Indian Point 3 Nuclear Power Plant P.O. Box 215 Buchanan, New York 10511 914 739.8200

February 27, 1987 IP3-WAJ-015Z

Docket No. 50-286 License No. DPR-64

Dr. Thomas E. Murley Regional Administrator Region I U.S. Nuclear Regulatory Commission 631 Park Avenue King of Prussia, PA 19406

Dear Dr. Murley:

Enclosed is the Semi-Annual Report of Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents for Indian Point 3 as required by Section 5.3.3.1 of the Environmental Technical Specifications.

The enclosed report covers the period July 1, 1986 through December 31, 1986 for Indian Pcint 3 and includes those releases from Indian Point 2 which resulted from processing liquid waste from Indian Point 3 when this pathway is utilized.

The effluent stream flow has not yet been received from the Department of the Interior and will be supplied when available.

Corrections to the first and second quarter 1986 semi-annual report and the third and fourth quarter 1985 semi-annual report are included.

E48

Sincerely,

W. A Josfger

Besident Manager Indian Point 3 Nuclear Power Pl....

WAJITS

Enclosure

8703050199 870227 PDR ADOCK 05000286 R PDR

ec: Document Contiol Desk
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555

Indian Point 3 Resident Inspector's Office

Corrections to the First and Second Quarter 1986 Semi-Annual Effluent Releases Report

Incorrect dilution flows (Table 2A.F) were used in the liquid release calculations. This required the recalculation of the average diluted concentration and the percent of the applicable limit. These corrections are attached on a revised Table 2A.

Corrections to the Third and Fourth Quarter 1985 Semi-Annual Effluent Release Report

Carbon 14 doue to the maximum exposed individual were inadvertently omitted in the final semi-annual report in 1985. These corrections are attached on the revised Radiological Impact on Man summary table.

TABLE 2A (corrected)

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1986)

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

	UNIT	<u>QUARTER</u> 1st	<u>QUARTER</u> 2nd	EST.TOTAL ERROR %
A. Fission and activation products				
 Total release (not including tritium, gnses, alpha) Average diluted concentration during period Percent of applicable limit 	Ci uCi/ml %	3.99E-2 2.76E-10 2.64E-1	7.90E-2 3.75E-10 3.74E-1	2.50E+1
B. Tritium				
 Total release Average diluted concentration during period Percent of applicable limit 	Ci uCi/ml	1.95E+2 1.35E-6 2.64E-1	1.78E+2 8.44E-7 3.74E-1	2.50E+1
C. Dissolved and entrained gases				
 Total release Average diluted concentration during period Percent of applicable limit 	Ci uCi/ml %	1.16E+1 8.03E-8 2.64E-1	4.76E+0 2.26E-8 3.74E-1	2.50E+1
D. Gross alpha radioactivity				
1. Total release	Ci	<8.39E-5	<1.47E-4	2.50E+1
E. Volume of waste released (prior to dilution)	liters	1.48E+6	2.51E+6	1.00E+1
F. Volume of dilution water used during period	liters	1.44E+11	2.11E+11	1.00E+1

8703050411 870227 PDR ADOCK 05000286 R PDR

Corrected

Indian Point 3 Radiological Impact on Man January - December 1985 (Reference: Indian Point 3 RETS, Section 5.3.3)

Maximum Exposed Individual Doses in mrem

			Total Body	Skin	Bone	Liver	Thyroid	Kidney	Lung	GI-LLI
<u>A.</u>	Gaseo	us Pathway								
	A.1	* Noble Gases	1.50E-1	9.10E-1						
	A.2	** Radioiodines, Particulates, and Tritium	7.80E-4		4.90E-4	8.50E-4	2.90E-2	8.30E-4	~ 7.50E-4	7.50E-4
	A.3	*** Carbon-14	3.302-1		1.65E-0	3.30E-1	3.30E-1	3.30E-1	3.30E-1	3.30E-1
<u>B.</u>	Liqu	id Pathway								
	B.1	All Releases (w/o C-14)	3.00E-2		6.60E-2	5.30E-2	1.00E-2	8.90E-3	1.70E-2	1.30E-1
	B.2	Carbon-14	1.70E-3		8.48E-3	1.70E-3	1.70E-3	1.70E-3	1.70E-3	1.70E-3
		TOTALS	5.12E-1	9.10E-1	1.72E-0	3.86E-1	3.71E-1	3.41E-1	3.49E-1	4.62E-1
			.)							

* Site Boundary, 350 meters, SW sector

** Infant, 8.1 km, SSW sector

*** Child, 1.3 km, S sector

**** Adult, 1.4 km, SW sector

9703050418 870227 PDR ADOCK 05000286 R

Effluent and Waste Disposal

Semi-Annual Report

July 1 - December 31, 1986

Facility Indian Point 3

Licensee New York Power Authority

This information is provided in accordance with the requirements of Regulatory Guide 1.21. The numbered sections of this report reference corresponding sections of the subject Regulatory Guide, pages 1.21-10 to 12.

A. Supplemental Information

1. Regulatory Limits

Indian Point 3 is presently subject to limits on radioactive waste releases that are set forth in sections 2.3.1, 2.3.2, 2.3.3, 2.4.1, 2.4.2, 2.4.3 and 2.4.4 of Appendix B to Docket #50-286 entitled "Environmental Technical Specification Requirements Part II Radiological Environmental". The percentages of the technical specification limits reported in Tables 1A and 2A are the percent of the quarterly limits specified in the ETSR. If more than one limit applies to the release the most restrictive limit is applied.

2. Maximum Permissible Concentration

a. Fission and Activation Gases

The quarterly dose resulting from release of fission and activation gases is calculated in accordance with the methodology stated in the Off Site Dose Calculation Manual (ODCM). The specific isotopes listed in Table 1C are used to determine the effective dose factors for the time period.

b&c. Iodines, Tritium and Particulates

The quarterly organ dose limit for Iodine 131, tritium and particulates with half-lives greater than eight days is calculated in accordance with the methodology stated in the ODCM.

d. Liquid Effluents

The quarterly dose limit for liquid isotopic releases is calculated in accordance with the methodology stated in the ODCM. The instantaneous concentration limit for noble gases dissolved in liquid releases is calculated based upon a maximum permissible concentration of 2.00E-4 as required by section 2.3.1.A of the ETSR.

8703050207 870227 PDR ADDCK 05000286 R PDR

3. Average Energy

The average energies (\overline{E}) of the radionuclide mixture in releases of fission and activation gases were as follows:

3rd Quarter E = 1.44E-01 MeV/dis E = 5.58E-02 MeV/dis 4th Quarter E β = 1.63E-01 MeV/dis E γ = 7.72E-02 MeV/dis

4. Measurements and Approximations of Total Radioactivity

a. Fission and Activation Gases

Analysis of effluent gases has been performed in compliance with the requirements of Table 3.4-1 of the ETSR. In the case of isolated tanks (batch release) the total activity discharged is based on an isotopic analysis of each batch with the volume of gas in the batch corrected to standard temperature and pressure.

Vapor containment purge discharges have been treated as batch releases and pressure relief discharges have been treated as continuous releases (> 500 hrs/year as defined in NUREG 0133). At least one complete isotopic concentration analysis of containment air is performed monthly. This analysis is used in conjunction with a process monitor to obtain the isotopic mixture and quantification of each pressure relief. Isotopic analyses for each vapor containment purge are taken prior to and during the purge. This information is combined with the volume of air in each discharge to calculate the quantity of activity, from these discharges.

The continuous building discharges are based on weekly samples of ventilation air for isotopic content. This information is combined with total air volume discharged and the process radiation monitor readings to determine the quantity of activity from continuous discharges.

Carbon 14 releases are estimated from the data provided in the New York State Department of Health study performed at IP3. These values are then prorated for the unit's annual power history.

b&c. Iodines and Particulates

Iodine-131 and particulate releases are quantified by collecting a continuous sample of ventilation air on a TEDA impregnated activated charcoal cartridge and a glass-fiber filter paper. These samples are changed weekl as required in Table 3.4-1 of the ETSR and the concentration of isotopes found by analysis of these samples is combined with the volume or air discharged during the sampling period to calculate the quantity of activity discharged.

For other iodine isotopes the concentration of each isotope is determined monthly on a 24-hour sample. The concentration of the isotopes found by analysis is combined with the volume of air discharged during the sampling period to calculate the quantity of activity discharged.

d. Liquid Effluents

A sample of each batch discharge is taken and an isotopic analysis is performed in compliance with requirements specified in Table 3.3-1 of the ETSR. This isotopic concentration data is combined with information on volume discharged to determine the amount of each isotope discharged.

Proportional composite samples of continuous discharges are taken and analyzed in compliance with Table 3.3-1 of the ETSR. This concentration data is combined with the volume discharged to calculate the total activity discharged. Carbon 14 releases are estimated from the data provided in the New York State Department of Health study performed at IP3. These values are then prorated for the unit's annual power history.

1000

5. Batch Releases

a. Liquid

						<u>1986</u>				
						3rd Quarter	4th Quarter			
Number of			_	,		41	57			
Total Time	Perio	d Batch	Relea	ises (M	in.)	8135	9676			
Maximum "	н		++		"	375	310			
Average "	11	**	11	**	11	198	- 170			
Minimum "	"	11		11	"	120	115			
Average St	ream Fi	low (cf	s)			(not yet a	vailable)			
b. (Gaseous	5								
Number of 1	Batch F	Release	s			4	(none)			
Total Time	Period	Batch	Relea	ses (M	ln.)	3422				
Maximum	11	"	**	11	11	2690				
Average	••	н	11	11	11	855				
Minimum	f1-	**	11	н	11	112				

6. Abnormal Releases

a. <u>Liquid</u> None

b. <u>Gaseous</u> None

7.0 Radiological Environmental Technical Specifications

The Radiological Environmental Technical Specifications require reporting of prolonged outage of effluent monitoring equipment (Sections 2.1.C and 2.2.B) and significant changes in the land use census, Radiological Environmental Monitoring Program or exceeding the total curie content limitations in outdoor tanks. (Sections 2.8.A, 2.8.B, 2.7.C and 2.3.4.B). During this reporting period no reportable events occurred.

The RETS modified the content and format of the Semi-Annual Effluent Release Report (Section 5.3.3.1). A Section G "Offsite Dose Calculation Manual Changes", has been included. The ODCM was retyped to put the entire document on one word processing system, and a complete copy of the ODCM, Rev. 4 is enclosed. During this reporting period there were several changes to the Offsite Dose Calculation Manual. There were no changes in the Process Control Program.

Indian Point 3

•

`

EFFLUENT AND WASTE DISPOSAL

SEMI-ANNUAL REPORT

B. GASEOUS EFFLUENTS THIRD AND FOURTH QUARTER 1986

TABLE 1A

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1986)

GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES

		UNIT	QUARTER 3rd	QUARTER 4th	EST. TOTAL Error %
A.	Fission & Activation Gases				
2.		Curies uCi/sec n %	7.83E+01 9.85E-00 9.22E-01	5.60E+02 7.05E+01 5.97E-00	2.50E+01
В.	Iodines				
2.	Total iodine - 131 Average release rate for period Percent of technical specification limit.	Ci uCi/sec %	3.86E-04 4.86E-05 4.15E-02	5.57E-04 7.01E-05 1.18E-01	2.50E+01
c.	Particulates				
2. 3.	Particulates with half-lives >8 days Average release rate for period Percent of technical specification limit. Gross alpha radioactivity	Ci uCi/sec % Ci	1.25E-04 1.57E-05 4.15E-02 <3.45E-01	3.21E-06 4.04E-07 1.18E-01 <4.30E-01	2.50E+01
D.	Tritium				
2.	Total release Average release rate for period Percent of technical specification limit.	Ci uCi/sec %	1.31E-00 1.64E-01 4.15E-02	9.47E-01 1.19E-01 1.18E-01	2.50E+01

.

Page 1

TABLE 1C EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1986) GASEOUS EFFLUENTS-GROUND RELEASES

		CONTINUC		BATCH MODE
Nuclides Released	Unit	<u>3rd Quarter</u>	<u>4th Quarter</u>	3rd Quarter 4th Quarter
1. Fission Gases				
Krypton (Kr) 85m	Ci	8.72E-01	2.65E-01	4.98E-04
Krypton (Kr) 85	Ci	3.96E-01	1.48E-00	1.45E+00
Krypton (Kr) 87	Ci	3.36E-03	2.05E-02	
Krypton (Kr) 88	Ci	2.94E-02	2.28E-01	
Xenon (Xe) 131m	Ci	2.28E-01	3.55E-00	3.39E-01
Xenon (Xe) 133m	Ci	6.62E-01	4.95E-00	5.81E-02
Xenon (Xe) 133	Ci	1.00E+02	5.24E+02	1.64E+01
Xenon (Xe) 135m	Ci			
Xenon (Xe) 135	Ci	1.76E+01	2.52E+01	9.81E-04
Xenon (Xe) 138	Ci			
Argon (Ar) 41	Ci	4.48E-02	1.07E-01	
Unidentified	Ci			
TOTAL FOR PERIOD	Ci	1.20E+02	5.60E+02	1.82E+01
2. Iodines				
iodine (I) 131	Ci	3.86E-04	5.57E-04	
iodine (1) 133	Ci	5.10E-05		
iodine (I) 135	Ci			
			·····	
TOTAL FOR PERIOD	Ci	4.37E-04	5.57E-04	

TABLE 1C EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1986) GASEOUS EFFLUENTS - GROUND RELEASES

• .

				CONTINUOUS MODE		BA	тсн м	ODE
Nuclides Rel	eased	Unit	3rd Quarter	4th Quarter	3rd	Quarter	4th	Quarter
3. Particula	tes							
Antimony (S	b) 12	5 Ci						
Barium (B	a) 13	3 Ci						
Cadmium (C	a) 10	9 Ci	1.20E-05					
Cerium (C	e) 13	9 Ci						
Cerium (C	e) 14	1 Ci	1.76E-07					
Cerium (C	e) 14	4 Ci						
Cesium (C	s) 13	4 Ci						
Cesium (C	s) 13	7 Ci	1.61E-06					
Cobalt (Co	o) 5	7 Ci	8.83E-07					
Cobalt (Co	o) 5	3 Ci	1.04E-04	2.25E-06				
Cobalt (Co	D) 6) Ci	5.86E-06					
Chromium (Cr	r) 5	l Ci	1.09E-06					
Iron (Fe	e) 59	5 Ci						
Niobium (Nb	o) 95	6 Ci						
Strontium (Sr	r) 85	6 Ci	· .	9.61E-07				
Strontium (Sr	:) 90) Ci						
Tin (Sn	n) 11	3 Ci						

			ومعادي فيرجعه النائلة فبمستحا المتهو المعاد المتهوية المتنبع المتنافي		
TOTAL	C 1	1.26E-04	3.21E-06	0 000 00	0 000 00
IOTHT		1.206-04	J.ZIE-00	0.00E-00	0.00E-00
····		and the second state of th			01000 00

Indian Point 3

EFFLUENT AND WASTE DISPOSAL

SEMI-ANNUAL REPORT

C. LIQUID EFFLUENTS THIRD AND FOURTH QUARTERS, 1986

TABLE 2A

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1986)

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

	UNIT	<u>QUARTER</u> 3rd	<u>QUARTER</u> 4th	EST.TOTAL ERROR %
A. Fission and activation products				
 Total release (not including tritium, gases, alpha) Average diluted concentration during period Percent of applicable limit 	Ci uCi/ml %	5.08E-02 1.64E-10 1.99E-01	2.55E-02 8.61E-11 8.90E-02	2.50E+01
B. Tritium				
1. Total release 2. Average diluted concentration during	Ci	5.01E+01	1.44E+02	2.50E+01
period 3. Percent of applicable limit	uCi/ml %	1.62E-07 1.99E-01	4.87E-07 8.90E-02	
C. Dissolved and entrained gases				
1. Total release 2. Average diluted concentration during	Ci	5.79E-01	7.59E-00	2.50E+01
period 3. Percent of applicable limit	uCi/ml %	1.87E-09 1.99E-01	2.56E-08 8.90E-02	
D. Gross alpha radioactivity				
1. Total release	Ci	<9.82E-05	<1.54E-04	2.50E+01
E. Volume of waste released (prior to dilution)	liters	1.35E+06	1.93E+06	1.00E+01
F. Volume of dilution water used during period	liters	3.09E+11	2.96E+11	1.00E+01

Page 1

.

LIQUID EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT (1986)

			CONTINUC	DUS MODE	BATCH MODE		
Nuclide	s Released	Unit	3rd Quarter	4th Quarter	3rd Quarter	<u>4th Quarter</u>	
Antimon	y (Sb) 122	Ci					
Antimon	y (Sb) 124	Ci			1.17E-04		
Antimon	y (Sb) 125	Ci			1.82E-03	8.62E-04	
Barium	(Ba) 140	Ci					
Barium	(Ba) 133	Ci					
Cadmium	(Cd) 109	Ci	,				
Cerium	(Ce) 139	Ci					
Cerium	(Ce) 141	Ci ·			4.33E-06		
Cerium	(Ce) 144	Ci					
Cesium	(Cs) 134	Ci			1.06E-03	1.32E-05	
Cesium	(Cs) 137	Ci			1.55E-03	1.23E-04	
Cesium	(Cs) 138	Ci					
Chromiun	n (Cr) 51	Ci			1.48E-04	3.26E-05	
Cobalt	(Co) 57	Ci			5.73E-06		
Cobalt	(Co) 58	Ci			4.71E-03	2.37E-03	
Cobalt	(Co) 60	Ci			5.24E-03	1.21E-03	
Iodine	(I) 131	Ci			5.54E-04	1.84E-03	
Iodine	(I) 133	Ci			2.21E-05	7.74E-05	
Iodine	(I) 134	Ci			1.93E-04		
Iodine	(I) 135	Ci					
Iron	(Fe) 55	Ci			2.58E-02	1.55E-02	
Iron	(Fe) 59	Ci			2.81E-04		
Lanthanu	m(La) 140	Ci				3.12E-05	
Mercury	(Hg) 203	Ci			2.68E-06		

TABLE 2B

LIQUID EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT (1986)

										۰.		
						CC	NTIN	uous	MODE		BATCH I	MODE
÷	Nuclides			Unit	3rd	Quart	ler	4th	Quarter	3.	rd Quarter	4th Quarter
	Manganese	(Mn)	54	Ci							5.57E-04	2.61E-05
	Molybdenu	m(Mo)	99	Ci								3.31E-04
	Nickel	(Ni)	63	Ci							1.72E-03	2.09E-03
	Copper	(Cu)	64	Ci								
	Niobium	(Nb)	94	Ci								
	Niobium	(Nb)	95	Ci							1.90E-05	
	Yttrium	(Y)	88	Ci								
	Rubidium	(Rb)	88	Ci								3.92E-04
	Ruthenium	(Ru)	103	Ci								
	Ruthenium	(Ru)	105	Ci						-	7.85E-05	
	Ruthenium	(Ru)	106	Ci								
	Silver	(Ag)	110m	Çi						ŧ	5.57E-03	1.40E-04
	Sodium	(Na)	24	Ci								
	Strontium	(Sr)	85	Cì								4.25E-05
	Technetium	n(Tc)	99m	Ci						נ	.72E-05	3.89E-04
	Tin	(Sn)	113	Ci]	.94E-05	
	Tellurium	(Te)	132	Cí								
	Tungsten	(W)	187	Ci						4	.43E-05	
	Yttrium	(Y)	91m	Ci						5	5.12E-06	
	Yttrium	(Y)	92	Ci						2	2.15E-04	
	Zinc	(Zn)	65	Ci								
	Zirconium	(Zr)	95	Ci								

TABLE 2B

LIQUID EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT (1986)

			CONTINUC	US MODE	BATCH	MODE
Nuclides		Unit	3rd Quarter	4th Quarter	3rd Quarter	<u>4th Quarter</u>
Argon	(Ar) 41	Ci			3.74E-05	
Xenon	(Xe) 131	m Ci			2.94E-03	5.50E-02
Xenon	(Xe) 133	Ci			5.53E-01	7.38E-00
Xenon	(Xe) 133	m Ci			1.11E-02	1.09E-01
Xenon	(Xe) 135	Ci			1.20E-02	4.17E-02
Krypton	(Kr) 85m	Ci			1.88E-04	6.81E-04
Krypton	(Kr) 85	Ci				9.69E-03
Krypton	(Kr) 88	Ci			1.06E-05	
TOTAL DISS ENTRAINED		Ci			5.79E-01	7.56E-00

Indian Point 3

EFFLUENT AND WASTE DISPOSAL

SEMI-ANNUAL REPORT

D. SOLID WASTE THIRD AND FOURTH QUARTERS, 1986

TABLE 3

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

July 1 - December 31, 1986

SOLID WASTE SHIPMENTS

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (Not irradiated fuel)

	Type of W	aste		Unit	6 Month Class A	Period Class B	Est. Total Error, %	
<u> </u>	a. Spent		filter	m ³ Ci	0	4.81E+0 1.70E+1	5.0E+1	
		mpressibl ent for b	le, contam. Durial	m Ci	2.97E+0 1.76E+0	0	5.0E+1	
	c. Irradi	ated Comp	onents	m ³ Ci	0	0 0	N/A	
_	volume	Dry con inated ec reductic e facilit	on at	m ³ Ci	7.03E+1 8.94E-1		5.0E+1	
			nuclide comp	position	(by type o	f waste)		
			n Donin					
	NUCLIDE	UNIT	a. Resin <u>CLASS B</u>		Pry-Burial	d. Dry-Vol. <u>CLASS A</u>	Reduction	
	Fe-55	UNIT %	<u>CLASS B</u> 15		33	<u>CLASS A</u> 25	Reduction	
	<u> </u>		CLASS B		LASS A	CLASS A	Reduction	
	Fe-55 Co-58 Co-60 Ni-63	96 96	<u>CLASS B</u> 15 32 22 7		33 19 32 6	<u>CLASS A</u> 25 12 46 5	Reduction	
	Fe-55 Co-58 Co-60	કર કર કર	<u>CLASS B</u> 15 32 22		33 19 32	<u>CLASS A</u> 25 12 46	Reduction	
	Fe-55 Co-58 Co-60 Ni-63 Sb-125 Cs-134	ર ક ક ક ક ક ક	<u>CLASS B</u> 15 32 22 7 0 9 15		33 19 32 6 8 0	<u>CLASS A</u> 25 12 46 5 6 0	Reduction	

4. Containers Shipped

	<u>Class A</u>		<u>Class</u> B		
Container	Number	<u>Solid. Media</u>	Number	Solid. Media	
For Burial:					
Drums	14	none	N/A	N/A	
Poly HIC	N/A	N/A	1	none	
 For Volume Reduct	ion:				
Drums	174	none	N/A	N/A	
Crates	12	none	N/A	N/A	
Crates	12	none	N/A	N/A	

Indian Point 3 EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT

E. RADIOLOGICAL IMPACT ON MAN January - December 1986

RADIOLOGICAL IMPACT ON MAN

The radiological impact on man is determined by conservatively calculating doses to a hypothetically maximum individual offsite based on plant effluents. These calculations are divided into 3 categories:

- Noble Gases
- Particulates and Iodine
- Liquid Releases (fish and invertebrate consumption)

An annual average dispersion factor is used in the calculations, the details of which are presented in the Offsite Dose Calculation Manual.

The computer code used to perform dose calculations incorporates the models and parameters presented in the Indian Point 3 ODCM which utilizes the assumptions in Regulatory Guide 1.109 and NUREG 0133. Carbon 14 release concentrations and resulting dose is estimated using data generated at Indian Point 3 by the New York State Department of Health. These estimates are consistent with the estimates in NUREG 0017, rev. 1.

Dose calculations from liquid pathways to individuals for the fish and invertebrate consumption pathways are computed using the methodology and par meters in the Indian Point 3 ODCM which incorporates the calculational models that are present in Regulatory Guide 1.109 and NUREG 0133.

Indian Point 3 Radiological Impact on Man January ~ December 1986 (Reference: Indian Point 3 RETS, Section 5.3.3)

Maximum Exposed Individual Doses in mrem

			Total Body	Skin	Bone	Liver	Thyroid	Kidney	Lung	GI-LLI
<u>A.</u>	Gaseo	us Pathway								
	A.1	* Noble Gases	2.30E-1	1.08E-0	I					
	A.2	** Radioiodines, Particulates, and Tritium	4.92E-4		1.97E-4	6.00È-4	6.22E-2	6.29E-4	4.11E-4	4.17E-4
	A.3	*** Carbon-14	3.84E-1		1.92E-0	3.84E-1	3.84E-1	3.84E-1	3.34E-1	3.84E-1
<u>B.</u>	Liqu	id Pathway ****								
	B.1	All Releases (w/o C-14)	8.35E-3		3.05E-2	2.10E-2	2.22E-2	2.56E-3	1.08E-2	3.92E-2
	B.2	Carbon-14	2.81E-3		1.40E-2	2.81E-3	2.81E-3	2.81E-3	2.81E-3	2.81E-3
					<u></u>					
		TOTALS	6.26E-1	1.08E-0	1.96E-0	4.08E-1	4.71E-1	3.90E-1	3.98E-1	4.26E-1

- * Site Boundary, 350 meters, SW sector
- ** Infant, 8.1 km, SSW sector
- *** Child, 1.3 km, S sector
- **** Adult, 1.4 km, SW sector

Indian Point 3 EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT

F. METEROROLOGICAL DATA January - December 1986

STREAM NRC FORMAT FOR NURES 1.21

INDIAN POINT JULY-SEPT 1986 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS A

)

	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
н	4.	67.	6.	٥.	0.	0.	77.
HNE	1.	9.	1.	٥.	٥.	0.	11.
NE	1.	4.	2.	٥.	Ο.	0.	7.
EHE	2.	1.	Ο.	٥.	Ο.	0.	3.
Ε	0.	Q.	ο.	٥.	σ.	0.	
ESE	1.	0.	Ο.	٥.	Ο.	0.	1.
SE	5.	2.	Ο.	٥.	٥.	0.	7.
SSE	11.	14.	Ο.	Ο.	Ο.	0.	25.
S	19.	72.	3.	٥.	٥.	0.	94.
SSH	7.	25.	8.	٥.	0.	0.	40.
SH	3.	13.	0.	Ο.	٥.	0	16.
HSH	1.	7.	٥.	0.	٥.	0.	8.
н	6.	16.	ο.	Ο.	0.	0.	22.
1531	2.	5.	٥.	Ο.	0.	0.	7.
NH I	2.	16.	4.	٥.	٥.	0.	22.
NP-24	5.	26.	6.	0.	ο.	0.	37.

TOTAL	70.	277.	30.	Ο.	٥.	٥.	
-------	-----	------	-----	----	----	----	--

CALH ٥.

....

377.

· · ,

INDIAN POINT JULY-SEPT 1986 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS B

Ì

CIIN DIRECTICH

WIND SPEED (MPH)

	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
н	4.	18.	1.	٥.	σ.	Ο.	23.
NNE	3.	9.	1.	ο.	٥.	0.	13.
NE	Ó.	1.	0.	٥.	Ο.	0.	1.
ENE	1.	Ο.	0.	Ο.	Ο.	0.	1.
E	1.	0.	ο.	٥.	0.	0.	1.
ESE	1.	0.	0.	٥.	٥.	0.	1.
52	1.	Ο.	Ο.	Ο.	Ο.	0.	1.
SSE	1.	1.	Ο.	Ο.	0.	0.	2.
S	8.	18.	1.	0.	0.	Ο.	27.
รรม	2.	4.	ο.	٥.	Ο.	0.	6.
SH	1.	5.	σ.	٥.	0.	0.	6.
หรม	1.	1.	Ο.	0.	0.	Ο.	2.
ы	3.	2.	Ο.	٥.	٥.	0.	5.
મથ્ય	1.	2.	Ο.	٥.	0.	0.	3.
154	2.	0.	Ο.	Ο.	0.	0.	2.
1341	1.	0.	0.	0.	0.	0.	1.
TOTAL	31.	61.	3.	٥.	٥.	٥.	95.

CALM 0.

INDIAN POINT JULY-SEPT 1986 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS C

NIND DIRECTION .

3. 2. 4. 1. 2. 2. 3.	04-07 21. 2. 4. 0. 1. 0. 3.	08-12 0. 0. 1. 0. 0. 0.	13-18 0. 0. 0. 0. 0. 0. 0.	19-24 0. 0. 0. 0. 0. 0. 0.	>24 0. 0. 0. 0. 0. 0.	TDTAL 24. 4. 9. 1. 2. 2.
4. 1. 2. 2. 3.	2. 4. 0. 1. 0.	0. 1. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0. 0. 0.	4. 9. 1. 2.
4. 1. 2. 2. 3.	4. 0. 1. 0.	1. 0. 0. 0.	0. 0. 0.	0. 0. 0. 0.	0. 0. 0.	9. 1. 2.
1. 1. 2. 2. 3.	0. 1. 0. 0.	0. 0. 0.	0. 0. 0.	0. 0. 0.	0. 0. 0.	9. 1. 2.
1. 2. 2. 3.	1. 0. 0.	0. 0. 0.	0. 0.	0. 0.	0. 0.	1. 2.
2. 2. 3.	0. 0.	0. 0.	٥.	Ο.	0.	2.
2. 3.	0.	٥.			0.	
3.			0.	•		٤.
	3.	•		υ.	0.	
~		Ο.	0.	0.	0.	2.
9.	15.	Ο.	٥.	0.		5.
3.	4.				0.	24.
1.						.8.
						٤.
					0.	1.
					0.	7.
				Ο.	0.	0.
			ο.	0.	0.	2.
4.	5.	0.	0.	0.	0.	7.
	3. 1. 0. 3. 0. 4.	1. 1. 0. 1. 3. 4. 0. 0. 0. 2.	1. 1. 0. 0. 1. 0. 3. 4. 0. 0. 0. 0. 0. 2. 0.	3. 4. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 3. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0.	3. 4. 1. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 3. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0.	3. 4. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 3. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0.

TOTAL

38.

61.

2.

Ο.

Ο.

0.

101.

CALH 0.

11

********* TRC FORMAT FOR NURES 1.21******

INDIAN POINT JULY-SEPT 1986 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS D

HIND DIRECTION

WIND SPEED (MPH)

	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
N	11.	77.	7.	Ο.	0.	0.	95.
101E	21.	36.	2.	Ο.	D.	0.	59.
NE	34.	22.	ο.	Ο.	٥.	0.	56.
ENE	34.	5.	Ο.	Ο.	٥.	0.	39.
Ε	20.	6.	Ο.	٥.	٥.	0.	26.
ESE	5.	2.	٥.	٥.	٥.	0.	7.
SE	22.	Ο.	Ο.	Ο.	0.	0.	22.
SSE	13.	4.	Ο.	Ο.	٥.	0.	1.
S	43.	86.	5.	Ο.	0.	Ο.	134.
SSH	15.	39.	4.	٥.	٥.	Ο.	58.
SX	11.	3.	٥.	Ο.	0.	Ο.	14.
HSH	12.	2.	0.	Ο.	0.	Ο.	14.
н	6.	8.	Ο.	Ο.	0.	٥,	14.
1361	2.	3.	1.	٥.	Ο.	0.	6.
154	2.	8.	1.	٥.	0.	0.	11.
15:01	5.	13.	1.	٥.	0.	0.	19.

3

TOTAL 256. 314. 21. 9.

1

CALH 0.

)

ì

`

591.

Ο.

0.

INDIAN POINT JULY-SEPT 1986 10 METER WIND SPEED 3 DIR. WITH 61-10 METER DELTA T PASQUILL CLASS E

)

DIREC	TICH			WIND SPI	EED (MPH)	
	01-03	04-07	03-12	13-18	19-24	>24	TOTAL
N	31.	41.	Ο.	0.	Ο.	0.	72.
HAVE	52.	49.	٥.	Ο.	0.	Ο.	101.
NE	56.	38.	Ο.	Ο.	0.	0.	94.
ENE	26.	3.	Ο.	Ο.	Ŭ.	Q.	29.
E	23.	2.	Ο.	٥.	0.	0.	25.
ESE	19.	Ο.	٥.	٥.	Ο.	0.	19.
SE	36.	Ο.	Ο.	0.	٥.	0.	36.
SSE	31.	2.	٥.	Ο.	0.	Ο.	33.
S	76.	95.	2.	0.	0.	0.	173.
SSH	55.	42.	2.	٥.	ο.	0.	99.
SH	18.	3.	1.	Ο.	ο.	0.	22.
พรพ	9.	3.	Ο.	0.	Ο.	0.	12.
H	11.	4.	٥.	0.	0.	0.	15.
19.61	10.	4.	Ο.	٥.	٥.	Ο.	14.
NH	19.	6.	0.	0.	0.	Ο.	25.
10.44	14.	18.	Ο.	0.	0.	Ο.	32.

801.

`

TOTAL 486. 310. 5. 0. 0. 0.

CALM 14.

) |]

INDIAN FOINT JULY-SEPT 1986 10 METER WIND SPEED 1 DIR. WITH 61-10 METER DELTA T PASQUILL CLASS F

WIND DIRECTION)

WIND SPEED (MPH)

	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
Ν	21.	2.	0.	Ο.	Ο.	Ο.	23.
NNE	32.	6.	σ.	0.	Ο.	Ο.	38.
NE	43.	24.	1.	Q.	0.	0.	68.
ENE	15.	ο.	σ.	ο.	٥.	0.	15.
ε	17.	ο.	σ.	σ.	Ο.	0.	17.
ESE	6.	0.	Ο.	Ο.	0.	0.	6.
SE	8.	ο.	Ο.	σ.	Ο.	Ο.	8.
SSE	12.	٥.	Φ.	Ο.	Ο.	ο.	12.
S	6.	1.	σ.	Ο.	Ο.	ο.	7.
SSH	4.	٥.	Ø.	Ο.	ο.	Ο.	4.
รม	2.	0.	σ.	Ο.	٥.	ο.	٤.
HSH	1.	Ο.	σ.	Ο.	Ο.	0.	1.
H	2.	0.	0.	٥.	٥.	0.	2.
12.04	2.	Ο.	Ο.	Ο.	0.	Q.	2.
184	5.	٥.	σ.	٥.	٥.	ο.	5.
1244	2.	0.	σ.	0.	0.	Q.	2.

TOTAL 178. 33. 1. 0. 0. 0.	
----------------------------	--

CALH 4.

.

212.

.

`

; *

**** *** TRC FORMAT FOR NUREG 1.21******

INDIAN POINT JULY-SEPT 1986 10 HETER WIND SPEED 1 DIR. WITH 61-10 METER DELTA T PASQUILL CLASS G

нир

DIREC	TICN			WIND SPI	EED (MPH)	
	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
н	2.	0.	0.	0.	σ.	0.	2.
101E	1.	Ο.	0.	٥.	0.	0.	1.
NE	3.	3.	0.	0.	ο.	0.	6.
EHE	1.	ο.	٥.	٥.	Ο.	0.	1.
Ε	٥.	Ο.	٥.	0.	Ο.	Ο.	Ο.
ESE	1.	ο.	٥.	0.	Ο.	0.	1.
SE	Ο.	Ο.	0.	.0.	0.	0.	Ο.
SSE	0.	ο.	Ο.	0.	0.	0.	0.
S	2.	0.	0.	0.	0.	0.	2.
SSH	Ο.	ο.	0.	Ο.	Ο.	0.	0.
รม	Ο.	ο.	Ο.	0.	σ.	0.	0.
HSH	Ο.	0.	0.	0.	0.	Q.	0.
н	Ο.	0.	٥.	0.	0.	0.	0.
13.24	Ο.	0.	٥.	0.	0.	Ο.	0.
124	0.	Ο.	Ο.	. 0.	0.	0.	0.
10.94	0.	٥.	0.	0.	0.	0.	Ο.

٥.

0.

Ο.

٥.

TOTAL 10.

3.

13.

CALM 0.

#######NRC FORMAT FOR NURES -1.21#######

)

. .

•

INDIAN PUINT OCT-DEC 1986 10 HETER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS A

ι.

1

HIND		•					
DIRECT	ION			HIND SPE	ED (MFH)	
	01-03	04-07	08-12	13-18	10.24		2024
н					19-24	>24	TOTAL
	1.	22.	6.	0.	0.	0.	29.
HAIE	0.	0.	0.	0.	0.	0.	٥.
NE	0.	0.	ΰ.	Ο.	٥.	Ο.	0.
ENE	0.	0.	٥.	0.	ο.	Φ.	٥.
Ε	0.	Ο.	Ο.	0.	٥.	0.	D. 1
ESE	0.	1.	0.	0.	٥.	٥.	1.
GE	Ο.	D.	Ο.	Ο.	Ο.	Ο.	0.
SSE	3.	9.	٥.	0.	Ο.	Ο.	12.
S	6.	16.	4.	Ο.	٥.	٥.	26.
\$5H	1.	4.	5.	0.	٥.	٥.	10.
SH	0.	8.	Ο.	0.	0.	0.	8.
HSH	0.	1.	ο.	ΰ.	D.	0.	1.
н	1.	6.	1.	٥.	٥.	٥.	8.
юы	Ο.	11.	1.	0.	٥.	Ο.	12.
124	Ο.	16.	6.	0.	0.	0.	22.
Nº 54	1.	12.	2.	Ο.	0.	0.	15.
					- •		
TOTAL	13.	106.	25.	٥.	٥.	Ο.	144.
	±3.	200.	~	۷.	••	••	144,

CALH 0.

******** FRC FORMAT FOR NURES 1.21******

INDIAN POINT OCT-DEC 1936 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PACQUILL CLASS B

C{I} DIRECTION

WIND SPEED (MPH)

	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
н	ο.	16.	6.	0.	0.	0.	22.
MIE	o .	1.	1.	٥.	0.	Ο.	2.
NE	0.	0.	ο.	0.	0.	Ο.	٥.
ENE	0.	1.	0.	ο.	Ο.	0.	1.
E	0.	0.	ο.	٥.	0.	0.	Ο.
ESE	ο.	2.	0.	Ο.	0.	0.	2.
SE	1.	0.	Ο.	٥.	0.	Ο.	1.
SSE	-1.	2.	0.	0.	0.	0.	3.
S	4.	10.	1.	Ο.	Q.	0.	15.
รรม	Ζ.	2.	1.	Ο.	0.	0.	5.
514	0.	1.	0.	Ο.	0.	0.	1.
HSH	2.	0.	0.	0.	Q.	0.	2.
ม	0.	0.	0.	Ο.	0.	0.	٥.
HACH	1.	3.	0.	0.	0.	0.	4.
NH	1.	4.	5.	1.	0.	ο.	11.
NICI	2.	8.	5.	0.	0.	0.	15.

1.

TOTAL

14.

19.

50.

84.

0.

٥.

CALM Ο.

INDIAN POINT CCT-LEC 1986 10 METER NIND SPEED & DIR. WITH 61-10 METER DELTA T PASCUILL CLASS C

HIND DIRECTION

DIRECT	ICN			WIND SP	EED (MPH	13	
	01-03	04-07	08-12	13-19	19-24	>24	TOTAL
N	3.	14.	6.	1.	0.	0.	
HNE	1.	4.	0.	Ο.	e.	0.	24.
NE	0.	1.	Ο.	Ο.	0 .	0.	5.
ENE	1.	1.	٥.	Ο.	0.	0.	1.
ε	Ο.	1.	0.	0.	0.	0.	2.
ESE	Ο.	٥.	٥.	0.	0.		1.
SE	Ο.	Ο.	0.	0.	o.	0.	٥.
SSE	2.	1.	0.	0.	0. 0.	0.	0.
5	5.	3.	0.	0.		0.	3.
SSH	7.	3.	1.	0.	0.	0.	8.
รม	1.	0.	0.		0.	0.	11.
NSH	0.	0.		0.	0.	0.	1.
H	1.	1.	0.	. 0.	0.	0.	Ο.
134	1.		1.	0.	ο.	0.	3.
124	2.	2.	3.	0.	0.	0.	6.
NNCI		2.	3.	0.	0.	0.	7.
	4.	7,	5.	Ο.	0.	0.	16.
TOTAL	28.	40.	19.	1.	0.	0.	88

.

.

; CALH 0.

÷ .

)

88.

3

Υ.

*******NRC FORMAT FOR NUREG 1.21******

...

INDIAN POINT OCT-DEC 1986 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS D

HIND							
DIRECT	1011			HIND SP	EED (MPH	3	
	01-03	04-07	08-12	13-13	19-24	>24	TOTAL
н	45.	127.	41.	8.	Ο.	0.	221.
INE	29.	91.	26.	1.	ο.	0.	147.
NE	19.	32.	٢.	Ο.	0.	Ο.	53.
ENE	16.	13.	Ο.	0.	ο.	0.	29.
3	8.	٢.	Ο.	۵.	0.	ο.	10.
ESE	9.	0.	Ο.	Ο.	0.	0.	9.
SE	10.	· 3.	Ο.	ο.	Ο.	0.	13.
SSE	14.	٢.	٥.	Ο.	0.	0.	16.
S	33.	48.	ο.	Ο.	0.	0.	81.
รรม	28.	13.	1.	Ο.	0.	0.	42.
SH	13.	1.	ο.	Ο.	Ο.	σ.	14.
нзн	8.	4.	1.	0.	0.	0.	13.
ม	10.	15.	5.	Ο.	0.	0.	30.
5	4.	21.	7.	2.	0.	0.	34.
NH	7.	46.	28.	2.	0.	0.	83.
N8 5H	14.	47.	28.	4.	0.	0.	93.
TOTAL	267.	465.	139.	17.	0.	0.	888.

CALM 0.

INDIAN POINT CCT-DEC 1986 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS E

ζ.

WIND DIRECTION

Ĵ.

WIND SPEED (MPH)

	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
н	41.	26.	ο.	σ.	0.	0.	67.
THE	59.	37.	2.	Ο.	0.	0.	93.
NE	58.	28.	Ο.	0.	Ο.	0.	86.
ENE	17.	4.	1.	0.	0.	0.	22.
E	17.	1.	Ο.	Ο.	Ο.	0.	18.
ESE	13.	1.	Ο.	٥.	0.	0.	14.
SE	22.	0.	Ο.	٥.	0.	0.	22.
SSE	33.	Ζ.	ο.	٥.	0.	0.	35.
S	60.	55.	٢.	Ο.	Ο.	0.	117.
รรม	30.	17.	Ο.	Ο.	0.	0.	47.
SH	23.	10.	ο.	0.	0.	0.	33.
NSH	22.	4.	1.	Ο.	0.	0.	27.
H	18.	32.	1.	٥.	0.	0.	51.
13.24	16.	19.	0.	0.	0.	0.	35.
NM	14.	19.	4.	٥.	0.	0.	37.
12-04	20.	10.	4.	Ο.	0.	0.	34.

0.

TOTAL 463.

265. 15.

0.

0.

743.

• • •

CALM 0.

)

*******NRC FORMAT FOR NUREG 1.21******

INDIAN POINT OCT-DE: 1936 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS F

HIND DIRECTION

2 : .

DUIN	SPEED	(MPH)	

	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
N	25.	2.	ο.	٥.	ο.	0.	27.
NEVE	47.	4.	ο.	Ο.	0.	0.	51.
NE	45.	30.	0.	٥.	0.	0.	76.
ENE	13.	2.	ο.	Ο.	0.	0.	15.
Ε	9.	Ο.	٥.	٥.	Ο.	0.	9.
ESE	Ο.	Ο.	Ο.	Ο.	٥.	٥.	Ο.
SE	5.	. 0 .	Ο.	Ο.	0.	٥.	5.
SSE	6.	Ο.	0.	٥.	0.	0.	6.
S	10.	٢.	Ο.	٥.	٥.	0.	12.
SSH	6.	ο.	ο.	٥.	0.	0.	6.
รม	3.	Ο.	Ο.	Ο.	Ο.	0.	3.
NSH	6.	Ο.	Ο.	Ο.	Ο.	0.	6.
H	3.	Ο.	Ο.	Ο.	0.	0.	3.
HI SH	2.	0.	Ο.	Ο.	Ο.	0.	2.
134	4.	Ο.	Ο.	0.	0.	٥.	4.
NNCH	11.	0.	0.	0.	0.	0.	11.

٥.

٥.

0.

TOTAL 196.

40.

ο.

236.

`

•

CALH 0.

1

)

INDIAN POINT OCT-DEC 1996 10 METER WIND SPEED & DIR. WITH 61-10 METER DELTA T PASQUILL CLASS G

1

WIND DIRECTION

WIND SPEED (MPH)

	01-03	04-07	08-12	13-18	19-24	>24	TOTAL
Ħ	6.	0.	Ο.	0.	0.	0.	6.
121E	3.	1.	Ο.	0.	0.	0.	
NE	4.	5.	ο.	0.	0.	0.	4.
EHE	1.	ö .	0.	0.	0.		9.
ε	0.	0.	0.	0.		0.	1.
ESE	0.	ů.			0.	0.	Ο.
SE			0.	0.	0.	0.	0.
	0.	0.	0.	0.	. 0.	Ο.	0.
SSE	1.	0.	0.	0.	Ο.	0.	1.
S	0.	0.	0.	0.	0.	Ο.	0.
SSM	1.	0.	0.	0.	Ο.	0.	1.
SH	σ.	0.	Ο.	Ο.	Ο.	0.	0.
NSH	Ο.	0.	Ο.	0.	ο.	Ο.	0.
н	ο.	Ο.	0.	0.	0.	0.	
1224	1.	0.	0.	0.	0.	0.	D.
134	0.	0.	0.	0.			1.
10-04	2.	0.			0.	<u>.</u>	0.
1	٤.	υ.	0.	0.	0.	Ο.	Ζ.
TOTAL	19.	6.	0.	0.	٥.	0.	25.

CALH D.

1

Indian Point 3

EFFLUENT AND WASTE DISPOSAL

SEMI-ANNUAL REPORT

G. OFFSITE DOSE CALCULATION MANUAL CHANGES THIRD AND FOURTH QUARTERS, 1986

ODCM CHANGES SINCE JUNE 1986

NOTE: "NO IMPACT" is to be interpreted as meaning no impact relative to offsite dose assessment or setpoint determination.

- 1. Description: This fourth revision to the ODCM is a completely retyped version. The overall format and content remains the same with the exception of the changes noted below and the equations in Chapters 3 and 4. The equations ín the body of the document are mathematically equivalent to those in the previous submittal, but the algebraic variables now employ the standard english alphabet as opposed to the many Greek symbols and subscripted references previously employed.
 - Justification: The purpose of this change was to increase readability and add administrative efficiency to reviewing and or future editing of the document. The text was retyped so that the major sections could all be accessed utilizing one word processing system.

Impact: No impact relative to offsite dose assessment.

- 2. Description: Table 1-1 was updated to indicate that the Gas Disposal System Monitor does have a setpoint which is used to ensure that the gas decay tank activity limit is not exceeded.
 - Justification: This change is a correction to the previously submitted table.
 - Impact: Results in a more accurate summary of our effluent monitors. There is no impact on dose assessments or setpoint determination.
- 3. <u>Description</u>: The reference to continuous releases in Section 2.1.6 which appears in the last ODCM submittal is removed from this current revision.
 - Justification: This is a clarification which makes Section 2.1.6 more in agreement with the intent of 2.1.2 which refers to any radioactive waste.

Impact: No impact.

4. Description: The Service Water Radiation Monitor, R-16, is added to Section 2.1.13.

Justification: This change addresses the redundant monitoring capability for this system.

Impact: No impact.

5. <u>Description</u>: The definition of dilution flow in the discharge canal eliminates the statement "Unit 3 circulators only" in Section 2.2.5.

Justification: This change was necessary to make 2.2.5 consistent with 2.1.8 which discusses partitioning of full site dilution flow.

Impact: No impact.

6. Description: Section 2.5.2 has been revised to indicate that 95% of the doses from liquid releases will be accounted for by using the backup dose methodology. As a consequence the correction factor to account for the remainder of the dose is changed from 1.2 to 1.1.

Justification: This method provides a more accurate hand calculation methodology which is still manageable without a computer.

Impact: This change increases the accuracy of offsite dose calculations using the manual method for liquid releases. Setpoint determination is unaffected.

7. Description: Section 2.5.3 is corrected to include the silver bioaccummulation factors as indicated as well as a discussion of these factors. (NOTE: This change was discussed in the 1984 ODCM Rev. 2 change package, Item No. 6.)

Justification: The indicated text was inadvertently left out of the last revision. This change is a typographical correction.

- Impact: Increased dose ussessment accuracy, setpoints are unaffected.
- 8. Description: Sections 2.4.3 and 2.5.3 now include more reasonable bioaccumulation factors for Niobium. The values are now 300 and 100 for fresh water fish and marine invertebrates respectively. Table 2-1 is also effected.
 - <u>Justification</u>: International Atomic Energy Agency Report No. 57 provides more recent data then that presented in Regulatory Guide 1.109 which was the original source of data for the bioaccumulation factors. A review of this document indicates that the R.G. 1.109 values are substantially over conservative and therefore the more recent IAEA information is incorporated in this ODCM revision.

Impact: Nore accurate dose assessment for liquid effluents with no impact on setpoints.

- 9. <u>Description</u>: The previous gas activity value of 430 uCi/cc has been changed to 300 uCi/cc to ensure the maintenance of the 50,000 Ci limit in the gas storage tank. This affects Section 3.1.12.
 - <u>Justification</u>: This change considers the pressure relief valve which would allow pressurization of the tank. Since a sample would be at atmospheric pressure, the activity concentration is corrected for the maximum allowable pressure (valve release point).
 - <u>Impact</u>: This change eliminates the potential for under estimating total activity in the storage tank.
- 10. Description: Section 3.3.13 is changed to include the proper design flow rate for ventillation of the Radioactive Machine Shop, 24,750 cfm.
 - Justification: Another set of fans (weld station fans at 3000 cfm each) are not routinely operated and the previous flow rate listed at 33,750 cfm included these fans. Therefore, the correct flow rates to use are now indicated, normally 24,750 cfm without the weld station fans and 33,750 cfm if they are all operating.
 - Impact: This will increase the accuracy of any required offsite dose assessments should this release path become important. This change will increase the associated setpoint.
- 11. Description: Appendix B has been added to the ODCM to include a discussion of detection limit application at Indian Point No. 3. It includes both the critical level and lower limit of detection concepts.
 - Justification: The RETS refers to lower limits of detection as defined in the ODCM. This change incorporates the required section. (Ref: NUREG/CR-4007, "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements".)

Impact: No impact.

12. Description: The control function previously listed in Table 1-1 for component cooling monitors, R-17A and B, has been removed from the table.

Justification: The isolation of the surge tank vents from the atmosphere is not a RETS requirement and this function no longer applies to these monitors.

Impact: No impact.

13. <u>Description</u>: The procedural information (in 2.3.4.2.a) relative to recording tank information such as volume, times, etc. has been deleted.

Justification: This information is covered by plant procedure and is inappropriate for inclusion in the ODCM.

Impact: No impact.

14. Description: The Hot Lab tanks in the Administration Building have been deleted from Figure 2-1 and the component cooling system has been added.

Justification: Figure 2-1 is updated to properly reflect the release points identified in RETS Table 2.1-1.

Impact: No impact.

15. <u>Description</u>: Figure 3-1 was changed to correct the radiation monitor designations for the Radioactive Machine Shop and the Administration Building.

Justification: The proper designations for these monitors are RE 59 and RE 46 as indicated. This represents a typographical correction.

- Impact: No impact.
- 16. Description: The blowdown flash tank and condenser air ejector are removed from the description of release points in the last paragraph of Section 1.2.1.

Justification: This change clarifies the statement that the total discharge rate for all release points must remain less than the permissible discharge rate.

Impact: No impact, clarification only.