Effluent and Waste Disposal

Semi-Annual Report

January 1, 1988 - June 30, 1988

Facility

Indian Point 3

Licensee <u>New York Power Authority</u>

This information is provided in accordance with the requirements of Regulatory Guide 1.21. The numbered sections of this report reference corresponding sections of the subject Regulatory Guide, pages 1.21-10 to 12.

A. Supplemental Information

1. Regulatory Limits

Indian Point 3 is presently subject to limits on radioactive waste releases that are set forth in sections 2.3.1, 2.3.2, 2.3.3, 2.4.1, 2.4.2, 2.4.3 and 2.4.4 of Appendix B to Docket #50-286 entitled "Environmental Technical Specification Requirements Part II Radiological Environmental". The percentages of the technical specification limits reported in Tables 1A and 2A are the percent of the quarterly limits specified in the ETSR. If more than one limit applies to the release, the most restrictive limit is reported.

2. Maximum Permissible Concentration

a. Fission and Activation Gases

The quarterly dose resulting from release of fission and activation gases is calculated in accordance with the methodology stated in the Off Site Dose Calculation Manual (ODCM). The specific isotopes listed in Table 1C are used to determine the effective dose factors for the time period.

b&c. Iodines, Tritium and Particulates

The quarterly organ dose limit for Iodine 131, tritium and particulates with half-lives greater than eight days is calculated in accordance with the methodology stated in the ODCM.

d. Liquid Effluents

8809070328 880630

ADOCK

PDR

The quarterly dose limit for liquid isotopic releases is calculated in accordance with the methodology stated in the ODCM. The instantaneous concentration limit for noble gases dissolved in liquid releases is calculated based upon a maximum permissible concentration of 2.00E-4 μ Ci/ml as required by section 2.3.1.A of the ETSR.

3. Average Energy

The average energies (E) of the radionuclide mixture in releases of fission and activation gases were as follows:

4. Measurements and Approximations of Total Radioactivity

a. Fission and Activation Gases

Analysis of effluent gases has been performed in compliance with the requirements of Table 3.4-1 of the ETSR. In the case of isolated tanks (batch release) the total activity discharged is based on an isotopic analysis of each batch with the volume of gas in the batch corrected to standard temperature and pressure.

Vapor containment purge discharges that are less than 150 hours/quarter in duration have been treated as batch releases and pressure relief discharges have been treated as continuous releases (> 500 hrs/year and as defined in NUREG 0133, Section 3.3). At least one complete isotopic concentration analysis of containment air is performed monthly. This analysis is used in conjunction with a process monitor to obtain the isotopic mixture and quantification of each pressure relief. Isotopic analyses for each vapor containment purge are taken prior to and during the purge. This information is combined with the volume of air in each discharge to calculate the quantity of activity released from these discharges.

The continuous building discharges are based on weekly samples of ventilation air for isotopic content. This information is combined with total air volume discharged and the process radiation monitor readings to determine the quantity of activity from continuous discharges.

b&c. Iodines and Particulates

Iodine-131 and particulate releases are quantified by collecting a continuous sample of ventilation air on a TEDA impregnated activated charcoal cartridge and a glass-fiber filter paper. These samples are changed weekly as required in Table 3.4-1 of the ETSR and the concentration of isotopes found by analysis of these samples is combined with the volume or air discharged during the sampling period to calculate the quantity of activity discharged.

For other iodine isotopes the concentration of each isotope is determined monthly on a 24-hour sample. The concentration of the isotopes found by analysis is combined with the volume of air discharged during the sampling period to calculate the quantity of activity discharged.

d. Liquid Effluents

A sample of each batch discharge is taken and an isotopic analysis is performed in compliance with requirements specified in Table 3.3-1 of the ETSR. This isotopic concentration data is combined with the information on volume discharged to determine the amount of each isotope discharged.

Proportional composite samples of continuous discharges are taken and analyzed in compliance with Table 3.3-1 of the ETSR. This concentration data is combined with the volume discharged to calculate the total activity discharged.

5. Batch Releases

a. Liquid

						1988	
						1st Quarter	2nd Quarter
Number of	Batch F	Release	s			40	47
Total Time	e Period	l Batch	Relea	ases (M	lin.)	7031	9057.0
Maximum "	11	n	11	11	n	275	795.0
Average "	11	11	11	11	"	175.8	192.7
Minimum "	11	11	11	11	"	125	15.0
Average St	tream Fl	low (cf	s)				
b.	Gaseous	3					
Number of	Batch F	Release	S			2	18
Total Time	e Perioc	i Batch	Relea	ases (M	lin.)	16	6093.0
Maximum	11	n	11	n	H .	12	2185.0
Average	n	**	11	**		8	338.5
Minimum	Ħ	11	**	11	11	4	30.0

6. Abnormal Releases

a. <u>Liquid</u> None

b. <u>Gaseous</u> None The Radiological Environmental Technical Specifications require reporting of prolonged outage of effluent monitoring equipment (Sections 2.1.C and 2.2.B) and significant changes in the land use census, Radiological Environmental Monitoring Program or exceeding the total curie content limitations in outdoor tanks. (Sections 2.8.A, 2.8.B, 2.7.C and 2.3.4.B). There were no reportable events during the first and second quarter 1988.

.

EFFLUENT AND WASTE DISPOSAL

SEMI-ANNUAL REPORT

B. GASEOUS EFFLUENTS FIRST AND SECOND QUARTERS 1988

TABLE 1A

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988)

GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES

		UNIT	QUARTER 1st	QUARTER 2nd	EST. TOTAI Error %
A.	Fission & Activation Gases				
1. 2. 3.	Total Release Average release rate for period Percent of technical specification limit.	Curies uCi/sec %	7.89E+01 1.00E+01 8.18E-01	1.05E+02 1.33E+01 1.10E-00	2.50E+01
В.	Iodines		•		
1. 2. 3.	Total Iodine - 131 Average release rate for period Percent of technical specification limit.	Ci uCi/sec %	9.79E-05 1.25E-05 3.24E-02	6.43E-04 8.18E-05 1.36E-01	2.50E+01
C.	Particulates				
1. 2. 3. 4.	Particulates with half-lives >8 days Average release rate for period Percent of technical specification limit. Gross alpha radioactivity	Ci uCi/sec % Ci	0.00E-00 0.00E-00 3.24E-02 <3.95E-07	1.87E-06 2.37E-07 1.36E-01 <3.19E-07	2.50E+01
D.	Tritium				
1. 2. 3.	Total release Average release rate for period Percent of technical specification limit.	Ci uCi/sec %	2.25E-00 2.86E-01 3.24E-02	1.35E-00 1.71E-01 1.36E-01	2.50E+01

Nuclides Released	<u>Uni</u> t	CONTINUO 1st Quarter	US MODE 2nd Quarter	BATCH 1st Quarter	MODE 2nd Quarter
1. Fission Gases					
Krypton (Kr) 85m	Ci	6.86E-03	6.51E-03		5.04E-03
Krypton (Kr) 85	Ci	1.19E-00	4.08E-01		1.24E-00
Krypton (Kr) 87	Ci	1.27E-04	1.58E-04		
Krypton (Kr) 88	Ci				
Xenon (Xe) 131m	Ci	6.92E-00	1.90E-01		6.14E-01
Xenon (Xe) 133m	Ci	1.09E-01	7.92E-02		1.12E-00
Xenon (Xe) 133	Ci	6.96E+01	3.18E+01	1.69E-04	6.68E+01
Xenon (Xe) 135m	Ci	1.16E-04	1.66E-03		
Xenon (Xe) 135	Ci	1.07E-00	9.75E-01	6.55E-05	1.43E-00
Argon (Ar) 41	Ci	2.88E-02	2.89E-02		
TOTAL FOR PERIOD	Ci	7.89E+01	3.35E+01	2.35E-04	7.12E+01
2. Iodines					
Iodine (I) 131	Ci	7.07E-05	5.18E-04	2.72E-05	1.25E-04
Iodine (I) 133	Ci		1.70E-06	2.13E-05	1.34E-04
Iodine (I) 135	Ci				
TOTAL FOR PERIOD	Ci	7.07E-05	5.20E-04	4.85E-05	2.59E-04

TABLE 1C EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988) GASEOUS EFFLUENTS-GROUND RELEASES

TABLE 1C EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988) GASEOUS EFFLUENTS - GROUND RELEASES

••••

				CONTIN	UOUS MODE	DE BATCH MODE		
<u>Nuclides</u> H	Releas	sed	Unit	lst Quarter	2nd Quarter	lst Quarter	2nd Quarter	
3. Particu	ulates	5						
Antimony	(Sb)	125	Ci					
Barium	(Ba)	133	Ci					
Cadmium	(Cd)	109	Ci					
Cerium	(Ce)	139	Ci					
Cerium	(Ce)	141	Ci					
Cerium	(Ce)	144	Ci					
Cesium	(Cs)	134	Ci					
Cesium	(Cs)	137	Ci					
Cobalt	(Co)	57	Ci					
Cobalt	(Co)	58	Ci		1.87E-06			
Cobalt	(Co)	60	Ci				2	
Chromium	(Cr)	51	Ci					
Iron	(Fe)	55	Ci					
Niobium	(Nb)	95	Ci					
Strontium	(Sr)	89	Ci					
Strontium	(Sr)	90	Ci					
Tin	(Sn)	113	Ci					

TOTAL	Ci	1.87E-06	

EFFLUENT AND WASTE DISPOSAL

SEMI-ANNUAL REPORT

C. LIQUID EFFLUENTS FIRST AND SECOND QUARTERS, 1988

TABLE 2A

• • •

ı

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988)

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

	UNIT	QUARTER 1st	<u>QUARTER</u> 2nd	EST.TOTAL
ERROR %				
A. Fission and activation products				
 Total release (not including tritium, gases, alpha) Average diluted concentration during 	Ci	1.90E-02	8.33E-02	2.50E+01
period	uCi/ml	8.12E-11	3.00E-10	
B. Tritium				
1. Total release	Ci	1.41E+02	2.10E+02	2.50E+01
2. Average diluted concentration during period	uCi/ml	6.06E-07	7.58E-07	
C. Dissolved and entrained gases				
1. Total release	Ci	9.99E-02	3.60E-01	2.50E+01
2. Average diluted concentration during period	uCi/ml	4.28E-10	1.30E-09	
D. Gross alpha radioactivity				
1. Total release	Ci	<8.74E-05	<1.20E-04	2.50E+01
E. Volume of waste released (prior to dilution)	liters	1.35E+06	2.08E+06	1.00E+01
F. Volume of dilution water used during period	liters	2.34E+11	2.77E+11	1.00E+01
G. Percent of liquid effluent limit	ૠ	7.00E-02	3.75E-01	2.50E+01

	•		TABLE 21	}		
LIQUID EF	FLUENT AND	WASTE	DISPOSAL	SEMI-ANNUAL	REPORT	(1988)

· · ·

					CONTINUO	US MODE	BATCH	MODE
Nuclides	Relea	ased	Unit	1st	Quarter	2nd Quarter	lst Quarter	2nd Quarter
Antimony	(Sb)	122	Ci					
Antimony	(Sb)	124	Ci					2.38E-04
Antimony	(Sb)	125	Ci				1.59E-03	3.16E-03
Barium	(Ba)	140	Ci					
Cadmium	(Cd)	109	Ci					
Cerium	(Ce)	139	Ci					
Cerium	(Ce)	141	Ci					
Cerium	(Ce)	144	Ci					
Cesium	(Cs)	134	Ci			1.72E-04	1.31E-04	3.91E-03
Cesium	(Cs)	137	Ci			3.47E-04	3.21E-04	4.86E-03
Cesium	(Cs)	138	Ci				,	
Chromium	(Cr)	51	Ci					6.12E-03
Cobalt	(Co)	57	Ci					
Cobalt	(Co)	58	Ci			1.03E-06	1.02E-03	8.65E-03
Cobalt	(Co)	60	Ci				1.95E-03	6.82E-03
Iodine	(I)	131	Ci			1.13E-04	2.23E-03	8.21E-05
Iodine	(I)	132	Ci			4.10E-06		
Iodine	(I)	133	Ci			1.02E-04	5.48E-05	9.04E-06
Iodine	(I)	135	Ci					
Iron	(Fe)	55	Ci				8.93E-03	3.70E-02
Iron	(Fe)	59	Ci					1.20E-03
Lanthanur	n(La)	140	Ci				4.12E-05	8.87E-05
Mercury	(Hg)	203	Ci					

.

TABLE 2B

· · · ·

)

LIQUID EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT (1988)

					C	ONTIN	NUOUS	MODE		BATCH	MODE
<u>Nuclides</u>		t	Unit	1st	Quart	ter	2nd	Quarter	1	st Quarter	2nd Quarter
Manganese	(Mn)	54	Ci							6.73E-05	5.75E-04
Molybdenum	n(Mo)	99	Ci								
Nickel	(Ni)	63	Ci							1.51E-03	1.44E-03
Copper	(Cu)	64	Ci								
Niobium	(Nb)	95	Ci								3.66E-04
Rubidium	(Rb)	88	Ci								
Ruthenium	(Ru)	103	Ci								
Ruthenium	(Ru)	105	Ci								
Ruthenium	(Ru)	106	Ci								
Silver	(Ag)	110m	Ci							1.12E-03	7.93E-03
Sodium	(Na)	24	Ci								
Strontium	(Sr)	85	Ci								
Strontium	(Sr)	89	Ci								
Strontium	(Sr)	90	Ci								
Technetiur	n(Tc)	99m	Ci								4.91E-05
Tin	(Sn)	113	Ci								6.48E-05
Tungsten	(W)	187	Ci						·		
Yttrium	(Y)	91m	Ci								
Yttrium	(Y)	92	Ci								
Zinc	(Zn)	65	Ci								
Zirconium	(Zr)	95	Ci								6.31E-05
TOTAL FOR	PERI	OD						7.39E-04		1.90E-02	8.26E-02

TABLE 2B

• • •

LIQUID EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT (1988)

					CONTINUO	US MODE	BATCH	MODE
Nuclides		τ	Jnit	lst Q	uarter	2nd Quarter	1st Quarter	2nd Quarter
Argon	(Ar)	41	Ci	•				2.45E-05
Xenon	(Xe)	131m	Ci				7.41E-04	1.17E-02
Xenon	(Xe)	133	Ci			2.62E-05	9.76E-02	3.46E-01
Xenon	(Xe)	133m	Ci				9.51E-04	1.65E-03
Xenon	(Xe)	135	Ci			2.18E-06	5.24E-04	3.64E-04
Krypton	(Kr)	85m	Ci					
Krypton	(Kr)	85	Ci					
Krypton	(Kr)	88	Ci					
TOTAL DISS	OLVED	AND	~ •					a <i>c</i> a= at
ENTRAINED	GASES		Ci			2.84E-05	9.98E-02	3.60E-01

· · · ·

EFFLUENT AND WASTE DISPOSAL

SEMI-ANNUAL REPORT

D. SOLID WASTE FIRST AND SECOND QUARTERS, 1988

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

January 1 - June 30, 1988

SOLID WASTE SHIPMENTS

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (Not irradiated fuel)

		Unit	6 Montl	h Period	Est. Total
1	Type of Waste		Class A	Class B	Error, 🗞
	a. Spent resins, filter	m ³	0	3.70E+0	± 25%
	sludges, etc.	<u> </u>	0	<u>3.11E+2</u>	١
	b. Dry compressible, contam.	m ³	0	0	
	equipment for burial	Ci	• 0	0	N/A
	c. Irradiated Components	m ³	0	0 ·	
		Ci	0	0	<u>N/A</u>
	d. Other: Dry compressible,	m ³	5.80E+1	0	± 25%
	contaminated equip. for volume reduction at offsite facility	Ci	8.30E-1	0	

2. Estimate of major nuclide composition (by type of waste)

NUCLIDE	UNIT	a. Resin <u>CLASS B</u>	d.	Dry-Vol. CLASS A	Reduction
Н-З	8	· • 0		1	
Mn-54	90	4		0	
Fe-55	8	6		59	
Co-58	8	10		5	
Co-60	010	34		28	
Ni-63	olo	13		5	
Cs-134	8	12		0	
Cs-137	8	21		2	

Percentage of nuclides and total activities are based on a combination of direct measurements and scaling for non-gamma emitting nuclides.

3. Solid Waste Disposition

Number of Shipments	Mode of Transport	Destination	
1	Truck	Barnwell, SC	
1	Truck U.S. Ecology,		
		Memphis, Tenn.	
. 2	Truck	Alaron, Wampum, Pa.	

4. Containers Shipped

	Class A	Class A		Class B	
<u>Container</u> For Burial:	Number	Solid. Media	Number	Solid. Media	
Poly HIC	0	none	1	none	
For Volume Reduc					-
Drums	87	none	0	N/A	
Crates	14	none	0	N/A	

EFFLUENT AND WASTE DISPOSAL

· · · ·

SEMI-ANNUAL REPORT

E. RADIOLOGICAL IMPACT ON MAN

(Not required to be submitted during this reporting period. This section will be submitted with the third and fourth quarter 1988.)

EFFLUENT AND WASTE DISPOSAL

. .

SEMI-ANNUAL REPORT

F. METEOROLOGICAL DATA

(Not required to be submitted during this reporting period. This section will be submitted with the third and fourth quarter 1988.)

4 ¹ • •

EFFLUENT AND WASTE DISPOSAL

SEMI-ANNUAL REPORT

G. OFFSITE DOSE CALCULATION MANUAL CHANGES FIRST AND SECOND QUARTERS, 1988

(There were no revisions to the ODCM during this reporting period)

Indian Point 3 Nuclear Power Plant P.O. Box 215 Buchanan, New York 10511 914 736.8001

William A. Josiger Resident Manager

August 30, 1988 IP3-88-054

Docket No. 50-286 License No. DPR-64

Mr. William T. Russell, Regional Administrator Region I U.S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406

Dear Mr. Russell:

Enclosed is the Semi-Annual Report of Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents for Indian Point 3 as required by Section 5.3.3.1 of the Environmental Technical Specifications. The enclosed report covers the period January 1, 1988 through June 30, 1988 for Indian Point 3 and includes those releases from Indian Point 2 which resulted from processing liquid waste from Indian Point 3 when this pathway is utilized. The receiving stream flow has not yet been received from the Department of the Interior and will be supplied when available.

Sincerely, and For. W. A. Josiger

Resident Manager Indian Point 3 Nuclear Power Plant

WAJ:MK:lh

Enclosure

cc: Document Control Desk (original) U.S. Nuclear Regulatory Commission Mail Station P1-137 Washington, D.C. 20555

> Resident Inspector's Office Indian Point 3 U.S. Nuclear Regulatory Commission P.O. Box 337 Buchanan, NY 10511