcG/OsbrnDrw
26	92	11	11-104	576551.6	762194.4	857	Antelope	KMcG/OsbrnDrw
26	92	11	11-106	572194.6	761547.1	392	Antelope	KMcG/OsbrnDrw
26	92	11	11-107	572181.5	759305.5	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-108	573813.3	761081.6	402	Antelope	KMcG/OsbrnDrw
26	92	11	11-109	575025.7	763127.0	805	Antelope	KMcG/OsbrnDrw
26	92	11	11-110	574719.7	763516.8	834	Antelope	KMcG/OsbrnDrw
26	92	11	11-115	575718.6	763977.2	500	Antelope	KMcG/OsbrnDrw
26	92	11	11-116	573839.4	764118.2	98	Antelope	KMcG/OsbrnDrw
26	92	11	11-117	572255.8	762515.3	100	Antelope	KMcG/OsbrnDrw
26	92	11	11-118	574913.7	761768.9	1000	Antelope	KMcG/OsbrnDrw
26	92	11	11-119	572896.5	759872.3	1000	Antelope	KMcG/OsbrnDrw
26	92	11	11-A100	574211.8	764010.5	319	Antelope	KMcG/OsbrnDrw
26	92	11	11-A101	573982.6	763996.4	319	Antelope	KMcG/OsbrnDrw
26	92	11	11-A102	573964.4	763751.5	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A103	574226.1	763497.6	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A104	573970.9	763497.6	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A105	573502.1	762985.9	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A106	573957.9	763261.6	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A107	574485.3	763011.6	340	Antelope	KMcG/OsbrnDrw
26	92	11	11-A108	574240.5	762987.2	340	Antelope	KMcG/OsbrnDrw
26	92	11	11-A109	573965.7	762979.5	339	Antelope	KMcG/OsbrnDrw
26	92	11	11-A110	573711.7	762994.9		Antelope	KMcG/OsbrnDrw
26	92	11	11-A111	573457.8	762992.3	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A112	575019.2	762728.1	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A113	574760.1	762738.4	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A115	573965.7	762744.8	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A116	573463.0	762747.4	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A117	572982.5	762742.3	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A118	573207.7	762507.6	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A119	573477.3	762508.9	323	Antelope	KMcG/OsbrnDrw
26	92	11	11-A12	572234.9	762045.9		Antelope	KMcG/OsbrnDrw
26	92	11	11-A120***	574223.5	762499.9	323	Antelope	KMcG/OsbrnDrw
26	92	11	11-A121	574753.6	762490.9	340	Antelope	KMcG/OsbrnDrw
26	92	11	11-A122	575023.1	762255.0	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-A123	574228.7	762233.2	400	Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

	Rng	sec	Map Hole	North NAD27	East NAD27		Project	
26	92	11	11-A124	575020.5	762502.5	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-A125	574220.9	761994.6	402	Antelope	KMcG/OsbrnDrw
26	92	11	11-A127	574409.8	761706.1		Antelope	KMcG/OsbrnDrw
26	92	11	11-A128	574661.1	761697.1	340	Antelope	KMcG/OsbrnDrw
26	92	11	11-A129	575218.5	761506.1	500	Antelope	KMcG/OsbrnDrw
26	92	11	11-A130	574659.8	761434.2	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-A131	574167.5	761443.2	439	Antelope	KMcG/OsbrnDrw
26	92	11	11-A132	575015.3	761506.1	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-A178	574481.4	763761.7		Antelope	KMcG/OsbrnDrw
26	92	11	11-A179	574473.6	763518.1	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A180	574476.2	763257.8		Antelope	KMcG/OsbrnDrw
26	92	11	11-A181	574481.4	763309.1		Antelope	KMcG/OsbrnDrw
26	92	11	11-A183	574484.0	763209.0		Antelope	KMcG/OsbrnDrw
26	92	11	11-A186	573457.8	763043.6		Antelope	KMcG/OsbrnDrw
26	92	11	11-A187	573413.5	763001.3		Antelope	KMcG/OsbrnDrw
26	92	11	11-A189	574224.8	762933.3		Antelope	KMcG/OsbrnDrw
26	92	11	11-A190	574170.1	762933.3		Antelope	KMcG/OsbrnDrw
26	92	11	11-A191	574161.0	761694.6	506	Antelope	KMcG/OsbrnDrw
26	92	11	11-A194	573957.9	761694.6	560	Antelope	KMcG/OsbrnDrw
26	92	11	11-A195	573896.7	761754.8	460	Antelope	KMcG/OsbrnDrw
26	92	11	11-A207	573918.8	761648.4	404	Antelope	KMcG/OsbrnDrw
26	92	11	11-A208	573924.0	761698.4	404	Antelope	KMcG/OsbrnDrw
26	92	11	11-A209	573864.1	761644.6	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-A210	573965.7	761647.1	403	Antelope	KMcG/OsbrnDrw
26	92	11	11-A211	573911.0	761594.5	385	Antelope	KMcG/OsbrnDrw
26	92	11	11-A212	573959.2	761585.6	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-A213	573861.5	761590.7	400	Antelope	KMcG/OsbrnDiw
26	92	11	11-A216	573955.3	761536.8		Antelope	KMcG/OsbrnDrw
26	92	11	11-A217	573810.7	761535.6	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-A218	573861.5	761533.0	400	Antelope	KMcG/OsbrnDrw
26	92	11	11-A221	573856.3	761490.7		Antelope	KMcG/OsbrnDrw
26	92	11	11-A23	575012.7	759515.8	340	Antelope	KMcG/OsbrnDrw
26	92	11	11-A24	575016.6	760505.8	900	Antelope	KMcG/OsbrnDrw
26	92	11	11-A26	574995.8	762015.2	852	Antelope	KMcG/OsbrnDrw
26	92	11	11-A27	575027.0	763528.3	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A39	574090.7	760771.3	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A40	573960.5	761748.4	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A41	574220.9	762723.0	315	Antelope	KMcG/OsbrnDrw
26	92	11	11-A42	574219.6	763757.9		Antelope	KMcG/OsbrnDrw
26	92	11	11-A43	573249.4	763756.6	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A44	573232.5	762739.7		Antelope	KMcG/OsbrnDrw
26	92	11	11-A45	573214.3	761747.1	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A46	573098.4	760767.4	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A47	573089.2	759771.0		Antelope	KMcG/OsbrnDrw
26	92	11	11-A48	573354.9	759085.0		Antelope	KMcG/OsbrnDrw
26	92	11	11-A52	572919.9	759523.5		Antelope	KMcG/OsbrnDrw
26	92	11	11-A57	572237.5	759087.5		Antelope	KMcG/OsbrnDrw
26	92	11	11-A63	572662.1	759259.4	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A63	572401.6	759504.3	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A64	572639.9	760019.8	300	Antelope	KMcG/OsbrnDrw
26	92	11	11-A65	572615.2	760519.9		Antelope	KMcG/OsbrnDiw
26	92	11	11-A66	572659.5	760873.9		Antelope	KMcG/OsbrnDw
26	92	11	11-A67	572354.7	761050.8	322	Antelope	KMcG/OsbrnDrw
26	92	11	11-A69	573593.2	760693.0	298	Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

Wwn	Rng	Sec	Map Hole ID	North NAD27	East NAD27	Kheghe	Project	Area
26	92	11	11-A71	573595.8	761189.3	299	Antelope	KMcG/OsbrnDrw
26	92	11	11-A72	573601.0	761677.9	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A73	573719.5	762233.2	322	Antelope	KMcG/OsbrnDrw
26	92	11	11-A74	573213.0	762252.4	277	Antelope	KMcG/OsbrnDrw
26	92	11	11-A75	572711.6	762240.9	322	Antelope	KMcG/OsbrnDrw
26	92	11	11-A76	573720.8	762737.1	323	Antelope	KMcG/OsbrnDrw
26	92	11	11-A77	572719.4	762775.6	362	Antelope	KMcG/OsbrnDrw
26	92	11	11-A78	574217.0	763236.0	318	Antelope	KMcG/OsbrnDrw
26	92	11	11-A79	573724.8	763247.5	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A80	573233.8	763273.2	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A81	572728.5	763269.3	322	Antelope	KMcG/OsbrnDrw
26	92	11	11-A82	573716.9	763752.8	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A83	572703.8	763705.3	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-A86	573465.6	762237.0		Antelope	KMcG/OsbrnDrw
26	92	11	11-A87	573959.2	762244.7		Antelope	KMcG/OsbrnDrw
26	92	11	11-A88	573706.5	762004.9		Antelope	KMcG/OsbrnDrw
26	92	11	11-A89	573701.3	762490.9		Antelope	KMcG/OsbrnDrw
26	92	11	11-A90	573948.7	762493.5		Antelope	KMcG/OsbrnDrw
26	92	11	11-A91	573954.0	761988.2		Antelope	KMcG/OsbrnDrw
26	92	11	11-A92	573840.7	762116.5	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-B15	576855.0	762815.5		Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR11	576061.1	759687.7	340	Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR12	576061.1	760673.8	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR13	576066.3	761663.8	320	Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR14	576076.7	762670.4	230	Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR15	576070.2	763683.5	280	Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR21	575297.9	762256.2	407	Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR23	575288.8	762008.7	408	Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR24	575314.8	761751.0	408	Antelope	KMcG/OsbrnDrw
26	92	11	11-BIR25	574767.9	761740.7	408	Antelope	KMcG/OsbrnDrw
26	92	11	11-X-14	576251.2	762013.9		Antelope	KMcG/OsbrnDrw
26	92	11	$11-\mathrm{x}-15$	576148.3	762198.5		Antelope	KMcG/OsbrnDrw
26	92	11	11-X-27	574852.5	764110.5		Antelope	KMcG/OsbrnDrw
26	92	11	11-X-28	574865.6	764165.7		Antelope	KMcG/OsbrnDrw
26	92	11	A105	573725.0	763506.0		Antelope	KMcG/OsbrnDrw
26	92	11	A39	574486.0	764025.0		Antelope	KMcG/OsbrnDrw
26	92	11	Unknown1	574459.0	762738.0		Antelope	KMcG/OsbrnDrw
26	92	12	5	577044.0	764789.0		Antelope	KMcG/OsbrnDrw
26	92	12	41	575855.0	766801.0	886	Antelope	KMcG/OsbrnDrw
26	92	12	61	577044.0	764984.0	365	Antelope	KMcG/OsbrnDrw
26	92	12	88	576664.0	766994.0	400	Antelope	KMcG/OsbrnDrw
26	92	12	89	576668.0	767991.0	1000	Antelope	KMcG/OsbrnDrw
26	92	12	90	576683.0	768792.0	902	Antelope	KMcG/OsbrnDrw
26	92	12	97	576565.0	766891.0	407	Antelope	KMcG/OsbrnDrw
26	92	12	98	576445.0	765185.0	405	Antelope	KMcG/OsbrnDrw
26	92	12	126	576487.0	767994.0		Antelope	KMcG/OsbrnDrw
26	92	12	128	576446.0	764785.0		Antelope	KMcG/OsbrnDrw
26	92	12	130	576562.0	766390.0		Antelope	KMcG/OsbrnDrw
26	92	12	131	576764.0	766589.0	405	Antelope	KMcG/OsbrnDrw
26	92	12	152	575790.0	768800.0		Antelope	KMcG/OsbrnDrw
26	92	12	179	576857.0	765383.0	360	Antelope	KMcG/OsbrnDrw
26	92	12	231	576264.0	766594.0	200	Antelope	KMcG/OsbrnDrw
26	92	12	318	576614.0	766691.0	302	Antelope	KMcG/OsbrnDrw
26	92	12	12-32	575860.5	766400.8	760	Antelope	KMcG/OsbrnDrw

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	Nórth NAD27	East NAD 27	Log TB	Prolect	- $=$ A Area
26	92	12	12-33	576457.5	766993.0	405	Antelope	KMcG/OsbrnDrw
26	92	12	12-36	576447.8	765790.4	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-37	577058.5	767192.2	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-38	576666.9	767192.3	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-39	576264.2	766795.8	900	Antelope	KMcG/OsbrnDrw
26	92	12	Dec-40	575988.1	764651.7	910	Antelope	KMcG/OsbrnDrw
26	92	12	12-42	575860.5	767201.0	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-45	575447.7	767987.1	908	Antelope	KMcG/OsbrnDrw
26	92	12	12-46	577438.1	764983.2	520	Antelope	KMcG/OsbrnDrw
26	92	12	12-47	577447.0	765384.6	520	Antelope	KMcG/OsbrnDrw
26	92	12	12-49	577474.2	768788.4	901	Antelope	KMcG/OsbrnDrw
26	92	12	12-52	577151.6	765581.5	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-53	577254.9	766390.4	600	Antelope	KMcG/OsbrnDrw
26	92	12	12-54	577258.7	767188.5	600	Antelope	KMcG/OsbrnDrw
26	92	12	12-55	577146.6	765077.0	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-56	576890.6	767644.8		Antelope	KMcG/OsbrnDrw
26	92	12	12-62	577047.6	765383.8	520	Antelope	KMcG/OsbrnDrw
26	92	12	12-63	577053.5	766187.4	904	Antelope	KMcG/OsbrnDrw
26	92	12	12-64	576648.4	764987.7		Antelope	KMcG/OsbrnDrw
26	92	12	12-66	577058.5	767391.3	450	Antelope	KMcG/OsbrnDrw
26	92	12	12-67	576950.2	765082.8	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-68	576952.0	765280.3	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-69	576960.2	766286.2	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-70	576959.3	766489.9	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-72	576970.7	767288.0	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-73	572310.5	769360.5	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-74	576848.0	765582.7	800	Antelope	KMcG/OsbrnDrw
26	92	12	12-78	576748.7	765086.4	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-79	576747.4	765285.2	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-80	576752.6	765485.2	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-81	576755.2	765685.3	405	Antelope	KMcG/OsbrnDrw
26	92	12	12-82	576764.6	766690.5	300	Antelope	KMcG/OsbrnDrw
26	92	12	12-85	576651.0	765387.8	800	Antelope	KMcG/OsbrnDrw
26	92	12	12-86	576653.6	765784.0	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-87	576660.9	766587.4	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-89	576871.6	767787.5	892	Antelope	KMcG/OsbrnDrw
26	92	12	12-90	576875.4	768187.5	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-91	576545.5	765082.6	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-92	576545.5	765290.3	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-93	576552.0	765487.8	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-94	576550.7	765689.1	405	Antelope	KMcG/OsbrnDrw
26	92	12	12-95	576561.1	766491.9	300	Antelope	KMcG/OsbrnDrw
26	92	12	12-96	576562.2	766690.5	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-99	576450.4	765587.8	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-1	577039.5	764385.6	850	Antelope	KMcG/OsbrnDrw
26	92	12	12-2	576247.3	764390.1	860	Antelope	KMcG/OsbrnDrw
26	92	12	12-4	576649.8	764789.9	960	Antelope	KMcG/OsbrnDrw
26	92	12	12-5	576640.8	764388.6	860	Antelope	KMcG/OsbrnDrw
26	92	12	12-7	576649.7	765183.9	1000	Antelope	KMcG/OsbrnDrw
26	92	12	12-8	577441.1	764784.0	965	Antelope	KMcG/OsbrnDrw
26	92	12	12-9	576654.9	765585.3	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-10	576248.6	765190.3	1000	Antelope	KMcG/OsbrnDrw
26	91	12	12-11	570068.4	769784.3		Antelope	KMcG/OsbrnDrw
26	91	12	12-12	568169.0	769941.6		Antelope	KMcG/OsbrnDrw

Table 2.6-1

Antelope and JAB Drill Holes

	Rng	Sec	Map Hole IB	North NAD27	EastNAB27	LogTD	Project	Area
26	92	12	12-13	577448.0	765581.5	1020	Antelope	KMcG/OsbrnDrw
26	92	12	12-14	577449.2	765980.4	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-15	576884.9	767545.3	902	Antelope	KMcG/OsbrnDrw
26	92	12	12-16	577050.0	765581.5	900	Ântelope	KMcG/OsbrnDrw
26	92	12	12-17	577051.2	765982.7	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-18	577056.6	766390.4	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-19	577056.6	766792.2	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-20	576656.2	765986.6	800	Antelope	KMcG/OsbrnDrw
26	92	12	12-21	576664.0	766388.0	405	Antelope	KMcG/OsbrnDrw
26	92	12	12-22	576664.9	766791.6	912	Antelope	KMcG/OsbrnDrw
26	92	12	12-23	576249.9	764797.9	1010	Antelope	KMcG/OsbrnDrw
26	92	12	12-24	576252.5	765590.4	1000	Antelope	KMcG/OsbrnDrw
26	92	12	12-24	577323.0	764507.0		Antelope	KMcG/OsbrnDrw
26	92	12	12-25	576251.2	765989.2	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-26	576262.9	766390.6	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-27	575842.3	764400.3	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-28	575847.5	764799.2	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-29	575851.4	765195.4	850	Antelope	KMcG/OsbrnDrw
26.	92	12	12-30	575851.4	765595.5	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-31	575848.8	765991.8	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-100	576458.2	766393.1	500	Antelope	KMcG/OsbrnDrw
26	92	12	12-101	576459.5	766793.6	480	Antelope	KMcG/OsbrnDrw
26	92	12	12-102	576348.9	765485.2	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-103	576347.6	765687.8	364	Antelope	KMcG/OsbrnDrw
26	92	12	12-105	576248.6	765387.8	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-106	576256.4	765793.0	390	Antelope	KMcG/OsbrnDrw
26	92	12	12-108	576261.6	766998.4	800	Antelope	KMcG/OsbrnDrw
26	92	12	12-109	576154.8	765492.9	408	Antelope	KMcG/OsbrnDrw
26	92	12	12-111	576154.8	765691.7		Antelope	KMcG/OsbrnDrw
26	92	12	12-112	576063.7	766798.4	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-116	575478.9	766839.4	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-118	576566.2	767193.3	500	Antelope	KMcG/OsbrnDrw
26	92	12	12-119	576767.6	767188.3	406	Antelope	KMcG/OsbrnDrw
26	92	12	12-122	576705.2	767250.8	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-123	577137.7	764763.5	382	Antelope	KMcG/OsbrnDrw
26	92	12	12-124	576959.2	764769.4	405	Antelope	KMcG/OsbrnDrw
26	92	12	12-127	577069.9	767990.3	600	Antelope	KMcG/OsbrnDrw
26	92	12	12-129	576361.9	765218.5	600	Antelope	KMcG/OsbrnDrw
26	92	12	12-130	576445.2	765386.5	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-134	576342.3	764990.2	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-135	576861.0	766226.9	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-137	576858.2	766580.0	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-138	576873.5	767338.7	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-140	576849.2	765767.6	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-141	575506.3	766589.3	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-142	575493.3	767018.9	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-143	576862.0	766685.2	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-144	577258.7	767971.5	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-146	576562.2	766993.0	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-147	576458.5	767089.1	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-148	576360.8	766993.9	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-149	576459.5	767193.3	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-150	576765.6	767291.7	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-153	576760.4	766386.7	400	Antelope	KMcG/OsbrnDrw

Uranium One Americas

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Reng	Sec	Map Hole 10	North NAD27	East NAD27	LogTB		Area
26	92	12	12-154	575308.3	766798.4	400	Antelope	KMcG/OsbrnDiw
26	92	12	12-157	576770.1	767489.9	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-158	576564.2	767294.4	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-167	576865.9	767387.5		Antelope	KMcG/OsbrnDrw
26	92	12	12-173	576752.6	765882.8	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-180	576856.3	765982.7	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-191	576763.0	766485.5	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-192	576762.6	766789.7	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-195	576658.8	766195.7	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-196	576662.9	766687.5	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-197	576659.9	766888.8	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-199	576669.5	767393.0	800	Antelope	KMcG/OsbrnDrw
26	92	12	12-200	576669.5	767599.9	800	Antelope	KMcG/OsbrnDrw
26	92	12	12-202	576671.7	768192.2	500	Antelope	KMcG/OsbrnDrw
26	92	12	12-203	576561.1	766590.6	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-204	576562.2	766791.6	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-206	576458.2	765990.5	810	Antelope	KMcG/OsbrnDrw
26	92	12	12-213	576477.2	768194.4	500	Antelope	KMcG/OsbrnDrw
26	92	12	12-214	576359.3	766897.1	250	Antelope	KMcG/OsbrnDrw
26	92	12	12-221	576271.5	768196.6	500	Antelope	KMcG/OsbrnDrw
26	92	12	12-226	576070.3	768007.3	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-227	576070.3	768203.2	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-228	576765.6	767388.6	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-229	576674.0	767494.3	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-230	576755.2	766082.8	350	Antelope	KMcG/OsbrnDrw
26	92	12	12-232	575790.2	768997.6	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-233	576158.7	765015.9	300	Antelope	KMcG/OsbrnDrw
26	92	12	12-235	576050.6	764622.2	300	Antelope	KMcG/OsbrnDrw
26	92	12	12-237	576065.0	764397.8	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-238	575415.1	764423.4	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-239	575525.8	768652.7	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-240	576253.8	766500.9	260	Antelope	KMcG/OsbrnDrw
26	92	12	12-241	576268.1	766697.1	240	Antelope	KMcG/OsbrnDrw
26	92	12	12-242	575606.6	766750.9	450	Antelope	KMcG/OsbrnDrw
26	92	12	12-243	575588.3	766916.3	350	Antelope	KMcG/OsbrnDrw
26	92	12	12-244	575787.6	769222.0	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-245	575472.4	768473.1	402	Antelope	KMcG/OsbrnDrw
26	92	12	12-246	575966.0	764391.4	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-247	574878.6	766776.6	1000	Antelope	KMcG/OsbrnDrw
26	92	12	12-251	576475.0	768397.0	360	Antelope	KMcG/OsbrnDrw
26	92	12	12-252	576667.5	768392.2	360	Antelope	KMcG/OsbrnDrw
26	92	12	12-300	575704.2	766648.3	450	Antelope	KMcG/OsbrnDrw
26	92	12	12-301	575687.3	767016.4	450	Antelope	KMcG/OsbrnDrw
26	92	12	12-302	577041.7	765767.6	697	Antelope	KMcG/OsbrnDrw
26	92	12	12-303	575887.8	767781.9	800	Antelope	KMcG/OsbrnDiw
26	92	12	12-304	576316.3	766794.5	300	Antelope	KMcG/OsbrnDrw
26	92	12	12-305	576315.0	766594.5	297	Antelope	KMcG/OsbrnDrw
26	92	12	12-306	576264.2	766440.6	298	Antelope	KMcG/OsbrnDrw
26	92	12	12-307	576617.6	767194.3	303	Antelope	KMcG/OsbrnDrw
26	92	12	12-308	576661.9	767092.1	301	Antelope	KMcG/OsbrnDrw
26	92	12	12-309	576611.5	766994.9	300	Antelope	KMcG/OsbrnDrw
26	92	12	12-310	576015.5	764383.7	397	Antelope	KMcG/OsbrnDrw
26	92	12	12-311	576609.3	766494.4	301	Antelope	KMcG/OsbrnDrw
26	92	12	12-312	576582.3	767994.1	299	Antelope	KMcG/OsbrnDrw

Table 2.6-1

Antelope and JAB Drill Holes

	Rng	Sec	Map Hole 1 I	North NAD27	EastNAD27	$\log 70$	Project	Area
26	92	12	12-313	576385.5	767994.1	298	Antelope	KMcG/OsbrnDrw
26	92	12	12-314	576367.6	768196.6	408	Antelope	KMcG/OsbrnDrw
26	92	12	12-315	576507.8	767089.1	298	Antelope	KMcG/OsbrnDrw
26	92	12	12-316	576513.9	767194.3	298	Antelope	KMcG/OsbrnDrw
26	92	12	12-317	576467.5	767294.4	297	Antelope	KMcG/OsbrnDrw
26	92	12	12-319	576363.2	766595.8	302	Antelope	KMcG/OsbrnDrw
26	92	12	12-320	576312.4	766391.9	303	Antelope	KMcG/OsbrnDrw
26	92	12	12-321	576368.4	766795.8	310	Antelope	KMcG/OsbrnDrw
26	92	12	12-322	572667.3	768611.6	100	Antelope	KMcG/OsbrnDrw
26	92	12	12-323	573306.7	767778.1	100	Antelope	KMcG/OsbrnDrw
26	92	12	12-324	572814.5	767193.3	100	Antelope	KMcG/OsbrnDrw
26	92	12	12-325	573576.3	765021.0	100	Antelope	KMcG/OsbrnDrw
26	92	12	12-326	573125.7	764805.6	100	Antelope	KMcG/OsbrnDrw
26	92	12	12-327	573007.2	764791.5	100	Antelope	KMcG/OsbrnDrw
26	92	12	12-328	572917.3	764803.0	100	Antelope	KMcG/OsbrnDrw
26	92	12	12-329	573356.2	764618.3	101	Antelope	KMcG/OsbrnDrw
26	92	12	12-330	573185.6	764622.2	98	Antelope	KMcG/OsbrnDrw
26	92	12	12-331	573047.6	764610.7	99	Antelope	KMcG/OsbrnDrw
26	92	12	12-332	572870.5	764629.9	99	Antelope	KMcG/OsbrnDrw
26	92	12	12-333	575673.0	767201.0	600	Antelope	KMcG/OsbrnDrw
26	92	12	12-334	575006.2	768786.0	1148	Antelope	KMcG/OsbrnDrw
26	92	12	12-335	575007.5	768282.1	1202	Antelope	KMcG/OsbrnDrw
26	92	12	12-336	573917.5	768465.4	1203	Antelope	KMcG/OsbrnDrw
26	92	12	12-337	573912.3	767961.5	1200	Antelope	KMcG/OsbrnDrw
26	92	12	12-338	576154.8	766199.5	800	Antelope	KMcG/OsbrnDrw
26	92	12	12-339	575687.3	766253.4	800	Antelope	KMcG/OsbrnDrw
26	92	12	12-33C	576461.5	766979.1	200	Antelope	KMcG/OsbrnDrw
26	92	12	12-340	575527.1	764620.9	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-341	575205.4	764863.3	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-342	573860.2	767324.1	1360	Antelope	KMcG/OsbrnDrw
26	92	12	12-343	572447.2	766783.0	1300	Antelope	KMcG/OsbrnDrw
26	92	12	12-512	577039.5	765000.8	385	Antelope	KMcG/OsbrnDrw
26	92	12	12-52A	577244.8	765182.4	525	Antelope	KMcG/OsbrnDrw
26	92	12	12-6A	576858.0	765000.8	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-73A	576848.0	765181.4	400	Antelope	KMcG/OsbrnDrw
26	92	12	12-75C	576869.7	766386.6	520	Antelope	KMcG/OsbrnDrw
26	92	12	12-BU-5	576983.0	764643.4	360	Antelope	KMcG/OsbrnDrw
26	92	12	12-TR5	577062.3	768189.3	497	Antelope	KMcG/OsbrnDrw
26	92	12	12-X-1	577438.1	765182.4		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-10	576280.4	768441.0	359	Antelope	KMcG/OsbrnDrw
26	92	12	12-X-11	576873.0	767991.8	905	Antelope	KMcG/OsbrnDrw
26	92	12	12-X-12	576762.6	767042.5		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-13	576759.6	766887.8		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-16	575990.7	766591.9		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-17	576062.4	766997.1	900	Antelope	KMcG/OsbrnDrw
26	92	12	12-X-18	576262.9	767195.9		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-19	575867.0	767999.9		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-2	577047.6	765183.8		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-20	575889.1	768173.1		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-21	575876.1	768800.1		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-22	575907.4	769374.6		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-23	575579.2	768779.6		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-24	575663.9	767993.5		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-29	573947.4	769284.9		Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

	Rng	Sec	Map Hole ID	North NAD27	East NAD27	$\log T \mathrm{D}$	Project	Area
26	92	12	12-X-3	577455.1	766383.9		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-32	572349.5	764687.6		Antelope	KMcG/OsbrnDrw
26	92	12	$12-X-4$	577456.3	766784.0		Antelope	KMcG/OsbrnDrw
26	92	12	$12-X-5$	577460.8	767188.5		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-6	576961.2	767088.9		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-7	576862.0	766792.2		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-8	576865.9	767190.3		Antelope	KMcG/OsbrnDrw
26	92	12	12-X-9	577462.8	767988.4		Antelope	KMcG/OsbrnDrw
26	92	12	97C	576568.0	766904.0	325	Antelope	KMcG/OsbrnDrw
26	92	13	12-58	570272.3	769384.5	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-1	568536.6	767489.5	1050	Antelope	KMcG/OsbrnDrw
26	92	13	13-10	569121.6	767176.9	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-11	568900.3	767690.4	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-13	568917.6	767178.8	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-14	569129.3	767635.4	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-15	568925.3	766979.8	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-16	569115.8	766780.8	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-17	568988.8	767301.9	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-18	569341.0	766994.9	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-2	569745.1	768846.3	1209	Antelope	KMcG/OsbrnDrw
26	92	13	13-21	568682.8	764901.1	1078	Antelope	KMcG/OsbrnDrw
26	92	13	13-24	569173.5	768905.0	1207	Antelope	KMcG/OsbrnDrw
26	92	13	13-25	569110.0	765240.2	100	Antelope	KMcG/OsbrnDrw
26	92	13	13-26	569489.1	765100.0	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-27	569496.8	764914.3	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-28	569348.7	764711.6	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-29	569154.3	764683.1	96	Antelope	KMcG/OsbrnDrw
26	92	13	13-3	569947.1	767195.8	1200	Antelope	KMcG/OsbrnDrw
26	92	13	13-30	569408.3	764495.5	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-31	569315.9	764493.6	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-32	569210.1	764482.3	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-33	568961.9	764457.6	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-34	568748.3	764440.6	250	Antelope	KMcG/OsbrnDrw
26	92	13	13-35	568419.2	764635.8	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-36	569523.8	765268.7	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-37	568738.6	766399.9	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-38	568759.8	766185.8	100	Antelope	KMcG/OsbrnDrw
26	92	13	13-39	568971.5	766199.1	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-4	569902.9	767701.8	1209	Antelope	KMcG/OsbrnDrw
26	92	13	13-40	568480.8	766386.7	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-41	568394.2	766392.4	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-42	568819.5	766627.3	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-43	569306.3	766652.0	100	Antelope	KMcG/OsbrnDrw
26	92	13	13-44	568852.2	766790.3	100	Antelope	KMcG/OsbrnDrw
26	92	13	13-45	567941.9	765808.7	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-46	568450.0	764226.5	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-47	569606.5	764304.2	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-48	570470.6	764298.5	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-49	567712.9	764829.1	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-5	569960.6	766180.1	1200	Antelope	KMcG/OsbrnDrw
26	92	13	13-50	569287.1	768344.1	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-51	570085.7	768783.8	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-52	569874.0	768558.3	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-53	570487.9	768791.3	100	Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

		Sec	Map Hole In	North NAD27	East NAD27	19og70	Project	Area
26	92	13	13-54	570081.8	768963.8	100	Antelope	KMicG/OsbrnDrw
26	92	13	13-55	569893.2	769001.7	100	Antelope	KMcG/OsbrnDrw
26	92	13	13-56	570106.9	769162.7	80	Antelope	KMcG/OsbrnDrw
26	92	13	13-57	569698.9	769170.3	100	Antelope	KMcG/OsbrnDrw
26	92	13	13-59	571394.3	767809.8	100	Antelope	KMcG/OsbrnDrw
26	92	13	13-6	569947.1	764675.6	1200	Antelope	KMcG/OsbrnDrw
26	92	13	13-60	571503.9	768222.9	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-61	571390.4	768222.9	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-62	567472.4	767953.8	98	Antelope	KMcG/OsbrnDrw
26	92	13	13-63	568074.7	767373.9	100	Antelope	KMcG/OsbrnDrw
26	92	13	13-64	568353.8	767580.5	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-65	571051.7	767811.7	99	Antelope	KMcG/OsbrnDrw
26	92	13	13-66	569175.5	766077.8	800	Antelope	KMcG/OsbrnDrw
26	92	13	13-67	571109.4	766034.2	1299	Antelope	KMcG/OsbrnDrw
26	92	13	13-68	567458.9	767078.3	1200	Antelope	KMcG/OsbrnDrw
26	92	13	13-69	570108.8	769371.2	1097	Antelope	KMcG/OsbrnDrw
26	92	13	13-7	570335.9	767190.1	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-8	570736.1	767212.9	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-9	569546.9	767178.8	500	Antelope	KMcG/OsbrnDrw
26	92	13	13-B27	569335.2	765473.3	900	Antelope	KMcG/OsbrnDrw
26	92	13	13-B28	569331.3	766470.1	940	Antelope	KMcG/OsbrnDrw
26	92	13	13-B29	569335.2	767466.8	800	Antelope	KMcG/OsbrnDrw
26	92	13	13-B30	569344.8	768365.0	800	Antelope	KMcG/OsbrnDrw
26	92	13	13-B31	569350.6	769304.9	800	Antelope	KMcG/OsbrnDrw
26	92	13	13-B6	566489.0	768598.1		Antelope	KMicG/OsbrnDrw
26	92	13	13-B7	566542.9	766490.9		Antelope	KMcG/OsbrnDrw
26	92	13	13-B8	566558.3	764588.4		Antelope	KMcG/OsbrnDrw
26	92	13	13-R1	570360.9	764681.2		Antelope	KMcG/OsbrnDrw
26	92	13	13-R12	571259.5	764732.4		Antelope	KMcG/OsbrnDrw
26	92	13	13-X-34	569125.4	766983.6		Antelope	KMcG/OsbrnDrw
26	92	14	14-1	571950.4	762521.0	1000	Antelope	KMcG/OsbrnDrw
26	92	14	14-11	566477.5	762663.2		Antelope	KMcG/OsbrnDrw
26	92	14	14-14	569949.1	763908.1	1200	Antelope	KMcG/OsbrnDrw
26	92	14	14-15	569933.7	760864.9	1210	Antelope	KMcG/OsbrnDrw
26	92	14	14-16	570607.2	760391.1	898	Antelope	KMcG/OsbrnDrw
26	92	14	14-17	571546.3	760823.2	900	Antelope	KMcG/OsbrnDrw
26	92	14	14-18	571450.1	763294.2	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-19	571575.1	763479.9	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-2	568911.8	762420.6	1012	Antelope	KMcG/OsbrnDrw
26	92	14	14-20	571665.6	763694.0	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-21	572065.9	762636.6	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-22	571977.3	761909.0	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-23	572073.6	761721.4	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-24	571024.8	762280.4	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-25	570865.1	761348.1	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-26	570726.5	760948.2	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-27	567961.2	763447.6	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-28	567503.2	763462.8	99	Antelope	KMcG/OsbrnDrw
26	92	14	14-29	567526.3	761446.6	99	Antelope	KMcG/Osbrnorw
26	92	14	14-3	569725.8	762013.2	1015	Antelope	KMcG/OsbrnDrw
26	92	14	14-30	567262.6	761458.0	98	Antelope	KMcG/OsbrnDrw
26	92	14	14-31	568321.0	760504.8	99	Antelope	KMcG/OsbrnDrw
26	92	14	14-32	569308.2	759496.7	99	Antelope	KMcG/OsbrnDrw
26	92	14	14-33	569658.5	762310.7	99	Antelope	KMcG/OsbrnDrw

Table 2.6-1

Antelope and JAB Drill Holes

Jwn		Sec	$\text { Map itole } 1 \mathrm{D}$	North NAD 27	East NAD27	$\log 1 \mathrm{~B}$	Project	Area
26	92	14	14-34	569768.2	762318.3	99	Antelope	KMcG/OsbrnDrw
26	92	14	14-35	569814.3	762526.7	99	Antelope	KMcG/OsbrnDrw
26	92	14	14-36	568815.6	763237.3	100	Antelope	KMcG/OsbrnDrw
26	92	14	14-48	568373.0	760728.4	1002	Antelope	KMcG/OsbrnDrw
26	92	14	14-49	567664.8	763188.0	1002	Antelope	KMcG/OsbrnDrw
26	92	14	14-51	567120.2	760493.5	999	Antelope	KMcG/OsbrnDrw
26	92	14	14-62	577027.6	763474.6	865	Antelope	KMcG/OsbrnDrw
26	92	14	14-8	569323.6	762814.7	1140	Antelope	KMcG/OsbrnDrw
26	92	14	14-9	568917.6	762005.6	1200	Antelope	KMcG/OsbrnDrw
26	92	14	14-A25	575017.9	761254.7		Antelope	KMcG/OsbrnDrw
26	92	14	14-A61	572127.4	764074.9	300	Antelope	KMcG/OsbrnDrw
26	92	14	14-B22	569373.7	760478.3	1025	Antelope	KMcG/OsbrnDrw
26	92	14	14-B23	569362.1	761507.2	960	Antelope	KMcG/OsbrnDrw
26	92	14	14-B24	569356.3	762468.0	820	Antelope	KMcG/OsbrnDrw
26	92	14	14-B25	569342.9	763443.9	900	Antelope	KMcG/OsbrnDrw
26	92	14	14-R10	571253.8	762735.2		Antelope	KMcG/OsbrnDrw
26	92	14	14-R11	571251.9	763731.9		Antelope	KMcG/OsbrnDrw
26	92	14	14-R13	571246.1	759739.3		Antelope	KMcG/OsbrnDrw
26	92	14	14-R15	572013.9	759220.1		Antelope	KMcG/OsbrnDrw
26	92	14	14-R17	572008.1	759701.4		Antelope	KMcG/OsbrnDrw
26	92	14	14-R2	570376.3	763680.7		Antelope	KMcG/OsbrnDrw
26	92	14	14-R3	570376.3	762676.4		Antelope	KMcG/OsbrnDrw
26	92	14	14-R4	570357.0	761677.8		Antelope	KMcG/OsbrnDrw
26	92	14	14-R5	570360.9	760684.8		Antelope	KMcG/OsbrnDrw
26	92	14	14-R6	570355.1	759676.7		Antelope	KMcG/OsbrnDrw
26	92	14	14-R8	571259.5	760745.5		Antelope	KMcG/OsbrnDrw
26	92	14	14-R9	571257.6	761730.8		Antelope	KMcG/OsbrnDrw
26	92	15	86	570927.0	755123.0	600	Antelope	KMcG/OsbrnDrw
26	92	15	10-E137	571334.6	755394.2		Antelope	KMcG/OsbrnDrw
26	92	15	10-E91	569827.8	753654.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-1	571983.1	754770.8	1018	Antelope	KMcG/OsbrnDrw
26	92	15	15-10	571336.5	7541.15 .1	815	Antelope	KMcG/OsbrnDrw
26	92	15	15-11	571342.3	754511.2	915	Antelope	KMcG/OsbrnDrw
26	92	15	15-12	571336.5	754912.9	819	Antelope	KMcG/OsbrnDrw
26	92	15	15-13	571348.1	755307.0	800	Antelope	KMcG/OsbrnDrw
26	92	15	15-15	571353.8	756125.7	900	Antelope	KMcG/OsbrnDrw
26	92	15	15-17	571367.3	756906.4	692	Antelope	KMcG/OsbrnDrw
26	92	15	15-2	570511.0	755407.5	1000	Antelope	KMcG/OsbrnDrw
26	92	15	15-24	570942.0	754912.9	800	Antelope	KMcG/OsbrnDrw
26	92	15	15-25	570942.0	755312.7	1018	Antelope	KMcG/OsbrnDrw
26	92	15	15-26	570945.9	755710.7	800	Antelope	KMcG/OsbrnDrw
26	92	15	15-27	570955.5	756110.5	900	Antelope	KMcG/OsbrnDrw
26	92	15	15-28	570957.4	756510.3	900	Antelope	KMcG/OsbrnDrw
26	92	15	15-3	568124.8	756138.9	1000	Antelope	KMcG/OsbrnDrw
26	92	15	15-35	570547.5	755712.6	800	Antelope	KMcG/OsbrnDrw
26	92	15	15-4	571742.6	754507.4	1045	Antelope	KMcG/OsbrnDrw
26	92	15	15-40	570153.0	755318.4	900	Antelope	KMcG/OsbrnDrw
26	92	15	15-5	571748.3	755708.8	900	Antelope	KMcG/OsbrnDrw
26	92	15	15-55	571938.8	754912.9	540	Antelope	KMcG/OsbrnDrw
26	92	15	15-56	571731.0	754107.6	900	Antelope	KMcG/OsbrnDrw
26	92	15	15-6	571756.0	756510.3	560	Antelope	KMcG/OsbrnDrw
26	92	15	15-60	571848.4	755303.3	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-61	571929.2	755716.4	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-62	571338.4	754710.1	900	Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 1 D	North NAD27	East NaD27	LogTD	Project	Area
26	92	15	15-62A	571854.2	755199.0	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-63	571542.4	754712.0	900	Antelope	KMcG/OsbrnDrw
26	92	15	15-63A	571844.6	755102.4	560	Antelope	KMcG/OsbrnDrw
26	92	15	15-64	570303.1	755159.2	173	Antelope	KMcG/OsbrnDrw
26	92	15	15-65	571942.7	755312.7	560	Antelope	KMcG/OsbrnDrw
26	92	15	15-66	571936.9	755500.3	507	Antelope	KMcG/OsbrnDrw
26	92	15	15-67	571948.5	755909.6	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-68	571727.2	754698.8	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-70	571750.3	755308.9	560	Antelope	KMcG/OsbrnDrw
26	92	15	15-71	571746.4	755504.1	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-72	571530.9	754509.3	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-74	571534.7	755307.0	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-75	571542.4	755507.9	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-79	571136.4	754509.3	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-80	571138.3	754713.9	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-81	571138.3	754914.8	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-82	571136.4	755115.7	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-85	571240.3	755214.2	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-88	570755.4	756508.4	600	Antelope	KMcG/OsbrnDrw
26	92	15	15-89	570503.3	755212.3	693	Antelope	KMcG/OsbrnDrw
26	92	15	15-90	570170.4	754689.3	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-91	570676.5	754604.0	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-92	570932.4	754505.5	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-93	569265.0	753808.0	500	Antelope	KMcG/OsbrnDrw
26	92	15	15-A10-D	572056.2	757978.9	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-B15	567636.0	753683.1	740	Antelope	KMcG/OsbrnDrw
26	92	15	15-B16	568607.8	753656.6	710	Antelope	KMcG/OsbrnDrw
26	92	15	15-B17	569327.5	755172.5		Antelope	KMcG/OsbrnDrw
26	92	15	15-B18	569290.9	756138.9	860	Antelope	KMcG/OsbrnDrw
26	92	15	15-B19	569156.2	757230.4	700	Antelope	KMcG/OsbrnDrw
26	92	15	15-B20	569156.2	758246.1	790	Antelope	KMcG/OsbrnDrw
26	92	15	15-B37	568788.7	754655.2	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-B38	568286.4	754666.6	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-839	567797.6	754672.2	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-B40	567289.6	754664.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B43	568274.9	754189.0	319	Antelope	KMcG/OsbrnDrw
26	92	15	15-B44	567774.5	754177.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B45	567272.3	754196.6	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B47	569006.1	756722.6	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B48	568523.1	756722.6	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B49	568755.9	757209.6	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B50	568265.2	757188.7	321	Antelope	KMcG/OsbrnDrw
26	92	15	15-B52	568511.6	757725.0	321	Antelope	KMcG/OsbrnDrw
26	92	15	15-B53	569054.2	754158.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B54	569088.9	754399.4	250	Antelope	KMcG/OsbrnDrw
26	92	15	15-B54A	569081.2	754304.6	250	Antelope	KMcG/OsbrnDrw
26	92	15	15-B54C	569081.2	754496.0	250	Antelope	KMcG/OsbrnDrw
26	92	15	15-B55	569060.0	754676.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B56	569065.8	754930.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B57	569002.3	756974.6	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-B58	568755.9	756968.9	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-B59	568761.7	756720.7	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-B60	568979.2	757219.0	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-B61	568501.9	757217.1	340	Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	Map Bole. 1 D	North NAD27	East NAD27	Log TD	Project	Area
26	92	15	15-862	568759.8	757455.9	344	Antelope	KMcG/OsbrnDrw
26	92	15	15-B63	569158.1	756739.6	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B64	569167.8	756987.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-B65	569102.3	753673.6	240	Antelope	KMcG/OsbrnDrw
26	92	15	15-B66	568859.9	753662.3	245	Antelope	KMcG/OsbrnDrw
26	92	15	15-867	568371.1	753675.5	240	Antelope	KMcG/OsbrnDrw
26	92	15	15-B68	568144.0	753685.0	245	Antelope	KMcG/OsbrnDrw
26	92	15	15-869	567878.4	753685.0	251	Antelope	KMcG/OsbrnDrw
26	92	15	15-B70	567368.5	753690.7	408	Antelope	KMcG/OsbrnDrw
26	92	15	15-B71	567884.2	753950.3	409	Antelope	KMcG/OsbrnDrw
26	92	15	15-B72	567368.5	753942.7	254	Antelope	KMcG/OsbrnDrw
26	92	15	15-B73	567974.7	753948.4	255	Antelope	KMcG/OsbrnDrw
26	92	15	15-B80	569075.4	753916.2	244	Antelope	KMcG/OsbrnDrw
26	92	15	15-E1	569614.2	753656.6		Antelope	KMcG/OsbrnDrw
26	92	15	15-E10	571325.0	755642.5	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-E101	570037.6	754156.8	323	Antelope	KMcG/OsbrnDrw
26	92	15	15-E102	569570.0	754168.2	323	Antelope	KMcG/OsbrnDrw
26	92	15	15-E103	571051.7	754393.7	323	Antelope	KMcG/OsbrnDrw
26	92	15	15-E104	570051.0	754410.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E105	569841.3	754405.1	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E106	569552.6	754408.9	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E107	569289.0	754403.2	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E109	569321.7	754922.4	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E11	571284.6	756741.5	280	Antelope	KMcG/OsbrnDrw
26	92	15	15-E112	569868.2	755437.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E113	569550.7	755443.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E114	570301.2	755644.3	358	Antelope	KMcG/OsbrnDrw
26	92	15	15-E115	570815.0	755898.3	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E116	570574.5	755907.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E12	571278.8	758742.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E122	570793.8	756970.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E123	571032.5	757963.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E125	571261.5	757253.1	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E126	571024.8	757247.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E127	570772.7	757230.4	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E128	571571.3	755650.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E128 C	570460.9	757205.8	253	Antelope	KMcG/OsbrnDrw
26	92	15	15-E128A	570568.7	757202.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E128B	570512.9	757289.1	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E128D	570518.7	757137.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E129	571500.1	757963.7	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E13	569854.8	754664.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E130	571036.3	757491.9	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E131	570536.0	757461.6	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E132	571038.2	757743.9	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E133	570782.3	757738.2	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E134	570559.1	757740.1	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E135	571280.7	757745.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E136	569369.8	753658.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E139	571082.5	755657.6	369	Antelope	KMcG/OsbrnDrw
26	92	15	15-E14	569315.9	754666.6	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E140	571960.0	755958.9	263	Antelope	KMcG/OsbrnDrw
26	92	15	15-E141	571336.5	755881.2	370	Antelope	KMcG/OsbrnDrw
26	92	15	15-E142	571090.2	755896.4	360	Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

	Rag	Sec	Map Hole In	North NAD27	EWastNAD27:	$\log T D$	Project	Area
26	92	15	15-E143	571973.5	756459.2	264	Antelope	KMcG/OsbrnDrw
26	92	15	15-E144	571069.0	756375.8	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E145	571987.0	756743.4	254	Antelope	KMcG/OsbrnDrw
26	92	15	15-E146	570790.0	756724.5	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E147	571988.9	756970.8	255	Antelope	KMcG/OsbrnDrw
26	92	15	15-E148	571007.5	756732.0	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E149	571084.4	755392.3	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E15	570310.8	754170.1	295	Antelope	KMcG/OsbrnDrw
26	92	15	15-E150	570830.4	755390.4	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E151	571080.6	755147.9	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E152	571315.4	755130.8	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E153	571176.8	755399.9	203	Antelope	KMcG/OsbrnDrw
26	92	15	15-E154	570995.9	755390.4	360	Antelope	KMcG/OsbrnDrw
26	92	15	15-E16	569793.2	754166.3	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E17	569317.9	754172.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E18	570062.6	755172.5	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E19	569558.4	755178.2	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E2	570358.9	753656.6	720	Antelope	KMcG/OsbrnDrw
26	92	15	15-E20	570043.3	755651.9	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E21	569548.8	755659.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E22	570043.3	756176.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E23	569556.5	756161.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E24	570006.8	756762.4	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E25	569514.1	756741.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E26	570262.7	757241.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E27	569770.1	757234.2	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E3	571376.9	753686.9	700	Antelope	KMcG/OsbrnDrw
26	92	15	15-E32	570534.1	756942.4	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E33	571019.0	756951.8	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E34	570797.7	757469.2	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E35	571273.0	757493.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E35A	571355.8	757490.0		Antelope	KMcG/OsbrnDrw
26	92	15	15-E35B	571269.2	757423.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E35C	571205.7	757493.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E35D	571273.0	757546.9	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E36	570803.5	757973.2	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E37	571284.6	758234.7	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E38	571763.7	758200.6	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E39	571538.6	758738.8	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E4	571276.9	757878.5	340	Antelope	KMcG/OsbrnDrw
26	92	15	15-E40	572044.7	758712.2	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E41	570299.3	754395.6	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E48	569566.1	754660.9	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E49	569562.3	754928.1	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E5	570268.5	757922.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E50	569845.1	754931.9	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E51	569856.7	755183.9	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E52	570054.9	754922.4	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E53	570058.7	754657.1	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E57-A	570545.6	754147.4	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E58	570555.2	754378.5	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E59	570818.9	754405.1	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E6	570266.6	756946.2	260	Antelope	KMcG/OsbrnDrw
26	92	15	15-E60	570545.6	754624.9	300	Antelope	KMcG/OsbrnDrw

Table 2.6-1
Antelope and JAB Drill Holes

Twn	$5 \mathrm{Rng}$	Sec	Map Hole ID	North NAD27	East NAD27	LogTD	Project	Area
26	92	15	15-E61	570826.6	754662.8	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E62	570305.1	754905.3	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E63	570555.2	754897.7	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E64	570822.7	754894.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E68	570301.2	754636.2	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E7	570295.4	755909.6	265	Antelope	KMcG/OsbrnDrw
26	92	15	15-E70	570295.4	755390.4	180	Antelope	KMcG/OsbrnDrw
26	92	15	15-E71	570555.2	755392.3	200	Antelope	KMcG/OsbrnDrw
26	92	15	15-E73	570562.9	755640.6	223	Antelope	KMcG/OsbrnDrw
26	92	15	15-E74	570828.5	755634.9	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E76	571517.4	757562.0	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E77	571756.0	757539.3	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E78	572002.4	757527.9	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E79	571529.0	757238.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E8	570303.1	754793.5	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E80	571748.3	757224.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E81	571990.8	757220.9	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E82	571540.5	756949.9	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E83	571731.0	756923.4	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E84	571736.8	756616.4	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E85	571579.0	756544.4	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-E86	571325.0	756546.3	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E88	571575.1	756237.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E89	571725.2	756292.4	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E9	571319.2	754659.0	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E90	570039.5	753662.3	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E92	570029.9	753912.4	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E93	569845.1	753904.8	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E94	569558.4	753916.2	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E95	569300.5	753908.6	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E96	571024.8	753899.1	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E97	570797.7	753910.5	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E98	571034.4	754158.7	320	Antelope	KMcG/OsbrnDrw
26	92	15	15-E99	570786.2	754084.8	300	Antelope	KMcG/OsbrnDrw
26	92	15	15-R7	570262.7	758719.8		Antelope	KMcG/OsbrnDrw
26	92	15	22-B42	568790.6	754175.8	319	Antelope	KMcG/OsbrnDrw
26	92	15	E128	570512.0	757204.0		Antelope	KMcG/OsbrnDrw
26	92	21	21-6	566727.7	752620.0	500	Antelope	KMcG/OsbrnDrw
26	92	21	21-7	566716.1	751617.6	500	Antelope	KMcG/OsbrnDrw
26	92	22	22-1	566298.5	756013.9	1020	Antelope	KMcG/OsbrnDrw
26	92	22	22-2	565153.5	756243.1	740	Antelope	KMcG/OsbrnDrw
26	92	22	22-B11	566810.4	754670.4		Antelope	KMcG/OsbrnDrw
26	92	22	22-B13	566387.1	754695.0		Antelope	KMcG/OsbrnDrw
26	92	22	22-B14	566389.0	753707.7		Antelope	KMcG/OsbrnDrw
26	92	22	22-B46	566764.2	754187.1		Antelope	KMcG/OsbrnDrw
26	92	23	23-10	566473.6	763455.2	100	Antelope	KMcG/OsbrnDrw
26	92	23	23-12	565779.0	762828.0	1000	Antelope	KMcG/OsbrnDrw
26	92	23	23-2	565673.1	763883.5		Antelope	KMcG/OsbrnDrw
26	92	23	23-3	566477.5	761548.9	1005	Antelope	KMcG/OsbrnDrw
26	92	23	23-4	565272.8	762261.4	1001	Antelope	KMcG/OsbrnDrw
26	92	23	23-5	565267.1	763459.0	753	Antelope	KMcG/OsbrnDrw
26	92	23	23-B10	566606.4	760864.9	560	Antelope	KMcG/OsbrnDrw
26	92	23	23-B11	566531.4	758892.2	600	Antelope	KMcG/OsbrnDrw
26	92	23	23-B9	566556.4	762795.8	600	Antelope	KMcG/OsbrnDrw

Uranium One Americas

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 18	North NAD27	East NAD27	Log TD	Prolect	Area
26	92	24	24-1	566644.9	768171.7	97	Antelope	KMcG/OsbrnDrw
26	92	24	24-2	566806.6	768315.7	99	Antelope	KMcG/OsbrnDrw
26	92	7	10	572103.0	739315.0		Antelope	KMcG/RossRox
26	92	7	131	573029.0	741308.0		Antelope	KMcG/RossRox
26	92	7	132	573005.0	741649.0		Antelope	KMcG/RossRox
26	92	7	133	573073.0	741627.0		Antelope	KMcG/RossRox
26	92	7	134	572422.0	739891.0		Antelope	KMcG/RossRox
26	92	7	137	572505.0	742868.0		Antelope	KMcG/RossRox
26	92	7	138	572309.0	742865.0		Antelope	KMcG/RossRox
26	92	7	139	572703.0	742873.0		Antelope	KMcG/RossRox
26	92	7	7-32	572968.2	741857.3	360	Antelope	KMcG/RossRox
26	92	7	7-33	573020.9	741776.4	360	Antelope	KMcG/RossRox
26	92	7	7-34	572103.4	739516.6	504	Antelope	KMcG/RossRox
26	92	7	$7-35$	572283.2	739139.7	503	Antelope	KMcG/RossRox
26	92	7	7-36	572268.0	738735.5	495	Antelope	KMcG/RossRox
26	92	7	7-37	572476.2	738725.9	503	Antelope	KMcG/RossRox
26	92	7	7-38	571965.0	738060.2	463	Antelope	KMcG/RossRox
26	92	7	7-39	572028.5	738132.6	463	Antelope	KMcG/RossRox
26	92	7	7-40	572090.5	738199.4	461	Antelope	KMcG/RossRox
26	92	7	7-41	572261.0	738282.6	460	Antelope	KMcG/RossRox
26	92	7	7-42	572077.5	740860.2	400	Antelope	KMcG/RossRox
26	92	7	7-43	572076.3	740662.3	505	Antelope	KMcG/RossRox
26	92	7	7-44	571951.2	742473.5	500	Antelope	KMcG/RossRox
26	92	7	7-45	572634.6	740793.5	453	Antelope	KMcG/RossRox
26	92	7	7-46	572745.6	740880.5	440	Antelope	KMcG/RossRox
26	92	7	7-47	572685.3	740631.4	440	Antelope	KMcG/RossRox
26	92	7	7-48	572800.0	740984.8	434	Antelope	KMcG/RossRox
26	92	7	7-49	572173.2	740760.0	399	Antelope	KMcG/RossRox
26	92	7	7-50	572025.9	740760.1	400	Antelope	KMcG/RossRox
26	92	7	7-51	571935.8	741556.3	332	Antelope	KMcG/RossRox
26	92	7	7-52	572737.2	740780.2	400	Antelope	KMcG/RossRox
26	92	7	7-53	572783.0	740631.5	400	Antelope	KMcG/RossRox
26	92	7	7-54	572778.9	740530.5	402	Antelope	KMcG/RossRox
26	92	7	7-55	572900.8	740894.5	400	Antelope	KMcG/RossRox
26	92	7	7-56	572686.1	740531.0	400	Antelope	KMcG/RossRox
26	92	7	7-57	572730.7	740646.7	400	Antelope	KMcG/RossRox
26	92	7	7-58	572633.2	740684.7	400	Antelope	KMcG/RossRox
26	92	7	7-59	572700.4	740782.5	400	Antelope	KMcG/RossRox
26	92	7	7-60	572829.7	740622.1	500	Antelope	KMcG/RossRox
26	92	7	7-61	572762.1	740923.5	501	Antelope	KMcG/RossRox
26	92	7	7-62	572874.7	738565.4	607.	Antelope	KMcG/RossRox
26	92	7	7-63	572481.9	739797.9	608	Antelope	KMcG/RossRox
26	92	7	7-64	573049.6	741255.5	599	Antelope	KMcG/RossRox
26	92	7	7-65	572684.6	738632.2	606	Antelope	KMcG/RossRox
26	92	7	7-66	573241.7	742449.4	500	Antelope	KMcG/RossRox
26	92	7	7-67	572849.1	741254.5	500	Antelope	KMcG/RossRox
26	92	7	7-68	572750.7	741253.6	500	Antelope	KMcG/RossRox
26	92	7	7-69	572268.0	741561.6	500	Antelope	KMcG/RossRox
26	92	7	7-70	572469.2	741568.2	507	Antelope	KMcG/RossRox
26	92	7	7-71	572371.5	741570.2	507	Antelope	KMcG/RossRox
26	92	7	7-72	572075.2	741062.3	- 507	Antelope	KMcG/RossRox
26	92	7	7.73	572076.0	740960.5	504	Antelope	KMcG/RossRox
26	92	7	7-74	572883.6	739804.9	506	Antelope	KMcG/RossRox
26	92	7	7-75	572997.7	742157.5	506	Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 11	North NAD27	East NAD27	$\log T D$	Project	Area
26	92	7	7-76	572581.4	738668.1	610	Antelope	KMcG/RossRox
26	92	7	$7-77$	572037.5	741153.7	499	Antelope	KMcG/RossRox
26	92	7	7-78	572168.4	740895.7	518	Antelope	KMcG/RossRox
26	92	7	7-79	571939.2	740714.7	518	Antelope	KMcG/RossRox
26	92	7	7-80	572611.6	741330.7	497	Antelope	KMcG/RossRox
26	92	7	7-81	571951.9	740942.1	497	Antelope	KMcG/RossRox
26	92	7	7-82	571937.8	741420.6	513	Antelope	KMcG/RossRox
26	92	7	7-83	572088.7	741551.2	517	Antelope	KMcG/RossRox
26	92	7	7-84	572608.1	741227.5	505	Antelope	KMcG/RossRox
26	92	7	7-85	572834.4	741520.2	499	Antelope	KMcG/RossRox
26	92	7	7-86	572819.9	741818.5	505	Antelope	KMcG/RossRox
26	92	7	$7-87$	573215.7	741790.9	495	Antelope	KMcG/RossRox
26	92	7	7-88	573222.6	741989.4	496	Antelope	KMcG/RossRox
26	92	7	$7-89$	573262.9	742204.1	496	Antelope	KMcG/RossRox
26	92	7	7-90	572814.5	742082.9	500	Antelope	KMcG/RossRox
26	92	7	7-91	572263.8	740870.4	499	Antelope	KMcG/RossRox
26	92	7	7-92	573094.6	742135.0	494	Antelope	KMcG/RossRox
26	92	7	7-93	572906.1	741777.8	497	Antelope	KMcG/RossRox
26	92	7	7-94	572808.4	741081.5	496	Antelope	KMcG/RossRox
26	92	7	7-95	572934.2	741499.9	496	Antelope	KMcG/RossRox
26	92	7	7-96	572952.3	740979.0	497	Antelope	KMcG/RossRox
26	92	7	7-97	572442.4	740880.1	497	Antelope	KMcG/RossRox
26	92	7	7-98	572777.0	740329.8	497	Antelope	KMcG/RossRox
26	92	7	7-99	572414.3	738922.7	497	Antelope	KMcG/RossRox
26	92	7	7-1	574070.0	741386.0	1100	Antelope	KMcG/RossRox
26	92	7	7-3	573951.4	740201.7	1002	Antelope	KMcG/RossRox
26	92	7	7-4	573269.6	740736.9	800	Antelope	KMcG/RossRox
26	92	7	7-5	572075.5	740759.1	800	Antelope	KMcG/RossRox
26	92	7	7-6	571898.6	737982.1	795	Antelope	KMcG/RossRox
26	92	7	7-7	572259.2	738337.7	503	Antelope	KMcG/RossRox
26	92	7	7-8	572254.8	737967.4	501	Antelope	KMcG/RossRox
26	92	7	7-9	571907.9	738349.6	500	Antelope	KMcG/RossRox
26	92	7	7-11	572492.4	739299.6	498	Antelope	KMcG/RossRox
26	92	7	7-12	572893.2	739286.8	833	Antelope	KMcG/RossRox
26	92	7	7-13	572870.9	740510.2	506	Antelope	KMcG/RossRox
26	92	7	7-14	572279.5	740413.1	506	Antelope	KMcG/RossRox
26	92	7	7-15	571945.5	741873.6	500	Antelope	KMcG/RossRox
26	92	7	7-16	572292.5	741866.7	998	Antelope	KMcG/RossRox
26	92	7	7-17	572655.9	741860.4	444	Antelope	KMcG/RossRox
26	92	7	7-18	573022.0	741854.9	498	Antelope	KMcG/RossRox
26	92	7	7-19	571896.0	741322.8	503	Antelope	KMcG/RossRox
26	92	7	7-20	572054.0	740253.3	503	Antelope	KMcG/RossRox
26	92	7	7-21	572306.8	742466.6	302	Antelope	KMcG/RossRox
26	92	7	7-22	572199.7	741984.5	301	Antelope	KMcG/RossRox
26	92	7	7-23	572273.3	741261.9	504	Antelope	KMcG/RossRox
26	92	7	7-24	572385.9	740078.3	504	Antelope	KMcG/RossRox
26	92	7	7-25	572574.9	740646.1	439	Antelope	KMcG/RossRox
26	92	7	7-26	572588.2	740735.1	444	Antelope	KMcG/RossRox
26	92	7	7-27	572683.7	740833.5	443	Antelope	KMcG/RossRox
26	92	7	7-28	572505.8	742463.4	400	Antelope	KMcG/RossRox
26	92	7	7-29	572650.8	741261.2	503	Antelope	KMcG/RossRox
26	92	7	7-30	572837.3	742460.1	503	Antelope	KMcG/RossRox
26	92	7	7-31	573028.5	742457.6	503	Antelope	KMcG/RossRox
26	92	7	7-100	572380.5	738491.1	496	Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	Map Hole, ID	North NAD27	East NAD27	$\log 10$	Project	Area
26	92	7	7-101	572191.1	738202.4	493	Antelope	KMcG/RossRox
26	92	7	7-102	572108.1	738070.7	496	Antelope	KMcG/RossRox
26	92	7	7-103	572677.1	740326.1	497	Antelope	KMcG/RossRox
26	92	7	7-104	572596.2	740887.7	494	Antelope	KMcG/RossRox
26	92	7	7-105	572698.4	741167.0	495	Antelope	KMcG/RossRox
26	92	7	7-106	572753.0	741991.4	497	Antelope	KMcG/RossRox
26	92	7	7-107	572206.1	738104.8	497	Antelope	KMcG/RossRox
26	92	7	7-108	572572.2	740326.7	496	Antelope	KMcG/RossRox
26	92	7	7-109	572503.1	739074.8	496	Antelope	KMcG/RossRox
26	92	7	7-110	572455.2	738420.7	497	Antelope	KMcG/RossRox
26	92	7	7-111	572103.3	737966.2	497	Antelope	KMcG/RossRox
26	92	7	7-112	572597.8	740225.5	497	Antelope	KMcG/RossRox
26	92	7	7-113	572883.9	741153.9	494	Antelope	KMcG/RossRox
26	92	7	7-114	572943.3	741598.8	493	Antelope	KMcG/RossRox
26	92	7	7-115	572521.4	738351.1	497	Antelope	KMcG/RossRox
26	92	7	7-116	572229.4	738101.1	496	Antelope	KMcG/RossRox
26	92	7	7-117	572171.4	738108.5	497	Antelope	KMcG/RossRox
26	92	7	7-118	572213.0	738188.2	497	Antelope	KMcG/RossRox
26	92	7	7-119	572161.4	738211.1	496	Antelope	KMcG/RossRox
26	92	7	7-120	571913.8	738027.3	493	Antelope	KMcG/RossRox
26	92	7	7-121	572198.7	738056.1	497	Antelope	KMcG/RossRox
26	92	7	7-122	572196.5	738157.2	497	Antelope	KMcG/RossRox
26	92	7	7-123	572117.3	738179.5	497	Antelope	KMcG/RossRox
26	92	7	7-124	572242.0	738190.1	497	Antelope	KMcG/RossRox
26	92	7	7-125	572222.5	738239.0		Antelope	KMcG/RossRox
26	92	7	7-126	571939.2	738016.5	496	Antelope	KMcG/RossRox
26	92	7	7-128	572202.0	738249.7	497	Antelope	KMcG/RossRox
26	92	7	7-129	572221.2	738146.4	496	Antelope	KMcG/RossRox
26	92	7	7-135	573485.9	738477.4	997	Antelope	KMcG/RossRox
26	92	7	7-136	573497.9	739449.8	1000	Antelope	KMcG/RossRox
26	92	7	7-2A	572688.0	740731.0	1001	Antelope	KMcG/RossRox
26	92	8	8-1	572114.9	744408.4	1007	Antelope	KMcG/RossRox
26	92	8	8-2	574607.8	744370.8	1015	Antelope	KMcG/RossRox
26	92	8	8-3	577040.1	746061.8	1199	Antelope	KMcG/RossRox
26	92	8	8-4	573651.6	745179.1	999	Antelope	KMcG/RossRox
26	92	8	8-5	571953.8	748352.2	739	Antelope	KMcG/RossRox
26	92	8	8-6	572358.9	743621.9	796	Antelope	KMcG/RossRox
26	92	8	8-7	573360.8	743979.5	803	Antelope	KMcG/RossRox
26	92	8	8-8	574601.9	746782.6	798	Antelope	KMcG/RossRox
26	92	8	8-9	574557.3	745684.0	798	Antelope	KMcG/RossRox
26	92	8	8-10	572222.0	743226.5	499	Antelope	KMcG/RossRox
26	92	8	8-11	573026.1	743211.5	1009	Antelope	KMcG/RossRox
26	92	8	8-12	573820.7	743207.0	493	Antelope	KMcG/RossRox
26	92	8	8-13	574607.4	743188.5	1000	Antelope	KMcG/RossRox
26	92	8	8-14	572616.8	743213.6	505	Antelope	KMcG/RossRox
26	92	8	8-15	572414.5	743215.5	301	Antelope	KMcG/RossRox
26	92	8	8-16	572513.2	743217.2	300	Antelope	KMcG/RossRox
26	92	8	8-18	572821.9	743211.5	503	Antelope	KMcG/RossRox
26	92	8	8-19	572322.9	743306.6	601	Antelope	KMcG/RossRox
26	92	8	8-20	572233.5	744843.1	500	Antelope	KMcG/RossRox
26	92	8	8-21	572151.4	744053.5	500	Antelope	KMcG/RossRox
26	92	8	8-22	572060.5	747054.0	973	Antelope	KMcG/RossRox
26	92	8	8-23	572552.8	746989.7	1000	Antelope	KMcG/RossRox
26	92	8	8-24	573044.3	746938.7	1000	Antelope	KMcG/RossRox

Table 2.6-1

Antelope and JAB Drill Holes

Twi	Kng	Sec	Map Hole 10	North NAD27	East NAD27	$\log T D$	Project	Area
26	93	11	12-353	571884.4	732640.9		Antelope	KMcG/RossRox
26	93	12	12-1	576837.3	732826.1	1120	Antelope	KMcG/RossRox
26	93	12	12-2	574959.0	732871.1	1017	Antelope	KMcG/RossRox
26	93	12	12-3	573265.3	735433.7	992	Antelope	KMcG/RossRox
26	93	12	12-4	575122.3	734847.1	995	Antelope	KMcG/RossRox
26	93	12	12-5	572708.3	734307.6	1002	Antelope	KMcG/RossRox
26	93	12	12-6	571948.3	734337.7	1003	Antelope	KMcG/RossRox
26	93	12	12-7	571896.2	737455.2	502	Antelope	KMcG/RossRox
26	93	12	12-8	572282.4	737451.1	507	Antelope	KMcG/RossRox
26	93	12	12-9	573953.5	737409.5	997	Antelope	KMcG/RossRox
26	93	12	12-15	572288.6	734762.2	504	Antelope	KMcG/RossRox
26	93	12	12-20	571883.2	737735.0	497	Antelope	KMcG/RossRox
26	93	12	12-21	571950.2	737829.5	446	Antelope	KMcG/RossRox
26	93	12	12-22	572171.4	737837.0	492	Antelope	KMcG/RossRox
26	93	12	12-24	574080.0	734987.8	1000	Antelope	KMcG/RossRox
26	93	12	12-25	573339.5	736532.9	1000	Antelope	KMcG/RossRox
26	93	12	12-13(Q)	572702.7	733710.1	1247	Antelope	KMcG/RossRox
26	93	12	12-4A	573535.1	734294.4	940	Antelope	KMcG/RossRox
26	93	13	25	570957.0	737953.0		Antelope	KMcG/RossRox
26	93	13	60	570121.0	733912.0		Antelope	KMcG/RossRox
26	93	13	242	571386.0	734074.0		Antelope	KMcG/RossRox
26	93	13	244	571434.0	737524.0		Antelope	KMcG/RossRox
26	93	13	254	570915.0	737496.0		Antelope	KMcG/RossRox
26	93	13	260	570605.0	735239.0		Antelope	KMcG/RossRox
26	93	13	272	571116.0	737648.0		Antelope	KMcG/RossRox
26	93	13	280	571217.0	737662.0		Antelope	KMcG/RossRox
26	93	13	292	569895.0	735246.0		Antelope	KMcG/RossRox
26	93	13	300	569236.0	734761.0		Antelope	KMcG/RossRox
26	93	13	301	568794.0	735715.0		Antelope	KMcG/RossRox
26	93	13	13-1	571175.1	737080.9	1000	Antelope	KMcG/RossRox
26	93	13	13-10	569497.8	733954.0	701	Antelope	KMcG/RossRox
26	93	13	13-100	570889.0	733666.4	463	Antelope	KMcG/RossRox
26	93	13	13-101	571066.7	734263.4	487	Antelope	KMcG/RossRox
26	93	13	13-103	570673.0	733960.9	444	Antelope	KMcG/RossRox
26	93	13	13-103C	570680.1	733958.0	386	Antelope	KMcG/RossRox
26	93	13	13-105	570822.8	734006.0	422	Antelope	KMcG/RossRox
26	93	13	13-106	570622.8	733964.7	428	Antelope	KMcG/RossRox
26	93	13	13-107	570527.8	733964.5	449	Antelope	KMcG/RossRox
26	93	13	13-108	570921.4	734034.4	423	Antelope	KMcG/RossRox
26	93	13	13-109	570644.1	734684.0	500	Antelope	KMcG/RossRox
26	93	13	13-11	569517.3	734354.6	678	Antelope	KMcG/RossRox
26	93	13	13-110	570822.5	735132.4	528	Antelope	KMcG/RossRox
26	93	13	13-111	571297.6	734625.9	412	Antelope	KMcG/RossRox
26	93	13	13-113	570078.9	733429.4	406	Antelope	KMcG/RossRox
26	93	13	13-115	569852.7	733984.6	402	Antelope	KMcG/RossRox
26	93	13	13-115C	569973.6	733802.9		Antelope	KMcG/RossRox
26	93	13	13-116	569973.4	733863.2	402	Antelope	KMcG/RossRox
26	93	13	13-117	569666.0	734307.6	403	Antelope	KMcG/RossRox
26	93	13	13-118	569442.3	734962.0	515	Antelope	KMcG/RossRox
26	93	13	13-12	569535.3	734760.8	693	Antelope	KMcG/RossRox
26	93	13	13-120	568979.1	735151.9	401	Antelope	KMcG/RossRox
26	93	13	13-121	569153.6	735369.3	553	Antelope	KMcG/RossRox
26	93	13	13-122	569471.0	734554.1	398	Antelope	KMcG/RossRox
26	93	13	13-124	571827.2	737806.7	502	Antelope	KMcG/RossRox

Table 2.6-1

Antelope and JAB Drill Holes

Twn	kng	Sec	Map Hole. 1 D	North NAD27	East NAD27	Log 1 D	Project	Area
26	93	13	13-125	570145.8	734743.3	504	Antelope	KMcG/RossRox
26	93	13	13-126	569841.7	733889.2	400	Antelope	KMcG/RossRox
26	93	13	13-127	569656.8	734202.3	406	Antelope	KMcG/RossRox
26	93	13	13-128	569754.7	734092.5	405	Antelope	KMcG/RossRox
26	93	13	13-129	569692.5	734050.4	397	Antelope	KMcG/RossRox
26	93	13	13-13	569553.3	735162.8	689	Antelope	KMcG/RossRox
26	93	13	13-130	569886.3	733891.0	403	Antelope	KMcG/RossRox
26	93	13	13-131	570019.0	733854.7	400	Antelope	KMcG/RossRox
26	93	13	13-132	570064.1	733531.1	403	Antelope	KMcG/RossRox
26	93	13	13-135	570236.4	734027.6	488	Anntelope	KMcG/RossRox
26	93	13	13-136	570534.8	734055.6	442	Antelope	KMcG/RossRox
26	93	13	13-137	570970.7	733984.6	420	Antelope	KMcG/RossRox
26	93	13	13-138	570815.5	735036.4	542	Antelope	KMcG/RossRox
26	93	13	13-139	571066.9	737485.7	503	Antelope	KMcG/RossRox
26	93	13	13-14	569560.0	735576.2	586	Antelope	KMcG/RossRox
26	93	13	13-140	571782.0	737789.2	463	Antelope	KMcG/RossRox
26	93	13	13-141	570027.4	733756.4	403	Ântelope	KMcG/RossRox
26	93	13	13-142	569659.2	734163.0	408	Antelope	KMcG/RossRox
26	93	13	13-143	569807.2	734045.0	404	Antelope	KMcG/RossRox
26	93	13	13-145	570016.7	733536.3	399	Antelope	KMcG/RossRox
26	93	13	13-147	569721.1	733976.1	404	Antelope	KMcG/RossRox
26	93	13	13-148	569844.1	734036.7	404	Antelope	KMcG/RossRox
26	93	13	13-149	569836.8	733959.1	403	Antelope	KMcG/RossRox
26	93	13	13-15	569578.8	735979.6	684	Antelope	KMcG/RossRox
26	93	13	13-150	569692.1	734099.9	398	Antelope	KMcG/RossRox
26	93	13	13-151	569947.6	733834.9	403	Antelope	KMcG/RossRox
26	93	13	13-152	569972.4	733830.5	399	Antelope	KMcG/RossRox
26	93	13	13-156	569756.4	734061.0	401	Antelope	KMcG/RossRox
26	93	13	13-159	569986.2	733765.4	401	Antelope	KMcG/RossRox
26	93	13	13-16	569944.0	734762.8	697	Antelope	KMcG/RossRox
26	93	13	13-160	570092.0	733688.5	404	Antelope	KMcG/RossRox
26	93	13	13-161	569947.1	733893.5	404	Antelope	KMcG/RossRox
26	93	13	13-163	569737.3	734113.3	402	Antelope	KMcG/RossRox
26	93	13	13-164	569501.4	735136.9	521	Antelope	KMcG/RossRox
26	93	13	13-165	569503.0	735163.8	522	Antelope	KMcG/RossRox
26	93	13	13-166	569406.0	735164.3	521	Antelope	KMcG/RossRox
26	93	13	13-167	569314.1	735199.5	520	Antelope	KMcG/RossRox
26	93	13	13-168	569603.6	735160.4	486	Antelope	KMcG/RossRox
26	93	13	13-169	569521.1	735112.1	520	Antelope	KMcG/RossRox
26	93	13	13-17	569936.2	735224.3	695	Antelope	KMcG/RossRox
26	93	13	13-170	569926.5	733855.5	404	Antelope	KMcG/RossRox
26	93	13	13-171	569333.8	735181.0	520	Antelope	KMcG/RossRox
26	93	13	13-172	569647.9	735110.0	523	Antelope	KMcG/RossRox
26	93	13	13-173	570639.3	734003.5	424	Antelope	KMcG/RossRox
26	93	13	13-174	570793.6	733990.6	423	Antelope	KMcG/RossRox
26	93	13	13-175	570943.7	733968.5	424	Antelope	KMcG/RossRox
26	93	13	13-177	571064.6	733665.8	423	Antelope	KMcG/RossRox
26	93	13	13-178	569901.6	733832.3	404	Antelope	KMcG/RossRox
26	93	13	13-179	569866.3	733862.2	402	Antelope	KMcG/RossRox
26	93	13	13-180	570758.9	733980.9	423	Antelope	KMcG/RossRox
26	93	13	13-181	571050.8	733736.4	422	Antelope	KMcG/RossRox
26	93	13	13-182	570897.3	734030.3	421	Antelope	KMcG/RossRox
26	93	13	13-182C	570890.2	734030.3	380	Antelope	KMcG/RossRox
26	93	13	13-183	570963.0	733723.8	421	Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole ID	North NAD27	East NAD27	LogTD	Project	Area
26	93	13	13-184	569818.6	733935.2	408	Antelope	KMcG/RossRox
26	93	13	13-185	569880.6	733939.5	403	Antelope	KMcG/RossRox
26	93	13	13-186	571087.5	733692.9	424	Antelope	KMcG/RossRox
26	93	13	13-187	571037.9	733859.9	403	Antelope	KMcG/RossRox
26	93	13	13-188	570045.1	733550.9	400	Antelope	KMcG/RossRox
26	93	13	13-189	570014.4	733556.8	396	Antelope	KMcG/RossRox
26	93	13	13-19	571144.6	733934.2	702	Antelope	KMcG/RossRox
26	93	13	13-190	569948.1	733560.0	404	Antelope	KMcG/RossRox
26	93	13	13-191	569626.4	734137.0	405	Antelope	KMcG/RossRox
26	93	13	13-193	570050.8	733678.8	403	Antelope	KMcG/RossRox
26	93	13	13-194	569838.7	734009.0	408	Antelope	KMcG/RossRox
26	93	13	13-195	570668.6	734052.8	399	Antelope	KMcG/RossRox
26	93	13	13-196	569715.7	733976.9	403	Antelope	KMcG/RossRox
26	93	13	13-197	569810.5	733967.2	409	Antelope	KMcG/RossRox
26	93	13	13-198	569596.6	734125.2	426	Antelope	KMcG/RossRox
26	93	13	13-199	570064.1	733656.8	403	Antelope	KMcG/RossRox
26	93	13	13-2	570720.5	733957.8	1001	Antelope	KMcG/RossRox
26	93	13	13-20	571163.3	734323.5	694	Antelope	KMcG/RossRox
26	93	13	13-202	569727.3	733942.1	397	Antelope	KMcG/RossRox
26	93	13	13-203	569649.2	733921.3	408	Antelope	KMcG/RossRox
26	93	13	13-204	570664.0	734106.5	423	Antelope	KMcG/RossRox
26	93	13	13-205	569572.5	734123.9	426	Antelope	KMcG/RossRox
26	93	13	13-206	569351.8	735221.9	531	Antelope	KMcG/RossRox
26	93	13	13-208	570648.5	734127.8	425	Antelope	KMcG/RossRox
26	93	13	13-209	569370.5	735276.2	548	Antelope	KMcG/RossRox
26	93	13	13-210	570132.7	733521.5	395	Antelope	KMcG/RossRox
26	93	13	13-211	570684.7	734125.5	405	Antelope	KMcG/RossRox
26	93	13	13-212	570265.3	733529.2	395	Antelope	KMcG/RossRox
26	93	13	13-213	571014.3	737578.6	503	Antelope	KMcG/RossRox
26	93	13	13-215	570246.9	733544.2	396	Antelope	KMcG/RossRox
26	93	13	13-217	570153.4	733537.6	411	Antelope	KMcG/RossRox
26	93	13	13-218	571011.1	737627.4	547	Antelope	KMcG/RossRox
26	93	13	13-219	569363.9	735351.8	557	Antelope	KMcG/RossRox
26	93	13	13-22	571217.7	735126.0	701	Antelope	KMcG/RossRox
26	93	13	13-220	570162.8	733568.0	411	Antelope	KMcG/RossRox
26	93	13	13-221	570245.3	733510.3	407	Antelope	KMcG/RossRox
26	93	13	13-222	571012.5	737518:5	550	Antelope	KMcG/RossRox
26	93	13	13-224	570160.1	733596.2	410	Antelope	KMcG/RossRox
26	93	13	13-225	569375.2	735233.8	550	Antelope	KMcG/RossRox
26	93	13	13-226	570696.3	734063.2	410	Antelope	KMcG/RossRox
26	93	13	13-227	570033.9	734864.7	500	Antelope	KMcG/RossRox
26	93	13	13-228	569937.2	735273.7	502	Antelope	KMcG/RossRox
26	93	13	13-229	569685.4	735097.8	502	Antelope	KMcG/RossRox
26	93	13	13-23	568958.4	736236.8	708	Antelope	KMcG/RossRox
26	93	13	13-230	571005.0	733917.3	403	Antelope	KMcG/RossRox
26	93	13	13-231	570078.5	733576.2	411	Antelope	KMcG/RossRox
26	93	13	13-232	571363.4	734263.0	409	Antelope	KMcG/RossRox
26	93	13	13-233	570584.0	735286.4	502	Antelope	KMcG/RossRox
26	93	13	13-234	571449.6	734583.4	501	Antelope	KMcG/RossRox
26	93	13	13-235	571145.6	734092.5	410	Antelope	KMcG/RossRox
26	93	13	13-236	571327.7	734222.2	410	Antelope	KMcG/RossRox
26	93	13	13-237	571271.6	737603.3	502	Antelope	KMcG/RossRox
26	93	13	13-238	570969.3	737749.2	504	Antelope	KMcG/RossRox
26	93	13	13-239	570474.8	734691.3	500	Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twa	Rng	Sec	Map Hole ID	North NAD27	East NAB27	Log TD	Project	Area
26	93	13	13-24	571842.0	737877.9	1004	Antelope	KMcG/RossRox
26	93	13	13-240	570241.6	734888.3	503	Antelope	KMcG/RossRox
26	93	13	13-241	569810.5	735176.2	502	Antelope	KMcG/RossRox
26	93	13	13-243	569494.5	735404.1	522	Antelope	KMcG/RossRox
26	93	13	13-245	571166.8	737730.4	503	Antelope	KMcG/RossRox
26	93	13	13-246	571617.1	737701.0	503	Antelope	KMcG/RossRox
26	93	13	13-247	569506.2	735581.4	502	Antelope	KMcG/RossRox
26	93	13	13-248	570242.6	734937.1	500	Antelope	KMcG/RossRox
26	93	13	13-249	571257.5	734442.4	402	Antelope	KMcG/RossRox
26	93	13	13-25	569965.0	733540.1	502	Antelope	KMcG/RossRox
26	93	13	13-250	569414.7	734261.8	403	Antelope	KMcG/RossRox
26	93	13	13-252	570702.3	734230.7	401	Antelope	KMcG/RossRox
26	93	13	13-253	571605.5	737650.2	502	Antelope	KMcG/RossRox
26	93	13	13-255	570546.9	734649.9	502	Antelope	KMcG/RossRox
26	93	13	13-256	571738.5	734573.3	403	Antelope	KMcG/RossRox
26	93	13	13-257	571353.9	734109.7	401	Antelope	KMcG/RossRox
26	93	13	13-258	570323.8	734781.1	503	Antelope	KMcG/RossRox
26	93	13	13-259	570195.7	734914.7	502	Antelope	KMcG/RossRox
26	93	13	13-26	569970.0	733904.7	504	Antelope	KMcG/RossRox
26	93	13	13-261	570860.7	735018.4	502	Antelope	KMcG/RossRox
26	93	13	13-262	571756.8	737834.5	501	Antelope	KMcG/RossRox
26	93	13	13-263	571866.4	737922.3	502	Antelope	KMcG/RossRox
26	93	13	13-264	570140.3	735013.3	500	Antelope	KMcG/RossRox
26	93	13	13-265	571068.5	737528.8	501	Antelope	KMCG/RossRox
26	93	13	13-267	570144.5	735113.6	500	Antelope	KMcG/RossRox
26	93	13	13-268	569740.0	734987.9	500	Antelope	KMcG/RossRox
26	93	13	13-27	569979.4	734283.4	502	Antelope	KMcG/RossRox
26	93	13	13-270	571516.0	733973.1	400	Antelope	KMcG/RossRox
26	93	13	13-271	569420.0	735266.7	540	Antelope	KMcG/RossRox
26	93	13	13-273	571011.6	737476.9	500	Antelope	KMcG/RossRox
26	93	13	13-274	571358.5	737561.8	500	Antelope	KMcG/RossRox
26	93	13	13-275	569606.3	734202.8	420	Antelope	KMcG/RossRox
26	93	13	13-276	569984.5	734902.5	600	Antelope	KMcG/RossRox
26	93	13	13-277	569840.1	735026.2	540	Antelope	KMcG/RossRox
26	93	13	13-278	569328.1	735294.1	561	Antelope	KMcG/RossRox
26	93	13	13-279KM	571030.4	737429.4	498	Antelope	KMcG/RossRox
26	93	13	13-28	570024.9	735603.3	504	Antelope	KMcG/RossRox
26	93	13	13-281	571547.8	737603.2	500	Antelope	KMcG/RossRox
26	93	13	13-282	569294.4	735338.8	559	Antelope	KMcG/RossRox
26	93	13	13.283	570128.0	734855.0	540	Antelope	KMcG/RossRox
26	93	13	13-284	569154.2	735471.7	559	Antelope	KMcG/RossRox
26	93	13	13-285	569872.2	735191.4	514	Antelope	KMcG/RossRox
26	93	13	13-286	569982.8	735211.3	520	Antelope	KMcG/RossRox
26	93	13	13-288	570609.7	734154.1	460	Antelope	KMcG/RossRox
26	93	13	13-289	571682.8	737779.1	500	Antelope	KMcG/RossRox
26	93	13	13-290	571117.1	737482.6	500	Antelope	KMcG/RossRox
26	93	13	13-293	571315.9	736728.2	599	Antelope	KMcG/RossRox
26	93	13	13-294	570719.6	736752.0	606	Antelope	KMcG/RossRox
26	93	13	13-295	570221.1	736776.7	609	Antelope	KMcG/RossRox
26	93	13	13-296	569434.7	734760.7	508	Antelope	KMcG/RossRox
26	93	13	13-297	568993.6	735727.7	614	Antelope	KMcG/RossRox
26	93	13	13-299	569619.1	736804.8	605	Antelope	KMcG/RossRox
26	93	13	13-30	571099.3	735930.8	502	Antelope	KMcG/RossRox
26	93	13	13-302	569195.3	737232.5	610	Antelope	KMcG/RossRox

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Ring	Sec	Mapinole ID	North NAD27	East NAD27	Log 10	Project	Area
26	93	13	13-303	568943.5	735642.5		Antelope	KMcG/RossRRox
26	93	13	13-304	571448.0	734785.5	610	Antelope	KMcG/RossRox
26	93	13	13-305	570995.2	734872.8	600	Antelope	KMcG/RossRox
26	93	13	13-307	570863.1	737295.4	496	Antelope	KMcG/RossRox
26	93	13	13-308	571713.4	737683.5	495	Antelope	KMcG/RossRox
26	93	13	13-309	571418.6	737190.5	497	Antelope	KMcG/RossRox
26	93	13	13-31	571485.2	735906.8	1004	Antelope	KMcG/RossRox
26	93	13	13-310	568813.7	735733.7	596	Antelope	KMcG/RossRox
26	93	13	13-311	568847.2	735651.5	596	Antelope	KMcG/RossRox
26	93	13	13-312	568985.2	735510.8	596	Antelope	KMcG/RossRox
26	93	13	13-313	568636.3	736267.5	597	Antelope	KMcG/RossRox
26	93	13	13-314	568450.7	736622.6	597	Antelope	KMcG/RossRox
26	93	13	13-315	568975.1	735481.9	596	Antelope	KMcG/RossRox
26	93	13	13-316	568349.6	737124.9	595	Antelope	KMcG/RossRox
26	93	13	13-317	568220.6	737636.6	595	Antelope	KMcG/RossRox
26	93	13	13-318	568329.9	737708.8	500	Antelope	KMcG/RossRox
26	93	13	13-319	568311.8	737548.2	500	Antelope	KMcG/RossRox
26	93	13	13-32	570724.1	735145.7	507	Antelope	KMcG/RossRox
26	93	13	13-34	570685.4	734362.2	505	Antelope	KMcG/RossRox
26	93	13	13-35	571524.2	733923.6	500	Antelope	KMcG/RossRox
26	93	13	13-36	571523.0	734300.3	498	Antelope	KMcG/RossRox
26	93	13	13-366	567873.9	737847.8		Antelope	KMcG/RossRox
26	93	13	13-369	567362.6	737699.5	485	Antelope	KMcG/RossRox
26	93	13	13-37	571474.6	737560.5	496	Antelope	KMcG/RossRox
26	93	13	13-38	568819.8	737741.0	493	Antelope	KMcG/RossRox
26	93	13	13-39	568423.1	737765.7	498	Antelope	KMcG/RossRox
26	93	13	13-4	570322.2	733921.1	702	Antelope	KMcG/RossRox
26	93	13	13-40	568021.2	737781.2	507	Antelope	KMcG/RossRox
26	93	13	13-41	571791.0	737878.2	463	Antelope	KMcG/RossRox
26	93	13	13-42	571481.5	737764.7	463	Antelope	KMcG/RossRox
26	93	13	13-43	571070.3	737576.9	504	Antelope	KMcG/RossRox
26	93	13	13-44	568982.9	735253.5	545	Antelope	KMcG/RossRox
26	93	13	13-45	569146.7	735170.0	544	Antelope	KMcG/RossRox
26	93	13	13-47	569541.5	734963.6	504	Antelope	KMcG/RossRox
26	93	13	13-48	569744.6	735676.8	503	Antelope	KMcG/RossRox
26	93	13	13-49	570013.7	735400.5	503	Antelope	KMcG/RossRox
26	93	13	13-5	570335.3	734335.2	702	Antelope	KMcG/RossRox
26	93	13	13-50	569933.5	735020.8	504	Antelope	KMcG/RossRox
26	93	13	13-51	570169.4	734313.5	500	Antelope	KMcG/RossRox
26	93	13	13-52	570527.6	734155.3	464	Antelope	KMcG/RossRox
26	93	13	13-53	569674.9	734068.9	403	Antelope	KMcG/RossRox
26	93	13	13-54	570880.1	734353.3	504	Antelope	KMcG/RossRox
26	93	13	13-55	569690.9	734025.0		Antelope	KMcG/RossRox
26	93	13	13-58	571735.0	732707.0		Antelope	KMcG/RossRox
26	93	13	13-6	570346.2	734733.7	679	Antelope	KMcG/RossRox
26	93	13	13-62	569763.8	733542.6	402	Antelope	KMcG/RossRox
26	93	13	13-63	569696.1	733949.3	403	Antelope	KMcG/RossRox
26	93	13	13-64	569506.2	734161.7	403	Antelope	KMcG/RossRox
26	93	13	13-65	569469.8	734360.5	403	Antelope	KMcG/RossRox
26	93	13	13-66	569259.5	734364.5	400	Antelope	KMcG/RossRox
26	93	13	13-67	569066.1	734437.2	404	Antelope	KMcG/RossRox
26	93	13	13-7	570364.2	735137.1	700	Antelope	KMcG/RossRox
26	93	13	13-71	571593.5	734723.2	508	Antelope	KMcG/RossRox
26	93	13	13-73	570517.2	735139.8	508	Antelope	KMcG/RossRox

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map. Mole. ID	North NAD27.	EastNA127	Logro	Project	Area
26	93	13	13-75	570709.4	734935.2	478	Antelope	KMcG/RossRox
26	93	13	13-76	569515.2	734254.9	403	Antelope	KMcG/RossRox
26	93	13	13-77	569942.9	734923.2	514	Antelope	KMcG/RossRox
26	93	13	13-78	569554.8	735060.3	501	Antelope	KMcG/RossRox
26	93	13	13-79	569605.6	733961.1	403	Antelope	KMcG/RossRox
26	93	13	13-8	570372.3	735544.1	678	Antelope	KMcG/RossRox
26	93	13	13-80	570013.0	735122.4	504	Antelope	KMcG/RossRox
26	93	13	13-81	569556.5	735113.3	503	Antelope	KMcG/RossRox
26	93	13	13-82	569652.3	735135.4	500	Antelope	KMcG/RossRox
26	93	13	13-83	569454.1	735164.8	603	Antelope	KMcG/RossRox
26	93	13	13-85	569865.1	733539.9	405	Antelope	KMcG/RossRox
26	93	13	13-86	571169.3	737678.8	500	Antelope	KMcG/RossRox
26	93	13	13-87	571164.6	737370.7	495	Antelope	KMcG/RossRox
26	93	13	13-9	570391.1	735949.6	701	Antelope	KMcG/RossRox
26	93	13	13-91	570434.8	734160.1	420	Antelope	KMcG/RossRox
26	93	13	13-92	570253.0	734323.6	500	Antelope	KMcG/RossRox
26	93	13	13-93	570224.4	733922.4	401	Antelope	KMcG/RossRox
26	93	13	13-94	570017.9	735503.7	547	Antelope	KMcG/RossRox
26	93	13	13-96	570515.1	733725.0	465	Antelope	KMcG/RossRox
26	93	13	13-97	570612.0	733831.2	462	Antelope	KMcG/RossRox
26	93	13	13-98	570326.1	733630.7	460	Antelope	KMcG/RossRox
26	93	13	13-99	570918.0	733939.7	464	Antelope	KMcG/RossRox
26	93	13	13-X-10	569800.2	733936.7		Antelope	KMcG/RossRox
26	93	13	13-X-11	569744.6	733998.5		Antelope	KMcG/RossRox
26	93	13	13-X-13	570012.6	733803.4		Antelope	KMcG/RossRox
26	93	13	13-X-14	570015.9	733757.5		Antelope	KMcG/RossRox
26	93	13	13-X-15	570989.1	733977.5		Antelope	KMcG/RossRox
26	93	13	13-X-16	571215.2	737182.4		Antelope	KMcG/RossRox
26	93	13	13-X-17	571214.5	737292.7		Antelope	KMcG/RossRox
26	93	13	13-X-6	569359.9	735160.3		Antelope	KMcG/RossRox
26	93	13	13-X-7	569620.1	734253.6		Antelope	KMcG/RossRox
26	93	13	13-X-8	569601.8	734162.6		Antelope	KMcG/RossRox
26	93	13	13-X-9	569967.3	733805.8		Antelope	KMcG/RossRox
26	92	17	17-1	568108.1	746527.1	801	Antelope	KMcG/RossRox
26	92	17	17-3	568396.4	743788.0		Antelope	KMcG/RossRox
26	92	17	17-4	568397.1	745083.5		Antelope	KMcG/RossRox
26	92	17	17-5	571228.0	743741.9	1012	Antelope	KMcG/RossRox
26	92	17	17-6	571264.4	745265.1	996	Antelope	KMcG/RossRox
26	92	17	17-7	571587.7	744218.5	500	Antelope	KMcG/RossRox
26	92	17	17-8	571032.3	744228.3	500	Antelope	KMcG/RossRox
26	92	18	98	569576.0	739612.0		Antelope	KMcG/RossRox
26	92	18	116	570393.0	740169.0		Antelope	KMcG/RossRox
26	92	18	147	571811.0	740921.0		Antelope	KMcG/RossRox
26	92	18	157	571855.0	740755.0		Antelope	KMcG/RossRox
26	92	18	182	570389.0	740117.0		Antelope	KMcG/RossRox
26	92	18	206	569779.0	739471.0		Antelope	KMcG/RossRox
26	92	18	233	568613.0	738755.0		Antelope	KMcG/RossRox
26	92	18	315	570954.0	740425.0		Antelope	KMcG/RossRox
26	92	18	316	568581.0	738566.0		Antelope	KMcG/RossRox
26	92	18	333	569477.0	739179.0		Antelope	KMcG/RossRox
26	92	18	335	570742.0	740290.0		Antelope	KMcG/RossRox
26	92	18	345	570308.0	739680.0		Antelope	KMcG/RossRox
26	92	18	345	568474.0	738855.0		Antelope	KMcG/RossRox
26	92	18	346	570400.0	739886.0		Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map HoléID	North NAD27	East NAD27	LogTD	Project	Area
26	92	18	348	570324.0	739274.0		Antelope	KMcG/RossRox
26	92	18	349	570793.0	740148.0		Antelope	KMcG/RossRox
26	92	18	349	570336.0	739709.0		Antelope	KMcG/RossRox
26	92	18	354	571624.0	740912.0		Antelope	KMcG/RossRox
26	92	18	354	568500.0	738697.0		Antelope	KMcG/RossRox
26	92	18	355	571661.0	740806.0		Antelope	KMcG/RossRox
26	92	18	355	568547.0	738856.0		Antelope	KMcG/RossRox
26	92	18	18-1	567256.0	741867.0	1208	Antelope	KMcG/RossRox
26	92	18	18-10	571678.3	739363.0	497	Antelope	KMcG/RossRox
26	92	18	18-100	569333.4	739809.1	432	Antelope	KMcG/RossRox
26	92	18	18-101	569322.5	739409.8	433	Antelope	KMcG/RossRox
26	92	18	18-102	568829.7	739927.0	420	Antelope	KMcG/RossRox
26	92	18	18-103	569137.8	739210.9	443	Antelope	KMcG/RossRox
26	92	18	18-104	568792.4	739135.1	522	Antelope	KMcG/RossRox
26	92	18	18-105	569322.9	739015.5	514	Antelope	KMcG/RossRox
26	92	18	18-106	571176.3	740714.7	447	Antelope	KMcG/RossRox
26	92	18	18-107	571178.9	740915.3	440	Antelope	KMcG/RossRox
26	92	18	18-108	570651.4	740471.0	500	Antelope	KMcG/RossRox
26	92	18	18-109	571436.1	741036.2	500	Antelope	KMcG/RossRox
26	92	18	18-11	568367.3	738299.3	999	Antelope	KMcG/RossRox
26	92	18	18-110	571107.8	740517.2	500	Antelope	KMcG/RossRox
26	92	18	18-111	571279.7	740711.3	515	Antelope	KMcG/RossRox
26	92	18	18-112	569894.6	739605.2	520	Antelope	KMcG/RossRox
26	92	18	18-113	569803.4	739513.9	600	Antelope	KMcG/RossRox
26	92	18	18-114	571636.4	741129.0	500	Antelope	KMcG/RossRox
26	92	18	18-115	570469.2	740461.4	500	Antelope	KMcG/RossRox
26	92	18	18-116	570481.7	740123.7	524	Antelope	KMcG/RossRox
26	92	18	18-117	570097.8	739587.1	550	Antelope	KMcG/RossRox
26	92	18	18-118	569746.8	739658.4	603	Antelope	KMcG/RossRox
26	92	18	18-119	570111.6	739892.4	412	Antelope	KMcG/RossRox
26	92	18	18-12	571739.9	740327.8	503	Antelope	KMcG/RossRox
26	92	18	18-120	568240.3	739547.3	355	Antelope	KMcG/RossRox
26	92	18	18-121	568686.1	739020.8	540	Antelope	KMcG/RossRox
26	92	18	18-122	568996.0	739011.8	522	Antelope	KMcG/RossRox
26	92	18	18-123	568811.6	739731.4	403	Antelope	KMcG/RossRox
26	92	18	18-124	569531.6	739316.8		Antelope	KMcG/RossRox
26	92	18	18-125	568688.6	738834.6	560	Antelope	KMcG/RossRox
26	92	18	18-126	570495.7	740380.7	500	Antelope	KMcG/RossRox
26	92	18	18-127	570692.6	740374.6	495	Antelope	KMcG/RossRox
26	92	18	18-128	570747.6	740579.2	504	Antelope	KMcG/RossRox
26	92	18	18-129	570600.3	740573.7	510	Antelope	KMcG/RossRox
26	92	18	18-13	570738.2	740066.2	543	Antelope	KMcG/RossRox
26	92	18	18-130	571376.0	740706.5	500	Antelope	KMcG/RossRox
26	92	18	18-131	570215.1	739891.8	500	Antelope	KMcG/RossRox
26	92	18	18-132	571052.9	740464.5	500	Antelope	KMcG/RossRox
26	92	18	18-133	570952.4	740466.5	540	Antelope	KMcG/RossRox
26	92	18	18-134	570244.7	739639.3	520	Antelope	KMcG/RossRox
26	92	18	18-135	570359.7	739793.5	519	Antelope	KMcG/RossRox
26	92	18	18-136	570386.8	740067.5	515	Antelope	KMcG/RossRox
26	92	18	18-137	571325.7	740713.8		Antelope	KMcG/RossRox
26	92	18	18-138	571810.2	740822.1	500	Antelope	KMcG/RossRox
26	92	18	18-139	571519.9	740727.6	500	Antelope	KMcG/RossRox
26	92	18	18-14	569808.4	740002.9	510	Antelope	KMcG/RossRox
26	92	18	18-140	568905.4	739783.2	440	Antelope	KMcG/RossRox

Table 2.6-1

Antelope and JAB Drill Holes

	Rng	Sec	Map Hole 10	North NAD27	East NAD27	$\log T D$	Project	Area
26	92	18	18-142	568620.2	739827.9	409	Antelope	KMcG/RossRox
26	92	18	18-143	570436.4	740066.5	521	Antelope	KMcG/RossRox
26	92	18	18-144	570382.7	739969.3		Antelope	KMcG/RossRox
26	92	18	18-145	571635.3	741177.8	497	Antelope	KMcG/RossRox
26	92	18	18-146	571917.9	740827.1	504	Antelope	KMcG/RossRox
26	92	18	18-147	571674.4	741213.5	500	Antelope	KMcG/RossRox
26	92	18	18-148	568242.4	739649.9	360	Antelope	KMcG/RossRox
26	92	18	18-149	568034.0	739461.5	357	Antelope	KMcG/RossRox
26	92	18	18-15	568835.3	740030.9	502	Antelope	KMcG/RossRox
26	92	18	18-150	568218.4	738953.5	400	Antelope	KMcG/RossRox
26	92	18	18-151	568519.2	738941.5	400	Antelope	KMcG/RossRox
26	92	18	18-152	568432.0	739638.8	459	Antelope	KMcG/RossRox
26	92	18	18-153	569331.4	739709.4	400	Antelope	KMcG/RossRox
26	92	18	18-154	569225.9	739609.7	400	Antelope	KMcG/RossRox
26	92	18	18-155	571712.1	740878.5	500	Antelope	KMcG/RossRox
26	92	18	18-157	571828.5	741267.9	503	Antelope	KMcG/RossRox
26	92	18	18-158	567977.4	739366.3	359	Antelope	KMcG/RossRox
26	92	18	18-159	568084.5	739555.8	360	Antelope	KMcG/RossRox
26	92	18	18-16	567810.7	740089.7	1045	Antelope	KMcG/RossRox
26	92	18	18-160	568315.7	739617.6	400	Antelope	KMcG/RossRox
26	92	18	18-161	568472.9	739732.0	400	Antelope	KMcG/RossRox
26	92	18	18-162	568245.2	739599.6	360	Antelope	KMcG/RossRox
26	92	18	18-163	568827.3	739879.7	393	Antelope	KMcG/RossRox
26	92	18	18-164	569012.9	739869.5	400	Antelope	KMcG/RossRox
26	92	18	18-165	571175.9	741120.3	400	Antelope	KMcG/RossRox
26	92	18	18-166	571275.0	741115.5	500	Antelope	KMcG/RossRox
26	92	18	18-167	570975.3	740862.1	500	Antelope	KMcG/RossRox
26	92	18	18-168	570969.5	740717.9	506	Antelope	KMcG/RossRox
26	92	18	18-169	568754.4	739532.4	350	Antelope	KMcG/RossRox
26	92	18	18-17	568043.7	738709.6	500	Antelope	KMcG/RossRox
26	92	18	18-170	568903.0	739383.2	359	Antelope	KMcG/RossRox
26	92	18	18-171	568540.3	739737.9	400	Antelope	KMcG/RossRox
26	92	18	18-172	568338.2	739588.5	360	Antelope	KMcG/RossRox
26	92	18	18-173	568690.5	738925.7	541	Antelope	KMcG/RossRox
26	92	18	18-175	568577.6	738993.5	543	Antelope	KMcG/RossRox
26	92	18	18-176	571849.7	740673.5	500	Antelope	KMcG/RossRox
26	92	18	18-177	571715.5	740979.5	499	Antelope	KMcG/RossRox
26	92	18	18-18	568390.7	738650.7	507	Antelope	KMcG/RossRox
26	92	18	18-182	570477.1	740070.0		Antelope	KMcG/RossRox
26	92	18	18-183	570423.0	740200.9	520	Antelope	KMcG/RossRox
26	92	18	18-184	570421.3	740033.4	520	Antelope	KMcG/RossRox
26	92	18	18-185	569803.0	739567.3	545	Antelope	KMcG/RossRox
26	92	18	18-187	569852.9	739514.3	545	Antelope	KMcG/RossRox
26	92	18	18-188	570200.8	739640.3	520	Antelope	KMcG/RossRox
26	92	18	18-189	571137.1	740562.2	500	Antelope	KMcG/RossRox
26	92	18	18-19	568761.2	738667.4	502	Antelope	KMcG/RossRox
26	92	18	18-190	571212.5	740614.1	500	Antelope	KMcG/RossRox
26	92	18	18-191	571077.2	740491.9	500	Antelope	KMcG/RossRox
26	92	18	18-192	571007.5	740440.0	500	Antelope	KMcG/RossRox
26	92	18	18-193	570151.5	739923.2	500	Antelope	KMcG/RossRox
26	92	18	18-194	570080.2	739853.0	500	Antelope	KMcG/RossRox
26	92	18	18-195	570457.3	740234.6	520	Antelope	KMcG/RossRox
26	92	18	18-196	570414.0	740116.1	500	Antelope	KMcG/RossRox
26	92	18	18-197	570456.0	740033.9	520	Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	North NAD27	East NAD27	$\log T D$	Project	Area
26	92	18	18-199	570161.3	739555.0	520	Antelope	KMcG/RossRox
26	92	18	18-2	569673.7	741735.0	1210	Antelope	KMcG/RossRox
26	92	18	18-20	568732.0	738287.4	498	Antelope	KMcG/RossRox
26	92	18	18-200	570504.8	740252.7	516	Antelope	KMcG/RossRox
26	92	18	18-201	570395.0	740007.4	520	Antelope	KMcG/RossRox
26	92	18	18-202	569845.5	739461.3	525	Antelope	KMcG/RossRox
26	92	18	18-203	570433.0	739974.0	523	Antelope	KMcG/RossRox
26	92	18	18-204	568423.2	738293.3	520	Antelope	KMcG/RossRox
26	92	18	18-205	568324.2	738316.5	497	Antelope	KMcG/RossRox
26	92	18	18-207	570550.9	740253.1	522	Antelope	KMcG/RossRox
26	92	18	18-209	568425.2	738267.2	523	Antelope	KMcG/RossRox
26	92	18	18-21	570003.9	738240.7	502	Antelope	KMcG/RossRox
26	92	18	18-211	570452.3	740007.1	520	Antelope	KMcG/RossRox
26	92	18	18-213	569881.8	739721.2	539	Antelope	KMcG/RossRox
26	92	18	18-214	568326.7	738272.0	543	Antelope	KMcG/RossRox
26	92	18	18-217	569903.2	739513.3	520	Antelope	KMcG/RossRox
26	92	18	18-218	570334.6	739984.4	490	Antelope	KMcG/RossRox
26	92	18	18-22	571177.4	741020.7	503	Antelope	KMcG/RossRox
26	92	18	18-222	570199.7	739691.2	523	Antelope	KMcG/RossRox
26	92	18	18-224	569880.9	739686.6	552	Antelope	KMcG/RossRox
26	92	18	18-225	570353.6	739961.7	522	Antelope	KMcG/RossRox
26	92	18	18-226	571255.3	740664.0	500	Antelope	KMcG/RossRox
26	92	18	18-227	571146.5	740589.7	500	Antelope	KMcG/RossRox
26	92	18	18-229	570602.1	740284.7	520	Antelope	KMcG/RossRox
26	92	18	18-23	568509.9	738216.5	502	Antelope	KMcG/RossRox
26	92	18	18-230	570601.6	740203.4	520	Antelope	KMcG/RossRox
26	92	18	18-231	570378.1	740035.0	520	Antelope	KMcG/RossRox
26	92	18	18-232	571283.7	740667.4	504	Antelope	KMcG/RossRox
26	92	18	18-233	570323.8	739958.3	520	Antelope	KMcG/RossRox
26	92	18	18-234	569878.6	739656.9	522	Antelope	KMcG/RossRox
26	92	18	18-236	568715.0	738869.1	561	Antelope	KMcG/RossRox
26	92	18	18-237	569698.7	739424.0	563	Antelope	KMcG/RossRox
26	92	18	18-239	569868.9	739457.7	520	Antelope	KMcG/RossRox
26	92	18	18-24	568821.4	739829.6	404	Antelope	KMcG/RossRox
26	92	18	18-240	570503.5	740273.9	523	Antelope	KMcG/RossRox
26	92	18	18-241	570551.0	740280.7	523	Antelope	KMcG/RossRox
26	92	18	18-242	570646.8	740304.2	522	Antelope	KMcG/RossRox
26	92	18	18-243	570601.0	740225.3	521	Antelope	KMcG/RossRox
26	92	18	18-244	569882.3	739564.3	519	Antelope	KMcG/RossRox
26	92	18	18-245	568838.6	739050.0	545	Antelope	KMcG/RossRox
26	92	18	18-246	571427.3	741104.8	522	Antelope	KMcG/RossRox
26	92	18	18-247	571328.2	741118.0	521	Antelope	KMcG/RossRox
26	92	18	18-248	571562.9	741045.4	523	Antelope	KMcG/RossRox
26	92	18	18-249	571624.1	741085.3	543	Antelope	KMcG/RossRox
26	92	18	18-25	568805.5	739434.6	503	Antelope	KMcG/RossRox
26	92	18	18-250	571773.4	740824.4	522	Antelope	KMcG/RossRox
26	92	18	18-251	569697.0	739384.4	542	Antelope	KMcG/RossRox
26	92	18	18-252	568475.9	738332.6	531	Antelope	KMcG/RossRox
26	92	18	18-253	569921.2	739682.1	541	Antelope	KMcG/RossRox
26	92	18	18-254	569920.4	739660.2	521	Antelope	KMcG/RossRox
26	92	18	18-255	569857.4	739668.3	541	Antelope	KMcG/RossRox
26	92	18	18-256	569887.4	739584.1	541	Antelope	KMcG/RossRox
26	92	18	18-257	569932.0	739584.5	522	Antelope	KMcG/RossRox
26	92	18	18-258	569720.9	739355.3	542	Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rug	Sec	Map Hole 10	North NAD27	East NAD27	LogTD	Project	Area
26	92	18	18-259	571623.9	741052.8	523	Antelope	KMcG/RossRox
26	92	18	18-26	568791.0	739026.9	617	Antelope	KMcG/RossRox
26	92	18	18-260	571418.3	741151.5	522	Antelope	KMcG/RossRox
26	92	18	18-261	570575.9	740292.6	522	Antelope	KMcG/RossRox
26	92	18	18-264	569863.6	739631.6	561	Antelope	KMcG/RossRox
26	92	18	18-265	570629.4	740242.8	522	Antelope	KMcG/RossRox
26	92	18	18-266	570551.4	740226.3	522	Antelope	KMcG/RossRox
26	92	18	18-267	570428.8	740089.9	520	Antelope	KMcG/RossRox
26	92	18	18-268	570400.7	740140.2	520	Antelope	KMcG/RossRox
26	92	18	18-27	569339.6	740012.5	402	Antelope	KMcG/RossRox
26	92	18	18-270	569780.8	739415.1	540	Antelope	KMcG/RossRox
26	92	18	18-272	568757.5	738986.9	562	Antelope	KMcG/RossRox
26	92	18	18-273	569922.1	739706.1	520	Antelope	KMcG/RossRox
26	92	18	18-274	569957.7	739739.2	522	Antelope	KMcG/RossRox
26	92	18	18-275	569835.4	739431.0	546	Antelope	KMcG/RossRox
26	92	18	18-276	569964.7	739606.3	541	Antelope	KMcG/RossRox
26	92	18	18-277	569991.9	739774.3	521	Antelope	KMcG/RossRox
26	92	18	18-278	570198.9	739564.0	521	Antelope	KMcG/RossRox
26	92	18	18-279	570171.0	739693.0	521	Antelope	KMcG/RossRox
26	92	18	18-28	569330.0	739610.5	502	Antelope	KMcG/RossRox
26	92	18	18-280	569785.3	739333.1	521	Antelope	KMcG/RossRox
26	92	18	18-281	570436.0	740114.6	521	Antelope	KMcG/RossRox
26	92	18	18-283	568730.8	738914.2	560	Antelope	KMcG/RossRox
26	92	18	18-284	570636.5	740354.4	522	Antelope	KMcG/RossRox
26	92	18	18-285	570053.3	739612.8	542	Antelope	KMCG/RossRox
26	92	18	18-286	570023.8	739775.5	522	Antelope	KMcG/RossRox
26	92	18	18-287	570123.8	739564.4	542	Antelope	KMcG/RossRox
26	92	18	18-288	569979.7	739751.0	521	Antelope	KMcG/RossRox
26	92	18	18-289	568877.8	739090.1	541	Antelope	KMcG/RossRox
26	92	18	18-29	569330.5	739211.9	1007	Antelope	KMcG/RossRox
26	92	18	18-29C	569324.8	739207.7	270	Antelope	KMcG/RossRox
26	92	18	18-290	568741.4	739025.8	540	Antelope	KMcG/RossRox
26	92	18	18-291	568718.5	738988.5	525	Antelope	KMcG/RossRox
26	92	18	18-292	568659.9	738788.1	540	Antelope	KMcG/RossRox
26	92	18	18-293	568505.8	738365.7	542	Antelope	KMcG/RossRox
26	92	18	18-294	569781.4	739279.4	520	Antelope	KMcG/RossRox
26	92	18	18-295	570051.0	739587.4	538	Antelope	KMcG/RossRox
26	92	18	18-296	570042.7	739624.2	541	Antelope	KMcG/RossRox
26	92	18	18-297	570030.8	739649.0	495	Antelope	KMcG/RossRox
26	92	18	18-3	570070.0	741443.8	1100	Antelope	KMcG/RossRox
26	92	18	18-30	569333.0	738804.9	503	Antelope	KMcG/RossRox
26	92	18	18-301	570859.6	740469.8	522	Antelope	KMcG/RossRox
26	92	18	18-302	568913.0	739058.1	541	Antelope	KMcG/RossRox
26	92	18	18-303	571074.9	740821.2	501	Antelope	KMicG/RossRox
26	92	18	18-304	571642.7	741006.0	520	Antelope	KMcG/RossRox
26	92	18	18-305	571481.3	741128.5	522	Antelope	KMcG/RossRox
26	92	18	18-306	571403.1	740969.2	522	Antelope	KMcG/RossRox
26	92	18	18-307	568648.8	738704.1	541	Antelope	KMcG/RossRox
26	92	18	18-308	569280.0	739180.4	423	Antelope	KMcG/RossRox
26	92	18	18-309	569409.4	739259.5	538	Antelope	KMcG/RossRox
26	92	18	18-311	569036.7	739003.7	543	Antelope	KMcG/RossRox
26	92	18	18-312	571225.4	740867.0	501	Antelope	KMcG/RossRox
26	92	18	18-314	570699.9	740421.9	521	Antelope	KMcG/RossRox
26	92	18	18-317	571400.7	740919.1	502	Antelope	KMcG/RossRox

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole ID	North NAD27	East NAD27	$\log T D$	Project	Area
26	92	18	18-32	569799.5	740408.6	502	Antelope	KMCG/RossRox
26	92	18	18-320	570060.8	739804.3	521	Antelope	KMcG/RossRox
26	92	18	18-322	568473.0	738913.5	521	Antelope	KMcG/RossRox
26	92	18	18-324	569644.0	739398.9	544	Antelope	KMcG/RossRox
26	92	18	18-325	569797.0	739166.2	519	Antelope	KMcG/RossRox
26	92	18	18-326	569735.9	739247.1	522	Antelope	KMcG/RossRox
26	92	18	18-327	570176.4	739829.8	522	Antelope	KMcG/RossRox
26	92	18	18-328	570685.9	740214.9	542	Antelope	KMcG/RossRox
26	92	18	18-329	570752.4	740437.2	521	Antelope	KMcG/RossRox
26	92	18	18-33	569797.6	739609.3	505	Antelope	KMcG/RossRox
26	92	18	18-330	569182.1	739154.1	420	Antelope	KMcG/RossRox
26	92	18	18-331	569991.5	739825.9	541	Antelope	KMcG/RossRox
26	92	18	18-332	569084.9	739125.0	529	Antelope	KMcG/RossRox
26	92	18	18-334	570703.1	740118.0	520	Antelope	KMcG/RossRox
26	92	18	18-336	570108.8	739780.0	521	Antelope	KMcG/RossRox
26	92	18	18-337	570006.7	739866.8	521	Antelope	KMcG/RossRox
26	92	18	18-338	569130.4	739155.1	542	Antelope	KMcG/RossRox
26	92	18	18-33C	569796.9	739619.9	540	Antelope	KMcG/RossRox
26	92	18	18-34	569831.3	739210.6	503	Antelope	KMcG/RossRox
26	92	18	18-340	568986.3	739102.2	541	Antelope	KMcG/RossRox
26	92	18	18-341	568532.0	738588.1	542	Antelope	KMcG/RossRox
26	92	18	18-342	568568.5	738768.8	422	Antelope	KMcG/RossRox
26	92	18	18-344	568440.7	738955.4	521	Antelope	KMcG/RossRox
26	92	18	18-347	570806.0	739689.2	540	Antelope	KMcG/RossRox
26	92	18	18-35	569346.5	740219.6	422	Antelope	KMcG/RossRox
26	92	18	18-350	570792.8	740313.3	544	Antelope	KMcG/RossRox
26	92	18	18-351	570859.7	740377.2	542	Antelope	KMcG/RossRox
26	92	18	18-352	571787.2	741123.3	421	Antelope	KMcG/RossRox
26	92	18	18-353	571802.2	741029.9	522	Antelope	KMcG/RossRox
26	92	18	18-356	571577.8	740805.0	541	Antelope	KMcG/RossRox
26	92	18	18-357	570090.6	739688.9	542	Antelope	KMcG/RossRox
26	92	18	18-358	570522.8	739473.8	422	Antelope	KMcG/RossRox
26	92	18	18-359	570403.1	739709.1	521	Antelope	KMcG/RossRox
26	92	18	18-36	570217.1	739987.9	556	Antelope	KMcG/RossRox
26	92	18	18-360	570891.1	740169.3	522	Antelope	KMcG/RossRox
26	92	18	18-361	570894.0	740656.2	421	Antelope	KMcG/RossRox
26	92	18	18-362	569880.3	739356.6	420	Antelope	KMcG/RossRox
26	92	18	18-367	571410.8	740835.6	538	Antelope	KMcG/RossRox
26	92	18	18-368	571261.3	740946.7	420	Antelope	KMcG/RossRox
26	92	18	18-370	570445.7	739735.0	540	Antelope	KMcG/RossRox
26	92	18	18-371	571526.6	741133.2	500	Antelope	KMcG/RossRox
26	92	18	18-372	571810.5	740870.8	500	Antelope	KMcG/RossRox
26	92	18	18-373	571871.1	740815.4	496	Antelope	KMcG/RossRox
26	92	18	18-374	571664.6	740755.8	500	Antelope	KMcG/RossRox
26	92	18	18-38	570216.7	740393.5	503	Antelope	KMcG/RossRox
26	92	18	18-39	570197.7	739589.4	503	Antelope	KMcG/RossRox
26	92	18	18-4	571515.5	741403.9	1100	Antelope	KMicG/RossRox
26	92	18	18-40	570621.8	738037.3	500	Antelope	KMcG/RossRox
26	92	18	18-41	570568.1	740879.9	502	Antelope	KMcG/RossRox
26	92	18	18-42	570549.4	740474.3	503	Antelope	KMcG/RossRox
26	92	18	18-43	570534.2	740066.7	935	Antelope	KMcG/RossRox
26	92	18	18-44	570630.5	740069.7	463	Antelope	KMcG/RossRox
26	92	18	18-45	570972.0	741023.2	423	Antelope	KMcG/RossRox
26	92	18	18-46	571077.6	741024.0	403	Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twn,	Ring	Sec	Map Hole 10	North NAD27	East NAD27.	$\log T \mathrm{D}$	Project	Area
26	92	18	18-47	571154.4	741202.4	402	Antelope	KMcG/RossRox
26	92	18	18-48	571162.9	740616.5	502	Antelope	KMcG/RossRox
26	92	18	18-49	571380.7	741016.7	504	Antelope	KMcG/RossRox
26	92	18	18-5	570579.3	741568.8	800	Antelope	KMcG/RossRox
26	92	18	18-50	571386.2	741220.2	503	Antelope	KMcG/RossRox
26	92	18	18-51	571506.9	741501.5	340	Antelope	KMcG/RossRox
26	92	18	18-52	571503.8	741457.0	302	Antelope	KMcG/RossRox
26	92	18	18-53	571535.2	741030.0	503	Antelope	KMcG/RossRox
26	92	18	18-54	571475.9	740836.0	503	Antelope	KMcG/RossRox
26	92	18	18-55	571522.1	740627.2	503	Antelope	KMcG/RossRox
26	92	18	18-56	571516.7	740425.9	503	Antelope	KMcG/RossRox
26	92	18	18-57	568221.0	739053.0	564	Antelope	KMcG/RossRox
26	92	18	18-58	567708.5	739024.4	564	Antelope	KMcG/RossRox
26	92	18	18-59	568033.3	738506.4	542	Antelope	KMcG/RossRox
26	92	18	18-5A	571526.9	740829.3		Antelope	KMcG/RossRox
26	92	18	18-6	571476.0	742693.3	799	Antelope	KMcG/RossRox
26	92	18	18-60	570185.3	739186.7	564	Antelope	KMcG/RossRox
26	92	18	18-61	568237.0	739855.7	348	Antelope	KMcG/RossRox
26	92	18	18-62	568236.2	739455.8	463	Antelope	KMcG/RossRox
26	92	18	18-63	568423.6	738363.0	544	Antelope	KMcG/RossRox
26	92	18	18-64	568255.7	738303.4	544	Antelope	KMcG/RossRox
26	92	18	18-65	569317.8	738398.6	564	Antelope	KMcG/RossRox
26	92	18	18-66	568513.3	738316.2	544	Antelope	KMcG/RossRox
26	92	18	18-67	568634.0	738358.6	544	Antelope	KMcG/RossRox
26	92	18	18-68	568039.1	738608.0	502	Antelope	KMcG/RossRox
26	92	18	18-69	568103.4	738464.3	520	Antelope	KMcG/RossRox
26	92	18	18-7	568261.3	738229.9	797	Antelope	KMcG/RossRox
26	92	18	18-70	568165.2	738420.3	530	Antelope	KMcG/RossRox
26	92	18	18-71	568323.8	738094.3	545	Antelope	KMcG/RossRox
26	92	18	18-72	570696.9	738351.1	503	Antelope	KMcG/RossRox
26	92	18	18-73	567712.8	739226.6	501	Antelope	KMcG/RossRox
26	92	18	18-74	571714.2	739815.6	503	Antelope	KMcG/RossRox
26	92	18	18-75	571185.9	739834.8	500	Antelope	KMcG/RossRox
26	92	18	18-76	570716.6	739663.6	507	Antelope	KMcG/RossRox
26	92	18	18-77	571797.4	737988.4	462	Antelope	KMcG/RossRox
26	92	18	18-78	571109.5	740562.4	500	Antelope	KMcG/RossRox
26	92	18	18-79	571219.9	740666.4	500	Antelope	KMcG/RossRox
26	92	18	18-79C	571208.6	740662.2	493	Antelope	KMcG/RossRox
26	92	18	18-8	571072.9	738020.7	934	Antelope	KMcG/RossRox
26	92	18	18-80	571175.5	740812.2	514	Antelope	KMcG/RossRox
26	92	18	18-81	571271.1	740813.8	500	Antelope	KMcG/RossRox
26	92	18	18-82	571229.8	741018.9	500	Antelope	KMcG/RossRox
26	92	18	18-83	571387.6	741100.8	500	Antelope	KMcG/RossRox
26	92	18	18-84	571558.4	741113.9	503	Antelope	KMcG/RossRox
26	92	18	18-85	571487.8	741038.0	500	Antelope	KMcG/RossRox
26	92	18	18-86	571226.6	740713.7	500	Antelope	KMcG/RossRox
26	92	18	18-87	570555.5	740672.2	503	Antelope	KMcG/RossRox
26	92	18	18-88	570383.4	740438.5	400	Antelope	KMcG/RossRox
26	92	18	18-89	570720.0	740466.3	500	Antelope	KMcG/RossRox
26	92	18	18-9	571500.0	738369.5	499	Antelope	KMcG/RossRox
26	92	18	18-90	570219.7	740194.2	443	Antelope	KMcG/RossRox
26	92	18	18-91	570212.3	739792.9	440	Antelope	KMcG/RossRox
26	92	18	18-92	570013.1	739993.3	442	Antelope	KMcG/RossRox
26	92	18	18-93	570309.2	739992.3	443	Antelope	KMcG/RossRox

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rug	Sec	Map Hole ID	North NAD27	East NAD27	Log TD	Project	Area
26	92	18	18-94	570488.8	740067.6	504	Antelope	KMcG/RossRox
26	92	18	18-95	569995.1	739599.7	520	Antelope	KMcG/RossRox
26	92	18	18-96	569815.5	739417.0	495	Antelope	KMcG/RossRox
26	92	18	18-97	569808.7	739808.5	442	Antelope	KMcG/RossRox
26	92	18	18-98	569820.5	739655.1	442	Antelope	KMcG/RossRox
26	92	18	18-99	567928.3	738816.9	505	Antelope	KMcG/RossRox
26	92	18	18-X-1	567978.5	738354.3		Antelope	KMcG/RossRRox
26	92	18	18-X-12	570204.0	739583.0		Antelope	KMcG/RossRox
26	92	18	18-X-18	571312.0	740783.2		Antelope	KMcG/RossRox
26	92	18	18-X-19	571193.4	740962.6		Antelope	KMcG/RossRox
26	92	18	18-X-2	568277.2	738273.7		Antelope	KMcG/RossRox
26	92	18	18-X-20	571711.9	739328.0		Antelope	KMcG/RossRox
26	92	18	18-X-3	568358.1	738300.1		Antelope	KMcG/RossRox
26	92	18	18-X-4	568421.9	738318.1		Antelope	KMcG/RossRox
26	92	18	18-X-5	568839.5	739076.1		Antelope	KMcG/RossRox
26	93	13	454	567027.6	737995.1		Antelope	Newpark/GO
26	93	13	455	566918.1	738018.7		Antelope	Newpark/GO
26	93	13	456	566832.6	738003.2		Antelope	Newpark/GO
26	93	13	727	567399.2	737992.8	501	Antelope	Newpark/GO
26	93	13	728	567195.5	737994.4	500	Antelope	Newpark/GO
26	93	13	729	567195.5	737796.6	597	Antelope	Newpark/GO
26	93	13	730	566998.1	737799.5	600	Antelope	Newpark/GO
26	93	13	731	566797.2	737800.2	600	Antelope	Newpark/GO
26	93	13	884	567398.4	737597.9	594	Antelope	Newpark/GO
26	93	13	885	567194.6	737599.2	456	Antelope	Newpark/GO
26	93	13	886	566997.2	737600.4		Antelope	Newpark/GO
26	93	13	887	566797.1	737602.9	480	Antelope	Newpark/GO
26	93	13	897	566195.5	737407.3	521	Antelope	Newpark/GO
26	93	14	745	562594.5	737023.1	1332	Antelope	Newpark/GO
26	92	18	118	567088.0	738390.0		Antelope	Newpark/GO
26	92	18	244	567085.8	738440.1		Antelope	Newpark/GO
26	92	18	245	567093.0	738491.0		Antelope	Newpark/GO
26	92	18	246	567086.0	738341.0		Antelope	Newpark/GO
26	92	18	247	567087.0	738293.0		Antelope	Newpark/GO
26	92	18	248	567087.0	738243.0		Antelope	Newpark/GO
26	92	18	249	566984.0	738295.0		Antelope	Newpark/GO
26	92	18	250	566987.0	738247.0		Antelope	Newpark/GO
26	92	18	253	567032.0	738194.0		Antelope	Newpark/GO
26	92	18	254	567134.0	738289.0		Antelope	Newpark/GO
26	92	18	326	567037.0	738241.7		Antelope	Newpark/GO
26	92	18	327	567134.3	738338.7		Antelope	Newpark/GO
26	92	18	328	567142.1	738236.6		Antelope	Newpark/GO
26	92	18	329	567184.0	738387.7		Antelope	Newpark/GO
26	92	18	330	567239.7	738386.4		Antelope	Newpark/GO
26	92	18	331	566887.9	738397.7		Antelope	Newpark/GO
26	92	18	332	567335.1	738433.0		Antelope	Newpark/GO
26	92	18	333	567000.9	738396.9		Antelope	Newpark/GO
26	92	18	365	567384.8	738233.9		Antelope	Newpark/GO
26	92	18	367	567387.9	738179.9		Antelope	Newpark/GO
26	92	18	368	567620.5	738029.9		Antelope	Newpark/GO
26	92	18	411	567392.3	738509.4		Antelope	Newpark/GO
26	92	18	412	567389.3	738608.7		Antelope	Newpark/GO
26	92	18	413	567127.6	738092.7		Antelope	Newpark/GO
26	92	18	414	567031.6	738098.0		Antelope	Newpark/GO

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 1 D	North NAD27	East NAD27	LogTD	Project	Area
26	92	18	415	566931.6	738095.8		Antelope	Newpark/GO
26	92	18	457	566823.8	738101.2		Antelope	Newpark/GO
26	92	18	746	566824.1	738351.8		Antelope	Newpark/GO
26	92	18	747	566726.4	738463.1		Antelope	Newpark/GO
26	92	18	748	566726.3	738251.7	440	Antelope	Newpark/GO
26	92	18	905	566805.2	738996.2	600	Antelope	Newpark/GO
26	92	18	906	567005.7	738994.4	601	Antelope	Newpark/GO
26	92	18	907	567005.4	739193.2	600	Antelope	Newpark/GO
26	92	18	908	567003.6	738791.6	600	Antelope	Newpark/GO
26	92	18	909	567002.4	738589.3	465	Antelope	Newpark/GO
26	92	18	910	566804.9	738597.6	420	Antelope	Newpark/GO
26	92	18	911	566804.9	738795.9	399	Antelope	Newpark/GO
26	92	18	922	566803.1	740538.5	500	Antelope	Newpark/GO
26	92	18	923	566808.7	739999.6	501	Antelope	Newpark/GO
26	92	18	924	566807.6	739601.8	402	Antelope	Newpark/GO
26	92	18	724-C	566828.4	738054.3	440	Antelope	Newpark/GO
26	92	18	725-C	567084.9	738270.5		Antelope	Newpark/GO
26	92	18	726-C	567361.7	738468.1	501	Antelope	Newpark/GO
26	92	19	97	566184.6	738180.1		Antelope	Newpark/GO
26	92	19	112	566006.7	738588.9		Antelope	Newpark/GO
26	92	19	251	566071.1	738404.5		Antelope	Newpark/GO
26	92	19	252	566223.5	738091.7		Antelope	Newpark/GO
26	92	19	418	566308.4	738239.9		Antelope	Newpark/GO
26	92	19	450	566503.7	739566.2		Antelope	Newpark/GO
26	92	19	451	565896.4	739581.0		Antelope	Newpark/GO
26	92	19	452	565290.9	739587.4		Antelope	Newpark/GO
26	92	19	453	564676.0	739565.0		Antelope	Newpark/GO
26	92	19	734	566599.6	738195.7	486	Antelope	Newpark/GO
26	92	19	735	566600.5	738394.3	498	Antelope	Newpark/GO
26	92	19	736	566400.3	738397.6	400	Antelope	Newpark/GO
26	92	19	737	566394.0	738186.6	399	Antelope	Newpark/GO
26	92	19	740	566000.0	738198.0		Antelope	Newpark/GO
26	92	19	741	565708.0	738806.0		Antelope	Newpark/GO
26	92	19	742	565003.1	738701.2	600	Antelope	Newpark/GO
26	92	19	743	564202.0	738700.0		Antelope	Newpark/GO
26	92	19	744	562308.4	738313.4	1420	Antelope	Newpark/GO
26	92	19	894	566215.0	738406.0		Antelope	Newpark/GO
26	93	19	901	566005.0	739001.2	600	Antelope	Newpark/GO
26	92	19	902	566206.0	739000.0		Antelope	Newpark/GO
26	92	19	903	566404.0	738999.0		Antelope	Newpark/GO
26	92	19	904	566605.0	738998.0		Antelope	Newpark/GO
26	92	19	912	566604.0	738799.0		Antelope	Newpark/GO
26	92	19	913	566602.0	738600.0		Antelope	Newpark/GO
26	92	19	914	566403.0	738601.0		Antelope	Newpark/GO
26	92	19	915	566404.0	738800.0		Antelope	Newpark/GO
26	92	19	916	566204.0	738800.0		Antelope	Newpark/GO
26	92	19	917	566205.0	738602.0		Antelope	Newpark/GO
26	92	19	918	566011.0	739804.0		Antelope	Newpark/GO
26	92	19	919	566211.0	739406.0		Antelope	Newpark/GO
26	92	19	920	566016.0	740567.0		Antelope	Newpark/GO
26	92	19	921	566659.0	740476.0		Antelope	Newpark/GO
26	92	23	901	566005.0	729001.0		Antelope	Newpark/GO
26	93	24	91	565917.2	737534.1		Antelope	Newpark/GO
T 26	93	24	95	566091.0	735586.0	420	Antelope	Newpark/GO

Table 2.6-1
Antelope and JAB Drill Holes

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map nole Io	North Nad27	East NAD27	$\log \frac{1 D}{}$	Project	Area
26	93	11	102	572007.5	732660.9	360	Antelope	Newpark/Jct
26	93	11	105	572655.6	732141.2	454	Antelope	Newpark/Jct
26	93	11	106	572502.8	731920.8	394	Antelope	NewparkJJct
26	93	11	127	571907.9	732533.5	360	Antelope	Newpark/Jct
26	93	11	142	572312.7	732031.2	402	Antelope	Newpark/Jct
26	93	11	143	572394.2	732083.8	400	Antelope	Newpark/Jct
26	93	11	144	572422.5	732043.3	400	Antelope	Newpark/Jct
26	93	11	145	572476.8	731961.8	491	Antelope	Newpark/Jct
26	93	11	146	572449.7	731820.7	400	Antelope	Newpark/Jct
26	93	11	147	572406.3	731796.4	500	Antelope	Newpark/Jct
26	93	11	148	572228.8	731971.9	400	Antelope	Newpark/Jct
26	93	11	149	572243.6	731862.8	400	Antelope	Newpark/Jct
26	93	11	150	572267.6	731825.3	450	Antelope	Newpark/Jct
26	93	11	151	572464.1	732071.7	400	Antelope	Newpark/Jct
26	93	11	152	572434.6	732112.7	400	Antelope	Newpark/Jct
26	93	11	160	572295.3	731777.9	450	Antelope	Newpark/Jct
26	93	11	161	572381.5	732015.6	400	Antelope	Newpark/Jct
26	93	11	162	572519.0	731989.0	400	Antelope	Newpark/Jct
26	93	11	163	572139.3	732592.7	377	Antelope	Newpark/Jct
26	93	11	164	572041.9	732592.7	377	Antelope	Newpark/Jct
26	93	11	165	572040.6	732542.5	349	Antelope	Newpark/Jct
26	93	11	166	572140.1	732548.8	375	Antelope	Newpark/Jct
26	93	11	167	572138.9	732490.4	375	Antelope	Newpark/Jct
26	93	11	168	572090.2	732542.4	374	Antelope	Newpark/Jct
26	93	11	169	572186.6	732539.1	377	Antelope	Newpark/Jct
26	93	11	175	572537.7	732637.7	414	Antelope	Newpark/Jct
26	93	11	176	572537.7	732490.0	411	Antelope	Newpark/Jct
26	93	11	178	572537.7	732540.1	414	Antelope	Newpark/Jct
26	93	11	179	572538.3	732439.9	414	Antelope	Newpark/Jct
26	93	11	180	572438.8	732539.1	411	Antelope	Newpark/Jct
26	93	11	181	572290.6	732543.1	413	Antelope	Newpark/Jct
26	93	11	182	572437.3	732589.4	414	Antelope	Newpark/Jct
26	93	11	183	572338.8	732541.1	383	Antelope	Newpark/Jct
26	93	11	184	572438.3	732489.3	414	Antelope	Newpark/Jct
26	93	11	185	572336.8	732490.1	400	Antelope	Newpark/Jct
26	93	11	186	572335.4	732439.0	420	Antelope	Newpark/Jct
26	93	11	187	572438.3	732439.1	409	Antelope	Newpark/Jct
26	93	11	188	572588.5	732490.6	412	Antelope	Newpark/Jct
26	93	11	189	572641.1	732488.9	411	Antelope	Newpark/Jct
26	93	11	190	572738.4	732438.6	422	Antelope	Newpark/Jct
26	93	11	191	572738.9	732488.9	413	Antelope	Newpark/Jct
26	93	11	192	572837.3	732488.9	418	Antelope	Newpark/Jct
26	93	11	193	572738.4	732388.8	422	Antelope	Newpark/Jct
26	93	11	194	572686.9	732438.0	414	Antelope	Newpark/Jct
26	93	11	195	572488.1	732489.8	414	Antelope	Newpark/Jct
26	93	11	196	572388.6	732503.8	414	Antelope	Newpark/Jct
26	93	11	197	572439.1	732390.0	413	Antelope	Newpark/Jct
26	93	11	198	572387.2	732440.4	414	Antelope	Newpark/Jct
26	93	11	199	572637.2	732537.6	414	Antelope	Newpark/Jct
26	93	11	200	572235.9	732588.9	383	Antelope	Newpark/Jct
26	93	11	201	572237.4	732540.6	403	Antelope	Newpark/Jct
26	9.3'	11	202	572689.2	732488.9	410	Antelope	Newpark/Jct
26	93	11	203	572186.6	732589.9	383	Antelope	Newpark/Jct
26	93	11	204	572141.8	732639.9	382	Antelope	Newpark/Jct

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole ID	North NAD27	EastNAD27	LogTD	Prolect	Area
26	93	11	205	572638.3	732438.0	424	Antelope	Newpark/Jct
26	93	11	206	572186.1	732637.6	383	Antelope	Newpark/Jct
26	93	11	207	572736.7	732537.6	415	Antelope	Newpark/Jct
26	93	11	208	572884.8	732388.3	450	Antelope	Newpark/Jct
26	93	11	209	572888.2	732438.6	464	Antelope	Newpark/Jct
26	93	11	210	572284.9	731699.3	452	Antelope	Newpark/Jct
26	93	11	211	572235.1	731677.4	424	Antelope	Newpark/Jct
26	93	11	212	572185.0	731678.2	404	Antelope	Newpark/Jct
26	93	11	213	572184.3	731571.8	402	Antelope	Newpark/Jct
26	93	11	214	572133.6	731587.0	420	Antelope	Newpark/Jct
26	93	11	215	572084.2	731586.1	415	Antelope	Newpark/Jct
26	93	11	216	572133.9	731478.3	421	Antelope	Newpark/Jct
26	93	11	217	572080.0	731482.5	424	Antelope	Newpark/Jct
26	93	11	218	572031.3	731484.4	398	Antelope	Newpark/Jct
26	93	11	219	571981.3	731484.4	424	Antelope	Newpark/Jct
26	93	11	220	571929.4	731485.3	423	Antelope	Newpark/Jct
26	93	11	221	571929.4	731384.1	424	Antelope	Newpark/Jct
26	93	11	223	572184.9	731621.6	424	Antelope	Newpark/Jct
26	93	11	224	572234.7	731581.9	423	Antelope	Newpark/Jct
26	93	11	225	572035.2	731588.4	424	Antelope	Newpark/Jct
26	93	11	226	571928.9	731285.5	424	Antelope	Newpark/Jct
26	93	11	227	571877.0	731286.0	424	Antelope	Newpark/Jct
26	93	11	228	572234.3	731491.9	423	Antelope	Newpark/Jct
26	93	11	229	572183.0	731493.3	402	Antelope	Newpark/Jct
26	93	11	230	572080.3	731532.5	423	Antelope	Newpark/Jct
26	93	11	231	572634.1	731937.5		Antelope	Newpark/Jct
26	93	11	232	572732.7	731872.1	450	Antelope	Newpark/Jct
26	93	11	233	572733.1	731936.1	456	Antelope	Newpark/Jct
26	93	11	234	572734.1	731986.3	457	Antelope	Newpark/Jct
26	93	11	235	572734.1	732086.7	456	Antelope	Newpark/Jct
26	93	11	273	571878.5	731337.6	400	Antelope	Newpark/Jct
26	93	11	296	572490.1	732638.1	418	Antelope	Newpark/Jct
26	93	11	303	572644.0	732398.0	418	Antelope	Newpark/Jct
26	93	11	313	572436.3	732638.6	396	Antelope	Newpark/Jct
26	93	11	314	572488.0	732440.4	399	Antelope	Newpark/Jct
26	93	11	315	572487.6	732540.1	379	Antelope	Newpark/Jct
26	93	11	316	572488.6	732588.9	390	Antelope	Newpark/Jct
26	93	11	317	572236.9	732489.3	382	Antelope	Newpark/Jct
26	93	11	318	572183.6	732492.3	379	Antelope	Newpark/Jct
26	93	11	319	572287.1	732589.4	397	Antelope	Newpark/Jct
26	93	11	320	572286.6	732638.1	378	Antelope	Newpark/Jct
26	93	11	321	572237.5	732439.7	372	Antelope	Newpark/Jct
26	93	11	322	572288.6	732439.7	399	Antelope	Newpark/Jct
26	93	11	355	572338.3	732638.6		Antelope	Newpark/Jct
26	93	11	357	572336:8	732587.9		Antelope	Newpark/Jct
26	93	11	358	572388.6	732638.6		Antelope	Newpark/Jct
26	93	11	376	572737.8	732290.4		Antelope	Newpark/Jct
26	93	11	377	572633.2	732293.2		Antelope	Newpark/Jct
26	93	11	378	572535.2	732289.1		Antelope	Newpark/Jct
26	93	11	379	572439.1	732289.2		Antelope	Newpark/Jct
26	93	11	380	572237.5	732283.5		Antelope	Newpark/Jct
26	93	11	393	572030.1	731043.5		Antelope	Newpark/Jct
26	93.	11	394	571928.3	731043.7		Antelope	Newpark/Jct
26	93	11	528	572798.9	732616.8		Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	Map Hole 10	North NAD27	East NAD27	$\log 1 \mathrm{D}$	Project	Area
26	93	11	529	572800.0	732317.5		Antelope	Newpark/Jct
26	93	11	530	572796.7	732114.8		Antelope	Newpark/Jct
26	93	11	531	572898.4	732015.3		Antelope	Newpark/Jct
26	93	11	532	572797.1	732015.3		Antelope	Newpark/Jct
26	93	11	533	572797.6	731916.8		Antelope	Newpark/Jct
26	93	11	534	571896.2	732417.4		Antelope	Newpark/Jct
26	93	11	568	573696.9	731117.0		Antelope	Newpark/Jct
26	93	11	569	574303.6	730622.7		Antelope	Newpark/Jct
26	93	11	570	574299.8	730921.3		Antelope	Newpark/Jct
26	93	11	571	574296.6	732020.9		Antelope	Newpark/Jct
26	93	11	572	571888.5	732115.8		Antelope	Newpark/Jct
26	93	11	573	571891.5	732215.4		Antelope	Newpark/Jct
26	93	11	574	571894.9	732316.3		Antelope	Newpark/Jct
26	93	11	750	572625.6	731999.8	400	Antelope	Newpark/Jct
26	93	11	751	574596.7	731001.3	400	Antelope	Newpark/Jct
26	93	11	752	574399.3	731194.6	400	Antelope	Newpark/Jct
26	93	11	753	572900.1	730800.6	400	Antelope	Newpark/Jct
26	93	11	754	572900.6	731003.8	400	Antelope	Newpark/Jct
26	93	11	755	572598.4	730997.8	400	Antelope	Newpark/Jct
26	93	11	756	573196.6	732201.8	600	Antelope	Newpark/Jct
26	93	11	760	573093.1	732594.2	440	Antelope	Newpark/Jct
26	93	11	761	572894.7	732200.9	600	Antelope	Newpark/Jct
26	93	11	762	572894.4	732598.1	390	Antelope	Newpark/Jct
26	93	11	768	572796.7	731801.2	1169	Antelope	Newpark/Jct
26	93	11	769	572599.8	731802.6	400	Antelope	Newpark/Jct
26	93	11	770	572601.9	732001.3	250	Antelope	Newpark/Jct
26	93	11	771	572487.2	731602.1	440	Antelope	Newpark/Jct
26	93	11	772	572498.7	732202.5	600	Antelope	Newpark/Jct
26	93	11	773	572692.6	732599.8	400	Antelope	Newpark/Jct
26	93	11	776	572593.6	732601.0	400	Antelope	Newpark/Jct
26	93	11	797	572298.5	732200.4	400	Antelope	Newpark/Jct
26	93	11	798	572301.4	731602.4	440	Antelope	Newpark/Jct
26	93	11	799	572300.1	731403.2	500	Antelope	Newpark/Jct
26	93	11	801	572097.2	731390.3	440	Antelope	Newpark/Jct
26	93	11	802	572199.8	731797.3	440	Antelope	Newpark/Jct
26	93	11	803	572194.9	732101.0	420	Antelope	Newpark/Jct
26	93	11	804	572193.4	732300.5	420	Antelope	Newpark/Jct
26	93	11	805	572099.0	732197.5	440	Antelope	Newpark/Jct
26	93	11	806	572095.9	731998.9	440	Antelope	Newpark/Jct
26	93	11	807	572099.6	731900.4	240	Antelope	Newpark/Jct
26	93	11	808	572101.9	731799.2	440	Antelope	Newpark/Jct
26	93	11	809	572101.4	731700.3	420	Antelope	Newpark/Jct
26	93	11	810	572000.1	731702.3	410	Antelope	Newpark/Jct
26	93	11	811	572000.1	731800.3	460	Antelope	Newpark/Jct
26	93	11	812	571998.0	731897.7	414	Antelope	Newpark/Jct
26	93	11	813	571997.5	731999.4	400	Antelope	Newpark/Jct
26	93	11	814	571997.0	732097.4	400	Antelope	Newpark/Jct
26	93	11	815	571997.9	732197.9	346	Antelope	Newpark/Jct
26	93	11	816	572000.0	732401.5	800	Antelope	Newpark/Jct
26	93	11	817	571891.5	731999.1	600	Antelope	Newpark/Jct
26	93	11	818	571890.7	731799.7	410	Antelope	Newpark/Jct
26	93	11	819	571892.1	731699.2	410	Antelope	Newpark/Jct
26	93.	11	820	571892.1	731600.1	320	Antelope	Newpark/Jct
26	93	11	842	572097.3	731191.4	600	Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Twn		Sec	Map hole ID	North NAD27	East NAD27	Log TD	Project	Area
26	93	11	942	572691.6	730798.2	980	Antelope	Newpark/Jct
26	93	11	943	572789.3	731204.1	1160	Antelope	Newpark/Jct
26	93	11	944	572995.7	730802.1	1176	Antelope	Newpark/Jct
26	93	11	945	573000.1	730601.3	1361	Antelope	Newpark/Jct
26	93	11	946	573498.4	731120.1	1019	Antelope	Newpark/Jct
26	93	11	947	573697.3	730918.1	1002	Antelope	Newpark/Jct
26	93	11	948	573894.8	731118.1	1044	Antelope	Newpark/Jct
26	93	11	949	573695.2	731315.1	952	Antelope	Newpark/Jct
26	93	11	11-9	574554.0	731257.6		Antelope	Newpark/Jct
26	93	11	11-15	572756.0	730967.0		Antelope	Newpark/Jct
26	93	11	11-20	572257.0	731925.0		Antelope	Newpark/Jct
26	93	11	11-22	572256.0	731457.0		Antelope	Newpark/Jct
26	93	11	11-23	572856.1	731735.8		Antelope	Newpark/Jct
26	93	11	103-C	571940.0	732659.0	306	Antelope	Newpark/Jct
26	93	11	104-C	572491.0	731978.0		Antelope	Newpark/Jct
26	93	11	272-C	571956.0	731433.0		Antelope	Newpark/Jct
26	93	11	704-C	572799.0	732606.0	305	Antelope	Newpark/Jct
26	93	11	707-C	572635.0	731925.0	320	Antelope	Newpark/Jct
26	93	11	708-C	572284.0	731688.0	397	Antelope	Newpark/Jct
26	93	12	50	571907.3	732709.1	358	Antelope	Newpark/Jct
26	93	12	52	571994.0	732769.8	359	Antelope	Newpark/Jct
26	93	12	90	571839.9	732543.9	360	Antelope	Newpark/Jct
26	93	12	94	571865.9	732682.1	359	Antelope	Newpark/Jct
26	93	12	99	571936.2	732672.0	360	Antelope	Newpark/Jct
26	93	12	108	572287.4	733349.0		Antelope	Newpark/Jct
26	93	12	124	571981.0	732702.0		Antelope	Newpark/Jct
26	93	12	128	571798.0	732517.0	360	Antelope	Newpark/Jct
26	93	12	171	572246.0	732690.0		Antelope	Newpark/Jct
26	93	12	173	572493.0	732692.0		Antelope	Newpark/Jct
26	93	12	177	572543.0	732689.0		Antelope	Newpark/Jct
26	93	12	291	572587.7	732738.5	360	Antelope	Newpark/Jct
26	93	12	297	572442.0	732693.0		Antelope	Newpark/Jct
26	93	12	304	572594.0	732940.0	418	Antelope	Newpark/Jct
26	93	12	305	572543.0	732938.0	410	Antelope	Newpark/Jct
26	93	12	306	572692.0	732989.0	418	Antelope	Newpark/Jct
26	93	12	307	572643.0	732988.0	418	Antelope	Newpark/Jct
26	93	12	308	572594.0	732990.0	399	Antelope	Newpark/Jct
26	93	12	309	572171.0	732772.0	399	Antelope	Newpark/Jct
26	93	12	310	572494.8	732936.5	397	Antelope	Newpark/Jct
26	93	12	311	572445.0	732787.0	398	Antelope	Newpark/Jct
26	93	12	335	572340.0	732692.0		Antelope	Newpark/Jct
26	93	12	345	572693.0	733039.0		Antelope	Newpark/Jct
26	93	12	356	572395.0	732692.0		Antelope	Newpark/Jct
26	93	12	372	572844.2	732835.0		Antelope	Newpark/Jct
26	93	12	374	572845.0	733037.0		Antelope	Newpark/Jct
26	93	12	416	571885.1	732700.0		Antelope	NewparkiJct
26	93	12	417	571908.3	732807.9		Antelope	Newpark/Jct
26	93	12	502	571899.2	732916.1		Antelope	Newpark/Jct
26	93	12	503	571897.4	733114.9		Antelope	Newpark/Jct
26	93	12	504	571898.0	733313.8		Antelope	Newpark/Jct
26	93	12	505	571898.0	733512.8		Antelope	Newpark/Jct
26	93	12	506	572001.5	733514.2		Antelope	Newpark/Jct
26	93	12	507	572001.5	733314.1		Antelope	Newpark/Jct
26	93	12	508	572002.3	733115.5		Antelope	Newpark/Jct

Table 2.6-1

Antelope and JAB Drill Holes

wing	[kngic	Sec	$\text { Map Ifole } 10$	North NAD27	East NAD27	$\log T D$	Project	Area
26	93	12	509	572003.4	732916.1		Antelope	Newpark/Jct
26	93	12	510	572104.0	732916.7		Antelope	Newpark/Jct
26	93	12	511	572101.9	733114.5		Antelope	Newpark/Jct
26	93	12	512	572100.7	733313.1		Antelope	Newpark/Jct
26	93	12	513	572100.7	733511.2		Antelope	Newpark/Jct
26	93	12	514	572199.0	733413.4		Antelope	Newpark/Jct
26	93	12	515	572199.5	733213.8		Antelope	Newpark/Jct
26	93	12	516	572199.5	732916.3		Antelope	Newpark/Jct
26	93	12	517	572300.8	732917.8		Antelope	Newpark/Jct
26	93	12	518	572302.0	733114.7		Antelope	Newpark/Jct
26	93	12	519	572300.4	733313.4		Antelope	Newpark/Jct
26	93	12	520	572399.6	733213.2		Antelope	Newpark/Jct
26	93	12	521	572399.5	733016.9		Antelope	Newpark/Jct
26	93	12	522	572503.2	733115.0		Antelope	Newpark/Jct
26	93	12	523	572596.6	733104.1		Antelope	Newpark/Jct
26	93	12	524	572699.5	733216.6		Antelope	Newpark/Jct
26	93	12	525	573000.6	733214.2		Antelope	Newpark/Jct
26	93	12	526	573000.7	733016.2		Antelope	Newpark/Jct
26	93	12	527	572898.4	732723.1		Antelope	Newpark/Jct
26	93	12	558	572595.5	733068.8		Antelope	Newpark/Jct
26	93	12	559	572646.0	733070.0		Antelope	Newpark/Jct
26	93	12	560	572697.6	733120.5		Antelope	Newpark/Jct
26	93	12	561	572593.5	733223.3		Antelope	Newpark/Jct
26	93	12	582	571847.2	732161.3		Antelope	Newpark/Jct
26	93	12	583	571845.9	732272.0		Antelope	Newpark/Jct
26	93	12	585	572300.4	732818.6		Antelope	Newpark/Jct
26	93	12	586	572199.9	732816.5		Antelope	Newpark/Jct
26	93	12	587	572104.0	732817.5		Antelope	Newpark/Jct
26	93	12	588	571996.9	732818.5	340	Antelope	Newpark/Jct
26	93	12	589	572396.6	732921.6	335	Antelope	Newpark/Jct
26	93	12	590	572500.6	733017.5	360	Antelope	Newpark/Jct
26	93	12	591	572400.5	733119.7	360	Antelope	Newpark/Jct
26	93	12	592	572301.2	733016.9	360	Antelope	Newpark/Jct
26	93	12	593	572296.8	733216.3	360	Antelope	Newpark/Jct
26	93	12	594	572200.9	733015.8	340	Antelope	Newpark/Jct
26	93	12	595	572199.5	733114.5	360	Antelope	Newpark/Jct
26	93	12	596	572100.4	733012.9	340	Antelope	Newpark/Jct
26	93	12	597	572005.7	733014.6	360	Antelope	Newpark/Jct
26	93	12	749	573789.9	733587.1	400	Antelope	Newpark/Jct
26	93	12	757	573390.2	733598.3	800	Antelope	Newpark/Jct
26	93	12	758	573097.2	732996.7	370	Antelope	Newpark/Jct
26	93	12	759	573091.1	732796.1	400	Antelope	Newpark/Jct
26	93	12	763	572901.3	732800.6	400	Antelope	Newpark/Jct
26	93	12	764	572898.6	732998.0	380	Antelope	Newpark/Jct
26	93	12	765	572798.4	732899.3	300	Antelope	Newpark/Jet
26	93	12	766	572799.2	732799.8	380	Antelope	Newpark/Jct
26	93	12	767	572800.0	732700.8	390	Antelope	Newpark/Jct
26	93	12	774	572691.5	732698.8	400	Antelope	Newpark/Jct
26	93	12	775	572695.1	732799.6	380	Antelope	Newpark/Jct
26	93	12	777	572591.4	732699.9	400	Antelope	Newpark/Jct
26	93	12	778	572395.8	733810.5	520	Antelope	Newpark/Jct
26	93	12	779	572197.0	733712.8	387	Antelope	Newpark/Jct
26	93	12	780	571999.5	733713.8	460	Antelope	Newpark/Jct
26	93	12	781	572096.7	733412.9	380	Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Iwn	Rng	Sec	Map Hole 1 D	NorthNAD27.	East NAD27	Log TD	Project	Area
26	93	12	782	572100.2	733214.3	400	Antelope	Newpark/Jct
26	93	12	783	571997.9	733216.8	346	Antelope	Newpark/Jct
26	93	12	784	571999.5	733413.4	340	Antelope	Newpark/Jct
26	93	12	785	571894.5	733411.8	380	Antelope	Newpark/Jct
26	93	12	786	571895.5	733216.9	340	Antelope	Newpark/Jct
26	93	12	787	571897.4	733015.8	380	Antelope	Newpark/Jct
26	93	12	950	573432.8	733652.2	320	Antelope	Newpark/Jct
26	93	12	12-18	573097.0	732673.0		Antelope	Newpark/Jct
26	93	12	12-107	572092.0	732715.0	832	Antelope	Newpark/Jct
26	93	12	12-125	572024.0	732727.0	360	Antelope	Newpark/Jct
26	93	12	12-126	572132.0	732747.0	360	Antelope	Newpark/Jct
26	93	12	12-170	572144.0	732695.0	376	Antelope	Newpark/Jct
26	93	12	12-172	572294.0	732740.0	403	Antelope	Newpark/Jct
26	93	12	12-174	572543.0	732788.0	413	Antelope	Newpark/Jct
26	93	12	12-288	572543.0	732739.0	393	Antelope	Newpark/Jct
26	93	12	12-289	572543.0	732837.0	410	Antelope	Newpark/Jct
26	93	12	12-290	572493.0	732739.0	415	Antelope	Newpark/Jct
26	93	12	12-292	572594.0	732789.0	415	Antelope	Newpark/Jct
26	93	12	12-293	572595.0	732838.0	420	Antelope	Newpark/Jct
26	93	12	12-294	572594.0	732888.0	419	Antelope	Newpark/Jct
26	93	12	12-295	572544.0	732888.0	414	Antelope	Newpark/Jct
26	93	12	12-298	572494.0	732787.0	399	Antelope	Newpark/Jct
26	93	12	12-299	572494.0	732838.0	419	Antelope	Newpark/Jct
26	93	12	12-300	572495.0	732888.0	417	Antelope	Newpark/Jet
26	93	12	12-301	572642.3	732836.7	418	Antelope	Newpark/Jct
26	93	12	12-302	572643.4	732886.9	418	Antelope	Newpark/Jct
26	93	12	12-312	572446.0	732740.0	397	Antelope	Newpark/Jct
26	93	12	12-323	572744.0	732989.0	418	Antelope	Newpark/Jct
26	93	12	12-324	572745.0	732939.0	413	Antelope	Newpark/Jct
26	93	12	12-325	572744.0	733040.0	378	Antelope	Newpark/Jct
26	93	12	12-336	572395.0	732740.0	397	Antelope	Newpark/Jct
26	93	12	12-337	572393.0	732839.0		Antelope	Newpark/Jct
26	93	12	12-338	572446.0	732837.0		Antelope	Newpark/Jct
26	93	12	12-339	572340.0	732841.0		Antelope	Newpark/Jct
26	93	12	12-340	572444.0	732891.0		Antelope	Newpark/Jct
26	93	12	12-341	572444.0	732940.0		Antelope	Newpark/Jct
26	93	12	12-346	572788.0	733038.0		Antelope	Newpark/Jct
26	93	12	12-347	572795.0	733090.0		Antelope	Newpark/Jct
26	93	12	12-348	572693.0	732939.0		Antelope	Newpark/Jct
26	93	12	12-349	572744.0	733090.0		Antelope	Newpark/Jct
26	93	12	12-350	572693.0	732888.0		Antelope	Newpark/Jct
26	93	12	12-371	572845.7	732738.3		Antelope	Newpark/Jct
26	93	12	12-373	572844.0	732939.0		Antelope	Newpark/Jct
26	93	12	12-375	572843.0	733137.0		Antelope	Newpark/Jct
26	93	12	12-381	572588.0	733390.0		Antelope	Newpark/Jct
26	93	12	12-382	572194.0	733294.0		Antelope	Newpark/Jct
26	93	12	370A	573002.4	733268.5		Antelope	Newpark/Jct
26	93	12	527R	572904.6	732733.9		Antelope	Newpark/Jct
26	93	12	703-C	573002.0	733203.0	251	Antelope	Newpark/Jct
26	93	12	705-C	572698.0	733109.0	137	Antelope	Newpark/Jct
26	93	12	706-C	572650.0	732851.0	390	Antelope	Newpark/Jct
26	93	12	709-C	572300.0	732906.0	195	Antelope	Newpark/Jct
26	93	12	710-C	572198.0	733402.0	158	Antelope	Newpark/Jct
26	93	12	711-C	571898.0	733301.0	230	Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Twn		Sec	Map Hole 10	North NAD27	East NAD27	$\log T D$	Project	Area
26	93	12	712-C	571900.0	732904.0	308	Antelope	Newpark/Jct
26	93	13	3	570314.4	733537.5		Antelope	Newpark/Jct
26	93	13	18	571112.4	733539.6		Antelope	Newpark/Jct
26	93	13	29	568747.0	734397.0		Antelope	Newpark/Jct
26	93	13	56	571128.0	733750.0		Antelope	Newpark/Jct
26	93	13	57	571690.3	732691.0	358	Antelope	Newpark/Jct
26	93.	13	59	571776.0	732737.0	360	Antelope	Newpark/Jct
26	93	13	60	570095.9	733696.7		Antelope	Newpark/Jct
26	93	13	61	569941.1	733452.2		Antelope	Newpark/Jct
26	93	13	89	571777.0	732673.0	370	Antelope	Newpark/Jct
26	93	13	102	570264.9	733586.3		Antelope	Newpark/Jct
26	93	13	104	571046.6	733846.0		Antelope	Newpark/Jct
26	93	13	112	569969.5	733644.0		Antelope	Newpark/Jct
26	93	13	114	569866.6	733652.9		Antelope	Newpark/Jct
26	93	13	133	570114.5	733712.2		Antelope	Newpark/Jct
26	93	13	134	570221.7	733637.9		Antelope	Newpark/Jct
26	93	13	146	570073.3	733637.6		Antelope	Newpark/Jct
26	93	13	153	569766.8	733683.4		Antelope	Newpark/Jct
26	93	13	154	570068.3	733714.6		Antelope	Newpark/Jct
26	93	13	155	570115.7	733661.6		Ântelope	Newpark/Jct
26	93	13	157	570032.7	733695.7		Antelope	Newpark/Jct
26	93	13	158	570096.2	733728.9		Antelope	Newpark/Jct
26	93	13	207	570108.7	733527.3		Antelope	Newpark/Jct
26	93	13	343	571744.9	732835.9		Antelope	Newpark/Jct
26	93	13	344	571842.0	732841.0		Antelope	Newpark/Jct
26	93	13	353	571840.0	732993.0		Antelope	Newpark/Jct
26	93	13	388	570392.0	733496.0		Antelope	Newpark/Jct
26	93	13	410	570796.6	733495.5		Antelope	Newpark/Jct
26	93	13	431	570689.2	733095.6		Antelope	Newpark/Jct
26	93	13	432	570693.6	733292.1		Antelope	Newpark/Jct
26	93	13	433	570696.7	733393.0		Antelope	Newpark/Jct
26	93	13	434	570699.8	733493.4		Antelope	Newpark/Jct
26	93	13	435	570594.4	733395.6		Antelope	Newpark/Jct
26	93	13	436	570490.8	733099.9		Antelope	Newpark/Jct
26	93	13	437	570495.6	733294.7		Antelope	Newpark/Jct
26	93	13	438	570494.0	733397.2		Antelope	Newpark/Jct
26	93	13	439	570498.7	733495.0		Antelope	Newpark/Jct
26	93	13	440	570295.1	733396.4		Antelope	Newpark/Jct
26	93	13	441	570193.0	732700.5		Antelope	Newpark/Jct
26	93	13	442	570196.8	732902.6		Antelope	Newpark/Jct
26	93	13	443	570194.1	733104.1		Antelope	Newpark/Jct
26	93	13	444	570194.6	733299.1		Antelope	Newpark/Jct
26	93	13	445	569985.0	732692.0		Antelope	Newpark/Jct
26	93	13	446	569784.0	732692.0		Antelope	Newpark/Jct
26	93	13	458	569893.3	732801.4		Antelope	Newpark/Jct
26	93	13	459	569891.0	733000.0		Antelope	Newpark/Jct
26	93	13	460	569899.7	733207.6		Antelope	Newpark/Jct
26	93	13	461	569896.0	733405.0		Antelope	Newpark/Jct
26	93	13	462	570100.6	733405.1		Antelope	Newpark/Jct
26	93	13	463	570101.7	733206.2		Antelope	Newpark/Jct
26	93	13	464	570103.3	733007.4		Antelope	Newpark/Jct
26	93	13	465	570103.3	732808.6		Antelope	Newpark/Jct
26	93	13	466	570293.5	732804.4		Antelope	Newpark/Jct
26	93	13	467	570300.0	733108.4		Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole ID	North NAD27.	East NAD27	LogTD	Project	Area
26	93	13	468	570300.0	733307.2		Antelope	Newpark/Jct
26	93	13	469	570396.4	733206.0		Antelope	Newpark/Jct
26	93	13	470	570390.9	732806.0		Antelope	Newpark/Jct
26	93	13	472	570493.0	732707.0		Antelope	Newpark/Jct
26	93	13	473	570498.7	732910.9		Antelope	Newpark/Jct
26	93	13	474	570599.7	732911.4		Antelope	Newpark/Jct
26	93	13	481	570700.9	733009.3		Antelope	Newpark/Jct
26	93	13	482	570800.2	733107.7		Antelope	Newpark/Jct
26	93	13	483	570799.7	733308.6		Antelope	Newpark/Jct
26	93	13	484	570896.4	733407.0		Antelope	Newpark/Jct
26	93	13	485	570997.1	733308.2		Antelope	Newpark/Jct
26	93	13	486	571102.6	733402.1		Antelope	Newpark/Jct
26	93	13	487	571095.8	733508.1		Antelope	Newpark/Jct
26	93	13	488	571296.9	733512.0		Antelope	Newpark/Jct
26	93	13	489	571496.1	733513.4		Antelope	Newpark/Jct
26	93	13	490	571600.0	733615.0		Antelope	Newpark/Jct
26	93	13	491	571596.8	733413.8		Antelope	Newpark/Jct
26	93	13	492	571601.3	733210.1		Antelope	Newpark/Jct
26	93	13	493	571602.4	732812.2		Antelope	Newpark/Jct
26	93	13	494	571702.7	732912.5		Antelope	Newpark/Jct
26	93	13	495	571701.0	733110.3		Antelope	Newpark/Jct
26	93	13	496	571697.1	733313.3		Antelope	Newpark/Jct
26	93	13	497	571697.1	733412.8		Antelope	Newpark/Jct
26	93	13	498	571794.5	733613.8		Antelope	Newpark/Jct
26	93	13	499	571795.0	733413.3		Antelope	Newpark/Jct
26	93	13	500	571797.0	733213.4		Antelope	Newpark/Jct
26	93	13	501	571797.2	733015.8		Antelope	Newpark/Jct
26	93	13	548	570288.3	732695.0		Antelope	Newpark/Jct
26	93	13	551	569992.0	733197.0		Antelope	Newpark/Jct
26	93	13	552	569899.2	733303.6		Antelope	Newpark/Jct
26	93	13	553	569898.1	733105.8		Antelope	Newpark/Jct
26	93	13	554	569803.6	732996.0		Antelope	Newpark/Jct
26	93	13	555	569800.3	733204.3		Antelope	Newpark/Jct
26	93	13	556	569799.0	733300.4		Antelope	Newpark/Jct
26	93	13	557	569797.3	733399.6		Antelope	Newpark/Jct
26	93	13	562	571605.8	732913.1		Antelope	Newpark/Jct
26	93	13	563	571506.1	732913.1		Antelope	Newpark/Jct
26	93	13	564	571506.1	732811.6		Antelope	Newpark/Jct
26	93	13	565	571604.7	732713.0		Antelope	Newpark/Jct
26	93	13	566	571708.8	732796.4		Antelope	Newpark/Jct
26	93	13	598	571796.7	733117.8	360	Antelope	Newpark/Jct
26	93	13	599	571700.4	733011.1	366	Antelope	Newpark/Jct
26	93	13	600	571700.1	733608.8	380	Antelope	Newpark/Jct
26	93	13	601	571602.0	733502.2	400	Antelope	Newpark/Jct
26	93	13	602	571602.0	733302.5	400	Antelope	Newpark/Jct
26	93	13	603	571602.4	733110.3	380	Antelope	Newpark/Jct
26	93	13	604	571599.6	733010.6	372	Antelope	Newpark/Jct
26	93	13	607	571501.6	732713.8	360	Antelope	Newpark/Jct
26	93	13	608	571501.0	733011.7	380	Antelope	Newpark/Jct
26	93	13	609	571398.9	733012.9	380	Antelope	Newpark/Jct
26	93	13	610	571398.9	732915.9	360	Antelope	Newpark/Jct
26	93	13	611	571402.1	732816.2	360	Antelope	Newpark/Jct
26	93	13	613	571398.1	732712.2	360	Antelope	Newpark/Jct
26	93	13	615	571299.5	732712.8	360	Antelope	Newpark/Jct

Table 2.6-1

Antelope and JAB Drill Holes

$\overline{T w n}$	Rig	Sec	Map Mole ID	North NAD27	East NAD27	LogTD	Project	Area
26	93	13	616	571301.5	732814.9	360	Antelope	Newpark/Jct
26	93	13	617	571298.8	732915.0	360	Antelope	Newpark/Jct
26	93	13	618	571201.8	732912.3	360	Antelope	Newpark/Jct
26	93	13	619	571205.5	732816.7	360	Antelope	Newpark/Jct
26	93	13	620	571204.3	732715.6	360	Antelope	Newpark/Jct
26	93	13	625	571104.5	732716.4	400	Antelope	Newpark/Jct
26	93	13	626	571104.1	732815.3	360	Antelope	Newpark/Jct
26	93	13	627	571099.9	732913.7	400	Antelope	Newpark/Jct
26	93	13	628	571006.6	732712.7	340	Antelope	Newpark/Jct
26	93	13	629	571004.3	732812.0	380	Antelope	Newpark/Jct
26	93	13	630	571002.9	732910.9	400	Antelope	Newpark/Jct
26	93	13	631	570997.5	733411.4	380	Antelope	Newpark/Jct
26	93	13	632	570899.0	733502.7	388	Antelope	Newpark/Jct
26	93	13	633	570900.6	733307.6	380	Antelope	Newpark/Jct
26	93	13	634	570900.4	733205.7	380	Antelope	Newpark/Jct
26	93	13	635	570901.2	733111.5	360	Antelope	Newpark/Jct
26	93	13	636	570902.6	733014.5	400	Antelope	Newpark/Jct
26	93	13	637	570898.0	732912.8	380	Antelope	Newpark/Jct
26	93	13	638	570906.9	732816.2	380	Antelope	Newpark/Jct
26	93	13	639	570897.6	732709.4	360	Antelope	Newpark/Jct
26	93	13	645	570800.2	732712.6	380	Antelope	Newpark/Jct
26	93	13	646	570811.4	732814.9	375	Antelope	Newpark/Jct
26	93	13	647	570808.6	732910.0	375	Antelope	Newpark/Jct
26	93	13	648	570807.7	733007.0	420	Antelope	Newpark/Jct
26	93	13	649	570803.0	733205.7	380	Antelope	Newpark/Jct
26	93	13	650	570798.1	733410.1	360	Antelope	Newpark/Jct
26	93	13	651	570699.5	733201.5	415	Antelope	Newpark/Jct
26	93	13	652	570706.5	732918.0	420	Antelope	Newpark/Jct
26	93	13	653	570706.5	732814.9	415	Antelope	Newpark/Jct
26	93	13	654	570702.2	732712.0	400	Antelope	Newpark/Jct
26	93	13	660	570594.9	732704.7	420	Antelope	Newpark/Jct
26	93	13	661.	570597.7	732803.9	400	Antelope	Newpark/Jct
26	93	13	662	570587.5	732994.8	420	Antelope	Newpark/Jct
26	93	13	663	570587.5	733194.9	420	Antelope	Newpark/Jct
26	93	13	664	570487.7	733196.0	400	Antelope	Newpark/Jct
26	93	13	665	570488.2	732996.5	420	Antelope	Newpark/Jct
26	93	13	666	570495.6	732802.3	377	Antelope	Newpark/Jct
26	93	13	672	570394.6	732699.7	420	Antelope	Newpark/Jct
26	93	13	673	570389.5	732998.0	420	Antelope	Newpark/Jct
26	93	13	674	570387.4	733295.2	420	Antelope	Newpark/Jct
26	93	13	675	570390.6	733392.0	340	Antelope	Newpark/Jct
26	93	13	676	570293.5	733193.2	360	Antelope	Newpark/Jct
26	93	13	677	570292.4	732896.7	300	Antelope	Newpark/Jct
26	93	13	682	570190.8	732800.5	400	Antelope	Newpark/Jct
26	93	13	683	570195.7	732996.1	340	Antelope	Newpark/Jct
26	93	13	684	570196.8	733196.5	340	Antelope	Newpark/Jct
26	93	13	685	570193.5	733398.6	340	Antelope	Newpark/Jct
26	93	13	686	570101.7	733300.2	300	Antelope	Newpark/Jct
26	93	13	687	570103.3	733110.0	380	Antelope	Newpark/Jct
26	93	13	688	570095.2	732907.5	370	Antelope	Newpark/Jct
26	93	13	689	570087.1	732695.1	400	Antelope	Newpark/Jct
26	93	13	694	569984.5	732790.5	400	Antelope	Newpark/Jct
26	93	13	695	569988.0	732994.0	400	Antelope	Newpark/Jct
26	93	13	696	569997.8	733396.4	380	Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	$\text { Map Hole } 10$	North NAD27	East NAD27	Log ID	Project	Area
26	93	13	697	569881.9	732684.2	440	Antelope	Newpark/Jct
26	93	13	700	569790.7	732799.9	440	Antelope	Newpark/Jct
26	93	13	701	569798.5	732908.9	440	Antelope	Newpark/Jct
26	93	13	702	569801.6	733103.1	420	Antelope	Newpark/Jct
26	93	13	788	571704.4	733211.2	340	Antelope	Newpark/Jct
26	93	13	789	571399.8	733210.6	400	Antelope	Newpark/Jct
26	93	13	790	571401.6	733403.0	400	Antelope	Newpark/Jct
26	93	13	791	571200.6	733411.4	380	Antelope	Newpark/Jct
26	93	13	792	571202.7	733206.9	400	Antelope	Newpark/Jct
26	93	13	793	571202.7	733015.2	400	Antelope	Newpark/Jct
26	93	13	794	571100.3	733014.5	400	Antelope	Newpark/Jct
26	93	13	795	571001.0	733018.7	380	Antelope	Newpark/jct
26	93	13	796	571003.4	733207.5	400	Antelope	Newpark/Jct
26	93	13	844	571498.6	733301.5	420	Antelope	Newpark/Jct
26	93	13	845	571499.3	733203.1	315	Antelope	Newpark/Jct
26	93	13	846	571500.4	733114.3	400	Antelope	Newpark/Jct
26	93	13	847	571399.4	733116.3	380	Antelope	Newpark/Jct
26	93	13	848	571398.0	733315.3	380	Antelope	Newpark/Jct
26	93	13	849	571303.3	733320.8	380	Antelope	Newpark/Jct
26	93	13	850	571301.5	733212.4	380	Antelope	Newpark/Jct
26	93	13	851	571302.4	733118.1	380	Antelope	Newpark/Jct
26	93	13	852	571303.8	733020.2	380	Antelope	Newpark/Jct
26	93	13	853	571193.6	733120.9	380	Antelope	Newpark/Jct
26	93	13	854	571099.4	733214.6	380	Antelope	Newpark/Jct
26	93	13	13-123	571817.9	732753.4	503	Antelope	Newpark/Jct
26	93	13	13-21	571676.0	733518.0	703	Antelope	Newpark/Jct
26	93	13	13-300	569834.5	733658.4		Antelope	Newpark/Jct
26	93	13	13-342	571794.7	732830.5		Antelope	Newpark/Jct
26	93	13	13-352	571789.1	732892.4		Antelope	Newpark/Jct
26	93	13	13-361	570442.0	733195.0		Antelope	Newpark/Jct
26	93	13	13-363	570390.0	733091.0		Antelope	Newpark/Jct
26	93	13	13-364	570333.0	732985.0		Antelope	Newpark/Jct
26	93	13	13-370	570388.0	732897.0		Antelope	Newpark/Jct
26	93	13	13-383	571795.0	733292.0		Antelope	Newpark/Jct
26	93	13	13-384	570999.0	733496.0		Antelope	Newpark/Jct
26	93	13	13-385	570595.0	733096.0		Antelope	Newpark/Jct
26	93	13	13-386	570594.0	733295.0		Antelope	Newpark/Jct
26	93	13	13-387	570596.0	733494.0		Antelope	Newpark/Jct
26	93	13	13-389	570194.0	733494.0		Antelope	Newpark/Jct
26	93	13	13-390	569988.0	732892.0		Antelope	Newpark/Jct
26	93	13	13-391	569983.0	733095.0		Antelope	Newpark/Jct
26	93	13	13-392	569990.0	733291.0		Antelope	Newpark/Jct
26	93	13	13-84	571729.0	732761.0		Antelope	Newpark/Jct
26	93	13	207C	570112.2	733530.8		Antelope	Newpark/Jct
26	93	13	279 NP	571246.0	732692.0		Antelope	Newpark/Jct
26	93	13	716-C	571505.0	732902.0	335	Antelope	Newpark/Jct
26	93	13	717-C	571596.0	733402.0	335	Antelope	Newpark/Jct
26	93	13	718-C	570799.0	733296.0	274	Antelope	Newpark/Jct
26	93	13	720-C	570493.0	732694.0	360	Antelope	Newpark/Jct
26	93	13	721-C	570299.0	733295.0	280	Antelope	Newpark/Jct
26	93	13	722-C	570196.0	732892.0	367	Antelope	Newpark/Jct
26	93	13	723-C	569899.0	733292.0	340	Antelope	Newpark/Jct
26	93	14	3	571828.0	732654.0		Antelope	Newpark/Jct
26	93	14	49	571749.5	732597.7		Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rug	3 Sec	Map Hole 1 D	North NAD27	East NAD27	$1 \mathrm{Cog} 1 \mathrm{D}$	Project	Area
26	93	14	51	571667.8	732543.6	410	Antelope	Newpark/Jct
26	93	14	53	571585.5	732488.4		Antelope	Newpark/Jct
26	93	14	56	571785.0	732628.7		Antelope	Newpark/Jct
26	93	14	62	571499.3	732434.3		Antelope	Newpark/Jct
26	93	14	80	571755.1	732543.1	359	Antelope	Newpark/Jct
26	93	14	85	571812.4	732585.3		Antelope	Newpark/Jct
26	93	14	87	571853.8	732616.1	360	Antelope	Newpark/Jct
26	93	14	89	571679.0	732613.0		Antelope	Newpark/Jct
26	93	14	110	571546.4	731455.5	400	Antelope	Newpark/Jct
26	93	14	121	571651.0	732651.0		Antelope	Newpark/Jct
26	93	14	122	571609.0	732626.0		Antelope	Newpark/Jct
26	93	14	129	571689.7	732501.3	360	Antelope	Newpark/Jct
26	93	14	130	571743.3	732415.1	400	Antelope	Newpark/Jct
26	93	14	131	571718.5	732458.5	400	Antelope	Newpark/Jct
26	93	14	132	571649.7	732473.2	400	Antelope	Newpark/Jct
26	93	14	133	571609.2	732447.8		Antelope	Newpark/Jct
26	93	14	134	571825.5	732477.2	400	Antelope	Newpark/Jct
26	93	14	135	571678.5	732428.6		Antelope	Newpark/Jct
26	93	14	136	571638.5	732400.5	400	Antelope	Newpark/Jct
26	93	14	137	571566.4	732416.2		Antelope	Newpark/Jct
26	93	14	138	571627.2	732514.3	400	Antelope	Newpark/Jct
26	93	14	139	571651.4	732357.0	400	Antelope	Newpark/Jct
26	93	14	140	571597.9	732557.1	400	Antelope	Newpark/Jct
26	93	14	141	571559.0	732531.2	400	Antelope	Newpark/Jct
26	93	14	153	571516.2	732505.9	360	Antelope	Newpark/Jct
26	93	14	154	571490.3	732546.4	360	Antelope	Newpark/Jct
26	93	14	155	571536.5	732575.2	400	Antelope	Newpark/Jct
26	93	14	156	571417.8	732560.6	400	Antelope	Newpark/Jct
26	93	14	157	571610.3	732328.6	400	Antelope	Newpark/Jct
26	93	14	158	571586.3	732373.1	360	Antelope	Newpark/Jct
26	93	14	159	571351.3	732574.1	420	Antelope	Newpark/Jct
26	93	14	236	571342.3	732595.6	364	Antelope	Newpark/Jct
26	93	14	237	571335.3	732490.7	364	Antelope	Newpark/Jct
26	93	14	238	571541.6	732392.6	382	Antelope	Newpark/Jct
26	93	14	239	571492.6	732393.7	384	Antelope	Newpark/Jct
26	93	14	240	571387.4	732580.3	373	Antelope	Newpark/Jct
26	93	14	241	571431.0	732336.6	381	Antelope	Newpark/Jct
26	93	14	242	571233.6	732439.7	379	Antelope	Newpark/Jct
26	93	14	243	571334.4	732293.5	384	Antelope	Newpark/Jct
26	93	14	263	571293.0	732646.0		Antelope	Newpark/Jct
26	93	14	264	571283.6	732438.0	373	Antelope	Newpark/Jct
26	93	14	265	571333.2	732338.9	372	Antelope	Newpark/Jct
26	93	14	266	571232.6	732391.2	375	Antelope	Newpark/Jct
26	93	14	267	571338.7	732244.1	383	Antelope	Newpark/Jct
26	93	14	268	571242.6	732592.2	365	Antelope	Newpark/Jct
26	93	14	269	571389.0	732244.4	383	Antelope	Newpark/Jct
26	93	14	270	571234.5	732340.7	394	Antelope	Newpark/Jct
26	93	14	274	571183.0	732291.8	414	Antelope	Newpark/Jct
26	93	14	275	571234.0	732537.5		Antelope	Newpark/Jct
26	93	14	276	571831.4	731195.0	410	Antelope	Newpark/Jct
26	93	14	277	571135.5	732190.7	413	Antelope	Newpark/Jct
26	93	14	278	571829.2	731145.5	412	Antelope	Newpark/Jct
26	93	14	280	571088.4	732099.2	414	Antelope	Newpark/Jct
26	93	14	281	571482.1	731397.1	389	Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ryg	Sec	Map Holego	North NAD27	East NAD27	$\log T D$	Project	Area
26	93	14	282	571037.2	731990.0	370	Antelope	Newpark/Jct
26	93	14	283	571436.5	732290.9	379	Antelope	Newpark/Jct
26	93	14	284	571535.4	732340.2	379	Antelope	Newpark/Jct
26	93	14	285	571432.0	731245.3	378	Antelope	Newpark/Jct
26	93	14	286	571481.8	732339.8	399	Antelope	Newpark/Jct
26	93	14	287	570937.6	731892.4	410	Antelope	Newpark/Jct
26	93	14	334	571086.2	732147.7	411	Antelope	Newpark/Jct
26	93	14	351	571484.0	732291.1		Antelope	Newpark/Jct
26	93	14	354	571086.1	731991.2		Antelope	Newpark/Jct
26	93	14	359	571628.0	731046.2		Antelope	Newpark/Jct
26	93	14	360	571533.4	731043.6		Antelope	Newpark/Jct
26	93	14	362	571229.3	731040.9		Antelope	Newpark/Jct
26	93	14	395	571828.6	731051.5		Antelope	Newpark/Jct
26	93	14	396	571731.1	731150.5		Antelope	Newpark/Jct
26	93	14	397	571733.0	731249.5		Antelope	Newpark/Jct
26	93	14	399	571440.9	732501.4		Antelope	Newpark/Jct
26	93	14	400	571391.2	732440.8		Antelope	Newpark/Jct
26	93	14	401	571284.3	731895.4		Antelope	Newpark/Jct
26	93	14	402	571184.9	731891.0		Antelope	Newpark/Jct
26	93	14	403	571086.1	731889.2		Antelope	Newpark/Jct
26	93	14	404	570984.3	732089.6		Antelope	Newpark/Jct
26	93	14	405	570989.6	732194.7		Antelope	Newpark/Jct
26	93	14	406	570988.3	732289.4		Antelope	Newpark/Jct
26	93	14	407	570991.5	732391.2		Antelope	Newpark/Jct
26	93	14	419	570482.9	732551.3		Antelope	Newpark/Jct
26	93	14	420	571091.6	732284.0		Antelope	Newpark/Jct
26	93	14	421	571091.1	732394.3		Antelope	Newpark/Jct
26	93	14	422	571091.2	732482.1		Antelope	Newpark/Jct
26	93	14	423	571039.2	732190.8		Antelope	Newpark/Jct
26	93	14	424	570984.0	732039.5		Antelope	Newpark/Jct
26	93	14	425	570998.6	732492.2		Antelope	Newpark/Jct
26	93	14	426	571003.7	732593.4		Antelope	Newpark/Jct
26	93	14	427	570881.9	732090.2		Antelope	Newpark/Jct
26	93	14	428	570888.2	732194.6		Antelope	Newpark/Jct
26	93	14	429	570889.2	732292.6		Antelope	Newpark/Jct
26	93	14	430	570888.2	732395.2		Antelope	Newpark/Jct
26	93	14	471	570394.8	732605.3		Antelope	Newpark/Jct
26	93	14	475	570594.5	732609.9		Antelope	Newpark/Jct
26	93	14	476	570597.3	732410.4		Antelope	Newpark/Jet
26	93	14	477	570700.2	732409.3		Antelope	Newpark/Jct
26	93	14	478	570797.0	732409.3		Antelope	Newpark/Jct
26	93	14	479	570795.5	732608.3		Antelope	Newpark/Jct
26	93	14	480	570893.4	732608.3		Antelope	Newpark/Jct
26	93	14	535	571797.3	732418.0		Antelope	Newpark/Jct
26	93	14	536	571797.0	732213.3		Antelope	Newpark/Jct
26	93	14	537	571696.0	732312.8		Antelope	Newpark/Jct
26	93	14	538	571597.5	732312.1		Antelope	Newpark/Jct
26	93	14	539	571597.9	732210.9		Antelope	Newpark/Jct
26	93	14	540	571495.3	732199.6		Antelope	Newpark/Jct
26	93	14	541	571399.7	732206.7		Antelope	Newpark/Jct
26	93	14	542	571401.5	732111.2		Antelope	Newpark/Jct
26	93	14	543	571297.4	732104.9		Antelope	Newpark/Jct
26	93	14	544	571299.6	732210.0		Antelope	Newpark/Jct
26	93	14	545	571200.3	732210.5		Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map. Hole 10	North NAD27	East NAD27	$\log 10$	Project	Area
26	93	14	546	571200.2	732109.5		Antelope	Newpark/Jct
26	93	14	547	571200.6	732010.2		Antelope	Newpark/Jct
26	93	14	549	570188.7	732601.6		Antelope	Newpark/Jct
26	93	14	550	570178.2	732490.4		Antelope	Newpark/Jct
26	93	14	567	571799.9	730815.7		Antelope	Newpark/Jct
26	93	14	575	571795.9	732319.0		Antelope	Newpark/Jct
26	93	14	576	571797.4	732115.8		Antelope	Newpark/Jct
26	93	14	577	571696.4	732210.5		Antelope	Newpark/Jct
26	93	14	578	571697.1	732110.1		Antelope	Newpark/Jct
26	93	14	579	571586.3	732113.9		Antelope	Newpark/Jct
-26	93	14	580	571504.2	732095.1		Antelope	Newpark/Jct
26	93	14	581	571739.1	732161.8		Antelope	Newpark/Jct
26	93	14	584	571737.4	732267.8		Antelope	Newpark/Jct
26	93	14	605	571553.4	732660.8	360	Antelope	Newpark/Jct
26	93	14	606	571498.2	732609.0	360	Antelope	Newpark/Jct
26	93	14	612	571450.5	732661.5	360	Antelope	Newpark/Jct
26	93	14	614	571354.7	732657.0	340	Antelope	Newpark/Jct
26	93	14	621	571154.7	732618.1	360	Antelope	Newpark/Jct
26	93	14	622	571146.6	732508.7	360	Antelope	Newpark/Jct
26	93	14	623	571149.9	732407.8	360	Antelope	Newpark/Jct
26	93	14	624	571103.5	732616.3	360	Antelope	Newpark/Jct
26	93	14	640	570900.2	732507.8	380	Antelope	Newpark/Jct
26	93	14	641	570797.7	732105.9	395	Antelope	Newpark/Jct
26	93	14	642	570801.7	732206.6	400	Antelope	Newpark/Jct
26	93	14	643	570801.2	732308.7	400	Antelope	Newpark/Jct
26	93	14	644	570798.1	732506.7	400	Antelope	Newpark/Jct
26	93	14	655	570698.6	732604.2	400	Antelope	Newpark/Jct
26	93	14	656	570700.2	732505.7	400	Antelope	Newpark/Jct
26	93	14	657	570701.2	732307.7	400	Antelope	Newpark/Jct
26	93	14	658	570601.5	732303.4	400	Antelope	Newpark/Jct
26	93	14	659	570600.1	732505.3	360	Antelope	Newpark/Jct
26	93	14	667	570497.8	732606.2	420	Antelope	Newpark/Jct
26	93	14	668	570501.5	732400.2	380	Antelope	Newpark/Jct
26	93	14	669	570502.0	732302.5	440	Antelope	Newpark/Jct
26	93	14	670	570401.8	732401.1	360	Antelope	Newpark/Jct
26	93	14	671	570403.7	732498.3	360	Antelope	Newpark/Jct
26	93	14	678	570300.8	732603.8	420	Antelope	Newpark/Jct
26	93	14	679	570302.8	732498.3	355	Antelope	Newpark/Jct
26	93	14	680	570300.9	732400.2	400	Antelope	Newpark/Jct
26	93	14	681	570195.4	732395.1	400	Antelope	Newpark/Jct
26	93	14	690	570087.7	732595.1	400	Antelope	Newpark/Jct
26	93	14	691	570101.2	732489.7	400	Antelope	Newpark/Jct
26	93	14	692	570097.7	732394.8	400	Antelope	Newpark/Jct
26	93	14	693	569979.8	732587.8	440	Antelope	Newpark/Jct
26	93	14	698	569882.4	732589.9	440	Antelope	Newpark/Jct
26	93	14	699	569781.9	732589.9	450	Antelope	Newpark/Jct
26	93	14	821	571790.9	731395.7	400	Antelope	Newpark/Jct
26	93	14	822	571792.6	731599.7	420	Antelope	Newpark/Jct
26	93	14	823	571789.0	731798.8	440	Antelope	Newpark/Jct
26	93	14	824	571790.6	731999.9	400	Antelope	Newpark/Jct
26	93	14	825	571590.3	731997.2	300	Antelope	Newpark/Jct
26	93	14	826	571592.4	731796.8	400	Antelope	Newpark/Jct
26	93	14	827	571594.5	731597.8	800	Antelope	Newpark/Jct
26	93	14	828	571399.8	731600.3	400	Antelope	Newpark/Jct

Table 2.6-1

Antelope and JAB Drill Holes

Twi	Rng	Sec	Map Hole ID	North NAD27	East NAD27	$\log \pi D$	Project	Area
26	93	14	829	571396.9	731799.6	400	Antelope	Newpark/Jct
26	93	14	830	571394.1	732000.0	500	Antelope	Newpark/Jct
26	93	14	831	571197.4	731798.4	400	Antelope	Newpark/Jct
26	93	14	832	571201.1	731599.8	420	Antelope	Newpark/Jct
26	93	14	833	571001.6	731600.5	380	Antelope	Newpark/Jct
26	93	14	834	571000.4	731799.7	300	Antelope	Newpark/Jct
26	93	14	835	570797.7	731598.7	380	Antelope	Newpark/Jct
26	93	14	836	570795.4	731800.1	400	Antelope	Newpark/Jct
26	93	14	837	570795.0	731999.4	400	Antelope	Newpark/Jct
26	93	14	838	570403.1	731594.5	600	Antelope	Newpark/Jct
26	93	14	839	570403.9	731994.1	540	Antelope	Newpark/Jct
26	93	14	840	570603.4	732196.1	400	Antelope	Newpark/Jct
26	93	14	841	570399.8	732193.1	557	Antelope	Newpark/Jct
26	93	14	842	570203.4	732197.0	600	Antelope	Newpark/Jct
26	93	14	843	569999.8	732201.5	400	Antelope	Newpark/Jct
26	93	14	855	570894.8	732000.9	160	Antelope	Newpark/Jct
26	93	14	856	570796.1	731899.9	160	Antelope	Newpark/Jct
26	93	14	857	570700.6	731805.0	160	Antelope	Newpark/Jct
26	93	14	858	570703.4	731905.0	160	Antelope	Newpark/Jct
26	93	14	859	570701.5	732004.0	160	Antelope	Newpark/Jct
26	93	14	860	570704.8	732107.7	360	Antelope	Newpark/Jct
26	93	14	861	570604.8	732105.4	360	Antelope	Newpark/Jct
26	93	14	862	570605.3	732000.8	360	Antelope	Newpark/Jct
26	93	14	863	570504.5	731800.7	320	Antelope	Newpark/Jct
26	93	14	864	570503.7	731900.5	320	Antelope	Newpark/Jct
26	93	14	865	570504.4	732005.4	320	Antelope	Newpark/Jct
26	93	14	866	570504.0	732104.5	320	Antelope	Newpark/Jct
26	93	14	867	570504.8	732207.6	320	Antelope	Newpark/Jct
26	93	14	868	570403.9	732096.0	320	Antelope	Newpark/Jct
26	93	14	869	570400.5	731897.2	320	Antelope	Newpark/Jct
26	93	14	870	570303.7	731900.0	380	Antelope	Newpark/Jct
26	93	14	871	570303.4	732096.6	380	Antelope	Newpark/Jct
26	93	14	872	570304.2	732299.0	380	Antelope	Newpark/Jct
26	93	14	873	570096.2	732292.4	380	Antelope	Newpark/Jct
26	93	14	874	570097.7	732191.0	400	Antelope	Newpark/Jct
26	93	14	875	570096.7	731992.6	380	Antelope	Newpark/Jct
26	93	14	876	570089.8	731786.8	380	Antelope	Newpark/Jct
26	93	14	877	569988.3	731890.4	380	Antelope	Newpark/Jct
26	93	14	878	569996.3	732098.0	380	Antelope	Newpark/Jct
26	93	14	879	569993.8	732397.8	380	Antelope	Newpark/Jct
26	93	14	880	569883.5	732488.2	420	Antelope	Newpark/Jct
26	93	14	881	569884.9	732285.9	420	Antelope	Newpark/Jct
26	93	14	882	569882.9	732091.0	420	Antelope	Newpark/Jct
26	93	14	883	569877.3	731883.0	420	Antelope	Newpark/Jct
26	93	14	925	569804.0	732089.5	400	Antelope	Newpark/Jct
26	93	14	926	569797.9	731661.2	400	Antelope	Newpark/Jct
26	93	14	927	569800.7	731266.5	500	Antelope	Newpark/Jct
26	93	14	928	569997.8	731099.7	440	Antelope	Newpark/Jct
26	93	14	929	569998.8	731492.6	440	Antelope	Newpark/Jct
26	93	14	930	570000.0	731687.0	400	Antelope	Newpark/Jct
26	93	14	931	570207.5	731899.5	400	Antelope	Newpark/Jct
26	93	14	932	570198.9	731494.3	440	Antelope	Newpark/Jct
26	93	14	933	570198.5	731193.8	440	Antelope	Newpark/Jct
26	93	14	934	570499.7	731092.1	440	Antelope	Newpark/Jct

Table 2.6-1
Antelope and JAB Drill Holes

TWn	Rng	Sec	Map Hole ID	North NAD27	East NAD27	Log 7 D	Project	Area
26	93	14	935	570501.6	731488.9	440	Antelope	Newpark/Jct
26	93	14	936	570506.4	731689.4	440	Antelope	Newpark/Jct
26	93	14	937	570696.3	731394.3	440	Antelope	Newpark/Jct
26	93	14	938	570696.8	731195.6	500	Antelope	Newpark/Jct
26	93	14	939	570890.0	731392.3	440	Antelope	Newpark/Jct
26	93	14	940	571001.1	731205.4	440	Antelope	Newpark/Jct
26	93	14	941	570892.6	730991.7	440	Antelope	Newpark/Jct
26	93	14	713-C	571852.0	732210.0	110	Antelope	Newpark/Jct
26	93	14	714-C	571296.0	732094.0	276	Antelope	Newpark/Jct
26	93	14	715-C	571513.0	732616.0	343	Antelope	Newpark/Jct
26	93	14	719-C	570889.0	732281.0	240	Antelope	Newpark/Jct
26	92	18	333	566975.0	738408.0		Antelope	Newpark/Jct
26	93	11	LX-57	568632.5	735206.6	500	Antelope	TetonExp/LEE
26	93	13	25-1	568986.9	733460.9	245	Antelope	TetonExp/LEE
26	93	13	25-2	568957.9	733461.2	594	Antelope	TetonExp/LEE
26	93	13	25-3	568927.9	733459.5	238	Antelope	TetonExp/LEE
26	93	13	25-4	568958.0	733376.2	298	Antelope	TetonExp/LEE
26	93	13	25-5	568981.8	733356.0	278	Antelope	TetonExp/LEE
26	93	13	25-6	568999.9	733362.8	338	Antelope	TetonExp/LEE
26	93	13	27-1	568964.2	733491.2	258	Antelope	TetonExp/LEE
26	93	13	27-2	568985.2	733492.0	339	Antelope	TetonExp/LEE
26	93	13	27-3	569143.3	733702.4	578	Antelope	TetonExp/LEE
26	93	13	29-1	568787.9	734551.0	280	Antelope	TetonExp/LEE
26	93	13	29-2	568723.9	734558.7	492	Antelope	TetonExp/LEE
26	93	13	29-3	568867.9	734551.2	521	Antelope	TetonExp/LEE
26	93	13	29-4	568946.9	734453.4	400	Antelope	TetonExp/LEE
26	93	13	29-5	568757.3	734595.3	550	Antelope	TetonExp/LEE
26	93	13	29-6	568708.5	734615.8	515	Antelope	TetonExp/LEE
26	93	13	29-7	568597.3	734591.9	540	Antelope	TetonExp/LEE
26	93	13	29-8	568649.4	734604.4	520	Antelope	TetonExp/LEE
26	93	13	29-9	568614.8	734639.8	520	Antelope	TetonExp/LEE
26	93	13	31-1	568745.2	735180.5	596	Antelope	TetonExp/LEE
26	93	13	31-2	567916.0	734763.8	600	Antelope	TetonExp/LEE
26	93	13	31-3	567916.2	734684.8	550	Antelope	TetonExp/LEE
26	93	13	31-4	568797.3	735190.9	488	Antelope	TetonExp/LEE
26	93	13	31-5	568817.3	735191.7	498	Antelope	TetonExp/LEE
26	93	13	31-6	568807.5	735207.8	479	Antelope	TetonExp/LEE
26	93	13	31-7	568802.7	735224.9	490	Antelope	TetonExp/LEE
26	93	13	32-1	567506.0	735260.0	599	Antelope	TetonExp/LEE
26	93	13	32-2	567688.0	735160.1	599	Antelope	TetonExp/LEE
26	93	13	33-1	568566.3	735291.3	580	Antelope	TetonExp/LEE
26	93	13	33-10	568500.8	735438.0	579	Antelope	TetonExp/LEE
26	93	13	33-11	568524.0	735452.7	520	Antelope	TetonExp/LEE
26	93	13	33-2	568634.6	735315.6	488	Antelope	TetonExp/LEE
26	93	13	33-3	568608.2	735375.9	519	Antelope	TetonExp/LEE
26	93	13	33-4	568624.7	735429.7	514	Antelope	TetonExp/LEE
26	93	13	33-6	568649.6	735321.4	515	Antelope	TetonExp/LEE
26	93	13	33-7	568620.5	735306.7	485	Antelope	TetonExp/LEE
26	93	13	33-8	568563.4	735400.3	598	Antelope	TetonExp/LEE
26	93	13	33-9	568512.9	735442.8	596	Antelope	TetonExp/LEE
26	93	13	35-1	567823.5	736402.8	498	Antelope	TetonExp/LEE
26	93	13	35-2	567933.4	736187.7	598	Antelope	TetonExp/LEE
26	93	13	35-3	567885.2	736173.2	559	Antelope	TetonExp/LEE
26	93	13	35-4	567909.3	736181.0	599	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole iD	North NAD27	East NAD27	Log TD	Project	Area
26	93	13	35-5	567903.8	736228.0	592	Antelope	TetonExp/LEE
26	93	13	37-1	567815.8	736526.9	620	Antelope	TetonExp/LEE
26	93	13	37-2	567765.9	736535.4	598	Antelope	TetonExp/LEE
26	93	13	37-3	567745.0	736647.6	647	Antelope	TetonExp/LEE
26	93	13	37-4	567744.5	736800.7	643	Antelope	TetonExp/LEE
26	93	13	37-5	567781.8	736533.3	664	Antelope	TetonExp/LEE
26	93	13	37-6	567788.2	736867.2	649	Antelope	TetonExp/LEE
26	93	13	37-7	567786.7	736915.2	624	Antelope	TetonExp/LEE
26	93	13	37-8	567757.7	736915.5	596	Antelope	TetonExp/LEE
26	93	13	38-1	567673.7	736813.4	599	Antelope	TetonExp/LEE
26	93	13	38-2	566938.7	736820.8	619	Antelope	TetonExp/LEE
26	93	13	38-4	567695.2	736867.2	597	Antelope	TetonExp/LEE
26	93	13	38-5	567745.2	736866.7	558	Antelope	TetonExp/LEE
26	93	13	38-6	567698.9	736737.1	594	Antelope	TetonExp/LEE
26	93	13	68-47	568795.5	734402.3	1317	Antelope	TetonExp/LEE
26	93	13	68-48	568726.9	735274.8	1276	Antelope	TetonExp/LEE
26	93	13	B-16	567842.1	733190.5	300	Antelope	TetonExp/LEE
26	93	13	B-17	567864.4	733418.3	280	Antelope	TetonExp/LEE
26	93	13	B-18	567867.9	733768.3	300	Antelope	TetonExp/LEE
26	93	13	B-19	567885.0	734077.1	360	Antelope	TetonExp/LEE
26	93	13	B-20	567897.2	734392.0	300	Antelope	TetonExp/LEE
26	93	13	B-21	567919.5	734712.8	360	Antelope	TetonExp/LEE
26	93	13	B-22	567927.6	735026.7	300	Antelope	TetonExp/LEE
26	93	13	B-23	568541.2	734582.5	360	Antelope	TetonExp/LEE
26	93	13	B-24	568532.5	734317.6	360	Antelope	TetonExp/LEE
26	93	13	B-25	568502.8	734044.9	360	Antelope	TetonExp/LEE
26	93	13	B-26	568472.2	733789.2	360	Antelope	TetonExp/LEE
26	93	13	B-27	568586.9	734849.1	400	Antelope	TetonExp/LEE
26	93	13	B-28	567961.3	735293.4	400	Antelope	TetonExp/LEE
26	93	13	B-29	568612.6	735120.8	400	Antelope	TetonExp/LEE
26	93	13	B-30	568637.1	735368.6	400	Antelope	TetonExp/LEE
26	93	13	B-31	568453.3	733505.3	400	Antelope	TetonExp/LEE
26	93	13	B-32	568418.0	733281.7	400	Antelope	TetonExp/LEE
26	93	13	B-33	568216.6	733730.7	400	Antelope	TetonExp/LEE
26	93	13	B-34	568220.0	733974.7	400	Antelope	TetonExp/LEE
26	93	13	B-35	568224.7	734239.7	400	Antelope	TetonExp/LEE
26	93	13	B-36	568250.2	734488.4	400	Antelope	TetonExp/LEE
26	93	13	B-37	568261.7	734734.3	400	Antelope	TetonExp/LEE
26	93	13	B-38	568276.4	735004.2	400	Antelope	TetonExp/LEE
26	93	13	B-39	568764.3	734397.2	400	Antelope	TetonExp/LEE
26	93	13	B-40	568730.3	733895.6	400	Antelope	TetonExp/LEE
26	93	13	B-41	568709.4	733615.8	400	Antelope	TetonExp/LEE
26	93	13	B-42	568752.8	734150.3	400	Antelope	TetonExp/LEE
26	93	13	B-43	568911.7	734039.7	400	Antelope	TetonExp/LEE
26	93	13	B-44	568936.3	734299.5	400	Antelope	TetonExp/LEE
26	93	13	B-45	568789.7	734637.0	400	Antelope	TetonExp/LEE
26	93	13	B-46	568954.0	734558.3	400	Antelope	TetonExp/LEE
26	93	13	B-47	568989.9	734849.0	400	Antelope	TetonExp/LEE
26	93	13	B-48	568884.1	733781.0	400	Antelope	TetonExp/LEE
26	93	13	8-49	568865.3	733501.2	400	Antelope	TetonExp/LEE
26	93	13	B-50	569043.1	733485.4	400	Antelope	TetonExp/LEE
26	93	13	B-51	568483.1	733878.1	400	Antelope	TetonExp/LEE
26	93	13	B-52	568495.9	733960.9	400	Antelope	TetonExp/LEE
26	93	13	B-53	568498.3	733998.9	400	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole, ID	North NAD27	East NAD27	$\log \text { TD }$	Project	Area
26	93	13	B-54	568478.6	733829.1	400	Antelope	TetonExp/LEE
26	93	13	B-55	568636.5	734219.5	400	Antelope	TetonExp/LEE
26	93	13	B-56	568698.4	734302.9	400	Antelope	TetonExp/LEE
26	93	13	B-57	568725.6	734427.6	400	Antelope	TetonExp/LEE
26	93	13	B-58	568790.7	734430.0	400	Antelope	TetonExp/LEE
26	93	13	B-59	568778.3	734200.1	400	Antelope	TetonExp/LEE
26	93	13	B-60	568535.7	734434.5	400	Antelope	TetonExp/LEE
26	93	13	B-61	568807.4	734403.8	400	Antelope	TetonExp/LEE
26	93	13	B-62	568546.7	734036.4	400	Antelope	TetonExp/LEE
26	93	13	B-63	568779.9	734357.1	400	Antelope	TetonExp/LEE
26	93	13	8-64	568433.2	733793.6	400	Antelope	TetonExp/LEE
26	93	13	B-65	568812.9	734449.8	400	Antelope	TetonExp/LEE
26	93	13	B-66	568776.9	733461.1	400	Antelope	TetonExp/LEE
26	93	13	B-67	568830.1	733483.5	400	Antelope	TetonExp/LEE
26	93	13	B-68	568764.1	734475.2	400	Antelope	TetonExp/LEE
26	93	13	B-69	568829.0	734364.6	362	Antelope	TetonExp/LEE
26	93	13	B-70	568902.5	733519.8	404	Antelope	TetonExp/LEE
26	93	13	B-71	568858.1	734375.3	404	Antelope	TetonExp/LEE
26	93	13	B-72	568736.1	734477.5	400	Antelope	TetonExp/LEE
26	93	13	B-73	568940.7	733544.4	420	Antelope	TetonExp/LEE
26	93	13	B-74	568872.4	734404.1	340	Antelope	TetonExp/LEE
26	93	13	B-75	568905.0	733472.8	420	Antelope	TetonExp/LEE
26	93	13	B-76	568863.8	733554.2	420	Antelope	TetonExp/LEE
26	93	13	B-77	568904.0	733570.8	420	Antelope	TetonExp/LEE
26	93	13	B-78	568852.2	733490.3	420	Antelope	TetonExp/LEE
26	93	13	B-79	569147.4	733711.3	420	Antelope	TetonExp/LEE
26	93	13	B-8	564217.8	735658.2	420	Antelope	TetonExp/LEE
26	93	13	B-80	569043.2	733692.4	420	Antelope	TetonExp/LEE
26	93	13	B-81	568947.1	733681.4	420	Antelope	TetonExp/LEE
26	93	13	B-82	568911.5	733618.7	420	Antelope	TetonExp/LEE
26	93	13	B-83	568850.0	733674.3	420	Antelope	TetonExp/LEE
26	93	13	B-84	568650.1	733679.4	420	Antelope	TetonExp/LEE
26	93	13	B-85	568550.2	733692.4	400	Antelope	TetonExp/LEE
26	93	13	B-86	568455.3	733701.3	495	Antelope	TetonExp/LEE
26	93	13	B-87	568289.2	733595.0	360	Antelope	TetonExp/LEE
26	93	13	B-88	568217.1	733880.7	360	Antelope	TetonExp/LEE
26	93	13	B-89	568105.8	733751.9	360	Antelope	TetonExp/LEE
26	93	13	B-90	568399.6	734128.9	360	Antelope	TetonExp/LEE
26	93	13	B-91	568655.0	734361.3	360	Antelope	TetonExp/LEE
26	93	13	B-92	568661.1	734479.3	360	Antelope	TetonExp/LEE
26	93	13	B-93	568401.7	734636.9	360	Antelope	TetonExp/LEE
26	93	13	B-94	568928.8	734745.6	360	Antelope	TetonExp/LEE
26	93	13	B-95	567879.7	735034.2	360	Antelope	TetonExp/LEE
26	93	13	B-96	567770.8	735045.3	360	Antelope	TetonExp/LEE
26	93	13	B-97	568684.0	733772.0	360	Antelope	TetonExp/LEE
26	93	13	B-98	568616.5	733824.7	380	Antelope	TetonExp/LEE
26	93	13	C-1	568919.9	733558.6	260	Antelope	TetonExp/LEE
26	93	13	C-2	568922.6	733533.6	250	Antelope	TetonExp/LEE
26	93	13	C-3	568947.5	733518.3	253	Antelope	TetonExp/LEE
26	93	13	C-4	568916.8	733548.7	237	Antelope	TetonExp/LEE
26	93	13	D1	568814.1	734436.9	300	Antelope	TetonExp/LEE
26	93	13	D-1-1A	568781.4	734406.1	340	Antelope	TetonExp/LEE
26	93	13	D-2	568803.5	734416.8	340	Antelope	TetonExp/LEE
26	93	13	D-3	568824.6	734428.6	340	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rug	Sec	Map Iole ID	North NAD27	East NAD27.	$\log I D$	Project	Area
26	93	13	D-4	568802.7	734436.9	317	Antelope	TetonExp/LEE
26	93	13	E-1	568448.2	733788.4	360	Antelope	TetonExp/LEE
26	93	13	E-10	568611.2	734383.8	377	Antelope	TetonExp/LEE
26	93	13	E-11	568481.8	734739.1	380	Antelope	TetonExp/LEE
26	93	13	E-15	569045.2	733389.4	323	Antelope	TetonExp/LEE
26	93	13	E-16	568070.3	734890.3	380	Antelope	TetonExp/LEE
26	93	13	E-17	568954.8	733356.3	443	Antelope	TetonExp/LEE
26	93	13	E-18	567912.0	734864.9	403	Antelope	TetonExp/LEE
26	93	13	E-19	568714.1	734075.7	380	Antelope	TetonExp/LEE
26	93	13	E-2	568774.0	733676.1	403	Antelope	TetonExp/LEE
26	93	13	E-20	568675.0	733973.1	380	Antelope	TetonExp/LEE
26	93	13	E-21	568641.2	733888.5	380	Antelope	TetonExp/LEE
26	93	13	E-22	568702.0	733972.8	380	Antelope	TetonExp/LEE
26	93	13	E-23	568670.2	733891.2	380	Antelope	TetonExp/LEE
26	93	13	E-24	568652.0	733973.4	385	Antelope	TetonExp/LEE
26	93	13	E-25	568741.0	734065.5	380	Antelope	TetonExp/LEE
26	93	13	E-26	568695.2	733891.9	380	Antelope	TetonExp/LEE
26	93	13	E-27	568689.0	734067.0	380	Antelope	TetonExp/LEE
26	93	13	E-28	568764.0	734065.2	262	Antelope	TetonExp/LEE
26	93	13	E-3	569142.7	733735.4	443	Antelope	TetonExp/LEE
26	93	13	E-4	568657.4	733711.3	380	Antelope	TetonExp/LEE
26	93	13	E-5	568975.4	733512.1	443	Antelope	TetonExp/LEE
26	93	13	E-6	568624.3	733606.6	360	Antelope	TetonExp/LEE
26	93	13	E-7	568527.7	734038.6	420	Antelope	TetonExp/LEE
26	93	13	E-8	568732.0	734163.6	420	Antelope	TetonExp/LEE
26	93	13	E-9	568788.0	734461.0	420	Antelope	TetonExp/LEE
26	93	13	F1	568911.1	736158.8	600	Antelope	TetonExp/LEE
26	93	13	F10	566542.0	736851.8	600	Antelope	TetonExp/LEE
26	93	13	F18	567746.3	736772.6	560	Antelope	TetonExp/LEE
26	93	13	F2	569217.7	736119.7	600	Antelope	TetonExp/LEE
26	93	13	F21	567961.1	736257.4	562	Antelope	TetonExp/LEE
26	93	13	F23	567779.3	736773.3	600	Antelope	TetonExp/LEE
26	93	13	F3	568624.4	736187.7	600	Antelope	TetonExp/LEE
26	93	13	F32C	567751.2	736769.6	600	Antelope	TetonExp/LEE
26	93	13	F33C	567737.2	736771.7	558	Antelope	TetonExp/LEE
26	93	13	F4	568336.7	736220.6	600	Antelope	TetonExp/LEE
26	93	13	F5	568044.0	736251.6	600	Antelope	TetonExp/LEE
26	93	13	F6	567717.2	736770.9	600	Antelope	TetonExp/LEE
26	93	13	F7	567423.5	736794.9	600	Antelope	TetonExp/LEE
26	93	13	F8	567134.6	736811.8	600	Antelope	TetonExp/LEE
26	93	13	F9	566844.8	736827.7	600	Antelope	TetonExp/LEE
26	93	13	G1	568684.1	735267.1	600	Antelope	TetonExp/LEE
26	93	13	G2	568389.1	735269.1	600	Antelope	TetonExp/LEE
26	93	13	G21	568701.1	735268.9	600	Antelope	TetonExp/LEE
26	93	13	G22	568668.1	735268.3	600	Antelope	TetonExp/LEE
26	93	13	G25	567607.1	735274.0	600	Antelope	TetonExp/LEE
26	93	13	G26	568652.1	735263.4	600	Antelope	TetonExp/LEE
26	93	13	G27	567562.1	735272.4	600	Antelope	TetonExp/LEE
26	93	13	G3	568100.1	735269.0	600	Antelope	TetonExp/LEE
26	93	13	G4	567843.1	735273.6	600	Antelope	TetonExp/LEE
26	93	13	G5	567583.1	735275.2	600	Antelope	TetonExp/LEE
26	93	13	G6	567248.2	735278.6	600	Antelope	TetonExp/LEE
26	93	13	G7	566954.2	735283.6	600	Antelope	TetonExp/LEE
26	93	13	G8	566678.2	735285.3	600	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

$\begin{array}{\|c\|} \hline \text { Twn } \\ \hline \end{array}$	Ring	Sec	$\text { Map inole } 1 \mathrm{~m}$	North NAD27	East NAD27	LogTD	Project	Area
26	93	13	GF19	565890.2	736382.4	600	Antelope	TetonExp/LEE
26	93	13	GF31	565680.8	736238.5	600	Antelope	TetonExp/LEE
26	93	13	GF33	566662.3	735885.5	600	Antelope	TetonExp/LEE
26	93	13	GF34	566957.2	735882.6	600	Antelope	TetonExp/LEE
26	93	13	GF35	567257.2	735882.5	600	Antelope	TetonExp/LEE
26	93	13	GF36	567544.2	735879.6	600	Antelope	TetonExp/LEE
26	93	13	GF9	565703.1	736666.3	600	Antelope	TetonExp/LEE
26	93	13	GH-2	566663.2	734689.5	600	Antelope	TetonExp/LEE
26	93	13	GH-3	566799.2	734393.1	600	Antelope	TetonExp/LEE
26	93	13	GH-4	566916.4	734113.9	600	Antelope	TetonExp/LEE
26	93	13	H-1	567560.0	733777.4	600	Antelope	TetonExp/LEE
26	93	13	H-2	567251.0	733774.5	600	Antelope	TetonExp/LEE
26	93	13	H-3	566962.1	733789.4	600	Antelope	TetonExp/LEE
26	93	13	H-4	566667.1	733795.4	600	Antelope	TetonExp/LEE
26	93	13	ICR-7C	568810.0	733675.0		Antelope	TetonExp/LEE
26	93	13	LEE-12	568721.8	732263.6	600	Antelope	TetonExp/LEE
26	93	13	LEE-79	568090.7	737308.2	600	Antelope	TetonExp/LEE
26	93	13	LEE-80	569501.9	732867.7	600	Antelope	TetonExp/LEE
26	93	13	LX-100	568348.2	735778.5	460	Antelope	TetonExp/LEE
26	93	13	LX-105	566847.2	735285.6	540	Antelope	TetonExp/LEE
26	93	13	LX-106	566680.2	735386.3	580	Antelope	TetonExp/LEE
26	93	13	LX-107	566752.2	735286.6	540	Antelope	TetonExp/LEE
26	93	13	LX-11	568663.2	734778.3	400	Antelope	TetonExp/LEE
26	93	13	LX-115	566677.7	735336.4	500	Antelope	TetonExp/LEE
26	93	13	LX-132	566925.3	733908.8	1540	Antelope	TetonExp/LEE
26	93	13	LX133	565038.0	735828.0		Antelope	TetonExp/LEE
26	93	13	LX-139	568299.3	735783.0	600	Antelope	TetonExp/LEE
26	93	13	LX-14	568718.5	734518.7	400	Antelope	TetonExp/LEE
26	93	13	LX-143	567810.4	736887.0	600	Antelope	TetonExp/LEE
26	93	13	LX-15	568672.7	734530.2	360	Antelope	TetonExp/LEE
26	93	13	LX-150	567824.2	736866.9	580	Antelope	TetonExp/LEE
26	93	13	LX-16	568731.6	735220.6	500	Antelope	TetonExp/LEE
26	93	13	LX-17	568614.6	734524.8	600	Antelope	TetonExp/LEE
26	93	13	LX-18	568679.2	734586.1	520	Antelope	TetonExp/LEE
26	93	13	LX-19	568622.9	734557.7	560	Antelope	TetonExp/LEE
26	93	13	LX-2	566922.5	734026.8	580	Antelope	TetonExp/LEE
26	93	13	LX-20	568828.7	735123.6	580	Antelope	TetonExp/LEE
26	93	13	LX-205	568322.3	735781.8	600	Antelope	TetonExp/LEE
26	93	13	LX-21	568726.1	735270.7	600	Antelope	TetonExp/LEE
26	93	13	LX-22	568619.0	734466.7	620	Antelope	TetonExp/LEE
26	93	13	LX-23	568776.6	735215.2	400	Antelope	TetonExp/LEE
26	93	13	LX-24	568614.5	734419.8	600	Antelope	TetonExp/LEE
26	93	13	LX-246	566626.5	735318.9	580	Antelope	TetonExp/LEE
26	93	13	LX-247	566716.2	735384.0	580	Antelope	TetonExp/LEE
26	93	13	LX-25	568667.6	734421.2	600	Antelope	TetonExp/LEE
26	93	13	LX-26	568821.5	734517.7	400	Antelope	TetonExp/LEE
26	93	13	LX-27	568869.0	734468.2	400	Antelope	TetonExp/LEE
26	93	13	LX-271	569601.2	733196.7	580	Antelope	TetonExp/LEE
26	93	13	LX-272	569552.3	733302.2	600	Antelope	TetonExp/LEE
26	93	13	LX-274	569494.5	733417.8	500	Antelope	TetonExp/LEE
26	93	13	LX-275	569439.6	733532.4	500	Antelope	TetonExp/LEE
26	93	13	LX-28	568828.1	735162.6	500	Antelope	TetonExp/LEE
26	93	13	LX-280	569618.8	733254.6	400	Antelope	TetonExp/LEE
26	93	13	LX-281	569582.9	733358.9	400	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map HOLC 10	North NAD27	East NAD27	10gTD	Project	Area
26	93	13	LX-287	568087.2	736764.2	640	Antelope	TetonExp/LEE
26	93	13	LX-288	566924.3	736282.9	560	Antelope	TetonExp/LEE
26	93	13	LX-289	567643.5	736202.6	560	Antelope	TetonExp/LEE
26	93	13	LX-29	568713.0	734365.8	400	Antelope	TetonExp/LEE
26	93	13	LX-290	567780.2	736564.3	400	Antelope	TetonExp/LEE
26	93	13	LX-297	567579.6	736117.3	400	Antelope	TetonExp/LEE
26	93	13	LX-30	568673.6	735320.2	500	Antelope	TetonExp/LEE
26	93	13	LX-302	566945.0	733844.0		Antelope	TetonExp/LEE
26	93	13	LX-304	568771.0	733781.0		Antelope	TetonExp/LEE
26	93	13	LX-31	568717.6	734921.7	400	Antelope	TetonExp/LEE
26	93	13	LX-32	568714.5	734315.7	400	Antelope	TetonExp/LEE
26	93	13	LX-321	566955.4	733818.5	600	Antelope	TetonExp/LEE
26	93	13	LX-322	566951.5	734029.5	600	Antelope	TetonExp/LEE
26	93	13	LX-328	567824.9	736830.8	500	Antelope	TetonExp/LEE
26	93	13	LX-33	568725.6	735315.7	500	Antelope	TetonExp/LEE
26	93	13	LX-334	566949.7	737020.7	700	Antelope	TetonExp/LEE
26	93	13	LX-335	566961.8	737222.6	700	Antelope	TetonExp/LEE
26	93	13	LX-336	566969.3	737370.5	500	Antelope	TetonExp/LEE
26	93	13	LX-339	566928.6	736616.9	700	Antelope	TetonExp/LEE
26	93	13	LX-34	568820.1	735266.7	500	Antelope	TetonExp/LEE
26	93	13	LX-340	566916.7	736426.0	700	Antelope	Teton Exp/LEE
26	93	13	LX-341	566910.7	736226.0	700	Antelope	TetonExp/LEE
26	93	13	LX-343	567870.0	736849.4		Antelope	TetonExp/LEE
26	93	13	LX-349	566868.4	737290.5	580	Antelope	TetonExp/LEE
26	93	13	LX-35	568717.0	734264.7	400	Antelope	TetonExp/LEE
26	93	13	LX-353	567872.5	736894.4	620	Antelope	TetonExp/LEE
26	93	13	LX-36	568769.5	734320.2	400	Antelope	TetonExp/LEE
26	93	13	LX-360	567876.9	736930.3	400	Antelope	TetonExp/LEE
26	93	13	LX-361	567777.2	736366.3	620	Antelope	TetonExp/LEE
26	93	13	LX-365	567878.3	736977.3	620	Antelope	TetonExp/LEE
26	93	13	LX-366	567709.2	736371.0	620	Antelope	TetonExp/LEE
26	93	13	LX-37	568766.0	734267.2	400	Antelope	TetonExp/LEE
26	93	13	LX-371	567874.8	737027.4	620	Antelope	TetonExp/LEE
26	93	13	LX-372	567966.8	737023.4	620	Antelope	TetonExp/LEE
26	93	13	LX-374	567684.9	736536.2	620	Antelope	TetonExp/LEE
26	93	13	LX-375	567637.3	736378.7	620	Antelope	TetonExp/LEE
26	93	13	LX-38	568585.0	735361.1	400	Antelope	TetonExp/LEE
26	93	13	LX-381	567962.7	737116.5	580	Antelope	TetonExp/LEE
26	93	13	LX-386	567581.4	736390.3	580	Antelope	TetonExp/LEE
26	93	13	LX-387	567662.1	736464.5	620	Antelope	TetonExp/LEE
26	93	13	LX-39	568867.5	734516.2	400	Antelope	TetonExp/LEE
26	93	13	LX-4	566669.5	734128.4	600	Antelope	TetonExp/LEE
26	93	13	LX-40	568729.2	735376.6	500	Antelope	TetonExp/LEE
26	93	13	LX-41	568656.9	734656.3	500	Antelope	TetonExp/LEE
26	93	13	LX-42	568778.6	735313.1	500	Antelope	TetonExp/LEE
26	93	13	LX-43	568667.6	734918.2	500	Antelope	TetonExp/LEE
26	93	13	LX-44	568611.0	734367.8	400	Antelope	TetonExp/LEE
26	93	13	LX-45	568570.5	734420.2	400	Antelope	TetonExp/LEE
26	93	13	LX-46	568826.7	735328.7	500	Antelope	TetonExp/LEE
26	93	13	LX-47	568763.0	734370.3	500	Antelope	TetonExp/LEE
26	93	13	LX-476	567921.3	737072.9	500	Antelope	TetonExp/LEE
26	93	13	LX-477	567671.5	736503.4	580	Antelope	TetonExp/LEE
26	93	13	LX-478	567591.0	736349.2	580	Antelope	TetonExp/LEE
26	93	13	LX-479	567462.1	735273.4	540	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	$\text { Map Hole } 1 \mathrm{D}$	North NAD 27	East NAD27	Log ID	Project	Area
26	93	13	LX-48	568701.8	735240.9	540	Antelope	TetonExp/LEE
26	93	13	LX-49	568841.0	734464.5	440	Antelope	TetonExp/LEE
26	93	13	LX-498	567501.7	735228.0	540	Antelope	TetonExp/LEE
26	93	13	LX-499	567504.5	735317.0	540	Antelope	TetonExp/LEE
26	93	13	LX-5	567028.6	734037.7	400	Antelope	TetonExp/LEE
26	93	13	LX-50	568624.9	735342.7	600	Antelope	TetonExp/LEE
26	93	13	LX-51	568816.3	734491.7	600	Antelope	TetonExp/LEE
26	93	13	LX-510	566798.0	737242.2	600	Antelope	TetonExp/LEE
26	93	13	LX-52	568835.8	734442.5	600	Antelope	TetonExp/LEE
26	93	13	LX-525	567867.8	737127.4	594	Antelope	TetonExp/LEE
26	93	13	LX-526	567868.9	737229.4	574	Antelope	TetonExp/LEE
26	93	13	LX-527	567479.4	736396.3	595	Antelope	TetonExp/LEE
26	93	13	LX-528	567487.5	736299.2	531	Antelope	TetonExp/LEE
26	93	13	LX-53	568672.9	735243.2	600	Antelope	TetonExp/LEE
26	93	13	LX-536	567378.5	736405.3	600	Antelope	TetonExp/LEE
26	93	13	LX-537	567490.6	736515.2	548	Antelope	TetonExp/LEE
26	93	13	LX-538	566615.9	737039.1	529	Antelope	TetonExp/LEE
26	93	13	LX-54	568666.0	734271.2	540	Antelope	TetonExp/LEE
26	93	13	LX-540	567760.9	737130.5	548	Antelope	TetonExp/LEE
26	93	13	LX-541	567759.8	737226.5	533	Antelope	TetonExp/LEE
26	93	13	LX-543	566619.9	736939.0	593	Antelope	TetonExp/LEE
26	93	13	LX-55	568710.5	734214.8	540	Antelope	TetonExp/LEE
26	93	13	LX-555	567676.9	737135.4	594	Antelope	TetonExp/LEE
26	93	13	LX-556	567659.9	737233.5	594	Antelope	TetonExp/LEE
26	93	13	LX-557	567398.7	736525.1	594	Antelope	TetonExp/LEE
26	93	13	LX-558	567593.0	736253.2	593	Antelope	TetonExp/LEE
26	93	13	LX-559	566712.9	737140.1	593	Antelope	TetonExp/LEE
26	93	13	LX-56	568677.2	735173.2	500	Antelope	TetonExp/LEE
26	93	13	LX-560	566713.9	737043:1	585	Antelope	TetonExp/LEE
26	93	13	LX-561	566711.9	736942.1	593	Antelope	TetonExp/LEE
26	93	13	LX-562	567390.7	736624.2	594	Antelope	TetonExp/LEE
26	93	13	LX-563	567381.5	736306.3	594	Antelope	TetonExp/LEE
26	93	13	LX-564	567658.9	737333.5	593	Antelope	TetonExp/LEE
26	93	13	LX-565	567558.9	737331.6	593	Antelope	TetonExp/LEE
26	93	13	LX-566	566711.9	737241.1	551	Antelope	TetonExp/LEE
26	93	13	LX-567	567492.9	736247.2	540	Antelope	TetonExp/LEE
26	93	13	LX-568	567596.0	736151.1	600	Antelope	TetonExp/LEE
26	93	13	LX-569	566808.9	737142.1	574	Antelope	TetonExp/LEE
26	93	13	LX-570	566811.9	737038.1	573	Antelope	TetonExp/LEE
26	93	13	LX-571	566815.9	736935.0	574	Antelope	TetonExp/LEE
26	93	13	LX-578	566707.0	737343.2	600	Antelope	TetonExp/LEE
26	93	13	LX-579	566715.0	736849.1	570	Antelope	TetonExp/LEE
26	93	13	LX-58	568660.5	734319.3	400	Antelope	TetonExp/LEE
26	93	13	LX-580	567591.6	736512.2	574	Antelope	TetonExp/LEE
26	93	13	LX-581	567694.0	736250.1	595	Antelope	TetonExp/LEE
26	93	13	LX-59	568659.5	734218.3	400	Antelope	TetonExp/LEE
26	93	13	LX-593	566914.8	736925.0	591	Antelope	TetonExp/LEE
26	93	13	LX-594	566905.9	737135.1	591	Antelope	TetonExp/LEE
26	93	13	LX-595	566902.9	737238.2	592	Antelope	TetonExp/LEE
26	93	13	LX-596	566901.9	737336.2	564	Antelope	TetonExp/LEE
26	93	13	LX-597	567565.9	737233.5	578	Antelope	TetonExp/LEE
26	93	13	LX-598	567463.9	737234.5	578	Antelope	TetonExp/LEE
26	93	13	LX-599	567344.8	737222.7	593	Antelope	TetonExp/LEE
26	93	13	LX-60	568780.1	735264.1	500	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

$1 w n$	Rug	Sec	Map Hole ID	North NAD27,	East NAD27	LogID	Project	Area
26	93	13	LX-600	567261.9	737234.6	591	Antelope	TetonExp/LEE
26	93	13	LX-601	567162.9	737233.5	590	Antelope	TetonExp/LEE
26	93	13	LX-602	567062.9	737233.6	593	Antelope	TetonExp/LEE
26	93	13	LX-604	567284.9	737433.3	596	Antelope	TetonExp/LEE
26	93	13	LX-605	567256.8	737321.6	598	Antelope	TetonExp/LEE
26	93	13	LX-606	567267.9	737135.5	598	Antelope	TetonExp/LEE
26	93	13	LX-607	567926.3	736973.8	596	Antelope	TetonExp/LEE
26	93	13	LX-608	567921.3	736876.9	597	Antelope	TetonExp/LEE
26	93	13	LX-609	567915.3	736775.9	593	Antelope	TetonExp/LEE
26	93	13	LX-61	568715.0	734467.7	400	Antelope	TetonExp/LEE
26	93	13	LX-610	567813.4	736783.0	400	Antelope	TetonExp/LEE
26	93	13	LX-611	567280.9	737033.3	598	Antelope	TetonExp/LEE
26	93	13	LX-612	567279.8	736931.4	597	Antelope	TetonExp/LEE
26	93	13	LX-613	567272.9	736835.4	600	Antelope	TetonExp/LEE
26	93	13	LX-614	567275.8	736733.4	594	Antelope	TetonExp/LEE
26	93	13	LX-615	567279.8	736634.3	598	Antelope	TetonExp/LEE
26	93	13	LX-616	568022.3	736874.9	598	Antelope	TetonExp/LEE
26	93	13	LX-617	568122.3	736873.8	598	Antelope	TetonExp/LEE
26	93	13	LX-618	568223.3	736869.8	598	Antelope	TetonExp/LEE
26	93	13	LX-619	568325.1	736852.8	598	Antelope	TetonExp/LEE
26	93	13	LX-62	568656.0	734165.3	400	Antelope	TetonExp/LEE
26	93	13	LX-623	567500.0	736056.1	596	Antelope	TetonExp/LEE
26	93	13	LX-624	567599.0	736054.1	598	Antelope	TetonExp/LEE
26	93	13	LX-625	567697.9	736042.1	598	Antelope	TetonExp/LEE
26	93	13	LX-626	567488.7	736714.2	598	Antelope	TetonExp/LEE
26	93	13	LX-627	567586.7	736715.2	596	Antelope	TetonExp/LEE
26	93	13	LX-628	567762.9	737326.5	596	Antelope	TetonExp/LEE
26	93	13	LX-629	567782.1	736164.2	596	Antelope	TetonExp/LEE
26	93	13	LX-63	568566.1	734372.2	400	Antelope	TetonExp/LEE
26	93	13	LX-630	567780.2	736267.3	596	Antelope	TetonExp/LEE
26	93	13	LX-634	567640.6	736610.7	640	Antelope	TetonExp/LEE
26	93	13	LX-636	567178.9	736639.4	598	Antelope	TetonExp/LEE
26	93	13	LX-637	567276.9	736536.4	592	Antelope	TetonExp/LEE
26	93	13	LX-64	568905.5	734511.8	400	Antelope	TetonExp/LEE
26	93	13	LX-649	567177.9	736736.4	595	Antelope	TetonExp/LEE
26	93	13	LX-65	568874.1	735267.2	600	Antelope	TetonExp/LEE
26	93	13	LX-67	568583.6	735315.1	500	Antelope	TetonExp/LEE
26	93	13	LX-68	568649.6	734031.4	400	Antelope	TetonExp/LEE
26	93	13	LX-69	568519.0	734069.7	400	Antelope	TetonExp/LEE
26	93	13	LX-70	568872.6	735220.2	500	Antelope	TetonExp/LEE
26	93	13	LX-72	568469.0	734071.2	400	Antelope	TetonExp/LEE
26	93	13	LX-73	568707.2	735181.9	500	Antelope	TetonExp/LEE
26	93	13	LX-74	568621.1	735169.7	500	Antelope	TetonExp/LEE
26	93	13	LX-75	568651.5	735212.4	500	Antelope	TetonExp/LEE
26	93	13	LX-76	568753.1	735269.4	500	Antelope	TetonExp/LEE
26	93	13	LX-8	566681.4	734018.2	600	Antelope	TetonExp/LEE
26	93	13	LX-9	566916.1	734081.9	580	Antelope	TetonExp/LEE
26	93	13	LX-90	566860.4	734211.5	580	Antelope	TetonExp/LEE
26	93	13	LX-93	567589.2	735381.2	580	Antelope	TetonExp/LEE
26	93	13	LX-98	568142.5	735805.6	580	Antelope	TetonExp/LEE
26	93	13	N-1	568463.9	732273.2	600	Antelope	TetonExp/LEE
26	93	14	68-45	568604.0	734449.1	1414	Antelope	TetonExp/LEE
26	93	14	70-49	571847.3	732658.4	360	Antelope	TetonExp/LEE
26	93	14	70-51	571766.6	732602.8	360	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	Map Hole 10	North NAD27	East NAD27	Log TD	Project	Area
26	93	14	70-53	571684.1	732545.6	350	Antelope	TetonExp/LEE
26	93	14	A-1	568561.0	731792.2	300	Antelope	TetonExp/LEE
26	93	14	A-10	568943.7	731166.3	300	Antelope	TetonExp/LEE
26	93	14	A-11	568695.2	731022.8	300	Antelope	TetonExp/LEE
26	93	14	A-12	568545.4	731140.3	300	Antelope	TetonExp/LEE
26	93	14	A-13	568819.7	732452.6	300	Antelope	TetonExp/LEE
26	93	14	A-15	568587.6	731158.9	292	Anteiope	TetonExp/LEE
26	93	14	A-16	568554.9	731090.2	300	Antelope	TetonExp/LEE
26	93	14	A-17	568533.9	731184.4	300	Antelope	TetonExp/LEE
26	93	14	A-18	568593.4	731239.8	300	Antelope	TetonExp/LEE
26	93	14	A-19	568451.0	731198.2	300	Antelope	TetonExp/LEE
26	93	14	A-2	568715.0	731717.0	300	Antelope	TetonExp/LEE
26	93	14	A-20	568500.4	731041.7	300	Antelope	TetonExp/LEE
26	93	14	A-21	568444.1	731012.3	300	Antelope	TetonExp/LEE
26	93	14	A-22	568410.7	731067.6	300	Antelope	TetonExp/LEE
26	93	14	A-23	568346.2	730920.3	300	Antelope	TetonExp/LEE
26	93	14	A-24	568246.2	731019.3	300	Antelope	TetonExp/LEE
26	93	14	A-25	568132.1	731110.5	300	Antelope	TetonExp/LEE
26	93	14	A-26	568582.0	730895.9	300	Antelope	TetonExp/LEE
26	93	14	A-27	568602.1	731403.7	300	Antelope	TetonExp/LEE
26	93	14	A-28	567973.5	730855.0	300	Antelope	TetonExp/LEE
26	93	14	A-29	568166.5	730658.1	300	Antelope	TetonExp/LEE
26	93	14	A-3	568462.2	731612.1	270	Antelope	TetonExp/LEE
26	93	14	A-30	567829.4	731141.5	300	Antelope	TetonExp/LEE
26	93	14	A-31	568374.7	730474.0	300	Antelope	TetonExp/LEE
26	93	14	A-32	568538.0	730202.3	300	Antelope	TetonExp/LEE
26	93	14	A-33	568666.8	730479.0	300	Antelope	TetonExp/LEE
26	93	14	A-34	568944.0	730501.2	300	Antelope	TetonExp/LEE
26	93	14	A-35	568821.1	730219.5	300	Antelope	TetonExp/LEE
26	93	14	A-36	568113.5	730354.6	300	Antelope	TetonExp/LEE
26	93	14	A-37	567934.5	730560.4	300	Antelope	TetonExp/LEE
26	93	14	A-38	567755.5	730759.2	300	Antelope	TetonExp/LEE
26	93	14	A-39	568235.1	730118.4	300	Antelope	TetonExp/LEE
26	93	14	A-4	568329.6	731355.5	300	Antelope	TetonExp/LEE
26	93	14	A-40	567577.7	730971.0	300	Antelope	TetonExp/LEE
26	93	14	A-41	567419.9	731191.7	300	Antelope	TetonExp/LEE
26	93	14	A-42	567384.5	731750.0	300	Antelope	TetonExp/LEE
26	93	14	A-43	567401.6	731459.8	300	Antelope	TetonExp/LEE
26	93	14	A-44	567352.7	732261.4	300	Antelope	TetonExp/LEE
26	93	14	A-45	567355.2	732011.3	300	Antelope	TetonExp/LEE
26	93	14	A-46	567247.1	732498.5	300	Antelope	TetonExp/LEE
26	93	14	A-47	567587.1	732594.0	300	Antelope	TetonExp/LEE
26	93	14	A-48	567832.5	732637.6	300	Antelope	TetonExp/LEE
26	93	14	A-49	568117.8	732666.7	300	Antelope	TetonExp/LEE
26	93	14	A-5	568466.4	731834.1	300	Antelope	TetonExp/LEE
26	93	14	A-6	568284.1	731903.0	300	Antelope	TetonExp/LEE
26	93	14	A-7	568853.7	731562.2	300	Antelope	TetonExp/LEE
26	93	14	A-8	568821.6	731353.5	300	Antelope	TetonExp/LEE
26	93	14	A-9	568332.8	731776.5	300	Antelope	TetonExp/LEE
26	93	14	B-11	567351.7	732059.4	300	Antelope	TetonExp/LEE
26	93	14	B-12	567355.8	731973.3	300	Antelope	TetonExp/LEE
26	93	14	B-13	567455.1	732006.3	300	Antelope	TetonExp/LEE
26	93	14	B-14	567408.2	732011.8	296	Antelope	TetonExp/LEE
26	93	14	B-15	567832.1	732893.6	296	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	North NAD27	East NAD27	Log TD	Project	Area
26	93	14	E-12	568756.1	732297,	280	Antelope	TetonExp/LEE
26	93	14	E-13	568620.4	731240.5	260	Antelope	TetonExp/LEE
26	93	14	E-14	568837.5	731349.3	180	Antelope	TetonExp/LEE
26	93	14	1-1	568466.7	731072.1	600	Antelope	TetonExp/LEE
26	93	14	1-2	567709.7	731075.7	600	Antelope	TetonExp/LEE
26	93	14	I-3	566948.7	731078.4	600	Antelope	TetonExp/LEE
26	93	14	ICR-10	568826.6	731352.5	180	Antelope	TetonExp/LEE
26	93	14	ICR-11	568807.6	731354.6	180	Antelope	TetonExp/LEE
26	93	14	ICR-12	568567.5	731151.1	250	Antelope	TetonExp/LEE
26	93	14	ICR-13	568764.7	732155.1	260	Antelope	TetonExp/LEE
26	93	14	ICR-8	568817.7	731363.5	180	Antelope	TetonExp/LEE
26	93	14	ICR-9	568539.6	731161.3	220	Antelope	TetonExp/LEE
26	93	14	J-1	568758.6	729866.1	600	Antelope	TetonExp/LEE
26	93	14	J-2	568069.6	729869.0	600	Antelope	TetonExp/LEE
26	93	14	J-3	567260.6	729877.2	600	Antelope	TetonExp/LEE
26	93	14	J-4	566581.7	729888.0	600	Antelope	TetonExp/LEE
26	93	14	K-1	568439.5	728671.2	600	Antelope	TetonExp/LEE
26	93	14	K-2	567686.5	728674.8	600	Antelope	TetonExp/LEE
26	93	14	K-3	566941.5	728682.4	600	Antelope	TetonExp/LEE
26	93	14	L-1	568733.3	727467.2	600	Antelope	TetonExp/LEE
26	93	14	L-10	568697.3	727459.6	600	Antelope	TetonExp/LEE
26	93	14	L-11	568667.7	727501.9	550	Antelope	TetonExp/LEE
26	93	14	L-2	568038.4	727475.2	600	Antelope	TetonExp/LEE
26	93	14	L-3	567246.4	727480.2	600	Antelope	TetonExp/LEE
26	93	14	L-4	566560.5	727490.1	600	Antelope	TetonExp/LEE
26	93	14	L-9	568765.3	727466.9	600	Antelope	TetonExp/LEE
26	93	14	LEE-1	568667.7	732255.1	600	Antelope	TetonExp/LEE
26	93	14	LEE-10	568998.7	732159.8	600	Antelope	TetonExp/LEE
26	93	14	LEE-11	568989.2	732299.9	600	Antelope	TetonExp/LEE
26	93	14	LEE-2	568649.1	732399.3	600	Antelope	TetonExp/LEE
26	93	14	LEE-3	568665.2	732105.1	600	Antelope	TetonExp/LEE
26	93	14	LEE-4	568512.7	732253.7	275	Antelope	TetonExp/LEE
26	93	14	LEE-5	568811.6	732241.7	275	Antelope	TetonExp/LEE
26	93	14	LEE-6	568372.7	732262.1	300	Antelope	TetonExp/LEE
26	93	14	LEE-7	568662.7	731960.1	265	Antelope	TetonExp/LEE
26	93	14	LEE-8	568633.5	732538.5	600	Antelope	TetonExp/LEE
26	93	14	LEE-9	568799.5	731936.8	275	Antelope	TetonExp/LEE
26	93	14	LX-142	568705.7	727499.5	980	Antelope	TetonExp/LEE
26	93	14	LX-152	568753.7	727507.0	600	Antelope	TetonExp/LEE
26	93	14	LX-160	568795.8	727512.6	480	Antelope	TetonExp/LEE
26	93	14	LX-164	568774.8	727510.8	480	Antelope	TetonExp/LEE
26	93	14	LX303	568693.0	727427.0		Antelope	TetonExp/LEE
26	93	14	LX-320	568739.9	727426.1	600	Antelope	TetonExp/LEE
26	93	14	LX-633	565359.6	736920.7	640	Antelope	TetonExp/LEE
26	93	14	LX-641	568844.8	727515.1	500	Antelope	TetonExp/LEE
26	93	14	LX-650	568690.4	727473.6	500	Antelope	TetonExp/LEE
26	93	14	LX-651	568753.3	727558.0	500	Antelope	TetonExp/LEE
26	93	14	LX-654	568644.9	727428.1	500	Antelope	TetonExp/LEE
26	93	14	LX-655	568458.7	726410.9	660	Antelope	TetonExp/LEE
26	93	14	LX-659	568246.7	726217.1	600	Antelope	TetonExp/LEE
26	93	14	LX-66	568662.1	735065.3	500	Antelope	TetonExp/LEE
26	93	14	LX-661	568845.3	727564.1	500	Antelope	TetonExp/LEE
26	93	14	LX-662	568588.6	728187.7	660	Antelope	TetonExp/LEE
26	93	14	LX-663	568569.8	730485.0	660	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

TWn	Rug	Sec	Map Hole ID	North NAD27	East NAD27.	$\log 7 D$	Project	Area
26	93	14	LX-664	568453.7	728093.1	657	Antelope	TetonExp/LEE
26	93	14	LX-665	568789.5	728667.7	660	Ântelope	TetonExp/LEE
26	93	14	LX-666	568066.4	728661.0	660	Antelope	TetonExp/LEE
26	93	14	LX-667	568429.6	729870.4	660	Antelope	TetonExp/LEE
26	93	14	LX-668	567674.6	729878.0	660	Antelope	TetonExp/LEE
26	93	14	LX-669	568109.8	731077.7	660	Antelope	TetonExp/LEE
26	93	14	LX-71	568617.9	734062.7	400	Antelope	TetonExp/LEE
26	93	14	$\mathrm{N}-2$	568237.8	732268.4	600	Antelope	TetonExp/LEE
26	93	14	N-3	567977.8	732269.1	600	Antelope	TetonExp/LEE
26	93	14	N-4	567715.9	732276.7	600	Antelope	TetonExp/LEE
26	93	14	N-5	567469.8	732275.2	600	Antelope	TetonExp/LEE
26	93	14	N-6	567236.9	732278.6	600	Antelope	TetonExp/LEE
26	93	14	N-7	566945.9	732284.5	600	Antelope	TetonExp/LEE
26	93	15	72-241	571535.9	732394.4	380	Antelope	TetonExp/LEE
26	93	15	72-243	571438.9	732349.6	380	Antelope	TetonExp/LEE
26	93	15	72-246	567061.7	738352.6	460	Antelope	TetonExp/LEE
26	93	15	72-247	567064.1	738304.4	460	Antelope	TetonExp/LEE
26	93	15	72-257	565764.1	736502.7	495	Antelope	TetonExp/LEE
26	93	15	ICR4	568436.0	726302.0		Antelope	TetonExp/LEE
26	93	15	ICR5	568239.0	726317.0		Antelope	TetonExp/LEE
26	93	15	LX-151	568312.9	726338.4	600	Antelope	TetonExp/LEE
26	93	15	LX-162	568467.5	726299.8	600	Antelope	TetonExp/LEE
26	93	15	LX-346	568573.6	727297.8	800	Antelope	TetonExp/LEE
26	93	15	LX-347	568424.0	727039.0	800	Antelope	TetonExp/LEE
26	93	15	LX-348	568276.0	727041.8	800	Antelope	TetonExp/LEE
26	93	15	LX354	568661.0	727343.0		Antelope	TetonExp/LEE
26	93	15	LX-355	568488.5	727088.7	620	Antelope	TetonExp/LEE
26	93	15	LX-444	568534.4	726383.2	480	Antelope	TetonExp/LEE
26	93	15	LX-454	568641.4	726381.1	500	Antelope	TetonExp/LEE
26	93	15	LX-652	568472.6	727298.8	500	Antelope	TetonExp/LEE
26	93	15	LX-660	568244.6	726410.1	660	Antelope	TetonExp/LEE
26	93	15	LX-670	568532.2	727354.2	600	Antelope	TetonExp/LEE
26	93	15	LX-671	568412.0	727238.4	600	Antelope	TetonExp/LEE
26	93	15	LX-672	568403.5	727380.5	600	Antelope	TetonExp/LEE
26	93	15	LX-673	568164.0	726446.9	600	Antelope	TetonExp/LEE
26	93	15	LX-674	567986.3	725981.7	600	Antelope	TetonExp/LEE
26	93	15	LX-675	568081.3	725977.7	600	Antelope	TetonExp/LEE
26	93	15	LX-676	568496.9	727327.6	600	Antelope	TetonExp/LEE
26	93	15	M-1	568336.6	726310.1	806	Antelope	TetonExp/LEE
26	93	15	M-10	568286.7	726313.7	600	Antelope	TetonExp/LEE
26	93	15	M-11	568187.7	726320.7	600	Antelope	TetonExp/LEE
26	93	15	M-12	568145.0	726351.1	600	Antelope	TetonExp/LEE
26	93	15	M-2	567702.1	726260.6	800	Antelope	TetonExp/LEE
26	93	15	M-3	566893.5	726303.7	800	Antelope	TetonExp/LEE
26	93	15	M-9	568386.6	726305.6	800	Antelope	TetonExp/LEE
26	93	22	14-1	563905.1	725845.9	500	Antelope	TetonExp/LEE
26	93	22	33-5	562525.1	725695.9	515	Antelope	TetonExp/LEE
26	93	22	LX-412	563309.8	726244.9	640	Antelope	TetonExp/LEE
26	93	22	LX-413	563356.3	726199.4	640	Antelope	TetonExp/LEE
26	93	22	LX-430	563635.0	726760.6	500	Antelope	TetonExp/LEE
26	93	22	LX-445	563300.6	726325.0	480	Antelope	TetonExp/LEE
26	93	22	LX-446	563242.2	726186.6	480	Antelope	TetonExp/LEE
26	93	22	LX-458	564744.3	726785.4	500	Antelope	TetonExp/LEE
-26	93	22	LX-459	563893.7	726236.0	500	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	North NAD27	East NAD27	Log TD	Prolect	Area
26	93	22	LX-460	563650.0	726265.5	600	Antelope	TetonExp/LEE
26	93	22	LX-461	563118.0	726169.8	600	Antelope	TetonExp/LEE
26	93	22	LX-467	566166.3	726785.1	500	Antelope	TetonExp/LEE
26	93	22	LX-469	563665.1	726378.3	500	Antelope	TetonExp/LEE
26	93	22	LX-470	563111.4	726108.9	500	Antelope	TetonExp/LEE
26	93	22	LX-471	563131.3	726294.7	500	Antelope	Teton Exp/LEE
26	93	22	LX-472	562990.9	726163.1	500	Antelope	TetonExp/LEE
26	93	22	M-4	566161.2	726271.1	800	Antelope	TetonExp/LEE
26	93	22	M-5	565389.6	726315.9	800	Antelope	TetonExp/LEE
26	93	22	M-6	564663.3	726289.2	800	Antelope	TetonExp/LEE
26	93	22	M-7	563889.8	726341.0	800	Antelope	TetonExp/LEE
26	93	22	M-8	563305.3	726201.9	800	Antelope	TetonExp/LEE
26	93	23	A-50	566278.3	732328.2	300	Antelope	Teton Exp/LEE
26	93	23	A-51	566275.4	732044.2	300	Antelope	TetonExp/LEE
26	93	23	A-52	566286.9	732588.2	300	Antelope	TetonExp/LEE
26	93	23	K-4	566180.6	728691.0	600	Antelope	TetonExp/LEE
26	93	23	K-5	565428.6	728698.6	600	Antelope	TetonExp/LEE
26	93	23	K-6	564682.7	728707.2	600	Antelope	TetonExp/LEE
26	93	23	K-7	563933.7	728712.7	600	Antelope	TetonExp/LEE
26	93	23	K-8	563342.7	728712.7	600	Antelope	TetonExp/LEE
26	93	23	L-5	565740.5	727495.4	600	Antelope	TetonExp/LEE
26	93	23	L-6	565050.6	727504.4	600	Antelope	TetonExp/LEE
26	93	23	L-7	564238.6	727512.6	600	Antelope	TetonExp/LEE
26	93	23	L-8	563563.6	727517.4	600	Antelope	TetonExp/LEE
26	93	23	LX-188	565411.8	731094.9	560	Antelope	TetonExp/LEE
26	93	23	LX-368	564829.8	732674.9	620	Antelope	TetonExp/LEE
26	93	23	LX-369	566200.3	731137.0	620	Antelope	TetonExp/LEE
26	93	23	LX-370	566192.3	731043.0	620	Antelope	TetonExp/LEE
26	93	23	LX-376	563702.8	732683.3	620	Antelope	TetonExp/LEE
26	93	23	LX-385	566230.3	731040.7	580	Antelope	TetonExp/LEE
26	93	23	LX-403	563610.2	731934.1	640	Antelope	TetonExp/LEE
26	93	23	LX-404	563573.5	731167.5	640	Antelope	TetonExp/LEE
26	93	23	LX-417	563589.8	729718.2	500	Antelope	TetonExp/LEE
26	93	23	LX-418	564512.1	733899.1	500	Antelope	TetonExp/LEE
26	93	23	LX-428	563788.8	732680.4	640	Antelope	TetonExp/LEE
26	93	23	LX-429	562903.5	732759.3	600	Antelope	TetonExp/LEE
26	93	23	LX-431	563610.8	728232.0	400	Antelope	TetonExp/LEE
26	93	23	LX-432	564770.5	732055.4	400	Antelope	TetonExp/LEE
26	93	23	LX-433	564685.6	731179.3	400	Antelope	TetonExp/LEE
26	93	23	LX-434	564735.2	730446.7	400	Antelope	TetonExp/LEE
26	93	23	LX-435	564743.3	729759.6	400	Antelope	TetonExp/LEE
26	93	23	LX-449	563885.8	732680.4	580	Antelope	TetonExp/LEE
26	93	23	LX-453	563795.3	732729.3	500	Antelope	TetonExp/LEE
26	93	23	LX-457	564733.6	728100.6	500	Antelope	TetonExp/LEE
26	93	23	LX-462	564796.3	730447.1	480	Antelope	TetonExp/LEE
26	93	23	LX-463	564732.7	730389.7	480	Antelope	TetonExp/LEE
26	93	23	LX-464	564676.2	730440.3	480	Antelope	TetonExp/LEE
26	93	23	LX-465	564737.8	730505.7	480	Antelope	TetonExp/LEE
26	93	23	LX-468	566168.3	728171.1	500	Antelope	TetonExp/LEE
26	93	23	LX-473	566149.4	731048.5	500	Antelope	TetonExp/LEE
26	93	23	LX-474	566167.9	730999.3	500	Antelope	TetonExp/LEE
26	93	23	LX-475	566242.3	731134.5	500	Antelope	TetonExp/LEE
26	93	23	LX-482	566124.8	731084.7	540	Antelope	TetonExp/LEE
26	93	23	LX-483	566107.4	731052.9	540	Antelope	TetonExp/LEE

Uranium One Americas

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	North NAD27	East NAD27	log T0	Project	Area
26	93	23	LX-484	566074.1	731016.2	540	Antelope	TetonExp/LEE
26	93	23	LX-491	565730.5	729778.6	440	Antelope	TetonExp/LEE
26	93	23	LX-494	565882.5	732146.2	540	Antelope	TetonExp/LEE
26	93	23	LX-495	565766.8	730596.3	540	Antelope	TetonExp/LEE
26	93	23	LX-501	564739.1	730826.7	535	Antelope	TetonExp/LEE
26	93	24	24-A-54	566294.9	733077.1	300	Antelope	TetonExp/LEE
26	93	24	69-1	565474.9	735264.5		Antelope	TetonExp/LEE
26	93	24	71-1	565427.4	735312.0		Antelope	TetonExp/LEE
26	93	24	71-2	565376.1	735483.5		Antelope	TetonExp/LEE
26	93	24	71-3	565471.5	735325.5		Antelope	TetonExp/LEE
26	93	24	71-4	566189.6	735818.3		Antelope	TetonExp/LEE
26	93	24	71-5	565552.4	735313.7		Antelope	TetonExp/LEE
26	93	24	71-6	566138.6	735826.8		Antelope	TetonExp/LEE
26	93	24	73-1	565991.5	736213.3		Antelope	TetonExp/LEE
26	93	24	73-10	566003.0	736263.2		Antelope	TetonExp/LEE
26	93	24	73-11	565709.7	736428.2		Antelope	TetonExp/LEE
26	93	24	73-12	566039.5	735916.8		Antelope	TetonExp/LEE
26	93	24	73-13	565704.0	736459.2		Antelope	TetonExp/LEE
26	93	24	73-14	565658.8	736434.7		Antelope	TetonExp/LEE
26	93	24	73-15	565902.7	736326.2		Antelope	TetonExp/LEE
26	93	24	73-16	565624.2	736479.0		Antelope	TetonExp/LEE
26	93	24	73-17	565968.7	736331.6		Antelope	TetonExp/LEE
26	93	24	73-18	565608.9	736454.2		Antelope	TetonExp/LEE
26	93	24	73-19	565870.8	736441.6		Antelope	TetonExp/LEE
26	93	24	73-2	565940.4	736197.8		Antelope	TetonExp/LEE
26	93	24	73-20	566027.5	736310.0		Antelope	TetonExp/LEE
26	93	24	73-21	565616.1	736467.1		Antelope	TetonExp/LEE
26	93	24	73-22	566080.2	735979.4		Antelope	TetonExp/LEE
26	93	24	73-23	565878.9	736448.5		Antelope	TetonExp/LEE
26	93	24	73-24	565890.0	736460.4		Antelope	TetonExp/LEE
26	93	24	73-25	565856.7	736424.7		Antelope	TetonExp/LEE
26	93	24	73-26	565899.2	736478.3		Antelope	TetonExp/LEE
26	93	24	73-27	565962.0	736355.6		Antelope	TetonExp/LEE
26	93	24	73-28	566056.2	736379.7		Antelope	TetonExp/LEE
26	93	24	73-3	565929.3	736291.0		Antelope	TetonExp/LEE
26	93	24	73-4	566056.0	735960.7		Antelope	TetonExp/LEE
26	93	24	73-5	565766.7	736432.6		Antelope	TetonExp/LEE
26	93	24	73-6	565892.2	736183.3		Antelope	TetonExp/LEE
26	93	24	73-7	565711.8	736340.2		Antelope	TetonExp/LEE
26	93	24	73-8	565968.3	736193.6		Antelope	TetonExp/LEE
26	93	24	73-9	565860.7	736234.6		Antelope	TetonExp/LEE
26	93	24	75-1	565830.1	736666.0		Antelope	TetonExp/LEE
26	93	24	75-10	565596.1	736862.3		Antelope	TetonExp/LEE
26	93	24	75-11	565973.8	736541.5		Antelope	TetonExp/LEE
26	93	24	75-12	566004.8	736541.2		Antelope	TetonExp/LEE
26	93	24	75-13	565605.9	736845.2		Antelope	TetonExp/LEE
26	93	24	75-14	566065.9	736542.6		Antelope	TetonExp/LEE
26	93	24	75-2	565808.6	736513.2		Antelope	TetonExp/LEE
26	93	24	75-3	565860.8	736640.7		Antelope	TetonExp/LEE
26	93	24	75-4	565869.4	736692.6		Antelope	TetonExp/LEE
26	93	24	75-5	565838.8	736731.9		Antelope	TetonExp/LEE
26	93	24	75-6	565917.8	736541.1		Antelope	TetonExp/LEE
26	93	24	75-7	565890.8	736542.4		Antelope	TetonExp/LEE
26	93	24	75-8	565947.9	736542.8		Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole, ID	North NAD27	EastNAD27	Log 10	Prolect	Area
26	93	24	75-9	565589.2	736876.4		Antelope	TetonExp/LEE
26	93	24	A-53	566282.1	732804.2	300	Antelope	TetonExp/LEE
26	93	24	A-55	566272.9	733373.3	300	Antelope	TetonExp/LEE
26	93	24	A-56	566277.9	733678.3	300	Antelope	TetonExp/LEE
26	93	24	B-1	564147.6	734150.8	600	Antelope	TetonExp/LEE
26	93	24	B-10	564088.1	732915.4	600	Antelope	TetonExp/LEE
26	93	24	B-2	564132.4	733830.0	360	Antelope	TetonExp/LEE
26	93	24	B-3	564150.8	734469.8	400	Antelope	TetonExp/LEE
26	93	24	B-4	564107.2	733513.2	400	Antelope	TetonExp/LEE
26	93	24	B-5	564190.6	734741.4	400	Antelope	TetonExp/LEE
26	93	24	B-6	564180.2	734997.5	400	Antelope	TetonExp/LEE
26	93	24	B-7	564196.5	735328.4	404	Antelope	TetonExp/LEE
26	93	24	B-9	564101.8	733277.3	360	Antelope	TetonExp/LEE
26	93	24	F11	566238.2	736868.9	600	Antelope	TetonExp/LEE
26	93	24	F12	565941.3	736887.9	600	Antelope	TetonExp/LEE
26	93	24	F13	565630.4	736892.0	600	Antelope	TetonExp/LEE
26	93	24	F14	565333.2	736876.0	600	Antelope	TetonExp/LEE
26	93	24	F15	565019.0	736856.2	600	Antelope	TetonExp/LEE
26	93	24	F16	564710.7	736830.3	600	Antelope	TetonExp/LEE
26	93	24	F17	565513.3	736791.2	560	Antelope	TetonExp/LEE
26	93	24	F19	564426.6	736819.2	560	Antelope	TetonExp/LEE
26	93	24	F20	564147.4	736807.0	600	Antelope	TetonExp/LEE
26	93	24	F22	563842.4	736808.0	600	Antelope	TetonExp/LEE
26	93	24	F24	563558.4	736805.9	600	Antelope	TetonExp/LEE
26	93	24	F26	566588.0	736850.3	600	Antelope	TetonExp/LEE
26	93	24	F27	565585.3	736888.5	600	Antelope	TetonExp/LEE
26	93	24	F28	565896.4	736889.3	600	Antelope	TetonExp/LEE
26	93	24	F29	565067.1	736869.7	600	Antelope	TetonExp/LEE
26	93	24	F30	565667.3	736889.6	600	Antelope	TetonExp/LEE
26	93	24	F31	565609.3	736890.2	600	Antelope	TetonExp/LEE
26	93	24	G10	566099.2	735287.2	600	Antelope	TetonExp/LEE
26	93	24	G11	565801.3	735295.2	600	Antelope	TetonExp/LEE
26	93	24	G12	565497.3	735297.3	600	Antelope	TetonExp/LEE
26	93	24	G13	565199.3	735301.3	600	Antelope	TetonExp/LEE
26	93	24	G14	564907.3	735304.2	600	Antelope	TetonExp/LEE
26	93	24	G15	564587.3	735304.5	600	Antelope	TetonExp/LEE
26	93	24	G16	564293.3	735309.4	600	Antelope	TetonExp/LEE
26	93	24	G17	563992.4	735313.5	600	Antelope	TetonExp/LEE
26	93	24	G18	563692.4	735316.5	600	Antelope	TetonExp/LEE
26	93	24	G19	566443.2	735290.7	600	Antelope	TetonExp/LEE
26	93	24	G20	566367.2	735289.5	600	Antelope	TetonExp/LEE
26	93	24	G23	565472.3	735298.5	600	Antelope	TetonExp/LEE
26	93	24	G24	565505.3	735297.2	600	Antelope	TetonExp/LEE
26	93	24	G9	566405.2	735290.1	600	Antelope	TetonExp/LEE
26	93	24	GF1	566266.2	735585.5	600	Antelope	TetonExp/LEE
26	93	24	GF10	565781.1	736666.5	600	Antelope	TetonExp/LEE
26	93	24	GF11	566151.2	735878.7	600	Antelope	TetonExp/LEE
26	93	24	GF12	565875.3	736491.5	600	Antelope	TetonExp/LEE
26	93	24	GF13	566095.1	735870.3	600	Antelope	TetonExp/LEE
26	93	24	GF14	566102.1	735872.2	600	Antelope	TetonExp/LEE
26	93	24	GF14C	566119.1	735875.9	600	Antelope	TetonExp/LEE
26	93	24	GF15	565890.3	736388.4	600	Antelope	TetonExp/LEE
26	93	24	GF16	565867.8	736538.6	600	Antelope	TetonExp/LEE
26	93	24	GF17	565881.2	736377.4	600	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole. 10	North NAD27	East NAD27	LogTD	Project	Area
26	93	24	GF18	565835.3	736293.9	600	Antelope	TetonExp/LEE
26	93	24	GF2	566122.1	735876.0	600	Antelope	TetonExp/LEE
26	93	24	GF20	565750.8	736236.8	600	Antelope	TetonExp/LEE
26	93	24	GF21	565689.7	736031.4	600	Antelope	TetonExp/LEE
26	93	24	GF22	565639.9	735850.9	600	Antelope	TetonExp/LEE
26	93	24	GF23	565584.0	735667.4	600	Antelope	TetonExp/LEE
26	93	24	GF24	565515.1	735477.1	600	Antelope	TetonExp/LEE
26	93	24	GF25	565452.0	735470.7	600	Antelope	TetonExp/LEE
26	93	24	GF26	565480.0	735665.5	600	Antelope	TetonExp/LEE
26	93	24	GF27	565535.9	735853.9	600	Antelope	TetonExp/LEE
26	93	24	GF28	565399.1	735476.3	600	Antelope	TetonExp/LEE
26	93	24	GF29	565480.9	735853.5	600	Antelope	TetonExp/LEE
26	93	24	GF3	565985.9	736154.4	600	Antelope	TetonExp/LEE
26	93	24	GF30	565349.1	735483.8	600	Antelope	TetonExp/LEE
26	93	24	GF32	566383.3	735887.4	600	Antelope	TetonExp/LEE
26	93	24	GF4	565839.0	736458.9	600	Antelope	TetonExp/LEE
26	93	24	GF5	565740.1	736666.9	600	Antelope	TetonExp/LEE
26	93	24	GF6	565874.1	736464.5	600	Antelope	TetonExp/LEE
26	93	24	GF7	565853.0	736458.7	600	Antelope	TetonExp/LEE
26	93	24	GF7C	565834.1	736459.9	600	Antelope	TetonExp/LEE
26	93	24	GF8	565864.5	736408.6	600	Antelope	TetonExp/LEE
26	93	24	GH-1	566531.3	734995.8	600	Antelope	TetonExp/LEE
26	93	24	$\mathrm{H}-10$	564918.5	733834.0	600	Antelope	TetonExp/LEE
26	93	24	$\mathrm{H}-11$	564607.5	733844.2	600	Antelope	TetonExp/LEE
26	93	24	H-12	564313.6	733849.1	600	Antelope	TetonExp/LEE
26	93	24	H-13	564007.6	733852.2	600	Antelope	TetonExp/LEE
26	93	24	H-14	563687.7	733859.5	600	Antelope	TetonExp/LEE
26	93	24	H-5	566378.3	733808.3	600	Antelope	TetonExp/LEE
26	93	24	H-6	566064.3	733815.5	640	Antelope	TetonExp/LEE
26	93	24	H-7	565789.4	733820.2	600	Antelope	TetonExp/LEE
26	93	24	H-8	565510.4	733827.1	600	Antelope	TetonExp/LEE
26	93	24	H-9	565213.5	733833.1	600	Antelope	TetonExp/LEE
26	93	24	ICR2	565632.0	736990.0		Antelope	TetonExp/LEE
26	93	24	LEE-77	566567.5	737202.6	600	Antelope	TetonExp/LEE
26	93	24	LX-1	565466.9	735165.6	600	Antelope	TetonExp/LEE
26	93	24	LX-10	566060.4	734216.5	600	Antelope	TetonExp/LEE
26	93	24	LX-108	566391.1	736765.3	500	Antelope	TetonExp/LEE
26	93	24	LX-109	564957.5	736911.8	640	Antelope	TetonExp/LEE
26	93	24	LX-111	565137.8	736442.0	400	Antelope	TetonExp/LEE
26	93	24	LX-112	566070.6	735824.5	540	Antelope	TetonExp/LEE
26	93	24	LX-113	566093.1	735672.3	580	Antelope	TetonExp/LEE
26	93	24	LX-114	566055.7	735534.6	560	Antelope	TetonExp/LEE
26	93	24	LX-116	566383.6	735523.3	500	Antelope	TetonExp/LEE
26	93	24	LX-118	566402.9	735262.1	440	Antelope	TetonExp/LEE
26	93	24	LX-119	566370.8	735342.5	460	Antelope	TetonExp/LEE
26	93	24	LX-12	568769.4	734503.2	400	Antelope	TetonExp/LEE
26	93	24	LX-120	566172.2	735686.5	580	Antelope	TetonExp/LEE
26	93	24	LX-121	566188.0	735764.3	580	Antelope	TetonExp/LEE
26	93	24	LX-122	566049.2	735486.7	580	Antelope	TetonExp/LEE
26	93	24	LX-123	566105.7	735539.1	580	Antelope	TetonExp/LEE
26	93	24	LX-124	566016.2	735582.0	580	Antelope	TetonExp/LEE
26	93	24	LX-125	566116.0	735765.0	580	Antelope	TetonExp/LEE
26	93	24	LX-126	566125.3	735791.0	580	Antelope	TetonExp/LEE
26	93	24	LX127	565720.0	736114.0		Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole 10	North NAD27	East NAD27.	LogTD	Prolect	Area
26	93	24	LX-13	568676.6	735217.2	585	Antelope	TetonExp/LEE
26	93	24	LX-130	565187.5	736507.5	600	Antelope	TetonExp/LEE
26	93	24	LX-131	565670.2	735290.5	600	Antelope	TetonExp/LEE
26	93	24	LX-133	568242.4	735796.6	600	Antelope	TetonExp/LEE
26	93	24	LX-135	566528.7	735035.8	600	Antelope	TetonExp/LEE
26	93	24	LX-136	566129.7	735932.9	600	Antelope	TetonExp/LEE
26	93	24	LX-137	566165.1	735876.6	600	Antelope	TetonExp/LEE
26	93	24	LX-138	566064.0	736454.6	600	Antelope	TetonExp/LEE
26	93	24	LX-144	566062.4	736398.6	600	Antelope	TetonExp/LEE
26	93	24	LX-145	566066.4	736497.6	600	Antelope	TetonExp/LEE
26	93	24	LX-146	566111.0	736462.1	600	Antelope	TetonExp/LEE
26	93	24	LX-147	566016.0	736454.1	600	Antelope	TetonExp/LEE
26	93	24	LX-148	565961.9	736840.7	800	Antelope	TetonExp/LEE
26	93	24	LX-149	565860.3	736585.7	600	Antelope	TetonExp/LEE
26	93	24	LX-153	566110.5	736506.1	600	Antelope	TetonExp/LEE
26	93	24	LX-154	565913.2	736183.1	600	Antelope	TetonExp/LEE
26	93	24	LX-155	565909.4	736592.2	640	Antelope	TetonExp/LEE
26	93	24	LX-156	565860.5	736609.7	640	Antelope	TetonExp/LEE
26	93	24	LX-157	565898.9	736840.3	600	Antelope	TetonExp/LEE
26	93	24	LX-158	565802.0	736661.3	560	Antelope	TetonExp/LEE
26	93	24	LX-159	566164.1	736568.6	800	Antelope	TetonExp/LEE
26	93	24	LX-161	566086.7	736430.4	600	Antelope	TetonExp/LEE
26	93	24	LX-163	566108.0	736554.2	600	Antelope	TetonExp/LEE
26	93	24	LX-165	565798.6	736617.3	620	Antelope	TetonExp/LEE
26	93	24	LX-166	565981.7	735439.4	600	Antelope	TetonExp/LEE
26	93	24	LX-167	565970.0	736456.6	600	Antelope	TetonExp/LEE
26	93	24	LX-168	565828.6	736613.0	600	Antelope	TetonExp/LEE
26	93	24	LX-169	566156.6	736611.7	600	Antelope	TetonExp/LEE
26	93	24	LX-170	565964.4	736501.6	600	Antelope	TetonExp/LEE
26	93	24	LX-171	565976.6	736416.5	600	Antelope	TetonExp/LEE
26	93	24	LX-172	565901.4	736790.3	600	Antelope	TetonExp/LEE
26	93	24	LX-173	565869.0	736555.6	600	Antelope	TetonExp/LEE
26	93	24	LX-174	565918.4	736495.1	600	Antelope	TetonExp/LEE
26	93	24	LX-175	565934.9	736446.9	600	Antelope	TetonExp/LEE
26	93	24	LX-176	565757.9	736452.7	600	Antelope	TetonExp/LEE
26	93	24	LX-177	566204.7	736621.2	600	Antelope	TetonExp/LEE
26	93	24	LX-178	565829.8	736637.0	500	Antelope	TetonExp/LEE
26	93	24	LX-179	566125.4	735903.0	440	Antelope	TetonExp/LEE
26	93	24	LX-180	565923.9	736841.0	520	Antelope	TetonExp/LEE
26	93	24	LX-181	566133.7	735633.9	600	Antelope	TetonExp/LEE
26	93	24	LX-182	565622.7	736525.1	580	Antelope	TetonExp/LEE
26	93	24	LX-183	566497.6	736807.2	600	Antelope	TetonExp/LEE
26	93	24	LX-184	565549.9	735357.7	800	Antelope	TetonExp/LEE
26	93	24	LX-185	566179.6	736617.4	600	Antelope	TetonExp/LEE
26	93	24	LX-186	565641.0	736454.9	560	Antelope	TetonExp/LEE
26	93	24	LX-187	565544.7	735336.8	560	Antelope	TetonExp/LEE
26	93	24	LX-189	565461.7	735241.6	560	Antelope	TetonExp/LEE
26	93	24	LX-190	566177.7	735928.4	440	Antelope	TetonExp/LEE
26	93	24	LX-191.	566168.6	735722.5	600	Antelope	TetonExp/LEE
26	93	24	LX-192	565639.4	736404.9	560	Antelope	TetonExp/LEE
26	93	24	LX-193	566132.0	736555.9	580	Antelope	TetonExp/LEE
26	93	24	LX-194	566170.4	735901.5	440	Antelope	TetonExp/LEE
26	93	24	LX-195	566197.5	735716.2	600	Antelope	TetonExp/LEE
26	93	24	LX-196	566174.8	735741.4	600	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twil	Rug	Sec	$\text { Map Hole } 1 \mathrm{D}$	NorthNAD27	East NAD27	Log TD	Project	Area
26	93	24	LX-197	565493.6	735235.3	560	Antelope	TetonExp/LEE
26	93	24	LX-198	565502.8	735849.2	600	Antelope	TetonExp/LEE
26	93	24	LX-199	565604.4	736404.2	580	Antelope	TetonExp/LEE
26	93	24	LX-200	566160.6	736518.6	580	Antelope	TetonExp/LEE
26	93	24	LX-201	565573.4	736503.6	620	Antelope	TetonExp/LEE
26	93	24	LX-202	565427.8	735850.0	620	Antelope	TetonExp/LEE
26	93	24	LX-203	565509.3	735895.2	620	Antelope	TetonExp/LEE
26	93	24	LX-204	565531.7	736532.0	600	Antelope	TetonExp/LEE
26	93	24	LX-206	565739.5	736611.9	606	Antelope	TetonExp/LEE
26	93	24	LX-207	565379.8	735851.5	600	Antelope	TetonExp/LEE
26	93	24	LX-208	565572.7	736531.6	580	Antelope	TetonExp/LEE
26	93	24	LX-209	565658.6	736719.7	620	Antelope	TetonExp/LEE
26	93	24	LX-210	565510.9	735958.2	640	Antelope	TetonExp/LEE
26	93	24	LX-211	566166.2	736473.6	580	Antelope	TetonExp/LEE
26	93	24	LX-212	565553.4	736597.8	580	Antelope	TetonExp/LEE
26	93	24	LX-213	565339.8	736839.9	640	Antelope	TetonExp/LEE
26	93	24	LX-214	565068.3	736787.7	640	Antelope	TetonExp/LEE
26	93	24	LX-215	565409.7	735836.2	600	Antelope	TetonExp/LEE
26	93	24	LX-216	565504.4	736596.3	600	Antelope	TetonExp/LEE
26	93	24	LX-217	565662.9	736749.7	620	Antelope	TetonExp/LEE
26	93	24	LX-218	565346.3	736790.9	620	Antelope	TetonExp/LEE
26	93	24	LX-219	565143.9	736351.9	620	Antelope	TetonExp/LEE
26	93	24	LX-220	565050.3	735302.8	600	Antelope	TetonExp/LEE
26	93	24	LX-221	565509.5	735919.2	560	Antelope	TetonExp/LEE
26	93	24	LX-222	565025.3	736791.1	620	Antelope	TetonExp/LEE
26	93	24	LX-223	565535.4	736595.9	580	Antelope	TetonExp/LEE
26	93	24	LX-224	565506.2	736674.2	600	Antelope	TetonExp/LEE
26	93	24	LX-225	565064.3	736689.7	540	Antelope	TetonExp/LEE
26	93	24	LX-226	565067.0	736361.7	540	Antelope	TetonExp/LEE
26	93	24	LX-227	564948.3	735306.8	460	Antelope	TetonExp/LEE
26	93	24	LX-228	565185.4	735020.4	620	Antelope	TetonExp/LEE
26	93	24	LX-229	565081.1	736573.5	620	Antelope	TetonExp/LEE
26	93	24	LX-230	565060.2	736283.7	640	Antelope	TetonExp/LEE
26	93	24	LX-231	565555.1	736670.8	580	Antelope	TetonExp/LEE
26	93	24	LX-232	565553.2	736778.8	580	Antelope	TetonExp/LEE
26	93	24	LX-233	565054.0	735174.7	460	Antelope	TetonExp/LEE
26	93	24	LX-234	565128.2	736585.1	460	Antelope	TetonExp/LEE
26	93	24	LX-235	565048.4	736793.9	620	Antelope	TetonExp/LEE
26	93	24	LX-236	565021.1	736369.1	540	Antelope	TetonExp/LEE
26	93	24	LX-237	565109.2	736284.2	540	Antelope	TetonExp/LEE
26	93	24	LX-238	565105.9	736356.3	480	Antelope	TetonExp/LEE
26	93	24	LX-239	565179.3	736587.5	480	Antelope	TetonExp/LEE
26	93	24	LX-240	565464.4	736594.7	620	Antelope	TetonExp/LEE
26	93	24	LX-241	565587.7	736230.4	620	Antelope	TetonExp/LEE
26	93	24	LX-242	565154.2	736286.8	500	Antelope	TetonExp/LEE
26	93	24	LX-243	565053.7	736237.8	800	Antelope	TetonExp/LEE
26	93	24	LX-244	564919.2	735297.1	600	Antelope	TetonExp/LEE
26	93	24	LX-245	565600.2	736181.3	560	Antelope	TetonExp/LEE
26	93	24	LX-248	565154.6	736321.8	500	Antelope	TetonExp/LEE
26	93	24	LX-249	565465.8	736636.7	600	Antelope	TetonExp/LEE
26	93	24	LX-250	565647.2	736087.8	800	Antelope	TetonExp/LEE
426	93	24	LX-251	566032.8	736540.9	600	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

Twn.	Rng	Sec	Map. hole in	North NAD27	East NAD27	LogTD	Project	Area
26	93	24	LX-252	565632.7	736230.9	540	Antelope	TetonExp/LEE
26	93	24	LX-253	565008.8	736240.2	540	Antelope	TetonExp/LEE
26	93	24	LX-254	566641.2	735286.7	540	Antelope	TetonExp/LEE
26	93	24	LX-255	565555.7	736631.7	600	Antelope	TetonExp/LEE
26	93	24	LX-256	565503.8	736537.3	600	Antelope	TetonExp/LEE
26	93	24	LX-257	565756.4	736498.7	600	Antelope	TetonExp/LEE
26	93	24	LX-258	565622.2	736180.0	560	Antelope	TetonExp/LEE
26	93	24	LX-259	565531.3	736395.0	600	Antelope	TetonExp/LEE
26	93	24	LX-260	565086.2	736286.5	540	Antelope	TetonExp/LEE
26	93	24	LX-261	565018.2	736286.2	540	Antelope	TetonExp/LEE
26	93	24	LX-262	565674.3	736689.5	600	Antelope	TetonExp/LEE
26	93	24	LX-263	565330.9	735856.0	600	Antelope	TetonExp/LEE
26	93	24	LX-264	565528.3	736886.0	600	Antelope	TetonExp/LEE
26	93	24	LX-265	565655.8	736933.7	620	Antelope	TetonExp/LEE
26	93	24	LX-266	565057.8	736438.8	540	Antelope	TetonExp/LEE
26	93	24	LX-267	565578.2	736279.5	600	Antelope	TetonExp/LEE
26	93	24	LX-268	565648.1	736662.8	600	Antelope	TetonExp/LEE
26	93	24	LX-269	565696.6	736712.3	600	Antelope	TetonExp/LEE
26	93	24	LX-270	565704.4	736991.3	600	Antelope	TetonExp/LEE
26	93	24	LX-273	565719.3	736685.1	540	Antelope	TetonExp/LEE
26	93	24	LX-276	566169.3	736385.5	600	Antelope	TetonExp/LEE
26	93	24	LX-277	566069.5	736304.5	600	Antelope	TetonExp/LEE
26	93	24	LX-278	565475.7	736924.6	540	Antelope	TetonExp/LEE
26	93	24	LX-279	565701.9	737040.3	600	Antelope	TetonExp/LEE
26	93	24	LX-282	566177.3	736291.5	600	Antelope	TetonExp/LEE
26	93	24	LX-283	565557.2	736184.7	520	Antelope	TetonExp/LEE
26	93	24	LX-284	565530.7	736929.0	620	Antelope	TetonExp/LEE
26	93	24	LX-285	564947.6	736421.9	620	Antelope	TetonExp/LEE
26	93	24	LX-286	564927.2	736288.1	520	Antelope	TetonExp/LEE
26	93	24	LX288	566266.0	736291.0		Antelope	TetonExp/LEE
26	93	24	LX-291	565481.3	736883.5	400	Antelope	TetonExp/LEE
26	93	24	LX-292	565708.9	736947.2	400	Antelope	TetonExp/LEE
26	93	24	LX-293	565755.0	737054.8	400	Antelope	TetonExp/LEE
26	93	24	LX-294	565643.6	736615.9	400	Antelope	TetonExp/LEE
26	93	24	LX-295	565793.0	737051.4	400	Antelope	TetonExp/LEE
26	93	24	LX-296	565752.9	736946.8	400	Antelope	TetonExp/LEE
26	93	24	LX297	565605.0	736736.0		Antelope	TetonExp/LEE
26	93	24	LX-298	565648.4	736501.8	600	Antelope	TetonExp/LEE
26	93	24	LX-299	566215.9	736348.1	600	Antelope	TetonExp/LEE
26	93	24	LX-3	565576.9	735257.5	500	Antelope	TetonExp/LEE
26	93	24	LX-300	565490.1	736569.4	620	Antelope	TetonExp/LEE
26	93	24	LX301	564910.0	735256.0		Antelope	TetonExp/LEE
26	93	24	LX-305	564868.1	735280.6	460	Antelope	TetonExp/LEE
26	93	24	LX-306	565118.7	736829.2	400	Antelope	TetonExp/LEE
26	93	24	LX-307	565109.3	736686.3	640	Antelope	TetonExp/LEE
26	93	24	LX-308	565842.0	737053.9	640	Antelope	TetonExp/LEE
26	93	24	LX-309	565636.2	736578.9	600	Antelope	TetonExp/LEE
26	93	24	LX310	564892.0	735263.0		Antelope	TetonExp/LEE
26	93	24	LX-311	565779.5	737002.5	600	Antelope	TetonExp/LEE
26	93	24	LX-312	565771.4	737088.6	600	Antelope	TetonExp/LEE
26	93	24	LX-313	565487.0	736853.4	600	Antelope	TetonExp/LEE
26	93	24	LX-314	565565.7	736830.7	600	Antelope	TetonExp/LEE

Table 2.6-1

Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole ID	North NAD27	East NAD27	Log TD	Project	Area
26	93	24	LX-315	565540.0	736265.9	600	Antelope	TetonExp/LEE
26	93	24	LX-316	565677.1	736273.5	600	Antelope	TetonExp/LEE
26	93	24	LX-317	565695.3	736193.3	600	Antelope	TetonExp/LEE
26	93	24	LX-318	566164.8	736433.6	600	Antelope	TetonExp/LEE
26	93	24	LX-319	566210.3	736482.1	600	Antelope	TetonExp/LEE
26	93	24	LX-323	566193.6	736317.3	600	Antelope	TetonExp/LEE
26	93	24	LX-324	566128.8	736437.9	600	Antelope	TetonExp/LEE
26	93	24	LX-325	565994.2	736381.3	600	Antelope	TetonExp/LEE
26	93	24	LX-326	565574.0	736554.6	600	Antelope	TetonExp/LEE
26	93	24	LX-327	565061.4	736399.7	500	Antelope	TetonExp/LEE
26	93	24	LX-329	565884.0	737053.5	500	Antelope	TetonExp/LEE
26	93	24	LX-330	565815.5	737103.1	600	Antelope	TetonExp/LEE
26	93	24	LX-331	565824.5	737000.0	600	Antelope	TetonExp/LEE
26	93	24	LX-332	565865.5	737098.6	600	Antelope	TetonExp/LEE
26	93	24	LX-333	565866.4	736995.6	600	Antelope	TetonExp/LEE
26	93	24	LX-337	565864.0	736950.6	660	Antelope	TetonExp/LEE
26	93	24	LX-338	565909.4	736993.2	660	Antelope	TetonExp/LEE
26	93	24	LX-342	564094.4	736804.5		Antelope	TetonExp/LEE
26	93	24	LX-344	565165.7	736828.7	640	Antelope	TetonExp/LEE
26	93	24	LX-345	564964.4	736701.7		Antelope	TetonExp/LEE
26	93	24	LX-350	565904.0	736950.2	580	Antelope	TetonExp/LEE
26	93	24	LX-351	564142.9	736758.0	620	Antelope	TetonExp/LEE
26	93	24	LX-352	564967.7	736235.7	620	Antelope	TetonExp/LEE
26	93	24	LX-356	565209.3	736785.2	620	Antelope	TetonExp/LEE
26	93	24	LX-357	565417.2	736675.1	620	Antelope	TetonExp/LEE
26	93	24	LX-358	565800.9	736946.3	580	Antelope	TetonExp/LEE
26	93	24	LX-359	565911.4	737090.2	620	Antelope	TetonExp/LEE
26	93	24	LX-363	564995.2	736186.4	540	Antelope	TetonExp/LEE
26	93	24	LX-364	565283.8	736742.5	620	Antelope	TetonExp/LEE
26	93	24	LX-367	564654.5	733843.7	620	Antelope	TetonExp/LEE
26	93	24	LX-373	565281.4	736696.5	620	Antelope	TetonExp/LEE
26	93	24	LX-377	562896.1	732818.4	620	Antelope	TetonExp/LEE
26	93	24	LX-378	564700.6	733845.2	620	Antelope	TetonExp/LEE
26	93	24	LX-379	564657.5	733941.7	400	Antelope	TetonExp/LEE
26	93	24	LX-380	564662.6	733752.6	500	Antelope	TetonExp/LEE
26	93	24	LX-382	564965.5	733834.6	580	Antelope	TetonExp/LEE
26	93	24	LX-383	564582.8	735252.5	580	Antelope	TetonExp/LEE
26	93	24	LX-384	565249.1	735088.8	580	Antelope	TetonExp/LEE
26	93	24	LX388	565148.0	735067.0		Antelope	TetonExp/LEE
26	93	24	LX389	564569.0	735207.0		Antelope	TetonExp/LEE
26	93	24	LX390	564633.0	735302.0		Antelope	TetonExp/LEE
26	93	24	LX-391	564738.6	733751.8	580	Antelope	TetonExp/LEE
26	93	24	LX-392	564703.6	733943.2	500	Antelope	TetonExp/LEE
26	93	24	LX-393	564607.5	733941.2	500	Antelope	TetonExp/LEE
26	93	24	LX-394	564588.4	734031.4	540	Antelope	TetonExp/LEE
26	93	24	LX-395	565008.5	733839.1	620	Antelope	TetonExp/LEE
26	93	24	LX-396	564905.2	733903.2	520	Antelope	TetonExp/LEE
26	93	24	LX398	564631.0	735261.0		Antelope	TetonExp/LEE
26	93	24	LX-399	564608.0	733891.2	600	Antelope	TetonExp/LEE
26	93	24	LX-400	564326.4	734024.0	640	Antelope	TetonExp/LEE
26	93	24	LX-401	565269.6	736615.6	640	Antelope	TetonExp/LEE
26	93	24	LX-402	565236.4	736700.0	640	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Kng	Sect	$\text { Map hole } 10$	North NAD27	East NAD27	Log TD	Project	Area
26	93	24	LX-405	564704.1	733993.2	640	Antelope	TetonExp/LEE
26	93	24	LX-406	564473.4	734030.5	500	Antelope	TetonExp/LEE
26	93	24	LX-407	564320.7	733956.1	500	Antelope	TetonExp/LEE
26	93	24	LX-408	564987.0	733790.3	500	Antelope	TetonExp/LEE
26	93	24	LX-409	564560.0	733891.7	500	Antelope	TetonExp/LEE
26	93	24	LX-410	564643.0	733990.8	640	Antelope	TetonExp/LEE
26	93	24	LX-411	564750.9	733975.7	640	Antelope	TetonExp/LEE
26	93	24	LX-414	564986.9	733881.3	500	Antelope	TetonExp/LEE
26	93	24	LX-415	564325.1	733995.0	500	Antelope	TetonExp/LEE
26	93	24	LX-416	563607.1	730434.1	500	Antelope	TetonExp/LEE
26	93	24	LX-419	564566.5	733935.6	500	Antelope	TetonExp/LEE
26	93	24	LX-420	564556.6	733850.7	480	Antelope	TetonExp/LEE
26	93	24	LX-421	564347.1	734000.8	480	Antelope	TetonExp/LEE
26	93	24	LX-422	564671.1	733996.5	480	Antelope	TetonExp/LEE
26	93	24	LX-423	564751.1	733897.7	640	Antelope	TetonExp/LEE
26	93	24	LX-424	564514.6	733849.1	640	Antelope	TetonExp/LEE
26	93	24	LX-425	564554.2	733806.7	640	Antelope	TetonExp/LEE
26	93	24	LX-426	564533.4	734024.9	500	Antelope	TetonExp/LEE
26	93	24	LX-427	564839.5	733935.8	640	Antelope	TetonExp/LEE
26	93	24	LX-436	564797.0	733693.3	400	Antelope	TetonExp/LEE
26	93	24	LX-437	564537.4	734123.9	500	Antelope	TetonExp/LEE
26	93	24	LX-438	564550.7	733761.7	400	Antelope	TetonExp/LEE
26	93	24	LX-439	564506.9	733784.2	400	Antelope	TetonExp/LEE
26	93	24	LX-440	564845.0	733983.8	500	Antelope	TetonExp/LEE
26	93	24	LX-441	564951.5	733940.7	500	Antelope	TetonExp/LEE
26	93	24	LX-442	564430.4	734132.0	500	Antelope	TetonExp/LEE
26	93	24	LX-443	565233.3	734014.9	600	Antelope	TetonExp/LEE
26	93	24	LX-447	564888.8	733967.3	480	Antelope	TetonExp/LEE
26	93	24	LX-448	565194.6	733650.2	580	Antelope	TetonExp/LEE
26	93	24	LX-450	565228.6	733949.9	500	Antelope	TetonExp/LEE
26	93	24	LX-451	564449.9	734078.8	500	Antelope	TetonExp/LEE
26	93	24	LX-452	564370.0	734083.6	500	Antelope	TetonExp/LEE
26	93	24	LX-455	564407.3	734115.2	500	Antelope	TetonExp/LEE
26	93	24	LX-456	564324.1	734193.1	500	Antelope	TetonExp/LEE
26	93	24	LX-466	564143.0	734183.9	520	Antelope	TetonExp/LEE
26	93	24	LX-480	564246.5	734139.8	500	Antelope	TetonExp/LEE
26	93	24	LX-481	564078.3	734023.5	500	Antelope	TetonExp/LEE
26	93	24	LX-485	565845.3	735296.8	540	Antelope	TetonExp/LEE
26	93	24	LX-486	564303.2	734112.3	540	Antelope	TetonExp/LEE
26	93	24	LX-487	565050.3	733818.7	540	Antelope	TetonExp/LEE
26	93	24	LX-488	565022.9	733879.0	440	Antelope	TetonExp/LEE
26	93	24	LX-489	565201.6	733744.2	440	Antelope	TetonExp/LEE
26	93	24	LX-490	565232.7	734054.9	440	Antelope	TetonExp/LEE
26	93	24	LX-492	566531.8	734951.8	440	Antelope	TetonExp/LEE
26	93	24	LX-493	564383.7	734153.5	440	Antelope	TetonExp/LEE
26	93	24	LX-496	565948.1	736963.8	600	Antelope	TetonExp/LEE
26	93	24	LX-497	564627.4	735216.0	350	Antelope	TetonExp/LEE
26	93	24	LX-498	565667.0	735246.0		Antelope	TetonExp/LEE
26	93	24	LX-500	564905.8	736245.3	535	Antelope	TetonExp/LEE
26	93	24	LX-502	565757.2	735293.6	540	Antelope	TetonExp/LEE
26	93	24	LX-503	564753.1	735287.8	460	Antelope	TetonExp/LEE
26	93	24	LX-504	564749.4	735215.8	600	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

1 wn	Rng	Sec	Map Hole 10	North NAD27	East NAD27	$\log \operatorname{ID}$	Project	Area
26	93	24	LX-505	564741.6	735131.9	460	Antelope	TetonExp/LEE
26	93	24	LX-506	564619.6	735135.1	460	Antelope	TetonExp/LEE
26	93	24	LX-507	564498.8	735252.3	500	Antelope	TetonExp/LEE
26	93	24	LX-508	565962.0	736948.7	600	Antelope	TetonExp/LEE
26	93	24	LX-509	566022.9	737045.0	600	Antelope	TetonExp/LEE
26	93	24	LX-511	566121.9	737042.0	500	Antelope	TetonExp/LEE
26	93	24	LX-512	566013.9	737142.1	600	Antelope	TetonExp/LEE
26	93	24	LX-513	566109.9	737137.2	600	Antelope	TetonExp/LEE
26	93	24	LX-514	566219.9	737037.1	600	Antelope	TetonExp/LEE
26	93	24	LX-515	566132.9	736944.9	500	Antelope	TetonExp/LEE
26	93	24	LX-516	566033.9	736941.9	500	Antelope	TetonExp/LEE
26	93	24	LX-517	565935.3	737179.9	600	Antelope	TetonExp/LEE
26	93	24	LX-518	566041.9	736841.8	600	Antelope	TetonExp/LEE
26	93	24	LX-519	566150.8	736836.7	600	Antelope	TetonExp/LEE
26	93	24	LX-520	566050.9	736744.8	600	Antelope	TetonExp/LEE
26	93	24	LX-521	566152.8	736733.7	600	Antelope	TetonExp/LEE
26	93	24	LX-522	566065.9	736641.6	600	Antelope	TetonExp/LEE
26	93	24	LX-523	566226.9	736940.0	600	Antelope	TetonExp/LEE
26	93	24	LX-524	566319.9	737040.0	600	Antelope	TetonExp/LEE
26	93	24	LX-529	566217.9	737141.1	588	Antelope	TetonExp/LEE
26	93	24	LX-530	566320.9	737137.0	593	Antelope	TetonExp/LEE
26	93	24	LX-531	566303.8	736932.2	569	Antelope	TetonExp/LEE
26	93	24	LX-532	566423.8	737035.0	593	Antelope	TetonExp/LEE
26	93	24	LX-533	566413.8	737133.1	569	Antelope	TetonExp/LEE
26	93	24	LX-534	566415.9	736939.1	540	Antelope	TetonExp/LEE
26	93	24	LX-535	566518.9	737039.0	540	Antelope	TetonExp/LEE
26	93	24	LX-539	566511.9	737143.1	564	Antelope	TetonExp/LEE
26	93	24	LX-542	566608.9	737140.1	592	Antelope	TetonExp/LEE
26	93	24	LX-544	566513.8	736933.1	591	Antelope	TetonExp/LEE
26	93	24	LX-545	564433.5	734241.0	494	Antelope	TetonExp/LEE
26	93	24	LX-546	564336.0	734380.9	494	Antelope	TetonExp/LEE
26	93	24	LX-547	564525.5	734337.0	593	Antelope	TetonExp/LEE
26	93	24	LX-548?	564322.3	734319.1	494	Antelope	TetonExp/LEE
26	93	24	LX-549	565951.5	737002.8	596	Antelope	TetonExp/LEE
26	93	24	LX-550	565763.7	736820.7	600	Antelope	TetonExp/LEE
26	93	24	LX-551	565232.2	736282.0	634	Antelope	TetonExp/LEE
26	93	24	LX-552	565308.2	736279.2	610	Antelope	TetonExp/LEE
26	93	24	LX-553	565382.1	736276.5	606	Antelope	TetonExp/LEE
26	93	24	LX-554	565454.1	736270.8	633	Antelope	TetonExp/LEE
26	93	24	LX-572	566270.3	736387.5	600	Antelope	TetonExp/LEE
26	93	24	LX-573	566271.3	736490.5	600	Antelope	TetonExp/LEE
26	93	24	LX-574	566276.3	736584.5	600	Antelope	TetonExp/LEE
26	93	24	LX-575	566284.3	736687.4	550	Antelope	TetonExp/LEE
26	93	24	LX-576	566615.9	737242.1	550	Antelope	TetonExp/LEE
26	93	24	LX-577	566606.9	737338.2	552	Antelope	TetonExp/LEE
26	93	24	LX-582	566375.3	736585.5	580	Antelope	TetonExp/LEE
26	93	24	LX-583	566375.3	736484.5	580	Antelope	TetonExp/LEE
26	93	24	LX-584	565454.1	736474.8	598	Antelope	TetonExp/LEE
26	93	24	LX-585	565379.2	736480.5	610	Antelope	TetonExp/LEE
26	93	24	LX-586	565308.2	736485.2	610	Antelope	TetonExp/LEE
26	93	24	LX-587	565341.2	736582.9	613	Antelope	TetonExp/LEE
26	93	24	LX-589	566509.8	737224.1	580	Antelope	TetonExp/LEE
26	93	24	LX-590	566507.5	737302.2	580	Antelope	TetonExp/LEE

Table 2.6-1
Antelope and JAB Drill Holes

Tพท	Ring	Sec	Map Hole 1 l	North NAD 27	East NAD27	Logid	Project	Area
26	93	24	LX-591	566415.6	737209.1	600	Antelope	TetonExp/LEE
26	93	24	LX-592	566416.3	737277.1	580	Antelope	TetonExp/LEE
26	93	24	LX-6	566084.6	734438.3	600	Antelope	TetonExp/LEE
26	93	24	LX-603C	566016.7	736431.1	566	Antelope	TetonExp/LEE
26	93	24	LX-620	565061.7	736924.7	640	Antelope	TetonExp/LEE
26	93	24	LX-621	565161.7	736927.7	640	Antelope	TetonExp/LEE
26	93	24	LX-622	565263.7	736928.7	637	Antelope	TetonExp/LEE
26	93	24	LX-631	565261.7	737024.7	630	Antelope	TetonExp/LEE
26	93	24	LX-632	565153.7	737027.8	640	Antelope	Teton ExplLEE
26	93	24	LX-635	565366.6	737017.7	640	Antelope	TetonExp/LEE
26	93	24	LX-638	565259.0	736853.8	640	Antelope	TetonExp/LEE
26	93	24	LX-639	565462.7	737025.7	640	Antelope	TetonExp/LEE
26	93	24	LX-640	565562.6	737011.7	638	Antelope	TetonExp/LEE
26	93	24	LX-642	565465.7	737123.7	620	Antelope	TetonExp/LEE
26	93	24	LX-643	565570.6	737115.6	642	Antelope	TetonExp/LEE
26	93	24	LX-644	565669.6	737108.6	657	Antelope	TetonExp/LEE
26	93	24	LX-645	565782.3	737184.5	596	Antelope	TetonExp/LEE
26	93	24	LX-646	565456.1	736372.7	636	Antelope	TetonExp/LEE
26	93	24	LX-647	565380.1	736373.5	637	Antelope	TetonExp/LEE
26	93	24	LX-648	565307.1	736374.2	640	Antelope	TetonExp/LEE
26	93	24	LX-653C	565780.8	737031.5	612	Antelope	TetonExp/LEE
26	93	24	LX-656	565761.0	736754.7	591	Antelope	TetonExp/LEE
26	93	24	LX-657	565695.7	736824.3	597	Antelope	TetonExp/LEE
26	93	24	LX-658	565415.8	736836.2	600	Antelope	TetonExp/LEE
26	93	24	LX-7	565536.5	735224.9	597	Antelope	TetonExp/LEE
26	93	24	LX-77	564984.1	736769.5	640	Antelope	TetonExp/LEE
26	93	24	LX-78	564996.7	736924.4	640	Antelope	TetonExp/LEE
26	93	24	LX-79	564965.8	736838.7	660	Antelope	TetonExp/LEE
26	93	24	LX-81	565049.4	736501.8	660	Antelope	TetonExp/LEE
26	93	24	LX-82	564944.5	736515.9	660	Antelope	TetonExp/LEE
26	93	24	LX-83	565420.8	735254.0	580	Antelope	TetonExp/LEE
26	93	24	LX-85	565941.3	735397.8	580	Antelope	TetonExp/LEE
26	93	24	LX-86	566265.7	735637.5	540	Antelope	TetonExp/LEE
26	93	24	LX-87	566374.1	735579.4	580	Antelope	TetonExp/LEE
26	93	24	LX-88	566389.1	735472.3	580	Antelope	TetonExp/LEE
26	93	24	LX-89	566367.2	735685.5	580	Antelope	TetonExp/LEE
26	93	24	LX-92	565174.1	735085.5	580	Antelope	TetonExp/LEE
26	93	24	LX-94	566605.5	736804.2	580	Antelope	TetonExp/LEE
26	93	24	LX-96	566073.1	735578.5	600	Antelope	TetonExp/LEE
26	93	25	F25	564247.5	736811.0	600	Antelope	TetonExp/LEE
26	92	16	16-01	566831	753600		Antelope	Uranerz
26	92	16	16-02				Antelope	Uranerz
26	92	16	16-03	569532	753580		Antelope	Uranerz
26	92	16	16-04				Antelope	Uranerz
26	92	16	16-05				Antelope	Uranerz
26	92	16	16-06				Antelope	Uranerz
26	92	16	16-07				Antelope	Uranerz
26	92	16	16-08	570022	753000		Antelope	Uranerz
26	92	16	16-09	570662	753101		Antelope	Uranerz
26	92	16	16-10				Antelope	Uranerz
26	92	16	16-100	569464	750826		Antelope	Uranerz
26	92	16	16-101				Antelope	Uranerz
26	92	16	16-102				Antelope	Uranerz
26	92	16	16-103				Antelope	Uranerz

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Ring	Sec	Map hole 1 II	North NAD27	East NAD27	LogTD	Project	Area
26	92	16	16-104	568356	752280		Antelope	Uranerz
26	92	16	16-105	568371	752338		Antelope	Uranerz
26	92	16	16-106	568404	752441		Antelope	Uranerz
26	92	16	16-107	568418	752477		Antelope	Uranerz
26	92	16	16-108	567694	752580		Antelope	Uranerz
26	92	16	16-11				Antelope	Uranerz
26	92	16	16-12				Antelope	Uranerz
26	92	16	16-13	569967	752636		Antelope	Uranerz
26	92	16	16-14	569550	752977		Antelope	Uranerz
26	92	16	16-15	570044	753447		Antelope	Uranerz
26	92	16	16-16	570315	753056		Antelope	Uranerz
26	92	16	16-17	569801	752990		Antelope	Uranerz
26	92	16	16-18	569396	753511		Antelope	Uranerz
26	92	16	16-19				Antelope	Uranerz
26	92	16	16-20	571085	748864		Antelope	Uranerz
26	92	16	16-21				Antelope	Uranerz
26	92	16	16-22				Antelope	Uranerz
26	92	16	16-23				Antelope	Uranerz
26	92	16	16-24	568782	750022		Antelope	Uranerz
26	92	16	16-24	571000	750620		Antelope	Uranerz
26	92	16	16-26				Antelope	Uranerz
26	92	16	16-27				Antelope	Uranerz
26	92	16	16-28	570937	751724		Antelope	Uranerz
26	92	16	16-29				Antelope	Uranerz
26	92	16	16-30	569967	751964		Antelope	Uranerz
26	92	16	16-31	568894	752246		Antelope	Uranerz
26	92	16	16-32				Antelope	Uranerz
26	92	16	16-33				Antelope	Uranerz
26	92	16	16-34	567597	751164		Antelope	Uranerz
26	92	16	16-35	567988	752453		Antelope	Uranerz
26	92	16	16-36				Antelope	Uranerz
26	92	16	16-37	569971	752992		Antelope	Uranerz
26	92	16	16-38	570081	753012		Antelope	Uranerz
26	92	16	16-39	570010	752937		Antelope	Uranerz
26	92	16	16-40	568997	749982		Antelope	Uranerz
26	92	16	16-41				Antelope	Uranerz
26	92	16	16-42				Antelope	Uranerz
26	92	16	16-43	571516	753294		Antelope	Uranerz
26	92	16	16-44				Antelope	Uranerz
26	92	16	16-45	571022	753159		Antelope	Uranerz
26	92	16	16-46				Antelope	Uranerz
26	92	16	16-47				Antelope	Uranerz
26	92	16	16-48	571127	751713		Antelope	Uranerz
26	92	16	16-49				Antelope	Uranerz
26	92	16	16-50	571511	751675		Antelope	Uranerz
26	92	16	16-51				Antelope	Uranerz
26	92	16	16-52				Antelope	Uranerz
26	92	16	16-53				Antelope	Uranerz
26	92	16	16-54	570727	751795		Antelope	Uranerz
26	92	16	16-55	570434	751856		Antelope	Uranerz
26	92	16	16-56	570206	751917		Antelope	Uranerz
26	92	16	16-57	570585	751814		Antelope	Uranerz
26	92	16	16-58	571200	751701		Antelope	Uranerz

Table 2.6-1
Antelope and JAB Drill Holes

	Ring	Sec	Map Hole. IO	North NAD27	East NAD27	EogTD	Project	Area
26	92	16	16-59	571376	751687		Antelope	Uranerz
26	92	16	16-60	571320	751689		Antelope	Uranerz
26	92	16	16-61				Antelope	Uranerz
26	92	16	16-62	571253	749569		Antelope	Uranerz
26	92	16	16-63				Antelope	Uranerz
26	92	16	16-64	571139	750605		Antelope	Uranerz
26	92	16	16-65	571013	751449		Antelope	Uranerz
26	92	16	16-66	571027	751211		Antelope	Uranerz
26	92	16	16-67	571025	750904		Antelope	Uranerz
26	92	16	16-68	570994	750331		Antelope	Uranerz
26	92	16	16-69	570978	750124		Antelope	Uranerz
26	92	16	16-70				Antelope	Uranerz
26	92	16	16-71	569994	752848		Antelope	Uranerz
26	92	16	16-72	569991	752778		Antelope	Uranerz
26	92	16	16-73	569978	752701		Antelope	Uranerz
26	92	16	16-74	568654	752309		Antelope	Uranerz
26	92	16	16-75	568508	752350		Antelope	Uranerz
26	92	16	16-76	568381	752392		Antelope	Uranerz
26	92	16	16-77	568253	752418		Antelope	Uranerz
26	92	16	16-78	567788	752551		Antelope	Uranerz
26	92	16	16-79	567588	752609		Antelope	Uranerz
26	92	16	16-80	568879	751966		Antelope	Uranerz
26	92	16	16-81	568870	751679		Antelope	Uranerz
26	92	16	16-82	568876	751411		Antelope	Uranerz
26	92	16	16-83	568864	751153		Antelope	Uranerz
26	92	16	16-84	568861	750917		Antelope	Uranerz
26	92	16	16-85				Antelope	Uranerz
26	92	16	16-86				Antelope	Uranerz
26	92	16	16-87				Antelope	Uranerz
26	92	16	16-88				Antelope	Uranerz
26	92	16	16-89				Antelope	Uranerz
26	92	16	16-90				Antelope	Uranerz
26	92	16	16-91				Antelope	Uranerz
26	92	16	16-92				Antelope	Uranerz
26	92	16	16-93				Antelope	Uranerz
26	92	16	16-94	568477	752367		Antelope	Uranerz
26	92	16	16-95	568439	752373		Antelope	Uranerz
26	92	16	16-96	569159	750882		Antelope	Uranerz
26	92	16	16-97	568337	752399		Antelope	Uranerz
26	92	16	16-98				Antelope	Uranerz
26	92	16	16-99	569334	750852		Antelope	Uranerz
26	92	7	7-M-6	572197.6	738205.1	459.5	Antelope	Uranium 1
26	92	9	9-M-12	574967.8	751214.0	499.2	Antelope	Uranium 1
29	92	10	10-M-13	574717.2	756491.8	458.6	Antelope	Uranium 1
26	92	10	10-MU-13	574592.6	756537.8	798.5	Antelope	Uranium 1
26	93	11	1017	573514.6	732539.3		Antelope	Uranium 1
26	93	11	11-1001	573514.6	730739.3	999.5	Antelope	Uranium 1
26	93	11	11-1002	573514.6	732339.3	999.4	Antelope	Uranium 1
26	93	11	11-1015	573314.6	732339.3	998.1	Antelope	Uranium 1
26	93	11	11-1016	573514.6	732139.3	998.8	Antelope	Uranium 1
26	92	11	11-M-14	573857.7	761527.5	399.3	Antelope	Uranium 1
26	93	12	1006	571915.0	737139.0	926.9	Antelope	Uranium 1
26	93	12	12-1001	573514.6	733939.3	586.9	Antelope	Uranium 1
26	93	12	12-1005	571914.6	735539.3	998.1	Antelope	Uranium 1
26	92	12	12-M-16	576758.5	766655.9	360.0	Antelope	Uranium 1
26	92	12	12-MP-16	576661.9	766661.9	317.4	Antelope	Uranium 1
26	92	12	12-MU-16	576662.8	766646.8	696.6	Antelope	Uranium 1

Table 2.6-1
Antelope and JAB Drill Holes

Twn	Rng	Sec	Map Hole id	North NAD27	East NAD27	Log 10	Project	Area
26	93	13	13-1001	570315.0	733940.0	998.0	Antelope	Uranium 1
26	93	13	13-1002	570315.0	735540.0	999.5	Antelope	Uranium 1
26	93	13	13-M-3	568804.8	734398.0	356.4	Antelope	Uranium 1
26	93	14	14-1001	570315.0	730740.0	999.6	Antelope	Uranium 1
26	93	14	14-1002	570315.0	732340.0	998.2	Antelope	Uranium 1
26	93	14	14-1003	568714.6	727739.3	515.9	Antelope	Uranium 1
26	93	14	14-M-2	571131.5	732183.2	441.2	Antelope	Uranium 1
26	93	14	14-MU-2	571188.9	732242.5	594.9	Antelope	Uranium 1
26	92	15	15-M-11	570989.1	756080.2	498.5	Antelope	Uranium 1
26	92	17	17-1002	570315.0	745140.0	1001.7	Antelope	Uranium 1
26	92	17	17-1005	567115.0	743540.0	998.8	Antelope	Uranium 1
26	92	17	17-M-8	570314.6	746738.1	700.2	Antelope	Uranium 1
26	92	20	20-1001	565515.0	743540.0	1001.8	Antelope	Uranium 1
26	92	20	20-1002	565515.0	745140.0	1001.3	Antelope	Uranium 1
26	92	20	20-1004	565515.0	748340.0	999.2	Antelope	Uranium 1
26	92	20	20-1007	563915.0	746740.0	999.6	Antelope	Uranium 1
26	92	20	20-1010	562315.0	745140.0	999.9	Antelope	Uranium 1
26	92	20	26-1011	562315.0	746740.0	987.4	Antelope	Uranium 1
26	92	20	M-9	563915.0	745140.0	1001.2	Antelope	Uranium 1
26	93	24	24-MP-4	566453.2	736838.0	601.5	Antelope	Uranium 1
26	93	24	24-MU-4	566456.1	736848.1	801.9	Antelope	Uranium 1
26	92	29	29-1001	560715.0	743540.0	964.4	Antelope	Uranium 1
26	92	29	29-1002	560715.0	745140.0	999.2	Antelope	Uranium 1
26	92	29	29-1003	560715.0	746740.0	999.7	Antelope	Uranium 1
26	92	29	29-1004	560715.0	748340.0	999.4	Antelope	Uranium 1

investing in our energy Section 2.6-Geology

ADDENDUM 2.6-B

ANTELOPE AND JAB SOILS TABLES

URANIUM ONE AMERICAS

License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology
investing in our energy

Table 2.6-2 Antelope License Area Soil Mapping Unit Acreages

Map Symbol	Map Unit Description	Permit Acreage	Disturbance Areas	\% Total Study Area
A	Almy loam, 0 to 6 percent slopes	106.06	60.24	2.76
BR	Bluerim sandy loam, 0 to 6 percent slopes	2299.43	484.68	22.18
BR-NC	Bluerim noncalcareous variant, 0 to 6 percent slopes	3163.9	652.15	29.85
BR-NC-S	Bluerim noncalcareous shallow variant, 0 to 6 percent slopes	490.79	140.74	6.44
Ca	Carmody sandy loam, 0-6 percent slopes	33.05	25.97	1.19
Ca-NC	Carmody noncalcareous variant, 0 to 6 percent slopes	622.8	13.79	0.63
Ca-NC-D	Carmody noncalcareous deep variant, 0 to 6 percent slopes	2.66	2.66	0.12
Cl	Clowers loam, 0 to 3 percent slopes	9.95	1.24	0.06
Cr-NC	Cragosen noncalcareous variant, 0 to 6 percent slopes	157.48	59.03	2.70
Gl	Glendive sandy loam, 0 to 3 percent slopes	36.75	19.81	0.91
L	Leckman sandy loam, 0 to 3 percent slopes	311.94	69.85	3.20
L-NC	Leckman noncalcareous variant, 0 to 3 percent slopes	-	-	-
O	Onason gravelly sandy loam, 6-10 percent slopes	2781.12	538.38	24.64
Re	Relsob sandy loam, 0 to 3 percent slopes	511.55	100.79	4.61
RO	Rock Outcrop, 6 to 10 percent slopes	70.34	14.34	0.66
RP	Ryan Park sandy loam, 0 to 6 percent slopes	6.39	1.45	0.07
Total		$\mathbf{1 0 , 6 0 4 . 2 1}$	$2,185.12$	$\mathbf{1 0 0}$

investing in our energy Section 2.6-Geology

Table 2.6-3 Jab License Area Soil Mapping Unit Acreages

Map Symbol	Map Unit Description	Permit Acreage	Disturbance Areas	\% Total Study Area
Bl	Blackhall fine sandy loams, 0 to 6 percent slopes	20.81	-	-
Br	Bluerim sandy loam, 0 to 6 percent slopes	809.94	54.35	18.25
$\mathrm{Br}-\mathrm{NC}$	Bluerim noncalcareous variant, 0 to 6 percent slopes	111.25	-	-
$\mathrm{Bz-NC}$	Blazon noncalcareous variant, 0 to 6 percent slopes	32.89	-	-
Ca	Carmody sandy loam, 0-6 percent slopes	464.88	1.55	0.52
$\mathrm{Ca}-\mathrm{NC}$	Carmody noncalcareous variant, 0 to 6 percent slopes	31.98	-	-
Cr	Cragosen gravelly sandy loam, 0 to 6 percent slopes	405.78	56.16	18.86
Cu	Cushool sandy loam, 0 to 6 percent slopes	568.91	9.44	3.17
$\mathrm{Cu}-\mathrm{SH}$	Cushool shallow variant, 0 to 6 percent slopes	82.25	19.47	6.54
D	Diamondville sandy loam, 0 to 6 percent slopes	510.23	20.12	6.76
F	Forelle sandy loam, 0 to 3 percent slopes	244.75	5.11	1.72
Gl	Glendive sandy loam, 0 to 3 percent slopes	78.76	-	-
Gr	Grieves fine sandy loam, 0 to 6 percent slopes	127.94	-	-
L	Leckman sandy loam, 0 to 3 percent slopes	27.16	-	-
$\mathrm{L-NC}$	Leckman noncalcareous variant, 0 to 3 percent slopes	25.44	16.85	5.66
O	Onason sandy loam, 6-10 percent slopes	228.53	13.95	4.68
Re	Relsob sandy loam, 0 to 3 percent slopes	37.18	-	-
RO	Rock Outcrop, 6 to 10 percent slopes	9.99	-	-
RR	Rock River sandy loam, 0 to 6 percent slopes	166.36	97.11	32.61
$\mathrm{RR}-\mathrm{NC}$	Rock River noncalcareous variant, 0 to 6 percent slopes	57.97	3.70	1.24
Total		$\mathbf{4 , 0 4 3 . 0 0}$	297.81	$\mathbf{1 0 0}$

Table 2.6-4 Soil Series Sample Summary for the Antelope License Area ${ }^{1}$

Soil Series	Number of Profiles Sampled for Chemical Analysis
Leckman	3
Almy	1
Carmody	2
Relsob	3
Cragosen	4
Bluerim	6
Onason	5
Ryan Park	1
Grieves	1
Total	$\mathbf{2 6}$

${ }^{1}$ Samples were taken within proposed disturbed area as defined by initial estimates of the ore body.

Table 2.6-5 Soil Series Sample Summary for the Jab License Area ${ }^{1}$

Soil Series	Number of Profiles Sampled for Chemical Analysis
Leckman	3
Bluerim	1
Onason	2
Blackhall	1
Diamondville	2
Rock River	7
Carmody	4
Cragosen	3
Blazon	1
Cushool	5
Forelle	2
Grieves	1
Glendive	2
Total	$\mathbf{3 4}$

${ }^{1}$ Samples were taken within proposed disturbed area as defined by initial estimates of the ore body.

Table 2.6-6 Antelope License Area ${ }^{1}$ Soil Sample Locations

Soil Sample Number	Map Unit Designation	Soils Series
112 a	L-NC: Leckman noncalcareous variant, 0 to 3 percent slopes	Leckman
114	L-NC: Leckman noncalcareous variant, 0 to 3 percent slopes	Leckman
115	A: Almy loam, 0 to 6 percent slopes	Almy
116	C-NC: Carmody noncalcareous variant, 0 to 6 percent slopes	Carmody
117	Re: Relsob sandy loam, 0 to 3 percent slopes	Relsob
126	Cr:Cragosen noncalcareous variant, 0 to 6 percent slopes	Cragosen
127	Re: Relsob sandy loam, 0 to 3 percent slopes	Relsob
128	Br-NC:Bluerim noncalcareous variant, 0 to 6 percent slopes	Bluerim
134	Cr:Cragosen noncalcareous variant, 0 to 6 percent slopes	Cragosen
144	O:Onason gravelly sandy loam, 6 to 10 percent slopes	Onason
145	O:Onason gravelly sandy loam, 6 to 10 percent slopes	Onason
147	L-NC:Leckman noncalcareous variant, 0 to 3 percent slopes	Leckman
158	Cr:Cragosen noncalcareous variant, 0 to 6 percent slopes	Cragosen
163	RP: Ryan Park sandy loam, 0 to 6 percent slopes	Ryan Park
167 a	Cr:Cragosen noncalcareous variant, 0 to 6 percent slopes	Cragosen
168	Br-NC:Bluerim noncalcareous variant, 0 to 6 percent slopes	Bluerim
170	Br-NC:Bluerim noncalcareous variant, 0 to 6 percent slopes	Bluerim
171	Br-NC:Bluerim noncalcareous variant, 0 to 6 percent slopes	Bluerim
173	O:Onason sandy loam, 6 to 10 percent slopes	Onason
174	C-NC: Carmody noncalcareous variant, 0 to 6 percent slopes	Carmody
178	Bluerim sandy loam, 0 to 6 percent slopes	Bluerim
183	Re: Relsob sandy loam, 0 to 3 percent slopes	Relsob
186	O:Onason gravelly sandy loam, 6 to 10 percent slopes	Onason
187	O:Onason gravelly sandy loam, 6 to 10 percent slopes	Onason
189	Br-NC:Bluerim noncalcareous variant, 0 to 6 percent slopes	Bluerim
190	Gr: Grieves fine sandy loam, 0 to 6 percent slopes	Grieves

${ }^{\text {I }}$ Samples were taken within proposed disturbed area as defined by initial estimates of the ore body.

Table 2.6-7 Jab License Area ${ }^{1}$ Soil Sample Locations

Soil Sample Number	Map Unit Designation	Soils Series
2	L:Leckman sandy loam, 0 to 3 percent slopes	Leckman
7	$\mathrm{Br}-\mathrm{NC}:$ Bluerim noncalcareous variant, 0 to 6 percent slopes	Bluerim
9	O:Onason gravelly sandy loam, 6 to 10 percent slopes	Onason
10	Bl :Blackhall sandy loams, 0 to 6 percent slopes	Blackhall
11	D:Diamondville sandy loam, 0 to 6 percent slopes	Diamondville
14	RR-NC:Rock River noncalcareous variant, 0 to 6 percent slopes	Rock River
15	$\mathrm{Ca}-\mathrm{NC}$:Carmody noncalcareous variant, 0 to 6 percent slopes	Carmody
17	Cr:Cragosen gravelly sandy loam, 0 to 6 percent slopes	Cragosen
19	Ca-NC:Carmody noncalcareous variant, 0 to 6 percent slopes	Carmody
20	RR-NC:Rock River noncalcareous variant, 0 to 6 percent slopes	Rock River
23	RR:Rock River sandy loam, 0 to 6 percent slopes	Rock River
25	Ca-NC:Carmody noncalcareous variant, 0 to 6 percent slopes	Carmody
26	Bz-NC:Blazon noncalcareous variant, 0 to 6 percent slopes	Blazon
27	D:Diamondville sandy loam, 0 to 6 percent slopes	Diamondville
28	Cu -SH:Cushool shallow variant, 0 to 6 percent slopes	Cushool
31	RR-NC:Rock River noncalcareous variant, 0 to 6 percent slopes	Rock River
32	L-NC:Leckman noncalcareous variant, 0 to 3 percent slopes	Leckman
33	RR:Rock River sandy loam, 0 to 6 percent slopes	Rock River
36	Cu:Cushool sandy loam, 0 to 6 percent slopes	Cushool
38	Cr:Cragosen sandy loam, 0 to 6 percent slopes	Cragosen
39	L-NC:Leckman noncalcareous variant, 0 to 3 percent slopes	Leckman
40	O:Onason sandy loam, 6 to 10 percent slopes	Onason
41	Cr:Cragosen gravelly sandy loam, 0 to 6 percent slopes	Cragosen
42	F:Forelle sandy loam, 0 to 3 percent slopes	Forelle
43	Gr:Grieves fine sandy loam, 0 to 6 percent slopes	Grieves
47	CuSH:Cushool shallow variant, 0 to 6 percent slopes	Cushool
48	Ca-NC:Carmody noncalcareous variant, 0 to 6 percent slopes	Carmody
49	Cu :Cushool sandy loam, 0 to 6 percent slopes	Cushool
50	Gl:Glendive sandy loam, 0 to 3 percent slopes	Glendive
51	RR:Rock River sandy loam, 0 to 6 percent slopes	Rock River
52	Gl:Glendive sandy loam, 0 to 6 percent slopes	Glendive
53	RR-NC:Rock River noncalcareous variant, 0 to 6 percent slopes	Rock River
54	F:Forelle sandy loam, 0 to 3 percent slopes	Forelle
56	Cu:Cushool sandy loam, 0 to 6 percent slopes	Cushool

'Samples were taken within proposed disturbed area as defined by initial estimates of the ore body.
investing in our energy
Section 2.6 - Geology
Table 2.6-8 Antelope License Area Summary of Marginal and Unsuitable Parameters within Sampled Profiles

Series	Sample Point	Depth (in)	Parameter
Ryan Park	163	$13-22$	Marginal saturation percentage
Cragosen	167 a	$0-2$	Marginal pH (High)
		$2-12$	
Bluerim	168	$18-24$	Marginal saturation percentage
Bluerim	171	$0-3$	Marginal pH (High)
Bluerim	171	$7-13$	Marginal saturation percentage
Onason	173	$0-3$	Marginal pH (High)
Carmody	174	$3-19$	
Bluerim	178	$29-39$	Marginal pH (High)
Relsob	183	$0-5$	Marginal pH (High)
Onason	186	$0-2$	Marginal pH (High)
Onason	187	$0-2$	Marginal pH (High)

License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology

Table 2.6-9 Jab License Area Summary of Marginal and Unsuitable Parameters within Sampled Profiles

Series	Sample Point	Depth (in)	Parameter
Blackhall	10	$4-14$	Marginal texture
Diamondville	11	$17-24$	Marginal texture
		$24-32$	Marginal coarse fragments
Carmody	25	$13-21$	Marginal texture
Blazon	26	$0-6$	Marginal coarse fragments
Leckman	39	$24-42$	
Onason	40	$0-60$	Marginal coarse fragments
Onason	40	$4-16$	Unsuitable coarse fragments
Cragosen	41	$0-2$	Marginal coarse fragments
		$2-14$	
Grieves	43	$0-3$	Marginal texture
		$3-11$	
		$11-22$	
Glendive	50	$22-31$	Marginal pH (High)
		$31-40$	
Forelle	54	$31-45$	Marginal EC (Conductivity)
Forelle	54	$42-49$	Unsuitable SAR parameter
		$15-21$	
		$21-42$	$42-49$

URANIUM ONE AMERICAS License Application, Technical Report Antelope and JAB Uranium Project

Section 2.6 - Geology

Table 2.6-10 Antelope License Area Summary of Approximate Soil Salvage Depths

Map Symbol	Mapping Unit Description	Disturbance Areas 1	Salvage Depth (feet)	Total Volume (Acre feet)
A	Almy loam, 0 to 6 percent slopes	60.24	1.50	90.36
Br	Bluerim sandy loam, 0 to 6 percent slopes	484.68	1.25	605.85
$\mathrm{Br}-\mathrm{NC}$	Bluerim noncalcareous variant, 0 to 6 percent slopes	652.15	1.08	704.32
Br-NC- S	Bluerim noncalcareous shallow variant, 0 to 6 percent slopes	140.74	1.08	152.00
Ca	Carmody sandy loam, 0-6 percent slopes	25.97	1.42	36.88
Ca-NC	Carmody noncalcareous variant, 0 to 6 percent slopes	13.79	1.42	19.58
Ca-NC-	Carmody noncalcareous deep variant, 0 to 6 percent slopes	2.66	1.42	3.78
Cr-NC	Cragosen noncalcareous variant, 0 to 6 percent slopes	59.03	0.54	31.97
Gl	Glendive sandy loam, 0 to 3 percent slopes	19.81	0.75	14.86
L	Leckman sandy loam, 0 to 3 percent slopes	69.85	2.25	157.16
L-NC	Leckman noncalcareous variant, 0 to 3 percent slopes	-	-	-
O	Onason sandy loam, 6 to 10 percent slopes	538.38	0.20	107.68
Re	Relsob sandy loam, 0 to 3 percent slopes	100.79	0.94	95.19
RO	Rock Outcrop, 6 to 10 percent slopes	14.34	-	-
RP	Ryan Park loamy fine sand, 0 to 6 percent slopes	1.45	1.08	1.57
Average Salvage Depth of Study Area	$\mathbf{2 , 1 8 3 . 8 8}$	$\mathbf{1 . 0 7}$		
Total	$\mathbf{2 , 0 2 1 . 2 0}$			

${ }^{1}$ Samples were taken within proposed disturbed area as defined by initial estimates of the ore body.

Table 2.6-11 Jab License Area Summary of Approximate Soil Salvage Depths

Map Symbol	Mapping Unit Description	Disturbance Areas ${ }^{1}$	Salvage Depth (feet)	Total Volume (Acre feet)
B1	Blackhall sandy loams, 0 to 6 percent slopes	-	0.33	-
BR	Bluerim sandy loam, 0 to 6 percent slopes	64.34	1.67	107.45
$\mathrm{Br}-\mathrm{NC}$	Bluerim noncalcareous variant, 0 to 6 percent slopes	-	-	-
Bz-NC	Blazon noncalcareous variant, 0 to 6 percent slopes	-	-	-
Ca	Carmody sandy loam, 0-6 percent slopes	1.55	0.5	0.78
$\mathrm{Ca}-\mathrm{NC}$	Carmody noncalcareous variant, 0 to 6 percent slopes	-	-	-
Cr	Cragosen gravelly sandy loam, 0 to 6 percent slopes	56.16	0.17	9.36
Cu	Cushool sandy loam, 0 to 6 percent slopes	9.44	1.64	15.48
$\mathrm{Cu}-\mathrm{SH}$	Cushool shallow variant, 0 to 6 percent slopes	19.47	0.96	18.69
D	Diamondville sandy loam, 0 to 6 percent slopes	20.12	1.21	24.31
F	Forelle sandy loam, 0 to 3 percent slopes	5.11	1.21	6.17
Gl	Glendive sandy loam, 0 to 3 percent slopes	-	-	-
Gr	Grieves sandy loam, 0 to 6 percent slopes	-	-	-
L	Leckman sandy loam, 0 to 3 percent slopes	-	-	-
L-NC	Leckman noncalcareous variant, 0 to 3 percent slopes	16.85	0.97	16.38
O	Onason sandy loam, 6 to 10 percent slopes	13.95	0.42	5.81
Re	Relsob sandy loam, 0 to 3 percent slopes	-	-	-
RO	Rock Outcrop, 6 to 10 percent slopes	-	-	-
RR	Rock River sandy loam, 0 to 6 percent slopes	97.11	1.47	142.75
RR-NC	Rock River noncalcareous variant, 0 to 6 percent slopes	3.70	2.00	7.4
Average Salvage Depth of Study Area			1.05	
Total		307.8		354.58

${ }^{1}$ Samples were taken within proposed disturbed area as defined by initial estimates of the ore body.

Table 2.6-12 Antelope License Area Summary of Wind and Water Erosion Hazards ${ }^{1}$

Map Symbol	Map Unit Description	Water Erosion Hazard	Wind Erosion Hazard
112 a	Leckman noncalcareous variant, 0 to 3 percent slope	slight	severe
114	Leckman noncalcareous variant, 0 to 3 percent slope	slight	severe
115	Almy sandy loam, 0 to 6 percent slope	severe	moderate
116	Carmody noncalcareous variant, 0 to 6 percent slope	severe	moderate
117	Relsob sandy loam, 0 to 3 percent slope	slight	severe
126	Cragosen noncalcareous variant, 0 to 6 percent slope	severe	slight
127	Relsob sandy loam, 0 to 3 percent slope	slight	severe
128	Bluerim noncalcareous variant, 0 to 6 percent slope	moderate	moderate
134	Cragosen noncalcareous variant, 0 to 6 percent slope	severe	slight
144	Onason gravelly sandy loam, 6 to 10 percent slope	moderate	moderate
145	Onason gravelly sandy loam, 6 to 10 percent slope	moderate	moderate
147	Leckman noncalcareous variant, 0 to 3 percent slope	slight	severe
158	Cragosen noncalcareous variant, 0 to 6 percent slope	severe	slight
163	Ryan Park sandy loam, 0 to 6 percent slope	moderate	severe
167 a	Cragosen noncalcareous variant, 0 to 6 percent slope	severe	slight
168	Bluerim noncalcareous variant, 0 to 6 percent slope	moderate	moderate
170	Bluerim noncalcareous variant, 0 to 6 percent slope	moderate	moderate
171	Bluerim noncalcareous variant, 0 to 6 percent slope	moderate	moderate
173	Onason gravelly sandy loam, 6 to 10 percent slope	moderate	moderate
174	Carmody noncalcareous variant, 0 to 6 percent slope	severe	moderate
178	Bluerim sandy loam, 0 to 6 percent slope	moderate	moderate
183	Relsob sandy loam, 0 to 3 percent slope	slight	severe
186	Onason gravelly sandy loam, 6 to 10 percent slope	moderate	moderate
187	Onason gravelly sandy loam, 6 to 10 percent slope	moderate	moderate
189	Bluerim noncalcareous variant, 0 to 6 percent slope	moderate	moderate
190	Grieves sandy loam, 0 to 6 percent slope	severe	moderate

${ }^{1}$ Based on soil mapping unit descriptions.

URANIUM ONE AMERICAS
License Application, Technical Report
Antelope and JAB Uranium Project uraniumone"

Section 2.6-Geology

Table 2.6-13 Jab License Area Summary of Wind and Water Erosion Hazards ${ }^{1}$

$\begin{aligned} & \text { Map } \\ & \text { Symbol } \end{aligned}$	Map Unit Description	Water Erosion Hazard	Wind Erosion Hazard
2	Leckman sandy loam, 0 to 3 percent slope	slight	severe
7	Bluerim noncalcareous variant, 0 to 6 percent slope	moderate	moderate
9	Onason gravelly sandy loam, 6 to 10 percent slope	moderate	moderate
10	Blackhall sandy loam, 0 to 6 percent slope	severe	moderate
11	Diamondville sandy loam, 0 to 6 percent slope	moderate	moderate
14	Rock River noncalcareous variant, 0 to 6 percent slope	moderate	severe
15	Carmody noncalcareous variant, 0 to 6 percent slope	severe	moderate
17	Cragosen gravelly sandy loam, 0 to 6 percent slope	severe	slight
19	Carmody noncalcareous variant, 0 to 6 percent slope	severe	moderate
20	Rock River noncalcareous variant, 0 to 6 percent slope	moderate	severe
23	Rock River sandy loam, 0 to 6 percent slope	moderate	severe
25	Carmody noncalcareous variant, 0 to 6 percent slope	severe	moderate
26	Blazon noncalcareous variant, 0 to 6 percent slope	severe	moderate
27	Diamondville sandy loam, 0 to 6 percent slope	moderate	moderate
28	Cushool shallow variant, 0 to 6 percent slope	moderate	severe
31	Rock River noncalcareous variant, 0 to 6 percent slope	moderate	severe
32	Leckman noncalcareous variant, 0 to 3 percent slope	slight	severe
33	Rock River sandy loam, 0 to 6 percent slope	moderate	severe
36	Cushool sandy loam, 0 to 6 percent slope	moderate	severe
38	Cragosen gravelly sandy loam, 0 to 6 percent slope	severe	slight
39	Leckman noncalcareous variant, 0 to 3 percent slope	slight	severe
40	Onason sandy loam, 0 to 6 percent slope	moderate	moderate
41	Cragosen gravelly sandy loam, 0 to 6 percent slope	severe	slight
42	Forelle sandy loam, 0 to 3 percent slope	moderate	moderate
43	Grieves sandy loam, 0 to 6 percent slope	severe	moderate
47	Cushool shallow variant, 0 to 6 percent slope	moderate	severe
48	Carmody noncalcareous variant, 0 to 6 percent slope	severe	moderate
49	Cushool sandy loam, 0 to 6 percent slope	moderate	severe
50	Glendive sandy loam, 0 to 3 percent slope	slight	severe
51	Rock River sandy loam, 0 to 6 percent slope	moderate	severe
52	Glendive sandy loam, 0 to 3 percent slope	slight	severe
53	Rock River noncalcareous variant, 0 to 6 percent slope	moderate	severe
54	Forelle sandy loam, 0 to 3 percent slope	moderate	moderate
56	Cushool sandy loam, 0 to 6 percent slope	moderate	severe

${ }^{\mathrm{T}}$ Based on soil mapping unit descriptions.

ADDENDUM 2.6-C
 SOIL MAPPING UNIT DESCRIPTIONS

"A" - Almy sandy loam, 0 to 6 percent slope (Antelope Only)
The Almy sandy loam mapping unit consists of very deep, well drained soils that developed in alluvium on alluvial fan aprons and fan piedmonts. It occurs at elevation ranges from 6,800 feet to 7,400 feet.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit. The frost-free season ranges from 80 to 100 days.

Slopes are both simple and complex and range from 0 to 15 percent. Parent materials are weathered from interbedded, red, fine sandstone and shale.

Permeability within the Almy soil is moderate or moderately slow. Runoff is slow on the gentler slopes and medium on the steeper slopes, and the water erosion hazard is severe. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are six plant species that are common to this map unit: Western wheatgrass, Needleandthread, Big sagebrush, Bluebunch wheatgrass, Indian ricegrass, and Douglasabbitbrush.

In a favorable year (above average moisture), the production is approximately 1,400 lbs/acres. In an unfavorable (drought) year, the production is approximately 600 lbs/acres.

This map unit is a good source for roadfill and topsoil according to NRCS information. This map unit is a fair source of overall reclamation material; limitations include water erosion and low organic matter content.

Section 2.6-Geology
"Bl" - Blackhall sandy loam, 0 to 6 percent slope (Jab Only)
6800 to 7400 feet in the project areas and the mean annual precipitation is 8 to 10
The Blackhall sandy loam mapping unit consists of very shallow and shallow, well drained soils that developed in residuum derived from sandstone. It occurs on hills and ridges at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately 80-100 days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam and Carmody sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 3 inch brown sandy loam surface layer. The transition subsoil, if present, is brown sandy clay loam and is approximately 3 inches thick. The substratum is light yellowish brown to pale yellow sandy clay loam and extends 10 to 18 inches in depth.

Permeability within the Blackhall soil is moderate. The available water capacity is low. The effective rooting depth is approximately 10 to 20 inches. Runoff is rapid, and the water erosion hazard is severe. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are four plant species that are common to this map unit: Indian ricegrass, Needleandthread, Thickspike wheatgrass, and Big sagebrush.

In a favorable year (above average moisture), the production is approximately 1,200 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill and topsoil. The limiting feature is depth to bedrock. This map unit is a poor source of overall reclamation material; limitations include droughty potential and depth to bedrock. Section 2.6-Geology

"Br" - Bluerim sandy loam, 0 to 6 percent slope (Antelope Only)

The Bluerim sandy loam mapping unit consists of moderately deep, well drained soils that developed in residuum derived from sandstone. It occurs on hillslopes and ridges at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam and Blazon sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 4 inch brown sandy loam surface layer. The transition subsoil is brown sandy loam or loam and is approximately 11 inches thick. The substratum is light brown sandy loam and extends to approximately 30 inches in depth.

Permeability within the Bluerim soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is medium, and the water erosion hazard is moderate. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are nine plant species that are common to this map unit: Thickspike wheatgrass, Big sagebrush, Needleandthread, Pine needlegrass, Bluebunch wheatgrass, Cusick's bluegrass, Indian ricegrass, Prairie Junegrass, and Western wheatgrass

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting feature is depth to bedrock. This map unit is a fair source for topsoil; limitations include slope, rock fragments, and depth to bedrock. This map unit is a fair source of overall reclamation material; limitations include low organic matter content, droughty potential, and depth to bedrock.

URANIUM ONE AMERICAS
License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology

investing in our energy

"Br-NC" - Bluerim noncalcareous variant, 0 to 6 percent slope (Antelope and Jab)

The Bluerim noncalcareous variant mapping unit consists of moderately deep, well drained soils that developed in residuum derived from sandstone. It occurs on hillslopes and ridges at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately 80-100 days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam and Blazon sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 4 inch brown sandy loam surface layer. The transition subsoil is brown sandy loam or loam and is approximately 11 inches thick. The substratum is light brown sandy loam and extends to approximately 30 inches in depth.

Permeability within the Bluerim soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is medium, and the water erosion hazard is moderate. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are nine plant species that are common to this map unit: Thickspike wheatgrass, Big sagebrush, Needleandthread, Pine needlegrass, Bluebunch wheatgrass, Cusick's bluegrass, Indian ricegrass, Prairie Junegrass, and Western wheatgrass

In a favorable year (above average moisture), the production is approximately 1,500 $\mathrm{lbs} / \mathrm{acres}$. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting feature is depth to bedrock. This map unit is a fair source for topsoil; limitations include slope, rock fragments, and depth to bedrock. This map unit is a fair source of overall reclamation material; limitations include low organic matter content, droughty potential, and depth to bedrock.

Section 2.6-Geology

" Br -NC" - Bluerim noncalcareous shallow variant, 0 to 6 percent slope (Antelope Only)

The Bluerim noncalcareous shallow variant mapping unit consists of moderately deep, well drained soils that developed in residuum derived from sandstone. It occurs on hillslopes and ridges at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately 80-100 days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam and Blazon sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 4 inch brown sandy loam surface layer. The transition subsoil is brown sandy loam or loam and is approximately 11 inches thick. The substratum is light brown sandy loam and extends to approximately 30 inches in depth.

Permeability within the Bluerim soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is medium, and the water erosion hazard is moderate. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are nine plant species that are common to this map unit: Thickspike wheatgrass, Big sagebrush, Needleandthread, Pine needlegrass, Bluebunch wheatgrass, Cusick's bluegrass, Indian ricegrass, Prairie Junegrass, and Western wheatgrass

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting feature is depth to bedrock. This map unit is a fair source for topsoil; limitations include slope, rock fragments, and depth to bedrock. This map unit is a fair source of overall reclamation material; limitations include low organic matter content, droughty potential, and depth to bedrock. Section 2.6-Geology

"Bz-NC" - Blazon noncalcareous variant, 0 to 6 percent slope (Jab Only)

The Blazon noncalcareous variant mapping unit consists of shallow and very shallow, well drained soils that developed in residuum derived from shale. It occurs on footslopes, backslopes, and shoulders of hills and ridges at elevations from 6,800 to 7,400.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Blackhall sandy loam and Onason sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 2 inch light olive brown sandy loam surface layer. The substratum is light brownish gray sandy loam and extends to 14 inches in depth.

Permeability within the Blazon soil is moderate to moderately slow. The available water capacity is low. The effective rooting depth is approximately 4 to 20 inches. Runoff is rapid, and the water erosion hazard is severe. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are six plant species that are common to this map unit: Bluebunch wheatgrass, Western wheatgrass, Indian ricegrass, Bottlebrush squirreltail, Sandberg bluegrass, and Winterfat.

In a favorable year (above average moisture), the production is approximately 1,000 $\mathrm{lbs} / \mathrm{acres}$. In an unfavorable (drought) year, the production is approximately 500 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting features are depth to bedrock, low strength, slope, and shrink-swell. This map unit is a poor source for topsoil; limitations include depth to bedrock, slope, too clayey, and rock fragments. This map unit is a poor source of overall reclamation material; limitations include depth to bedrock, droughty potential, low organic matter content, water erosion potential and too clayey.

Section 2.6-Geology

"Ca" - Carmody sandy loam, 0 to 6 percent slope (Antelope and Jab)

The Carmody sandy loam mapping unit consists of moderately deep, well drained soils that developed in residuum derived from calcareous siltstone and fine grained sandstone. It occurs on hillslopes and ridges at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately 80-100 days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam and Carmody sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 3 inch yellowish brown sandy loam surface layer. The transition subsoil is light yellowish brown to yellowish brown sandy loam and is approximately 27 inches thick. The substratum is very pale brown sandy loam and extends to 40 inches in depth.

Permeability within the Carmody soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is rapid, and the water erosion hazard is severe. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are six plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Indian ricegrass, Silver sagebrush, Fieldclustered sedge, and Bottlebrush squirreltail.

In a favorable year (above average moisture), the production is approximately 1,500 $\mathrm{lbs} / \mathrm{acres}$. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

As for reclamation material, it is a fair source due to no organic matter (content low), water erosion, droughty potential, and depth to bedrock.

According to NRCS information, this map unit is a poor source for roadfill. The limiting features are depth to bedrock and slope. This map unit is a poor source for topsoil; limitations include depth to bedrock, rock fragments, and slope. This map unit is a fair source of overall reclamation material; limitations include low organic matter content, water erosion, droughty potential, and depth to bedrock. Antelope and JAB Uranium Project Section 2.6-Geology

"Ca-NC" - Carmody noncalcareous variant, 0 to 6 percent slope (Antelope and Jab)

The Carmody noncalcareous variant mapping unit consists of moderately deep, well drained soils that developed in residuum derived from calcareous siltstone and fine grained sandstone. It occurs on hillslopes and ridges at elevations from 6,800 to 7,400.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam and Carmody sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 3 inch yellowish brown sandy loam surface layer. The transition subsoil is light yellowish brown to yellowish brown sandy loam and is approximately 27 inches thick. The substratum is very pale brown sandy loam and extends to 40 inches in depth.

Permeability within the Carmody soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is rapid, and the water erosion hazard is severe. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are six plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Indian ricegrass, Silver sagebrush, Fieldclustered sedge, and Bottlebrush squirreltail.

In a favorable year (above average moisture), the production is approximately 1,500 $\mathrm{lbs} / \mathrm{acres}$. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting features are depth to bedrock and slope. This map unit is a poor source for topsoil; limitations include depth to bedrock, rock fragments, and slope. This map unit is a fair source of overall reclamation material; limitations include low organic matter content, water erosion, droughty potential, and depth to bedrock.
investing in our energy

"Ca-NC-D" - Carmody noncalcareous deep variant, 0 to 6 percent slope (Antelope Only)

The Carmody noncalcareous deep variant mapping unit consists of moderately deep, well drained soils that developed in residuum derived from calcareous siltstone and fine grained sandstone. It occurs on hillslopes and ridges at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately 80-100 days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam and Carmody sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 3 inch yellowish brown sandy loam surface layer. The transition subsoil is light yellowish brown to yellowish brown sandy loam and is approximately 27 inches thick. The substratum is very pale brown sandy loam and extends to 40 inches in depth.

Permeability within the Carmody soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is rapid, and the water erosion hazard is severe. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are six plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Indian ricegrass, Silver sagebrush, Fieldclustered sedge, and Bottlebrush squirreltail.

In a favorable year (above average moisture), the production is approximately 1,500 $\mathrm{lbs} /$ acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting features are depth to bedrock and slope. This map unit is a poor source for topsoil; limitations include depth to bedrock, rock fragments, and slope. This map unit is a fair source of overall reclamation material; limitations include low organic matter content, water erosion, droughty potential, and depth to bedrock. Section 2.6-Geology

"Cr" - Cragosen sandy loam, 0 to 6 percent slope (Jab Only)

The Cragosen sandy loam mapping unit consists of shallow and very shallow, well drained soils that developed in residuum derived from sandstone and conglomerate. It occurs on footslopes, backslopes, and shoulders of hills and ridges at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Blackhall sandy loam and Onason sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 2 inch brown sandy loam surface layer. The substratum is very pale brown to pale brown sandy loam and extends to 12 inches in depth.

Permeability within the Cragosen soil is moderate. The available water capacity is low. The effective rooting depth is approximately 10 to 20 inches. Runoff is rapid, and the water erosion hazard is severe. The hazard of wind erosion is slight.

Productivity and Reclamation Potential

There are five plant species that are common to this map unit: Bluebunch wheatgrass, Western wheatgrass, Black sagebrush, Needleandthread, and Indian ricegrass.

In a favorable year (above average moisture), the production is approximately 1,200 $\mathrm{lbs} / \mathrm{acres}$. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting features are depth to bedrock and slope. This map unit is a poor source for topsoil; limitations include depth to bedrock, rock fragments, sodium content, and slope. This map unit is a poor source of overall reclamation material; limitations include no organic matter, sodium content, droughty potential, and depth to bedrock.
investing in our energy Section 2.6-Geology

"Cr-NC" - Cragosen noncalcareous variant, 0 to 6 percent slope (Antelope Only)

The Cragosen noncalcareous variant mapping unit consists of shallow and very shallow, well drained soils that developed in residuum derived from sandstone and conglomerate. It occurs on footslopes, backslopes, and shoulders of hills and ridges at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Blackhall sandy loam and Onason sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 2 inch brown sandy loam surface layer. The substratum is very pale brown to pale brown sandy loam and extends to 12 inches in depth.

Permeability within the Cragosen soil is moderate. The available water capacity is low. The effective rooting depth is approximately 10 to 20 inches. Runoff is rapid, and the water erosion hazard is severe. The hazard of wind erosion is slight.

Productivity and Reclamation Potential

There are five plant species that are common to this map unit: Bluebunch wheatgrass, Western wheatgrass, Black sagebrush, Needleandthread, and Indian ricegrass.

In a favorable year (above average moisture), the production is approximately 1,200 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting features are depth to bedrock and slope. This map unit is a poor source for topsoil; limitations include depth to bedrock, rock fragments, sodium content, and slope. This map unit is a poor source of overall reclamation material; limitations include no organic matter, sodium content, droughty potential, and depth to bedrock.
investing in our energy Section 2.6-Geology

"Cu" - Cushool sandy loam, 0 to 6 percent slope (Jab Only)

The Cushool sandy loam mapping unit consists of moderately deep, well drained soils that developed in residuum and colluvial slopewash derived from sandy shale and sandstone. It occurs on hillslopes and short fan aprons at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately 80-100 days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam, Blackhall sandy loam, and Diamondville sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 3 inch brown sandy loam surface layer. The transition subsoil, if present, is brown loam and is approximately 15 inches thick. The substratum is light yellowish brown to very pale brown sandy clay loam and extends to approximately 40 inches in depth.

Permeability within the Cushool soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is medium, and the water erosion hazard is moderate. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are seven plant species that are common to this map unit: Needleandthread, Indian ricegrass, Thickspike wheatgrass, Silver sagebrush, Big sagebrush, Bluebunch wheatgrass, and Sandberg bluegrass.

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting feature is depth to bedrock. This map unit is a fair source for topsoil; the limiting feature is depth to bedrock. This map unit is a fair source of overall reclamation material; limitations include low organic matter content, droughty potential, and depth to bedrock.

URANIUM ONE AMERICAS License Application, Technical Report Antelope and JAB Uranium Project Section 2.6 - Geology

investing in our energy
"Cu-SH" - Cushool shallow variant, 0 to 6 percent slope (Jab Only)
The Cushool shallow variant mapping unit consists of moderately deep, well drained soils that developed in residuum and colluvial slopewash derived from sandy shale and sandstone. It occurs on hillslopes and short fan aprons at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately 80-100 days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam, Blackhall sandy loam, and Diamondville sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 3 inch brown sandy loam surface layer. The transition subsoil, if present, is brown loam and is approximately 15 inches thick. The substratum is light yellowish brown to very pale brown sandy clay loam and extends to approximately 40 inches in depth.

Permeability within the Cushool soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is medium, and the water erosion hazard is moderate. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are seven plant species that are common to this map unit: Needleandthread, Indian ricegrass, Thickspike wheatgrass, Silver sagebrush, Big sagebrush, Bluebunch wheatgrass, and Sandberg bluegrass.

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting feature is depth to bedrock. This map unit is a fair source for topsoil; the limiting feature is depth to bedrock. This map unit is a fair source of overall reclamation material; limitations include low organic matter content, droughty potential, and depth to bedrock.

Section 2.6-Geology

"D" - Diamondville sandy loam, 0 to 6 percent slope (Jab Only)
The Diamondville sandy loam mapping unit consists of moderately deep, well drained soils that developed in residuum derived from sandstone. It occurs on hillslopes at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Blackhall sandy loam, Carmody sandy loam, and Cushool sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 5 inch pale brown sandy loam surface layer. The transition subsoil, if present, is dark yellowish brown loam to sandy loam and is approximately 13 inches thick. The substratum is light yellowish brown loamy sand to sandy loam and extends to approximately 34 inches in depth.

Permeability within the Diamondville soil is moderate. The available water capacity is low. The effective rooting depth is approximately 20 to 40 inches. Runoff is medium, and the water erosion hazard is moderate. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are seven plant species that are common to this map unit: Western wheatgrass, Needleandthread, Big sagebrush, Bluebunch wheatgrass, Green needlegrass, and Douglas rabbitbrush.

In a favorable year (above average moisture), the production is approximately 700 lbs/acres. In an unfavorable (drought) year, the production is approximately 300 lbs/acres.

According to NRCS information, this map unit is a poor source for roadfill. The limiting feature is depth to bedrock. This map unit is a fair source for topsoil; the limiting feature is depth to bedrock. This map unit is a fair source of overall reclamation material; limitations include water erosion, low organic matter content, droughty potential, and depth to bedrock.

The Forelle sandy loam mapping unit consists of deep, well drained soils that developed in residuum derived from various sources including sandstone. It occurs on wide ephemeral drainage bottoms at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Diamondville sandy loam, Carmody sandy loam, and Cushool sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 5 inch brown sandy loam surface layer. The transition subsoil, if present, is brown to pale brown loam to sandy clay loam and is approximately 19 inches thick. The substratum is light yellowish brown sandy loam and extends to approximately 46 inches in depth.

Permeability within the Forelle soil is moderately slow. The available water capacity is moderate. The effective rooting depth is greater than 60 inches. Runoff is medium, and the water erosion hazard is moderate. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are five plant species that are common to this map unit: Western wheatgrass, Green needlegrass, Big sagebrush, Indian ricegrass, and Douglas rabbitbrush.

In a favorable year (above average moisture), the production is approximately 700 lbs/acres. In an unfavorable (drought) year, the production is approximately 300 lbs/acres.

This map unit is a good source for roadfill according to NRCS information. This map unit is a good source for topsoil. This map unit is a fair source of overall reclamation material; limitations include water erosion and low organic matter content.

"Gl"-Glendive sandy loam, 0 to 6 percent slope (Jab Only)

The Glendive sandy loam mapping unit consists of deep, well drained soils that developed in residuum derived from various sources including sandstone. It occurs on wide ephemeral drainage bottoms at elevations from 6,800 to 7,400 .

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Forelle sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 5 inch brown sandy loam surface layer. The transition subsoil, if present, is brown to pale brown loam to sandy clay loam and is approximately 19 inches thick. The substratum is light yellowish brown sandy loam and extends to approximately 46 inches in depth.

Permeability within the Glendive soil is moderately rapid. The available water capacity is moderate. The effective rooting depth is greater than 60 inches. Runoff is slow, and the water erosion hazard is slight. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are nine plant species that are common to this map unit: Western wheatgrass, Green needlegrass, Little bluestem, Needleandthread, Prairie sandreed, Thickspick wheatgrass, Rose, Winterfat, Western snowberry, and Silver sagebrush.

In a favorable year (above average moisture), the production is approximately 1,800 lbs/acres. In an unfavorable (drought) year, the production is approximately 900 lbs/acres.

This map unit is a good source for roadfill according to NRCS information. This map unit is a fair source for topsoil. The limiting feature is rock fragments. This map unit is a fair source of overall reclamation material; limitations include water erosion and low organic matter content.

Section 2.6-Geology

"Gr" - Grieves sandy loam, 0 to 6 percent slope (Jab Only)
The Grieves sandy loam mapping unit consists of well drained to some extent excessively drained soils. Grieves soils are on nearly level to sloping alluvial fans, footslopes or toeslopes occurring at elevation from 6,800 to 7,400 feet.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit. The frost-free season is 80 to 100 days.

Slopes are 0 to 40 percent. They formed in locally transported calcareous materials weathered from sandstone or sandstone interbedded with shale.

Permeability within the Grieves soil is moderately rapid. Runoff is slow, and the water erosion hazard is severe. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are four plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Indian ricegrass, and Big sagebrush.

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

This map unit is a good source for roadfill according to NRCS information. This map unit is a fair source for topsoil. The limiting features are rock fragments and too sandy. This map unit is a fair source of overall reclamation material; limitations include water erosion, low organic matter content, and too sandy.

"L"- Leckman sandy loam, 0 to 6 percent slope (Jab Only)

The Leckman sandy loam mapping unit consists of well drained soils. Leckman soils are on alluvial fans and toe slopes of escarpments occurring at elevation from 6,800 to 7,400 feet.

The mean annual precipitation is 8 to 10 inches. The mean annual air temperature is 38 degrees Fahrenheit. The frost-free season is $80-110$ days.

Slopes are 0 to 10 percent. The soils formed in alluvium.
Permeability within the Leckman soil is moderately rapid. Runoff is slow to medium. Some areas receive additional moisture from runoff from other areas. The water erosion hazard is slight. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are four plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Indian ricegrass, and Big sagebrush.

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

This map unit is a good source for roadfill and topsoil according to NRCS information. This map unit is a poor source of overall reclamation material; limitations include water erosion, too alkaline, and low organic matter content. Section 2.6-Geology
"L-NC" - Leckman noncalcareous variant, 0 to 6 percent slope (Antelope and Jab)
The Leckman noncalcareous variant mapping unit consists of well drained soils. Leckman soils are on alluvial fans and toe slopes of escarpments occurring at elevation from 6,800 to 7,400 feet.

The mean annual precipitation is 8 to 10 inches. The mean annual air temperature is 38 degrees Fahrenheit. The frost-free season is $80-110$ days.

Slopes are 0 to 10 percent. The soils formed in alluvium.
Permeability within the Leckman soil is moderately rapid. Runoff is slow to medium. Some areas receive additional moisture from runoff from other areas. The water erosion hazard is slight. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are four plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Indian ricegrass, and Big sagebrush.

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

This map unit is a good source for roadfill and topsoil according to NRCS information. This map unit is a poor source of overall reclamation material; limitations include water erosion, too alkaline, and low organic matter content. Section 2.6-Geology

"O" - Onason sandy loam, 0 to 6 percent slope (Antelope and Jab)

The Onason sandy loam mapping unit consists of shallow and very shallow, well drained soils that developed in residuum derived from sandstone. It occurs on footslopes, backslopes, and shoulders of hills and ridges at elevations from 6,800 to 7,400.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Cragosen gravelly loam and Blackhall sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 1 inch brown sandy loam surface layer. The substratum is very pale brown to pale brown sandy loam and extends to 12 inches in depth.

Permeability within the Onason soil is moderate. The available water capacity is low. The effective rooting depth is approximately 10 to 20 inches. Runoff is medium, and the water erosion hazard is moderate. The hazard of wind erosion is moderate.

Productivity and Reclamation Potential

There are twelve plant species that are common to this map unit: Indian ricegrass, Bluebunch wheatgrass, Needleandthread, Thickspike wheatgrass, Fieldclustered sedge, Prairie Junegrass, Sandberg bluegrass, Skunkbush sumac, Bottlebrush Squirreltail, Douglas rabbitbrush, Rubber rabbitbrush, and Winterfat.

In a favorable year (above average moisture), the production is not known. In an unfavorable (drought) year, the production is approximately $1,200 \mathrm{lbs} /$ acres.

This map unit is a poor source for roadfill according to NRCS information. The limiting features are depth to bedrock and slope. This map unit is a poor source for topsoil. The limiting features are depth to bedrock, rock fragment, and slope. This map unit is a poor source of overall reclamation material; limitations include droughty potential, low organic matter content, and depth to bedrock. Section 2.6-Geology
investing in our energy
"Re" - Relsob sandy loam, 0 to 6 percent slope (Antelope and Jab)
The Relsob sandy loam mapping unit consists of deep, well drained soils that developed in alluvium derived from sandstone. It occurs on fan aprons at elevations from 6,800 to 7,400.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately 80-100 days.

Slopes range from 0 to 6 percent. Included in this unit are small areas of Bluerim sandy loam. These inclusions comprise less than 10 percent of the total acreage within this map unit.

A typical profile contains a 3 inch brown sandy loam surface layer. The transition subsoil is yellowish brown sandy clay loam or gravelly sandy clay loam and is approximately 9 inches thick. The substratum is light yellowish brown gravelly loamy sand and extends to 60 inches or more in depth.

Permeability within the Relsob soil is moderate. The available water capacity is low. The effective rooting depth is 60 inches or more. Runoff is slow, and the water erosion hazard is slight. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are six plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Indian ricegrass, Silver sagebrush, Fieldclustered sedge, and Bottlebrush squirreltail.

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

This map unit is a good source for roadfill according to NRCS information. This map unit is a poor source for topsoil. The limiting features are too sandy, hard to reclaim (rock fragments), and rock fragments. This map unit is a poor source of overall reclamation material; limitations include droughty potential, low organic matter content, and too sandy.
"RO" - Rock Outcrop 0 to 6 percent slope (Antelope and Jab)
The Rock Outcrop mapping unit is 90 percent barren rock and 10 percent Laporte and Rekop soil. The barren rock is limestone, hard sandstone, and gypsum of various geological formations. These rocks do not weather to large amounts of sediment. The elevation ranges from 6,800 to 7,400 feet.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual air temperature is approximately 38 degrees Fahrenheit, and the average frost-free season is approximately $80-100$ days.

Laporte and Tilford soils, in places, furnish limited grazing, although the vegetation is sparse.

Regarding productivity, total dry-weight production for favorable and unfavorable year was not provided by the NRCS. Characteristic vegetation was not available for this map unit.

In regards to reclamation potential, the three areas that are considered for reclamation: topsoil, roadfill, and reclamation were not rated by the NRCS.

"RP" - Ryan Park sandy loam, 0 to 6 percent slope (Antelope Only)

The Ryan Park sandy loam mapping unit consists of well or somewhat excessively drained soils. Ryan Park soils are limited in extent and are on fan aprons, hillslopes, and toeslopes. The soils formed in moderately sandy sediments weathered from calcareous sandstone, eolian deposits, and residuum. Elevation is 6,800 to 7,400 feet.

The mean annual precipitation is about 8 to 10 inches and occurs mainly in the winter and spring. The mean annual temperature is 38 degrees Fahrenheit. The frost-free season is estimated to range from 80-100 days depending upon air drainage, aspect, and elevation.

Slopes are 0 to 25 percent.
Permeability within the Ryan Park soil is moderately rapid. Runoff is slow, and the water erosion hazard is moderate. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are seven plant species that are common to this map unit: Needleandthread, Indian ricegrass, Thickspike wheatgrass, Big sagebrush, Bluebunch wheatgrass, Bottlebrush squirreltail, and Douglas rabbitbrush.

In a favorable year (above average moisture), the production is approximately 700 lbs/acres. In an unfavorable (drought) year, the production is approximately 300 lbs/acres.

This map unit is a fair source for roadfill according to NRCS information. The limiting feature is depth to bedrock. This map unit is a fair source for topsoil. The limiting feature is sodium content. This map unit is a poor source of overall reclamation material; limitations include wind erosion, too alkaline, low organic matter content, sodium content, and water erosion.
investing in our energy
Section 2.6-Geology
"RR" - Rock River sandy loam, 0 to 6 percent slope (Jab Only)
The Rock River sandy loam mapping unit consists of well drained soils. Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Elevation is 6,800 to 7,400 feet.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual temperature is approximately 38 degrees Fahrenheit. The frost-free season is about 80 100 days but varies according to aspect, elevation, and air drainage.

Slopes are 0 to 25 percent.
Permeability within the River Rock soil is moderate. Runoff is medium to rapid, and the water erosion hazard is moderate. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are ten plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Big sagebrush, Bluebunch wheatgrass, Cusick's bluegrass, Indian ricegrass, Bottlebrush squirreltail, Douglas rabbitbrush, Rubber rabbitbrush, and Fieldclustered sedge.

In a favorable year (above average moisture), the production is approximately 1,500 $\mathrm{lbs} /$ acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

This unit is a good source for roadfill and topsoil. As for reclamation material, it is a fair source due to the organic matter (content low) feature.

This map unit is a good source for roadfill and topsoil according to NRCS information. This map unit is a fair source of overall reclamation material; the limiting feature is low organic matter content.

Section 2.6-Geology
"RR-NC" - Rock River noncalcareous variant, 0 to 6 percent slope (Jab Only)
The Rock River noncalcareous variant mapping unit consists of well drained soils. Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Elevation is 6,800 to 7,400 feet.

The mean annual precipitation is estimated to be 8 to 10 inches. The mean annual temperature is approximately 38 degrees Fahrenheit. The frost-free season is about 80100 days but varies according to aspect, elevation, and air drainage.

Slopes are 0 to 25 percent.
Permeability within the River Rock soil is moderate. Runoff is medium to rapid, and the water erosion hazard is moderate. The hazard of wind erosion is severe.

Productivity and Reclamation Potential

There are ten plant species that are common to this map unit: Needleandthread, Thickspike wheatgrass, Big sagebrush, Bluebunch wheatgrass, Cusick's bluegrass, Indian ricegrass, Bottlebrush squirreltail, Douglas rabbitbrush, Rubber rabbitbrush, and Fieldclustered sedge.

In a favorable year (above average moisture), the production is approximately 1,500 lbs/acres. In an unfavorable (drought) year, the production is approximately 700 lbs/acres.

This map unit is a good source for roadfill and topsoil according to NRCS information. This map unit is a fair source of overall reclamation material; the limiting feature is low organic matter content. Section 2.6-Geology

ADDENDUM 2.6-D

ANTELOPE SAMPLED SOIL SERIES DESCRIPTIONS

LECKMAN SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "L"
Lab/BKS Sample ID: C07120023_112a
Typical Pedon: Leckman noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Leckman noncalcareous variant series consists of very deep, well drained soils formed in alluvium. Leckman soils are on alluvial fans and toeslopes and have slopes of 0 to 10 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-3 inches. Brown (10YR 4/3W) sandy loam, moist; weak medium platy structure breaks to weak fine crumbs; soft, very friable, nonsticky, nonplastic; neutral (pH 6.9), noneffervescent.

Bw - 3-13 inches. Yellowish brown (10YR 5/4D) sandy loam, dark yellowish brown ($10 \mathrm{YR} 4 / 4 \mathrm{~W}$) moist; weak coarse and medium prismatic structure that parts to weak medium subangular blocks; soft, very friable, nonsticky, nonplastic; slightly alkaline (pH 7.4), noneffervescent.

C1-13-22 inches. Yellowish brown (10YR 5/4D) loamy sand, moist; massive, soft very friable nonsticky, nonplastic, moderately alkaline (pH 8.1), noneffervescent.

C2-22-34 inches. Light yellowish brown (10YR 6/4D) sand, moist; massive, soft very friable nonsticky, nonplastic, moderately alkaline (pH 8.4), noneffervescent.

C3-34-50 inches. Very pale brown (10YR 7/4D) loamy sand, moist; massive, soft very friable nonsticky, nonplastic, moderately alkaline (pH 8.2), noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 112a on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature is about 43 to 47 degrees F. The mean summer soil temperature is 64 to 67 degrees F. Textures throughout the profile are fine sandy loam or sandy loam. Gravel content is generally less than 5 percent but can range from 0 to 15 percent.

The A horizons have hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4.

The C horizon has hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4 . Reaction is moderately or strongly alkaline. Effervescence may be slight to violent.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is slightly calcareous in the A horizon and is strongly calcareous in the remaining horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Typic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 13 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Leckman soils are on alluvial fans and toe slopes of escarpments. Slopes are 0 to 10 percent. The soils formed in alluvium. Elevation is 6,000 to 7,000 feet. The mean annual precipitation is 7 to 9 inches. The mean annual air temperature is 37 to 44 degrees F. The frost-free season is 80 to 110 days. Section 2.6-Geology

LECKMAN SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "L"
Lab/BKS Sample ID: C07120023_114
Typical Pedon: Leckman noncalcareous variant -rangeland. (Colors are for dry soil unless otherwise stated.)

The Leckman noncalcareous variant series consists of very deep, well drained soils formed in alluvium. Leckman soils are on alluvial fans and toeslopes and have slopes of 0 to 10 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-10 inches. Light grayish brown (10YR 6/2) sandy loam, moist; weak medium platy structure breaks to weak fine crumbs; soft, very friable, nonsticky, nonplastic; slightly alkaline (pH 7.7), noneffervescent.
$\mathrm{Cl}-10-16$ inches. Light grayish brown (10YR 6/2) sandy loam, moist; weak coarse and medium prismatic structure that parts to weak medium subangular blocks; soft, very friable, nonsticky, nonplastic; neutral (pH 6.9), noneffervescent.

C2 - 16-28 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, neutral (pH 6.9), noneffervescent.

C3-28-43 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, neutral (pH 7.0), noneffervescent.

C4 - 43-60 inches. Light grayish brown (10YR 6/2) loamy sand, moist; massive, soft very friable nonsticky, nonplastic, neutral (pH 7.3), noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 114 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature is about 43 to 47 degrees F. The mean summer soil temperature is 64 to 67 degrees F. Textures throughout the profile are fine sandy loam or sandy loam. Gravel content is generally less than 5 percent but can range from 0 to 15 percent.

The A horizons have hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4.

The C horizon has hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4 . Reaction is moderately or strongly alkaline. Effervescence may be slight to violent.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is slightly calcareous in the A horizon and is strongly calcareous in the remaining horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Typic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 10 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Leckman soils are on alluvial fans and toe slopes of escarpments. Slopes are 0 to 10 percent. The soils formed in alluvium. Elevation is 6,000 to 7,000 feet. The mean annual precipitation is 7 to 9 inches. The mean annual air temperature is 37 to 44 degrees F . The frost-free season is 80 to 110 days.
investing in our energy

ALMY SERIES

SANDY LOAM
Soil Mapping Unit "A"
Lab/BKS Sample ID: C07120023_115
Typical Pedon: Almy fine sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Almy series consists of very deep, well drained soils that formed in alluvium on alluvial fan aprons and fan piedmonts. Permeability is moderate. Slopes are 0 to 15 percent. The mean annual precipitation is about 8 to 10 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 6 inches. Brown (10YR 4/3W) sandy loam, yellowish brown (10YR 5/4D) moist; moderate thin platy structure; soft, very friable, slightly sticky and slightly plastic; common fine tubular pores; slightly alkaline (pH 7.4); noneffervescent; clear wavy boundary. (3 to 6 inches thick)

B-6-18 inches. Dark yellowish brown (10YR 4/4W) sandy loam, moist; weak medium prismatic structure parting to moderate fine subangular blocky; hard, friable, very sticky and plastic; common fine and medium roots; common fine tubular pores; continuous clay films on faces of peds and lining pores; slightly alkaline (pH 7.4); noneffervescent; clear wavy boundary. (The combined thickness of the Bt horizon is 6 to 15 inches.)

C - 18-25 inches. Light yellowish brown (10YR 6/4D) sandy loam; moist; moderate medium and fine subangular blocky structure; slightly hard, friable, sticky and plastic; few fine and medium roots; few fine tubular pores; calcium carbonate disseminated and as soft masses and filaments; slightly alkaline (pH 7.6); noneffervescent, gradual wavy boundary. (5 to 25 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 115 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to an accumulation of secondary calcium carbonates is 10 to 20 inches. The mean annual soil temperature is 42 to 46 degrees F. Rock fragments in the particle size control section range from 0 to 15 percent gravel. The moisture control section is usually dry. It is usually moist in April, May, and early June, and dry for 60 consecutive days during the 90 day period following the summer solstice. Section 2.6-Geology

The A horizon has hue of 10 YR through 5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 dry and moist. Reaction is neutral through moderately alkaline.

The Bt horizon has hue of 2.5 YR or 5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 6 dry and moist. It is typically a clay loam but may be loam or sandy clay loam with 18 to 35 percent clay and less than 35 percent fine sandy or coarser. Reaction is mildly through strongly alkaline. EC is less than 8 mmhos.

The Bk horizon has hue of 7.5 YR or 5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 6 dry and moist. Texture is loam, sandy clay loam, or clay loam. Some pedons have sandy loam textures in the lower Bk. EC is less than 8 mmhos. Calcium carbonate ranges from 4 to 12 percent.

The C horizon has hue of 7.5 YR or 5 YR , value of 4 through 7 dry, 4 through 6 moist, and chroma of 2 through 6 dry and moist. Texture is loam or fine sandy loam. Calcium carbonate ranges from 2 to 10 percent. EC is less than 8 mmhos throughout. Reaction is moderately through very strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is typically calcareous in the Bk and C horizons.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 18 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Almy soils are on nearly level to moderately sloping alluvial fan aprons and fan piedmonts. Parent materials are weathered from interbedded, red, fine sandstone and shale. Slopes are both simple and complex and range from 0 to 15 percent. Elevation ranges from 5,400 feet to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches with over half falling in April, May, and June. The mean annual air temperature ranges from 42 to 46 degrees F. The frost-free season ranges from 60 to 110 days.

CARMODY SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "Ca-NC"
Lab/BKS Sample ID: C07120023_116
Typical Pedon: Carmody noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Carmody noncalcareous variant series consists of well to somewhat excessively drained soils that are moderately deep to siltstone. These soils formed in material weathered from calcareous siltstone or fine grained sandstone. Carmody soils are on uplands of the cold intermountain basins. Slopes are 2 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 5 inches. Brown (10YR 4/3W) sandy loam, yellowish brown (10YR 5/4D) moist; weak fine and very fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; lime disseminated; slightly alkaline (pH 7.4); noneffervescent, gradual wavy boundary. (4 to 10 inches thick)

C1-5 to 20 inches. Brown (10YR 4/3W) sandy loam, moist; moderate medium and coarse prismatic structure; slightly hard, friable, slightly sticky; few fine and many medium roots; lime disseminated; slightly alkaline (pH 7.4); noneffervescent, abrupt wavy boundary. (16 to 30 inches thick)

C2-20 to 27 inches. Pale brown (10 YR 6/3D), calcareous siltstone containing loamy sand, slightly alkaline (pH 7.8); noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 116 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to a paralithic contact is 20 to 40 inches. Depth to uniformly calcareous material is 0 to 10 inches. The mean annual soil temperature ranges from about 40 to 47 degrees F., and the mean summer soil temperature ranges from about 59 to 63 degrees F . The control section is very fine sandy loam or fine sandy loam, averaging 10 to 18 percent clay and more than 15 percent fine sand or coarser. Flat fragments or fine pebbles range from 0 to 15 percent. Thin, discontinuous horizons of carbonate accumulation occur immediately above the paralithic contact in some pedons.
investing in our energy Section 2.6-Geology

The A horizon has hue of 2.5 Y or 10YR, value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4. EC is less than 2 mmhos. Reaction is mildly or moderately alkaline.

The C horizon has hue of 2.5 Y or 10 YR , value of 4 through 7 dry, 3 through 5 moist, and chroma of 2 through 6 . EC is less than 2 mmhos. Reaction is moderately or strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 5 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Carmody soils are on plateaus and hillslopes in intermountain basins. Slopes are 2 to 45 percent. The soils formed in calcareous material weathered from semiconsolidated fine grained sandstone or siltstone. The mean annual precipitation ranges from 10 to 17 inches of which about half falls as snow or rain in April, May, and early June. Elevation is 5,300 to 7,500 feet. The mean annual temperature is 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F. The frost-free season is 75 to 120 days depending upon aspect, elevation, and local air drainage.

RELSOB SERIES
 SANDY LOAM

Soil Mapping Unit "Re"
Lab/BKS Sample ID: C07120023_117
Typical Pedon: Relsob sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Relsob series consists of deep, well drained soils formed in alluvium derived primarily from noncalcareous sandstone. These soils are on fan aprons and toeslopes of hills and ridges. Slopes are 0 to 15 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 7 inches. Dark Grayish Brown (10YR 4/2W) sandy loam, moist; moderate medium granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine, fine, and common medium roots; neutral (pH 7.2); noneffervescent; abrupt smooth boundary. (1 to 4 inches thick)

C1-7 to 19 inches. Yellowish brown (10YR 5/4D) sandy loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; hard, friable, sticky and plastic; many very fine, fine and common medium roots; common thin clay films on faces of peds and as bridges between sand grains; slightly alkaline (pH 7.8); noneffervescent; clear wavy boundary.

C2-19 to 37 inches. Yellowish brown (10YR 5/4D) sandy clay loam, moist; strong medium prismatic structure parting to strong medium subangular blocky; slightly hard, friable, sticky and plastic; common very fine, fine, and medium roots; many moderately thick clay films on faces of peds; 15 percent pebbles; moderately alkaline (pH 7.9); noneffervescent; abrupt wavy boundary. (Combined thickness of Bt horizon is 11 to 17 inches.)

C3-37 to 52 inches. Very dark grayish brown (10YR 3/2D) sandy clay loam, moist; strong medium prismatic structure parting to strong medium subangular blocky; slightly hard, friable, sticky and plastic; common very fine, fine, and medium roots; many moderately thick clay films on faces of peds; 15 percent pebbles; slightly alkaline (pH 7.4); noneffervescent; abrupt wavy boundary. (Combined thickness of Bt horizon is 11 to 17 inches.)

C4-52 to 60 inches. Very pale brown (10YR 8/2D) sandy loam, moist; massive; slightly hard, very friable, nonsticky, nonplastic; few very fine, fine, and medium roots to 28 inches; 40 percent pebbles; neutral (pH 7.3); noneffervescent.

Section 2.6-Geology

Type Location - Sweetwater County, Wyoming; refer to waypoint 117 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to the base of the argillic horizon and strongly contrasting coarse material is 12 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature ranges from 36 to 46 degrees F., and the mean summer temperature is 59 to 62 degrees F. EC is less than 2 mmhos throughout the soil.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 or 3 . Reaction is neutral through moderately alkaline (pH 6.6 8.0.)

The Bt (argillic) horizon has hue of 10 YR or 7.5 YR , value of 5 or 6 dry, 4 or 5 moist, and chroma of 2 through 4 . Texture is sandy clay loam or gravelly sandy clay loam with clay ranging from 20 to 35 percent, silt from 0 to 28 percent, and sand from 45 to 80 percent. Coarse fragments range from 0 to 20 percent and are fine or very fine pebbles. Reaction is neutral or mildly alkaline.

The 2 C horizon has hue of 2.5 Y through 7.5 YR , value of 5 through $8 \mathrm{dry}, 4$ through 7 moist, and chroma of 2 through 6 . Texture of the matrix is sand or loamy sand modified with 0 to 60 percent fine pebbles. Reaction is neutral through moderately alkaline.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class - Fine-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Ustic Haplargids

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 7 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Relsob soils are on relict fan aprons and toeslopes of hills and ridges. These soils formed in alluvium derived primarily from noncalcareous sandstone. The finer sediments overlie strata of sand or gravel and sand mixtures. Slopes are 0 to 15 percent and typically simple. Elevation is 6,000 to 7,600 feet. The mean annual precipitation is about 12 inches and ranges from 10 to 14 inches with about half falling as snow or rain in April, May, and early June. The mean annual temperature is about 41 degrees F. and ranges from about 34 to 45 degrees
F. The frost-free season is estimated at 80 to 110 days; but, because of elevation, aspect, and air drainage, frost may occur at any time.

CRAGOSEN SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Cr" (Inclusion)
Lab/BKS Sample ID: C07120023_126
Typical Pedon: Cragosen noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cragosen noncalcareous variant series consists of shallow, well drained soils that have bedrock at less than 20 inches. The soils formed in slopewash alluvium on fan aprons, footslopes, and shoulder, ridge, and hill crests. Slopes are from 0 to 60 percent and are both simple and complex. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Brown (10YR 4/3W) loamy sand, moist; moderate fine granular structure; soft, very friable, slightly sticky and slightly plastic; lime disseminated and as coatings on undersides of rock fragments; 25 percent pebbles and 10 percent cobbles; slightly alkaline (pH 7.4); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

B-3 to 9 inches. Brown (7.5YR 4/4W) sandy loam, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; slightly alkaline (pH 7.5); noneffervescent; clear wavy boundary. (4 to 14 inches thick)

C-9 to 14 inches. Very pale brown (10YR 7/4D) loamy sand, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; moderately alkaline (pH 8.1); noneffervescent; clear wavy boundary. (4 to 14 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 126 on map included in this report.

Range in Characteristics (According to Official Series Description) - Depth to bedrock ranges from 6 to 20 inches. Depth to uniformly calcareous material ranges from 0 to 6 inches. The mean annual soil temperature is about 44 degrees F. and ranges from 40 to 46 degrees F . The mean annual summer soil temperature ranges from 59 to 63 degrees F . EC ranges from 0 to 4 mmhos throughout the soil. Exchangeable sodium is estimated to be between 0 and 12 percent. The particle size control section matrix is loam, sandy loam, or sandy clay loam with 15 to 25 percent clay and 30 to 60 percent sand with 15 percent or more fine sand or coarser. Rock fragment content of the control section ranges from 25 to 45 percent pebbles and 5 to 15 percent cobble and averages over 35 percent.
investing in our energy Section 2.6-Geology

The A horizon has hue of 5Y through 7.5YR, value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction is neutral through strongly alkaline. Neutral and mildly alkaline reactions occur in the presence of gypsum that acts as a buffering agent.

The C or Bk horizon has hue of 5 Y through 7.5YR, value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction ranges from mildly through strongly alkaline. The mildly alkaline reaction occurs in the presence of gypsum. A Bw or Bk horizon may replace part or all of the C horizon but is not diagnostic of either a cambic or calcic horizon. The carbonate movement, while common in some pedons, is not consistent and, though pedogenic, does not meet the requirement for a diagnostic horizon.

The 2 Cr horizon consists of varicolored shales interbedded with semiconsolidated siltstone and sandstone. The material is soft with thin, discontinuous lenses of consolidated rock.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Loamy-skeletal, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 9 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - The Cragosen soils are on fan aprons, footslopes, shoulders, and crests of ridges and hills. These soils formed in slopewash alluvium over sandstone controlled uplands. Slopes range from 0 to 60 percent and are both simple and complex. Elevations range from 6,000 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches with about half falling as snow and rain during April, May, and June. The mean annual temperature is about 40 degrees F. but ranges from 39 to 44 degrees F. The frost-free season is estimated to range from 60 to 100 days depending upon elevation, aspect, and air drainage.
investing in our energy

RELSOB SERIES
 SANDY LOAM

Soil Mapping Unit "Re"
Lab/BKS Sample ID: C07120023_127
Typical Pedon: Relsob sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Relsob series consists of deep, well drained soils formed in alluvium derived primarily from noncalcareous sandstone. These soils are on fan aprons and toeslopes of hills and ridges. Slopes are 0 to 15 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Brown (10YR 5/3) sandy loam, moist; moderate medium granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine, fine, and common medium roots; neutral (pH 6.6); noneffervescent; abrupt smooth boundary. (1 to 4 inches thick)

AB-3 to 11 inches. Yellowish brown (10YR 5/4) sandy loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; hard, friable, sticky and plastic; many very fine, fine and common medium roots; common thin clay films on faces of peds and as bridges between sand grains; neutral (pH 7.1); noneffervescent; clear wavy boundary.
$\mathrm{Bt1}-11$ to 19 inches. Light yellowish brown (10YR 6/4) sandy clay loam, moist; strong medium prismatic structure parting to strong medium subangular blocky; slightly hard, friable, sticky and plastic; common very fine, fine, and medium roots; many moderately thick clay films on faces of peds; 15 percent pebbles; neutral (pH 7.0); noneffervescent; abrupt wavy boundary. (Combined thickness of Bt horizon is 11 to 17 inches.)

Bt2 - 19 to 27 inches. Light yellowish brown (10YR 6/4) sandy loam, moist; strong medium prismatic structure parting to strong medium subangular blocky; slightly hard, friable, sticky and plastic; common very fine, fine, and medium roots; many moderately thick clay films on faces of peds; 15 percent pebbles; neutral (pH 7.0); noneffervescent; abrupt wavy boundary. (Combined thickness of Bt horizon is 11 to 17 inches.)

C1-27 to 43 inches. Lightly yellowish brown (10YR 6/4) sandy loam, moist; massive; slightly hard, very friable, nonsticky, nonplastic; few very fine, fine, and medium roots to 28 inches; 40 percent pebbles; neutral (pH 7.2); noneffervescent.

C2-43 to 60 inches. Lightly yellowish brown (10YR 6/4) sandy loam, moist; massive; slightly hard, very friable, nonsticky, nonplastic; few very fine, fine, and medium roots to 28 inches; 40 percent pebbles; slightly alkaline (pH 7.5); noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 127 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to the base of the argillic horizon and strongly contrasting coarse material is 12 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature ranges from 36 to 46 degrees F., and the mean summer temperature is 59 to 62 degrees F. EC is less than 2 mmhos throughout the soil.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 or 3 . Reaction is neutral through moderately alkaline (pH 6.6 8.0.)

The Bt (argillic) horizon has hue of 10 YR or 7.5 YR , value of 5 or 6 dry, 4 or 5 moist, and chroma of 2 through 4 . Texture is sandy clay loam or gravelly sandy clay loam with clay ranging from 20 to 35 percent, silt from 0 to 28 percent, and sand from 45 to 80 percent. Coarse fragments range from 0 to 20 percent and are fine or very fine pebbles. Reaction is neutral or mildly alkaline.

The 2 C horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 4 through 7 moist, and chroma of 2 through 6 . Texture of the matrix is sand or loamy sand modified with 0 to 60 percent fine pebbles. Reaction is neutral through moderately alkaline.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class - Fine-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Ustic Haplargids

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 27 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Relsob soils are on relict fan aprons and toeslopes of hills and ridges. These soils formed in alluvium derived primarily from noncalcareous sandstone. The finer sediments overlie strata of sand or gravel and sand mixtures. Slopes are 0 to 15 percent and typically simple. Elevation is
investing in our energy

6,000 to 7,600 feet. The mean annual precipitation is about 12 inches and ranges from 10 to 14 inches with about half falling as snow or rain in April, May, and early June. The mean annual temperature is about 41 degrees F. and ranges from about 34 to 45 degrees F. The frost-free season is estimated at 80 to 110 days; but, because of elevation, aspect, and air drainage, frost may occur at any time.
investing in our energy Section 2.6-Geology

BLUERIM SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Br-NC"
Lab/BKS Sample ID: C07120023_128
Typical Pedon: Bluerim noncalcareous variant-rangeland. The surface is covered with 15 percent very fine pebbles. (Colors are for dry soil unless otherwise stated.)

The Bluerim noncalcareous variant series consists of moderately deep, well drained soils that formed in material weathered from calcareous sandy shale interbedded with arkosic sandstone. Bluerim soils are on upland hillsides and have slopes of 3 to 20 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-4 inches. Brown (10YR 4/3W) loamy sand, moist; moderate medium and fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; moderately alkaline (pH 8.3), noneffervescent; clear smooth boundary.
$\mathrm{Bt}-4-15$ inches. Dark yellowish brown (10YR 4/4W) sandy loam, Yellowish brown (10YR 5/4D) moist; weak medium prismatic structure that parts to moderate medium angular blocky; hard, friable, sticky and plastic; many fine and medium roots; continuous thin clay films on faces of all peds; 10 percent very fine pebbles; moderately alkaline (pH 8.0), noneffervescent; clear smooth boundary.

C - 15-27 inches. Yellowish brown (10YR 5/4D) loamy sand, moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few medium roots; continuous thin clay films on faces of peds; 10 percent very fine pebbles; moderately alkaline (pH 8.1), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 128 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges from 35 to 47 degrees F., and the mean summer soil temperature ranges from 59 to 62 degrees F. Depth to bedded sandy shale is 20 to 40 inches. The soils commonly are noncalcareous. Calcium carbonate accumulation in the lower part of the C horizon is weak and discontinuous. Very fine pebbles range from 0 to 15 percent throughout.

Section 2.6-Geology

The A1 horizon has hue of 2.5 Y or 10 YR , value of 4 or 5 dry, 3 or 4 moist, and chroma of 2 through 4 dry and moist. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.
The Bt2 horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 3 or 4 dry and moist. Texture is sandy clay loam with 20 to 27 percent clay. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.
The C horizon has hue of 5 Y through 10 YR , value of 4 through 7 dry, 5 or 6 moist, and chroma of 2 through 4 . It is sandy loam or sandy clay loam. EC is less than 4 mmhos. Reaction ranges from mildly alkaline through strongly alkaline. Visible accumulation of calcium carbonate is discontinuous.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 15 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Bluerim soils are on upland hillsides. Slopes are 3 to 20 percent. The soils formed in residuum weathered from calcareous sandy shales interbedded with arkosic sandstone. Elevation is 6,000 to 7,800 feet. The mean annual temperature is 34 to 45 degrees F. Precipitation is 10 to 14 inches. The growing season is 80 to 120 days but frost may occur in any month.
investing in our energy

CRAGOSEN SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Cr" (Inclusion)
Lab/BKS Sample ID: C07120023_134
Typical Pedon: Cragosen noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cragosen noncalcareous variant series consists of shallow, well drained soils that have bedrock at less than 20 inches. The soils formed in slopewash alluvium on fan aprons, footslopes, and shoulder, ridge, and hill crests. Slopes are from 0 to 60 percent and are both simple and complex. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 5 inches. Pale brown (10YR 6/3) sandy loam - sandy clay loam, moist; moderate fine granular structure; soft, very friable, slightly sticky and slightly plastic; lime disseminated and as coatings on undersides of rock fragments; 25 percent pebbles and 10 percent cobbles; slightly alkaline (pH 7.4); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

Bt - 5 to 14 inches; brown (10YR 5/3) sandy loam - sandy clay loam, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; neutral (pH .7 .3); noneffervescent; clear wavy boundary. (4 to 14 inches thick)

C - 14 to 19 inches; brown (10YR 5/3) sandy clay loam, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; slightly alkaline (pH 7.5); noneffervescent; clear wavy boundary. (4 to 14 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 134 on map included in this report.

Range in Characteristics (According to Official Series Description) - Depth to bedrock ranges from 6 to 20 inches. Depth to uniformly calcareous material ranges from 0 to 6 inches. The mean annual soil temperature is about 44 degrees F. and ranges from 40 to 46 degrees F. The mean annual summer soil temperature ranges from 59 to 63 degrees F. EC ranges from 0 to 4 mmhos throughout the soil. Exchangeable sodium is estimated to be between 0 and 12 percent. The particle size control section matrix is loam, sandy loam, or sandy clay loam with 15 to 25 percent clay and 30 to 60 percent sand with 15 percent or
investing in our energy Section 2.6-Geology
more fine sand or coarser. Rock fragment content of the control section ranges from 25 to 45 percent pebbles and 5 to 15 percent cobble and averages over 35 percent.

The A horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction is neutral through strongly alkaline. Neutral and mildly alkaline reactions occur in the presence of gypsum that acts as a buffering agent.

The C or Bk horizon has hue of 5 Y through 7.5YR, value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction ranges from mildly through strongly alkaline. The mildly alkaline reaction occurs in the presence of gypsum. A Bw or Bk horizon may replace part or all of the C horizon but is not diagnostic of either a cambic or calcic horizon. The carbonate movement, while common in some pedons, is not consistent and, though pedogenic, does not meet the requirement for a diagnostic horizon.

The 2 Cr horizon consists of varicolored shales interbedded with semiconsolidated siltstone and sandstone. The material is soft with thin, discontinuous lenses of consolidated rock.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Loamy-skeletal, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 14 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - The Cragosen soils are on fan aprons, footslopes, shoulders, and crests of ridges and hills. These soils formed in slopewash alluvium over sandstone controlled uplands. Slopes range from 0 to 60 percent and are both simple and complex. Elevations range from 6,000 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches with about half falling as snow and rain during April, May, and June. The mean annual temperature is about 40 degrees F. but ranges from 39 to 44 degrees F. The frost-free season is estimated to range from 60 to 100 days depending upon elevation, aspect, and air drainage.

ONASON SERIES
 SANDY LOAM

Soil Mapping Unit "O"
Lab/BKS Sample ID: C07120023_144
Typical Pedon: Onason sandy loam - rangeland. (Colors are for dry soil unless otherwise stated.)

The Onason series consists of well drained soils that are shallow and very shallow to soft sandstone. These soils formed in residuum and slopewash alluvium weathered from the underlying bedrock. Onason soils are on footslopes, backslopes, and shoulders of hills and ridges. Slopes range from 5 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.
A - 0-6 inches. Brown (10YR 4/3W) sandy loam, dark yellowish brown (10YR 4/6W) moist; weak very fine granular structure; slightly hard, very friable, nonsticky and nonplastic; many fine and few medium roots; 15 percent semirounded pebbles; moderately alkaline (pH 8.2), noneffervescent; clear smooth boundary.

C- 6-19 inches. Light yellowish brown (10YR 6/4D) loamy sand, yellowish brown ($10 \mathrm{YR} 5 / 4 \mathrm{~W}$) moist; weak medium and coarse granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and few medium roots; 15 percent semirounded pebbles; moderately alkaline (pH 8.1), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 144 on map included in this report.

Range in Soil Characteristics(According to official series description) - Depth to the paralithic contact and bedrock ranges from 4 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature is 36 to 45 degrees F., and the mean summer soil temperature is 59 to 62 degrees F. The particle size control section averages gravelly sandy loam or sandy loam throughout. Clay ranges from 8 to 18 percent and rock fragments of fine or very fine semirounded pebbles range from 0 to 35 percent. EC is less than 2 mmhos throughout.

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Lag gravel covering up to 75 percent of the surface is common in some pedons. Reaction is neutral or mildly alkaline.
The C horizon has hue of 2.5 Y or 10 YR , value of 5 or 6 dry, 4 through 6 moist, and chroma of 2 through 4. A thin Bw horizon is present in some pedons. Reaction is neutral or mildly alkaline.
investing in our energy Section 2.6-Geology

The Cr horizon consists of soft, noncalcareous, coarse- and medium-grained sandstone interbedded with thin lenses of shale and siltstone. The yellowish brown or brown sandstone may have discontinuous lenses of hard sandstone or shale in some pedons. The soil-bedrock interface is considered a paralithic contact and roots plane out at the contact.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class (According to official series description) - Loamy, mixed, superactive, nonacid, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 6 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Onason soils are on footslopes, backslopes, and shoulders of rolling and steep hills and ridges. These soils formed in residuum and slopewash alluvium weathered from the underlying noncalcareous sandstone. Slopes range from 5 to 45 percent. Elevations are 6,000 to 7,600 feet. The climate is cool, semiarid with moist springs and dry summers. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 34 to 44 degrees F. The estimated frost-free season is about 80 to 110 days, but frost may occur in any month.
investing in our energy

ONASON SERIES
 SANDY LOAM

Soil Mapping Unit "O"
Lab/BKS Sample ID: C07120023_145
Typical Pedon: Onason sandy loam - rangeland. (Colors are for dry soil unless otherwise stated.)

The Onason series consists of well drained soils that are shallow and very shallow to soft sandstone. These soils formed in residuum and slopewash alluvium weathered from the underlying bedrock. Onason soils are on footslopes, backslopes, and shoulders of hills and ridges. Slopes range from 5 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-6 inches. Brown (10YR 4/3W) sandy loam, yellowish brown (10YR 5/4D) moist; weak very fine granular structure; slightly hard, very friable, nonsticky and nonplastic; many fine and few medium roots; 15 percent semirounded pebbles; slightly alkaline (pH 7.8), noneffervescent; clear smooth boundary.

C- 6-15 inches. Dark yellowish brown (10YR 4/4W) loamy sand, moist; weak medium and coarse granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and few medium roots; 15 percent semirounded pebbles; moderately alkaline (pH 8.0), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 145 on map included in this report.

Range in Soil Characteristics(According to official series description) - Depth to the paralithic contact and bedrock ranges from 4 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature is 36 to 45 degrees F., and the mean summer soil temperature is 59 to 62 degrees F. The particle size control section averages gravelly sandy loam or sandy loam throughout. Clay ranges from 8 to 18 percent and rock fragments of fine or very fine semirounded pebbles range from 0 to 35 percent. EC is less than 2 mmhos throughout.

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Lag gravel covering up to 75 percent of the surface is common in some pedons. Reaction is neutral or mildly alkaline.
The C horizon has hue of 2.5 Y or 10 YR , value of 5 or 6 dry, 4 through 6 moist, and chroma of 2 through 4. A thin Bw horizon is present in some pedons. Reaction is neutral or mildly alkaline.
investing in our energy Section 2.6-Geology

The Cr horizon consists of soft, noncalcareous, coarse- and medium-grained sandstone interbedded with thin lenses of shale and siltstone. The yellowish brown or brown sandstone may have discontinuous lenses of hard sandstone or shale in some pedons. The soil-bedrock interface is considered a paralithic contact and roots plane out at the contact.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class (According to official series description) - Loamy, mixed, superactive, nonacid, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 6 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Onason soils are on footslopes, backslopes, and shoulders of rolling and steep hills and ridges. These soils formed in residuum and slopewash alluvium weathered from the underlying noncalcareous sandstone. Slopes range from 5 to 45 percent. Elevations are 6,000 to 7,600 feet. The climate is cool, semiarid with moist springs and dry summers. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 34 to 44 degrees F. The estimated frost-free season is about 80 to 110 days, but frost may occur in any month.

LECKMAN SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "L"
Lab/BKS Sample ID: C07120023_147
Typical Pedon: Leckman noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Leckman noncalcareous variant series consists of very deep, well drained soils formed in alluvium. Leckman soils are on alluvial fans and toeslopes and have slopes of 0 to 10 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-4 inches. Light grayish brown (10YR 6/2) sandy loam, moist; weak medium platy structure breaks to weak fine crumbs; soft, very friable, nonsticky, nonplastic; slightly alkaline (pH 7.8), noneffervescent.
${ }^{-} \mathrm{C} 1$ - 4-11 inches. Light grayish brown (10YR 6/2) sandy loam, moist; weak coarse and medium prismatic structure that parts to weak medium subangular blocks; soft, very friable, nonsticky, nonplastic; slightly alkaline (pH 7.8), noneffervescent.

C2 - 11-24 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, slightly alkaline (pH 7.7), noneffervescent.

C3-24-36 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, slightly alkaline (pH 7.4), noneffervescent.

C4-36-42 inches. Light grayish brown (10YR 6/2) sandy clay loam, moist; massive, soft very friable nonsticky, nonplastic, neutral (pH 7.3), noneffervescent.

C5 - 42-48 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, neutral (pH 7.3), noneffervescent.

C6 - 48-60 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, neutral (pH 7.3), noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 147 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature is about 43 to 47 degrees F. The mean summer soil temperature is Section 2.6-Geology

64 to 67 degrees F. Textures throughout the profile are fine sandy loam or sandy loam. Gravel content is generally less than 5 percent but can range from 0 to 15 percent.

The A horizons have hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4.

The C horizon has hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4 . Reaction is moderately or strongly alkaline. Effervescence may be slight to violent.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is slightly calcareous in the A horizon and is strongly calcareous in the remaining horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Typic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 4 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Leckman soils are on alluvial fans and toe slopes of escarpments. Slopes are 0 to 10 percent. The soils formed in alluvium. Elevation is 6,000 to 7,000 feet. The mean annual precipitation is 7 to 9 inches. The mean annual air temperature is 37 to 44 degrees F. The frost-free season is 80 to 110 days.

CRAGOSEN SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Cr"
Lab/BKS Sample ID: C07120023_158
Typical Pedon: Cragosen noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cragosen noncalcareous variant series consists of shallow, well drained soils that have bedrock at less than 20 inches. The soils formed in slopewash alluvium on fan aprons, footslopes, and shoulder, ridge, and hill crests. Slopes are from 0 to 60 percent and are both simple and complex. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Brown (10YR 4/3) loamy sand, moist; moderate fine granular structure; soft, very friable, slightly sticky and slightly plastic; lime disseminated and as coatings on undersides of rock fragments; 25 percent pebbles and 10 percent cobbles; moderately alkaline (pH 7.9); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

C- 3 to 13 inches. Yellowish brown (10YR 5/6) loamy sand, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; slightly alkaline (pH 7.8); noneffervescent; clear wavy boundary. (4 to 14 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 158 on map included in this report.

Range in Characteristics (According to Official Series Description) - Depth to bedrock ranges from 6 to 20 inches. Depth to uniformly calcareous material ranges from 0 to 6 inches. The mean annual soil temperature is about 44 degrees F. and ranges from 40 to 46 degrees F. The mean annual summer soil temperature ranges from 59 to 63 degrees F. EC ranges from 0 to 4 mmhos throughout the soil. Exchangeable sodium is estimated to be between 0 and 12 percent. The particle size control section matrix is loam, sandy loam, or sandy clay loam with 15 to 25 percent clay and 30 to 60 percent sand with 15 percent or more fine sand or coarser. Rock fragment content of the control section ranges from 25 to 45 percent pebbles and 5 to 15 percent cobble and averages over 35 percent.

The A horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4. Reaction is neutral through strongly alkaline. Neutral and mildly alkaline reactions occur in the presence of gypsum that acts as a buffering agent.

URANIUM ONE AMERICAS
License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology

The C or Bk horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction ranges from mildly through strongly alkaline. The mildly alkaline reaction occurs in the presence of gypsum. A Bw or Bk horizon may replace part or all of the C horizon but is not diagnostic of either a cambic or calcic horizon. The carbonate movement, while common in some pedons, is not consistent and, though pedogenic, does not meet the requirement for a diagnostic horizon.

The 2 Cr horizon consists of varicolored shales interbedded with semiconsolidated siltstone and sandstone. The material is soft with thin, discontinuous lenses of consolidated rock.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Loamy-skeletal, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 3 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - The Cragosen soils are on fan aprons, footslopes, shoulders, and crests of ridges and hills. These soils formed in slopewash alluvium over sandstone controlled uplands. Slopes range from 0 to 60 percent and are both simple and complex. Elevations range from 6,000 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches with about half falling as snow and rain during April, May, and June. The mean annual temperature is about 40 degrees F. but ranges from 39 to 44 degrees F. The frost-free season is estimated to range from 60 to 100 days depending upon elevation, aspect, and air drainage.

RYAN PARK SERIES
SANDY LOAM

Soil Mapping Unit "RP"
Lab/BKS Sample ID: C07120023_163
Typical Pedon: Ryan Park loamy fine sand-rangeland. (Colors are for dry soil unless otherwise stated.)

The Ryan Park series consists of very deep, well or somewhat excessively drained soils that formed in moderately sandy sediments weathered from calcareous sandstone, eolian deposits, and residuum. Ryan Park soils are on fan aprons, pediments toeslopes, hillslopes, and relict alluvial fans. Slopes are 0 to 25 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 4 inches. Light brownish gray (10YR 6/2) sand, (10YR 4/2) moist; single grained, loose; slightly alkaline (pH 7.4); noneffervescent; clear smooth boundary. (4 to 6 inches thick)

Bt - 4 to 13 inches. Brown (10YR 5/3) sandy loam, moist; weak coarse prismatic structure parting to weak medium subangular blocky; slightly hard, very friable; slightly alkaline (pH 7.5); noneffervescent; clear smooth boundary. (0 to 4 inches thick)

BC - 13 to 22 inches. Brown (10YR 5/3) sandy loam, moist; moderate coarse prismatic structure parting to moderate coarse subangular blocky; hard, very friable; many thin clay films on all faces of peds and as bridges between sand grains; slightly alkaline (pH 7.7); noneffervescent; clear smooth boundary. (5 to 22 inches thick)

C1-22 to 38 inches. Pale brown (10YR 6/3) loamy sand, moist; weak coarse prismatic structure parting to weak coarse subangular blocky; hard, very friable; common clay bridging between sand grains and few clay films on faces of peds; strongly effervescent, lime as few medium and fine soft rounded masses, threads, and seams; moderately alkaline (pH 8.1); noneffervescent; gradual wavy boundary. (0 to 8 inches thick)

C2-38 to 48 inches. Pale brown (10YR 6/3) sand, moist; massive; slightly hard, very friable; strongly effervescent, few medium and fine soft rounded masses, threads, and seams of secondary calcium carbonate; moderately alkaline (pH 8.1); moderately effervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 163 on map included in this report. Section 2.6-Geology

Range in Characteristics (According to Official Series Description) - Depth to continuous horizons of secondary calcium carbonate and the base of the B2t horizon is 10 to 30 inches. The mean annual soil temperature is about 40 to 46 degrees F., and the mean summer soil temperature is about 58 to 66 degrees F. Rock fragments range from 0 to 15 percent semirounded pebbles or channers.

The A horizon has hue of 2.5 Y or 10 YR , value of 5 through 7 dry 3 through 5 moist, and chroma of 2 through 4 . Reaction is neutral or mildly alkaline.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 2 through 4 . It is fine sandy loam or sandy loam, averages 8 to 18 percent clay, and has more than 35 percent fine or coarser sand. Reaction is mildly or moderately alkaline.

The Bk horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 3 through 6 moist, and chroma of 1 through 4 . Calcium carbonate equivalent ranges from 1 to 10 percent, about half of which is authigenic. Texture of the matrix is sandy loam, fine sandy loam, loamy fine sand, or loamy sand. Coarse fragments range from 0 to 25 percent. Reaction is moderately or strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous for A, B, and C 1 horizons. According to the NRCS soil series description, the soil profile is strongly calcareous in the Btk and Bk horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal saturation percentage was found at a depth of 13-22 inches. An estimated stripping depth is 13 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Ryan Park soils are on fan aprons, pediments, hillslopes, toeslopes, terraces and alluvial fans. Slopes are 0 to 25 percent. The soils formed in moderately sandy sediments weathered from calcareous sandstone, eolian deposits, and residuum. Elevation is 5,800 to 7,800 feet. The mean annual precipitation is about 9 to 14 inches and occurs mainly in the winter and spring. The mean annual temperature is 37 to 45 degrees F. The frost-free season is estimated to range from 60 to 110 days depending upon air drainage, aspect, and elevation.
investing in our energy

CRAGOSEN SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "Cr"

Lab/BKS Sample ID: C07120023_167a
Typical Pedon: Cragosen noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cragosen noncalcareous variant series consists of shallow, well drained soils that have bedrock at less than 20 inches. The soils formed in slopewash alluvium on fan aprons, footslopes, and shoulder, ridge, and hill crests. Slopes are from 0 to 60 percent and are both simple and complex. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 2 inches. Dark yellowish brown (10YR 4/4W) sandy loam, moist; moderate fine granular structure; soft, very friable, slightly sticky and slightly plastic; lime disseminated and as coatings on undersides of rock fragments; 25 percent pebbles and 10 percent cobbles; strongly alkaline (pH 8.6); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

C - 2 to 12 inches. Yellowish brown (10YR 5/4D) sand, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; strongly alkaline (pH 8.6); noneffervescent; clear wavy boundary. (4 to 14 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 167a on map included in this report.

Range in Characteristics (According to Official Series Description) - Depth to bedrock ranges from 6 to 20 inches. Depth to uniformly calcareous material ranges from 0 to 6 inches. The mean annual soil temperature is about 44 degrees F. and ranges from 40 to 46 degrees F. The mean annual summer soil temperature ranges from 59 to 63 degrees F. EC ranges from 0 to 4 mmhos throughout the soil. Exchangeable sodium is estimated to be between 0 and 12 percent. The particle size control section matrix is loam, sandy loam, or sandy clay loam with 15 to 25 percent clay and 30 to 60 percent sand with 15 percent or more fine sand or coarser. Rock fragment content of the control section ranges from 25 to 45 percent pebbles and 5 to 15 percent cobble and averages over 35 percent.

The A horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction is neutral through strongly alkaline. Neutral and mildly alkaline reactions occur in the presence of gypsum that acts as a buffering agent. Section 2.6-Geology

The C or Bk horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction ranges from mildly through strongly alkaline. The mildly alkaline reaction occurs in the presence of gypsum.

A Bw or Bk horizon may replace part or all of the C horizon but is not diagnostic of either a cambic or calcic horizon. The carbonate movement, while common in some pedons, is not consistent and, though pedogenic, does not meet the requirement for a diagnostic horizon.

The 2 Cr horizon consists of varicolored shales interbedded with semiconsolidated siltstone and sandstone. The material is soft with thin, discontinuous lenses of consolidated rock.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Loamy-skeletal, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal pH was found at depths of 0-2 and 2-12 inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - The Cragosen soils are on fan aprons, footslopes, shoulders, and crests of ridges and hills. These soils formed in slopewash alluvium over sandstone controlled uplands. Slopes range from 0 to 60 percent and are both simple and complex. Elevations range from 6,000 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches with about half falling as snow and rain during April, May, and June. The mean annual temperature is about 40 degrees F . but ranges from 39 to 44 degrees F . The frost-free season is estimated to range from 60 to 100 days depending upon elevation, aspect, and air drainage. Section 2.6-Geology

BLUERIM SERIES

NONCALCAREOUS VARIANT

Soil Mapping Unit "Br-NC"

Lab/BKS Sample ID: C07120023_168
Typical Pedon: Bluerim sandy loam-rangeland. The surface is covered with 15 percent very fine pebbles. (Colors are for dry soil unless otherwise stated.)

The Bluerim series consists of moderately deep, well drained soils that formed in material weathered from calcareous sandy shale interbedded with arkosic sandstone. Bluerim soils are on upland hillsides and have slopes of 3 to 20 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-9 inches. Brown (10YR 4/3W) sandy loam, brown (7.5YR 5/4D) moist; moderate medium and fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; moderately alkaline (pH 8.2), noneffervescent; clear smooth boundary.

Bt - 9-18 inches. Brown (10YR 5/4D) sandy loam, moist; weak medium prismatic structure that parts to moderate medium angular blocky; hard, friable, sticky and plastic; many fine and medium roots; continuous thin clay films on faces of all peds; 10 percent very fine pebbles; moderately alkaline (pH 7.9), noneffervescent; clear smooth boundary.

C - 18-24 inches. Brown (10YR 5/4D) sandy loam, moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few medium roots; continuous thin clay films on faces of peds; 10 percent very fine pebbles; moderately alkaline (pH 7.9), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 168 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges from 35 to 47 degrees F., and the mean summer soil temperature ranges from 59 to 62 degrees F. Depth to bedded sandy shale is 20 to 40 inches. The soils commonly are noncalcareous. Calcium carbonate accumulation in the lower part of the C horizon is weak and discontinuous. Very fine pebbles range from 0 to 15 percent throughout.
The A1 horizon has hue of 2.5 Y or 10 YR , value of 4 or 5 dry, 3 or 4 moist, and chroma of 2 through 4 dry and moist. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline. Section 2.6-Geology

The Bt2 horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 3 or 4 dry and moist. Texture is sandy clay loam with 20 to 27 percent clay. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.
The C horizon has hue of 5 Y through 10 YR , value of 4 through 7 dry, 5 or 6 moist, and chroma of 2 through 4 . It is sandy loam or sandy clay loam. EC is less than 4 mmhos. Reaction ranges from mildly alkaline through strongly alkaline. Visible accumulation of calcium carbonate is discontinuous.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal saturation percentage was found at a depth of 18-24 inches. An estimated stripping depth is 18 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Bluerim soils are on upland hillsides. Slopes are 3 to 20 percent. The soils formed in residuum weathered from calcareous sandy shales interbedded with arkosic sandstone. Elevation is 6,000 to 7,800 feet. The mean annual temperature is 34 to 45 degrees F. Precipitation is 10 to 14 inches. The growing season is 80 to 120 days but frost may occur in any month.

BLUERIM SERIES NONCALCAREOUS VARIANT

Soil Mapping Unit "Br-NC"
Lab/BKS Sample ID: C07120023_170
Typical Pedon: Bluerim noncalcareous variant-rangeland. The surface is covered with 15 percent very fine pebbles. (Colors are for dry soil unless otherwise stated.)

The Bluerim noncalcareous variant series consists of moderately deep, well drained soils that formed in material weathered from calcareous sandy shale interbedded with arkosic sandstone. Bluerim soils are on upland hillsides and have slopes of 3 to 20 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-3 inches. Brown (10YR 4/3W) sandy loam, yellowish brown (10YR 5/4D) moist; moderate medium and fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; moderately alkaline (pH 8.1), noneffervescent; clear smooth boundary.

AB - 3-11 inches. Dark yellowish brown (10YR 4/4W) sandy loam, moist; weak medium prismatic structure that parts to moderate medium angular blocky; hard, friable, sticky and plastic; many fine and medium roots; continuous thin clay films on faces of all peds; 10 percent very fine pebbles; slightly alkaline (pH 7.8), noneffervescent; clear smooth boundary.

B - 11-14 inches. Brown (7.5YR 5/4D) sandy loam, moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few medium roots; continuous thin clay films on faces of peds; 10 percent very fine pebbles; slightly alkaline (pH 7.6), noneffervescent; gradual wavy boundary.

C - 14 to 20 inches. Pale red (2.5 YR 6/2D) sandy clay loam, moist; weak medium angular blocky structure; slightly hard, very friable, slightly sticky and nonplastic; few medium roots; few thin clay films on faces of some peds; 10 percent very fine pebbles; moderately alkaline (pH 7.9); moderately effervescent; clear smooth boundary. (4 to 7 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 170 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges from 35 to 47 degrees F., and the mean summer soil Section 2.6-Geology
temperature ranges from 59 to 62 degrees F. Depth to bedded sandy shale is 20 to 40 inches. The soils commonly are noncalcareous. Calcium carbonate accumulation in the lower part of the C horizon is weak and discontinuous. Very fine pebbles range from 0 to 15 percent throughout.

The A1 horizon has hue of 2.5 Y or 10 YR , value of 4 or 5 dry, 3 or 4 moist, and chroma of 2 through 4 dry and moist. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.

The Bt2 horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 3 or 4 dry and moist. Texture is sandy clay loam with 20 to 27 percent clay. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.

The C horizon has hue of 5 Y through 10 YR , value of 4 through 7 dry, 5 or 6 moist, and chroma of 2 through 4 . It is sandy loam or sandy clay loam. EC is less than 4 mmhos. Reaction ranges from mildly alkaline through strongly alkaline. Visible accumulation of calcium carbonate is discontinuous.

Range in Characteristics (according to field observations, lab analysis): According to the NRCS soil series description, the soils commonly are noncalcareous. The soil profile based on field observations, the C horizon is moderately calcareous.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 14 inches due to the change in effervescent at the C horizon.

Geographic Setting (According to Official Series Description) - Bluerim soils are on upland hillsides. Slopes are 3 to 20 percent. The soils formed in residuum weathered from calcareous sandy shales interbedded with arkosic sandstone. Elevation is 6,000 to 7,800 feet. The mean annual temperature is 34 to 45 degrees F. Precipitation is 10 to 14 inches. The growing season is 80 to 120 days but frost may occur in any month.

BLUERIM SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Br-NC"
Lab/BKS Sample ID: C07120023_171
Typical Pedon: Bluerim noncalcareous variant-rangeland. The surface is covered with 15 percent very fine pebbles. (Colors are for dry soil unless otherwise stated.)

The Bluerim noncalcareous variant series consists of moderately deep, well drained soils that formed in material weathered from calcareous sandy shale interbedded with arkosic sandstone. Bluerim soils are on upland hillsides and have slopes of 3 to 20 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-3 inches. Brown (10YR 4/3W) sandy loam, moist; moderate medium and fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; moderately alkaline (pH 8.5), noneffervescent; clear smooth boundary.

B - 3-7 inches. Yellowish brown (10YR 5/4D) sandy loam, dark yellowish brown (10YR $4 / 4 \mathrm{~W}$) moist; weak medium prismatic structure that parts to moderate medium angular blocky; hard, friable, sticky and plastic; many fine and medium roots; continuous thin clay films on faces of all peds; 10 percent very fine pebbles; moderately alkaline (pH 8.1), noneffervescent; clear smooth boundary.

C- 7-13 inches. Very pale brown (10YR 7/4D) sandy loam, moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few medium roots; continuous thin clay films on faces of peds; 10 percent very fine pebbles; slightly alkaline (pH 7.8), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 171 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges from 35 to 47 degrees F., and the mean summer soil temperature ranges from 59 to 62 degrees F. Depth to bedded sandy shale is 20 to 40 inches. The soils commonly are noncalcareous. Calcium carbonate accumulation in the lower part of the C horizon is weak and discontinuous. Very fine pebbles range from 0 to 15 percent throughout.

Section 2.6-Geology

The A1 horizon has hue of 2.5 Y or 10 YR , value of 4 or $5 \mathrm{dry}, 3$ or 4 moist, and chroma of 2 through 4 dry and moist. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.
The Bt2 horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 3 or 4 dry and moist. Texture is sandy clay loam with 20 to 27 percent clay. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.
The C horizon has hue of 5 Y through 10 YR , value of 4 through 7 dry, 5 or 6 moist, and chroma of 2 through 4 . It is sandy loam or sandy clay loam. EC is less than 4 mmhos. Reaction ranges from mildly alkaline through strongly alkaline. Visible accumulation of calcium carbonate is discontinuous.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal pH was found at a depth of 0-3 and marginal saturation percentage was found at a depth of 7-13 inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Bluerim soils are on upland hillsides. Slopes are 3 to 20 percent. The soils formed in residuum weathered from calcareous sandy shales interbedded with arkosic sandstone. Elevation is 6,000 to 7,800 feet. The mean annual temperature is 34 to 45 degrees F. Precipitation is 10 to 14 inches. The growing season is 80 to 120 days but frost may occur in any month.

License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology

ONASON SERIES

SANDY LOAM
Soil Mapping Unit "O"
Lab/BKS Sample ID: C07120023_173
Typical Pedon: Onason loamy sand - rangeland. (Colors are for dry soil unless otherwise stated.)

The Onason series consists of well drained soils that are shallow and very shallow to soft sandstone. These soils formed in residuum and slopewash alluvium weathered from the underlying bedrock. Onason soils are on footslopes, backslopes, and shoulders of hills and ridges. Slopes range from 5 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-3 inches. Brown ($10 \mathrm{YR} 4 / 3 \mathrm{~W}$) loamy sand, moist; weak very fine granular structure; slightly hard, very friable, nonsticky and nonplastic; many fine and few medium roots; 15 percent semirounded pebbles; strongly alkaline (pH 8.7), noneffervescent; clear smooth boundary.

C- 3-19 inches. Yellowish brown (10YR 5/4D) sandy loam, dark yellowish brown ($10 \mathrm{YR} 4 / 4 \mathrm{~W}$) moist; weak medium and coarse granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and few medium roots; 15 percent semirounded pebbles; strongly alkaline (pH 8.6), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 173 on map included in this report.

Range in Soil Characteristics(According to official series description) - Depth to the paralithic contact and bedrock ranges from 4 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature is 36 to 45 degrees F., and the mean summer soil temperature is 59 to 62 degrees F. The particle size control section averages gravelly sandy loam or sandy loam throughout. Clay ranges from 8 to 18 percent and rock fragments of fine or very fine semirounded pebbles range from 0 to 35 percent. EC is less than 2 mmhos throughout.

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Lag gravel covering up to 75 percent of the surface is common in some pedons. Reaction is neutral or mildly alkaline. Section 2.6-Geology

The C horizon has hue of 2.5 Y or 10 YR , value of 5 or 6 dry, 4 through 6 moist, and chroma of 2 through 4. A thin Bw horizon is present in some pedons. Reaction is neutral or mildly alkaline.
The Cr horizon consists of soft, noncalcareous, coarse- and medium-grained sandstone interbedded with thin lenses of shale and siltstone. The yellowish brown or brown sandstone may have discontinuous lenses of hard sandstone or shale in some pedons. The soil-bedrock interface is considered a paralithic contact and roots plane out at the contact.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab anaylsis and field observations.

Taxonomic Class (According to official series description): Loamy, mixed, superactive, nonacid, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1): Marginal pH was found at depths of 0-3 and 3-19 inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Onason soils are on footslopes, backslopes, and shoulders of rolling and steep hills and ridges. These soils formed in residuum and slopewash alluvium weathered from the underlying noncalcareous sandstone. Slopes range from 5 to 45 percent. Elevations are 6,000 to 7,600 feet. The climate is cool, semiarid with moist springs and dry summers. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 34 to 44 degrees F. The estimated frost-free season is about 80 to 110 days, but frost may occur in any month.

CARMODY SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Ca-NC"
Lab/BKS Sample ID: C07120023_174
Typical Pedon: Carmody noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Carmody noncalcareous variant series consists of well to somewhat excessively drained soils that are moderately deep to siltstone. These soils formed in material weathered from calcareous siltstone or fine grained sandstone. Carmody soils are on uplands of the cold intermountain basins. Slopes are 2 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Brown (10 YR $4 / 3 \mathrm{~W}$) loamy sand, moist; weak fine and very fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; lime disseminated; moderately alkaline (pH 8.4); noneffervescent, gradual wavy boundary. (4 to 10 inches thick)

C1-3 to 15 inches. Yellowish brown (10YR 5/4D) sandy loam, moist; moderate medium and coarse prismatic structure; slightly hard, friable, slightly sticky; few fine and many medium roots; lime disseminated; moderately alkaline (pH 8.3); noneffervescent, abrupt wavy boundary. (16 to 30 inches thick)

C2 - 15 to 29 inches. Light yellowish brown (10YR 6/4D) sandy loam, moderately alkaline (pH 8.4); noneffervescent.

C3k-29 to 39 inches. Light reddish brown (2.5YR 6/4D) sandy loam, strongly alkaline (pH 8.7); strongly effervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 174 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to a paralithic contact is 20 to 40 inches. Depth to uniformly calcareous material is 0 to 10 inches. The mean annual soil temperature ranges from about 40 to 47 degrees F., and the mean summer soil temperature ranges from about 59 to 63 degrees F. The control section is very fine sandy loam or fine sandy loam, averaging 10 to 18 percent clay and more than 15 percent fine sand or coarser. Flat fragments or fine pebbles range from 0 to 15 Section 2.6-Geology
percent. Thin, discontinuous horizons of carbonate accumulation occur immediately above the paralithic contact in some pedons.

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . EC is less than 2 mmhos. Reaction is mildly or moderately alkaline.

The C horizon has hue of 2.5 Y or 10 YR , value of 4 through 7 dry, 3 through 5 moist, and chroma of 2 through 6 . EC is less than 2 mmhos. Reaction is moderately or strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): According to the NRCS soil series description, the soils are strongly calcareous for the A and C horizons. Based on field observations, the $\mathrm{A}, \mathrm{C} 1$, and C 2 horizons are noncalcareous.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal pH was found at a depth of 29-39 inches. An estimated stripping depth is 29 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Carmody soils are on plateaus and hillslopes in intermountain basins. Slopes are 2 to 45 percent. The soils formed in calcareous material weathered from semiconsolidated fine grained sandstone or siltstone. The mean annual precipitation ranges from 10 to 17 inches of which about half falls as snow or rain in April, May, and early June. Elevation is 5,300 to 7,500 feet. The mean annual temperature is 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F. The frost-free season is 75 to 120 days depending upon aspect, elevation, and local air drainage.

BLUERIM SERIES
SANDY LOAM

Soil Mapping Unit "Br"
Lab/BKS Sample ID: C07120023_178
Typical Pedon: Bluerim loamy sand-rangeland. The surface is covered with 15 percent very fine pebbles. (Colors are for dry soil unless otherwise stated.)

The Bluerim series consists of moderately deep, well drained soils that formed in material weathered from calcareous sandy shale interbedded with arkosic sandstone. Bluerim soils are on upland hillsides and have slopes of 3 to 20 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-3 inches. Brown (10YR 4/3) loamy sand, moist; moderate medium and fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; moderately alkaline (pH 8.2), noneffervescent; clear smooth boundary.

Bt - 3-15 inches. Dark yellowish brown (10YR 4/4) sandy loam, light reddish brown (2.5YR 6/3) moist; weak medium prismatic structure that parts to moderate medium angular blocky; hard, friable, sticky and plastic; many fine and medium roots; continuous thin clay films on faces of all peds; 10 percent very fine pebbles; moderately alkaline (pH 8.1), noneffervescent; clear smooth boundary.

Ck - 15-29 inches. Light reddish brown (2.5YR 7/3) loamy sand, moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few medium roots; continuous thin clay films on faces of peds; 10 percent very fine pebbles; strongly alkaline (pH 8.6), strongly effervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 178 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges from 35 to 47 degrees F., and the mean summer soil temperature ranges from 59 to 62 degrees F. Depth to bedded sandy shale is 20 to 40 inches. The soils commonly are noncalcareous. Calcium carbonate accumulation in the lower part of the C horizon is weak and discontinuous. Very fine pebbles range from 0 to 15 percent throughout. Section 2.6-Geology

The A1 horizon has hue of 2.5 Y or 10 YR , value of 4 or 5 dry, 3 or 4 moist, and chroma of 2 through 4 dry and moist. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.
The Bt2 horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 3 or 4 dry and moist. Texture is sandy clay loam with 20 to 27 percent clay. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.
The C horizon has hue of 5 Y through 10 YR , value of 4 through 7 dry, 5 or 6 moist, and chroma of 2 through 4 . It is sandy loam or sandy clay loam. EC is less than 4 mmhos. Reaction ranges from mildly alkaline through strongly alkaline. Visible accumulation of calcium carbonate is discontinuous.

Range in Characteristics (according to field observations, lab analysis): According to the NRCS soil series description, the soils commonly are noncalcareous. The soil profile based on field observations, the C horizon is strongly calcareous.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal pH was found at a depth of 15-29 inches. An estimated stripping depth is 15 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Bluerim soils are on upland hillsides. Slopes are 3 to 20 percent. The soils formed in residuum weathered from calcareous sandy shales interbedded with arkosic sandstone. Elevation is 6,000 to 7,800 feet. The mean annual temperature is 34 to 45 degrees F. Precipitation is 10 to 14 inches. The growing season is 80 to 120 days but frost may occur in any month.

RELSOB SERIES
SANDY LOAM

Soil Mapping Unit "Re"
Lab/BKS Sample ID: C07120023_183
Typical Pedon: Relsob sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Relsob series consists of deep, well drained soils formed in alluvium derived primarily from noncalcareous sandstone. These soils are on fan aprons and toeslopes of hills and ridges. Slopes are 0 to 15 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 ' to 5 inches. Brown (10YR $5 / 3$) sandy loam, moist; moderate medium granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine, fine, and common medium roots; strongly alkaline (pH 8.5); noneffervescent; abrupt smooth boundary. (1 to 4 inches thick)

Bt1-5 to 18 inches. Yellowish brown (10YR 5/4) sandy loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; hard, friable, sticky and plastic; many very fine, fine and common medium roots; common thin clay films on faces of peds and as bridges between sand grains; moderately alkaline (pH 8.1); noneffervescent; clear wavy boundary.

Bt2 - 18 to 34 inches. Light yellowish brown (10YR 6/4) sandy loam, moist; strong medium prismatic structure parting to strong medium subangular blocky; slightly hard, friable, sticky and plastic; common very fine, fine, and medium roots; many moderately thick clay films on faces of peds; 15 percent pebbles; moderately alkaline (pH 8.4); noneffervescent; abrupt wavy boundary. (Combined thickness of Bt horizon is 11 to 17 inches.)

Bt3 - 34 to 43 inches. Light yellowish brown (10YR 6/4) sandy loam, moist; strong medium prismatic structure parting to strong medium subangular blocky; slightly hard, friable, sticky and plastic; common very fine, fine, and medium roots; many moderately thick clay films on faces of peds; 15 percent pebbles; moderately alkaline (pH 8.1); noneffervescent; abrupt wavy boundary. (Combined thickness of Bt horizon is 11 to $\cdot 17$ inches.)

C - 43 to 56 inches. Lightly yellowish brown (10YR 6/4) sandy loam, moist; massive; slightly hard, very friable, nonsticky, nonplastic; few very fine, fine, and medium roots to 28 inches; 40 percent pebbles; moderately alkaline (pH 8.0); noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 183 on map included in this report.
Range in Soil Characteristics (According to Official Series Description) - Depth to the base of the argillic horizon and strongly contrasting coarse material is 12 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature ranges from 36 to 46 degrees F., and the mean summer temperature is 59 to 62 degrees F . EC is less than 2 mmhos throughout the soil.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 or 3 . Reaction is neutral through moderately alkaline (pH 6.6 8.0.)

The Bt (argillic) horizon has hue of 10 YR or 7.5 YR , value of 5 or 6 dry, 4 or 5 moist, and chroma of 2 through 4 . Texture is sandy clay loam or gravelly sandy clay loam with clay ranging from 20 to 35 percent, silt from 0 to 28 percent, and sand from 45 to 80 percent. Coarse fragments range from 0 to 20 percent and are fine or very fine pebbles. Reaction is neutral or mildly alkaline.

The 2 C horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 4 through 7 moist, and chroma of 2 through 6 . Texture of the matrix is sand or loamy sand modified with 0 to 60 percent fine pebbles. Reaction is neutral through moderately alkaline.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class - Fine-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Ustic Haplargids

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal pH was found at a depth of $0-5$ inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Relsob soils are on relict fan aprons and toeslopes of hills and ridges. These soils formed in alluvium derived primarily from noncalcareous sandstone. The finer sediments overlie strata of sand or gravel and sand mixtures. Slopes are 0 to 15 percent and typically simple. Elevation is 6,000 to 7,600 feet. The mean annual precipitation is about 12 inches and ranges from 10 to 14 inches with about half falling as snow or rain in April, May, and early June. The mean annual temperature is about 41 degrees F. and ranges from about 34 to 45 degrees

URANIUM ONE AMERICAS
 License Application, Technical Report Antelope and JAB Uranium Project uraniumone" investing in our energy

 Section 2.6-GeologyF. The frost-free season is estimated at 80 to 110 days; but, because of elevation, aspect, and air drainage, frost may occur at any time.

ONASON SERIES
 SANDY LOAM

Soil Mapping Unit "O"
Lab/BKS Sample ID: C07120023_186
Typical Pedon: Onason loamy sand - rangeland. (Colors are for dry soil unless otherwise stated.)

The Onason series consists of well drained soils that are shallow and very shallow to soft sandstone. These soils formed in residuum and slopewash alluvium weathered from the underlying bedrock. Onason soils are on footslopes, backslopes, and shoulders of hills and ridges. Slopes range from 5 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-2 inches. Brown (10YR 5/3) loamy sand, moist; weak very fine granular structure; slightly hard, very friable, nonsticky and nonplastic; many fine and few medium roots; 15 percent semirounded pebbles; strongly alkaline (pH 8.6), noneffervescent; clear smooth boundary.

C - 2-10 inches. Yellowish brown (10YR 5/4) loamy sand, moist; weak medium and coarse granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and few medium roots; 15 percent semirounded pebbles; moderately alkaline (pH 8.4), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 186 on map included in this report.

Range in Soil Characteristics(According to official series description) - Depth to the paralithic contact and bedrock ranges from 4 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature is 36 to 45 degrees F., and the mean summer soil temperature is 59 to 62 degrees F. The particle size control section averages gravelly sandy loam or sandy loam throughout. Clay ranges from 8 to 18 percent and rock fragments of fine or very fine semirounded pebbles range from 0 to 35 percent. EC is less than 2 mmhos throughout.

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Lag gravel covering up to 75 percent of the surface is common in some pedons. Reaction is neutral or mildly alkaline.
The C horizon has hue of 2.5 Y or 10 YR , value of 5 or 6 dry, 4 through 6 moist, and chroma of 2 through 4. A thin Bw horizon is present in some pedons. Reaction is neutral or mildly alkaline. Section 2.6-Geology

The Cr horizon consists of soft, noncalcareous, coarse- and medium-grained sandstone interbedded with thin lenses of shale and siltstone. The yellowish brown or brown sandstone may have discontinuous lenses of hard sandstone or shale in some pedons. The soil-bedrock interface is considered a paralithic contact and roots plane out at the contact.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class (According to official series description) - Loamy, mixed, superactive, nonacid, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal pH was found at a depth of $0-2$ inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Onason soils are on footslopes, backslopes, and shoulders of rolling and steep hills and ridges. These soils formed in residuum and slopewash alluvium weathered from the underlying noncalcareous sandstone. Slopes range from 5 to 45 percent. Elevations are 6,000 to 7,600 feet. The climate is cool, semiarid with moist springs and dry summers. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 34 to 44 degrees F. The estimated frost-free season is about 80 to 110 days, but frost may occur in any month.

URANIUM ONE AMERICAS License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology

ONASON SERIES GRAVELLY SANDY LOAM

Soil Mapping Unit "O" Lab/BKS Sample ID: C07120023_187
Typical Pedon: Onason sandy loam - rangeland. (Colors are for dry soil unless otherwise stated.)

The Onason series consists of well drained soils that are shallow and very shallow to soft sandstone. These soils formed in residuum and slopewash alluvium weathered from the underlying bedrock. Onason soils are on footslopes, backslopes, and shoulders of hills and ridges. Slopes range from 5 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-2 inches. Brown (10YR 5/3) sandy loam, moist; weak very fine granular structure; slightly hard, very friable, nonsticky and nonplastic; many fine and few medium roots; 15 percent semirounded pebbles; strongly alkaline (pH 8.5), noneffervescent; clear smooth boundary.

C - 2-10 inches. Yellowish brown (10YR 5/4) loamy sand, moist; weak medium and coarse granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and few medium roots; 15 percent semirounded pebbles; strongly alkaline (pH 8.6), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 187 on map included in this report.

Range in Soil Characteristics(According to official series description) - Depth to the paralithic contact and bedrock ranges from 4 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature is 36 to 45 degrees F., and the mean summer soil temperature is 59 to 62 degrees F. The particle size control section averages gravelly sandy loam or sandy loam throughout. Clay ranges from 8 to 18 percent and rock fragments of fine or very fine semirounded pebbles range from 0 to 35 percent. EC is less than 2 mmhos throughout.

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Lag gravel covering up to 75 percent of the surface is common in some pedons. Reaction is neutral or mildly alkaline.
The C horizon has hue of 2.5 Y or 10 YR , value of 5 or 6 dry, 4 through 6 moist, and chroma of 2 through 4. A thin Bw horizon is present in some pedons. Reaction is neutral or mildly alkaline.

The Cr horizon consists of soft, noncalcareous, coarse- and medium-grained sandstone interbedded with thin lenses of shale and siltstone. The yellowish brown or brown sandstone may have discontinuous lenses of hard sandstone or shale in some pedons. The soil-bedrock interface is considered a paralithic contact and roots plane out at the contact.

Range in Characteristics (according to field observations, lab analysis): Lab texture for the A horizon is coarser than typical for the map unit.

Taxonomic Class (According to official series description) - Loamy, mixed, superactive, nonacid, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal pH was found at depths of 0-2 and 2-10 inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Onason soils are on footslopes, backslopes, and shoulders of rolling and steep hills and ridges. These soils formed in residuum and slopewash alluvium weathered from the underlying noncalcareous sandstone. Slopes range from 5 to 45 percent. Elevations are 6,000 to 7,600 feet. The climate is cool, semiarid with moist springs and dry summers. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 34 to 44 degrees F. The estimated frost-free season is about 80 to 110 days, but frost may occur in any month.

BLUERIM SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Br-NC"
Lab/BKS Sample ID: C07120023_189
Typical Pedon: Bluerim noncalcareous variant-rangeland. The surface is covered with 15 percent very fine pebbles. (Colors are for dry soil unless otherwise stated.)

The Bluerim noncalcareous variant series consists of moderately deep, well drained soils that formed in material weathered from calcareous sandy shale interbedded with arkosic sandstone. Bluerim soils are on upland hillsides and have slopes of 3 to 20 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-3 inches. Brown (10YR 5/3) sandy loam, moist; moderate medium and fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; moderately alkaline (pH 8.2), noneffervescent; clear smooth boundary.

Bt - 3-12 inches. Brown (10YR 5/3) sandy loam, moist; weak medium prismatic structure that parts to moderate medium angular blocky; hard, friable, sticky and plastic; many fine and medium roots; continuous thin clay films on faces of all peds; 10 percent very fine pebbles; moderately alkaline (pH 8.0), noneffervescent; clear smooth boundary.

BC - 12-18 inches. Brown (10YR 5/3) loamy sand, moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few medium roots; continuous thin clay films on faces of peds; 10 percent very fine pebbles; moderately alkaline (pH 8.0), noneffervescent; gradual wavy boundary.

C - 18 to 32 inches. Grayish brown (10YR 5/2) loamy sand, moist; weak medium angular blocky structure; slightly hard, very friable, slightly sticky and nonplastic; few medium roots; few thin clay films on faces of some peds; 10 percent very fine pebbles; moderately alkaline (pH 8.1); noneffervescent; clear smooth boundary. (4 to 7 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 189 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges from 35 to 47 degrees F., and the mean summer soil Section 2.6-Geology
temperature ranges from 59 to 62 degrees F. Depth to bedded sandy shale is 20 to 40 inches. The soils commonly are noncalcareous. Calcium carbonate accumulation in the lower part of the C horizon is weak and discontinuous. Very fine pebbles range from 0 to 15 percent throughout.
The A1 horizon has hue of 2.5 Y or 10 YR , value of 4 or 5 dry, 3 or 4 moist, and chroma of 2 through 4 dry and moist. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.

The Bt 2 horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 3 or 4 dry and moist. Texture is sandy clay loam with 20 to 27 percent clay. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.
The C horizon has hue of 5 Y through 10 YR , value of 4 through 7 dry, 5 or 6 moist, and chroma of 2 through 4 . It is sandy loam or sandy clay loam. EC is less than 4 mmhos. Reaction ranges from mildly alkaline through strongly alkaline. Visible accumulation of calcium carbonate is discontinuous.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 18 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Bluerim soils are on upland hillsides. Slopes are 3 to 20 percent. The soils formed in residuum weathered from calcareous sandy shales interbedded with arkosic sandstone. Elevation is 6,000 to 7,800 feet. The mean annual temperature is 34 to 45 degrees F. Precipitation is 10 to 14 inches. The growing season is 80 to 120 days but frost may occur in any month.
investing in our energy

GRIEVES SERIES

SANDY LOAM
Soil Mapping Unit "Gr" (Inclusion)
Lab/BKS Sample ID: C07120023_190
Typical Pedon: Grieves sandy loam - rangeland. (Colors are for dry soil unless otherwise stated.)

The Grieves series consists of very deep, well drained and somewhat excessively drained soils that formed in locally transported calcareous materials weathered from sandstone. Grieves soils are on fans, footslopes and toeslopes. Slopes range from 0 to 40 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Grayish brown (10YR 5/2) sandy loam, moist; moderate very fine granular structure; soft, very friable, slightly sticky, slightly plastic; many very fine, fine, and medium roots; moderately alkaline (pH 7.9); noneffervescent; clear wavy boundary. (2 to 5 inches thick)

AC - 3 to 13 inches. Pale brown (10YR 6/3) sandy loam, moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky, slightly plastic; many very fine, fine and medium roots to 12 inches; moderately alkaline (pH 8.2); noneffervescent; gradual wavy boundary. (0 to 8 inches thick)

C1-13 to 27 inches. Pale brown (10YR 6/3) sandy loam, moist; massive; soft, very friable, slightly sticky, slightly plastic; common very fine, fine, and medium roots to 35 inches; few very fine, fine, and medium roots to 60 inches; slightly alkaline (pH 7.4); strongly effervescent.

C2-27 to 54 inches. Pale brown (10YR 6/3) loamy sand, moist; massive; soft, very friable, slightly sticky, slightly plastic; common very fine, fine, and medium roots to 35 inches; few very fine, fine, and medium roots to 60 inches; slightly alkaline (pH 7.5); strongly effervescent.

C3-54 to 60 inches. Pale brown (10YR 6/3) loamy sand, moist; massive; soft, very friable, slightly sticky, slightly plastic; common very fine, fine, and medium roots to 35 inches; few very fine, fine, and medium roots to 60 inches; slightly alkaline (pH 7.5); strongly effervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 190 on map included in this report.
investing in our energy

Range in Characteristics (According to Official Series Description) -
The mean annual soil temperature is about 43 degrees to 46 degrees F. The mean summer soil temperature is about 59 degrees to 62 degrees F. The control section is sandy loam or fine sandy loam averaging between 10 to 18 percent clay. Gravel ranges from 0 to 15 percent; up to 10 percent cobblestones are found in the very lower part of the control section.

The A horizon has hue of 2.5 Y or 10 YR ; value of 5 or 6 dry, 3 through 5 moist; and chroma of 2 through 4 . It is mildly or moderately alkaline. A Bw horizon is lacking in some pedons.
The C horizon has hue of 2.5 Y or 10 YR , value of 6 through 8,4 or 5 moist, and chroma of 2 through 4 . It is moderately or strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): According to the NRCS soil series description, the soils are strongly calcareous. The soil profile based on field observations, the A horizon is noncalcareous.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 13 inches due to the change in effervescent at the C horizon.

Geographic Setting (According to Official Series Description) - Grieves soils are on nearly level to sloping alluvial fans, footslopes or toeslopes. Slopes are 0 to 40 percent. They formed in locally transported calcareous materials weathered from sandstone or sandstone interbedded with shale. Elevation is 5800 to 7,200 feet. The mean annual precipitation is 9 to 14 inches, which occurs mainly in the winter and spring. The mean annual air temperature is 39 degrees to 45 degrees F. The mean summer temperature is 58 degrees to 65 degrees F. The frost-free season is 60 to 100 days.

URANIUM ONE AMERICAS
License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology

JAB SAMPLED SOIL SERIES DESCRIPTIONS

LECKMAN SERIES

Soil Mapping Unit "L"

Lab/BKS Sample ID: G07120056_2
Typical Pedon: Leckman loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Leckman series consists of very deep, well drained soils formed in alluvium. Leckman soils are on alluvial fans and toeslopes and have slopes of 0 to 10 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-5 inches. Light grayish brown (10YR 6/2) loam, moist; weak medium platy structure breaks to weak fine crumbs; soft, very friable, nonsticky, nonplastic; neutral (pH 6.8), noneffervescent.

C1-5-15 inches. Light grayish brown (10YR 6/2) loam, moist; weak coarse and medium prismatic structure that parts to weak medium subangular blocks; soft, very friable, nonsticky, nonplastic; slightly alkaline (pH 7.6), moderately effervescent.

C2 - 15-29 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, slightly alkaline (pH 7.8), moderately effervescent.

C3 - 29-48 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, moderately alkaline (pH 8.0), noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 2 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature is about 43 to 47 degrees F . The mean summer soil temperature is 64 to 67 degrees F. Textures throughout the profile are fine sandy loam or sandy loam. Gravel content is generally less than 5 percent but can range from 0 to 15 percent.

The A horizons have hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4 .

The C horizon has hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4. Reaction is moderately or strongly alkaline. Effervescence may be slight to violent.
investing in our energy

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and C3 horizons and is moderately calcareous in the C 1 and C 2 horizons. According to the NRCS soil series description, the soil profile is slightly calcareous in the A horizon and is strongly calcareous in the remaining horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Typic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 5 inches due to the change in effervescent at the C 1 horizon.

Geographic Setting (According to Official Series Description) - Leckman soils are on alluvial fans and toe slopes of escarpments. Slopes are 0 to 10 percent. The soils formed in alluvium. Elevation is 6,000 to 7,000 feet. The mean annual precipitation is 7 to 9 inches. The mean annual air temperature is 37 to 44 degrees F . The frost-free season is 80 to 110 days.

BLUERIM SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "Br-NC"
Lab/BKS Sample ID: G07120056_7
Typical Pedon: Bluerim noncalcareous variant-rangeland. The surface is covered with 15 percent very fine pebbles. (Colors are for dry soil unless otherwise stated.)

The Bluerim noncalcareous variant series consists of moderately deep, well drained soils that formed in material weathered from calcareous sandy shale interbedded with arkosic sandstone. Bluerim soils are on upland hillsides and have slopes of 3 to 20 percent. The mean annual precipitation is 8 to 10 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A $-0-3$ inches. Brown (10YR 5/3) loam, moist; moderate medium and fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; moderately acid (pH 5.7), noneffervescent; clear smooth boundary.

Bt 1 - 3-12 inches. Brown (10YR 5/3) loam, moist; weak medium prismatic structure that parts to moderate medium angular blocky; hard, friable, sticky and plastic; many fine and medium roots; continuous thin clay films on faces of all peds; 10 percent very fine pebbles; neutral (pH 7.0), noneffervescent; clear smooth boundary.

Bt2 - 12-20 inches. Brown (10YR 5/3) loam, moist; moderate medium angular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few medium roots; continuous thin clay films on faces of peds; 10 percent very fine pebbles; neutral (pH 7.2), noneffervescent; gradual wavy boundary.

C - 20-30 inches. Light olive brown (2.5Y 5/4) sandy loam, moist; neutral (pH 7.2), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 7 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges from 35 to 47 degrees F ., and the mean summer soil temperature ranges from 59 to 62 degrees F. Depth to bedded sandy shale is 20 to 40 inches. The soils commonly are noncalcareous. Calcium carbonate accumulation in the lower part of the C horizon is weak and discontinuous. Very fine pebbles range from 0 to 15 percent throughout.

The A1 horizon has hue of 2.5 Y or 10YR, value of 4 or 5 dry, 3 or 4 moist, and chroma of 2 through 4 dry and moist. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.

The Bt 2 horizon has hue of 2.5 Y through 7.5 YR , value of 4 through $6 \mathrm{dry}, 4$ or 5 moist, and chroma of 3 or 4 dry and moist. Texture is sandy clay loam with 20 to 27 percent clay. EC is less than 2 mmhos. Reaction is neutral or mildly alkaline.

The C horizon has hue of 5 Y through 10 YR , value of 4 through 7 dry, 5 or 6 moist, and chroma of 2 through 4 . It is sandy loam or sandy clay loam. EC is less than 4 mmhos. Reaction ranges from mildly alkaline through strongly alkaline. Visible accumulation of calcium carbonate is discontinuous.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 20 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Bluerim soils are on upland hillsides. Slopes are 3 to 20 percent. The soils formed in residuum weathered from calcareous sandy shales interbedded with arkosic sandstone. Elevation is 6,000 to 7,800 feet. The mean annual temperature is 34 to 45 degrees F. Precipitation is 10 to 14 inches. The growing season is 80 to 120 days but frost may occur in any month.

ONASON SERIES

Soil Mapping Unit "O"
Lab/BKS Sample ID: G07120056_9
Typical Pedon: Onason sandy loam - rangeland. (Colors are for dry soil unless otherwise stated.)

The Onason series consists of well drained soils that are shallow and very shallow to soft sandstone. These soils formed in residuum and slopewash alluvium weathered from the underlying bedrock. Onason soils are on footslopes, backslopes, and shoulders of hills and ridges. Slopes range from 5 to 45 percent. The mean annual precipitation is 8 to 10 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-2 inches. Brown (10YR 5/3) sandy loam, moist; weak very fine granular structure; slightly hard, very friable, nonsticky and nonplastic; many fine and few medium roots; 15 percent semirounded pebbles; moderately acid (pH 5.8), noneffervescent; clear smooth boundary.

AC - 2-10 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium and coarse granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and few medium roots; 15 percent semirounded pebbles; neutral (pH 6.6), noneffervescent; gradual wavy boundary.

C1-10-16 inches. Light yellowish brown (2.5Y 6/4) sandy clay loam, moist; massive; soft, very friable, nonsticky and nonplastic; many fine and few medium roots; 15 percent semirounded pebbles; neutral (pH 6.6); noneffervescent; abrupt wavy boundary. (3 to 14 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 9 on map included in this report.

Range in Soil Characteristics(According to official series description) - Depth to the paralithic contact and bedrock ranges from 4 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature is 36 to 45 degrees F., and the mean summer soil temperature is 59 to 62 degrees F . The particle size control section averages gravelly sandy loam or sandy loam throughout. Clay ranges from 8 to 18 percent and rock fragments of fine or very fine semirounded pebbles range from 0 to 35 percent. EC is less than 2 mmhos throughout. Section 2.6-Geology

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Lag gravel covering up to 75 percent of the surface is common in some pedons. Reaction is neutral or mildly alkaline.

The C horizon has hue of 2.5 Y or 10 YR , value of 5 or 6 dry, 4 through 6 moist, and chroma of 2 through 4. A thin Bw horizon is present in some pedons. Reaction is neutral or mildly alkaline.

The Cr horizon consists of soft, noncalcareous, coarse- and medium-grained sandstone interbedded with thin lenses of shale and siltstone. The yellowish brown or brown sandstone may have discontinuous lenses of hard sandstone or shale in some pedons. The soil-bedrock interface is considered a paralithic contact and roots plane out at the contact.

Range in Characteristics (according to field observations, lab analysis): There were no variations from the typical soil profile according to lab analysis and field observations.

Taxonomic Class (According to official series description): Loamy, mixed, superactive, nonacid, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1): No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 10 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Onason soils are on footslopes, backslopes, and shoulders of rolling and steep hills and ridges. These soils formed in residuum and slopewash alluvium weathered from the underlying noncalcareous sandstone. Slopes range from 5 to 45 percent. Elevations are 6,000 to 7,600 feet. The climate is cool, semiarid with moist springs and dry summers. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 34 to 44 degrees F. The estimated frost-free season is about 80 to 110 days, but frost may occur in any month.

BLACKHALL SERIES

Soil Mapping Unit " Bl "
Lab/BKS Sample ID: G07120056_10
Typical Pedon: Blackhall sandy clay loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Blackhall series consists of very shallow and shallow, well drained soils that formed in material weathered from sandstone. Blackhall soils are on hills and ridges. Slopes are 3 to 65 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is about 38 degrees F .

A - 0-4 inches. Light yellowish brown (2.5Y 6/3) sandy clay loam, moist; moderate very fine granular structure; soft, very friable; few soft sandstone fragments; neutral (pH 6.8), noneffervescent.

AC - 4-14 inches. Light yellowish brown (2.5Y 6/3) clay - clay loam, moist moderate very fine granular structure; soft, very friable; few soft sandstone fragments; slightly alkaline (pH 7.7), noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 10 on map included in this report.

Range in Soil Characteristics (According to official series description) - Depth to a paralithic contact and bedrock is 6 to 20 inches. The mean annual soil temperature is about 40 to 45 degrees F., and the mean summer soil temperature is about 59 to 66 degrees F. The control section averages 5 to 18 percent clay and has more than 35 percent fine or coarser sand. Sandstone fragments range from 0 to 35 percent and are less than 3 inches in diameter. Textures are sandy loam, fine sandy loam, or very fine sandy loam. The moisture control section is usually dry, but is moist in April, May, and early June.

The A horizon has hue of 2.5 Y or 10 YR , value of 5 or 7 dry, 3 through 6 moist, and chroma of 2 through 6 . It is neutral through moderately alkaline.

The C horizon has hue of 5 Y through 10 YR , value of 5 through 7 dry, 3 through 6 moist, and chroma of 2 through 6 . It is mildly through strongly alkaline. A Bk or Bw horizon may be present but is nondiagnostic.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and AC horizons. According to the NRCS soil series
investing in our energy
description, the soil profile is slightly calcareous in the A horizon and is strongly calcareous in the remaining horizons.

Taxonomic Class - Loamy, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal texture was found at a depth of 4-14 inches. An estimated stripping depth is 4 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Blackhall soils are on hills and ridges Slopes are 3 to 65 percent. These soils formed in colluvium, alluvium and residuum weathered from sandstone. Elevations are 4200 to 7,800 feet. The mean annual precipitation ranges from 10 to 14 inches of which half falls as snow and rain during April, May, and June. The mean annual temperature is about 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F. The frost-free season is 60 to 110 days.

DIAMONDVILLE SERIES

Soil Mapping Unit "D"
Lab/BKS Sample ID: G07120056_11
Typical Pedon: Diamondville sandy clay loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Diamondville series consists of moderately deep, well drained soils that formed in alluvium and residuum weathered from calcareous loamstone and sandstone. Diamondville soils are on fan remnants, plateaus, hills and ridges of cold intermountain basins and have slopes of 0 to 15 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-4 inches. Light brownish gray (10YR 6/2) sandy clay loam, moist; strong fine granular structure; soft, very friable, slightly sticky and slightly plastic; slightly acid (pH 6.5), noneffervescent; clear smooth boundary.

Bt1-4-11 inches. Brown (10YR 5/3) clay loam, moist; moderate fine subangular blocky parting to fine granular structure; slightly hard, very friable, slightly sticky and slightly plastic; few faint clay films on faces of some peds; 2 percent gravel; neutral (pH 6.8), noneffervescent; clear smooth boundary.
$\mathrm{Bt} 2-11-17$ inches. Brown (10YR 5/3) clay loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; hard, very friable, sticky and plastic; many prominent clay films on faces of peds and in root channels; neutral (pH 7.3), noneffervescent; gradual wavy boundary.

Btk - 17-24 inches. Brown (10YR 5/3) clay, moist; weak medium subangular blocky structure; hard, friable, sticky and plastic; common distinct clay films on faces of peds and on inside of root channels; common distinct soft, rounded masses, seams, and threads of secondary calcium carbonate; slightly alkaline (pH 7.7), strongly effervescent.

Ck - 24-32 inches. Light yellowish brown (2.5Y 6/3) clay, moist; massive structure; soft, friable, nonsticky, nonplastic; moderately alkaline (pH 7.9), strongly effervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 11 on map included in this report.

Range in Soil Characteristics (According to official series description) - Depth to a paralithic contact is 20 to 40 inches. Depth to uniformly calcareous material ranges from 3 to 20 inches. The mean annual soil temperature ranges from 40 to 47 degrees F. The Section 2.6-Geology
mean summer soil temperature ranges from 59 to 66 degrees F. Rock fragments range from 0 to 15 percent and are either gravel or channers.

The A horizon has hue of 5 Y through 7.5 YR , value of 4 to 6 dry, 3 to 6 moist, and chroma of 2 or 3 . It is neutral through moderately alkaline.

The Bt horizon has hue of 5 Y through 7.5 YR , value of 4 to 6 dry, 4 or 5 moist, and chroma of 2 to 4 . It is loam, clay loam, or sandy clay loam, averaging 18 to 35 percent clay and less than 35 percent fine or coarser sand. It is neutral through moderately alkaline.

The Bk horizon has hue of 5 Y through 7.5 YR , value of 5 to 8 dry, 4 to 7 moist, and chroma of 2 through 4 . It is clay loam, loam, or sandy clay loam. Calcium carbonate equivalent ranges from 4 to 14 percent. This horizon is moderately or strongly alkaline. In some pedons the Bk horizon has textures of fine sandy loam or very fine sandy loam.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the $\mathrm{A}, \mathrm{Bt} 1$, and Bt 2 horizons and strongly calcareous in Btk and Ck . According to the NRCS soil series description, the soil profile is strongly to violently calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil - Marginal texture was found at depths of 17-24 and 24-32 inches. An estimated stripping depth is 17 inches based on laboratory analysis.

Geographic Setting (According to official series description) - Diamondville soils are on fan remnants, plateaus, hills and ridges of cold intermountain basins. Slopes are 0 to 15 percent. The soils formed in material weathered from soft, calcareous loamstone and sandstone. Elevations are 4,600 to 7,500 feet. The mean annual precipitation is 10 to 15 inches of which about half occurs mainly in the spring. The mean annual temperature is about 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F. The frost-free season is 80 to 120 days.

Section 2.6-Geology

ROCK RIVER SERIES NONCALCAREOUS VARIANT

Soil Mapping Unit "RR-NC" (Inclusion)
Lab/BKS Sample ID: G07120056_14
Typical Pedon: Rock River noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Rock River noncalcareous variant series consists of very deep, well drained soils that formed in calcareous alluvium derived mainly from sandstone, eolian deposits, and residuum. Rock River soils are on alluvial fan aprons, relict terraces, benches, hillslopes, and areas of valley fill. Slopes are 0 to 25 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 4 inches. Light brownish gray (10YR 6/2) silty loam, moist; hard crust that parts to weak fine granular; hard, very friable, slightly sticky and slightly plastic; many fine and medium roots; slightly acid (pH 6.1); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

B1-4 to 11 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium prismatic structure parting to moderate medium angular blocky; hard, firm sticky and plastic; few fine and many medium roots; continuous thin clay films on faces of peds; neutral (pH 6.9); noneffervescent; clear smooth boundary.

B2-11 to 18 inches. Yellowish brown (10YR 5/4) sandy loam, moist; moderate medium prismatic structure parting to moderate fine and medium angular blocky; hard, firm, sticky and plastic; few coarse roots; continuous, thin clay films on faces of peds; neutral (pH 6.7); noneffervescent; clear smooth boundary. (The Bt horizon is 8 to 20 inches thick.)

C1-18 to 38 inches. Yellowish brown (10YR 5/4) loamy sand, moist; weak medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common thin clay films on faces of peds; lime as many fine and medium soft masses and threads; 10 percent pebbles $1 / 4$ to $3 / 4$ inch in diameter; neutral (pH 7.2); strong effervescent; clear smooth boundary. (0 to 8 inches thick)

C2-38 to 60 inches. Light brownish gray (10YR 6/2) sandy loam, moist; massive; soft, very friable, nonsticky and nonplastic; lime as many soft masses; many fine soft masses and threads of secondary calcium carbonate; 15 percent lime-coated angular gravel $1 / 4$ to 3/4 inch in diameter; slightly alkaline (pH 7.6); strong effervescent.
investing in our energy Section 2.6-Geology

Type Location - Sweetwater County, Wyoming; refer to waypoint 14 on map included in this report.
Range in Soil Characteristics (According to Official Series Description) - Depth to continuous horizons of calcium carbonate accumulation is 13 to 30 inches. Depth to the base of the argillic horizon is 12 to 34 inches. The mean annual soil temperature ranges from 43 to 46 degrees F., and the mean summer soil temperature ranges from 59 to 65 degrees F. EC is less than 4 mmhos throughout. The rock fragments in the soil are less than $3 / 4$ inch in diameter.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Reaction is neutral through moderately alkaline.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 2 through 6 . Texture is sandy clay loam or gravelly sandy clay loam, averaging 20 to 35 percent clay and has more than 35 percent fine or coarser sand. Rock fragments range from 0 to 25 percent pebbles. Reaction is neutral through moderately alkaline.

The Bk horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 4 through 7 moist, and chroma of 2 through 6 . Texture is sandy clay loam, sandy loam, or fine sandy loam modified with from 0 to 30 percent pebbles. Some pedons have textures of loamy sand or coarser below 40 inches. It has accumulation of secondary calcium carbonate that ranges from 1 through 14 percent. Reaction is moderately or strongly alkaline. Some pedons have a C horizon.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A, B1, and B2 horizons and strongly calcareous in C1 and C2. According to the NRCS soil series description, the soil profile is strongly to violently calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 18 inches due to the change in effervescent in the C horizon.

Geographic Setting (According to Official Series Description): Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Slopes are 0 to 25 percent. Elevation is 5,900 to 7,800 feet. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The
mean annual temperature is about 41 to 45 degrees F., and the mean summer temperature is 59 to 63 degrees F. The frost-free season is about 75 to 110 days but varies according to aspect, elevation, and air drainage.

CARMODY SERIES NONCALCAREOUS VARIANT

Soil Mapping Unit "Ca-NC"
Lab/BKS Sample ID: G07120056_15
Typical Pedon: Carmody sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Carmody series consists of well to somewhat excessively drained soils that are moderately deep to siltstone. These soils formed in material weathered from calcareous siltstone or fine grained sandstone. Carmody soils are on uplands of the cold intermountain basins. Slopes are 2 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Light brownish gray (10YR 6/2) sandy loam, moist; weak fine and very fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; lime disseminated; slightly acid (pH 6.3); noneffervescent, gradual wavy boundary. (4 to 10 inches thick)

C1-3 to 18 inches. Light brownish gray (10YR 6/2) sand, moist; moderate medium and coarse prismatic structure; slightly hard, friable, slightly sticky; few fine and many medium roots; lime disseminated; neutral (pH 6.9); noneffervescent, abrupt wavy boundary. (16 to 30 inches thick)

C2-18 to 29 inches. Light brownish gray to white, calcareous siltstone containing sand, slightly alkaline (pH 7.6); noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 15 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to a paralithic contact is 20 to 40 inches. Depth to uniformly calcareous material is 0 to 10 inches. The mean annual soil temperature ranges from about 40 to 47 degrees F., and the mean summer soil temperature ranges from about 59 to 63 degrees F. The control section is very fine sandy loam or fine sandy loam, averaging 10 to 18 percent clay and more than 15 percent fine sand or coarser. Flat fragments or fine pebbles range from 0 to 15 percent. Thin, discontinuous horizons of carbonate accumulation occur immediately above the paralithic contact in some pedons.
investing in our energy

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . EC is less than 2 mmhos. Reaction is mildly or moderately alkaline.
The C horizon has hue of 2.5 Y or 10 YR , value of 4 through 7 dry, 3 through 5 moist, and chroma of 2 through 6 . EC is less than 2 mmhos. Reaction is moderately or strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and C horizons. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 3 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Carmody soils are on plateaus and hillslopes in intermountain basins. Slopes are 2 to 45 percent. The soils formed in calcareous material weathered from semiconsolidated fine grained sandstone or siltstone. The mean annual precipitation ranges from 10 to 17 inches of which about half falls as snow or rain in April, May, and early June. Elevation is 5,300 to 7,500 feet. The mean annual temperature is 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F . The frost-free season is 75 to 120 days depending upon aspect, elevation, and local air drainage.

CRAGOSEN SERIES GRAVELLY SANDY LOAM

Soil Mapping Unit "Cr"
Lab/BKS Sample ID: G07120056_17
Typical Pedon: Cragosen sandy clay loam -rangeland. (Colors are for dry soil unless otherwise stated.)

The Cragosen series consists of shallow, well drained soils that have bedrock at less than 20 inches. The soils formed in slopewash alluvium on fan aprons, footslopes, and shoulder, ridge, and hill crests. Slopes are from 0 to 60 percent and are both simple and complex. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 4 inches. Pale brown (10YR 6/3) sandy clay loam, moist; moderate fine granular structure; soft, very friable, slightly sticky and slightly plastic; lime disseminated and as coatings on undersides of rock fragments; 25 percent pebbles and 10 percent cobbles; neutral (pH 6.8); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

AC - 4 to 9 inches; brown (10YR 5/3) sandy clay loam, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; slightly alkaline (pH 7.6); strongly effervescent; clear wavy boundary. (4 to 14 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 17 on map included in this report.

Range in Characteristics (According to Official Series Description) - Depth to bedrock ranges from 6 to 20 inches. Depth to uniformly calcareous material ranges from 0 to 6 inches. The mean annual soil temperature is about 44 degrees F. and ranges from 40 to 46 degrees F . The mean annual summer soil temperature ranges from 59 to 63 degrees F . EC ranges from 0 to 4 mmh os throughout the soil. Exchangeable sodium is estimated to be between 0 and 12 percent. The particle size control section matrix is loam, sandy loam, or sandy clay loam with 15 to 25 percent clay and 30 to 60 percent sand with 15 percent or more fine sand or coarser. Rock fragment content of the control section ranges from 25 to 45 percent pebbles and 5 to 15 percent cobble and averages over 35 percent.

The A horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction is neutral through strongly alkaline. Neutral and mildly alkaline reactions occur in the presence of gypsum that acts as a buffering agent. Section 2.6-Geology

The C or Bk horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction ranges from mildly through strongly alkaline. The mildly alkaline reaction occurs in the presence of gypsum. A Bw or Bk horizon may replace part or all of the C horizon but is not diagnostic of either a cambic or calcic horizon. The carbonate movement, while common in some pedons, is not consistent and, though pedogenic, does not meet the requirement for a diagnostic horizon.

The 2 Cr horizon consists of varicolored shales interbedded with semiconsolidated siltstone and sandstone. The material is soft with thin, discontinuous lenses of consolidated rock.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A horizon. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons. Lab texture for the A horizon is coarser than typical for the map unit.

Taxonomic Class - Loamy-skeletal, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 4 inches due to the change in effervescent in the AC horizon.

Geographic Setting (According to Official Series Description) - The Cragosen soils are on fan aprons, footslopes, shoulders, and crests of ridges and hills. These soils formed in slopewash alluvium over sandstone controlled uplands. Slopes range from 0 to 60 percent and are both simple and complex. Elevations range from 6,000 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches with about half falling as snow and rain during April, May, and June. The mean annual temperature is about 40 degrees F. but ranges from 39 to 44 degrees F. The frost-free season is estimated to range from 60 to 100 days depending upon elevation, aspect, and air drainage.

CARMODY SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "Ca-NC"

Lab/BKS Sample ID: G07120056_19
Typical Pedon: Carmody noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Carmody noncalcareous variant series consists of well to somewhat excessively drained soils that are moderately deep to siltstone. These soils formed in material weathered from calcareous siltstone or fine grained sandstone. Carmody soils are on uplands of the cold intermountain basins. Slopes are 2 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 6 inches. Light brownish gray (10YR 6/2) sandy loam, moist; weak fine and very fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; lime disseminated; slightly acid (pH 6.4); noneffervescent, gradual wavy boundary. (4 to 10 inches thick)

C1-6 to 14 inches. Light brownish gray (10YR 6/2) sandy loam, moist; moderate medium and coarse prismatic structure; slightly hard, friable, slightly sticky; few fine and many medium roots; lime disseminated; neutral (pH 7.2); noneffervescent, abrupt wavy boundary. (16 to 30 inches thick)

C2-14 to 20 inches. Light brownish gray to white, calcareous siltstone containing sandy loam, slightly alkaline (pH 7.6); noneffervescent.

C3-20 to 31 inches. Light brownish gray to white, calcareous siltstone containing loamy sand, slightly alkaline (pH 7.8); noneffervescent.

Type Location - 19

Range in Soil Characteristics (According to Official Series Description) - Depth to a paralithic contact is 20 to 40 inches. Depth to uniformly calcareous material is 0 to 10 inches. The mean annual soil temperature ranges from about 40 to 47 degrees F., and the mean summer soil temperature ranges from about 59 to 63 degrees F. The control section is very fine sandy loam or fine sandy loam, averaging 10 to 18 percent clay and more than 15 percent fine sand or coarser. Flat fragments or fine pebbles range from 0 to 15 percent. Thin, discontinuous horizons of carbonate accumulation occur immediately above the paralithic contact in some pedons.

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . EC is less than 2 mmhos. Reaction is mildly or moderately alkaline.

The C horizon has hue of 2.5 Y or 10 YR , value of 4 through 7 dry, 3 through 5 moist, and chroma of 2 through 6 . EC is less than 2 mmhos. Reaction is moderately or strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): Lab texture for the A horizon is finer than typical for the map unit. Textures throughout the profile are finer than a typical Carmody.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and C horizons. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 6 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Carmody soils are on plateaus and hillslopes in intermountain basins. Slopes are 2 to 45 percent. The soils formed in calcareous material weathered from semiconsolidated fine grained sandstone or siltstone. The mean annual precipitation ranges from 10 to 17 inches of which about half falls as snow or rain in April, May, and early June. Elevation is 5,300 to 7,500 feet. The mean annual temperature is 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F . The frost-free season is 75 to 120 days depending upon aspect, elevation, and local air drainage.
investing in our energy

ROCK RIVER SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "RR-NC"
Lab/BKS Sample ID: G07120056_20
Typical Pedon: Rock River noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Rock River noncalcareous variant series consists of very deep, well drained soils that formed in calcareous alluvium derived mainly from sandstone, eolian deposits, and residuum. Rock River soils are on alluvial fan aprons, relict terraces, benches, hillslopes, and areas of valley fill. Slopes are 0 to 25 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 4 inches. Light brownish gray (10YR 6/2) sandy loam, moist; hard crust that parts to weak fine granular; hard, very friable, slightly sticky and slightly plastic; many fine and medium roots; moderately acid (pH 5.8); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

Bt1 - 4 to 19 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium prismatic structure parting to moderate medium angular blocky; hard, firm sticky and plastic; few fine and many medium roots; continuous thin clay films on faces of peds; neutral (pH 6.7); noneffervescent; clear smooth boundary.

C1-19 to 29 inches. Yellowish brown (10YR 5/4) loamy sand, moist; moderate medium prismatic structure parting to moderate fine and medium angular blocky; hard, firm, sticky and plastic; few coarse roots; continuous, thin clay films on faces of peds; slightly alkaline (pH 7.4); noneffervescent; clear smooth boundary. (The Bt horizon is 8 to 20 inches thick.)

C2 - 29 to 44 inches. Yellowish brown (10YR 5/4) loamy sand, moist; weak medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common thin clay films on faces of peds; lime as many fine and medium soft masses and threads; 10 percent pebbles $1 / 4$ to $3 / 4$ inch in diameter; slightly alkaline (pH 7.8); noneffervescent; clear smooth boundary. (0 to 8 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 20 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to continuous horizons of calcium carbonate accumulation is 13 to 30 inches. Depth to the
base of the argillic horizon is 12 to 34 inches. The mean annual soil temperature ranges from 43 to 46 degrees F., and the mean summer soil temperature ranges from 59 to 65 degrees F. EC is less than 4 mmhos throughout. The rock fragments in the soil are less than $3 / 4$ inch in diameter.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Reaction is neutral through moderately alkaline.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 2 through 6 . Texture is sandy clay loam or gravelly sandy clay loam, averaging 20 to 35 percent clay and has more than 35 percent fine or coarser sand. Rock fragments range from 0 to 25 percent pebbles. Reaction is neutral through moderately alkaline.

The Bk horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 4 through 7 moist, and chroma of 2 through 6 . Texture is sandy clay loam, sandy loam, or fine sandy loam modified with from 0 to 30 percent pebbles. Some pedons have textures of loamy sand or coarser below 40 inches. It has accumulation of secondary calcium carbonate that ranges from 1 through 14 percent. Reaction is moderately or strongly alkaline. Some pedons have a C horizon.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly to violently calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 19 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description): Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Slopes are 0 to 25 percent. Elevation is 5,900 to 7,800 feet. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 41 to 45 degrees F., and the mean summer temperature is 59 to 63 degrees F . The frost-free season is about 75 to 110 days but varies according to aspect, elevation, and air drainage.

ROCK RIVER SERIES
 SANDY LOAM

Soil Mapping Unit "RR"
Lab/BKS Sample ID: G07120056_23
Typical Pedon: Rock River sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Rock River series consists of very deep, well drained soils that formed in calcareous alluvium derived mainly from sandstone, eolian deposits, and residuum. Rock River soils are on alluvial fan aprons, relict terraces, benches, hillslopes, and areas of valley fill. Slopes are 0 to 25 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Light brownish gray (10 YR 6/2) sandy loam, moist; hard crust that parts to weak fine granular; hard, very friable, slightly sticky and slightly plastic; many fine and medium roots; slightly acid (pH 6.4); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

BA - 3 to 9 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium prismatic structure parting to moderate medium angular blocky; hard, firm sticky and plastic; few fine and many medium roots; continuous thin clay films on faces of peds; slightly alkaline (pH 7.4); noneffervescent; clear smooth boundary.

Bt - 9 to 19 inches. Yellowish brown (10YR 5/4) sandy loam, moist; moderate medium prismatic structure parting to moderate fine and medium angular blocky; hard, firm, sticky and plastic; few coarse roots; continuous, thin clay films on faces of peds; slightly alkaline (pH 7.7); noneffervescent; clear smooth boundary. (The Bt horizon is 8 to 20 inches thick.)

Btk - 19 to 28 inches. Yellowish brown (10YR 5/4) loam, moist; weak medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common thin clay films on faces of peds; lime as many fine and medium soft masses and threads; 10 percent pebbles $1 / 4$ to $3 / 4$ inch in diameter; slightly alkaline (pH 7.7); strongly effervescent; clear smooth boundary. (0 to 8 inches thick)

C1k-28 to 48 inches. Light brownish gray (10YR 6/2) loam, moist; massive; soft, very friable, nonsticky and nonplastic; lime as many soft masses; many fine soft masses and threads of secondary calcium carbonate; 15 percent lime-coated angular gravel $1 / 4$ to $3 / 4$ inch in diameter, slightly alkaline (pH 7.7); strongly effervescent. Section 2.6-Geology

C2-48 to 58 inches. Light brownish gray (10YR 6/2) sandy loam - sandy clay loam, moist; massive; soft, very friable, nonsticky and nonplastic; lime as many soft masses; many fine soft masses and threads of secondary calcium carbonate; 15 percent limecoated angular gravel $1 / 4$ to $3 / 4$ inch in diameter; slightly alkaline (pH 7.7); moderately effervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 23 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to continuous horizons of calcium carbonate accumulation is 13 to 30 inches. Depth to the base of the argillic horizon is 12 to 34 inches. The mean annual soil temperature ranges from 43 to 46 degrees F., and the mean summer soil temperature ranges from 59 to 65 degrees F . EC is less than 4 mmhos throughout. The rock fragments in the soil are less than $3 / 4$ inch in diameter.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Reaction is neutral through moderately alkaline.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 2 through 6 . Texture is sandy clay loam or gravelly sandy clay loam, averaging 20 to 35 percent clay and has more than 35 percent fine or coarser sand. Rock fragments range from 0 to 25 percent pebbles. Reaction is neutral through moderately alkaline.

The Bk horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 4 through 7 moist, and chroma of 2 through 6 . Texture is sandy clay loam, sandy loam, or fine sandy loam modified with from 0 to 30 percent pebbles. Some pedons have textures of loamy sand or coarser below 40 inches. It has accumulation of secondary calcium carbonate that ranges from 1 through 14 percent. Reaction is moderately or strongly alkaline. Some pedons have a C horizon.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in BA and Bt horizons. According to the NRCS soil series description, the soil profile is strongly to violently calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 19 inches due to the change in effervescent in the B horizon.
investing in our energy
Section 2.6-Geology

Geographic Setting (According to Official Series Description): Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Slopes are 0 to 25 percent. Elevation is 5,900 to 7,800 feet. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 41 to 45 degrees F., and the mean summer temperature is 59 to 63 degrees F. The frost-free season is about 75 to 110 days but varies according to aspect, elevation, and air drainage.
investing in our energy Section 2.6-Geology

CARMODY SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Ca-NC" (Inclusion)
Lab/BKS Sample ID: G07120056_25
Typical Pedon: Carmody noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Carmody noncalcareous variant series consists of well to somewhat excessively drained soils that are moderately deep to siltstone. These soils formed in material weathered from calcareous siltstone or fine grained sandstone. Carmody soils are on uplands of the cold intermountain basins. Slopes are 2 to 45 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 2 inches. Light brownish gray (10YR 6/2) sandy loam, moist; weak fine and very fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; lime disseminated; moderately acid (pH 6.0); noneffervescent, gradual wavy boundary. (4 to 10 inches thick)

C1-2 to 13 inches. Light brownish gray (10YR 6/2) sandy loam, moist; moderate medium and coarse prismatic structure; slightly hard, friable, slightly sticky; few fine and many medium roots; lime disseminated; neutral (pH 7.1); noneffervescent, abrupt wavy boundary. (16 to 30 inches thick)

C2-13 to 21 inches. Light brownish gray to white, calcareous siltstone containing sandy loam, slightly alkaline (pH 7.4); noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 25 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to a paralithic contact is 20 to 40 inches. Depth to uniformly calcareous material is 0 to 10 inches. The mean annual soil temperature ranges from about 40 to 47 degrees F., and the mean summer soil temperature ranges from about 59 to 63 degrees F. The control section is very fine sandy loam or fine sandy loam, averaging 10 to 18 percent clay and more than 15 percent fine sand or coarser. Flat fragments or fine pebbles range from 0 to 15 percent. Thin, discontinuous horizons of carbonate accumulation occur immediately above the paralithic contact in some pedons. Section 2.6-Geology

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . EC is less than 2 mmhos. Reaction is mildly or moderately alkaline.
The C horizon has hue of 2.5 Y or 10 YR , value of 4 through 7 dry, 3 through 5 moist, and chroma of 2 through 6 . EC is less than 2 mmhos. Reaction is moderately or strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal coarse fragments was found at a depth of 13-21 inches. An estimated stripping depth is 13 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Carmody soils are on plateaus and hillslopes in intermountain basins. Slopes are 2 to 45 percent. The soils formed in calcareous material weathered from semiconsolidated fine grained sandstone or siltstone. The mean annual precipitation ranges from 10 to 17 inches of which about half falls as snow or rain in April, May, and early June. Elevation is 5,300 to 7,500 feet. The mean annual temperature is 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F . The frost-free season is 75 to 120 days depending upon aspect, elevation, and local air drainage. Section 2.6-Geology

BLAZON SERIES
NONCALCAREOUS VARIANT

Soil Mapping Unit "Bz-NC"
Lab/BKS Sample ID: G07120056_26
Typical Pedon: Blazon noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Blazon noncalcareous variant series consists of well drained soils that are shallow to shale. These soils formed in slope alluvium over residuum derived from shale interbedded with sandstone, loamstone, and siltstone. Blazon soils are on pediments, hillslopes, plateaus and ridges. Slopes range from 0 to 60 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

TAXONOMIC CLASS: Loamy, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

A - 0 to 6 inches. Light brownish gray (2.5 Y 6/2) clay - clay loam, moist; strong fine granular structure; slightly hard, very friable, moderately sticky and moderately plastic; few fine and very fine roots; calcium carbonate disseminated; 2 percent fine gravel; slightly alkaline (pH 7.8); noneffervescent, gradual smooth boundary. (0 to 6 inches thick)

AC - 6 to 17 inches. Light brownish gray (2.5 Y 6/2) clay loam, moist; massive with 70 percent soft rock structure as thin plates; very hard, firm, moderately sticky and moderately plastic; few fine and very fine roots; calcium carbonate disseminated and as few fine filaments and threads on platelets; slightly alkaline (pH 7.7); noneffervescent, gradual wavy boundary. (2 to 17 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 26 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The soil moisture control section is usually dry and is dry less than 90 days from June 10 to October 10 in normal years. The mean annual soil temperature is 40 to 47 degrees F. The mean annual summer soil temperature is 59 to 63 degrees F. The depth to paralithic contact is 4 to 20 inches The soil is typically calcareous throughout but may be leached in some pedons through the A horizon.
investing in our energy

Gravel lag is common on many surfaces. The particle-size control section is 18 to 35 percent clay and more than 15 percent fine or coarser sand, 0 to 35 percent angular gravel, channers, or cobbles. Many coarse fragments will break down with pretreatment and would be considered as pararock fragments. Regarding the A horizon, the hue is 7.5YR 5Y. The value is 4 through 6 dry, 3 through 5 moist. The chroma is 2 through 4 . The texture is clay loam, silt loam, or gravelly silt loam. The EC is 0 through ${ }^{-4}$ mmhos. The reaction is slightly alkaline through strongly alkaline.

Regarding the C horizon, the hue is 7.5 YR through 5 Y . The value is 5 through 7 dry, 3 through 6 moist. The chroma is 2 through 6 . The texture is clay loam, silt loam, or gravelly silt loam. The EC is 0 through 4 mmhos. The reaction is moderately or strongly alkaline

A thin Bw or Bk horizon may be present in some pedons but is not diagnostic.
The Cr horizon consists of interbedded, semiconsolidated shale, sandstone, and loamstone. The majority of this material will break down with pretreatment.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Loamy, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal texture was found at a depth of $0-6$ inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - The parent material is slope alluvium over residuum derived from interbedded, shale, sandstone, loamstone and siltstone. The landform is pediments, hillslopes, plateaus and ridges. The slopes are 0 to 60 percent. The elevation is 5,300 to 8,400 feet. The mean annual temperature: 39 to 45 degrees F. The mean annual precipitation is 9 to 15 inches of which about half falls as snow or rain in April, May, and June.

DIAMONDVILLE SERIES
 SANDY LOAM

Soil Mapping Unit "D"
Lab/BKS Sample ID: G07120056_27
Typical Pedon: Diamondville clay loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Diamondville series consists of moderately deep, well drained soils that formed in alluvium and residuum weathered from calcareous loamstone and sandstone. Diamondville soils are on fan remnants, plateaus, hills and ridges of cold intermountain basins and have slopes of 0 to 15 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-3 inches. Light brownish gray (10YR 6/2) clay loam, moist; strong fine granular structure; soft, very friable, slightly sticky and slightly plastic; neutral (pH 6.7), noneffervescent; clear smooth boundary.
$\mathrm{Bt}-3-12$ inches. Brown (10YR 5/3) clay loam, moist; moderate fine subangular blocky parting to fine granular structure; slightly hard, very friable, slightly sticky and slightly plastic; few faint clay films on faces of some peds; 2 percent gravel; slightly alkaline (pH 7.5), noneffervescent; clear smooth boundary.

Btk - 12-24 inches. Brown (10YR 5/3) clay loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; hard, very friable, sticky and plastic; many prominent clay films on faces of peds and in root channels; slightly alkaline (pH 7.8), strongly effervescent; gradual wavy boundary.

C1k - 24-33 inches. Light yellowish brown (2.5Y 6/3) sandy loam - sandy clay loam, moist; massive structure; soft, friable, nonsticky, nonplastic; slightly alkaline (pH 7.8), strongly effervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 27 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to a paralithic contact is 20 to 40 inches. Depth to uniformly calcareous material ranges from 3 to 20 inches. The mean annual soil temperature ranges from 40 to 47 degrees F. The mean summer soil temperature ranges from 59 to 66 degrees F. Rock fragments range from 0 to 15 percent and are either gravel or channers.
investing in our energy Section 2.6-Geology

The A horizon has hue of 5 Y through 7.5 YR , value of 4 to 6 dry, 3 to 6 moist, and chroma of 2 or 3. It is neutral through moderately alkaline.

The Bt horizon has hue of 5 Y through 7.5 YR , value of 4 to 6 dry, 4 or 5 moist, and chroma of 2 to 4 . It is loam, clay loam, or sandy clay loam, averaging 18 to 35 percent clay and less than 35 percent fine or coarser sand. It is neutral through moderately alkaline.

The Bk horizon has hue of 5 Y through 7.5 YR , value of 5 to 8 dry, 4 to 7 moist, and chroma of 2 through 4 . It is clay loam, loam, or sandy clay loam. Calcium carbonate equivalent ranges from 4 to 14 percent. This horizon is moderately or strongly alkaline. In some pedons the Bk horizon has textures of fine sandy loam or very fine sandy loam.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous for the A and Bt horizons and strongly calcareous for the remaining horizons. According to the NRCS soil series description, the soil profile is violently calcareous in the Bk horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 12 inches due to the change in effervescent in the B horizon.

Geographic Setting (According to official series description) - Diamondville soils are on fan remnants, plateaus, hills and ridges of cold intermountain basins. Slopes are 0 to 15 percent. The soils formed in material weathered from soft, calcareous loamstone and sandstone. Elevations are 4,600 to 7,500 feet. The mean annual precipitation is 10 to 15 inches of which about half occurs mainly in the spring. The mean annual temperature is about 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F. The frost-free season is 80 to 120 days.

URANIUM ONE AMERICAS
 License Application, Technical Report Antelope and JAB Uranium Project

CUSHOOL SERIES
NONCALCAREOUS SHALLOW VARIANT

Soil Mapping Unit "Cu-SH"
Lab/BKS Sample ID: G07120056_28
Typical Pedon: Cushool noncalcareous shallow variant -rangeland. (Colors are for dry soil unless otherwise stated.)

The Cushool noncalcareous shallow variant series consists of well drained soils that are moderately deep to soft sandstone. They formed in slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. Cushool soils are on rockcontrolled hills, pediments, structural benches, ridges, and short fan aprons. Slopes are 0 to 50 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Grayish brown (10YR 5/2) sandy loam, moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; slightly acid (pH 6.2); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

Bt - 3 to 12 inches. Brown (10YR 5/3) sandy loam - sandy clay loam, moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; few distinct clay films on faces of peds and inside root channels; neutral (pH 7.1); noneffervescent; clear smooth boundary.

C - 12 to 17 inches. Yellowish brown (10YR 5/4) sandy clay loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; many clay films on faces of peds and in root channels; slightly alkaline (pH 7.4); moderately effervescent (Combined thickness of the Bt horizons is 9 to 23 inches.)

Type Location - Sweetwater County, Wyoming; refer to waypoint 28 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) -

The mean annual soil temperature ranges from 41 to 47 degrees F. The mean summer temperature is 59 to 63 degrees F. The depth to calcic horizon is 11 to 34 inches. The depth to paralithic contact is 20 to 40 inches shale interbedded with sandstone. These soils are typically free of carbonates through the upper part of the Bt horizon. Rock fragments range from 0 to 30 percent throughout the whole soil and are pebbles or
investing in our energy
channers. Exchangeable sodium ranges from 0 to 15 percent throughout the argillic horizon and Bk horizons. EC ranges from 0 to 4 mmhos throughout.

Regarding the A horizon, the hue is 7.5 YR to 5 Y . The value is 4 through 7 dry, 3 through 5 moist. The chroma is 2 through 6 dry or moist. The calcium carbonate equivalent is 0 to 5 percent. The reaction is neutral through moderately alkaline

Regarding Bt horizon, the hue is 7.5 YR to 5 Y . The value is 4 through 6 dry, 3 or 4 moist. The chroma is 2 through 6 dry or moist. The texture is sandy clay loam, fine sandy loam, or sandy loam with 18 to 35 percent clay, 0 to 28 percent silt, and 45 to 80 percent sand with more than 35 percent being fine sand or coarser. The calcium carbonate equivalent is 0 to 5 percent. The reaction is neutral through moderately alkaline. The Btk horizon when present is moderately or strongly alkaline.

Regarding Bk horizon, the hue is 7.5 YR to 5 Y . The value is 5 through 7 dry, 4 through 7 moist. The chroma is 2 through 6 dry or moist. The texture is loamy fine sand, sandy loam, fine sandy loam. The calcium carbonate equivalent is 5 to 15 percent. The reaction is moderately or strongly alkaline. A thin C horizon is present in some pedons.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous for the A and B horizons and moderately calcareous for the C horizon. According to the NRCS soil series description, the soil profile is strongly calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 12 inches due to the change in effervescent in the C horizon.

Geographic Setting (According to official series description) - The parent material is slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. The landform is rock-controlled hill and ridge slopes, fan aprons, pediments, and structural benches. The slopes are 0 to 50 percent. The elevations are 5,300 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches of which about half falls as snow and rain in April, May, and early June. The mean annual temperature: is about 41 degrees F. and ranges from 39 to 45 degrees F. The frost-free season is 75 to 110 days depending upon elevation, aspect, and air drainage.

ROCK RIVER SERIES NONCALCAREOUS VARIANT

Soil Mapping Unit "RR-NC"
Lab/BKS Sample ID: G07120056_31
Typical Pedon: Rock River noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Rock River noncalcareous variant series consists of very deep, well drained soils that formed in calcareous alluvium derived mainly from sandstone, eolian deposits, and residuum. Rock River soils are on alluvial fan aprons, relict terraces, benches, hillslopes, and areas of valley fill. Slopes are 0 to 25 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 4 inches. Light brownish gray (10YR 6/2) loam, moist; hard crust that parts to weak fine granular; hard, very friable, slightly sticky and slightly plastic; many fine and medium roots; slightly acid (pH 6.3); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

Bt1-4 to 16 inches. Yellowish brown (10YR 5/4) clay loam, moist; weak medium prismatic structure parting to moderate medium angular blocky; hard, firm sticky and plastic; few fine and many medium roots; continuous thin clay films on faces of peds; neutral (pH 7.1); noneffervescent; clear smooth boundary.

Bt2-16 to 27 inches. Yellowish brown (10YR 5/4) sandy loam - sandy clay loam, moist; moderate medium prismatic structure parting to moderate fine and medium angular blocky; hard, firm, sticky and plastic; few coarse roots; continuous, thin clay films on faces of peds; neutral (pH 7.1); noneffervescent; clear smooth boundary. (The Bt horizon is 8 to 20 inches thick.)

BC - 27 to 31 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common thin clay films on faces of peds; lime as many fine and medium soft masses and threads; 10 percent pebbles $1 / 4$ to $3 / 4$ inch in diameter; neutral (pH 7.3); noneffervescent; clear smooth boundary. (0 to 8 inches thick)

C-31 to 41 inches. Light brownish gray (10YR 6/2) sandy loam, moist; massive; soft, very friable, nonsticky and nonplastic; lime as many soft masses; many fine soft masses and threads of secondary calcium carbonate; 15 percent lime-coated angular gravel $1 / 4$ to 3/4 inch in diameter; slightly alkaline (pH 7.6); noneffervescent;
investing in our energy

Type Location - Sweetwater County, Wyoming; refer to waypoint 31 on map included in this report.
Range in Soil Characteristics (According to Official Series Description) - Depth to continuous horizons of calcium carbonate accumulation is 13 to 30 inches. Depth to the base of the argillic horizon is 12 to 34 inches. The mean annual soil temperature ranges from 43 to 46 degrees F., and the mean summer soil temperature ranges from 59 to 65 degrees F . EC is less than 4 mmhos throughout. The rock fragments in the soil are less than $3 / 4$ inch in diameter.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Reaction is neutral through moderately alkaline.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 2 through 6 . Texture is sandy clay loam or gravelly sandy clay loam, averaging 20 to 35 percent clay and has more than 35 percent fine or coarser sand. Rock fragments range from 0 to 25 percent pebbles. Reaction is neutral through moderately alkaline.

The Bk horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 4 through 7 moist, and chroma of 2 through 6 . Texture is sandy clay loam, sandy loam, or fine sandy loam modified with from 0 to 30 percent pebbles. Some pedons have textures of loamy sand or coarser below 40 inches. It has accumulation of secondary calcium carbonate that ranges from 1 through 14 percent. Reaction is moderately or strongly alkaline. Some pedons have a C horizon.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly to violently calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 31 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description): Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Slopes are 0 to 25 percent. Elevation is 5,900 to 7,800 feet. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 41 to 45 degrees F ., and the mean summer temperature
is 59 to 63 degrees F . The frost-free season is about 75 to 110 days but varies according to aspect, elevation, and air drainage.

LECKMAN SERIES NONCALCAREOUS VARIANT

Soil Mapping Unit "L"

Lab/BKS Sample ID: G07120056_32
Typical Pedon: Leckman noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Leckman noncalcareous variant series consists of very deep, well drained soils formed in alluvium. Leckman soils are on alluvial fans and toeslopes and have slopes of 0 to 10 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-6 inches. Light grayish brown (10YR 6/2) sandy loam, moist; weak medium platy structure breaks to weak fine crumbs; soft, very friable, nonsticky, nonplastic; moderately acid (pH 5.7), noneffervescent.

C1-6-19 inches. Light grayish brown (10YR 6/2) sandy loam, moist; weak coarse and medium prismatic structure that parts to weak medium subangular blocks; soft, very friable, nonsticky, nonplastic; moderately acid (pH 5.8), noneffervescent.

C2 - 19-32 inches. Light grayish brown (10YR 6/2) loamy sand, moist; massive, soft very friable nonsticky, nonplastic, moderately acid (pH 5.9), noneffervescent.

C3 - 32-40 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, moderately acid (pH 5.8), noneffervescent.

C4 - 40-60 inches. Light grayish brown (10YR 6/2) sandy loam, moist; massive, soft very friable nonsticky, nonplastic, slightly acid (pH 6.1), noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 32 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature is about 43 to 47 degrees F. The mean summer soil temperature is 64 to 67 degrees F. Textures throughout the profile are fine sandy loam or sandy loam. Gravel content is generally less than 5 percent but can range from 0 to 15 percent.

The A horizons have huies of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4 . Section 2.6-Geology

The C horizon has hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4. Reaction is moderately or strongly alkaline. Effervescence may be slight to violent.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is slightly to strongly calcareous in the A horizon.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Typic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 6 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Leckman soils are on alluvial fans and toe slopes of escarpments. Slopes are 0 to 10 percent. The soils formed in alluvium. Elevation is 6,000 to 7,000 feet. The mean annual precipitation is 7 to 9 inches. The mean annual air temperature is 37 to 44 degrees F. The frost-free season is 80 to 110 days.
investing in our energy

ROCK RIVER SERIES
 SANDY LOAM

Soil Mapping Unit "RR"
Lab/BKS Sample ID: G07120056_33
Typical Pedon: Rock River sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Rock River series consists of very deep, well drained soils that formed in calcareous alluvium derived mainly from sandstone, eolian deposits, and residuum. Rock River soils are on alluvial fan aprons, relict terraces, benches, hillslopes, and areas of valley fill. Slopes are 0 to 25 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 4 inches. Light brownish gray (10 YR $6 / 2$) sandy loam, moist; hard crust that parts to weak fine granular; hard, very friable, slightly sticky and slightly plastic; many fine and medium roots; slightly acid (pH 6.2); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

B - 4 to 15 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium prismatic structure parting to moderate medium angular blocky; hard, firm sticky and plastic; few fine and many medium roots; continuous thin clay films on faces of peds; common mildly alkaline (pH 7.1); noneffervescent; clear smooth boundary.

BC - 15 to 22 inches. Yellowish brown (10YR 5/4) sandy loam, moist; moderate medium prismatic structure parting to moderate fine and medium angular blocky; hard, firm, sticky and plastic; few coarse roots; continuous, thin clay films on faces of peds; slightly alkaline (pH 7.7); noneffervescent; clear smooth boundary. (The Bt horizon is 8 to 20 inches thick.)

C1k - 22 to 36 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common thin clay films on faces of peds; lime as many fine and medium soft masses and threads; 10 percent pebbles $1 / 4$ to $3 / 4$ inch in diameter; slightly alkaline (pH 7.8); noneffervescent; clear smooth boundary. (0 to 8 inches thick)

C2k-36 to 46 inches. Light brownish gray (10YR 6/2) sandy clay loam, moist; massive; soft, very friable, nonsticky and nonplastic; lime as many soft masses; many fine soft masses and threads of secondary calcium carbonate; 15 percent lime-coated angular gravel $1 / 4$ to $3 / 4$ inch in diameter; slightly alkaline (pH 7.8); noneffervescent;

URANIUM ONE AMERICAS License Application, Technical Report Antelope and JAB Uranium Project
 Section 2.6-Geology

Type Location - Sweetwater County, Wyoming; refer to waypoint 33 on map included in this report.
Range in Soil Characteristics (According to Official Series Description) - Depth to continuous horizons of calcium carbonate accumulation is 13 to 30 inches. Depth to the base of the argillic horizon is 12 to 34 inches. The mean annual soil temperature ranges from 43 to 46 degrees F., and the mean summer soil temperature ranges from 59 to 65 degrees F. EC is less than 4 mmhos throughout. The rock fragments in the soil are less than $3 / 4$ inch in diameter.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Reaction is neutral through moderately alkaline.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 2 through 6 . Texture is sandy clay loam or gravelly sandy clay loam, averaging 20 to 35 percent clay and has more than 35 percent fine or coarser sand. Rock fragments range from 0 to 25 percent pebbles. Reaction is neutral through moderately alkaline.

The Bk horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry , 4 through 7 moist, and chroma of 2 through 6 . Texture is sandy clay loam, sandy loam, or fine sandy loam modified with from 0 to 30 percent pebbles. Some pedons have textures of loamy sand or coarser below 40 inches. It has accumulation of secondary calcium carbonate that ranges from 1 through 14 percent. Reaction is moderately or strongly alkaline. Some pedons have a C horizon.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly to violently calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 22 inches due to the presence of the C horizon..

Geographic Setting (According to Official Series Description): Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Slopes are 0 to 25 percent. Elevation is 5,900 to 7,800 feet. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 41 to 45 degrees F., and the mean summer temperature

URANIUM ONE AMERICAS License Application, Technical Report
Antelope and JAB Uranium Project curanlumonn invering in our energy Section 2.6-Geology
is 59 to 63 degrees F. The frost-free season is about 75 to 110 days but varies according to aspect, elevation, and air drainage.

CUSHOOL SERIES
SANDY LOAM

Soil Mapping Unit "Cu" Lab/BKS Sample ID: G07120056_36
Typical Pedon: Cushool loam-rangeland. (Colors are for dry soil unless otherwise stated.)
The Cushool series consists of well drained soils that are moderately deep to soft sandstone. They formed in slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. Cushool soils are on rock-controlled hills, pediments, structural benches, ridges, and short fan aprons. Slopes are 0 to 50 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 7 inches. Grayish brown (10YR 5/2) loam, moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; neutral (pH 7.0); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

Bt - 7 to 15 inches. Brown (10YR 5/3) clay loam - loam, moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; few distinct clay films on faces of peds and inside root channels; slightly alkaline (pH 7.5); noneffervescent; clear smooth boundary.

Btk- 15 to 26 inches. Yellowish brown (10YR 5/4) sandy clay loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; many clay films on faces of peds and in root channels; slightly alkaline (pH 7.8); strongly effervescent (Combined thickness of the Bt horizons is 9 to 23 inches.)

Type Location - Sweetwater County, Wyoming; refer to waypoint 36 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) -

The mean annual soil temperature ranges from 41 to 47 degrees F. The mean summer temperature is 59 to 63 degrees F. The depth to calcic horizon is 11 to 34 inches. The depth to paralithic contact is 20 to 40 inches shale interbedded with sandstone. These soils are typically free of carbonates through the upper part of the Bt horizon. Rock fragments range from 0 to 30 percent throughout the whole soil and are pebbles or channers. Exchangeable sodium ranges from 0 to 15 percent throughout the argillic horizon and Bk horizons. EC ranges from 0 to 4 mmhos throughout.

Regarding the A horizon, the hue is 7.5 YR to 5 Y . The value is 4 through 7 dry, 3 through 5 moist. The chroma is 2 through 6 dry or moist. The calcium carbonate equivalent: 0 to 5 percent. The reaction is neutral through moderately alkaline.

Regarding the Bt horizon, the hue is 7.5 YR to 5 Y . The value is 4 through 6 dry, 3 or 4 moist. The chroma is 2 through 6 dry or moist. The texture is sandy clay loam, fine sandy loam, or sandy loam with 18 to 35 percent clay, 0 to 28 percent silt, and 45 to 80 percent sand with more than 35 percent being fine sand or coarser. Calcium carbonate equivalent is 0 to 5 percent. The reaction is neutral through moderately alkaline. The Btk horizon when present is moderately or strongly alkaline.

Regarding the Bk horizon, the hue is 7.5 YR to 5 Y . The value is 5 through 7 dry, 4 through 7 moist. The chroma is 2 through 6 dry or moist. The texture is loamy fine sand, sandy loam, fine sandy loam. The calcium carbonate equivalent is 5 to 15 percent. The reaction: is moderately or strongly alkaline.

A thin C horizon is present in some pedons.
Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and Bt horizons.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 15 inches due to a change in effervescent in the B horizon.

Geographic Setting (According to official series description) - The parent material is slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. The landform is rock-controlled hill and ridge slopes, fan aprons, pediments, and structural benches. Slopes are 0 to 50 percent. Elevations are 5,300 to 7,800 feet. Mean annual precipitation is about 12 inches but ranges from 9 to 14 inches of which about half falls as snow and rain in April, May, and early June. Mean annual temperature is about 41 degrees F. and ranges from 39 to 45 degrees F. Frost-free season is 75 to 110 days depending upon elevation, aspect, and air drainage.
investing in our energy

CRAGOSEN SERIES
 SANDY LOAM

Soil Mapping Unit "Cr"
Lab/BKS Sample ID: G07120056_38
Typical Pedon: Cragosen sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cragosen series consists of shallow, well drained soils that have bedrock at less than 20 inches. The soils formed in slopewash alluvium on fan aprons, footslopes, and shoulder, ridge, and hill crests. Slopes are from 0 to 60 percent and are both simple and complex. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 2 inches. Pale brown (10YR 6/3) sandy loam, moist; moderate fine granular structure; soft, very friable, slightly sticky and slightly plastic; lime disseminated and as coatings on undersides of rock fragments; 25 percent pebbles and 10 percent cobbles; moderately acid (pH 5.8); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

C1-2 to 11 inches. Brown (10YR 5/3) sandy loam, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; neutral (pH 7.1); noneffervescent; clear wavy boundary. (4 to 14 inches thick)

C2k-11 to 18 inches. Soft sandy loam, calcareous shale interbedded with siltstone and thin lenses of sandstone; slightly alkaline (pH 7.8); strongly effervescent;

Type Location - Sweetwater County, Wyoming; refer to waypoint 38 on map included in this report.

Range in Characteristics (According to Official Series Description) - Depth to bedrock ranges from 6 to 20 inches. Depth to uniformly calcareous material ranges from 0 to 6 inches. The mean annual soil temperature is about 44 degrees F. and ranges from 40 to 46 degrees F. The mean annual summer soil temperature ranges from 59 to 63 degrees F. EC ranges from 0 to 4 mmhos throughout the soil. Exchangeable sodium is estimated to be between 0 and 12 percent. The particle size control section matrix is loam, sandy loam, or sandy clay loam with 15 to 25 percent clay and 30 to 60 percent sand with 15 percent or more fine sand or coarser. Rock fragment content of the control section ranges from 25 to 45 percent pebbles and 5 to 15 percent cobble and averages over 35 percent.
investing in our energy

The A horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction is neutral through strongly alkaline. Neutral and mildly alkaline reactions occur in the presence of gypsum that acts as a buffering agent.

The C or Bk horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction ranges from mildly through strongly alkaline. The mildly alkaline reaction occurs in the presence of gypsum. A Bw or Bk horizon may replace part or all of the C horizon but is not diagnostic of either a cambic or calcic horizon. The carbonate movement, while common in some pedons, is not consistent and, though pedogenic, does not meet the requirement for a diagnostic horizon.

The 2 Cr horizon consists of varicolored shales interbedded with semiconsolidated siltstone and sandstone. The material is soft with thin, discontinuous lenses of consolidated rock.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and C 1 horizons and strongly calcareous in the C 2 k . According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons.

Taxonomic Class - Loamy-skeletal, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 2 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - The Cragosen soils are on fan aprons, footslopes, shoulders, and crests of ridges and hills. These soils formed in slopewash alluvium over sandstone controlled uplands. Slopes range from 0 to 60 percent and are both simple and complex. Elevations range from 6,000 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches with about half falling as snow and rain during April, May, and June. The mean annual temperature is about 40 degrees F. but ranges from 39 to 44 degrees F. The frost-free season is estimated to range from 60 to 100 days depending upon elevation, aspect, and air drainage.

LECKMAN
 NONCLACAREOUS VARIANT

Soil Mapping Unit "L"
Lab/BKS Sample ID: G07120056_39
Typical Pedon: Leckman clay loam - loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Leckman series consists of very deep, well drained soils formed in alluvium. Leckman soils are on alluvial fans and toeslopes and have slopes of 0 to 10 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-4 inches. Light grayish brown (10YR 6/2) clay loam - loam, moist; weak medium platy structure breaks to weak fine crumbs; soft, very friable, nonsticky, nonplastic; neutral (pH 7.0), noneffervescent.

AC - 4-13 inches. Light grayish brown (10YR 6/2) clay loam, moist; weak coarse and medium prismatic structure that parts to weak medium subangular blocks; soft, very friable, nonsticky, nonplastic; neutral (pH 7.3), noneffervescent.

C1 - 13-24 inches. Light grayish brown (10YR 6/2) loamy sand, moist; massive, soft very friable nonsticky, nonplastic, slightly alkaline (pH 7.6), noneffervescent.

C2 - 24-42 inches. Light grayish brown (10YR 6/2) loamy sand, moist; massive, soft very friable nonsticky, nonplastic, slightly alkaline (pH 7.6), noneffervescent.

C3-42-60 inches. Light grayish brown (10YR 6/2) loamy sand, moist; massive, soft very friable nonsticky, nonplastic, slightly alkaline (pH 7.6), noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 39 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature is about 43 to 47 degrees F. The mean summer soil temperature is 64 to 67 degrees F. Textures throughout the profile are fine sandy loam or sandy loam. Gravel content is generally less than 5 percent but can range from 0 to 15 percent.

The A horizons have hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4 .

URANIUM ONE AMERICAS Section 2.6-Geology

The C horizon has hues of 10 YR or 2.5 Y , values of 6 or 7 dry and 4 or 5 moist, and chromas of 2 through 4 . Reaction is moderately or strongly alkaline. Effervescence may be slight to violent.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is slightly to strongly calcareous in the A horizon and strongly calcareous in the C horizon.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Typic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal coarse fragments was found at depths of 24-42 and 42-60 inches. An estimated stripping depth is 24 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Leckman soils are on alluvial fans and toe slopes of escarpments. Slopes are 0 to 10 percent. The soils formed in alluvium. Elevation is 6,000 to 7,000 feet. The mean annual precipitation is 7 to 9 inches. The mean annual air temperature is 37 to 44 degrees F. The frost-free season is 80 to 110 days.

ONASON SERIES
 GRAVELLY SANDY LOAM

Soil Mapping Unit "O"
Lab/BKS Sample ID: G07120056_40
Typical Pedon: Onason sandy loam - rangeland. (Colors are for dry soil unless otherwise stated.)

The Onason series consists of well drained soils that are shallow and very shallow to soft sandstone. These soils formed in residuum and slopewash alluvium weathered from the underlying bedrock. Onason soils are on footslopes, backslopes, and shoulders of hills and ridges. Slopes range from 5 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0-4 inches. Brown (10YR 5/3) sandy loam, moist; weak very fine granular structure; slightly hard, very friable, nonsticky and nonplastic; many fine and few medium roots; 15 percent semirounded pebbles; neutral (pH 7.1), noneffervescent; clear smooth boundary.

C - 4-16 inches. Yellowish brown (10YR 5/4) loamy sand, moist; weak medium and coarse granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and few medium roots; 15 percent semirounded pebbles; slightly alkaline (pH 7.6), noneffervescent; gradual wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 40 on map included in this report.

Range in Soil Characteristics(According to official series description) - Depth to the paralithic contact and bedrock ranges from 4 to 20 inches. These soils are noncalcareous throughout. The mean annual soil temperature is 36 to 45 degrees F., and the mean summer soil temperature is 59 to 62 degrees F. The particle size control section averages gravelly sandy loam or sandy loam throughout. Clay ranges from 8 to 18 percent and rock fragments of fine or very fine semirounded pebbles range from 0 to 35 percent. EC is less than 2 mmhos throughout.

The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Lag gravel covering up to 75 percent of the surface is common in some pedons. Reaction is neutral or mildly alkaline.

The C horizon has hue of 2.5 Y or 10 YR , value of 5 or 6 dry, 4 through 6 moist, and chroma of 2 through 4. A thin Bw horizon is present in some pedons. Reaction is neutral or mildly alkaline.

The Cr horizon consists of soft, noncalcareous, coarse- and medium-grained sandstone interbedded with thin lenses of shale and siltstone. The yellowish brown or brown sandstone may have discontinuous lenses of hard sandstone or shale in some pedons. The soil-bedrock interface is considered a paralithic contact and roots plane out at the contact.

Range in Characteristics (according to field observations, lab analysis): Lab texture for the A horizon is coarser than typical for the map unit.

Taxonomic Class (According to official series description): Loamy, mixed, superactive, nonacid, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1): Marginal coarse fragments were found at a depth of $0-4$ inches and unsuitable coarse fragments were found at a depth of 4-16 inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Onason soils are on footslopes, backslopes, and shoulders of rolling and steep hills and ridges. These soils formed in residuum and slopewash alluvium weathered from the underlying noncalcareous sandstone. Slopes range from 5 to 45 percent. Elevations are 6,000 to 7,600 feet. The climate is cool, semiarid with moist springs and dry summers. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 34 to 44 degrees F. The estimated frost-free season is about 80 to 110 days, but frost may occur in any month.

CRAGOSEN SERIES
GRAVELLY SANDY LOAM

Soil Mapping Unit "Cr"
Lab/BKS Sample ID: G07120056_41
Typical Pedon: Cragosen sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cragosen series consists of shallow, well drained soils that have bedrock at less than 20 inches. The soils formed in slopewash alluvium on fan aprons, footslopes, and shoulder, ridge, and hill crests. Slopes are from 0 to 60 percent and are both simple and complex. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 2 inches. Pale brown (10YR 6/3) sandy loam, moist; moderate fine granular structure; soft, very friable, slightly sticky and slightly plastic; lime disseminated and as coatings on undersides of rock fragments; 25 percent pebbles and 10 percent cobbles; slightly acid (pH 6.3); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

C - 2 to 14 inches; brown (10YR 5/3) loam, moist; slightly hard, very friable, slightly sticky and slightly plastic; lime disseminated and as thin coatings on all surfaces of rock fragments; 35 percent pebbles and 10 percent cobbles; slightly alkaline (pH 7.8); strongly effervescent; clear wavy boundary. (4 to 14 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 41 on map included in this report.

Range in Characteristics (According to Official Series Description) - Depth to bedrock ranges from 6 to 20 inches. Depth to uniformly calcareous material ranges from 0 to 6 inches. The mean annual soil temperature is about 44 degrees F. and ranges from 40 to 46 degrees F. The mean annual summer soil temperature ranges from 59 to 63 degrees F. EC ranges from 0 to 4 mmhos throughout the soil. Exchangeable sodium is estimated to be between 0 and 12 percent. The particle size control section matrix is loam, sandy loam, or sandy clay loam with 15 to 25 percent clay and 30 to 60 percent sand with 15 percent or more fine sand or coarser. Rock fragment content of the control section ranges from 25 to 45 percent pebbles and 5 to 15 percent cobble and averages over 35 percent.
The A horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction is neutral through strongly alkaline. Neutral and mildly alkaline reactions occur in the presence of gypsum that acts as a buffering agent.
The C or Bk horizon has hue of 5 Y through 7.5 YR , value of 4 through 7 dry, 3 through 6 moist, and chroma of 2 through 4 . Reaction ranges from mildly through strongly alkaline. Section 2.6-Geology

The mildly alkaline reaction occurs in the presence of gypsum. A Bw or Bk horizon may replace part or all of the C horizon but is not diagnostic of either a cambic or calcic horizon. The carbonate movement, while common in some pedons, is not consistent and, though pedogenic, does not meet the requirement for a diagnostic horizon.
The 2 Cr horizon consists of varicolored shales interbedded with semiconsolidated siltstone and sandstone. The material is soft with thin, discontinuous lenses of consolidated rock.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A horizon. According to the NRCS soil series description, the soil profile is strongly calcareous in the A horizon. Lab texture for the A horizon is coarser than typical for the map unit.

Taxonomic Class - Loamy-skeletal, mixed, superactive, calcareous, frigid, shallow Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal coarse fragments was found at depths of 0-2 and 2-14 inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - The Cragosen soils are on fan aprons, footslopes, shoulders, and crests of ridges and hills. These soils formed in slopewash alluvium over sandstone controlled uplands. Slopes range from 0 to 60 percent and are both simple and complex. Elevations range from 6,000 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches with about half falling as snow and rain during April, May, and June. The mean annual temperature is about 40 degrees F. but ranges from 39 to 44 degrees F. The frost-free season is estimated to range from 60 to 100 days depending upon elevation, aspect, and air drainage.
investing in our energy

FORELLE SERIES SANDY LOAM

Soil Mapping Unit "F"
Lab/BKS Sample ID: G07120056_42
Typical Pedon: Forelle fine sandy loam - sandy clay loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Forelle series consists of very deep, well drained soils on fan aprons, fan piedmonts, hillslopes, and hill toeslope positions. These soils formed in alluvium and slope alluvium derived from sedimentary rocks, primarily shale. Slopes are typically simple and range from 0 to 30 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit:

A - 0 to 5 inches. Light brownish gray (10YR 6/2) sandy loam - sandy clay loam, moist; strong fine granular structure; soft, very friable, nonsticky and nonplastic; 5 percent fine, semirounded pebbles; slightly alkaline (pH 7.5); noneffervescent; clear smooth boundary. (1 to 5 inches thick)

Bt - 5 to 14 inches. Brown (10YR 5/3) clay loam, moist; weak medium prismatic structure parting to moderate medium subangular blocky; hard, very friable, slightly sticky and slightly plastic; few, thin clay films on faces of some peds; 5 percent fine semirounded pebbles; slightly alkaline (pH 7.6); noneffervescent; clear smooth boundary. (2 to 5 inches thick)

Btk - 14 to 32 inches. Brown (10YR 5/3) clay loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; very hard, friable, slightly sticky and slightly plastic; continuous thin clay films on faces of peds and lining pores and root channels; 5 percent fine semirounded pebbles; slightly alkaline (pH 7.7); strongly effervescent; clear wavy boundary. (7 to 15 inches thick)

C1k - 32 to 42 inches. Pale brown (10YR 6/3) clay loam, moist; weak medium prismatic structure parting to weak medium subangular blocky; hard, friable, slightly sticky and slightly plastic; few thin clay films on faces of some peds and in some root channels; common soft masses of lime; 5 percent fine, semirounded pebbles; slightly alkaline (pH 7.7); violently effervescent; gradual smooth boundary. (3 to 6 inches thick)

C2k - 42 to 60 inches. Light yellowish brown (2.5Y 6/4) clay loam, moist; massive; hard, friable, slightly sticky and slightly plastic; lime is disseminated and as common soft, rounded masses; 10 percent fine, semirounded pebbles; moderately alkaline (pH 7.9); violently effervescent; gradual smooth boundary. (15 to 30 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 42 on map included in this report.

Range in Characteristics (According to Official Series Description) - Mean annual soil temperature is 41 to 45 degrees F . Mean annual summer soil temperature is 59 to 63 degrees F. Depth to base of argillic horizon is 12 to 25 inches. Depth to secondary calcium carbonate is 12 to 25 inches. Rock fragment content of the entire soil to 60 inches is 15 percent or less when averaged with pebbles ranging from 0 to 15 percent and cobble from 0 to 5 percent. EC is less than 2 mmhos throughout.

Regarding the A horizon, the hue is 7.5 YR through 5 Y . The value is 5 through 7 dry, 3 through 6 moist. The chroma is 2 through 4 dry or moist. The texture is fine sandy loam or loam. The reaction is neutral through moderately alkaline.

Regarding the Bt horizon, the hue is 7.5 YR through 5 Y . The value is 4 through 7 dry, 3 through 6 moist. Chroma is 2 through 6 dry or moist. Texture is loam, clay loam, or sandy clay loam with 18 to 35 percent clay and more than 15 but less than 35 percent fine sand or coarser. Reaction is neutral through moderately alkaline.

Regarding the Btk and Bk horizon, the hue is 7.5 YR through 5 Y , and value is 6 through 8 dry, 4 through 7 moist. Chroma is 1 through 6 dry or moist. Texture is loam, clay loam, sandy clay loam, and less commonly sandy loam with 18 to 30 percent clay; clay size carbonates may make up to 5 percent of the clay fraction. Calcium carbonate equivalent: is 4 to 15 percent. Reaction is moderately or strongly alkaline.

Regarding the C horizon, the hue is 7.5 YR through 5 Y . The value is 5 through 7 dry, 4 through 6 moist. The chroma is 2 through 6 dry or moist. The texture is loam, clay loam, sandy clay loam, or sandy loam with 18 to 30 percent clay. Reaction is slightly through strongly alkaline. Calcium carbonate equivalent is 1 to 6 percent.

Range in Characteristics (according to field observations, lab analysis): This soil profile is violently calcareous in the C horizon. According to the NRCS soil series description, the soil profile is slightly calcareous in the C horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 14 inches due to the change in effervescent in the B horizon.

Geographic Setting (According to Official Series Description) - Parent material is alluvium and slope alluvium derived from shale interbedded with sandstone and siltstone. Landform is fan aprons, fan piedmonts, hillslopes, and hill toeslopes. Slopes are 0 to 30 percent. Elevation is 5,300 to 7,800 feet. Mean annual precipitation is 12 inches but ranges from 9 to 14 inches of which about half falls as rain or snow in April, May and early June. Mean annual temperature is 39 to 45 degrees F. Frost-free period is 75 to 110 days depending upon elevation, aspect, and air drainage.

GRIEVES SERIES SANDY LOAM

Soil Mapping Unit "Gr"
Lab/BKS Sample ID: G07120056_43
Typical Pedon: Grieves clay - rangeland. (Colors are for dry soil unless otherwise stated.)

The Grieves series consists of very deep, well drained and somewhat excessively drained soils that formed in locally transported calcareous materials weathered from sandstone. Grieves soils are on fans, footslopes and toeslopes. Slopes range from 0 to 40 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Grayish brown (10YR $5 / 2$) clay, moist; moderate very fine granular structure; soft, very friable, slightly sticky, slightly plastic; many very fine, fine, and medium roots; moderately alkaline (pH 7.9); noneffervescent; clear wavy boundary. (2 to 5 inches thick)

AC - 3 to 11 inches. Pale brown (10YR 6/3) clay, moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky, slightly plastic; many very fine, fine and medium roots to 12 inches; moderately alkaline (pH 7.9); noneffervescent; gradual wavy boundary. (0 to 8 inches thick)

C1k - 11 to 22 inches. Pale brown (10YR 6/3) clay, moist; massive; soft, very friable, slightly sticky, slightly plastic; common very fine, fine, and medium roots to 35 inches; few very fine, fine, and medium roots to 60 inches; slightly alkaline (pH 7.8); strongly effervescent.

C2k - 22 to 31 inches. Pale brown (10YR 6/3) clay, moist; massive; soft, very friable, slightly sticky, slightly plastic; common very fine, fine, and medium roots to 35 inches; few very fine, fine, and medium roots to 60 inches; slightly alkaline (pH 7.7); strongly effervescent.

C3k - 31 to 40 inches. Pale brown (10YR 6/3) clay, moist; massive; soft, very friable, slightly sticky, slightly plastic; common very fine, fine, and medium roots to 35 inches; few very fine, fine, and medium roots to 60 inches; slightly alkaline (pH 7.6); strongly effervescent.

C4k - 40 to 60 inches. Pale brown (10YR 6/3) clay, moist; massive; soft, very friable, slightly sticky, slightly plastic; common very fine, fine, and medium roots to 35 inches;
few very fine, fine, and medium roots to 60 inches; slightly alkaline (pH 7.7); strongly effervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 43 on map included in this report.

Range in Characteristics (According to Official Series Description) -

The mean annual soil temperature is about 43 degrees to 46 degrees F. The mean summer soil temperature is about 59 degrees to 62 degrees F. The control section is sandy loam or fine sandy loam averaging between 10 to 18 percent clay. Gravel ranges from 0 to 15 percent; up to 10 percent cobblestones are found in the very lower part of the control section.

The A horizon has hue of 2.5 Y or 10 YR ; value of 5 or 6 dry, 3 through 5 moist; and chroma of 2 through 4. It is mildly or moderately alkaline. A Bw horizon is lacking in some pedons.
The C horizon has hue of 2.5 Y or 10 YR , value of 6 through 8,4 or 5 moist, and chroma of 2 through 4 . It is moderately or strongly alkaline.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A horizon. According to the NRCS soil series description, the soil profile is strongly calcareous in the A horizon.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal texture was found at depths of $0-3,3-11,11-22,22-31,31-40$, and $40-60$ inches. An estimated stripping depth is 0 inches based on laboratory analysis.

Geographic Setting (According to Official Series Description) - Grieves soils are on nearly level to sloping alluvial fans, footslopes or toeslopes. Slopes are 0 to 40 percent. They formed in locally transported calcareous materials weathered from sandstone or sandstone interbedded with shale. Elevation is 5800 to 7,200 feet. The mean annual precipitation is 9 to 14 inches, which occurs mainly in the winter and spring. The mean annual air temperature is 39 degrees to 45 degrees F. The mean summer temperature is 58 degrees to 65 degrees F . The frost-free season is 60 to 100 days.

CUSHOOL SERIES
 SHALLOW VARIANT

Soil Mapping Unit "Cu-SH"
Lab/BKS Sample ID: G07120056_47
Typical Pedon: Cushool shallow variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cushool shallow variant series consists of well drained soils that are moderately deep to soft sandstone. They formed in slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. Cushool soils are on rock-controlled hills, pediments, structural benches, ridges, and short fan aprons. Slopes are 0 to 50 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 2 inches. Grayish brown (10YR $5 / 2$) sandy loam, moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; moderately acid (pH 5.9); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

Bt - 2 to 11 inches. Brown (10YR 5/3) sandy loam - sandy clay loam, moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; few distinct clay films on faces of peds and inside root channels; slightly alkaline (pH 7.5); noneffervescent; clear smooth boundary.

Ck-11 to 16 inches. Yellowish brown (10YR 5/4) sandy loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; many clay films on faces of peds and in root channels; slightly alkaline (pH 7.5); strongly effervescent (Combined thickness of the Bt horizons is 9 to 23 inches.)

Type Location - Sweetwater County, Wyoming; refer to waypoint 47 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges are from 41 to 47 degrees F. The mean summer temperature is 59 to 63 degrees F. The depth to calcic horizon is 11 to 34 inches. The depth to paralithic contact is 20 to 40 inches shale interbedded with sandstone. These soils are typically free of carbonates through the upper part of the Bt horizon. The rock fragments range from 0 to 30 percent throughout the whole soil and are pebbles or
investing in our energy Section 2.6-Geology
channers. The exchangeable sodium ranges from 0 to 15 percent throughout the argillic horizon and Bk horizons. EC ranges from 0 to 4 mmhos throughout.

Regarding the A horizon, the hue is 7.5 YR to 5 Y . The value is 4 through 7 dry, 3 through 5 moist. The chroma is 2 through 6 dry or moist. The calcium carbonate equivalent is 0 to 5 percent. The reaction is neutral through moderately alkaline.

Regarding the Bt horizon, the hue 7.5 YR to 5 Y . The value is 4 through 6 dry, 3 or 4 moist. The chroma is 2 through 6 dry or moist. The texture is sandy clay loam, fine sandy loam, or sandy loam with 18 to 35 percent clay, 0 to 28 percent silt, and 45 to 80 percent sand with more than 35 percent being fine sand or coarser. The calcium carbonate equivalent is 0 to 5 percent. The reaction is neutral through moderately alkaline.

The Btk horizon when present is moderately or strongly alkaline. Regarding the Bk horizon, the hue is 7.5 YR to 5 Y . The value is 5 through 7 dry, 4 through 7 moist. The chroma is 2 through 6 dry or moist. The texture is loamy fine sand, sandy loam, and fine sandy loam. The calcium carbonate equivalent is 5 to 15 percent. The reaction is moderately or strongly alkaline. A thin C horizon is present in some pedons.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the B horizon. According to the NRCS soil series description, the soil profile is strongly calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 11 inches due to the change in effervescent in the C horizon.

Geographic Setting (According to official series description) - The parent material is slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. The landform is rock-controlled hill and ridge slopes, fan aprons, pediments, and structural benches. The slopes are 0 to 50 percent. The elevations are 5,300 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches of which about half falls as snow and rain in April, May, and early June. The mean annual temperature is about 41 degrees F. and ranges from 39 to 45 degrees F. The frost-free season is 75 to 110 days depending upon elevation, aspect, and air drainage.

CARMODY SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "Ca-NC"
Lab/BKS Sample ID: G07120056_48
Typical Pedon: Carmody noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Carmody noncalcareous variant series consists of well to somewhat excessively drained soils that are moderately deep to siltstone. These soils formed in material weathered from calcareous siltstone or fine grained sandstone. Carmody soils are on uplands of the cold intermountain basins. Slopes are 2 to 45 percent. The mean annual precipitation is about 8 to 10 inches and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 2 inches. Light brownish gray (10YR 6/2) sandy loam, moist; weak fine and very fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; lime disseminated; slightly acid (pH 6.1); noneffervescent, gradual wavy boundary. (4 to 10 inches thick)

C1 - 2 to 14 inches. Light brownish gray (10YR 6/2) sandy loam, moist; moderate medium and coarse prismatic structure; slightly hard, friable, slightly sticky; few fine and many medium roots; lime disseminated; neutral (pH 7.1); noneffervescent, abrupt wavy boundary. (16 to 30 inches thick)

C2-14 to 18 inches. Light brownish gray to white, calcareous siltstone containing sandy clay loam, slightly alkaline (pH 7.6); noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 48 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - Depth to a paralithic contact is 20 to 40 inches. Depth to uniformly calcareous material is 0 to 10 inches. The mean annual soil temperature ranges from about 40 to 47 degrees F., and the mean summer soil temperature ranges from about 59 to 63 degrees F. The control section is very fine sandy loam or fine sandy loam, averaging 10 to 18 percent clay and more than 15 percent fine sand or coarser. Flat fragments or fine pebbles range from 0 to 15 percent. Thin, discontinuous horizons of carbonate accumulation occur immediately above the paralithic contact in some pedons.
The A horizon has hue of 2.5 Y or 10 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . EC is less than 2 mmhos. Reaction is mildly or moderately alkaline.

The C horizon has hue of 2.5 Y or 10 YR , value of 4 through 7 dry, 3 through 5 moist, and chroma of 2 through 6 . EC is less than 2 mmhos. Reaction is moderately or strongly alkaline.
Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly calcareous in the A and C horizons. Lab texture for the A horizon is coarser than typical for the map unit. Textures throughout the profile are finer than a typical Carmody.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Ustic Torriorthents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 2 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description) - Carmody soils are on plateaus and hillslopes in intermountain basins. Slopes are 2 to 45 percent. The soils formed in calcareous material weathered from semiconsolidated fine grained sandstone or siltstone. The mean annual precipitation ranges from 10 to 17 inches of which about half falls as snow or rain in April, May, and early June. Elevation is 5,300 to 7,500 feet. The mean annual temperature is 39 to 45 degrees F., and the mean summer temperature is 58 to 65 degrees F. The frost-free season is 75 to 120 days depending upon aspect, elevation, and local air drainage.

CUSHOOL SERIES
 SANDY LOAM

Soil Mapping Unit "Cu" Lab/BKS Sample ID: G07120056_49
Typical Pedon: Cushool sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cushool series consists of well drained soils that are moderately deep to soft sandstone. They formed in slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. Cushool soils are on rock-controlled hills, pediments, structural benches, ridges, and short fan aprons. Slopes are 0 to 50 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 4 inches. Grayish brown (10YR 5/2) sandy loam, moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; moderately alkaline (pH 5.8); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

Bt - 4 to 22 inches. Brown (10YR $5 / 3$) sandy clay loam, moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; few distinct clay films on faces of peds and inside root channels; neutral (pH 7.3); noneffervescent; clear smooth boundary.

Ck- 22 to 36 inches. Yellowish brown (10YR 5/4) sandy clay loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; many clay films on faces of peds and in root channels; moderately alkaline (pH 7.9); strongly effervescent (Combined thickness of the Bt horizons is 9 to 23 inches.)

Type Location - Sweetwater County, Wyoming; refer to waypoint 49 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The mean annual soil temperature ranges from 41 to 47 degrees F. The mean summer temperature is 59 to 63 degrees F . The depth to calcic horizon is 11 to 34 inches. The depth to paralithic contact is 20 to 40 inches shale interbedded with sandstone. These soils are typically free of carbonates through the upper part of the Bt horizon. The rock fragments range from 0 to 30 percent throughout the whole soil and are pebbles or channers. Exchangeable
investing in our energy Section 2.6-Geology
sodium ranges from 0 to 15 percent throughout the argillic horizon and Bk horizons. EC ranges from 0 to 4 mmhos throughout.

Regarding the A horizon, the hue is 7.5 YR to 5 Y . The value is 4 through 7 dry, 3 through 5 moist. The chroma is 2 through 6 dry or moist. The calcium carbonate equivalent is 0 to 5 percent. The reaction is neutral through moderately alkaline.

Regarding the Bt horizon, the hue is 7.5 YR to 5 Y . The value is 4 through 6 dry, 3 or 4 moist. The chroma is 2 through 6 dry or moist. The texture is sandy clay loam, fine sandy loam, or sandy loam with 18 to 35 percent clay, 0 to 28 percent silt, and 45 to 80 percent sand with more than 35 percent being fine sand or coarser. The calcium carbonate equivalent: 0 to 5 percent. The reaction is neutral through moderately alkaline.

The Btk horizon when present is moderately or strongly alkaline. Regarding the Bk horizon, the hue is 7.5 YR to 5 Y . The value is 5 through 7 dry, 4 through 7 moist. The chroma is 2 through 6 dry or moist. The texture is loamy fine sand, sandy loam, and fine sandy loam. The calcium carbonate equivalent is 5 to 15 percent. The reaction is moderately or strongly alkaline. A thin C horizon is present in some pedons.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and B horizons. According to the NRCS soil series description, the soil profile is strongly calcareous in the B horizons.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 22 inches due to the change in effervescent in the C horizon.

Geographic Setting (According to official series description) - The parent material is slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. The landform is rock-controlled hill and ridge slopes, fan aprons, pediments, and structural benches. The slopes are 0 to 50 percent. The elevations are 5,300 to 7,800 feet. The mean annual precipitation is about 12 inches but ranges from 9 to 14 inches of which about half falls as snow and rain in April, May, and early June. The mean annual temperature is about 41 degrees F. and ranges from 39 to 45 degrees F.
The frost-free season is 75 to 110 days depending upon elevation, aspect, and air drainage.

GLENDIVE SERIES

SANDY LOAM
Soil Mapping Unit "Gl"
Lab/BKS Sample ID: G07120056_50
Typical Pedon: Glendive sandy loam, in cropland (colors are for dry soil unless otherwise noted).

The Glendive series consists of very deep, moderately well or well drained soils that formed in stratified loamy calcareous alluvium. These soils are on flood plains and stream terraces. Slopes are 0 to 8 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 5 inches. Grayish brown (10YR 5/2) sandy loam, moist; weak fine granular structure; very hard, friable, slightly sticky and plastic; many very fine roots; moderately acid (pH 5.8); noneffervescent; clear smooth boundary. (3 to 8 inches thick)

C1 - 5 to 15 inches. Grayish brown ($10 \mathrm{YR} 5 / 2$) sandy loam, moist; weak medium subangular blocky structure; very hard, friable, sticky and plastic; many very fine roots; many very fine pores; neutral (pH 7.0); noneffervescent; gradual smooth boundary. (0 to 10 inches thick)

C2-15 to 22 inches. Light brownish gray (10YR 6/2) sandy loam, moist; weak coarse prismatic structure; slightly hard, friable, sticky and plastic; common very fine roots; common very fine pores; slightly alkaline (pH 7.8); noneffervescent; gradual smooth boundary.

C3-22 to 31 inches. Light brownish gray (10YR 6/2) sandy loam that consists of thin layers of loam, sandy loam and loamy fine sand, moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots grading to few in lower part; common fine pores; moderately alkaline (pH 8.0); moderately effervescent.

C4k-31 to 45 inches. Light brownish gray (10YR 6/2) sandy loam that consists of thin layers of loam, sandy loam and loamy fine sand, moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots grading to few in lower part; common fine pores; strongly alkaline (pH 8.7); strongly effervescent.

C5-45 to 60 inches. Light brownish gray (10YR 6/2) loamy sand that consists of thin layers of loam, sandy loam and loamy fine sand, moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots grading to few in lower part; common fine pores; strongly alkaline (pH 8.6); moderately effervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 50 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) - The soil temperature is 42 to 47 degrees F. Range soil temperature to 40 degrees in MLRA 44.
The moisture control section is between 8 and 24 inches; dry in all parts between fourtenths and five-tenths of the cumulative days per year when the soil temperature at a depth of 20 inches is 41 degrees F or higher. The soil phases are channeled, flooded, high elevation, nonflooded, gravelly substratum, sandy surface, warm, and moderately wet, saline. Regarding the Ap horizon, the hue is $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y . This horizon with values of 4 or 5 dry, 3 moist and chroma of 2 or 3 may meet the requirements for mollic except for thickness. The value is 4,5 , or 6 dry; 3,4 , or 5 moist. The chroma is 2 or 3 . The texture is loam, silt loam, fine sandy loam, sandy loam, loamy fine sand, and silty clay loam. The clay content is 5 to 35 percent clay. The EC is 0 to $8 \mathrm{mmhos} / \mathrm{cm}$; saline phase 4 to $8 \mathrm{mmhos} / \mathrm{cm}$. The effervescence is none to violently. The reaction is pH 6.6 to 9.0 .
Regarding the $\mathrm{C} 1, \mathrm{C} 2$ horizons, the hue is $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y . The value is 5,6 , or 7 dry; 4,5 , or 6 moist. The chroma is 2,3 , or 4 . The texture is loam, silt loam, sandy loam, and fine sandy loam. The clay content is 5 to 18 percent. The rock fragments are 0 to 15 percent pebbles. The EC is 0 to $16 \mathrm{mmhos} / \mathrm{cm}$; saline phase 8 to $16 \mathrm{mmhos} / \mathrm{cm}$. The effervescence is slightly to violently. The reaction is pH 6.6 to 9.0 .

Regarding the C 3 horizon, the hue is $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y . The value is 5,6 , or $7 \mathrm{dry} ; 4,5$, or 6 moist. The chroma is 2,3 , or 4 . The texture is sandy loam or fine sandy loam consisting of thin layers of loam, sandy loam, silt loam, loamy sand, loamy fine sand, and occasionally clay loam. The clay content is 5 to 18 percent. The rock fragments are 0 to 15 percent pebbles. The EC is 0 to $25 \mathrm{mmhos} / \mathrm{cm}$; saline phase 8 to $25 \mathrm{mmhos} / \mathrm{cm}$. The effervescence is slightly to violently. The reaction is pH 7.4 to 9.0 .

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the $\mathrm{A}, \mathrm{C} 1$, and C 2 horizons. According to the NRCS soil series description, the soil profile is strongly calcareous throughout

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Aridic Ustifluvents

Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal pH was found at depths of 31-45 and 45-60 inches. An estimated stripping depth is 31 inches based on laboratory analysis.

Geographic Setting (According to official series description) - The landforms are flood plains, stream terraces, and drainageways. The elevation is 1,900 to 5,000 feet. The range elevation is 6000 feet in MLRA 44. The slope is 0 to 8 percent. The parent material is

URANIUM ONE AMERICAS
stratified loamy calcareous alluvium. The climate is long, cold winters; moist springs; and hot, dry summers. The mean annual precipitation is 10 to 16 inches, most of which falls in the spring and early summer. The mean annual air temperature is 39 to 45 degrees F. The range mean annual air temperature is to 38 degrees in MLRA 44. The frost-free period is 90 to 135 days.
investing in our energy

ROCK RIVER SERIES
SANDY LOAM

Soil Mapping Unit "RR"
Lab/BKS Sample ID: G07120056_51
Typical Pedon: Rock River sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Rock River series consists of very deep, well drained soils that formed in calcareous alluvium derived mainly from sandstone, eolian deposits, and residuum. Rock River soils are on alluvial fan aprons, relict terraces, benches, hillslopes, and areas of valley fill. Slopes are 0 to 25 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A-0 to 3 inches. Light brownish gray (10YR 6/2) sandy loam, moist; hard crust that parts to weak fine granular; hard, very friable, slightly sticky and slightly plastic; many fine and medium roots; slightly acid (pH 6.2); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

AC - 3 to 12 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium prismatic structure parting to moderate medium angular blocky; hard, firm sticky and plastic; few fine and many medium roots; continuous thin clay films on faces of peds; neutral (pH 7.2); noneffervescent; clear smooth boundary.

C1-12 to 24 inches. Yellowish brown (10YR 5/4) sandy loam, moist; moderate medium prismatic structure parting to moderate fine and medium angular blocky; hard, firm, sticky and plastic; few coarse roots; continuous, thin clay films on faces of peds; mildly alkaline (pH 7.2); noneffervescent; clear smooth boundary. (The C 1 horizon is 8 to 20 inches thick.)

C2k - 24 to 36 inches. Yellowish brown (10YR 5/4) sandy loam - sandy clay loam, moist; weak medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common thin clay films on faces of peds; lime as many fine and medium soft masses and threads; 10 percent pebbles $1 / 4$ to $3 / 4$ inch in diameter; moderately alkaline (pH 8.1); strongly effervescent; clear smooth boundary. (0 to 8 inches thick)

C3k-36 to 48 inches. Light brownish gray (10YR 6/2) loamy sand, moist; massive; soft, very friable, nonsticky and nonplastic; lime as many soft masses; many fine soft masses and threads of secondary calcium carbonate; 15 percent lime-coated angular gravel $1 / 4$ to $3 / 4$ inch in diameter; moderately alkaline (pH 8.0); strongly effervescent.
investing in our energy

Type Location - Sweetwater County, Wyoming; refer to waypoint 51 on map included in this report.
Range in Soil Characteristics (According to Official Series Description) - Depth to continuous horizons of calcium carbonate accumulation is 13 to 30 inches. Depth to the base of the argillic horizon is 12 to 34 inches. The mean annual soil temperature ranges from 43 to 46 degrees F., and the mean summer soil temperature ranges from 59 to 65 degrees F . EC is less than 4 mmhos throughout. The rock fragments in the soil are less than $3 / 4$ inch in diameter.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Reaction is neutral through moderately alkaline.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 2 through 6 . Texture is sandy clay loam or gravelly sandy clay loam, averaging 20 to 35 percent clay and has more than 35 percent fine or coarser sand. Rock fragments range from 0 to 25 percent pebbles. Reaction is neutral through moderately alkaline.

The Bk horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 4 through 7 moist, and chroma of 2 through 6 . Texture is sandy clay loam, sandy loam, or fine sandy loam modified with from 0 to 30 percent pebbles. Some pedons have textures of loamy sand or coarser below 40 inches. It has accumulation of secondary calcium carbonate that ranges from 1 through 14 percent. Reaction is moderately or strongly alkaline. Some pedons have a C horizon.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and C1 horizons. According to the NRCS soil series description, the soil profile is strongly calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 12 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description): Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Slopes are 0 to 25 percent. Elevation is 5,900 to 7,800 feet. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 41 to 45 degrees F ., and the mean summer temperature
is 59 to 63 degrees F. The frost-free season is about 75 to 110 days but varies according to aspect, elevation, and air drainage.

GLENDIVE SERIES
 SANDY LOAM

Soil Mapping Unit "Gl"
Lab/BKS Sample ID: G07120056_52
Typical Pedon: Glendive sandy loam, in cropland (colors are for dry soil unless otherwise noted).

The Glendive series consists of very deep, moderately well or well drained soils that formed in stratified loamy calcareous alluvium. These soils are on flood plains and stream terraces. Slopes are 0 to 8 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 5 inches. Grayish brown (10YR 5/2) sandy loam, moist; weak fine granular structure; very hard, friable, slightly sticky and plastic; many very fine roots; slightly acid (pH 6.5); noneffervescent; clear smooth boundary. (3 to 8 inches thick)

C1 - 5 to 23 inches. Grayish brown (10YR 5/2) sandy loam, moist; weak medium subangular blocky structure; very hard, friable, sticky and plastic; many very fine roots; many very fine pores; slightly alkaline (pH 7.4); noneffervescent; gradual smooth boundary. (0 to 10 inches thick)

C2-23 to 34 inches. Light brownish gray (10YR 6/2) sandy loam, moist; weak coarse prismatic structure; slightly hard, friable, sticky and plastic; common very fine roots; common very fine pores; slightly alkaline (pH 7.7); noneffervescent; gradual smooth boundary.

C3-34 to 42 inches. Light brownish gray (10YR 6/2) loam that consists of thin layers of loam, sandy loam and loamy fine sand, moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots grading to few in lower part; common fine pores; moderately alkaline (pH 8.1); noneffervescent.

C4-42 to 54 inches. Light brownish gray (10YR 6/2) sandy loam that consists of thin layers of loam, sandy loam and loamy fine sand, moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots grading to few in lower part; common fine pores; moderately alkaline (pH 8.4); noneffervescent.

C5-54 to 60 inches. Light brownish gray (10YR 6/2) clay loam that consists of thin layers of loam, sandy loam and loamy fine sand, moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots grading to few in lower part; common fine pores; moderately alkaline (pH 8.2); strongly effervescent.
investing in our energy

Type Location - Sweetwater County, Wyoming; refer to waypoint 52 on map included in this report.
Range in Soil Characteristics (According to Official Series Description) - The soil temperature is 42 to 47 degrees F. The range soil temperature is to 40 degrees in MLRA 44. The moisture control section is between 8 and 24 inches; dry in all parts between four-tenths and five-tenths of the cumulative days per year when the soil temperature at a depth of 20 inches is 41 degrees F or higher. The soil phases are channeled, flooded, high elevation, nonflooded, gravelly substratum, sandy surface, warm, and moderately wet, saline. Regarding the Ap horizon, the hue is $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y . This horizon with values of 4 or 5 dry, 3 moist and chroma of 2 or 3 may meet the requirements for mollic except for thickness. The value is 4,5 , or 6 dry; 3,4 , or 5 moist. The chroma is 2 or 3 . The texture is loam, silt loam, fine sandy loam, sandy loam, loamy fine sand, and silty clay loam. The clay content is 5 to 35 percent clay. The EC is 0 to $8 \mathrm{mmhos} / \mathrm{cm}$ and saline phase 4 to $8 \mathrm{mmhos} / \mathrm{cm}$. The effervescence is none to violently. The reaction is pH 6.6 to 9.0. Regarding the $\mathrm{C} 1, \mathrm{C} 2$ horizons, the hue is $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y . The value is 5,6 , or 7 dry; 4,5 , or 6 moist. The chroma is 2,3 , or 4 . The texture is loam, silt loam, sandy loam, and fine sandy loam. The clay content is 5 to 18 percent. The rock fragments are 0 to 15 percent pebbles. The EC is 0 to $16 \mathrm{mmhos} / \mathrm{cm}$ and saline phase 8 to $16 \mathrm{mmhos} / \mathrm{cm}$. The effervescence is slightly to violently. The reaction is pH 6.6 to 9.0 . Regarding the C3 horizon, the hue is $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y . The value is 5,6 , or 7 dry; 4,5 , or 6 moist. The chroma is 2,3 , or 4 . The texture is sandy loam or fine sandy loam consisting of thin layers of loam, sandy loam, silt loam, loamy sand, loamy fine sand, and occasionally clay loam. The clay content is 5 to 18 percent. The rock fragments are 0 to 15 percent pebbles. The EC is 0 to $25 \mathrm{mmhos} / \mathrm{cm}$ and saline phase 8 to $25 \mathrm{mmhos} / \mathrm{cm}$. The effervescence is slightly to violently. The reaction is pH 7.4 to 9.0

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A horizon. According to the NRCS soil series description, the soil profile is strongly calcareous throughout.

Taxonomic Class - Coarse-loamy, mixed, superactive, calcareous, frigid Aridic Ustifluvents

Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1 . The estimated stripping depth is 5 inches due to the presence of the C horizon.

Geographic Setting (According to official series description) - The landforms are flood plains, stream terraces, and drainageways. The elevation is 1,900 to 5,000 feet. The range elevation is to 6000 feet in MLRA 44. The slope is 0 to 8 percent. The parent material is stratified loamy calcareous alluvium. The climate is long, cold winters; moist springs; and hot, dry summers. The mean annual precipitation is 10 to 16 inches, most of which
falls in the spring and early summer. The mean annual air temperature is 39 to 45 degrees F . The range mean annual air temperature is to 38 degrees in MLRA 44. The frost-free period is 90 to 135 days.

ROCK RIVER SERIES
 NONCALCAREOUS VARIANT

Soil Mapping Unit "RR-NC"
Lab/BKS Sample ID: G07120056_53
Typical Pedon: Rock River noncalcareous variant-rangeland. (Colors are for dry soil unless otherwise stated.)

The Rock River noncalcareous variant series consists of very deep, well drained soils that formed in calcareous alluvium derived mainly from sandstone, eolian deposits, and residuum. Rock River soils are on alluvial fan aprons, relict terraces, benches, hillslopes, and areas of valley fill. Slopes are 0 to 25 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Light brownish gray (10YR 6/2) loam, dark moist; hard crust that parts to weak fine granular; hard, very friable, slightly sticky and slightly plastic; many fine and medium roots; slightly acid (pH 6.5); noneffervescent; clear smooth boundary. (2 to 6 inches thick)

Bt1 - 3 to 15 inches. Yellowish brown (10YR 5/4) clay loam, moist; weak medium prismatic structure parting to moderate medium angular blocky; hard, firm sticky and plastic; few fine and many medium roots; continuous thin clay films on faces of peds; neutral (pH 6.9); noneffervescent; clear smooth boundary.

Bt2 - 15 to 28 inches. Yellowish brown (10YR 5/4) loam, moist; moderate medium prismatic structure parting to moderate fine and medium angular blocky; hard, firm, sticky and plastic; few coarse roots; continuous, thin clay films on faces of peds; slightly alkaline (pH 7.5); noneffervescent; clear smooth boundary. (The Bt horizon is 8 to 20 inches thick.)

C1-28 to 40 inches. Yellowish brown (10YR 5/4) sandy loam, moist; weak medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common thin clay films on faces of peds; lime as many fine and medium soft masses and threads; 10 percent pebbles $1 / 4$ to $3 / 4$ inch in diameter; slightly alkaline (pH 7.6); noneffervescent; clear smooth boundary. (0 to 8 inches thick)

C2-40 to 45 inches. Light brownish gray (10YR 6/2) sandy loam, moist; massive; soft, very friable, nonsticky and nonplastic; lime as many soft masses; many fine soft masses and threads of secondary calcium carbonate; 15 percent lime-coated angular gravel $1 / 4$ to $3 / 4$ inch in diameter; moderately alkaline (pH 7.9); noneffervescent.

Type Location - Sweetwater County, Wyoming; refer to waypoint 53 on map included in this report.
Range in Soil Characteristics (According to Official Series Description) - Depth to continuous horizons of calcium carbonate accumulation is 13 to 30 inches. Depth to the base of the argillic horizon is 12 to 34 inches. The mean annual soil temperature ranges from 43 to 46 degrees F., and the mean summer soil temperature ranges from 59 to 65 degrees F. EC is less than 4 mmhos throughout. The rock fragments in the soil are less than $3 / 4$ inch in diameter.

The A horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 3 through 5 moist, and chroma of 2 through 4 . Reaction is neutral through moderately alkaline.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 4 through 6 dry, 4 or 5 moist, and chroma of 2 through 6 . Texture is sandy clay loam or gravelly sandy clay loam, averaging 20 to 35 percent clay and has more than 35 percent fine or coarser sand. Rock fragments range from 0 to 25 percent pebbles. Reaction is neutral through moderately alkaline.

The Bk horizon has hue of 2.5 Y through 7.5 YR , value of 5 through 8 dry, 4 through 7 moist, and chroma of 2 through 6 . Texture is sandy clay loam, sandy loam, or fine sandy loam modified with from 0 to 30 percent pebbles. Some pedons have textures of loamy sand or coarser below 40 inches. It has accumulation of secondary calcium carbonate that ranges from 1 through 14 percent. Reaction is moderately or strongly alkaline. Some pedons have a C horizon.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous throughout. According to the NRCS soil series description, the soil profile is strongly to violently calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 28 inches due to the presence of the C horizon.

Geographic Setting (According to Official Series Description): Rock River soils are on alluvial fans, fan aprons, benches, hillslopes, and toeslopes. The soils formed in material weathered from calcareous sandstone, eolian deposits, and residuum. Slopes are 0 to 25 percent. Elevation is 5,900 to 7,800 feet. The mean annual precipitation ranges from 10 to 14 inches of which about half falls as snow or rain in April, May, and early June. The mean annual temperature is about 41 to 45 degrees F., and the mean summer temperature
is 59 to 63 degrees F. The frost-free season is about 75 to 110 days but varies according to aspect, elevation, and air drainage.

Section 2.6-Geology

FORELLE SERIES
 SANDY LOAM

Soil Mapping Unit "F"

Lab/BKS Sample ID: G07120056 54
Typical Pedon: Forelle fine silt loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Forelle series consists of very deep, well drained soils on fan aprons, fan piedmonts, hillslopes, and hill toeslope positions. These soils formed in alluvium and slope alluvium derived from sedimentary rocks, primarily shale. Slopes are typically simple and range from 0 to 30 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 4 inches. Light brownish gray (10YR 6/2) silt loam, moist; strong fine granular structure; soft, very friable, nonsticky and nonplastic; 5 percent fine, semirounded pebbles; neutral (pH 7.0); noneffervescent; clear smooth boundary. (1 to 5 inches thick)

B-4 to 15 inches. Brown (10YR 5/3) silt loam, moist; weak medium prismatic structure parting to moderate medium subangular blocky; hard, very friable, slightly sticky and slightly plastic; few, thin clay films on faces of some peds; 5 percent fine semirounded pebbles; moderately alkaline (pH 8.0); noneffervescent; clear smooth boundary. (2 to 5 inches thick)

BC - 15 to 21 inches. Brown (10YR 5/3) silty clay loam, moist; moderate medium prismatic structure parting to moderate medium subangular blocky; very hard, friable, slightly sticky and slightly plastic; continuous thin clay films on faces of peds and lining pores and root channels; 5 percent fine semirounded pebbles; moderately alkaline (pH 8.4); moderately effervescent; clear wavy boundary. (7 to 15 inches thick)

C1 - 21 to 42 inches. Pale brown (10YR 6/3) silty clay loam, moist; weak medium prismatic structure parting to weak medium subangular blocky; hard, friable, slightly sticky and slightly plastic; few thin clay films on faces of some peds and in some root channels; common soft masses of lime; 5 percent fine, semirounded pebbles; moderately alkaline (pH 8.4); moderately effervescent; gradual smooth boundary. (3 to 6 inches thick)

C2k-42 to 49 inches. Light yellowish brown (2.5Y 6/4) clay loam, moist; massive; hard, friable, slightly sticky and slightly plastic; lime is disseminated and as common soft, rounded masses; 10 percent fine, semirounded pebbles; moderately alkaline (pH 8.3); strongly effervescent; gradual smooth boundary. (15 to 30 inches thick)

URANIUM ONE AMERICAS License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology

C3-49 to 58 inches. Light yellowish brown (2.5Y 6/4) sandy loam, moist; massive; hard, friable, slightly sticky and slightly plastic; lime is disseminated and as common soft, rounded masses; 10 percent fine, semirounded pebbles; moderately alkaline (pH 8.2); weak effervescent; gradual smooth boundary. (15 to 30 inches thick)

Type Location - Sweetwater County, Wyoming; refer to waypoint 54 on map included in this report.

Range in Characteristics (According to Official Series Description) - The mean annual soil temperature is 41 to 45 degrees F. The mean annual summer soil temperature is 59 to 63 degrees F. The depth to base of argillic horizon is 12 to 25 inches. The depth to secondary calcium carbonate is 12 to 25 inches. The rock fragment content of the entire soil to 60 inches. Note: 15 percent or less when averaged with pebbles ranging from 0 to 15 percent and cobble from 0 to 5 percent. The EC is less than 2 mmhos throughout. Regarding the A horizon, the hue is 7.5 YR through 5 Y . The value is 5 through 7 dry and 3 through 6 moist. The chroma is 2 through 4 dry or moist. The texture is fine sandy loam or loam. The reaction is neutral through moderately alkaline. Regarding the Bt horizon, the hue is 7.5 YR through 5 Y . The value is 4 through 7 dry and 3 through 6 moist. The chroma is 2 through 6 dry or moist. The texture is loam, clay loam, or sandy clay loam with 18 to 35 percent clay and more than 15 but less than 35 percent fine sand or coarser. The reaction is neutral through moderately alkaline. Regarding the Btk and Bk horizon, the hue is 7.5 YR through 5 Y . The value is 6 through 8 dry and 4 through 7 moist. The chroma is 1 through 6 dry or moist. The texture is loam, clay loam, sandy clay loam, and less commonly sandy loam with 18 to 30 percent clay; clay size carbonates may make up to 5 percent of the clay fraction. The calcium carbonate equivalent is 4 to 15 percent. The reaction is moderately or strongly alkaline. Regarding the c horizon, the hue is 7.5 YR through 5Y. The value is 5 through 7 dry and 4 through 6 moist. The chroma is 2 through 6 dry or moist. The texture is loam, clay loam, sandy clay loam, or sandy loam with 18 to 30 percent clay. The reaction is slightly through strongly alkaline. The calcium carbonate equivalent is 1 to 6 percent.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and B horizon, moderately calcareous in the BC and Cl horizons, and strongly in C2k horizon. According to the NRCS soil series description, the soil profile is strongly calcareous in the B horizon and slightly calcareous in the C horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Haplargids
Suitability for Topsoil (According to WDEQ Guideline 1) - Marginal EC (Conductivity) was found at depths of 42-49 and 49-58 inches. Unsuitable SAR parameter was found at
depths of 15-21, 21-42, 42-49, and 49-58. An estimated stripping depth is 15 inches based on laboratory analysis.
Geographic Setting (According to Official Series Description) - The parent material is alluvium and slope alluvium derived from shale interbedded with sandstone and siltstone. The landform is fan aprons, fan piedmonts, hillslopes, and hill toeslopes. The slopes are 0 to 30 percent. The elevation is 5,300 to 7,800 feet. The mean annual precipitation is 12 inches but ranges from 9 to 14 inches of which about half falls as rain or snow in April, May and early June. The mean annual temperature: 39 to 45 degrees F . The frost-free period is 75 to 110 days depending upon elevation, aspect, and air drainage.

CUSHOOL SERIES
 SANDY LOAM

Soil Mapping Unit "Cu"
Lab/BKS Sample ID: G07120056_56
Typical Pedon: Cushool sandy loam-rangeland. (Colors are for dry soil unless otherwise stated.)

The Cushool series consists of well drained soils that are moderately deep to soft sandstone. They formed in slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. Cushool soils are on rock-controlled hills, pediments, structural benches, ridges, and short fan aprons. Slopes are 0 to 50 percent. The mean annual precipitation is 10 to 12 inches, and the mean annual temperature is about 38 degrees Fahrenheit.

A - 0 to 3 inches. Grayish brown (10YR 5/2) sandy loam, moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; neutral (pH 6.6); noneffervescent; clear smooth boundary. (2 to 6 inches thick)
$\mathrm{Bt}-3$ to 22 inches. Brown (10YR 5/3) sandy loam - sandy clay loam, moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; few distinct clay films on faces of peds and inside root channels; neutral (pH 7.2); noneffervescent; clear smooth boundary.

C1-22 to 29 inches. Brown (10YR 5/3) sandy loam, moist; weak medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few fine roots; few distinct clay films on faces of peds and in root channels; calcium carbonate as common fine and medium soft masses and filaments; slightly alkaline (pH 7.6); moderately effervescent gradual wavy boundary. (0 to 8 inches thick)

C2k-29 to 37 inches._Pale brown (10YR 6/3) sandy loam, moist; massive; slightly hard, friable, nonsticky and nonplastic; calcium carbonate as common fine and medium soft masses and thin filaments and threads; slightly alkaline (pH 7.6); strongly effervescent, clear wavy boundary.

Type Location - Sweetwater County, Wyoming; refer to waypoint 56 on map included in this report.

Range in Soil Characteristics (According to Official Series Description) -

The mean annual soil temperature ranges from 41 to 47 degrees F. The mean summer temperature is from 59 to 63 degrees F. Depth to calcic horizon is 11 to 34 inches. Depth
investing in our energy
to paralithic contact is 20 to 40 inches (shale interbedded with sandstone). These soils are typically free of carbonates through the upper part of the Bt horizon. Rock fragments range from 0 to 30 percent throughout the whole soil and are pebbles or channers. Exchangeable sodium ranges from 0 to 15 percent throughout the argillic horizon and Bk horizons. EC ranges from 0 to 4 mmhos throughout. Regarding A horizon, the hue is 7.5YR to 5 Y . The value is 4 through 7 dry and 3 through 5 moist. The chroma is 2 through 6 dry or moist. The calcium carbonate equivalent is 0 to 5 percent. The reaction is neutral through moderately alkaline. Regarding the Bt horizon, the hue is 7.5 YR to 5 Y . The value is 4 through 6 dry and 3 or 4 moist. The chroma is 2 through 6 dry or moist. The texture is sandy clay loam, fine sandy loam, or sandy loam with 18 to 35 percent clay, 0 to 28 percent silt, and 45 to 80 percent sand with more than 35 percent being fine sand or coarser. The calcium carbonate equivalent is 0 to 5 percent. The reaction is neutral through moderately alkaline. The Btk horizon when present is moderately or strongly alkaline. Regarding the Bk horizon, the hue is 7.5 YR to 5 Y . The value is 5 through 7 dry and 4 through 7 moist. The chroma is 2 through 6 dry or moist. The texture is loamy fine sand, sandy loam, and fine sandy loam. The calcium carbonate equivalent is 5 to 15 percent. The reaction is moderately or strongly alkaline. A thin C horizon is present in some pedons.

Range in Characteristics (according to field observations, lab analysis): This soil profile is noncalcareous in the A and B horizon. According to the NRCS soil series description, the soil profile is strongly calcareous in the B horizon.

Taxonomic Class - Fine-loamy, mixed, superactive, frigid Ustic Calciargids
Suitability for Topsoil (According to WDEQ Guideline 1) - No marginal or unsuitable parameters were found according to Guideline 1. The estimated stripping depth is 22 inches due to the change in effervescent in the C horizon.

Geographic Setting (According to official series description) - The parent material is slope alluvium and colluvium over residuum weathered from sandy shale and sandstone. The landform is rock-controlled hill and ridge slopes, fan aprons, pediments, and structural benches. The slopes are 0 to 50 percent, and the elevations are 5,300 to 7,800 feet. The mean annual precipitation is about 12 inches, but it ranges from 9 to 14 inches of which about half falls as snow and rain in April, May, and early June. The mean annual temperature is about 41 degrees F. and ranges from 39 to 45 degrees F. The frostfree season is 75 to 110 days depending upon elevation, aspect, and air drainage.

ADDENDUM 2.6-E

ANTELOPE and JAB LABORATORY RESULTS
LABORATORY ANALYTICAL REPORT

LABORATORY ANALYTICAL REPORT

LABORATORY ANALYTICAL REPORT

URANIUM ONE AMERICAS
License Application, Technical Report
Antelope and JAB Uranium Project
Section 2.6 - Geology
URANIUMONE AMERTCAS
curan'lumone"

[^0]LABORATORY ANAL YTICAL REPORT

URANIUM ONE AMERICAS
License Application, Technical Report Antelope and JAB Uranium Project Section 2.6-Geology

JAB LABORATORY RESULTS

	energy laboratories．INC．＊ 400 W Boxelder Rd＊Gillette，wY 82718－5315 Toll Free 866，686．7175＊307．686．7175＊FAX 307．682．4625＊gillette＠energylab．com														
LABORATORY ANALYTICAL REPORT															
Client： Project： Workorder：	Energy Me 448a Energ G0712005	Mineral Re	ource Ce										Report Date： $02 / 3 / 108$Date Recelved： $12 / 04 / 07$		
	Client Sample iD	Anelysis	OM	$\begin{gathered} \text { Coarsa } \\ \text { Fragnents } \end{gathered}$	Sand	Sili	Clay	Texture	SAT	$\begin{aligned} & \text { prisat } \\ & \text { paste } \end{aligned}$	$\begin{aligned} & \text { EC-sat } \\ & \text { paste. } \end{aligned}$	Ca－sat paste	$\begin{gathered} \text { Mg-sat } \\ \text { paste } \\ \hline \end{gathered}$	$\begin{gathered} \text { Na-sat } \\ \text { paste } \\ \hline \end{gathered}$	SAR
		Units			unitess Results	uniticess Pesults	unitess Results	unitless Resutis	wi\％ Results	s＿u＿ Resutts	immhos／cm Fosults	meqh Results	meqh Resulfs	meql Results	unitless Results
607120056－007	42	0.5	1.0	${ }^{1.8}$	29	48	23	L	41.0	6.75	0.54	9.07	1.51	0.63	0.4
G07120056－002	H2	5－45	0.3	0.8	32	46	22	1	38.0	7.64	． 0.82	4.90	2.38	0.63	0.3
G07120056－003	42	$15-29$	0.5	1.4	58	24	18	SL	32.3	7.81	0.47	2.38	1.35	1.00	0.7
G67120056－004	\＃2	29.48	0.4	8.1	69	16	15	SL	27.9	8.02	0.61	2.39	1.83	$1: 64$	1.1
GO71120056－005	． 87	0.3	1.4	1.4	50	35	15	1	32.5	5.70	1.67	3.63	4.18	0.57	0.2
G07120056－006	\＃7	3－12	0.8	1.2	48	33	19	L	32.5	6.96	0.40	2.17	0.91	0.79	0.6
607120056－007	\＃7	12.20	0.7	2.4	44	31	25	L	36.5	7.20	0.39	1.97	0.89	0.59	0.5
G07120056－008	＇\＃T	$20 \cdot 30$	0.3	16.4	72	12	18	SL	25.8	2.19	0.45	2.04	0.97	0.75	0.7
907720056－609	48	0.2	$0 \cdot 6$	8.0	72	18	9.0	SL	22.0	5.81	8.15	6.42	2.58	0.43	
G07120056－010	${ }^{4}$	2－10	0.6	4.9	63	19	18	SL	25.5	${ }_{6}^{6.57}$	0.41	2.11	0.72	0.82	0.7
C07120056－014	4	10.18	0.3	5.9	63	15	22	SCL	30.3	6.58 8.83	0.31	1.66 7.54	0.54	0.70	0.7
007120056－012	\＃10	$0-4$	0.5	6.8	50	21	29	5 CL	38.9	${ }_{6}^{6: 83}$	1.11 0.54	7.54 280 8	1.68 0.41	0.86 1.89	0.4 1.5
G907120056－013	： 10	4.14 0.4	0.7 1.0	10.1 4.2	． 40	20 23	40 29	SCL．	41.6 45.7	7．6． 6.47	． $0.54{ }^{0}$	2.80 3.02	0.41 1.16	0.92	0.6
G07920056－015	\＃11	4－11	0.6	4.0	40	21	39	CL	50.6	6.82	0.23	1.10	0.33	0.88	1.0
G07120056－016	\＃11	11.47	0.6	4.1	40	23	37	CL	51.1	7.27	0.43	2.21	$0: 63$	1.34	8.1
G07220056－017	\＃11	17－24	0.5	7.3	38	21	$4{ }^{4}$	c	53.0	7.79	0.70	3.18	0.80	2.19	1.5
G97120056：018	\＃11	24.32	0.5	7.5	39	17	44	c	45.0	7.92	0.62	2.63	0.64	3.00	2.3
G．07120056－019	\＃14	0.4	1.6	0.3	${ }^{28}$	54	18	SLL	40.9	${ }^{6.06}$	0.78	3.69	1．42	0.48	0.3
G077120056－020	\＃14	$4-1.1$	0.5	3.4	${ }^{58}$	25	17	SL	27.9	3.90	0.30	1.39	0.53	0.59	0.6
607120056－021	114	11：\％8	0.7	1.3	59	23	18	SL	37.3	6.66	0.29	1.33	0.50	0.51	0.6
G07720056－022	14	18.38	0.2	0.5	84	8.0	8.0	LS	23.6	7.15	0.24	0.99	0.31	0.60	0.7
G07720056－023	\＃14	38.60	0.2	12.2	76	14	10	SL	20.0	7.55	0.39	1.98	0.50	1.08	1.0
G07120056－024	\＄15．	0.3	0.5	1.2	π	14	9.0	SL	22.4	${ }^{6} .28$	1.00	4.77	1.93	0.55	0.3
G07120056－025	＊15	$3: 8$	0.2	1.7	91	2.0	7.0	s	24.4	6.89	0.39	1.72	0.83	0.66	0.6
G07120056－026	\＃15	18．29	<0.2	0.5	． 91	3.0	6.0	s	23.7	7.64	0.39	1.82	0.71	0.77	0.7
G07120056－027	\＃17	$0-4$	0.7	21.2	58	14	28	SCL	${ }^{33.2}$	${ }^{6.78}$	1.18	7.48	2.31	1.05	0.5
G07120056－028	\＃17	4.9	0.4	18.2	61	13	26	SCL	33.6	7.59	0.56	2.92	0.80	1.57	1.2
607120056－029	${ }_{19}$	0.6	0.8	3.6	70	14.	16	SL	23.6	6.37	0.53	3.04	1.11	0.50	0.3
G67120056－030	\＃19	6－14	0.4	23.0	81	5.0	14	SL	25.9	7.20	0.29	1.91	0.56	0.49	0.4
G674120056－031	\＃19	14：20	0.2	22.0	82	8.0	12	S！	20.8	7.64	0.35	2.34	0.54	0.51	0.4
G07120056－032	\＃19	20.31	0.2	6.3	86	4.0	10	LS	20.5	7：81	0.30	1.72	0.40	0.70	0.7
207720056－033	\＃20	as	0.4	1.7	73	15	12	SL	21.0	5.77	0.55	2.83	1.14	0.48	0.3
G07120056－034	\＃20	4－19	0.4	1.5	68	17	15	SL．	26.6	6.71	0.38	2.02	0.75	0.74	0.5
G07120056－035	\＃20	！9－29	0.4	33	83	8.0	9.0	LS	21.7	7.38	0.43	2.09	0.89	0.74	0.6
G07120056－036	\＃20	29.44	0.2	3.5	86	8.0	8.0	Ls	22， 1	2．84	0.41	1.8	0.9	3	0.8
G07420056－037	＋23	0.3	0.8	0.7	66	19	15	SL	29.6	6.40	0.82	4.50	1.58	0.82	0.4
G077120056－038	\＃23	3.9	0.6	1.8	68	18	14	sL	28.8	7.38	．0．56	3.60	0.65	1.12	0.6
G67420056－039	423	9－19	0.4	1.4	${ }^{65}$	${ }^{18}$	17	\＄L	${ }^{31.6}$	7.68	0.57	2.98	0.49	2.30	1.7
607120056－040	\＃3 3	19－28	0.6	1.2	51	2 B	21	L	37.3	7.70	0.87	5.47	1.21	1.62	0.9

ENERGY LABORATORIES, iNC. * 400 Ẃ Boxelder Rd * Gillette, wY 82718-5315

ENERGY LABORATORIES, iNC. * 400 Ẃ Boxelder Rd * Gillette, wy 82718-5315 Toll Free 866.656.7175 * 307.586.7175 * FAX 307.682.4625 * gillette@energylab.com															
LABORATORY ANALYTICAL REPORT															
Glient:	Energy Metals Mineral Fesource Center												Report Date: 02/13/08		
Project:	448 a Energy Meials $\sqrt{ } \mathrm{AB}$												Date Received: 12/04/07		
Workorder:	G07120056														
	Cliant Sample 10	Analy sis	OM	Coarse Fragnents	Sand	Sill	Clay	Texlure	SAT	$\begin{aligned} & \text { ph-sal } \\ & \text { paste } \end{aligned}$	EC-sat	$\begin{aligned} & \text { Ca,sal } \\ & \text { paste } \end{aligned}$	Mg.sal paste	$\mathrm{Na}-\mathrm{sat}$ paste	SAP
		Units	\%	\%	unitiess	uritess	unitess	unitioss	w+\%	S-4-	mmbos/cm	meah	meall	meal	nitless
Sampla 10		Depth	Results	Resuls	Results	Results	Results	Hesults	Resuts	Results	Results	Results	Pesults	Results	Results
G07120056-041	$\# 23$	28.48	0.4	1.5	48	31	23	L	36.6	7.68	1.07	7.25	1.90	0.71	0.3
607120056-042	-	48.58	0.2	1.5	81	19	20	SL-SCL	30.1	7.74	0.69	4.41	1.17	$0.8 i$	0.5
G0720056-043	\#25	0.2	0.5	7.7	87	21	12	SL	23.6	6.02	1.05	5.58	2.63	0.46	0.2
G07120056-044	125	2:9	0.3	19.7	7.	12	17	St	25.8	7.07	0.44	2.57	0.94	0.85	0.5
G07120056-045	\#25	13.21	0.2	29.2	79	8.0	13	SL	21.4	7.40	0.66	3.69	1.41	0.68	0.4
G07120056-046	- 26	$0 \cdot 6$	0.4	2.0	26	34	40	c. Cl	49.8	7.76	1.47	11.3	1.02	3.33	1.3
607120056-047	- 226	6:17	0.3	0.1	23	44	33	C.	51.1	7.67	3.36	28.1	3.72	9.45	2.4
G07720056-048	+27	0.3	1.2	2.8	24	48	¢ 8	C	48.2	6.65	0.76	4.54	1.78	0.48	0.3
G07120056-049	\#27	3.12	0.8	33	30	38	32	Ci	$42: 1$	7.48	0.45	2π	0.98	0.70	0.5
G97120056-050	*27	12-24	0.8	1.9	31	35	34	Ct	48.5	7π	0.59	3.51	1.31	0.77	0.5
G07120056-051	*27	24:33	0.3	7.0	56	${ }^{24}$	20	$\mathrm{St} \cdot \mathrm{SCl}$	29.1	777	0.66	3.73	1.57	1:07	0.7
G07120056-052	${ }_{428}$	0.3	0.7	8.0	64	23	13	SL	24.4	6.20	1.25	6.90	3.26	0.47	0.2
G07100056-053	\#28	3.2	0.2	9.6	6_{1}	19	20	St-scl	28:3	7.05	0.36	1.72	0.78	0.80	0.7
G07120056-054	\#28	$12 \cdot 17$	0.3	11.1	63	13	24	SGL	33.1	7.40	1.03	4.54	2.35	1.83	1.0
G07120056-055	431	0.4	0.7	0.6	52	30	18	1	31.7	6.32	$0: 55$	2.69	1.30	0.49	0.3
607120056-056	H31	4.46	0.5	<0.1	32	39	29	CL	40.6	7.08	0.31	1.53	0.70	0.69	0.7
G07120056-057	431	16.27	0.2	4.9	54	26	20	SL. SCL	29.8	7.12	0.42	1.97	0.96	0.76	0.6
G077120056058	431	27.31	: 0.2	3.4	64	17	19	St	31.7	7.38	0.52	2.51	1.31	0.66	0.5
C07120056-059	\#31	31.41	<0.2	4.9	72	12	16	SL	26.3	7.62	0.40	1.95	0.97	0.73	0.6
G07120056-060	\#32	0.6	0.5	3.4	72	17	19	SL	28.3	5.86	1:18	5.76	2.87	0.41	0.2
G07420056-061	${ }^{\text {\# }} 3$	6.19	0.3	8.7	87	17	16	SL	23.1	5.78	0.24	0.84	0.34	0.55	0.3
G07120056:002	\#32	19,32	<0.2	14.0	87	3.0	10	Ls	21.7	5.89	0.15	0.34	0.13	0.80	1.2
G07120056-063	*32	32.40	<0.2	15.0	79	8.0	13	St	21.5	5.77	0.35	1.15	0.54	0.83	0.9
G07120056-064	H32	40.60	<0.2	122	78	9.0	${ }^{13}$	SL	22.9	6.13	0.14 .	0.29	0.12	0.58	1.3
607120056.065	\#33	0.4	0.8	5.4	60	27	13	si.	28.4	6.15	0.98	5.33	232	0.43	0.2
G67it2056-066	\#33	4.15	0.2	8.9	60	22	18	SL	24.5	7.09	0.47	2.83	1:10	0.76	0.5
607120056-067	*33	15.22	0.2	10.3	63	20	17	s.	27.0	7.73	0.42 :	2.61	1.00	0.83	0.6
607120056-068	433	${ }^{22.36}$	0.2	15.6	62	23	15	SL	23.7	7.75	0.84	4.59	2.05	13.3	0.7
G07i 20056 -059	\#33	36.46	0.2	7.3	55	24	21	Scl	23.9	7.84	0.91	5.21	2.54	1.72	0.9
G07420056-070	\$36	0.7	4.0	7.8	30	46	24	L	37.3	7.00	$0.46 \cdot$	2.77	0.62	0.61	0.5
G07120056-07t	+ ${ }_{\text {¢ }}$?-15:	0.4	4.9	49	29	27	$\mathrm{Cl} \cdot \mathrm{L}$	37.5	7.52	0.53	3.15	0.96	0.83	0.5
G07120056:072	H36	15.26	0.2	20.1	49	26	25	SCL	32.0	7.84	0.60	3.54	1.22	0.90	0.6
G07120056-073	438.	0.2	<0.2	18.1	70	18	12	SL	22.8	5:93	1.37	7.37	3.82	0.50	0.2
G07120066-074	${ }_{23} 3$	2.11	<0.2	14.9	73	15	12	st.	19.8	7.10	0.73	3.77	1.44	1.25	0.8
C07120058-075	\#38	11-18	0.3	13.0	64	18	18	St	24.2	7.83	0.80	2.42	1.03	4.22	3.2
G07120056-076	\#39	$0 \cdot 4$	1.7	6.8	31	42	27	$\mathrm{Cl}-\mathrm{L}$	41.0	6.97	1.45	8.71	2.87	0.63	0.3
G07120066-077	439	4.13	0.4	9.5	40	29	31	CL	34.4	7.34	0.38	1.94	0.64	0.65	0.6
G07120056-078	4 49	$13-24$	<0.2	19.4	81	9.0	10	LS	20.5	7.55	0.19	1.04	0.33	0.46	0.6
G07120056-079	419	24.42	-0.2	34.3	8	8.0	6.0	Ls	19.7	7.57	0.29	1.40	0.45	0.67	0.7
G07120056-080	139	42.60	<0.2	33.9	84	8.0	8.0	LS	18.4	7.57	0.45	235	0.75	0.90	0.7

	ENERGY LABORATORIES，INC．＊ 400 W Boxelder Rd＊Gillette，WY 82718－5315 Toll Free B66．686．7175＊307．686．7175＊FAX 307．682．4625＊gillette＠energylab．com														
LABORATORY ANALYTICAL REPORT															
Clienti	Energy Metals Mineral Resource Cenier												Report Date：02／13／08		
Project：	443a Energy Metais－JAB												Date Received；12／04／07		
Workorder：	607120056														
	Cliont Sample io	Analysis	OM	Coarse Fragments	Sand	Silt	Clay	Texure	SAT	$\begin{aligned} & \text { ph-sat } \\ & \text { paste } \end{aligned}$	$\underset{\text { paste }}{\text { EC-sat }}$	Ca－sat paste	Mg－sat paste	Na －sat paste	SAP
		Units	\％	\％	unitess	unitass	unitess	unitlass．	Wre\％	s＿u＿	mmhos／cm	meal	meqt	meal	unitess
Sample 10		Depth	Rasults	Rosults	Results	Resulis	Rosults	Resuta	Rosulis	Results	Results	Resuls	Resuits	Resuls	Results
G07120058－121	${ }^{45}$	54.60	0.4	0.7	29	40	31	cl	46.3	8． 18	0.91	0.94	0.28	8． 12	13
G0712056－122	\＃53	0.3	0.9	0.4	39	${ }^{40}$	21	1	35.3	6.45	0.44	2.16	1.00	0.66	0.5
G07120056－123	H5	3－15	0.9	<0.1	21	44	35	CL	47.9	6.94	0.36	1.74	0.73	0.99	0.9
G07120056－124	${ }_{25} 5$	$15-28$	0.5	2.4	52	${ }^{28}$	${ }^{20}$	，	29.6	7.51	0.50	2.44	1．19	1.28	10
G07120056－125	${ }^{15} 5$	28.40	0.3	3.1	57	27	16	SL	26.8	7.64	0.49	2.04	0.98	1.96	1.6
G07120056－126	\＃53	40.45	<0.2	7.1	66	19	15	SL	22.6	7.90	0.86	1.68	0.97	5.95	5.2
607120056：127	＊54	0.4	1.0	2.1	30	51	19	Sil	37.9	7.00	0.47	1.40	0.55	2.59	2.7
Q07120558－128	＂34	4．15	0.7	0.7	13	62	25	sil	46.9	7.97	1.18	1.29	0.42	9．46	10
607120056－129	． 454	$15-21$	0.6	9.0	19	53	${ }^{28}$	SiCL	50.2	8.35	1.82	1.23	0.40	15.1	17
G07120056－120	${ }_{6} 54$	21.42	0.5	0.6	20	50	30	SICL	56.1	8.35	4.27	3.27	4.71	37.2	24
G07120056－131	¢54	$42-49$	$0 \cdot 3$	7.1	33	32	35	Cl	55.3	${ }^{8.30}$	8.39	16.1	10.1	75.2	21
G07120056－132	\＄54	40.58	＜ 0.2	13.2	${ }^{81}$	5.0	14	SL	22.7	8． 18	9.13	20.9	12.2	81.5	20
G07120056－133	\＃56	0.3	0.5	24	63	25	12	sL．	27.2	6.55	0.83	4.58	1．88	0.51	0.3
G07120056－134	\％ 56	3．22：	0.3	0.8	63	17	20	SL－SCL	31.5	7.22	0.58	3.97	1.57	0.71	0.4
G07120056－135	${ }^{456}$	22.29	0.2	0.7	73	9.0	18	SL	29.8	${ }^{7} 58$	0.67	3.96	1.70	0.81	0.5
G07120056－136	＂56	29.37	＜0． 2	1.6	71	12	17	sL．	28.1	7.63	0.71	4.24	1.98	0.90	0.5

ENERGY LABORATORIES, INC. * 400 W Boxelder Rd * Gillette, WY 82718.5315 Toll Free $866.686: 7175 * 307.686 .7175 *$ FAX $307.682,4625 *$ gillette Genergylab.com

ADDENDUM 2.6-F

PRIME FARMLAND DESIGNATION

To Whom It May Concern
Attached is the Prime and other Important Farmland list for Sweetwater County, Wyoming as requested by

BKS Environmental Associates, Inc.
PO Box 3467
Gillette, Wyoming 82717
As the attached report shows, no Prime farmuand soil map units exist in Sweetwater county, Wyoming. If you have any questions, give me a call.
,
Tom Gustafson
Resource Soil Scientist NRCS 508 N Broadway
Riverton, Wy. 82501
307-856-7524 $\times 120$

ADDENDUM 2.6-G

ANTELOPE AND JAB SOIL MAPS

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,
 THAT CAN BE VIEWED AT THE RECORD TITLED:
 "JAP License Area Soil Mapping."

WITHIN THIS PACKAGE... OR BY SEARCHING USING THE

D-01

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

 THAT CAN BE VIEWED AT THE RECORD TITLED:"Antelope License Area Soil Mapping."

WITHIN THIS PACKAGE... OR BY SEARCHING USING THE

D-02

ADDENDUM 2.6-H

PROFESSIONAL CERTIFICATIONS

PROFESSIONAL CERTIFICATION

I hereby certify that the NRC License, Technical Report for Uranium One's, JAB and Antelope Uranium Project, Sweetwater County, Wyoming, Sections 2.6.1-2.6.4 \& Addendum 2.6-A (geologic figures) was developed by me or under my direction and that I am a Professional Engiaeer licensed in Wyoming as required by the provisions of W.S. 33-29-105 through W.S. 33-29-113. IN WITNESS WHEREOF, I have hereunder set my hand and affixed my seal.

I further certify that I am a Professional Geologist licensed as required by the provisions of W.S. 33-41101 through W.S. 33-41-121, and that all geological work performed in relation to this Section was performed by me or under my direction. IN WITNESS WHEREOF, I have hereunder set my hand and affixed my seal.

PROFESSIONAL CERTIFICATION

I hereby certify that the NRC License, Technical Report for Uranium One's, JAB and Antelope Uranium Project, Sweetwater County, Wyoming, Sections 2.6.1 - 2.6.4 \& Addendum 2.6-A Geology, was developed by me or under my direction and that I am a Professional Geologist licensed as required by the provisions of W.S. 33-41-101 through W.S. 33-41-121, and that all geological work performed in relation to this Section was performed by me or under my direction. IN WITNESS WHEREOF, I have hereunder set my hand and affixed my seal. Section 2.7- Hydrology

TABLE OF CONTENTS

2.7 Hydrology 1
2.7.1 Surface Water. 1
2.7.1.1 Drainage Basins 1
2.7.2 Ground Water. 7
2.7.2.1 Regional Hydrogeology 8
2.7.2.2 Site Hydrogeology 11
2.7.2.3 Potentiometric Surface, Ground Water Flow Direction and 17
2.7.2.4 Site Specific Aquifer Properties 19
2.7.3 Water Quality 31
2.7.3.1 Surface Water Quality 31
2.7.3.2 Ground Water Quality 38
2.7.4 Water Rights 47
2.7.4.1 Surface Water Rights 47
2.7.4.2 Ground Water Rights 48
2.7.5 References 51

Section 2.7- Hydrology

TABLE OF FIGURES

2.7-1 Antelope and JAB Uranium Project Site Location 2.7-A
2.7-2 Antelope and JAN Uranium Project Site Location within the Great Divide Basin 2.7-A
2.7-3 Arapahoe Creek Subwatershed 2.7-A
2.7-4 Lower Lost Creek Subwatershed 2.7-A
2.7-5 Osborne Draw Subwatershed 2.7-A
2.7-6 Upper Lost Creek Subwatershed 2.7-A
2.7-7 An estimate of the distribution of average monthly precipitation at Green River, WY (Mason and Miller, 2005), and the distribution of the occurrence of peak flow events at the Antelope and JAB Uranium Project (Lowham, 1976) 2.7-A
2.7-8 JAB Sampling Location Map. 2.7-A
2.7-9 Antelope Sampling Location Map 2.7-A
2.7-10 Typical Well Completions 2.7-A
2.7-11 JAB Type Log 2.7-A
2.7-12 Antelope Type Log 2.7-A
2.7-13 Regional Groundwater Flow Ref. "Collentine et. al., 1981" 2.7-A
2.7-14 JAB Potentiometric Surface Map September 2007 2.7-A
2.7-15 Antelope Potentiometric Surface Map March-April 2008. 2.7-A
2.7-16 Surface Water Sampling Site JAB SW-1 2.7-32
2.7-17 Surface Water Sampling Site JAB SW-4 2.7-33
2.7-18 Surface Water Sampling Site JAB SW-7 2.7-34
2.7-19 Antelope and JAB Surface water Trilinear Diagram. 2.7-A
2.7-20 JAB Groundwater Trilinear Diagram 2.7-A
2.7-21 Antelope Groundwater Trilinear Diagram 2.7-A
2.7-22 Antelope and JAB Permitted Water Rights 2.7-A

TABLE OF TABLES

2.7-1 Drainage Basin Characteristics for the Antelope and JAB Uranium Project 2.7-4
2.7.-2 NHD Listed Surface Waterbodies in the Vicinity of the Antelope and JAB Uranium Project 2.7-4
2.7-3 Precipitation Values of Selected Durations and Recurrence Intervals for the Antelope and JAB Uranium Project. 2.7-5
2.7-4 Basin Characteristic Regression Equations Used to Predict Peak Flows for the Antelope and JAB Uranium Project. 2.7-6
2.7-5 Peak Flow Estimates for all Basins Pertinent to the Antelope and JAB Uranium Project 2.7-7
2.7-6 Well Completion Information 2.7-13
2.7-7 Head Difference of Underlying Aquifers from Overlying Aquifers - Antelope and JAB Uranium Project 2.7-18
2.7-8 Summary of Horizontal Aquifer Properties of the Production Sand in the JAB Project Area, Historic Aquifer Tests-Antelope and JAB Uranium Project 2.7-21
2.7-9 Summary of Horizontal Aquifer Properties of the Production Sand in the JAB Project Area - March-April 2008-Antelope and JAB Uranium Project 2.7-24
2.7-10 Summary of Horizontal Aquifer Properties of the Production Sand in the Antelope Project Area - March-April 2008 2.7-28
2.7-11 Surface Water Monitoring Parameters - Antelope and JAB Uranium Project 2.7-35
2.7-12 Surface Water Quality Summary - Antelope and JAB Uranium Project 2.7-37
2.7-13 Ground Water Sampling Parameters-Antelope and JAB Uranium Project 2.7-40
investing in our energy Section 2.7- Hydrology
2.7-14 Summary of Water Quality Averages - Antelope and JAB Uranium Project 2.7-44
2.7-15 Summary of Active Surface Water Rights Within One-Half Mile of the Antelope/JAB Permit Boundary - Antelope and JAB Uranium Project 2.7-47
2.7-16 Re-permitted Wells Used by Uranium One - Antelope and JAB Uranium Project. 2.7-50
LIST OF ADDENDUMS
2.7-A Water Level Data
2.7-B JAB Aquifer Test Data
2.7-C Antelope Aquifer Test Data
2.7-D Water Quality
2.7-E Water Rights
investing in our energy

2.7 HYDROLOGY

2.7.1 Surface Water

For ease of review all figures associated with this section have been placed at the end of the section.

2.7.1.1 Drainage Basins

Data Sources

Drainage basin and surface water characteristics were determined by obtaining and analyzing two different publicly available Geographic Information Systems (GIS) datasets. The U.S. Geological Survey (USGS), in conjunction with the United States Environmental Protection Agency (EPA), have created the National Hydrography Dataset (NHD). The NHD is a "comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells. Within the NHD, surface water features are combined to form "reaches," which provide the framework for linking water-related data to the NHD surface water drainage network" (USGS and EPA, 2002). Data from the NHD were obtained at a $1: 24,000$ scale representing the highest resolution dataset that the USGS has to offer.

In addition, The United States Fish and Wildlife Service (FWS) have produced a classification of wetlands and deep water habitat. This information is available as a digital spatial dataset as the National Wetlands Inventory (NWI). The NWI was created to "provide the citizens of the United States and its Trust Territories with current geospatially referenced information on the status, extent, characteristics and functions of wetland, riparian, deepwater and related aquatic habitats in priority areas to promote the understanding and conservation of these resources" (FWS, 2007). Data from the NWI were obtained at a $1: 100,000$ scale.

Surface Drainage

The Antelope and JAB Uranium Project is located in the north central portion of the Great Divide Basin (USGS Hydrologic Unit Code (HUC) 14040200). The Great Divide Basin is a 3,875 square mile (mi^{2}) closed basin in south central Wyoming (Figure 2.7-1).

The Great Divide Basin has approximately 7,800 miles of stream with a mean channel gradient of $0.0001 \mathrm{ft} / \mathrm{ft}$ (Table 2.7-1). The maximum elevation in the Great Divide Basin is 9,980 feet above mean sea level (msl) and the bottom of the basin discharges at 6,398 feet msl.

The Antelope and JAB Uranium Project is also completely contained within the Lost Creek Watershed. The Lost Creek Watershed is $415 \mathrm{mi}^{2}$ in size and located in the north central portion of the Great Divide Basin (Figure 2.7-2). The Lost Creek Watershed has approximately 1,006 miles of stream with a mean channel gradient of 0.0003 (Table 2.71). Elevation in the Lost Creek Watershed ranges from 6,520 feet msl to 8,310 feet msl. Streams generally flow from north to south throughout the basin, with the exception of the southern portion of the watershed which flows north, draining to Lost Creek at the outlet of the Lower Lost Creek Watershed. Elevations in the Lost Creek Watershed range from 6,520 feet to 8,310 feet msl .

The Antelope and JAB Uranium Project is contained within four subwatersheds of the Lost Creek Watershed (Figure 2.7-2). The majority of the JAB site lies in the Arapahoe Creek Subwatershed (HUC 140402000102) with smaller portions in the Lower Lost Creek Subwatershed (HUC 140402000103), Upper Lost Creek Subwatershed (HUC 140402000101) and Osborne Draw Subwatershed (HUC 140402000104). The majority of the Antelope site lies in the Osborne Draw Subwatershed with a smaller portion in the Arapahoe Creek Subwatershed.

The Arapahoe Creek Subwatershed is located in the north central portion of the Lost Creek Watershed and has a drainage area of $57.7 \mathrm{mi}^{2}$ (Figure 2.7-2). The Arapahoe Creek Subwatershed has 198 miles of stream (Table 2.7-1). The average channel gradient is 0.0014 and 5.4% of the channel length is perennial. Elevation in the Arapahoe Creek Subwatershed ranges from 6,800 feet msl to 8,310 feet msl. West Arapahoe Creek, East Arapahoe Creek and Magpie Creek all have their headwaters in the northern portion of the Arapahoe Creek Subwatershed. These three tributaries join to form Arapahoe Creek which runs generally southwest through the watershed. The NWI identified 76 wetland or deep water habitats in the Arapahoe Creek Subwatershed, covering 81.5 acres (USFWS, 2007). One of the surface waters is listed as a freshwater forested or shrub wetland, 37 are listed as freshwater emergent wetlands, 13 as freshwater ponds and 25 as other. The NHD lists names for four of the surface waterbodies in the watershed: the Antelope, Baby Antelope, Cold Spring and Hadsell Reservoirs (Figure 2.7-3, Table 2.7-2).

The Lower Lost Creek Subwatershed is located in the northwestern portion of the Lost Creek Watershed and has a drainage area of $76.2 \mathrm{mi}^{2}$ (Figure 2.7-2). The Lower Lost Creek Watershed has 138 miles of stream (Table 2.7-1). The average channel gradient is 0.0013 and 23.7% of the stream length is perennial. Elevation in the Lower Lost Creek Subwatershed ranges from 6,520 feet msl to 7,440 feet msl. Lost Creek flows 25.4 miles from north to south through the watershed. The NWI identified 56 wetland or deep water habitats in the Lower Lost Creek Subwatershed, covering 134.8 acres (FWS, 2007). Eleven of the surface waters are listed as freshwater emergent wetlands, eight as freshwater ponds, three as riverine and 34 as other. The largest wetland, by far, is an 81.4 acre riverine wetland along Lost Creek in the lower portion of the watershed. The NHD
named a group of intermittent reservoirs (McKay Reservoirs) totaling two acres in size and located in the headwaters of the watershed (Figure 2.7-4, Table 2.7-2).

The Osborne Draw Subwatershed is located in the northeastern portion of the Lost Creek Watershed and has a drainage area of $72.3 \mathrm{mi}^{2}$ (Figure 2.7-2). The Osborne Draw Subwatershed has 253 miles of stream (Table 2.7-1). The average channel gradient is 0.0010 and less than 1% of the stream length is perennial. Elevation in the Osborne Draw Watershed ranges from 6,720 feet msl to 8,100 feet msl . The Osborne Draw Subwatershed does not contain any named streams or creeks. The NWI identified nine wetland or deep water habitats in the Osborne Draw Subwatershed, covering 7.5 acres (USFWS, 2007). Four of the surface waters are listed as freshwater emergent wetlands, two as freshwater ponds and three as other. The NHD lists names for two of the surface waters in the watershed: Dry Well Reservoir in the southeast and Osborne Reservoir in the western part of the watershed (Figure 2.7-5, Table 2.7-2).

The Upper Lost Creek Subwatershed is located between the headwaters of the Lower Lost Creek Subwatershed and the Arapahoe Creek Subwatershed, and has a drainage area of $47.5 \mathrm{mi}^{2}$ (Figure 2.7-2). The Upper Lost Creek Subwatershed has 253 miles of stream (Table 2.7-1). There are no perennial streams in this watershed, and the average stream channel gradient is 0.0005 . Elevation in the Upper Lost Creek Subwatershed ranges from 6,800 feet msl to 7,281 feet msl. Lost Creek headwaters are located in the north-central portion of the watershed. The creek then runs east and turns south toward the basin outlet approximately halfway down the watershed. The NWI identified 52 wetland or deep water habitats in the Upper Lost Creek Subwatershed, covering 31.8 acres (USFWS, 2007). Nineteen of the surface waters are listed as freshwater emergent wetlands, six as freshwater ponds and 27 as other. The NHD lists the name for one of the surface waterbodies in the watershed; the Lost Creek Reservoir as an on-channel reservoir located just downstream from where Lost Creek turns from the east to the south (Figure 2.7-6, Table 2.7-2). The reservoir is classified as a combination of freshwater emergent wetland and freshwater pond.

Table 2.7-1 Drainage Basin Characteristics for the Antelope and JAB Uranium Project

Basin	Drainage Area $\left(\mathbf{m i}^{2}\right)$	Channel Length $(\mathbf{m i})$	Elevation Differences $(\mathbf{f t})$	Channel $(\mathbf{f t} / \mathbf{m i})$	Gradient $(\mathbf{f t} / \mathbf{f t})$
Great Divide Basin	3875	7800	3582	0.5	0.0001
Lost Creek Watershed	415	1006	1790	1.8	0.0003
Arapahoe Creek Watershed	57.7	198	1510	7.6	0.0014
Lower Lost Creek Watershed	76.2	138	920	6.7	0.0013
Osborne Draw	72.3	253	1380	5.5	0.0010
Upper Lost Creek Watershed	47.5	181	480	2.7	0.0005

Table 2.7.-2 NHD Listed Surface Waterbodies in the Vicinity of the Antelope and JAB Uranium Project

Watershed	Waterbody	Size (acres)	Intermittent or Perennial
Arapahoe Creek	Antelope Reservoir	0.7	Intermittent
	Baby Antelope Reservoir	2.5	Intermittent
	Cold Spring Reservoir	2.5	Perennial
	Hadsell Reservoir	6.5	Intermittent
Lower Lost Creek	McKay Reservoirs	1.3	Intermittent
Osborne Draw	Dry Well Reservoir	0.6	Intermittent
	Osborne Reservoir	3.5	Intermittent
Upper Lost Creek	Lost Creek Reservoir	8.6	Intermittent
	Lost Creek Reservoir	1.0	Perennial

The Antelope and JAB Uranium Project Sites

The JAB site, the smaller of the two Antelope and JAB uranium sites at $6.3 \mathrm{mi}^{2}$, is the furthest west of the two. JAB contains 13 miles of intermittent streams, no perennial streams and no wetlands or surface waterbodies. The Antelope site is $16.5 \mathrm{mi}^{2}$ in size, located approximately 3.7 miles east of JAB. Antelope contains 64.7 miles of intermittent streams, no perennial streams and one 0.1 acre freshwater emergent wetland in the northeast portion of the site (Figure 2.7-5).

Precipitation

The Antelope and JAB Uranium Project is located entirely within Sweetwater County, Wyoming. The USGS released a publication in 2005 entitled the Water Resources of Sweetwater County, Wyoming. This publication presents some of the climate statistics for Sweetwater County. The Antelope and JAB Uranium Project site receives between 7 and 10 inches of precipitation each year (Mason and Miller, 2005). Green River, Wyoming is also located in Sweetwater County approximately 100 miles southwest of the Antelope and JAB Uranium Project at an elevation of 6,109 feet msl. Figure 2.7-7 presents both the average monthly precipitation totals as a percent of the annual for Green River (Mason and Miller, 2005) and the approximate distribution of peak flow events for the Antelope and JAB Uranium Project discussed in greater detail in the Surface Water Runoff section. Figure 2.7-7 indicates that peak flow events are generally the result of convective summer rainstorm events.

The Precipitation-Frequency Atlas of the Western United States, Volume II presents precipitation values for the 6 -hour and 24 -hour storm events at $2-, 5-, 10-, 25-, 50-$ and 100 -year recurrence intervals (Miller et al., 1973). The precipitation values presented in this atlas for the Antelope and JAB Uranium Project are listed in Table 2.7-3.

Table 2.7-3 Precipitation Values of Selected Durations and Recurrence Intervals for the Antelope and JAB Uranium Project

Duration	2-year (in)	5-year (in)	10-year (in)	25-year (in)	50-year (in)	100-yer (in)
6-hour	0.7	1	1.1	1.4	1.6	1.8
24-hour	0.9	1.3	1.5	2	2.2	2.4

Surface Water Runoff

Peak flood estimates for all drainage basins pertinent to the Antelope and JAB Uranium Project were estimated following the basin characteristics method outlined in a document entitled Peak-Flow Characteristics of Wyoming Streams published by the USGS in 2003. The method presented in this investigation report used regression analysis to relate peak flow events to different basin characteristics for six different hydrologic regions in the state of Wyoming. Section 2.7-Hydrology

The state of Wyoming was divided into six different hydrologic regions based on differences in topography and climate. The Antelope and JAB Uranium Project is located in Hydrologic Region Six, which corresponds to the high desert region where peak flows primarily occur as the result of rainstorms. Table $2.7-4$ presents a list of the regression equations and statistics for the determination of peak flow events in Hydrologic Region Six (Miller, 2003). Table 2.7-5 presents peak flow estimates for the 2-, 5-, 10-, 25-, 50and 100 -year events.

Table 2.7-4 Basin Characteristic Regression Equations Used to Predict Peak Flows for the Antelope and JAB Uranium Project*

Equation	$\mathbf{S E}_{\mathbf{E}}$ (percent)	SE (percent)
$\mathrm{Q}_{1.5}=12.7\left(\mathrm{AREA}^{0.626}\right)\left((\mathrm{LAT}-40)^{-1.18}\right)$	66	72
$\mathrm{Q}_{2}=22.2\left(\mathrm{AREA}^{0.608}\right)\left((\mathrm{LAT}-40)^{-1.24}\right)$	60	66
$\mathrm{Q}_{2.33}=28.1\left(\mathrm{AREA}^{0.600}\right)\left((\mathrm{LAT}-40)^{-1.26}\right)$	59	64
$\mathrm{Q}_{5}=66.4\left(\mathrm{AREA}^{0.567}\right)\left((\mathrm{LAT}-40)^{-1.35}\right)$	53	59
$\mathrm{Q}_{10}=116\left(\mathrm{AREA}^{0.544}\right)\left((\mathrm{LAT}-40)^{-1.40}\right)$	52	57
$\mathrm{Q}_{25}=204\left(\mathrm{AREA}^{0.520}\right)\left((\mathrm{LAT}-40)^{-1.44}\right)$	52	58
$\mathrm{Q}_{50}=290\left(\mathrm{AREA}^{0.504}\right)\left((\mathrm{LAT}-40)^{-1.46}\right)$	53	60
$\mathrm{Q}_{100}=394\left(\mathrm{AREA}^{0.489}\right)\left((\mathrm{LAT}-40)^{-1.47}\right)$	56	63
$\mathrm{Q}_{200}=519\left(\mathrm{AREA}^{0.46}\right)\left((\mathrm{LAT}-40)^{-1.48}\right)$	59	67
$\mathrm{Q}_{500}=719\left(\mathrm{AREA}^{0.459}\right)\left((\mathrm{LAT}-40)^{-1.49}\right)$	64	73
* Equations for the estimation of peak flows in Hydrologic Region Six		
SE Miller, 2003) in percent.		
is the standard error of the estimate and SE_{p} is the standard error of the prediction,		

Table 2.7-5 Peak Flow Estimates for all Basins Pertinent to the Antelope and JAB Uranium Project*

Basin	Drainage Area $\left(\mathrm{mi}^{2}\right)$	Latitude	$\underset{(\mathrm{cfs})}{\mathrm{QPK}_{(2)}}$	$\underset{\text { (cfs) }}{\mathrm{QPK}_{(5)}}$	$\underset{(\mathrm{cfs})}{\text { QPK }_{(10)}}$	$\underset{(\mathrm{cfs})}{\mathrm{QPK}_{(25)}}$	$\underset{(\mathrm{cfs})}{\mathrm{QPK}_{(50)}}$	$\underset{(\mathrm{cfs})}{\mathrm{QPK}_{(100)}}$
Great Divide Basin	3875	41.8538129	1628	3125	4377	6159	7577	9038
Lost Creek Watershed	415	42.0086150	381	790	1161	1718	2187	2695
Arapahoe Creek Watershed	58	42.2235324	102	225	344	532	697	884
Lower Lost Creek Watershed	76	42.0068615	136	303	462	712	932	1178
Osborne Draw	72	42.1901992	119	261	397	611	799	1010
Upper Lost Creek Watershed	48	42.2235324	90	202	310	481	632	804
* Data covers 2-, 5-, 10-, 20-, 50- and 100-year recurrence interval events (Miller, 2003).								

2.7.2 Ground Water

This section describes the regional and local ground water hydrology, including hydrostratigraphy, ground water flow patterns, hydraulic gradient and aquifer parameters. The information provided in this section satisfies the data requirements of NUREG 1569 and Regulatory Guide 3.46. The discussion is based on information from reports of investigations performed within the Great Divide Basin, previous investigations of the site, and the geologic information presented in Section 2.6. Additional site specific hydrogeologic data have been collected by Uranium One throughout 2007 and 2008.

Regional and site baseline water quality conditions and local ground water use are discussed in Sections 2.7.3 and 2.7.4, respectively.

2.7.2.1 Regional Hydrogeology

The JAB and Antelope sites are located in the north central portion of the Great Divide Basin in south-central Wyoming, south of the Sweetwater River and north of the Washakie Basin. The project site lies within the Upper Colorado River Basin Aquifer System as defined by the USGS (Whitehead, 1996). Within the project area, this aquifer system contains aquifers in the Quaternary, Lower Tertiary and Upper Cretaceous Formations. The Quaternary aquifer includes some discontinuous quaternary gravel deposits overlying the JAB site. The Lower Tertiary aquifers include the Battle Springs Formation and the Fort Union Formation. The Upper Cretaceous aquifers include the Lance/Fox Hills Formation, the Mesa Verde Formation and the Frontier Formation.
Significant historical studies on the aquifers within the Great Divide Basin have been completed by Welder and McGreevy, 1966; Fisk, 1967; and Collentine et al., 1981. The information in the following summaries on ground water flow and recharge as well as the descriptions of the major regional aquifers and aquitards was acquired from these three sources.

Ground Water Flow

Ground water flow is to the south to southwest from the project area towards the synclinal axis of the structurally closed Great Divide Basin. The basin is bordered by the Wind River Range and Granite Mountains to the north, the Rock Springs uplift to the west, the Rawlins uplift to the east, and the Wamsutter Arch to the south. Due to the closed nature of the basin, no precipitation is lost as runoff and little to no ground water is discharged out of the basin. Some ground water is lost from underflow into the Washakie Basin to the south, but since the exchange between the basins is so small they can be considered hydrologically separate. Most ground water loss is through transpiration and some through evaporation.

Recharge

Recharge to the basin is principally from outcrop related infiltration of snowmelt and early spring rains at the basin margins. In 1967, Fisk estimated an average recharge of about $3,000 \mathrm{gpm}$ and that fresh water can be found to depths of 3,500 feet in the Tertiary deposits. This vast amount of water in storage is historic and thought to have accumulated during the Pleistocene. The water in storage is not stagnate but is transmitted at different rates through each water-bearing formation in the Great Divide Basin.

ISR mining is to be isolated within the Eocene Battle Springs Formation with cased and cemented wells. The closed Great Divide Basin will contain all hydrological impact from mining activities to the basin. Downward seepage from the Battle Springs Formation into the deeper Mesa Verde and Frontier Aquifer is not expected to occur due to the impermeable Lewis Shale aquitard which separates them.

Section 2.7-Hydrology

Aquifers

Thick sequences of sediments containing several major and minor aquifers underlie the project area. In descending stratigraphic order, the aquifers include: Quaternary gravels, Eocene Battle Springs, Paleocene Fort Union, Upper Cretaceous Lance/Fox Hills, Cretaceous Mesa Verde, and the Cretaceous Frontier. The Battle Springs Formation is the uranium host and aquifer of primary importance within the project area.

Quaternary Gravels

Some Quaternary gravel deposits are found in the northern half of T26N R94W near the JAB satellite facility. These are discontinuous aquifers that may locally yield large amounts of water and generally have good water quality.

Battle Springs

The Battle Springs Aquifer is a Tertiary stream and deltaic deposit coeval with the Wasatch Formation with which it inter-fingers just to the west of the project area. The Battle Springs Formation consists of semi-consolidated, highly permeable, fine to very coarse-grained, arkosic sandstones, conglomerates and claystones that most likely originated from the granites of the Sweetwater Arch to the northeast. The thickness of this deposit within the Great Divide Basin is estimated to be between 1,000 and 3,300 feet. Welder and McGreevey reported attainable yields greater than $1,000 \mathrm{gpm}$ but Collentine et. al. reported 150 gpm as a likely yield with most yields ranging from 30 to 50 gpm . Historic transmissivities range from 29 to $3,157 \mathrm{gpd} / \mathrm{ft}$ and average storage coefficients range from 10^{-3} to 10^{-5}.

Fort Union

The Fort Union Formation is a lower Tertiary aquifer which directly underlies the Battle Springs Formation. This formation is made up of fine to coarse grained sandstone,
carbonaceous coal with minor siltstone and claystone in the upper portion. The thickness varies from less than 1,000 feet to about 2,500 feet within the Great Divide Basin. It is generally considered a major aquifer that produces moderate to high yields. Porosities range from 15 to 39 percent, permeabilities are typically less than $1 \mathrm{gpd} / \mathrm{ft}^{2}$ and transmissivities are typically less than $2,500 \mathrm{gpd} / \mathrm{ft}$.

Lance/Fox Hills

The Lance/Fox Hills Aquifer is a low to moderate yielding minor aquifer that produces supplies adequate for stock and domestic wells. The Lance is composed of very fine to medium grained sandstones and dark gray to light brown shale, carbonaceous shale, lignite and coal. The Fox Hills is a sandier section underlying the Lance. The thicknesses vary greatly across the basin. For the Fox Hills sandstone, oil field data indicate porosity, permeability and transmissivity values of approximately 20 percent, $0.9 \mathrm{gpd} / \mathrm{ft}^{2}$, and 10 to
$20 \mathrm{gpd} / \mathrm{ft}$, respectively. Lance Formation yields from stock wells are estimated to be between 5 and 30 gpm with transmissivities less than $22 \mathrm{gpd} / \mathrm{ft}$.

Mesa Verde

The Mesa Verde Aquifer is an alternating sandstone-shale deposit associated with the regressive-transgressive phase of a Late Cretaceous sea. It is confined by the Lewis Shale above and the Cody Shale below. This formation has been exploited within the Great Divide Basin due to its value as a commercial oil and gas resource. Within the Basin, the Mesa Verde thickness ranges from 2,200 to 5,600 feet. Small to moderate yields can be expected and average porosities are about 20 percent.

Frontier

The Frontier Formation is a minor aquifer consisting of sandstones and shales with a few bentonite beds and lenses of pebble conglomerate. The thickness is estimated between 190 to 900 feet within the basin. Historic transmissivities are estimated between 100 and $20,000 \mathrm{gpd} / \mathrm{ft}$ with yields ranging from 1 to 100 gpm .

Aquitards

Major aquitards which underlie the project area include the Upper Cretaceous Lewis Shale, Cretaceous Cody Shale and the Lower Cretaceous units.

Lewis Shale

The Lewis Shale hydrologically separates the Tertiary and Lance/Fox Hills Aquifers from the stratigraphically lower Mesa Verde Aquifer. A thickness of 1,906 feet was measured on the southeast flank of the Great Divide Basin. The aquitard thins towards the west and is likely to be thinner underneath the study area.

Cody Shale

The Cody Shale aquitard hydrologically separates the Mesa Verde Aquifer from the underlying Frontier Aquifer and is around 5,000 feet thick underneath the project area.

Lower Cretaceous Units

The Lower Cretaceous units which underlie the Frontier Aquifer consist of the Mowry Shale, Thermopolis Shale and Cloverly Formation. The Mowry and Thermopolis Shale are aquitards with a combined thickness ranging from 190 to 760 feet. The Cloverly Formation is often considered a minor aquifer with low to moderate yields with a thickness ranging from 45 to 240 feet. When grouped together, the Lower Cretaceous units are considered a leaky confining unit.
investing in our energy

2.7.2.2 Site Hydrogeology

Uranium One has conducted an intensive, on-going field investigation since the spring of 2007 to collect site-specific geohydrologic data across the project area. The purposes of the field program have been to collect well hydraulic and water quality data in the vicinity of the known ore zones to establish baseline conditions, and to evaluate potential effects of operations on adjacent ground water quality and quantity. The field program was intended to verify historic aquifer test data collected at the JAB site by HydroEngineering (1984) and collect new data to characterize the Battle Springs Aquifer across the Antelope and JAB project areas.

Monitoring Well Locations

Six monitoring well locations were established at the JAB site as part of the HydroEngineering (1984) investigation. All of these wells were completed in the Production Sand to collect representative background data for this unit. Aquifer testing was conducted at two locations as part of this investigation, and water quality samples were collected from all of the wells. All of these wells still exist, and Uranium One has collected additional water quality data from them. Two well clusters consisting of a pumping well, and two piezometers completed in the Production Sand, and one in the Underlying Sand were established as part of that investigation. Uranium One installed two additional pumping wells to further investigate the aquifer properties at JAB in the first quarter of 2008. The locations of the JAB wells and surface water sampling locations are included on Figure 2.7-8. Table 2.7-6 presents the well completion information for all of the monitoring wells at the Antelope and JAB Project site.

Twenty two monitoring wells have been established at the Antelope site. The locations of the Antelope wells are shown on Figure 2.7-9. Wells designated as M or MP at Antelope are completed in potential uranium producing sand horizons. Wells designated as MU are completed in sands underlying the producing horizons at that location.
The monitoring wells were completed to Uranium One specifications, approximating operating well specifications. Typical well completion diagrams are included on Figure 2.7-10. After the wells were constructed, they were developed and allowed to stabilize before aquifer testing and water quality sampling were initiated.

Hydrostratigraphic Units

The principal aquifer at the Antelope and JAB Project, and the host of the uranium producing zones is the Battle Springs Aquifer. The Battle Springs Formation was deposited by a large alluvial fan system, consisting of deposits of very fine to very coarse grained arkosic sandstones interbedded with thin shales, mudstones, and localized conglomerates. The lithology of the Battle Springs Formation varies greatly, both laterally and vertically, typical of an alluvial fan deposit. Based upon exploration drilling, and the correlation of geophysical logs, Uranium One has identified the following five hydrostratigraphic units at JAB: the Overlying Sand, the Overlying Confining Unit, the

Production Sand, the Underlying Confining Unit, and the Underlying Sand. Above the Overlying Confining Unit, the overlying sands are unsaturated. Twelve hydrostratigraphic units have been identified at Antelope. From shallowest to deepest, these sands are identified as the 290-250 Sand, the 245 Shale, the 240-200 Sand, the 195 Shale, the 190-150 Sand, the 145 Shale, the 140-100 Sand, the 95 Shale, the 90-50 Sand, the 45 Shale, the $40-10$ Sand, and the 05 Shale. Type sections illustrating the relative positions of the identified hydrostratigraphic units are presented as Figures 2.7-11 and 2.7-12.

Well Name	$\begin{aligned} & \text { Completion } \\ & \text { Date } \end{aligned}$	Well Depth	Ground Surface Elevation	Top of Casing Elevation	Casing Material	Casing Diameter (inches)	Completion Interval	Aquifer	Geologic Unit	Township	Range	Section	QtrQtr	Northing	Easting	Datum
M-1	11/8/1978	400	7267.68	7267.88	PVC	5	240-400	140-100 Sand	Battle Springs	26 N	93 W	12	NWSW	573692.65	733686.12	NAD 1927
M-2	12/10/2007	440	7233.75	7235.15	PVC-SDR17	4.5	350-375	190-150 Sand	Battle Springs	26 N	93W	14	SESE	571131.53	732183.15	NAD 1927
MU-2		600	7232.45	7233.95	PVC-SDR17	4.5	510-535	140-100 Sand	Batte Springs	26N	93W	14	SESE	571188.91	732242.48	NAD 1927
M-3	2/28/2008	390	7241.07	7242.37	PVC-SDR17	4.5	346-366	190-150 Sand	Battle Springs	26 N	93W	13	NWSW	568804.76	734398.02	NAD 1927
M-4	9/6/2007	600	7181.2	7181.6	PVC-SDR17	4.5	400-460	190-150 Sand	Battle Springs	26N	93W	24	NENE	566537.88	736849.53	NAD 1927
MP-4		600	7178.57	7180.37	PVC-SDR17	4.5	426-446	190-150 Sand	Battle Springs	26N	93W	24	NENE	566453.17	736837.97	NAD 1927
MU-4		800	7178.58	7180.38	PVC-SDR17	4.5	657-677	190-150 Sand	Battle Springs	26N	93W	24	NENE	566456.08	736848.08	NAD 1927
M-5	3/6/1996	380	7205.44	7206.84	PVC-SDR17	4.5	330-350	190-150 Sand	Battle Springs	26 N	93W	24	NENE	568338.61	737790.27	NAD 1927
M-6	1/25/2008	460	7249.84	7251.44	PVC-5DR17	4.5	425-460	140-100 Sand	Battle Springs	26 N	92W		SWSw	572197.64	738205.14	NAD 1927
M-7	11/1/1976	505	7309.19	7310.99	Steel	$65 / 8$	345-505	190-150 Sand	Batte Springs	26N	92W	18	Swsw	570394.24	741452.7	NAD 1927
M-8	12/13/2007	700	7225.95	7227.75	PVC-SDR17	4.5	570-590	140-100 Sand	Battle Springs	26 N	92W	17	SWNE	570314.61	746738.1	NAD 1927
M-9	12/14/2007	1000	7210.93	7213.03	PVC-SDR17	4.5	520-540	240-200 Sand	Battle Springs	26N	92W	20	NESW	563913.06	745142.33	NAD 1927
M-10	6/28/1976	403	7250.78	7251.28	Steel	6	200-400	$\begin{aligned} & 75 \% \text { within } 240-200 \\ & \text { Sand, } 25 \% \text { within } 290 \text { - } \\ & 250 \text { Sand } \\ & \hline \end{aligned}$	Battle Springs	26N	92W		NESE	569407.04	753404.44	NAD 1927
M-11	1/25/2008	500	7248.05	7250.25	PVC-SDR17	4.5	455-480	190-150 Sand	Battle Springs	26 N	92W	15	SENW	570989.14	756080.23	NAD 1927
M-12	12/26/2007	500	7343.89	7346.69	PVC-SDR17	4.5	390-420	190-150 Sand	Battle Springs	26 N	92w		SWNE	574967.83	751213.99	NAD 1927
M-13	2/29/2008	460	7370.68	7372.48	PVC-SDR17	4.5	385-425	140-100 Sand	Battle Springs	26 N	92W	10	SWNE	574717.24	756491.77	NAD 1927
MU-13		800	7373.45	7375.55	PVC-SDR17	4.5	707.732	90.50 Sand	Battle Springs	26 N	92W	10	SWNE	574592.6	756537.82	NAD 1927
M-14	12/28/1980	400	7282.91	7284.41	PVC-SDR17	4.5	360-385	140-100 Sand	Battle Springs	26N	92w	11	NWSE	573857.72	761527.46	NAD 1927
M-15	12/24/1980	360	7362.28	7363.28	Steel	6	290-340	190-150 Sand	Battle Springs	26 N	92w	14	SENE	570935.84	763485.02	NAD 1927
M-16	3/11/2008	360	7374.52	7377.02	pve	4.5	245-260	190-150 Sand	Battle Springs	26 N	92W	12	NWNE	576758.48	766655.87	NAD 1927
MP-16		300	7380.17	7381.97	PVC-SDR17	4.5	265-280	190-150 Sand	Battle Springs	26 N	92W	12	NWNE	576661.92	766661.85	NAD 1927
MU-16		700	7379.61	7381.41	PVC-SDR17	4.5	460-500	140-100 Sand	Battle Springs	26 N	92W	12	NWNE	576662.83	766646.75	NAD 1927
MW-1291	8/19/1980	190	6901.33	6902.83	PVC	5	150-190	Production Sand	Battle Springs	26 N	94w	14	NWSW	567706.65	696148.5	NAD 1927
MW-1292	8/20/1980	272	6867.21	6868.61	PVC	5	230-270	Production Sand	Battle Springs	26 N	94W	15	SWSE	566738.3	693373.74	NAD 1927
MW-1298	8/21/1980	287	6871.4	6873.12	PVC	5	246-286	Production Sand	Battle Springs	26 N	94W	23	NWNW	565757.54	695847.87	NAD 1927
MW-1299	8/25/1980	263	6912.7	6914.78	PVC	5	227-267	Production Sand	Battle Springs	26 N	94W	24	NWNW	565655.33	701683.63	NAD 1927
MW-1300	8/22/1980	236	6868.8	6870.57	PVC	5	196-236	Production Sand	Battle Springs	26 N	94w	14	NWNW	570623.67	696463.81	NAD 1927
JAB \#1	9/12/1978	220	6909	6911.14	PVC	6	180-220	Production Sand	Batte Springs	26 N	94W	14	NESE	568279.65	699794.88	NAD 1927
MP-2069	3/8/2008	205	6895.15	6896.55	PVC-SDR17	4.5	160-190	Production Sand	Battle Springs	26N	94W	14	NWSW	567527.28	696142.35	NAD 1927
MP-2103	3/10/2008	260	6873.95	6875.15	PVC-SDR17	4.5	225-250	Production Sand	Batte Springs	26 N	94W	15	SWSE	567027.91	693518.66	NAD 1927
OW-1301	9/3/1980	197	6899.15	6500.15	PVC	2	177-197	Production Sand	Battle Springs	26 N	94W	14	NWSW	567644.86	696149.05	NAD 1927
OW-1302	9/4/1980	192	6900.6	6902.2	PVC	2	172-192	Production Sand	Batte Springs	26N	94w	14	NWSW	567676.52	696147.67	NAD 1927
OW-1303	9/8/1980	235	6903.69	6906.79	PVC	2	215-235	Underlying Sand	Battle Springs	26 N	94W	14	NWSW	567756.67	696152.07	NAD 1927
OW-1304	9/9/1980	263	6867.57	6867.67	PVC	2	243-263	Production Sand	Battle Springs	26N	94 W	15	SWSE	566739.61	693434.02	NAD 1927
OW-1305	9/10/1980	265	6867.06	6868.56	PVC	2	245-265	Production Sand	Battle Springs	26 N	94W	15	SWSE	566740.11	693343.03	NAD 1927
OW-1307	9/23/1980	315	6866.92	6868.52	PVC	2	278-298	S0' below Underiying Sand	Battle Springs	26 N	94W	15	SWSE	566706.19	693377.48	NAD 1927

JAB Hydrostratigraphic Units

Overlying Sand

The Overlying Sand Unit is a typical alluvial fan channel deposit consisting of fine to coarse grained arkosic sands. The sand units are separated by thin shale and mudstone layers. This unit ranges from four to 23 feet thick in the permit area with 10 feet being the average. Although there is uranium mineralization present in this sand, it is unsaturated and not viable for ISR mining.

Overlying Confining Unit

The Overlying Confining Unit is a thinly interbedded sandstone, shale, and mudstone unit. It is typical of the normal, fining upward sequence of an alluvial fan depositional sequence. The Overlying Confining Unit ranges from three to 33 feet thick in the Permit Area, averaging 10 to 15 feet thick.

Production Sand

The Production Sand contains the mineralized zone at JAB, and is a typical alluvial fan channel deposit consisting of fine to very coarse grained arkosic sandstone. The Production Sand ranges from 22 to 54 feet thick in the JAB Permit Area, with an average thickness of 35 to 40 feet. Within the Production Sand, individual sandstone beds are fairly thick, with the thinnest sandstone beds ranging from eight to 10 feet thick. The remaining sands are separated by thin interbedded clay and mudstone units.

Underlying Confining Unit

The Underlying Confining Unit is a carbonaceous shale. The carbonaceous shale is a member of the Wasatch Formation that has inter-tongued with the arkosic sands of the Battle Springs Formation. The carbonaceous shale is a lacustrine - paludal deposit, indicating a period of non-erosion from the ancestral Granite Mountains to the north, and a concurrent period of regional subsidence, allowing the expansion of the ancient lakes to the south of the Permit Area. This carbonaceous shale thickens to the south and southwest of the JAB Permit Area. In the Permit Area the carbonaceous shale is between six and 30 feet thick, with 10 to 12 feet thick being the average.

Underlying Sand

The Underlying Sand Unit is a fine to coarse grained arkosic sandstone with thin, interbedded shale and mudstone layers. This unit ranges from 2 to 34 feet thick in the JAB Permit Area, averaging approximately 15 feet in thickness. The Underlying Sand Unit is a typical alluvial fan channel deposit. The variations in the sandstone thickness are indicative of channels within the alluvial fan moving laterally and vertically over time. The interbedded shales and mudstones represent lower energy floodplain and sheet flow deposits, distal from the main channel deposits. Isopach maps of the Overlying Sand, Overlying Confining Unit, Production Sand, Underlying Confining Unit, and the

Underlying Sand, are presented as Figures 2.6-3 through 2.6-8 in the Geology Section (Section 2.6) of this technical report. Antelope Hydrostratigraphic Units

290-250 Sand

The 290-250 Sand Unit is present in only the southern portion of the Antelope permit area as these sand beds have been eroded in the northern portion. The 290-250 Sands are arkosic, very fine to very coarse grained sandstones with interbedded shale and siltstones.

245 Shale

Underlying the 290-250 Sand is the 245 Shale. It is five to 25 feet thick, averaging 12 feet and consists of gray shale and siltstone. The color can vary from greenish-grey, to pale purple and yellow. The 245 Shale is present in the southern portion of the permit area, but has been removed by erosion in the north (Figure 2.6-25).

240-200 Sand

Underlying the 245 Shale is the 240-200 Sand. It is 205-298 feet thick, averaging 254 feet, and consists of very fine to very coarse grained arkosic sandstone with interbedded yellow, purple, and greenish-grey shale. Pebble conglomerate may be present at the base of the individual channel sand units. Minor chert and pyrite can also be observed. A complete section of the 240-200 Sand is present in the southern two-thirds of the permit area, but becomes an erosional surface in the northern third (Figure 2.6-24). This unit contains uranium mineralization, and Well M-9 is completed in this sandstone unit.

195 Shale

The 195 Shale underlies the 240-200 Sand, is four to 43 feet thick, averaging 14 feet, and consists of greenish-gray shale. It is exposed on the surface and has been eroded in the northernmost edge of the permit area. Where it has not been removed by erosion it is laterally continuous (Figure 2.6-23).

190-150 Sand

The 190-150 Sand underlies the 195 Shale and is 167 to 322 feet thick across the Antelope permit/license area, averaging 252 feet thick. It consists of very fine to very coarse grained arkosic sandstone with interbedded shale and siltstones. It contains minor black chert, and minor to moderate pyrite. Along the northern edge of the permit area, the 190-150 Sand is exposed at the surface and has been partially eroded (Figure 2.6-22). This sand contains uranium mineralization. Wells $\mathrm{M}-2, \mathrm{M}-3, \mathrm{M}-4, \mathrm{MU}-4, \mathrm{M}-11, \mathrm{M}-12$, M-16, and MP-16 are all completed in this sandstone unit.

Section 2.7- Hydrology

145 Shale

The 145 Shale underlies the $190-150$ Sand, is four to 30 feet thick, averaging 12 feet and consists of greenish-gray shale. It is laterally continuous throughout the permit area (Figure 2.6-21).

140-100 Sand

The 145 Shale is underlain by the $140-100$ Sand. The $140-100$ Sand is 219 to 405 feet thick, averaging 291 feet, and consists of arkosic and quartzose, very fine to very coarse grained sandstone with interbedded shale and siltstones (Figure 2.6-20). The shale can range in color from green-grey to pale purple. Minor black chert and pebble conglomerate layers can also be present and the unit often contains some pyrite. Wells M-1, MU-2, M6, M-8, M-12, M-14, and MU-16 are completed in this sand unit.

95 Shale

Underlying the 140-100 Sand, the 95 Shale is three to 35 feet thick, averaging 14 feet. The 95 Shale consists of greenish grey shale and siltstone. It is laterally continuous throughout the permit area (Figure 2.6-19).

90-50 Sand

The $90-50$ Sand underlies the 95 Shale, is 233 to 371 feet thick and averages 284 feet. It consists of arkosic, very fine to coarse grained sandstone with interbedded greenish grey shales and siltstones, and can contain abundant pyrite. Figure 2.6 -18 shows the isopach map of the $90-50$ Sand. Well MU-13 is completed in this sand representing an underlying Sand Unit.

45 Shale

The 45 Shale underlies the $90-50$ Sand and is five to 25 feet thick, averaging 14 feet. The 45 Shale appears to be continuous throughout the Antelope permit/license area. It is composed of green-grey shale and siltstone (Figure 2.6-17).

40-10 Sand

The 45 Shale is underlain by the $40-10$ Sand. It is 257 to 314 feet thick, averaging 287 feet and consists of very fine to coarse grained arkosic sandstone with interbedded greengrey shale and siltstones (Figure 2.6-16). It often contains abundant pyrite.

05 Shale

The 05 Shale confining unit consists of green-grey shale and minor siltstone. It is eight to 18 feet thick, averaging 14 feet, and is thought to be continuous throughout the Antelope property (Figure 2.6-15).
Figures $2.6-26$ through $2.6-35$ in Section 2.6 show cross sections through the Antelope Project area.

2.7.2.3 Potentiometric Surface, Ground Water Flow Direction and Hydraulic Gradient

The hydrogeologic evaluation of the Antelope and JAB sites included measurement of water levels in monitor wells completed in the production and underlying aquifers to assess the potentiometric surface, ground water flow direction, and hydraulic gradient. Regional ground water flow is generally to the south to southwest. Water level data recorded for the site monitor wells can be found in Addendum 2.7-A. Figure 2.7-13 depicts regional ground water flow after Collentine et. al, 1981.

The JAB site potentiometric surface for the production zone sand is shown on Figure 2.714. Water level data used to develop the potentiometric surface map were collected between September 21 and September 29, 2007. Two monitoring wells, MP-2069 and MP-2103, had not yet been drilled at that date so static water level elevations from March 11,2008 were evaluated for those two sites. Based on the water level data, the direction of ground water flow within the production sand is predominantly to the south with an eastward inclination, generally consistent with the regional flow system. The horizontal hydraulic gradient calculated from this data is approximately $0.002 \mathrm{ft} / \mathrm{ft}(8 \mathrm{ft} / \mathrm{mile})$. These findings are generally consistent with historic data collected by Hydro Engineering (1984), who reported that ground water in this area generally flows southeasterly with a hydraulic gradient of $0.018 \mathrm{ft} / \mathrm{ft}$. Comparison of current water level data collected during this investigation with those from Hydro Engineering for similar months indicates water levels in these wells have generally fallen anywhere from 0.35 to 3.28 feet since those level measurements were taken in 1980-1982. Despite these differences, the water levels are generally consistent through time. The Historic report (without large figures) is contained in Appendix B of this Technical Report.

Figure 2.7-15 represents the Antelope site potentiometric surface for production sands. Water level data used to develop the potentiometric surface map were collected in March and April, 2008. In general, ground water flow is to the southwest and is generally consistent with the regional flow system. The general hydraulic gradient calculated from the data is $0.02 \mathrm{ft} / \mathrm{ft}(100 \mathrm{ft} / \mathrm{mi})$. The gradient at Antelope is much steeper than the gradient at JAB . In addition, the gradient steps down from a higher gradient $(0.03 \mathrm{ft} / \mathrm{ft}$, $150 \mathrm{ft} / \mathrm{mi})$ in the northeast to a lower gradient $(0.01 \mathrm{ft} / \mathrm{ft}, 40 \mathrm{ft} / \mathrm{mi})$ in the southwest. This suggests that the Antelope site permeability is not homogeneous with respect to the production sands. The flatter gradient areas have a relatively higher permeability while the steeper gradient areas have lower permeability

Differences in hydraulic heads for the JAB and Antelope sites were analyzed by comparing water levels in closely grouped wells completed in different hydrostratigraphic units. These differences were used to assess hydraulic communication between the production sands and the underlying sands. Table $2.7-7$ summarizes the water levels of the well groups used for the assessment.
investing in our energy

Table 2.7-7 Head Difference of Underlying Aquifers from Overlying Aquifers Antelope and JAB Uranium Project

Mine Name	Well Group	Date	Well ID	Water Level	Aquifer	Head Difference ${ }^{1}$
JAB	MP-2069	3/19/2008	MP-2069	6,790	Production Sand	+2 ft .
			OW-1303	6,792	Underlying Sand	
	MP-2103	3/24/2008	MP-2013	6,790	Production Sand	+0 ft .
			OW-1307	6,790	Underlying Sand	
Antelope	M-13	4/3/2008	M-13	7,154	$\begin{gathered} 140-100 \\ \text { Production Sand } \end{gathered}$	- 40 ft .
			MU-13	7,114	$\begin{gathered} 90-50 \text { Underlying } \\ \text { Sand } \end{gathered}$	
	M-16	3/27/2008	M-16	7,182	$\begin{gathered} 190-150 \\ \text { Production Sand } \end{gathered}$	+4 ft .
			MU-16	7,186	$\begin{gathered} 140-100 \\ \text { Underlying Sand } \end{gathered}$	

Notes:

1. A positive difference is shown when the water level in the underlying aquifer is higher than the Production Sand. A negative difference is shown when the water level in the underlying aquifer is lower than the Production Sand.

In general, the difference between the hydraulic heads of the production sands and the underlying sands at the JAB and Antelope sites are minimal. This is consistent with the aquifer test analysis which shows leaky conditions; some water is being contributed to the production zone from the overlying and underlying aquifers. In almost all cases the water levels of the underlying aquifer are slightly above those of the production zone, suggesting the lower sands are recharged at higher topographic elevations and discharge to the overlying sands.

The one exception is well group M-13. The observation well MU-13, drilled into the underlying 90-50 sand, has a water level approximately 40 feet lower than M-13, which is drilled into the $140-100$ sand. This difference indicates that these two aquifers are not in hydraulic communication, but that there is potential for ground water from the upper aquifer to drain into the lower aquifer at this location.
The future addition of more monitoring wells in both the underlying and overlying units is expected to constrain the confining properties of the shales between production zone and underlying aquifers. From this preliminary analysis, it appears at Antelope that the 95
investing in our energy Section 2.7- Hydrology
Shale between the $90-50$ and $140-100$ sand is a confining layer while the 145 shale between the 140-100 and 190-150 sands is only semi-confining.

2.7.2.4 Site Specific Aquifer Properties

The hydrogeologic properties of the Battle Springs aquifers within the JAB and Antelope Project areas have been estimated from historic and recent aquifer testing. HydroEngineering (1984) completed an initial hydrogeologic investigation of the JAB property in 1982 that included aquifer tests on several Production Sand wells. Constant rate tests were conducted on two wells on the JAB property and on three wells on the Antelope property in late 2007 and 2008.

Historic Aquifer Test Results

Hydro-Engineering (1984) completed aquifer tests on six wells at the JAB Project between September 1980 and December 1981 to assess the hydrogeologic characteristics of the Production Sand as well as underlying hydrostratigraphic units. A summary of the Hydro-Engineering tests that were conducted is presented below. Information on the pumping wells and observation wells utilized in the aquifer tests are provided in Table 2.7-6, and the locations of the wells are shown on Figures 2.7-8 and 2.7-9.
$>$ A two day pumping test was completed on Well MW-1292 on October 21, 1980. The well was pumped at a discharge rate of 32 gallons per minute (gpm) while wells OW-1304, OW-1305, and OW-1307 were observed for drawdown. Wells MW-1292, OW-1304, and OW-1305 are completed within the Production Sand, while OW-1307 is completed within the Underlying Sand. Observation wells OW-1304, OW-1305, and OW-1307 are located 60.4, 30.4, and 32.4 feet, respectively, from the pumping well, MW-1292. Drawdown in the observation wells at the end of the test for OW-1304, OW-1305, and OW-1307 were 6.37, 8.85 , and 2.79 feet, respectively. The response of OW-1307 during the aquifer test suggests there is hydrologic communication between the Production and Underlying Sands. Hydro-Engineering (1984) speculated that a poor bentonite seal in the well annulus or pinching out of the mudstone in this area could account for the drawdown in OW-1307.
$>$ Well MW-1291 was pumped at an average rate of 3.1 gpm for 405 minutes on December 9, 1981, while monitoring wells OW-1301, OW-1302, and OW-1303 were observed for drawdown. OW-1301, OW-1302, and MW-1291 are completed within the Production Sand, but OW-1303 is completed in the Underlying Sand north of a localized fault. Observation wells OW-1301, OW-1302, and OW-1303 are located $62,30.5$, and 50 feet, respectively from MW-1291. Drawdown in observation wells OW-1301, OW-1302, and OW-1303 were measured to be 1.10, 1.88, and 0.06 feet at the end of the test. Hydro-Engineering (1984) reported that

Section 2.7-Hydrology

very little water level change was observed in OW-1303, and that the Underlying Sand north of the fault is not readily connected to the Production Sand.
$>$ On September 17, 1980, Well MW-1298 was pump tested at an average rate of 5.9 gpm for 55 minutes. Drawdown in this well at the end of the test was measured to be 85.61 feet. MW-1298 is completed in the Production Sand. No observation well data were collected during this test.
> Located in the southeast corner of the proposed mining area, Well MW-1299 was pump tested at an average rate of 23.7 gpm for 916 minutes on September 16, 1980. MW-1299 is completed in the Production Sand. At the end of the test, the water level in this well had been drawn down 14.25 feet. No observation well data were collected during this test.
$>$ Well MW-1300, which lies north of all the previously mentioned wells, was pump tested at an average rate of 6.9 gpm . This well is also completed in the Production Sand. At the end of this test, drawdown in the well was measured to be approximately 13.5 feet. No observation well data were collected during the test.
> The JAB \#1 well was used for a drilling water supply, and is completed in the Production Sand. This well was tested for 870 minutes on September 16, 1980, at a final discharge rate of 55 gpm . Total drawdown measured in this well at the end of the test was 32.61 feet. No observation well data were collected during this test.

Summarized in Table 2.7-8, transmissivities estimated from previous aquifer tests completed for the JAB Project vary and range from 40 to 4,700 gallons per day per foot (gpd/ft). Hydraulic conductivities estimates vary similarly, and range from 1.3 to 82.3 gallons per day per square foot ($\mathrm{gpd} / \mathrm{ft}^{2}$).
investing in our energy Section 2.7- Hydrology

Table 2.7-8 Summary of Horizontal Aquifer Properties of the Production Sand in the JAB Project Area, Historic Aquifer Tests - Antelope and JAB Uranium Project

Well	Date Tested	Analysis Method	Transmissivity (gpd/ft)	Storage Coefficient	Aquifer Thickness (ft)	Hydraulic Conductivity (gpd/ft
MW- 1300	$10 / 1 / 1980$	Jacob, Theis Recovery	$650-670$	--	30	21.7
MW- I292	$10 / 21 / 1980$	Jacob, Theis Recovery	$2800-2900$	--	70	40.4
OW- 1304	$10 / 21 / 1980$	Theis, Jacob	4700	2.4×10^{-4}	70	66.6
OW- 1305	$10 / 21 / 1980$	Theis, Jacob	$3900-4200$	$2.4 \times 10^{-4}-$ 1.7×10^{-4}	70	59.1
JAB \#1	$9 / 16 / 1980$	Theis Recovery	3400	--	40	82.3
MW- 1299	$9 / 16 / 1980$	Jacob, Theis Recovery	$1400-1700$	--	53	29.2
MW- 1298	$9 / 17 / 1980$	Jacob, Theis Recovery	$40-50$	--	35	1.3
MW-	$12 / 9 / 1981$	Jacob, Theis Recovery	$100-220$	--	45	4.6
1291						

Source: Hydro-Engineering (1984)
Notes: -- Indicates storage coefficient could not be calculated from these data.
Limited data (e.g., laboratory analyses or detailed pump test data) regarding the vertical hydraulic conductivity of the confining units are available for the JAB Project area. Based on aquifer testing of MW-1292 and observation well OW-1307 which was completed in the Underlying Sand, Hydro-Engineering estimated a vertical permeability of $0.43 \mathrm{ft} /$ day ($1.6 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$) for the Underlying Confining Unit below the Production Sand. It was concluded that this value was probably not representative.

2007-2008 Aquifer Tests

In December 2007 and March-April 2008, Uranium One, Pronghorn Pump (Pronghorn), and Lidstone and Associates, Inc. (LA) initiated an aquifer test program for both the JAB and Antelope Projects that was designed to accomplish the following objectives:

1. Demonstrate hydraulic communication between the production sand zone pumping wells and the surrounding monitor wells;
2. Assess the hydrologic characteristics of the production zone aquifer within the tested areas;
3. Evaluate the presence or absence of hydrologic boundaries in the production sand zones within the project areas; and,
4. Demonstrate sufficient confinement between the production sand zones and the overlying and underlying sands for the purposes of ISR mining.

Given the vast expanse of each property plus the distance between the properties, LA and Uranium One decided to complete aquifer tests at several locations on both properties. Two wells, MP-2069 and MP-2103, were tested at the JAB Project area, and three wells, MP-4, M-13, and MP-16, were tested at the Antelope Project area. These aquifer tests were completed between March 19 and April 1, 2008. Table 2.7-6 provides basic well information for the pumping wells and observation wells used in the tests. Details regarding the pump test results and analysis for the JAB and Antelope Project areas are provided in Addendum 2.7-B and $2.7-\mathrm{C}$, respectively.

Aquifer Testing Procedures

For pump testing purposes, Uranium One contracted Pronghorn to install the test pumps and all necessary appurtenances for each well. The test pumps were typically set in each production well to a depth above the uppermost screened interval. During the tests, ground water was lifted from the pump through a steel column pipe, and once at ground surface, was routed through a PVC discharge manifold consisting of an approximately one inch totalizing Great Plains Industries and a flow control valve. Below the flow control valve, flexible hose was used to discharge the water to ground surface. Discharge rates were monitored with both the in-line flowmeter, and a calibrated five gallon bucket. The flowmeter was used to record both total pumpage and instantaneous flows. During the constant rate tests, water level changes in the production and observation wells were monitored both manually with a water level tape, and electronically with In-Situ LevelTroll 700^{TM} pressure transducers. The locations of each of the wells that were used during the tests were field surveyed with a hand held Garmin GPS unit for initial survey purposes.

LA utilized standard aquifer test procedures included with Schlumberger Water Services' Aquifer Test Pro 4.2^{TM} software package to develop the hydrogeologic parameter estimates presented herein. Curve matching analysis of the drawdown data generated by

URANIUM ONE AMERICAS

License Application, Technical Report

Antelope and JAB Uranium Project

Section 2.7-Hydrology
the pump testing generally indicated that the saturated sandstones of Battle Springs Aquifer behave as leaky confined aquifers. Typical analytical methods that were used for this analysis included Hantush and Jacob (1955), Cooper \& Jacob (1946), and the Theis Recovery (1935) methods.

JAB Aquifer Test Results

LA completed two aquifer tests in the JAB project area. The tests were completed utilizing wells MP-2069 and MP-2103 as the pumping wells. Test results are summarized in Table 2.7-9. Section 2.7- Hydrology

Table 2.7-9 Summary of Horizontal Aquifer Properties of the Production Sand in the JAB Project Area - March-April 2008 - Antelope and JAB Uranium Project

Well	Date Tested	Analysis Method	Transmissivity (gpd/ft)	Storage Coefficient	Aquifer Thickness (ft)	Hydraulic Conductivity $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)$
$\begin{aligned} & \text { MP- } \\ & 2103 \end{aligned}$	3/24/2008	Hantush, CooperJacob, Theis Recovery	1360-2130	--	35	38.9-60.7
$\begin{gathered} \text { MW- } \\ 1292 \end{gathered}$	3/24/2008	Hantush, CooperJacob, Theis Recovery	1850-2420	$\begin{aligned} & 1.9 \times 10^{-5}- \\ & 3.5 \times 10^{-5} \end{aligned}$	35	52.7-69.0
$\begin{aligned} & \text { OW- } \\ & 1307 \end{aligned}$	3/24/2008	Hantush, CooperJacob	1180-4180	$\begin{aligned} & 1.2 \times 10^{-4}- \\ & 1.9 \times 10^{-4} \end{aligned}$	35	33.8-120
$\begin{aligned} & \text { MP- } \\ & 2069 \end{aligned}$	3/19/2008	Hantush, CooperJacob, Theis Recovery	850-1160	--	40	21.3-28.9
$\begin{gathered} \text { MW- } \\ 1291 \end{gathered}$	3/19/2008	Hantush, Theis Recovery	585-923	8.8×10^{-5}	40	14.6-23.1
$\begin{aligned} & \text { OW- } \\ & 1301 \end{aligned}$	3/19/2008	Hantush, CooperJacob, Theis Recovery	790-1080	$\begin{aligned} & 6.9 \times 10^{-6}- \\ & 7.1 \times 10^{-6} \end{aligned}$	40	19.8-26.9
$\begin{aligned} & \text { OW- } \\ & 1302 \end{aligned}$	3/19/2008	Hantush, CooperJacob, Theis Recovery	693-1100	$\begin{aligned} & 1.1 \times 10^{-5}- \\ & 1.5 \times 10^{-5} \end{aligned}$	40	17.3-27.4

MP-2069 Aquifer Testing

Beginning on March 19, 2008, Well MP-2069 was tested for 2,880 minutes at an average rate of 10.25 gpm , while water levels were monitored in four observation wells. Observation wells OW-1301, OW-1302, and MW-1291 were utilized to monitor water levels in the Production Sand at distances of approximately 116, 148, and 170 feet, respectively. Observation well OW-1303 was used to observe any water level changes in the Underlying Sand on the other side of a localized fault in the Battle Springs Formation, at a distance of approximately 234 feet from the pumping well.

As summarized in Addendum 2.7-B, the transmissivity and hydraulic conductivity of the Production Sand in the vicinity of MP-2069 appear to reflect leaky confined aquifer conditions. Transmissivity estimates made from pumping, recovery, and distance drawdown data for the Production Sand range from 585 to $1,160 \mathrm{gpd} / \mathrm{ft}$, with an average of $869 \mathrm{gpd} / \mathrm{ft}$. Based on an average thickness of 40 feet, the hydraulic conductivity of the aquifer ranges from 14.6 to $28.9 \mathrm{gpd} / \mathrm{ft}^{2}$, with an average of $21.7 \mathrm{gpd} / \mathrm{ft}^{2}$. Based on observation well data, the average storage coefficient of the Production Sand was estimated to be 2.4×10^{-5}. After two days of pumping, the radius of influence of this well extended approximately 0.5 miles based on distance drawdown data. Comparison of these results in Table 2.7-9 with those from Hydro-Engineering (1984) presented in Table 2.7-8 indicate that the current results are similar, but slightly higher than those previously estimated.

As shown in Addendum 2.7-B, the test pumping of MP-2069 drew down water levels in the Production Sand, as expected, and suggests that the Production and Underlying Sands are in limited hydraulic communication. Water levels in OW-1303 declined minimally during the later portion of the test and into the recovery period before rebounding. Maximum water level drawdown associated with this well was measured to be 0.25 feet. The relative similarity of the water level elevations between MP-2069 and OW-1303 (~ 2 foot difference), in combination with the 0.25 feet of drawdown that observed during this test suggests that the Production Sand may be in limited hydraulic communication with the Underlying Sand in this area. It is also possible that some of this small drawdown could be associated with barometric pressure effects, given the limited background data collected and lack of barometric pressure data for correction. The limited impact on the water level in OW-1303 due to the pumping of MP-2069 appears to indicate that the two sands are separated by an adequate confining unit. Consequently, impacts to the underlying sand from mining are expected to be minimal. The impact of barometric pressure changes in this area will be further evaluated during wellfield specific testing.

As noted previously, there is a local fault is located between MP-2069 and OW-1303. This test appears to demonstrate that the local fault has a limited and potentially insignificant impact on hydraulic communication between the Underlying and Production

Sands. The extent and magnitude of hydraulic communication in this area will be further defined during wellfield specific testing and additional operational controls and monitoring in the underlying area may be proposed based on results of those tests.

MP-2103 Aquifer Testing

MP-2103 was tested for approximately 1,494 minutes at an average rate of 28.7 gpm , starting on March 24, 2008. Water levels in the Production Sand were monitored in Observation Wells MW-1292, OW-1302, and MP-2069 at distances of approximately $336,2,607$, and 2,564 feet, respectively, from the pumping well. Water levels in the Underlying Sand were monitored in OW-1307 at a distance of about 364 feet.

The transmissivity and hydraulic conductivity of the Production Sand in the vicinity of MP-2103 indicate the Production Sand in this area is a leaky confined aquifer. As summarized in Table 2.7-8 and Addendum 2.7-B, transmissivity estimates based on pumping, recovery, and distance drawdown data for both the Production and Underlying Sands range from 1,180 to $4,180 \mathrm{gpd} / \mathrm{ft}$, with an average of $2,110 \mathrm{gpd} / \mathrm{ft}$. Based on a saturated thickness of 35 feet, hydraulic conductivities were estimated to range from 3.8 to $120 \mathrm{gpd} / \mathrm{ft}^{2}$, with an average of $60.4 \mathrm{gpd} / \mathrm{ft}^{2}$. Based on observation well data, the storage coefficient of the aquifer averages 6.4×10^{-5}. After approximately one day of pumping, the radius of influence of this well appeared to extend approximately 0.56 miles from the pumping well. Comparison of these hydrogeologic parameters on Table 2.7-9 with those from Hydro-Engineering (1984) on Table 2.7-8 indicates the transmissivity of the Production Sand is relatively unchanged since the previous testing was completed.

The test pumping of MP-2103 drew water levels in both the Production and Underlying Sands down. The time drawdown data for this test are graphically summarized in Attachment 2.7-B. While failure of the Level Troll 700 in OW- 1307 limited the data collection on this well, the equivalent static hydraulic heads associated with these sands as well as the amount of drawdown recorded in OW-1307 (~ 1.8 feet) during the test indicate these sands are in hydraulic communication. As shown in Figures 2.6-3 through $2.6-8$ in the Geology Section (Section 2.6), a continuous carbonaceous shale confining unit is present between the production and underlying sand in this area. Therefore, it is believed that the hydrologic communication in this area is most likely attributable to an improperly sealed historic drill hole or an improper annular seal on well OW-1307. The extent and magnitude of hydraulic communication in this area will be further defined during wellfield specific testing and additional operational controls and monitoring in the underlying area may be proposed based on results of those tests. Also, corrective actions may be taken to eliminate potential communication pathways.

JAB Test Results Summary

Results of the two aquifer tests that were completed at the JAB project area for this project, as well as those recorded previously by Hydro-Engineering (1984) indicate the following:
$>$ The Production Sand has hydraulic continuity across the eastern portion of the project area. Additional (wellfield) scale testing required by the NRC and WDEQ will demonstrate communication throughout the project area between the pumping well(s) and the monitor well ring to be installed.
$>$ The Production and Underlying Sands are in limited hydraulic communication. The degree of hydraulic communication varies across the site, and may be attributable to localized pathways such as an open historic drill hole or improperly sealed historic well since a continuous significant aquitard is present throughout most of the mineralized area.Testing to date has not indicated that local faults act as impermeable boundary conditions. However, as demonstrated by the MP-2069 pump testing located nearest to the known fault north of the mineralized area, the fault does not appear to provide a significant pathway of hydraulic communication.
$>$ Future work including mine unit testing will be conducted to demonstrate that an adequate continuous lower confining layer exists in the project area to minimize impacts on underlying aquifers, and to assess the hydraulic continuity of the Production Sand in the western half of the project area.

Antelope Aquifer Test Results

LA completed three aquifer tests in the Antelope project area. The tests were completed utilizing MP-4, M-13, and MP-16 as pumping wells. Test results are summarized in Table 2.7-10.

MP-4 Aquifer Testing

Starting on March 25, 2008, Well MP-4 was tested for 2,990 minutes at an average discharge rate of 21.5 gpm , while water levels were monitored in three observation wells. Observation wells M-4 and M-5 were utilized to monitor water levels in the 190-150 Sand at distances of approximately 76 and 2,058 feet, respectively. Observation well MU-4 was used to observe any water level changes in the lower portion of the 190-150 Sand, at a distance of approximately 7 feet from the pumping well.
investing in our energy Section 2.7- Hydrology

Table 2.7-10 Summary of Horizontal Aquifer Properties of the Production Sand in the Antelope Project Area - March-April 2008

Well	Date Tested	Analysis Method	Transmissivity (gpd/ft)	Storage Coefficient	Aquifer Thickness (ft)	Hydraulic Conductivity (gpd/ft')
MP-4	$3 / 25 / 2008$	Hantush, Cooper- Jacob, Theis Recovery	$535-1350$	--	295	$1.8-4.6$
M-4	$3 / 25 / 2008$	Hantush, Theis Recovery	$2230-2400$	$3.6 \times 10^{-3}-$	295	$7.5-8.1$
M-13	$4 / 1 / 2008$	Hantush, Cooper- Jacob, Theis Recovery	$169-578$	-	280	$0.6-2.1$
MP-16	$3 / 27 / 2008$	Hantush, Cooper- Jacob, Theis Recovery	$776-4830$	--	80	$9.7-60.4$
M-16	$3 / 27 / 2008$	Hantush, Theis Recovery	$614-3840$	2.7×10^{-4}	80	$7.6-48$

Notes: -- Indicates storage coefficient could not be calculated from these data.
As summarized in Addendum C and Table 2.7-10, the transmissivity and hydraulic conductivity of the 190-150 Sand in the vicinity of MP-4 reflect confined leaky aquifer conditions. Transmissivity estimates made from pumping, recovery, and distance drawdown data for the 190-150 Sand range from 535 to $5,120 \mathrm{gpd} / \mathrm{ft}$, with an average of $2,030 \mathrm{gpd} / \mathrm{ft}$. Based on an average thickness of 295 feet, the hydraulic conductivity of the aquifer ranges from 1.8 to $17.4 \mathrm{gpd} / \mathrm{ft}^{2}$, with an average of $6.9 \mathrm{gpd} / \mathrm{ft}^{2}$. Based on observation well data, the average storage coefficient of the 190-150 Sand was estimated to be 2.0×10^{-3}. After approximately two days of pumping, the radius of influence of this well extended about 0.56 miles based on distance drawdown data.

The test pumping of MP-4 drew water levels down in the 190-150 Sand both at distance and at depth within this saturated Battle Springs Aquifer sandstone. Time drawdown data that are graphically presented in Addundum 2.7 C reveal that the water level in M-4 was immediately affected by pumping from the production well. These data also indicate that observation wells M-5 and MU-4 were not affected until late in the test and at roughly the
investing in our energy
same time from roughly 3,000 to 3,500 minutes into the test, or during recovery of the pumping well. The maximum drawdown observed at these wells only amounted to 0.11 at MU-4 and 0.24 feet at M-5. While the amount of drawdown at either well is not significant, this impact of pumping MP-4 suggests either that the upper and lower sandstone members of the 190-150 Sand are in some degree of hydraulic communication, that barometric pressure fluctuations affected water levels, or a combination of these. The extent of these impacts will be evaluated further during wellfield scale testing.

M-13 Aquifer Testing

To test the productivity and aquifer characteristics of the 140-100 Sand, well M-13 was tested for 2,881 minutes at an average discharge rate of 19.4 gpm beginning on April 1, 2008. Water levels during this test were monitored at one observation well. Observation well MU-13 was utilized to monitor water levels in the underlying 90-50 Sand at a distance of approximately 135 feet from the pumping well.

The transmissivity and hydraulic conductivity of the 140-100 Sand (production zone) in the vicinity of M-13 reflect leaky confined aquifer conditions. Summarized in Table 2.710 and in Addendum 2.7-C, transmissivity estimates made from pumping and recovery data for this sand range from 169 to $578 \mathrm{gpd} / \mathrm{ft}$, with an average of $349 \mathrm{gpd} / \mathrm{ft}$. Based on an average thickness of 280 feet, the hydraulic conductivity of the aquifer ranges from 0.6 to $2.0 \mathrm{gpd} / \mathrm{ft}^{2}$, with an average of $1.2 \mathrm{gpd} / \mathrm{ft}^{2}$. A storage coefficient for the $140-100$ Sand in this area could not be estimated because the observation well was not affected by the test.

The test pumping of M-13 drew water levels down in the 140-100 Sand, but did not affect water levels in the underlying 90-50 Sand. Time drawdown data that are graphically presented in Addendum 2.7-C reveal that the water level in MU-13 generally rose throughout the pumping portion of the test, and exhibited diurnal water level fluctuations (of up to ~ 0.1 feet) apparently in response to barometric pressure fluctuations. Regardless, the well did not appear to be impacted by pumping in the overlying sand. Part of the reason that this well was not affected may be due to the vertical spacing between completion intervals of these wells, which are noted on Table 2.7-6, and/or adequate confining unit between the sands.

MP-16 Aquifer Testing

Starting on March 27, 2008, well MP-16 was tested for 2,906 minutes at an average discharge rate of 13.9 gpm , while water levels were monitored in two observation wells. Observation well M-16 was utilized to monitor water levels in the 190-150 Sand at a distance of approximately 84 feet, while observation well MU-16 was used to monitor
any water level changes in the lower portion of the 140-100 Sand, at a distance of approximately 21 feet from the pumping well.

As summarized in Addendum 2.7-C and Table 2.7-10, the transmissivity and hydraulic conductivity of the 190-150 Sand in the vicinity of MP-16 appear to reflect confined leaky aquifer conditions. The test data, however, are also affected by barometric pressure fluctuations. Transmissivity estimates made from pumping and recovery data for the 190150 Sand range from 614 to $4,830 \mathrm{gpd} / \mathrm{ft}$, with an average of $2,400 \mathrm{gpd} / \mathrm{ft}$. Based on an average thickness of 80 feet, the hydraulic conductivity of the aquifer ranges from 7.7 to $60.4 \mathrm{gpd} / \mathrm{ft}^{2}$, with an average of $30.0 \mathrm{gpd} / \mathrm{ft}^{2}$. Based on observation well data, the average storage coefficient of the 190-150 Sand was estimated to be 2.7×10^{-4}.

The test pumping of MP-16 drew water levels down in the 190-150 Sand, but did not appear to significantly impact water levels in the underlying 140-100 Sand. Time drawdown data that are graphically presented in Addendum 2.7-C reveal that the water level M-16 was immediately affected by pumping from the production well. The water level in MU-16 appears to be drawn down slightly toward the beginning of the test and rebounds later during the pumping portion and mimics the recovery of $\mathrm{M}-16$ during the pumping portion of the test. Similar water level fluctuations during the later time data were also observed in the pumping well. LA attributes these fluctuations to changes in barometric pressure during and after the pumping portion of the test. Regardless, the MU16 well did not appear to be impacted by pumping in the overlying sand again due to the vertical spacing between completion intervals of these wells and/or continuous confining unit between the sands.

Antelope Test Results Summary

Conclusions of the three aquifer tests that were completed at the Antelope project area for this project indicate the following:
$>$ The Battle Springs Aquifer in this area is comprised of a relatively thick package of leaky confined sandstone subaquifers that are in both lateral and vertical hydraulic communication at least within each defined sand unit, i.e. the 190-150 Sand at MP-4, on a local basis.
$>$ The extent to which designated overlying and underlying sandstone units are in hydraulic communication needs to be further addressed through additional pump testing with observation wells that better bracket the sandstones immediately above and below the designated shale units. Testing of M-13 and MP-16 suggests that adjoining sandstones may not be in hydraulic communication, but this may be attributable to the vertical spacing between the screened intervals in adjoining sands and/or confining conditions. Furthermore, barometric pressure fluctuations need to be accounted for during the tests.

Section 2.7- Hydrology

Further aquifer testing will be conducted during future wellfield testing to assess the lateral hydraulic continuity of the various hydrostratigraphic sand units. This assessment will require additional monitoring wells completed within the respective sandstones and possibly longer pumping durations.

2.7.3 Water Quality

2.7.3.1 Surface Water Quality

Within the Antelope and JAB project areas, surface water samples were collected from seven sampling locations in May, 2007. All locations are existing stock ponds or areas in drainages where ponding occurs. Locations of sample sites are shown on Figure 2.7-6 for JAB and Figure 2.7-9 for Antelope. Photographs of sampling sites JAB SW-1, JAB SW4, and JAB SW-7 are included as Figures 2.7-16, 2.7-17, and 2.7-18. The parameters included in the surface water baseline water quality monitoring program are listed in Table 2.7-11. Tables showing the sampling results for all locations are included in Addendum 2.7-D. Table 2.7-12 lists the overall average concentrations detected in the surface water samples. One half of detection limit values were used for averaging nondetectable results. Historic surface water samples were collected in 1981 and 1982 from three springs in the JAB area (Appendix B) on Middle Lost Creek (T26N, R95W, S24), Upper Lost Creek (T26N, R94W, S4) and the Hadsell Spring (T26N, R94W, S30).
investing in our energy Section 2.7- Hydrology
Figure 2.7-16 Surface Water Sampling Site JAB SW-1

Figure 2.7-17 \quad Surface Water Sampling Site JAB SW-4

Figure 2.7-18 Surface Water Sampling Site JAB SW-7

Section 2.7- Hydrology
Table 2.7-11 Surface Water Monitoring Parameters - Antelope and JAB Uranium Project

Major Ions	Trace Constituents	Radionuclides
Calcium	Aluminum (dissolved)	Gross Alpha
Magnesium	Ammonia (as N)	Gross Beta
Potassium (dissolved)	Arsenic (dissolved)	Radium-226 (dissolved)
Sodium	Barium (dissolved)	Radium-228 (dissolved)
Bicarbonate	Boron	
Chloride (dissolved)	Cadmium (dissolved)	
Carbonate	Chromium (dissolved)	
Sulfate	Copper (dissolved)	
Nitrate + Nitrite (as N)	Fluoride	
Silica	Iron (dissolved and total)	
Anions	Lead (dissolved)	
Cations	Manganese (dissolved and total)	
Anion/Cation Balance	Mercury (dissolved)	
General Water Chemistry	Molybdenum (dissolved)	
Total Dissolved Solids (@, 180 F)	Nickel (dissolved)	
pH (field and laboratory measured)	Selenium (dissolved)	
Conductivity (field and lab measured)	Vanadium	
Temperature (field measured)	Zinc (dissolved)	

A trilinear diagram was developed to assess baseline water type (Figure 2.7-19). Although the data showed some variability, surface water in the region is predominantly of the sodium bicarbonate type. An assessment was made of the monitoring parameters to determine the general surface water quality. Total dissolved solids (TDS) varied in the seven surface water sampling sites. The maximum concentration was $346 \mathrm{mg} / \mathrm{L}$ at $\mathrm{SW}-2$, and a minimum concentration of $14 \mathrm{mg} / \mathrm{L}$ was sampled at site 5 . The average TDS over the seven sampling sites was $132 \mathrm{mg} / \mathrm{L}$. Iron concentrations also varied within the sampling sites. A maximum concentration of $3.02 \mathrm{mg} / \mathrm{L}$ was detected at $\mathrm{SW}-4$, and a minimum of $0.015 \mathrm{mg} / \mathrm{L}$ at SW-7, with an average iron concentration of $0.72 \mathrm{mg} / \mathrm{L}$ for all seven sites. Radium 226 was also detected at two surface water sampling sites, SW-2 and $\mathrm{SW}-4$. The concentrations at each site were $5.2 \mathrm{pCi} / \mathrm{L}$ at $\mathrm{SW}-2$ and $2.2 \mathrm{pCi} / \mathrm{L}$ at $\mathrm{SW}-4$. Additionally, an average Gross Alpha value of $7.76 \mathrm{pCi} / \mathrm{L}$ for the seven sites suggests the presence of radionuclides in the surface water. TDS concentrations in the historic samples are generally higher than those detected in the 2007 samples. Iron concentrations were similar in the historic samples. Radionuclides were only analyzed in one surface water sample from the Upper Lost Creek site. Radium 226 was measured at $0.14 \mathrm{pCi} / \mathrm{L}$ at that time.

Surface water quality was evaluated solely from sampling conducted during the spring. It is expected that samples collected during the spring will have lower values than samples taken during the fall due to dilution from snow melt and precipitation. Additional samples may be collected during the summer, fall and winter if adequate precipitation occurs to generate surface water to determine seasonal variability of surface water quality at the JAB and Antelope sites.

Table 2.7-12 Surface Water Quality Summary - Antelope and JAB Uranium Project

Analyte		Units	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7
	Test Type		5/10/2007	5/10/2007	5/10/2007	5/10/2007	5/10/2007	5/15/2007	5/15/2007
AIC Balance (± 5)	DIS	\%	10.2	3.56	21.1	4.37	42.9	4.03	13.2
Anions	DIS	meq/L	0.717	4.71	0.545	3.25	0.186	0.895	0.306
Bicarbonate as HCO 3	DIS	mg / L	39	117	20	124	7	24	11
Carbonate as CO 3	DIS	mg/L	0.5	0.5	0.5	2	0.5	0.5	0.5
Cations	DIS	meg/L	0.585	4.39	0.837	3.55	0.074	0.825	0.234
Chloride	DIS	mg/L	0.5	4	0.5	3	0.5	1	0.5
Conductivity	DIS	umhos/cm	64.5	404	41.3	278	5	50	22.6
Fluoride	DIS	mg/L	0.1	0.2	0.05	0.2	0.05	0.1	0.05
pH	DIS	s.u.	7.35	8.07	7.44	8.42	6.48	7.63	6.65
Solids, Total Dissolved Calculated	DIS	mg/L	33	294	38	207	125	58	17
Solids, Total Dissolved TDS @ 180 C	DIS	mg/L	46	346	102	238	14	146	32
Sulfate	DIS	mg/L	2	128	9	52	3	19	6
TDS Balance (0.80-1.20)	DIS	dec. \%	1.39	1.18	2.68	1.15	125	3.1	1.88
Nitrogen, Ammonia as N	DIS	mg / L	3.93	0.05	0.09	0.025	0.07	0.025	0.025
Nitrogen, Nitrate+Nitrite as N	DIS	mg/L	0.1	0.05	0.3	0.05	0.05	0.9	0.1
Iron	TOT	mg/L	0.33	1.36	1.18	2.46	0.28	7.05	1.1
Manganese	TOT	mg/L	0.02	0.05	0.03	0.06	0.02	0.59	0.07
Aluminum	DIS	mg/L	0.3	1.7	2.7	0.6	0.1	0.7	0.05
Arsenic	DIS	mg/L	0.002	0.003	0.001	0.004	0.0005	0.005	<0.001
Barium	DIS	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	DIS	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	DIS	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium	DIS	mg/L	2	19	3	22	0.5	0.5	2
Chromium	DIS	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Copper	DIS	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	DIS	mg / L	0.12	0.38	0.6	3.02	0.06	0.83	0.015
Lead	DIS	mg/L	0.0005	0.0005	0.001	0.002	0.0005	0.0005	0.0005
Magnesium	DIS	mg/L	0.5	5	0.5	6	0.5	0.5	0.5
Manganese	DIS	mg / L	0.04	0.005	0.005	0.01	0.005	0.005	0.005
Mercury	DIS	mg / L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Molybdenum	DIS	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	DIS	mg / L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Potassium	DIS	mg/L	3	4	1	3	0.5	4	2
Selenium	DIS	mg / L	0.001	0.001	0.001	0.001	0.0005	0.0005	0.001
Silica	DIS	mg/L	3.8	13.6	6.8	19.9	0.6	9.9	0.9
Sodium	DIS	mg / L	0.5	61	6	38	0.5	6	0.5
Uranium	DIS	mg/L	0.00015	0.0044	0.00015	0.0042	0.00015	0.0003	0.00015
Vanadium	DIS	mg / L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc	DIS	mg/L	0.05	0.005	0.01	0.005	0.005	0.005	0.005
Gross Alpha	DIS	$\mathrm{pCi} / \mathrm{L}$	5.8	19.5	5.6	16.8	1.6	3.8	1.2
Gross Alpha MDC	DIS	$\mathrm{pCi} / \mathrm{L}$							
Gross Beta	DIS	$\mathrm{pCi} / \mathrm{L}$	5.8	14.4	5.7	11	2.1	4.2	2.3
Radium 226	DIS	$\mathrm{pCi} / \mathrm{L}$	0.1	5.2	0.1	2.2	0.1	0.1	0.1
Radium 226 MDC	DIS	$\mathrm{pCi} / \mathrm{L}$							
Radium 228	DIS	$\mathrm{pCi} / \mathrm{L}$	1.5	0.5	0.5	0.5	0.5	0.5	0.5

1. Test Type Codes: DIS = Dissolution, TOT = Total

Highlighted values represent values under detectable limit. For averaging purposes, value presented is $1 / 2$ the limit value (e.g. $\mathbf{0 . 5}=<1$)
investing in our energy
Section 2.7- Hydrology

2.7.3.2 Ground Water Quality

Regional Ground Water Quality

Water Quality in the Great Divide Basin ranges from poor to excellent. Total dissolved solid (TDS) values in all the aquifers tend to degrade towards the center of the basin, away from the recharge areas and to where the sediments are thickest. Ground water in the shallower, more permeable aquifers has better water quality. The best water quality in the area is found within the Quaternary gravels and the Battle Springs where TDS values are consistently less than $1,000 \mathrm{mg} / \mathrm{L}$. Although the deeper aquifers, such as the Mesa Verde, tend to have poorer water quality, the quality tends to be highly variable and in locations near recharge areas they can provide good quality water.

Sources of ground water quality data for the Great Divide Basin include the National Water Information System, the Wyoming Water Resources Data System and the following authors: Welder and McGreevy, 1966; Fisk, 1967; and Collentine et al., 1981. A short summary of the ground water quality of the major producing aquifers follows.

Quaternary Gravels

Water from the Quaternary gravels generally has less than $1,000 \mathrm{mg} / \mathrm{L}$ of TDS. Quaternary waters contain mainly sodium and chloride. The presence of saline alluvial waters is associated with sodium and sulfate enrichment caused by evapotranspiration and seepage upwards along faults from deeper aquifers.

Battle Springs

The Battle Springs Aquifer typically contains less than $500 \mathrm{mg} / \mathrm{L}$ TDS. TDS values may be less than $200 \mathrm{mg} / \mathrm{L}$ in the northeastern Great Divide Basin where the JAB and Antelope sites are located. The lower TDS waters are primarily of the sodiumbicarbonate type. As the TDS values approach $1,000 \mathrm{mg} / \mathrm{L}$, the water increases in concentrations of calcium-sulfate. Calcium-sulfate enrichment is attributed to the common presence of calcium-magnesium soil horizons and to the dissolution of gypsum and anhydrite.

Fort Union and Lance/Fox Hills

The Fort Union and Lance Aquifers tend to be more saline with higher TDS values, but are highly variable in composition. It is thought that the Lance waters are generally of the sodium-sulfate type although some exceptions show chloride enrichment. TDS values for the Lance can be less than $2,000 \mathrm{mg} / \mathrm{L}$ near outcrops to over $35,000 \mathrm{mg} / \mathrm{L}$ at deeper depths. TDS values ranging from 800 to over $60,000 \mathrm{mg} / \mathrm{L}$ have been recorded for the
investing in our energy

Fort Union Aquifer. The high salinity of these waters is most likely due to restricted ground water flow and/or upward migration of saline waters from the Mesa Verde.

Mesa Verde

The Mesa Verde Aquifer has wide variability in TDS concentrations and major ion compositions. TDS values vary from less than 500 to over $50,000 \mathrm{mg} / \mathrm{L}$. The lowest values ($<1,000 \mathrm{mg} / \mathrm{L}$) are limited to outcrop zones and salinity typically increases away from the outcrops. The high salinities basinward are attributed to fault related restriction of ground water flow and the influx of saline waters from adjacent shales. Water composition varies with the salinity. The lowest TDS waters are of the sodiumbicarbonate type. TDS values between 1,000 and $3,000 \mathrm{mg} / \mathrm{L}$ exhibit enrichment in calcium sulfate most likely from the dissolution of gypsum/anhydrite. The most saline water is characterized by dissolved sodium, chloride, and bicarbonate and is relatively free of sulfate.

Frontier

TDS values range from 500 to $60,000 \mathrm{mg} / \mathrm{L}$ in the Frontier Aquifer. Low TDS values are restricted to outcrop areas along the Sierra Madre Uplift in the Washakie Basin to the south. Near the JAB and Antelope sites, oil field data north of Rawlins suggests TDS values between 1,300 and $3,200 \mathrm{mg} / \mathrm{L}$ is likely in the Frontier Aquifer. As TDS increases, the composition of the ground water moves from predominantly sodium-bicarbonate to predominately sodium chloride. At TDS levels above $1,000 \mathrm{mg} / \mathrm{L}$ little calcium, magnesium or sulfate are present.

Ground Water Monitoring Network and Parameters

A monitoring well network within the Antelope and JAB Uranium Project area has been installed over the past 30 years for the purpose of regional ground water sampling to establish baseline (pre-mining) ground water conditions. The network consists of eight monitoring wells in the JAB area, all of which are completed in the production zone, and 21 in the Antelope area, of which four are completed in the underlying aquifer (MU-2, MU-4, MU-13, and MU-16). The locations of the monitor wells that were sampled for water quality are shown on Figures 2.7-8 and 2.7-9 and a summary of well construction information can be found in Table 2.7-6 The parameters included in the Antelope and JAB Uranium Project Monitoring Program are listed below in Table 2.7-13

Table 2.7-13 Ground Water Sampling Parameters - Antelope and JAB Uranium Project

Major Ions	Trace Constituents	Radionuclides
Calcium	Aluminum (dissolved)	Gross Alpha
Magnesium	Ammonia (as N)	Gross Beta
Potassium (dissolved)	Arsenic (dissolved)	Lead-210 (dissolved and suspended
Sodium	Barium (dissolved)	Polonium-210 (dissolved and suspended)
Bicarbonate	Boron	Radium-226 (dissolved and suspended)
Chloride (dissolved)	Cadmium (dissolved)	Radium-228 (dissolved)
Carbonate	Chromium (dissolved)	Thorium-230 (dissolved and suspended)
Sulfate	Copper (dissolved)	Uranium (dissolved and suspended)
Nitrate + Nitrite (as N)	Fluoride	
Silica	Iron (dissolved and total)	
Anions	Lead (dissolved)	
Cations	Manganese (dissolved and total)	
Anion/Cation Balance	Mercury (dissolved)	
General Water Chemistry		
Molybdenum (dissolved)		
Total Dissolved Solids (@) 180 F)	Nickel (dissolved)	
pH (field and laboratory measured)	Selenium (dissolved)	
Conductivity (field and lab measured)	Vanadium	
Temperature (field measured)	Zinc (dissolved)	

Seven of the 21 wells in the Antelope area were only sampled once in the last year and 13 were sampled twice. However, six of the eight wells in the JAB area have been sampled at least three times between June 2007 and April 2008, with the remaining two having just been constructed and therefore only sampled once in spring 2008. Uranium One will continue to collect water quality samples on a quarterly basis. The initial monitoring and future monitoring of the entire well network, will provide a comprehensive record of water quality that will better define baseline conditions in the two proposed mining areas. Section 2.7- Hydrology

Water Quality Sampling

Eight wells in the JAB area and 21 wells in the Antelope area were sampled between June 2007 and April 2008 for water quality. The samples were analyzed for the list of constituents described under the current WDEQ/LQD Guideline 8 (March 2005) for uranium mining (Table 2.7-13).

Prior to sampling each well, the static water level was measured from the top of casing with an electronic water level reader and recorded. The total depth of each well was then measured with a weighted tape measure and also recorded. With these two known depths and the diameter of the well, the volume of standing water present (casing volume) was determined. Once pumping commenced, the temperature, pH , and conductivity of the water were measured and recorded on field sampling forms at every half-casing volume evacuated. Ideally, these parameters will reach equilibrium before sampling occurs, which ensures the sampled water is from the aquifer and not water from within the well casing. Typically, a minimum of three casing volumes were evacuated out of the well with a submersible pump before parameter equilibrium was reached and sample collection conducted.

Each bottle was labeled with a permanent marker denoting the project number, the well name, and the date and time of sampling. One bottle was collected and immediately preserved with sulfuric acid, all other bottles were collected unpreserved (raw). Filtering of appropriate samples was conducted at the analytical laboratory. The samples were immediately stored in a cooler to maintain a relatively constant temperature and delivered to Energy Laboratories in Casper, Wyoming to be analyzed for WDEQ/LQD Guideline 8 parameters for uranium mining. Chain of custody documents accompanied the samples to the laboratory

Water Quality Analysis

After the samples were analyzed by Energy Laboratories, copies of the results were sent to Lidstone and Associates. The laboratory data sheets are included in Addendum 2.7-D. The data were then entered into spreadsheets compiling all sampled results for 2007 and 2008 for each well. Of the 29 wells, 7 wells in Antelope and two in JAB were sampled only once, and 14 wells in Antelope were sampled twice. Two JAB wells, MW-1291 and MW-1292, were sampled four times in the last year and four wells (MW-1298, MW1299, MW 1300, JAB \#1) were sampled three times. Historic wells in the JAB area were sampled 5 times in the 1980-1982 time period.

To check the accuracy of the data, and to evaluate indicator parameter trends, the average of each parameter for each well was calculated, if there was more than one data set. Single analyses that deviated largely from other samples of the same well were searched

Section 2.7- Hydrology
for and noted to identify potential outliers or possible contaminated samples. Questionable data appeared on two samples from wells MW-1298 and MW-1299 in the JAB area that were collected on September 21, 2007. Comparing those analyses to the entire data set, suggested that the results for the two samples had been transposed. An attempt was made to contact Energy Laboratories to resolve this issue, but samples are discarded after six months and were no longer available for reanalysis. The data for that round of sampling has been omitted from the average.

To further evaluate baseline water quality, trilinear diagrams of the average major cations and anions were prepared for the JAB and Antelope areas. The trilinear diagrams are presented as Figures 2.7-20 and 2.7-12. The trilinear diagrams were created using Schlumberger AquaChem version 5.1-151 software. The average concentration of major ions (potassium, sodium, calcium, magnesium, chloride, sulfate, and bicarbonate) was entered for each well sampled.

Water Quality Results

From an assessment of the trilinear diagrams, ground water at both JAB and Antelope is predominantly of the calcium sulfate to calcium bicarbonate type with a linear trend from sodium-bicarbonate towards calcium sulfate. JAB water is noticeably more calciumsulfate rich than the Antelope water, which appears to have much higher levels of carbonate and slightly higher levels of sodium than the JAB water. The observations made from the tri-linear diagrams match what is expected of Battle Springs Aquifer water. Within the Battle Springs Aquifer, the water moves from a sodium-bicarbonate type to a calcium-sulfate type as total dissolved solids increase. At JAB, the higher TDS values are reflected in the higher concentrations of calcium and sulfate. The linear trends on both the JAB and Antelope trilinear diagrams reflect this same pattern; the wells with high concentrations of calcium and sulfate were also measured as having higher TDS values. The calcium sulfate enrichment of the water is attributed to the common presence of calcium-magnesium soils and the dissolution of gypsum and anhydrite.

Table 2.7-14 lists the overall average concentrations of parameters for Antelope and JAB. One half of detection limit values were used for averaging non-detectable results. A majority of the analyte concentrations of sampled water in the JAB and Antelope areas are within WDEQ Guideline 8 parameters for agricultural water (Class II). Results of the baseline monitoring program for each well are summarized in tables in Addendum 2.7-D There are some notable variations of sampled data not included in the tri-linear diagrams that are worth discussing.

First, total dissolved solids (TDS) varies greatly in both proposed mining areas. In the JAB area, concentrations varied from 202 to $2120 \mathrm{mg} / \mathrm{L}$, with an average of $919 \mathrm{mg} / \mathrm{L}$. In the Antelope area, concentrations were notably lower, with an average of $232 \mathrm{mg} / \mathrm{L}$ and a
investing in our energy Section 2.7- Hydrology
maximum of 639. The WDEQ Class I/II limits on TDS are 500 and $2000 \mathrm{mg} / \mathrm{L}$, respectively. These results generally indicate Class II ground water at JAB and Class I ground water at Antelope with respect to TDS. However, due to high radium levels, groundwater located within uranium mineralized areas is unsuitable for human or livestock consumption. As a result, these waters can be characterized as Class VI water.
investing in our energy Section 2.7-Hydrology

Table 2.7-14 Summary of Water Quality Averages - Antelope and JAB Uranium Project

Analyte	Test Type ${ }^{1}$	Units	Surface Water	Ground Water	
				JAB	Antelope
A/C Balance (± 5)	DIS	\%	14.19	2.75	3.54
Anions	DIS	$\mathrm{meq} / \mathrm{L}$	1.52	13.04	3.96
Bicarbonate as HC03	DIS	mg / L	48.86	101.86	139.87
Carbonate as CO3	DIS	mg / L	0.71	<1	1.73
Cations	DIS	$\mathrm{meq} / \mathrm{L}$	1.50	12.41	4.04
Chloride	DIS	mg / L	1.43	8.18	3.50
Conductivity	DIS	umhos/cm	123.63	1135.32	360.97
Fluoride	DIS	mg / L	0.11	0.35	0.21
pH	DIS	s.u.	7.43	7.75	8.21
Solids, Total Dissolved Calculated	DIS	mg / L	110.29	859.23	246.47
Solids, Total Dissolved TDS@180 F	DIS	mg / L	132.00	919.27	232.37
Sulfate	DIS	mg / L	31.29	533.76	71.80
$\begin{aligned} & \text { TDS Balance }(0.80- \\ & 1.20) \end{aligned}$	DIS	dec. \%	19.48	1.05	0.95
Nitrogen, Ammonia as N	DIS	mg / L	0.60	0.03	0.06
Nitrogen, Nitrate+Nitrites as N	DIS	mg / L	0.22	0.07	0.11
Iron	TOT	mg/L	1.97	0.16	0.67
Manganese	TOT	mg / L	0.12	0.08	0.02
Aluminum	DIS	mg / L	0.88	<0.1	<0.1
Arsenic	DIS	mg / L	0.00	0.01	0.01
Barium	DIS	mg / L	<0.1	<0.1	<0.1
Boron	DIS	mg / L	<0.1	<0.1	<0.1
Cadmium	DIS	mg / L	<0.005	<0.005	<0.005
Calcium	DIS	mg / L	7.00	186.91	54.47
Chromium	DIS	mg / L	<0.05	<0.05	<0.05
Copper	DIS	mg / L	<0.01	<0.01	<0.01
Iron	DIS	mg / L	0.72	0.02	0.07
Lead	DIS	mg / L	0.00	0.00	0.00
Magnesium	DIS	mg / L	1.93	13.14	4.62
Manganese	DIS	mg / L	0.01	0.07	0.02
Mercury	DIS	mg / L	<0.001	<0.001	<0.001
Molybdenum	DIS	mg / L	<0.1	<0.1	<0.1

investing in our energy Section 2.7- Hydrology

Table 2.7-14 Summary of Water Quality Averages - Antelope and JAB Uranium Project Cont'd

Nickel	DIS	mg / L	<0.05	<0.05	<0.05
Potassium	DIS	mg / L	2.50	5.14	4.13
Selenium	DIS	mg / L	0.00	0.01	0.00
Silica	DIS	mg / L	7.93	17.47	17.97
Sodium	DIS	mg / L	16.07	41.45	18.87
Uranium	DIS	mg / L	0.00136	0.26	0.11
Vanadium	DIS	mg / L	<0.1	<0.1	<0.1
Zinc	DIS	mg / L	0.01	0.03	0.01
Gross Alpha	DIS	$\mathrm{pCi} / \mathrm{L}$	7.76	881.69	216.56
Gross Alpha MDC	DIS	$\mathrm{pCi} / \mathrm{L}$	NA	3.38	1.49
Gross Beta	DIS	$\mathrm{pCi} / \mathrm{L}$	6.50	304.55	84.47
Gross Beta MDC	DIS	$\mathrm{pCi} / \mathrm{L}$	NA	5.25	2.54
Lead 210	DIS	$\mathrm{pCi} / \mathrm{L}$	NA	12.57	17.56
Polonium 210	DIS	$\mathrm{pCi} / \mathrm{L}$	NA	26.46	3.72
Radium 226	DIS	$\mathrm{pCi} / \mathrm{L}$	1.13	102.95	56.18
Radium 226 MDC	DIS	$\mathrm{pCi} / \mathrm{L}$	NA	0.24	0.22
Radium 228	DIS	$\mathrm{pCi} / \mathrm{L}$	0.64	3.83	3.86
Radium 228 MDC	DIS	$\mathrm{pCi} / \mathrm{L}$	NA	1.45	1.11
Thorium 230	DIS	$\mathrm{pCi} / \mathrm{L}$	NA	3.03	0.08
Lead 210	SUS	$\mathrm{pCi} / \mathrm{L}$	NA	10.56	19.47
Polonium 210	SUS	$\mathrm{pCi} / \mathrm{L}$	NA	23.28	1.65
Radium 226	SUS	$\mathrm{pCi} / \mathrm{L}$	NA	6.55	0.58
Radium 226 MDC	SUS	$\mathrm{pCi} / \mathrm{L}$	NA	1.90	0.57
Thorium 230	SUS	$\mathrm{pCi} / \mathrm{L}$	NA	1.52	0.29
Uranium	mg / L	NA	0.04	0.00	
1. Test Type Codes: DIS $=$ Dissolution, $\mathrm{TOT}=\mathrm{Total}$, SUS -Suspensioin					

Sulfate levels also vary between the Antelope and JAB areas. Similarly to TDS, sulfate concentrations in Antelope were much lower than JAB. The average concentration in $J A B$ was $534 \mathrm{mg} / \mathrm{L}$, with a maximum of $1340 \mathrm{mg} / \mathrm{L}$. These levels put virtually all ground water in JAB well above WDEQ Class I and Class II limits of 250 and $200 \mathrm{mg} / \mathrm{L}$, respectively. The Antelope area, on the other hand, had an average concentration of only $83 \mathrm{mg} / \mathrm{L}$, with a maximum of $337 \mathrm{mg} / \mathrm{L}$. The maximum concentration observed was recorded in only one well ($\mathrm{M}-15$), and is the only concentration in the area that exceeds the Class I and Class II limits.

With a few exceptions, trace elements in the project area met Class I ground water limits, with most being less than applicable detection limits. The exceptions included iron, manganese, and pH . Iron concentrations in monitoring wells $\mathrm{M}-10$ and $\mathrm{M}-15$ in the Antelope area exceeded the Class I limit of $0.3 \mathrm{mg} / \mathrm{L}$. Concentrations were as high as 0.7 mg / L, which is still well below the Class II limit of $5.0 \mathrm{mg} / \mathrm{L}$. Manganese was detected in several samples from both Antelope and JAB areas. One well in the JAB area, MW-1291, had manganese concentrations of 0.28 twice, 0.29 , and $0.3 \mathrm{mg} / \mathrm{L}$ over four rounds of sampling, which consistently exceeds the Class II limit of $0.2 \mathrm{mg} / \mathrm{L}$. Well MP-2069 was the only other well that had manganese concentrations that exceeded Class I limits in the JAB area. Several wells in the Antelope area had manganese concentrations above the Class I limit of $.05 \mathrm{mg} / \mathrm{L}$, with the highest being $0.15 \mathrm{mg} / \mathrm{L}$. Lastly, laboratory pH levels at the Antelope area were slightly higher than at JAB, with an average of 8.2 at Antelope compared with 7.75 at JAB. Two samples from Antelope exceeded the Class III limit of 9.0 , with a maximum pH of 9.62 on the sample from well MU-4, which also contained the lowest concentrations of bicarbonate and sulfate in the Antelope area.

Almost every production zone ground water sample analyzed, from both Antelope and JAB , had radium 226 concentrations that exceeded WDEQ's limit of $5 \mathrm{pCi} / \mathrm{L}$. Additionally, two wells in Antelope, which are constructed in the underlying aquifer, MU- 2 and MU-13, had radium 226 concentrations above $5 \mathrm{pCi} / \mathrm{L}$. The maximum concentration detected was $1100 \mathrm{pCi} / \mathrm{L}$ in well MP-2069, and the averages for the entire areas were $103 \mathrm{pCi} / \mathrm{L}$ at JAB and $56 \mathrm{pCi} / \mathrm{L}$ at Antelope. The excessive Radium 226 concentrations make the overall ground water in the area Class IV (industrial). The ground water can be classified more specifically as Class IV A, due to the fact that TDS does not exceed $10,000 \mathrm{mg} / \mathrm{L}$.

Four rounds of water quality data were collected from JAB wells JAB No. 1, MW-1291, MW-1292, MW-1298, MW-1299, MW-1300, and OW-1303 from September, 1980 through November, 1982 (Hydro-Engineering, 1984). In general the water quality characteristics in the 2007 and 2008 data from these wells are similar to those observed in the historic sampling (Appendix B).
investing in our energy Section 2.7- Hydrology

In summary, ground water within the production zone aquifer is generally of the calcium bicarbonate to calcium sulfate type and can be classified as a type IV A water due to the high Radium 226 and low TDS concentrations. This baseline analysis is intended to evaluate the overall quality of ground water underlying the proposed License/Permit Area under pre-mining conditions. Additional ground water sampling is required before excursion control limits and restoration criteria can be established.

2.7.4 Water Rights

2.7.4.1 Surface Water Rights

Existing surface water rights within 0.5 mile of the Antelope and JAB permit boundaries were queried using the Wyoming State Engineers Office (WYSEO) Water Rights Database (WYSEO, 2002). No adjudicated water rights were found. No active surface rights were found within 0.5 mile of the Antelope boundary. Only one active surface right was located within 0.5 mile of the JAB property boundary.

Within 0.5 mile of the JAB permit boundary there are many points of use for permit P29898D (CO2 Pipeline Water Haul), but this permit has been cancelled with the WYSEO. One active, un-adjudicated surface water right for stock use was found just to the south of the JAB permit boundary in the northwest quarter of T26N R94W Section 23. The permit number for this water right is P223S and a summary of this water right is provided in Table 2.7-15. The location of this water right is displayed on Figure 2.7-22. Throughout all phases of the project, Uranium One intends to ensure that this stock reservoir is not impacted in a manner that restricts its intended use.

Table 2.7-15 Summary of Active Surface Water Rights Within One-Half Mile of the Antelope/JAB Permit Boundary - Antelope and JAB Uranium Project

Permit Number	Legal Location	Qtr Qtr	Status	Use	Facility Name	Permit Applicant	Priority Date	Permitted Area	Permit Source
P233S	T26N R94W Section 23	$\begin{aligned} & \hline \text { NW } \\ & \text { SW } \end{aligned}$	UNA	STO	Dry Gulch Stock Reservoir	Bessie A. Mitchell	6/13/1946	1.69 ac ft	McIntosh Gulch
		$\begin{aligned} & \hline \text { SW } \\ & \text { NW } \end{aligned}$							
		$\begin{aligned} & \text { SE } \\ & \text { NW } \end{aligned}$							
		$\begin{aligned} & \mathrm{NE} \\ & \mathrm{SW} \end{aligned}$							

Section 2.7- Hydrology

2.7.4.2 Ground Water Rights

Existing active ground water rights within a three mile buffer of the Antelope and JAB permit boundaries were queried using the WYSEO Water Rights Database (WYSEO, 2002). All abandoned or cancelled water rights were discarded from the search. It should be noted that no adjudicated water rights were found within the queried area. Twenty seven permitted wells were identified which are not permitted to Uranium One, and 29 wells were identified which are permitted to Uranium One. A listing of these wells displaying information such as permit numbers, priority, status, use, well depth, yields, static water level, and completion intervals are presented in Addendum 2.7-E. A map showing the location of all permitted wells is presented on Figure 2.7-22.

Of the wells not permitted to Uranium One, there are nine stock wells, four industrial wells, one domestic well, ten miscellaneous wells, two monitoring wells and three test wells. Eighteen of the wells are attributed to some form of mining or exploration by energy resource companies. Eight of the remaining wells are stock wells owned by the Bureau of Land Management (BLM). The last two wells are the Baron Butte \#1 well and the Osborne \#1 well, which are owned by the State of Wyoming- John McIntosh and the Sun Land/Cattle Co., respectively. Baron Butte \#1 is a domestic and stock well and Osborne \#1 is a stock well.

The monitoring, test and miscellaneous use wells related to energy resource mining are not permitted for consumptive use. There are four permitted consumptive industrial use wells associated with energy resource mining and exploration. These industrial wells include: LC 129 W, MAPCO Whiskey Peak Unit \#1-33, and the Ralph E. Murphy wells \#1 and \#2. All of these wells are positioned up-gradient of ground water flow. Although not formally filed as abandoned with the WYSEO, it is believed that these wells may no longer be in use since they were all permitted prior to 1980 by oil energy exploration companies that are no longer active in the area.

The BLM stock wells are drilled to depths between 200 and 450 feet and typically yield between 5 and 25 gpm . These wells are likely completed into the same aquifer as the production sand. However, since the production sand dips south and west the majority of these wells are up-dip and thus up-gradient of ground water flow, meaning that impact will be minimal to non-existent. The exceptions are the Osborne Draw Well \#123, Eagle Water Well \#1, and Powerline well. These wells are located down gradient, but since they are all located more than two miles from the mining boundary, no impact is expected.

The Osborne well \#1 is close to the Osborne Draw Well \#123 mentioned above. This well is a stock well owned by the Sun Land/Cattle Co. It is 280 feet deep and yields around 10 gpm . The static water level suggests 30 feet of saturation in the well. The

Section 2.7- Hydrology
perforated interval is 250 to 280 feet. Due to the proximity and completion similarities the opinion addressed above for the Osborne Draw well applies to this well.
The Baron Butte \#1 well is the only domestic well within the three mile buffer. It is located approximately a mile and a half north of the most eastern portion of the Antelope permit boundary. It is 105 feet deep, yields 8 gpm and is perforated between 85 and 105 feet below ground surface. Since the completion interval for this well is stratigraphically higher than the sands targeted for ISR production and is up-gradient of ground water flow, it is not expected to be impacted by mining.

In summary, no impact is expected for wells positioned north to northeast of the mining boundaries since ground water flow is generally to the south to southwest. The wells which are located downgradient include the wells to the west and southwest of the permit boundary, but due to their distance from the boundary no impact is expected. These wells are: Osborne Draw Well \#123, Osborne \#1, Powerline well, and the Eagle water well. Uranium One intends to correspond with BLM and the Sun Land/Cattle Co. throughout all phases of the project to ensure that these stock reservoirs and wells are not impacted in a manner that restricts their intended use.

Of the wells owned or permitted to Uranium One, 16 are located within the Antelope permit boundary and 14 are located within the JAB permit boundary. The JAB wells were previously owned by UMETCO Minerals Corporation and the Energy Metals Corporation but are now all owned by Uranium One, Inc. Currently, all of the Uranium One wells are permitted by the WSEO as monitor wells. Ten of the 16 monitor wells at Antelope are new wells while six were re-permitted existing wells. Uranium One is using the Bairoil Road Stock well owned by BLM as monitoring well M-15. Uranium One has obtained permission from the BLM to use this well for their purposes. Table 2.7-16 summarizes the re-permitted wells which are being used by Uranium One. Installation of wells for a project of this size is on-going and it is expected that more wells will be permitted in the future.

Currently the project consumes a negligible amount of ground water for well development, monitoring, testing and miscellaneous purposes related to uranium exploration. Besides uranium exploration and mining, stock pond wells will most likely remain the main ground water use in the area.
investing in our energy Section 2.7- Hydrology

Table 2.7-16 Re-permitted Wells Used by Uranium One - Antelope and JAB Uranium Project

Monitor Well	Facility Name	Applicant	Permit Number	Priority	Status	Uses
M-1	749	USDI, BLM** Inc. Newpark Resources	P46333W	$11 / 8 / 1978$		MIS
M-4	Lee \#1	Energy Metals Corp.	P183531W	$9 / 6 / 2007$	UNA	MIS
M-5	Cameco \#3	USDI, BLM** Cameco Resources U.S. Inc.	P101718W	$3 / 6 / 1996$	CAN	MIS
M-7	 Rox \#1	USDI, BLM** Kerr-McGee Corp	P34544W	$8 / 6 / 1976$	CAN	MIS
	 Rox \#1	USDI, BLM** Kerr-McGee Corp	P51983W	$4 / 16 / 1980$	CAN	TEM IND
M-10	Jinny \#1	Uranium One dba Energy Metals Corp	P184391W	$1 / 3 / 2008$	UNA	MIS
M-15	Bairoil Road	USDI, BLM Rawlins District	P55119W	$12 / 24 / 1980$	GST	STO

investing in our energy
Section 2.7- Hydrology

2.7.5 References

Collentine, M. et. al. 1981. Occurrence and characteristics of ground water in the Great Divide and Washakie Basins, Wyoming: Water Research Institute, University of Wyoming, report for the U.S. Environmental Protection Agency, report code G-008269-79.

Cooper, H.H. and C.E. Jacob. 1946. A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well Field History: American Geophysical Union Transactions, Vol. 27, pp. 526-534.

Fisk, E.P. 1967. Groundwater geology and hydrology of the Great Divide and Washakie basins, south central Wyoming: M.S. Thesis, University of Southern California.

Hantush, M.S. and C.E. Jacob. 1955. Non-Steady Radial Flow in an Infinite leaky Aquifer: Transactions of the American Geophysical Union, Vol. 36, pp. 95-100.

Hydro-Engineering. 1984. Hydrology of the JAB Project Area: Consultant's report prepared for Umetco Minerals Corporation.

Lowham. 1976. Techniques for Estimating Flow Characteristics of Wyoming Streams, U.S. Geological Survey, Water Resources Investigation 76-112.

Mason, J.P. and K.A. Miller. 2005. Water Resources of Sweetwater County, Wyoming. U.S. Department of the Interior and U.S. Geological Survey. Scientific Investigations Report 2004-5214.

Miller, J.F., R.H. Frederick, and R.J. Tracey. 1973. Precipitation-Frequency Atlas of the Western United States: Volume II - Wyoming. U.S. Department of Commerce. National Oceanic and Atmospheric Administration Stock Number 0317-00155.

Schlumberger Water Services. 2008. Aquifer Test Pro 4.2 ${ }^{\text {TM }}$, Aquifer Test data analysis software package.

Theis, C.V. 1935. The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well using Groundwater storage: Trans. American Geophysical Union, Vol. 16, pp. 519-524.
U.S. Geological Survey in cooperation with U.S. Environmental Protection Agency. 2002. National Hydrography Dataset. http://data.geocomm.com/. Accessed May 26, 2008.

Welder, G.E. and L.J. McGreevy. 1966. Ground-water reconnaissance of the Great Divide and Washakie Basins and some adjacent areas, southwestern Wyoming: U.S. Geological Survey Hydrologic Investigations Atlas HA-219.

Whitehead, R.L. 1996. Ground water Atlas of the United States: Montana, North Dakota, South Dakota, Wyoming: U.S. Geological Survey Hydrologic Investigations Atlas HA 730-I. http://capp.water.usgs.gov/gwa/ch i/index.html.

Wyoming State Engineers Office. 2002. Water Rights Database http://seo.state.wy.us/wrdb/index.aspx. Wyoming State Engineer's Office. Accessed April, 2008.
U.S. Fish and Wildlife Service. 2007. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC. FWS/OBS-79-31. U.S. Fish and Wildlife Service, Division of Habitat and Resource Conservation. http://wetlandsfws.er.usgs.gov. Accessed May 26, 2008.

Figure 2.7-1 Antelope and JAB

Figure 2.7-2 Antelope and JAB

Uranium Project Location within the Great Divide Basin

\square

Arapahoe Creek Watershed
Figure 2.7-3 Arapahoe Creek Subwatershed Antelope and JAB Uranium Project Wetlands and Surface Waterbodies West Arapahoe Creek East Arapahoe Creek
-_ Magpie Creek
—— Arapahoe Creek

- Other Streams

Figure 2.7-4 Lower Lost Creek Subwatershed

Figure 2.7-5 Osborne Draw Subwatershed

Figure 2.7-6 Upper Lost Creek Subwatershed

Upper Lost Creek Watershed
Antelope and JAB Uranium Project
Wetlands and Surface Waterbodies
Lost Creek
Other Streams

[^0]:

