

Admitted: 03/16/2009 Withdrawn: Rejected: Stricken:

Exhibit SNC 000001

Environmental Report for Southern Nuclear Operating Company's Vogtle Early Site Permit Application

PUBLIC DISCLOSURE VERSION

SOUTHERN NUCLEAR OPERATING COMPANY

Vogtle Early Site Permit Application

Part 3
Environmental Report

Revision 2

Chapter 1 Introduction

1.0 Introduction

In accordance with the provisions of 10 CFR 52, Early Site Permits; Standard Design Certifications; and combined Licenses for Nuclear Power Plants, and supporting guidance, Southern Nuclear Operating Company (SNC or Southern Nuclear) has developed an application to the U.S. Nuclear Regulatory Commission (NRC) for an early site permit. An Early Site Permit (ESP) represents NRC approval of a site or sites for one or more nuclear power facilities, separate from the filing of an application for a construction permit or combined license for such a facility. The SNC ESP application is for the Vogtle Electric Generating Plant (VEGP) site in Burke County, Georgia. In accordance with NRC regulations, SNC has included in its application this environmental report (ER) that analyzes impact to the environment from construction, operation, and decommissioning of two additional nuclear reactors at this site. NRC will use the environmental report to develop an Environmental Impact Statement meeting the National Environmental Policy Act (NEPA) requirement that federal agencies consider the impacts that their actions (e.g., permit issuance) might have on the environment.

1.1 Proposed Action

The proposed Federal action is issuance, under the provisions of 10 CFR Part 52, of an Early Site Permit (ESP) to SNC for the VEGP site for two additional nuclear units, both of which will be Westinghouse Electric Company, LLC (Westinghouse), AP1000, advanced light water reactors. In addition, SNC proposes a plan for redressing the environmental effects of certain sitepreparation and preliminary construction activities, i.e., those activities allowed by 10 CFR 50.10(e)(1), performed by an ESP holder under 10 CFR 52.25. In accordance with the plan, the site would be redressed if the NRC issues the requested ESP (containing the site redress plan), the ESP holder performs these site-preparation and preliminary construction activities, the ESP is not referenced in an application for a construction permit or COL, and no alternative use is found for the site. While the ESP would not authorize construction and operation of any new nuclear units (other than those site-preparation and preliminary construction activities addressed herein), this ER analyzes the environmental impacts that could result from the construction and operation of one or two new nuclear units at the VEGP site or at one of the alternative sites. These impacts are analyzed to determine if the proposed ESP site is suitable for the addition of the new nuclear units and whether there is an alternative site that is obviously superior to the proposed site.

1.1.1 Purpose and Need

Georgia Power Company (GPC), through the Georgia Public Service Commission's Integrated Resource Planning process, has identified a need for additional base load generation by no later than 2015. This need was identified through a detailed economic analysis associated with the IRP process. SNC is submitting the ESP application to preserve the option for new nuclear generation to meet GPC needs as well as the needs projected by the co-owners.

Underlying this need for baseload generation is the role that the State of Georgia and the NRC play in GPC business decision to pursue new nuclear generation. States retain approval authority over the types of electric generation that will be constructed and operated within their borders. However, states (and facility owners) cannot include nuclear power in their generation mix without NRC approval of the construction and operation of a nuclear generation facility. Conversely, NRC approval gives the state a generation option that the state may or may not exercise, at its discretion.

The NRC established the licensing process used by SNC in 10 CFR Part 52. NRC regulation 10 CFR 52 Subpart C, *Combined Licenses*, allows generating entities to apply for a combined license, that is, a combined construction permit and operating license for a nuclear facility. A COL authorizes construction and operation of the facility. Part 52 includes the ability to seek an ESP that allows an applicant to bank a reactor site for up to 20 years prior to obtaining a COL. A COL can reference an ESP for environmental issues.

The ESP process addresses and resolves site safety, environmental protection, and emergency preparedness issues. As part of an ESP application, the applicant must prepare an environmental report that addresses the safety and environmental characteristics of the site.

An application for a COL can reference an ESP issued under 10 CFR 52 Subpart A, *Early Site Permits*. In general, if the combined license application references an ESP, the application need not contain certain information or analyses submitted to NRC in connection with the early site permit. Instead, the combined license application must contain the following:

- Information and analyses otherwise required
- Information sufficient to demonstrate that the facility falls within the parameters specified in the ESP
- Information to resolve any other significant environmental issue
- Information not considered in any previous proceeding on the site or design

In accordance with NRC regulations, SNC is submitting this ESP application in order to obtain the option of including new nuclear capability in the future generation mix for the owners and the state of Georgia. The ESP also allows for a Limited Work Authorization (LWA) to perform certain activities such as backfill and initial concrete pours subject to redress, in advance of issuance of a COL.

Page intentionally left blank.

1.2 The Proposed Project

Section 1.2 provides a brief summary of project information that subsequent chapters and sections, particularly Chapter 3, *Plant Description*, describe in detail.

1.2.1 The Applicant and Owners

Georgia Power Company, Oglethorpe Power Corporation, the Municipal Electric Authority of Georgia, and the City of Dalton, Georgia an incorporated municipality in the State of Georgia acting through its Board of Water, Light, and Sinking Fund Commissioners (Dalton Utilities) are the owners of the VEGP site and existing facilities. SNC has been authorized by GPC, acting as agent for the other owners (also known as co-owners) of the existing VEGP, to apply for an ESP for the VEGP site.

SNC is the plant licensee and operates VEGP Unit 1 and Unit 2 under contract with the owners. GPC and SNC are subsidiaries of Southern Company, and SNC is the licensed operator for all existing Southern Company nuclear generating facilities. SNC's business purpose is management and operation of nuclear generating facilities owned or co-owned by Southern Company subsidiaries. The SNC ESP application, Part 1, *Administrative Information*, Section 1.3 provides additional information about Southern Company, GPC, the VEGP co-owners and SNC.

1.2.2 Site Location

The VEGP site is located on the west bank of the Savannah River in eastern Burke County, in east-central Georgia. The site is approximately 100 miles northwest of Savannah, Georgia, and approximately 26 miles southeast of Augusta, Georgia, and across the river from the U.S. Department of Energy's Savannah River Site (Barnwell County, South Carolina). The proposed VEGP Units 3 and 4 footprint will be adjacent to and west of the existing VEGP Units 1 and 2. The original VEGP design was for a four unit plant. The new VEGP Units 3 and 4 will occupy generally the same area that was developed for the original VEGP Units 3 and 4 when the plant was first proposed for construction.

1.2.3 Reactor Information

SNC has selected the Westinghouse Electric Company, LLC (Westinghouse), AP1000 advanced light water reactor for construction and operation of two new units at the VEGP site. The NRC has approved the Design Control Document (DCD) for the AP1000. Previous ESP applications included the AP1000 technology, in addition to others, in their plant parameters envelopes. Unlike previous ESP applicants, SNC is not relying on a plant parameters envelope methodology to bound environmental impacts. The SNC application analyzes the environmental impacts of two AP1000 reactors at the VEGP site to be referred to as VEGP Units 3 and 4 in this application.

ER Section 3.2, *Reactor Power Conversion System*, provides additional information on the AP1000.

1.2.4 Cooling System Information

Each new unit will use a recirculating cooling water system that includes a natural draft cooling tower similar to the towers for Units 1 and 2. A new recessed shoreline intake structure will supply makeup water from the Savannah River to Units 3 and 4. A common line for Units 3 and 4 will be constructed to discharge cooling tower blowdown and other miscellaneous wastewater to the river. ER Section 3.4, *Cooling System*, provides additional detail.

1.2.5 Transmission System Information

The existing VEGP site is interconnected with the regional power grid via two 500 kV transmission lines and four 230 kV transmission lines. SNC has determined one new 500 kV transmission line will be added initially to handle the additional new generation capacity to the electric grid. SNC has performed a Macro-Corridor assessment for this proposed new 500 kV line to evaluate the NEPA aspects of line construction and operation. ER Section 3.7, *Power Transmission System*, provides additional detail.

1.2.6 Pre-application Public Involvement

The NRC held public outreach meetings in Waynesboro, Georgia, on May 10 and 11, 2006, to provide information to the public on the ESP review process, and to provide information on opportunities for public involvement in that process for the VEGP site. The meetings included a discussion of perspectives, roles, and responsibilities of the NRC with regard to VEGP. The May 10 meeting was held at the Burke County library. It utilized an informal open house format that allowed the public the opportunity to speak directly with NRC staff. On May 11, the NRC staff held a second public meeting at the Augusta Technical College Waynesboro Branch. The meeting began with another open house, followed by staff presentations on the regulatory framework for the ESP review process and a question-and-answer session. The staff also discussed opportunities for public involvement during the application review process.

1.2.7 Construction Start Date

The ESP does not constitute a decision or approval to build new units. SNC is pursuing the necessary steps to preserve the nuclear generation option. SNC has notified the NRC that they plan to submit a COL application in March of 2008 that could support a projected construction start date sometime in 2010. NRC regulations (10 CFR 50.10, *License Required*) provide for ESP holders to perform limited site preparation activities. SNC estimates that such site preparation activities will take 18 months to complete. SNC estimates that construction of two

AP1000 units will occur over about a 5-year period, beginning after NRC approval of an SNC COL application. ER Section 3.9, *Construction Activities*, provides additional detail.

Page intentionally left blank.

1.3 Status of Reviews, Approvals and Consultations

SNC has divided its discussion of the status of Federal, state, and local environmental protection licenses, permits, reviews, approvals, and consultations, collectively called authorizations, by activity. Tables 1.3-1 through 1.3-5 identify, for each activity, the following information:

- Jurisdictional agency
- Authority, law, or regulation that dictates the requirement
- Name of the required authorization
- License or permit number as applicable
- Expiration date of any existing licenses or permits
- Description of the requirements to be fulfilled by SNC prior to issuance of the authorization

The tables are structured on the assumption that authorizations for previously-initiated and ongoing activities were captured in the table representing the initiation of the work and, therefore, not repeated in subsequent tables. Except for ESP issuance, discussed below, SNC has not completed work to secure any other necessary authorizations and, therefore, the columns for permit numbers and expiration dates have been left blank. SNC will apply for and receive any required authorizations prior to initiating the activity. The following sections describe the activities to be authorized.

1.3.1 ESP Issuance

Table 1.3-1 lists ESP authorizations required prior to NRC issuance of an ESP. As shown, four authorizations are consultations that NRC must undertake in accordance with following statutes:

<u>Endangered Species Act</u> - The Endangered Species Act requires Federal agencies to ensure that agency action is not likely to jeopardize any species that is listed or proposed for listing as endangered or threatened. Depending on the action involved, the Act requires consultation with the U.S. Fish and Wildlife Service (USFWS) regarding effects on non-marine species, the National Marine Fisheries Service (NMFS) for marine species, or both. Due to the presence of diadromous fish categorized as marine species in the Savannah River near the Vogtle site, the NRC must consult with both USFWS and NMFS. In addition, as a matter of policy, the NRC consults with states regarding state-protected species.

<u>National Historic Preservation Act</u> - The National Historic Preservation Act requires federal agencies having the authority to license any major federal action, prior to issuing the license, to take into account the effect of the undertaking on historic properties and to afford the Advisory Committee on Historic Preservation an opportunity to comment on the undertaking. Committee regulations provide for establishing an agreement with any State Historic Preservation Officer (SHPO) to substitute state review for Committee review (35 CFR 800.7). The NRC will consult with both the Georgia SHPO and the South Carolina SHPO due to the site's location.

Federal Clean Water Act Section 401 requires for any activity that may result in a discharge into navigable waters, a certification from the state that the discharge will comply with applicable Clean Water Act requirements, including state Water Quality Standards. Certain construction-related activities conducted under the authority of the ESP will likely require a Construction Stormwater Permit issued by the Georgia Department of Natural Resources – Environmental Protection Division. This is a general permit and coverage is obtained by submitting a Notice of Intent (NOI) requesting coverage under the general permit. The State of Georgia provides a generic 401 certification for the general permit.

The Federal Coastal Zone Management Act imposes requirements on applicants for a federal license to conduct an activity that could affect a state's coastal zone. The Act requires the applicant to certify to the licensing agency that the proposed activity will be consistent with the state's federally approved coastal zone management program. The VEGP site is approximately 100 air miles and 150 river miles from the ocean. An existing VEGP transmission line traverses Georgia coastal counties. Construction of new reactors at the VEGP site will not result in any changes to this line. Due to the site's distance from the coast, small environmental effects, and lack of transmission line changes, SNC has concluded that the proposed action will not affect Georgia's coastal resources and that consistency certification requirements are not applicable.

1.3.2 Pre-Construction Activities

Pre-construction activities are those that NRC can authorize for undertaking prior to NRC issuance of a construction permit. A subset of these activities is limited to site preparation and construction of structures, systems, and components that are not nuclear-safety related. NRC approval of such activities can be obtained in either of two ways. First, if an ESP application includes a site redress plan, ESP issuance constitutes NRC authorization to conduct the activities. Second, rather than waiting for permit issuance, the ESP applicant can apply for authorization to perform these activities, commonly referred to as Limited Work Authorization 1, or LWA-1, early. The NRC would grant such authorization only after the presiding officer for the mandatory ESP hearing determines that NRC has satisfied NEPA requirements and that there is reasonable assurance that the proposed site and reactor are suitable from an environmental and radiological standpoint. This enables the applicant to start pre-construction before resolution of all safety issues and exhaustion of all appeals to construction permit issuance. SNC has included a site redress plan in this ESP application and is also preserving its option to seek a separate LWA-1 authorization. Table 1.3-2 lists authorization required for pre-construction activities.

The other subset of pre-construction activities is nuclear-safety-related and is commonly referred to as Limited Work Authorization 2, or LWA-2. The NRC would grant such authorization only after, in addition to making the same determinations as for LWA-1, making a determination that there are no unresolved safety issues relating to the LWA-2 activities. SNC is preserving its

option to seek an LWA-2 but has identified no required non-NRC authorizations not already included for LWA-1 or actual construction.

1.3.3 Site Redress Activities

Table 1.3-3 lists authorizations required prior to conducting site redress activities. "Redress activities" are activities that the licensee must perform to return the site to an environmentally stable and aesthetically acceptable state if LWA activities were undertaken but construction abandoned.

1.3.4 Construction Activities

Table 1.3-4 lists authorizations required prior to start of construction activities.

1.3.5 Operation

Table 1.3-5 lists authorizations required prior to start of operation.

Table 1.3-1 Authorizations Required for Early Site Permit

Agency	Authority	Requirement	License/ Permit No. (1)	Expiration Date (1)	Activity Covered
USFWS	Endangered Species Act	Consultation regarding potential to adversely impact protected species (non-marine species)	NA	NA	Concurrence with no adverse impact or consultation on appropriate mitigation measures.
NMFS	Endangered Species Act	Consultation regarding potential to adversely impact protected species (marine species)	NA	NA	Concurrence with no adverse impact or consultation on appropriate mitigation measures.
GDNR	National Historic Preservation Act, (36 CFR 800)	Consultation regarding potential to adversely affect historic resources	NA	NA	Confirm site construction or operation would not affect protected historic resources.
South Carolina Department of Archives and History	National Historic Preservation Act, (36 CFR 800)	Consultation regarding potential to adversely affect historic resources	NA	NA	Confirm site construction or operation would not affect protected historic resources.
GDNR	Federal Clean Water Act (FCWA) (33 U.S.C. 1251 et seq.)	Section 401 Certification			Compliance with water quality standards.

USFWS - U.S. Fish and Wildlife Service

NMFS - National Marine Fisheries Service

GDNR - Georgia Department of Natural Resources

1.3-4

¹ No permits have been issued.

Table 1.3-2 Authorizations Required for Pre-Construction Activities

Agency	Authority	Requirement	License/ Permit No. (1)	Expiration Date (1)	Activity Covered
NRC	10 CFR 52.25 or 10 CFR 50.10(e)(1)	Early Site Permit with Site Redress Plan or Limited Work Authorization			Non-nuclear construction, including site preparation.
USACE	Clean Water Act (CWA)	Section 404 Permit			Disturbance or crossing wetland areas or navigable waters. For site and rail corridor upgrade.
USACE	33 CFR 323	Dredge and Fill Discharge Permit			Construction/ modification of intake/ discharge to Savannah River. For site and rail corridor upgrade ² .
USACE	Rivers and Harbors Act	Section 10 Permit			Barge slip modification impacts to navigable waters of the U.S.
USDOT	49 CFR 107, Subpart G	Certificate of Registration			Transportation of hazardous materials.
USFWS	Migratory Bird Treaty Act, 50 CFR 21	Federal Depredation Permit			Adverse impacts on protected species and/or their nests. For site and rail corridor upgrade.
FAA	49 USC 1501 14 CFR 77	Construction Notice			Notice of erection of structures (>200 feet high) potentially impacting air navigation.

Table 1.3-2 (cont.) Authorizations Required for Pre-Construction Activities

Agency	Authority	Requirement	License/ Permit No. (1)	Expiration Date (1)	Activity Covered
GPSC	GA Public Utilities Act (O.C.G.A. Section 46-3-1 et seq.), GA Rules and Regulations 515-3-407	Certificate of Public Convenience and Necessity			Present and future public convenience and necessity require the operation of such equipment or facility.
GDNR	GA Endangered Wildlife Act (O.C.G.A. Section 27-3-130 et seq.), GA Rules and Regulations 391-4-10	Depredation Permit			Adverse impacts on state designated protected species and/or their habitat. For site and rail corridor.
GDNR	Federal Clean Air Act (FCAA), GA Air Quality Act (O.C.G.A. Section 12-9-1 et seq.), GA Rules and Regulations 391-3-1	Part 70 Air Quality Construction Permit			Construction air emission sources.
GDNR	FCWA, GA Water Quality Control Act	Revision of existing National Pollutant Discharge Elimination System Permit			Regulates limits of pollutants in liquid discharge to surface water.
GDNR	FCWA, GA Water Quality Control Act (O.C.G.A. 12-5-20), GA Rules and Regulations 391- 3-6	General Permit Registration for Storm Water Discharges Associated with Construction Activity for Common Developments	GAR10000 3	July 31, 2008	Discharge storm water from site during construction.

Table 1.3-2 (cont.) Authorizations Required for Pre-Construction Activities

Agency	Authority	Requirement	License/ Permit No. (1)	Expiration Date (1)	Activity Covered
GDNR	FCWA, GA Water Quality Control Act (O.C.G.A. 12-5-20), GA Rules and Regulations 391- 3-6	General Permit Registration for Storm Water Discharges Associated with Construction Activity for Infrastructure Construction Projects	GAR10000 2	July 31, 2008	Discharge storm water from linear construction sites (e.g., roadways and rail corridor).
GDNR	GA Safe Drinking Water Act (O.C.G.A. 12-5-170 et seq.), GA Rules and Regulations 391-3-5	Revision of existing permit to operate a public water system			Operate a public, non- transient, non-community water system.
GDNR	GA Safe Drinking Water Act (O.C.G.A. 12-5-170 et seq.), GA Rules and Regulations 391-3-5	Revision of existing permit to operate a public water system			Operate a public, transient, non-community water system.
GDNR	GA Groundwater Use Act (O.C.G.A. 12-5-90 et seq.), GA Rules and Regulations 391-3-203	Modification of Existing Permit to Use Groundwater			Consumptive use of 100,000 gallons per day or more of groundwater.
GDNR	GA Groundwater Use Act (O.C.G.A. 12-5-90 et seq.), GA Rules and Regulations 391-3-209	Permit to Withdraw Groundwater			Dewater for foundation if needed for more than 60 days.

Table 1.3-2 (cont.) Authorizations Required for Pre-Construction Activities

Agency	Authority	Requirement	License/ Permit No. (1)	Expiration Date (1)	Activity Covered
GDNR	GA Groundwater Use Act (O.C.G.A. 12-5-90 et seq.), GA Rules and Regulations 391-3-214	Certification of Abandoned Wells			Abandoned wells have been filled, plugged and sealed.
GDNR	GA Erosion and Sedimentation Act (O.C.G.A. Section 12-7-1 et seq.), GA Rules and Regulations 391- 3-7	Land Disturbing Activity Permit			Permission to conduct land disturbing activities of one acre or larger, or within 200 feet of the bank of any state waters. For site and rail corridor upgrade.
GDNR	GA Comprehensive Solid Waste Management Act (O.C.G.A. 12- 8-20 et seq.), GA Rules and Regulations 391-3-406	Permit by Rule - Inert Landfill Permit			On-site disposal of solid waste consisting of earth and earth-like products, concrete, cured asphalt, rock, bricks, and land clearing debris.
GDNR	GA Comprehensive Solid Waste Management Act (O.C.G.A. 12- 8-20 et seq.), GA Rules and Regulations 391-3-4	Private Industry Landfill Permit			On-site disposal of solid waste consisting of construction and demolition debris.
GDNR	GA Comprehensive Solid Waste Management Act (O.C.G.A. 12- 8-20 et seq.), GA Rules and Regulations 391-3-4	Solid Waste Handling Permit			Disposal of industrial solid wastes. Transportation of putrescible waste for disposal in a permitted landfill.

Table 1.3-2 (cont.) Authorizations Required for Pre-Construction Activities

Agency	Authority	Requirement	License/ Permit No. (1)	Expiration Date (1)	Activity Covered
GDNR	Federal Clean Air Act (FCAA), GA Air Quality Act (O.C.G.A. Section 12-9-1 et seq.), GA Rules and Regulations 391-3-1	Revision of existing Title V Operating Permit			Operation of air emission sources.
Burke County Building Office	Burke County Code of Ordinances, Article VII, Sec. 26- 331	Land Disturbing Activity Permit			All land disturbing activities within the boundaries of Burke County.
Burke County Building Office	Burke County Code of Ordinances, Article VII, Sec. 26- 336	Building Permit			Construction, alteration, repair, or demolition of any building or structure within the boundaries of Burke County.

NRC - U.S. Nuclear Regulatory Commission

USACE - U.S. Army Corps of Engineers

USDOT - U.S. Department of Transportation

FAA - Federal Aviation Administration

GPSC - Georgia Public Service Commission

1.3-9

¹ No permits have been issued.

The VEGP rail spur was recently upgraded, and SNC will verify that additional upgrades are not needed. For completeness, this table assumes upgrades to the rail corridor will be made.

 Table 1.3-3
 Authorizations Required for Redress Activities

Agency	Authority	Requirement	License/Permit No. (1)	Expiration Date (1)	Activity Covered
USACE	Clean Water Act (CWA)	Section 404 Permit			Disturbance or crossing wetland areas or navigable waters.
USACE	33 CFR 323	Dredge and Fill Discharge Permit			Construction / modification of intake / discharge to Savannah River.
USACE	Rivers and Harbors Act	Section 10 Permit			Impacts to navigable waters of the U.S. Barge Slip Modification.
USDOT	49 FR 107, Subpart G	Certificate of Registration			Transportation of hazardous materials.
GDNR	Federal Clean Water Act (FCWA) (33 U.S.C. 1251 et seq.)	Section 401 Certification			Compliance with water quality standards.
GDNR	FCWA, GA Water Quality Control Act (O.C.G.A. 12-5- 20), GA Rules and Regulations 391-3-6	General Permit Registration for Storm Water Discharges Associated with Construction Activity for Common Developments	GAR100003	July 31, 2008	Discharge storm water from site during construction (might be covered by existing registration).

Table 1.3-3 (cont.) Authorizations Required for Redress Activities

Agency	Authority	Requirement	License/Permit No. (1)	Expiration Date (1)	Activity Covered
GDNR	FCWA, GA Water Quality Control Act (O.C.G.A. 12-5- 20), GA Rules and Regulations 391-3-6	General Permit Registration for Storm Water Discharges Associated with Construction Activity for Infrastructure Construction Projects	GAR100002	July 31, 2008	Discharge storm water linear construction sites (e.g., roadways, transmission lines) during construction)(might be covered by existing registration).
GDNR	GA Erosion and Sedimentation Act (O.C.G.A. Section 12-7-1 et seq.), GA Rules and Regulations 391- 3-7	Land Disturbing Activity Permit			Permission to conduct land disturbing activities of one acre or larger, or within 200 feet of the bank of any state waters. For site and rail corridor.
GDNR	Federal Clean Air Act (FCAA), GA Air Quality Act (O.C.G.A. Section 12-9-1 et seq.), GA Rules and Regulations 391-3-1	Part 70 Air Quality Construction Permit			Construction air emission sources.
GDNR	GA Safe Drinking Water Act (O.C.G.A. 12-5-170 et seq.), GA Rules and Regulations 391-3-5	Notice of Termination (NOT) -Permit to operate a Public Water System			Operate a public, non- transient, non-community water system.

Table 1.3-3 (cont.) Authorizations Required for Redress Activities

Agency	Authority	Requirement	License/Permit No. (1)	Expiration Date (1)	Activity Covered
GDNR	GA Safe Drinking Water Act (O.C.G.A. 12-5-170 et seq.), GA Rules and Regulations 391-3-5	NOT - Permit to operate a Public Water System			Operate a public, transient, non-community water system.
GDNR	GA Groundwater Use Act (O.C.G.A. 12-5-90 et seq.), GA Rules and Regulations 391-3-203	NOT - Permit to Use Groundwater			Consumptive use of 100,000 gallons per day or more of groundwater.
GDNR	GA Groundwater Use Act (O.C.G.A. 12-5-90 et seq.), GA Rules and Regulations 391-3-209	Permit to Withdraw Groundwater			Dewater for foundation if needed for more than 60 days.
GDNR	GA Groundwater Use Act (O.C.G.A. 12-5-90 et seq.), GA Rules and Regulations 391-3-214	Certification of Abandoned Wells			Abandoned wells have been filled, plugged and sealed.
GDNR	GA Comprehensive Solid Waste Management Act (O.C.G.A. 12-8-20 et seq.), GA Rules and Regulations 391-3-406	Permit by Rule - Inert Landfill Permit			On-site disposal of solid waste consisting of earth and earth-like products, concrete, cured asphalt, rock, bricks, and land clearing debris.
GDNR	GA Comprehensive Solid Waste Management Act (O.C.G.A. 12-8-20 et seq.), GA Rules and Regulations 391-3-4	Private Industry Landfill Permit			On-site disposal of solid waste consisting of construction and demolition debris.

Table 1.3-3 (cont.) Authorizations Required for Redress Activities

Agency	Authority	Requirement	License/Permit No. (1)	Expiration Date (1)	Activity Covered
GDNR	GA Comprehensive Solid Waste Management Act (O.C.G.A. 12-8-20 et seq.), GA Rules and Regulations 391-3-4	Solid Waste Handling Permit			Disposal of industrial solid wastes. Transportation of putrescible waste for disposal in a permitted landfill.
Burke County Building Office	Burke County Code of Ordinances, Article VII, Sec. 26-331	Land Disturbing Activity Permit			All land disturbing activities within the boundaries of Burke County.
Burke County Building Office	Burke County Code of Ordinances, Article VII, Sec. 26-336	Building Permit			Construction, alteration, repair, or demolition of any building or structure within the boundaries of Burke County.

¹ No permits have been issued.

Table 1.3-4 Authorizations Required for Construction Activities¹

Agency	Authority	Requirement	License/ Permit No. (2)	Expiration Date (2)	Activity Covered
NRC	10 CFR 52, Subpart C or 10 CFR 50.10(e)(3)	Combined Operating License or Limited Work Authorization 2			Safety-related construction for a nuclear power facility.
FAA	49 USC 1501 14 CFR 77	Construction Notice			Notice of erection or structures (>200 feet high) potentially impacting air navigation.
USACE	Clean Water Act (CWA)	Section 404 Permit			Disturbance or crossing wetland areas or navigable waters. For transmission line corridor.
USACE	33 CFR 323	Dredge and Fill Discharge Permit			Construction/ modification of intake/ discharge to Savannah River. For transmission line corridor.
USFWS	Migratory Bird Treaty Act, 50 CFR 21	Federal Depredation Permit			Adverse impacts on protected species and/or their nests. For site transmission line corridor.
GDNR	GA Endangered Wildlife Act (O.C.G.A. Section 27-3-130 et seq.), GA Rules and Regulations 391-4-10	Depredation permit			Adverse impacts on state designated protected species and/or their habitat. For transmission line corridor.

Table 1.3-4 (cont.) Authorizations Required for Construction Activities¹

Agency	Authority	Requirement	License/ Permit No. (2)	Expiration Date (2)	Activity Covered
GDNR	Federal Clean Air Act (FCAA), GA Air Quality Act (O.C.G.A. Section 12-9-1 et seq.), GA Rules and Regulations 391-3-1	Part 70 Air Quality Construction Permit			Construction air emission sources.
GDNR	FCWA, GA Water Quality Control Act (O.C.G.A. 12-5-20), GA Rules and Regulations 391-3-6	General Permit Registration for Storm Water Discharges Associated with Construction Activity for Infrastructure Construction Projects	GAR10000 2	July 31, 2008	Discharge storm water linear construction sites (e.g., roadways, transmission lines) during construction.
GDNR	GA Comprehensive Solid Waste Management Act (O.C.G.A. 12-8-20 et seq.), GA Rules and Regulations 391-3-4	Solid Waste Handling Permit			Disposal of industrial solid wastes. Transportation of putrescible waste for disposal in a permitted landfill.
GDNR	GA Erosion and Sedimentation Act (O.C.G.A. Section 12-7- 1 et seq.), GA Rules and Regulations 391-3-7	Land Disturbing Activity Permit			Permission to conduct land disturbing activities of one acre or larger, or within 200 feet of the bank of any state waters. For transmission line corridor.

Table 1.3-4 (cont.) Authorizations Required for Construction Activities¹

Agency	Authority	Requirement	License/ Permit No. (2)	Expiration Date (2)	Activity Covered
GDNR	FCWA, GA Water Quality Control Act (O.C.G.A. 12-5-20), GA Rules and Regulations 391-3-6	General Permit Registration for Storm Water Discharges Associated with Construction Activity for Infrastructure Construction Projects	GAR10000 2	July 31, 2008	Discharge storm water linear construction sites. For transmission line corridor.
GDOT	23 CFR 1.23	Permit			Utility right-of-way easement.
Burke County Building Office	Burke County Code of Ordinances, Article VII, Sec. 26-331	Land Disturbing Activity Permit			All land disturbing activities within the boundaries of Burke County.
Various county offices responsible for land disturbing activities	Jefferson, Warren, and McDuffie County Ordinances	Land Disturbing Activity Permit.			Land disturbing activities within county boundaries. For transmission line corridor.

GDOT – Georgia Department of Transportation

Assumes that SNC obtained the authorizations that Table 1.3-2 identifies.

² No permits have been issued.

Table 1.3-5 Authorizations Required for Operation¹

Agency	Authority	Requirement	License/ Permit No.	Expiration Date	Activity Covered
GDNR	FCWA, GA Water Quality Control Act	Revision of existing National Pollutant Discharge Elimination System Permit			Regulates limits of pollutants in liquid discharge to surface water.
GDNR	Federal Clean Air Act (FCAA), GA Air Quality Act (O.C.G.A. Section 12- 9-1 et seq.), GA Rules and Regulations 391-3-1	Revision of existing Title V Operating Permit			Operation of air emission sources.
GDNR	GA Groundwater Use Act (O.C.G.A. 12-5-90 et seq.), GA Rules and Regulations 391-3-203	Revision of existing Permit to Use Groundwater			Consumptive use of 100,000 gallons per day or more of groundwater.
GDNR	GA Water Quality Control Act (O.C.G.A. 12-5-31 et seq.), GA Rules and Regulations 391-3-6	Revision of existing Surface Water Withdrawal Permit to Withdraw, Divert or Impound Surface Water			Withdraw water from the Savannah River for cooling makeup and in-plant use.
South Carolina Department of Health and Environmental Control – Division of Waste Management	South Carolina Radioactive Waste Transportation and Disposal Act (Act No. 429)	Revision of existing South Carolina Radioactive Waste Transport Permit			Transportation of radioactive waste into the State of South Carolina.

Table 1.3-5 (cont.) Authorizations Required for Operation¹

Agency	Authority	Requirement	License/ Permit No.	Expiration Date	Activity Covered
State of Tennessee Department of Environment and Conservation Division of Radiological Health	Tennessee Department of Environment and Conservation Rule 1200-2-10.32	Revision of existing Tennessee Radioactive Waste License-for-Delivery			Transportation of radioactive waste into the State of Tennessee.
State of Utah Department of Environmental Quality Division of Radiation Control	R313-26 of the Utah Radiation Control Rules	Revision of existing General Site Access Permit			Transportation of radioactive materials into the State of Utah.
GPSC	GA Radiation Control Act (O.C.G.A. 31-13-1 et seq.), GA Rules and Regulations 391-3-1706	Revision of existing General Permit – Transportation of Radioactive Materials			Transportation of radioactive materials in the State of Georgia.

Assumes that SNC obtained the authorizations that Tables 1.3-2 and 1.3-4 identify.

1.4 Methodology

NRC regulation 10 CFR 52.17(a)(2) specifies the contents of an Environmental Report (ER) for an ESP application and Regulatory Guide 4.2, *Preparation of Environmental Reports for Nuclear Power Stations, Revision 2,* July 1976 (RG 4.2) provides guidance to applicants preparing environmental reports for nuclear power stations. The NRC's *Standard Review Plans for Environmental Reviews for Nuclear Power Plants, Revision 0,* 1999 (NUREG-1555), provides guidance for NRC staff to use when conducting environmental reviews of applications related to nuclear power plants. Because RG 4.2 is an earlier NRC document (1976) and NUREG-1555 is relatively new (1999), SNC chose to look to the latter for guidance in establishing the format and content of its environmental report. SNC has provided additional information and organization in the material presented as seemed appropriate when applying lessons learned from the first three ESP applicants. SNC prepared Table 1.4-1 to verify conformance with regulatory requirements. The table identifies each requirement and indicates where in the ER SNC has responded to the requirement.

SNC also evaluated the conclusions of NRC's *Generic Environmental Impact Statement for License Renewal of Nuclear Plants*, Revision 0, 1996 (NUREG-1437), for input in assessing the impacts of the new nuclear units on the VEGP site. SNC concluded that if characteristics of the proposed reactors are similar to those of the existing fleet, then NUREG-1437 significance determination criteria could be applied in the ESP environmental review. SNC has indicated in its ER where it has used NUREG-1437 in assessing VEGP environmental impacts.

Table 1.4-1 Environmental Report Responses to Early Site Permit Regulatory Requirements

No.	Regulatory Requirement (10 CFR) ¹	Responsive Environmental Report Section
1.	51.45(a), Signed original	Transmittal letter
2.	51.45(b), Description of proposed action	Chapter 3, Plant Description
3.	51.45(b), Statement of purpose of proposed action	Section 1.1.1, Purpose and Need
4.	51.45(b), Description of environment affected by proposed action	Chapter 2, Environmental Description
5.	51.45(b)(1), Environmental impact of proposed action	Chapters 4, Environmental Impacts of Construction; 5, Environmental Impacts of Station Operation; 7, Environmental Impact of Postulated Accidents Involving Radioactive Materials, and 10, Environmental Consequences of the Proposed Action
6.	51.45(b)(2), Unavoidable adverse impacts	Section 10.1, <i>Unavoidable Adverse</i> Environmental Impacts
7.	51.45(b)(3), Alternatives to proposed action	Chapter 9, Alternatives to the Proposed Action
8.	51.45(b)(4), Relationship between short- term use and long-term productivity	Section 10.3, Relationship Between Short- Term Uses and Long-Term Productivity of the Human Environment
9.	51.45(b)(5), Irreversible and irretrievable commitments of resources	Section 10.2, <i>Irreversible and Irretrievable</i> Commitments of Resources
10.	51.45(c), Comparison of environmental effects of proposed action and alternatives	Chapters 4, Environmental Impacts of Construction; 5, Environmental Impacts of Station Operation; 7, Environmental Impact of Postulated Accidents Involving Radioactive Materials, 10, Environmental Consequences of the Proposed Action and 9, Alternatives to the Proposed Action
11.	51.45(c), Alternatives for reducing or avoiding adverse environmental impacts	Sections 4.6 Measures and Controls to Limit Adverse Impacts During Construction and 5.10, Measures and Controls to Limit Adverse Impacts During Operations
12.	51.45(c), Economic, technical, and other benefits and costs of proposed action and alternatives	Section 10.4, Benefit-Cost Balance

Table 1.4-1 (cont.) Environmental Report Responses to Early Site Permit Regulatory Requirements

No.	Regulatory Requirement (10 CFR) ¹	Responsive Environmental Report Section
13.	51.45(d), Federal permits and other entitlements and status of compliance	Section 1.3, Status of Reviews, Approvals, and Consultations
14.	51.45(d), Compliance with Federal and other environmental quality standards and requirements	Section 1.3, Status of Reviews, Approvals, and Consultations
15.	51.45(d), Compliance for alternatives	Section 9.2 Energy Alternatives and Section 9.3 Alternative Sites
16.	51.45(e), Adverse information	Section 10.1, <i>Unavoidable Adverse</i> Environmental Impacts
17.	51.50 and 51.51(a), Uranium fuel cycle	Section 5.7, Uranium Fuel Cycle Impacts
18.	51.50 and 51.52, Fuel and waste transportation	Sections 3.8, <i>Transportation of Radioactive Materials</i> , 511, <i>Transportation of Radioactive Materials</i> , and 7.4, <i>Transportation Accidents</i>
19.	51.50, Reporting and record keeping procedures	Chapter 6, Environmental Measurements and Monitoring Programs
20.	51.50, Conditions and monitoring	Chapter 6, <i>Environmental Measurements and Monitoring Programs</i>

¹ Incorporated by reference at 10 CFR 52.17(a)(2)

Page intentionally left blank.

Chapter 2 Environmental Description

Chapter 2 describes the existing environmental conditions at the Vogtle Electric Generating Plant (VEGP) site, the site vicinity and the region. The environmental descriptions provide sufficient detail to identify those environmental resources that have the potential to be affected by the construction, operation, or decommissioning of the new units. The chapter is divided into nine sections:

- Site Location (Section 2.1)
- Land (Section 2.2)
- Water (Section 2.3)
- Ecology (Section 2.4)
- Socioeconomics (Section 2.5)
- Geology (Section 2.6)
- Meteorology, Air Quality, and Noise (Section 2.7)
- Related Federal and Other Project Activities (Section 2.8)
- Existing Plant Site Characteristics, Design Parameters, and Site Interface Values (Section 2.9)

The following descriptions should help the reader understand the scope of the discussion:

- VEGP site the 3,169 acre site as described in the Unit 1 and Unit 2 licenses
- New plant (VEGP Units 3 and 4) footprint the approximately 500 acres within the VEGP site
 that will encompass the construction and operation of the new nuclear units
- Vicinity the area within approximately the 6- or 10-mile (depending on the issue) radius around the VEGP site
- Region the area within approximately the 50-mile radius around the VEGP site

Page intentionally left blank.

2.1 Site Location

SNC proposes to construct and operate two Westinghouse AP1000 reactors at VEGP in Burke County, Georgia. The two AP1000 reactors will be referred to as VEGP Units 3 and 4.

The proposed early site permit (ESP) is for the existing 3,169-acre VEGP site. VEGP Units 3 and 4 and supporting infrastructure will be sited in the area delineated in Figure 2.1-1. The centerline of VEGP Units 3 and 4 will be approximately 2,100 feet west and 400 feet south of the center of the existing Unit 2 containment building. Unit 4 containment will be approximately 800 feet west of Unit 3 containment.

The coordinates of the center of the containment buildings for VEGP Units 3 and 4 are given below in State Plane and Universal Transverse Mercator (UTM) coordinates:

Unit		Georgia East Coordinates (NAD27)	UTM (NAD83)
3	N	1,142,600	3,667,166.728
	E	621,800	428,315.413
4	N	1,142,600	3,667,169.439
	E	621,000	428,071.651

The 3,169-acre VEGP site is located on a Coastal Plain bluff on the southwest side of the Savannah River in eastern Burke County. The site and its exclusion area boundary (EAB) are generally bounded by River Road, Hancock Landing Road, and approximately 1.7 miles of the Savannah River (River Miles 150.0 to 151.7). The site is approximately 30 river miles above the U.S. 301 highway bridge and directly across the river from the Department of Energy's Savannah River Site (Barnwell County, South Carolina). The site is approximately 15 miles east north east of Waynesboro, Georgia and 26 miles southeast of Augusta, Georgia, the nearest population center (i.e., having more than 25,000 residents) (Figure 2.1-2). It is also about 136 miles from Savannah, Georgia and 150 river miles from the mouth of the Savannah River.

Access to the site is from River Road via U.S. Route 25, and Georgia Routes 56, 80, 24 or 23 (Figure 2.1-3). Barge access is available from the Savannah River which is navigable to a point upstream of VEGP. A railroad spur runs to the site from the Norfolk Southern Savannah-to-Augusta track.

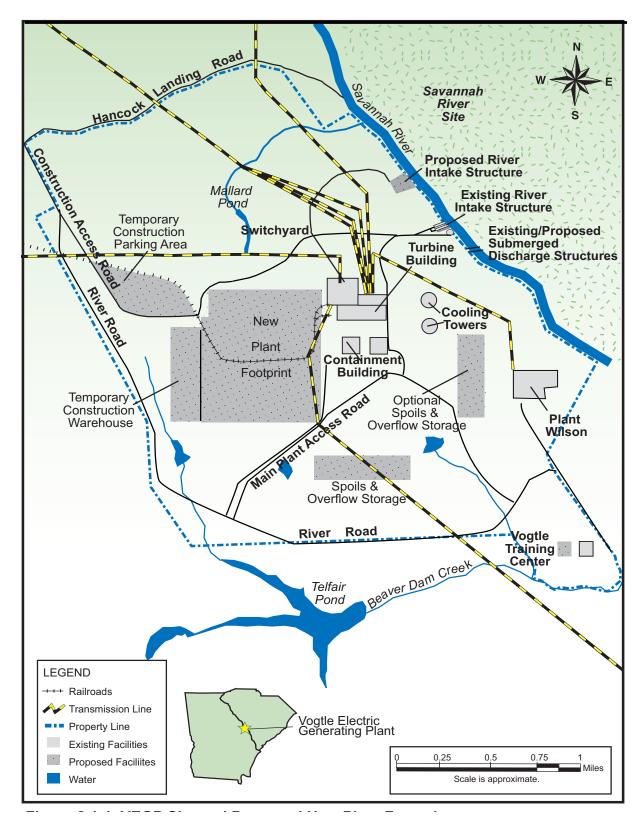


Figure 2.1-1 VEGP Site and Proposed New Plant Footprint



Figure 2.1-2 50-Mile Region

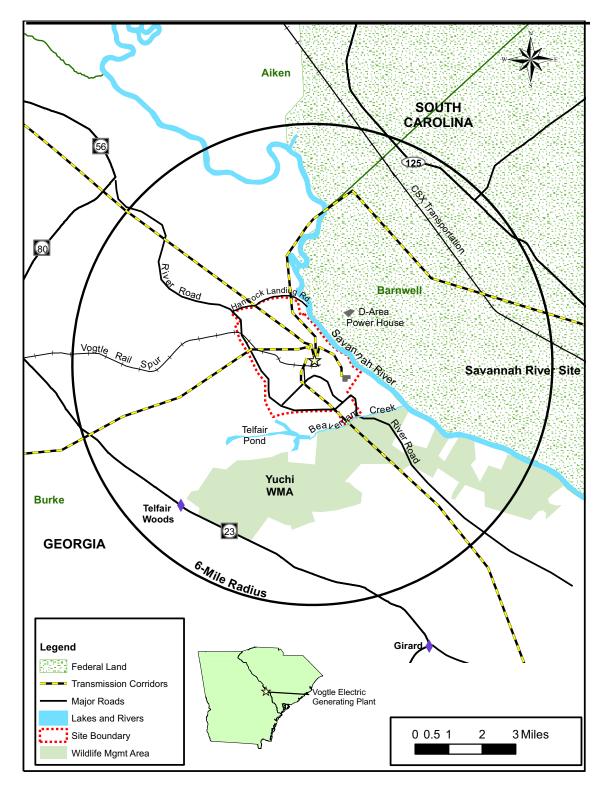


Figure 2.1-3 6-Mile Vicinity

2.3 Water

This section describes the physical and hydrological characteristics of the VEGP site and surrounding region that could affect or be affected by the construction and operation of two new AP1000 units at the VEGP site. The new units will be referred to as VEGP Units 3 and 4. The potential construction and operational impacts of the project on near- and far-field water resources are discussed in Chapters 4 and 5, respectively.

The 3,169-acre VEGP site is located high on a coastal plain bluff on the west bank of the Savannah River in eastern Burke County Georgia. The new AP1000 units will be located approximately 220 feet above mean sea level (msl). This site is located at River Mile 151; approximately 30 river miles upstream of the U.S. Highway 301 Bridge and directly across the river from the Department of Energy's Savannah River Site (Barnwell, South Carolina). It is approximately 26 miles southeast of Augusta, Georgia.

2.3.1 Hydrology

This section describes surface water bodies and groundwater resources that could be affected by the construction and operation of VEGP Units 3 and 4. The site-specific and regional data on the physical and hydrologic characteristics of these water resources are summarized in the following sections.

2.3.1.1 Surface Water Resources

The watershed of the Savannah River extends into the mountains of North Carolina, South Carolina, and Georgia near Ellicott Rock, the point where the borders of those three states meet. The river system drains a basin of 10,577 sq mi, divided between the three states as follows (SR 2006):

- 4,581 sq mi in South Carolina
- 5,821 sq mi in Georgia
- 175 sq mi in North Carolina

Within the three states, the Savannah River basin includes portions of 44 counties and two major metropolitan centers, Augusta and Savannah. The lower 50-mi reach of the river is tidally influenced (USACE 1996).

The Savannah River watershed and sub-basins, as delineated by the National Weather Service (NWS 2005) and further subdivided by USGS Hydrologic Unit Code (HUC-12) sub-basins (USGS 2006f), are shown in Figure 2.3.1-1. The drainage areas of the NWS sub-basins are given in Table 2.3.1-1.

The watershed crosses through three distinct physiographic provinces: the Mountain, Piedmont, and Coastal Plain. The Mountain and Piedmont provinces are within the Appalachian Mountain range, with the border between them extending from northeast to southwest, crossing the

Tallulah River at Tallulah Falls. The Fall Line, or division between the Piedmont province and the Coastal Plain province, also crosses the basin in a generally northeast to southwest direction, near Augusta, Georgia (USACE 1996).

Watershed elevations range from 5,030 ft msl at Little Bald Peak in North Carolina, to sea level at Savannah. The approximate range of elevations for each physiographic region is **(USACE 1996)**:

- 5,030 to 1,800 ft msl within the Mountain province
- 1,800 to 500 ft msl within the Piedmont province
- 500 to 0 ft msl within the Coastal Plain province

The Savannah River, together with certain of its tributaries, forms the border between the states of Georgia and South Carolina. The confluence of the Seneca and Tugaloo rivers, formerly known as "The Forks" but now inundated by Hartwell Lake, marks the upstream end of the Savannah River. The length of the Savannah River from The Forks to its mouth on the Atlantic Ocean is about 312 mi (USACE 1996).

The following principal streams make up the Savannah River stream system (USACE 1996):

- The Tallulah and Chatooga Rivers combine to form the Tugaloo River at River Mile 358.1
- Twelve Mile Creek and the Keowee River join to form the Seneca River at River Mile 338.5.
- The Tugaloo and Seneca rivers join to form the Savannah River proper at River Mile 312.1, at the point known as The Forks.

The entire 312-mi length of the Savannah River is regulated by a series of three U.S. Army Corps of Engineers (USACE) multipurpose projects, forming a chain along the Georgia–South Carolina border 120 mi long. The three lakes, from upstream to downstream, are:

- Hartwell Lake and Dam, with 2,550,000 acre-feet of gross storage
- Richard B. Russell Lake and Dam, with 1,026,000 acre-feet of gross storage
- J. Strom Thurmond (also known as Clarks Hill) Lake and Dam, with 2,510,000 acre-feet of gross storage

Of the 6,144 sq mi drainage basin above Thurmond Dam, 3,244 sq mi (53 percent) are between Thurmond and Russell Dams, 812 sq mi (13 percent) are between Russell and Hartwell Dams, and 2,088 sq mi (34 percent) are above the Hartwell Dam (USACE 1996). Table 2.3.1-2 is a list of key natural and man-made landmarks along the Savannah River with the distance in river miles upstream of the mouth of Savannah Harbor noted.

The climate in the upper Savannah River watershed is classified as temperate, with generally mild winters and long summers. The basin is protected by the Blue Ridge Mountains from the extremes of winter continental weather experienced in the adjacent Tennessee Valley. The annual mean temperature for the basin is 60°F. January, which is usually the coldest month of the year, frequently has night temperatures of 20°F or lower. July and August, the hottest months of

the year, have many days with temperatures over 90°F. In the lower section of the basin, the winters are milder and the summer temperatures higher (USACE 1996).

There are generally two periods of maximum rainfall in the upper basin: February–March and July–August, although heavy rainfall has occurred in practically every month. The mean annual precipitation decreases from 83.5 in. at the upper end of the watershed, near Highlands, North Carolina, down to 49.2 in. at Savannah, Georgia (USACE 1996).

2.3.1.1.1 USGS Topographic Maps

USGS seven-and-one-half-minute topographic maps are available for the entire Savannah River watershed. The river miles upstream of the mouth of the Savannah River are marked off along the stream centerline on each of the quadrangles photo-revised in 1989.

Figure 2.3.1-2 provides an index map showing an identification number and the outline of each USGS quadrangle superimposed on a line map of the Savannah River watershed. The name and map identification number of each quadrangle is listed with its reference coordinates (latitude and longitude of the lower right hand corner of the quadrangle) in Table 2.3.1-3, ordered from upper left to lower right throughout the coverage area.

2.3.1.1.2 Local Site Drainage

The VEGP site is bordered on the east by the Savannah River and by Beaverdam Creek to the south. The Savannah River Plant Site (SRS) is located directly across the river to the east.

Local drainage is shown in Figure 2.3.1-3, which was developed from the Shell Bluff Landing, Girard NW, Alexander, and Girard USGS quadrangle sheets (see Figure 2.3.1-2 and Table 2.3.1-3). The site is on a high, steep bluff on the west bank of the Savannah River. State Road 23 (River Road) runs roughly parallel to the river, about 4 miles from the VEGP site. It runs along the ridge line that separates local drainage running northeast to the river from runoff draining generally to the southwest.

An unnamed, highly incised creek drains the area of the site north of River Road into the Savannah River just upstream of the site, at the point denominated Hancock Landing on the USGS quadrangle Shell Bluff Landing.

To the west, the site is drained by the Red Branch and Daniels Branch, which join with Beaverdam Creek just upstream of Telfair Pond, south of the site. Beaverdam Creek intercepts three streams draining runoff from north of State Road 23 before it reaches the site. The names, estimated channel lengths, and slopes of the natural channels draining the VEGP site area are provided in Table 2.3.1-4.

2.3.1.1.3 Savannah River Flow Series Data

The USGS maintains stream flow records for nine stream gages on the Savannah River between River Miles 288.9 and 60.9, upstream and downstream of the VEGP site. A tenth gage was recently installed at the VEGP intake at Waynesboro, Georgia (Gage 21973269), but the period of record is too short to support statistical analysis. The location, datum elevation, upstream drainage area, start and stop date, and number of flow records for each of the ten gages are presented in Table 2.3.1-5.

As indicated in Table 2.3.1-5, the nearest USGS gage upstream of the VEGP site with a significant period of record is Gage 2197320, near Jackson, South Carolina (5.9 River Miles upstream); the nearest gage downstream of the VEGP site is Gage 2197500 at Burtons Ferry near Millhaven, Georgia (about 39 River Miles downstream of the site). While the Jackson gage is less than 6 mi upstream of the site, the record length for Gage 2197000, at Augusta, Georgia (48.7 River Miles upstream) is much longer, making it desirable to evaluate all three sets of records.

A number of statistics are presented in this section for flow data on these three gages to facilitate the evaluation of the water supply and flood hazard characteristics of the site, including:

- Average daily and monthly flow series
- Low flow series
- Historic flooding and analytical annual peak flood frequencies

After 1952, flows on the Savannah River at the three gage sites, were impacted by regulation from upstream reservoirs: J. Strom Thurmond (a.k.a. Clarks Hill) Lake and Dam in 1952, Hartwell Lake and Dam in 1961, and Richard B. Russell Lake and Dam in 1984 (USACE 1996). The records for the Augusta, Georgia and Burtons Ferry gages include regulated and unregulated periods. The entire length of record for the Jackson, South Carolina, gage occurs after closure of upstream dams and is, in that sense, homogenous. In this subsection, stream flow statistics for each of the gages is presented as necessary for both the regulated and the unregulated period, as detailed in the text.

2.3.1.1.3.1 Annual Average Daily and Mean Daily Flow Series

Table 2.3.1-6 **(USGS 2006c)** presents the mean daily flow for each day of the year for the Savannah River at Augusta, Georgia, based on the entire 98-year gage record, without respect to upstream regulation after 1952.

Table 2.3.1-7 **(USGS 2006d)** presents the mean daily flow for each day of the year for the Savannah River near Jackson, South Carolina, based on the entire 31-year (regulated) gage record.

Table 2.3.1-8 **(USGS 2006g)** presents the mean daily flow for each day of the year for the Savannah River at Burtons Ferry, near Millhaven, Georgia, based on the entire 52-year gage record, without respect to upstream regulation after 1952.

The mean daily flow series for each of these gages are plotted together in Figure 2.3.1-4. For all sites, the mean daily flow exhibits a strong seasonality, with higher mean flows in the winter season and lower mean flows in the summer.

Additionally, the figure gives a qualitative indication of the impact of upstream regulation on flow: daily mean values at Jackson, South Carolina, are based on a fully regulated period of record, while the daily mean values for the Augusta and Burtons Ferry gages are based on periods of record that include substantial periods prior to the completion of the upstream dams; as a consequence, these gages show a substantially higher mean daily flow in the winter season compared with the Jackson mean flows based on records during the regulated period only. Taking mean daily flows for only the unregulated period of record exacerbates this difference.

In addition to the mean daily flows for each day of the year, the USGS publishes statistics on the annual mean flow, which provide a lumped annual statistic masking all seasonality.

Table 2.3.1-9 **(USGS 2006c; USGS 2006g)** presents the annual mean stream flow for the periods of record at Augusta, Georgia, and Burtons Ferry. Data are not presented for the Jackson, South Carolina and Waynesboro, Georgia (VEGP intake) gages because of insufficient record length.

2.3.1.1.3.2 Monthly Flow Series

Table 2.3.1-10 **(USGS 2006d)** presents mean daily discharges by month for the Savannah River at Jackson, South Carolina, for the period of record between 1971 and 2002. A number of "holes" in the USGS series occur where a sufficient number of daily readings were not available to make meaningful monthly averages.

Table 2.3.1-11 (**USGS 2006c**) presents mean daily discharges by month for the Savannah River at Augusta, Georgia, upstream of the VEGP site, for the period of record between 1883 and 2003.

Table 2.3.1-12 **(USGS 2006g)** presents mean daily discharges by month for the Savannah River at Burtons Ferry, near Millhaven, Georgia, downstream of the VEGP site, for the period of record between 1939 and 2003.

Mean daily flows for the Jackson, Augusta, and Burtons Ferry gage sites for each month are provided in Table 2.3.1-13.

Figure 2.3.1-5 provides a plot of the seasonal variation in mean daily flows for each month on the Savannah River between Augusta, Georgia, for the full-period and regulated periods, and Jackson, South Carolina, for the full, regulated period. It can be inferred from the plot that the

operation of the upstream dams has had a significant impact on the mean daily flow for each month in the period from January to May, inclusively.

2.3.1.1.3.3 Low Flow Series

Flow duration curves are developed by ranking the recorded mean daily flows for the period of record to estimate the percentage of days that a flow of a given value is equaled or exceeded. Flow duration curves for the Savannah River at Augusta, Georgia, for the entire period of record (1883 to 2003) and the period after closure of the three upstream dams (1984 to 2003) are presented in Figure 2.3.1-6. As would be expected, the curves indicate that regulation has increased minimum daily flows and has reduced maximum daily flow on the Savannah River downstream.

The n-day low flow for a stream is the mean flow measured during the n consecutive days of lowest flow during any given year. It is customary to group the mean daily flow data into low-flow years (defined from April 1 to March 31 in North America) to prevent splitting the low-flow season into two parts for each year. The 7-day, 10-year low flow statistic, 7Q10, is an estimate of the lowest mean flow that would be experienced during a consecutive 7-day period with an average recurrence interval of 10 years, and is used as an indicator of low flow conditions during drought periods (McMahon and Mein 1986).

Table 2.3.1-14 shows the 3-, 7-, 10-, 30-, 60-, 90-, 183-, and 365-day mean low flows for each year of record for the Savannah River gage at Augusta (Gage 2197000) as determined from the daily flow data for the low-flow years between 1986 and 2003, the available period of continuous upstream regulation, using the USGS program SWSTAT (USGS 1994).

The 7-day low flow data for each complete low-flow year in the regulated period was used to estimate 7-day low flow frequency based on a Log-Pearson Type III (LP3) distribution, from which the 7Q10 low flow parameter is estimated as 3,828 cfs (see Table 2.3.1-15). The assumption of an LP3 distribution provides a good fit of the calculated 7-day low flows, as indicated in Figure 2.3.1-7.

2.3.1.1.3.4 Historic Flooding and Annual Peak Flood Frequencies

Table 2.3.1-16 **(USGS 2006c)** provides the date, stage elevation, and annual peak discharge for the entire period of record for USGS Gage 02197000 on the Savannah River at Augusta, Georgia, approximately 48.7 River Miles upstream of the VEGP site. The annual peak floods include estimated values from historic floods reported in 1796, 1840, 1852, 1864, and 1865.

The maximum annual peak flood discharge for the period of record is 350,000 cfs, from the storm of October 2, 1929. The storm of January 17, 1796, estimated from reported stages using slope-conveyance methods, is the oldest event used to extend the record length. The estimated value of the peak flow for this storm ranges between 280,000 cfs for a reported stage of 38 ft (USGS 2006c) and 360,000 cfs for a reported maximum flood stage of 40 ft (USGS 1990a). This puts

the maximum flood elevation of the Savannah River at Augusta, Georgia, for the historic period between 134.6 and 136.6 ft msl, based on an El. 96.58 ft msl for the Augusta, Georgia, stream gage datum (see Table 2.3.1-5).

After 1952, annual peaks on the Savannah River at Augusta, Georgia, are attenuated by regulation from upstream reservoirs: J. Strom Thurmond (a.k.a. Clarks Hill) Lake and Dam in 1952, Hartwell Lake and Dam in 1961, and Richard B. Russell Lake and Dam in 1984 (USACE 1996). This attenuation of floods is shown in Figure 2.3.1-8 (USGS 1990a), which is based on the historic record from 1796 to 1985.

Annual peak flood frequency curves for regulated and unregulated conditions for the Savannah River at Augusta, Georgia, were developed for the period between 1796 and 1985 and are presented in Figure 2.3.1-9 (USGS 1990a). Unregulated annual peak discharge values for the period after 1952 and regulated annual peak discharge values for the years previous to 1952 were generated by modeling reservoir operation based on the stage-storage-discharge characteristics reported for the three projects, using the 1990 operating rule set for the entire period (USGS 1990a).

Figure 2.3.1-9 clearly shows the convergence of the regulated and unregulated annual flood frequency plots as discharge increases. On the left-hand side of the graph, for the 80 percent chance-of-exceedence event (a return period of 1.25 years), the unregulated peak discharge exceeds the regulated peak by a factor of about 2.14; on the left-hand side, for the 0.2 percent chance-of-exceedence event (a return period of 500 years), the unregulated peak discharge exceeds the regulated peak by a factor of about 1.29. On this basis, regulation would not be expected to significantly affect the probable maximum flood on the Savannah River downstream of Augusta, provided that the upstream dams do not fail.

2.3.1.1.4 Dams and Reservoirs

There are a number of water control structures on the Savannah River and its major tributaries, as identified in **USGS** (1990a) and **USACE** (1996). Table 2.3.1-17 presents a list of these structures with hydraulic design information for each project and identification of its location with respect to the VEGP site.

Three projects operated by the Corps of Engineers upstream of the VEGP site have a significant influence on the discharge of the Savannah River:

- Hartwell Lake and Dam, with 2,550,000 acre-feet of gross storage
- Richard Russell Lake and Dam, with 1,026,000 acre-feet of gross storage
- J. Strom Thurmond Lake and Dam, with 2,510,000 acre-feet of gross storage

The authorized water management goals of the three-dam, multiuse project are specified for normal operation, flood operation, and drought condition operation in the Corps Water Control Plan as follows:

- For normal conditions, the operation policy is designed to maximize the public benefits of hydroelectric power, flood damage reduction, recreation, fish and wildlife, water supply, and water quality (USACE 1996).
- Under flood conditions, the water management objective is to operate the reservoir system to minimize flooding downstream by timing turbine discharge, gate openings, and spillway discharge as required.
- For drought conditions, the water management objectives of the project are:
 - o To prevent draw-down of lake levels below the bottom of the conservation pool
 - o To make use of most of the available storage in the lake during the drought-of-record
 - o To maintain hydroelectric plant capacity throughout the drought
 - o To minimize adverse impacts to recreation during the recreation season (generally considered from May 1 through Labor Day)

The Corps also operates the New Savannah Bluff Lock and Dam, 36.8 River Miles upstream of the VEGP site. This project has very little impact on flows at the site, due to its run-of-river status and negligible storage volume (**USACE 1996**).

The four projects are described briefly in the following paragraphs (USACE 1996).

The Hartwell Lake and Dam is located at River Mile 288.9, 7 mi east of Hartwell, Georgia, and 138 River Miles upstream of the VEGP site. The top of the conservation pool is set at El. 660 ft msl. At this level, the reservoir extends 49 mi up the Tugaloo River in Georgia and 45 mi up the Seneca and Keowee rivers in South Carolina. The shoreline at El. 660 ft msl is about 962 mi long, excluding island areas. The project became operational in 1965.

The reservoir has a total storage capacity of 2,550,000 acre-feet below El. 660 ft msl, and 293,000 acre-feet of flood control storage between El. 660 ft msl and El. 665 ft msl. The dam consists of a concrete gravity section, which is 1,900 ft long and rises about 204 ft above the streambed, and two earth embankment sections extending to high ground on the Georgia and South Carolina shores of the river, for a total length of 17,880 ft.

The Richard B. Russell Lake and Dam is located at River Mile 259.1 in Elbert County, Georgia, and Abbeville County, South Carolina, 108.2 River Miles upstream of the VEGP site. The dam is 18 mi southwest of Elberton, Georgia; 4 mi southwest of Calhoun Falls, South Carolina; and 40 mi northeast of Athens, Georgia. Operation of the project began in 1985.

The top of the conservation pool is set at El. 475 ft msl, at which elevation the reservoir has a total storage volume of about 1,026,000 acre-feet and a useable storage capacity of 126,800 acre-feet. The flood control pool provides about 140,000 acre-feet of additional storage between elevations 475 and 480 ft msl.

The dam consists of a concrete gravity section, which is 1,883.5 ft long, and two earth embankment sections, 2,180 ft long in Georgia and 460 ft long in South Carolina. A concrete

overflow spillway section is located in what was formerly the stream channel. It has an ogee-shaped crest controlled by 10 tainter gates.

The J. Strom Thurmond Lake and Dam (also known as the Clarks Hill Lake and Dam) is at River Mile 221.6 on the Savannah River, 22 mi upstream of Augusta, Georgia, and 70.7 River Miles upstream of the VEGP site. The project became operational in 1952. The reservoir at the top of the flood control pool, El. 335 ft msl, has an area of 78,500 acres. At El. 330 ft msl, the top of the conservation pool, the reservoir extends about 40 mi up the Savannah River and about 30 mi up the Little River in Georgia and has about 1,050 mi of shoreline, excluding island areas.

The reservoir has a total storage capacity of 2,510,000 acre-feet below EI. 330 ft msl, with an additional 390,000 acre-feet of flood control storage between EI. 330 ft msl and EI. 335 ft msl. The dam consists of a concrete gravity section, which is 2282 feet long, and two earth embankment sections extending to high ground on the Georgia and South Carolina shores, with at total length of 5680 feet,

The New Savannah Bluff Lock and Dam is at River Mile 187.7, 36.8 river miles upstream of the VEGP site. The structure is located on the Savannah River about 13 mi below Augusta. It is a concrete dam 360 ft long containing five vertical-lift crest control gates. The lock chamber, located on the Georgia side of the river, is 56 ft by 360 ft and is closed by miter gates. The lift is 15 ft. The normal pool elevation is about 115.0 ft msl. The dam was originally constructed to provide a lock to support navigation to Augusta, Georgia. Currently it is used primarily to reregulate upstream releases for downstream water supply withdrawals.

In 2000, the Savannah District Corps of Engineers issued a Disposition Study under Section 216 of the Flood Control Act of 1970 to examine the current uses of the New Savannah Bluff Lock and Dam and recommend disposition for the future. The study concluded that the only feasible option was to remove the dam. This result was met with vehement opposition by property owners, water supply, recreational interests and in 2005 a decision was made to repair the lock chamber and keep the dam in service. This decision has no significant impact on existing or proposed units at VEGP.

2.3.1.1.5 Estimated Erosion Characteristics

Bank erosion caused by wave action has been measured in the reservoirs upstream of the VEGP site (Hoke 2000), but no references to measurements of river cross-sections to assess bank erosion along the middle reaches of the Savannah River or at the site were found in the literature.

A number of meanders are a feature of the plan-form of the middle reaches of the Savannah River, but the river near the site has a relatively straight and stable reach extending approximately from River Mile 143 to River Mile 152. A comparison of river bank-lines along this reach between 1965 and 1989, obtained from USGS topographic maps (USGS 1989a; USGS

1989b; USGS 1989d) and topographic maps used for VEGP Units 1 and 2 shows a nearly unchanged river plan-form.

Hale and Jackson (2003) describe how dredging for navigation has altered the hydrology and geomorphology of the Savannah River over the past century. They present a table of 40 cut-offs constructed on the lower Savannah River between 1889 and 1962 that had the cumulative effect of reducing stream length by a total of 26.5 miles. Each of these cut-offs will have had some impact on local channel conditions and sediment transport due to change in bed slope.

According to their table, the 4,350-foot Cox Point cut-off at River Mile 153.2 (about 2.3 miles upstream of the Vogtle site) was completed in 1959. The cutoff is visible on the Shell Bluff Landing 1:24,000-scale USGS topographic map.

It can be inferred from the alignment of the channel shown on the map, which is based on aerial photography from 1965 with photorevisons from 1989, that the stability of the Savannah River channel section at the VEGP site does not appear to have been adversely affected by the cut-off, as would be expected for the relatively short length of the cut-off and the mild gradient of the reach.

In general, channel straightening of the type affected by the Cox Point cutoff will cause a local reduction in water level and an increase in velocity, so that the small creeks that are tributary to the reach may experience increased gradients causing scour and head cutting (USDOT, 1977). No evidence of such impacts is noticeable at the scale of the available mapping, however.

2.3.1.1.6 Sediment Transport Rates

A search of the literature shows that there have been a number of studies of sediment transport on the Savannah River within the piedmont physiographic region, resulting from requirements to establish Total Maximum Daily Loads for the E.P.A. (i.e. **EPA 1999, Keyes and Radcliffe, 2002, Freshley, 2003**). There have also been a number of studies of sedimentation in Savannah Harbor (Goodrich, Way, and Liu 2003; Semmes et al 2003; Phillips and Slattery 2006). Sedimentation rates resulting from these studies, where available, are not directly applicable at the study site within the coastal plain physiographic region because of the different bed slopes and stream power typical of each physiographic region.

There have been very few studies of sedimentation on the Savannah River near the site because sedimentation has not been considered a critical environmental issue in the coastal plain below the Corps's three-dam reservoir project, where the Vogtle site is located. According to the Savannah District of the U.S. Army Corps of Engineers (USACE 1996):

The problem of sediment in the Savannah River Basin has been greatly reduced since the early 1900's by the conversion of much former cropland to silviculture and pasture. Cotton farming, considered a highly erosive land use, has greatly declined during this century in central Georgia and western South Carolina. The combination of agricultural decline, transition of cropland to timber and pasture, and widespread implementation of soil conservation practices have resulted in lessened stream sediment loads. Deposits of silt in the reservoirs and channel retrogression below the dams are not major problems.

Duncan and EuDaly (2003) discuss the possibility that the reduced variation in discharge downstream of the dams since closure has lead to accumulations of silt with an adverse impact on fish habitats in the shoals, but they present no measurements or quantitative estimates of sedimentation rates.

2.3.1.1.6.1 Suspended Load Transport Rates

Table 2.3.1-24 summarizes the availability of water quality data for the USGS gages on the Savannah River. There is no bed-load measurement information, and, of the 23 gage stations listed as having water quality data, only 2 have data on suspended load transport rates and only the gage at Clyo is in the coastal plain reach (USGS 2006h).

While water quality data for the Savannah River at Clyo, Georgia (2198500) includes entries from 1938 to the present, only 97 records of suspended sediment load measurement between 1974 and 1983 are reported (as time-weighted daily mean values).

These data points are listed in Table 2.3.1-25 and are plotted in Figure 2.3.1-28 against the average daily discharge recorded for those days. There is only a slight correlation between average daily discharge in cubic feet per second and suspended sediment load in tons per day, so the suspended load data time series cannot be extended with much reliability.

There are gages on the Savannah River nearer to the site than Clyo for which turbidity measurements are available, offering the possibility of estimating suspended sediment loads from a correlation with turbidity measurements, but no statistically significant relation was discerned between turbidity measurements and average daily suspended sediment discharge for these data sets.

The 97 reported measurements of daily suspended sediment loads were sorted to permit the calculation of monthly statistics, as summarized in Table 2.3.1-26 and plotted in Figure 2.3.1-28. The data shows some seasonality, but because the relationship between discharge and suspended load is not strong, the seasonality is not pronounced.

Based on the assumption that the suspended sediment load at Clyo is not significantly different from the load at the Vogtle site, 90 miles upstream, the monthly average suspended load at the site will range between 200 and 1,600 tons per day with a 95 percent probability.

2.3.1.1.6.2 Bed Load Sediment Transport Rates

No bed-load sediment transport measurements have been reported for any reach of the Savannah River and cannot be easily estimated as a fraction of the suspended load because the portion of sediment that moves as bed load varies widely between rivers and on the same river over time (**Keyes & Radcliffe 2002**). However, to obtain an order-of-magnitude estimate, the globally averaged ratio of suspended load to bed load sediment flux for rivers of 9:1 reported by Syvitski et al. (2003) can be used. For the suspended load range of 320 to 880 tons per year calculated from the data at Clyo, Georgia, this would indicate a range for bed load transport of between about 35 and 100 tons per day.

2.3.1.2 Groundwater Resources

The VEGP site lies within the Coastal Plain Physiographic Province. The site is underlain by approximately 1,000 ft of Coastal Plain sediments. The hydrogeologic conditions within the Coastal Plain sediments can be summarized as permeable coarse-grained materials separated by less-permeable fine-grained materials, resulting in a multiple aquifer system.

2.3.1.2.1 Regional Hydrogeology

The region within a 200-mi radius around the VEGP site encompasses parts of four physiographic provinces. These include, from northwest to southeast, the Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain Physiographic Provinces. Several major aquifers or aquifer systems are present within these physiographic provinces. Figure 2.3.1-10 illustrates the extent of these major aquifers or aquifer systems at the land surface. The VEGP site and associated groundwater are located within the Coastal Plain Physiographic Province. However, groundwater within the other provinces is discussed below to provide a complete picture of regional hydrogeologic conditions.

The Valley and Ridge Physiographic Province lies about 180 mi northwest of the VEGP site. Aquifers underlying the Valley and Ridge province occur within Paleozoic-age folded and faulted sedimentary rock. The sedimentary strata consist predominantly of sandstone, shale, and limestone, with minor amounts of dolomite, conglomerate, chert, and coal. The carbonate and sandstone layers form the principal aquifers in the province. Typical well yields are from 10 gpm in sandstone formations to 10 to 50 gpm within the limestone units. Locally high yields, equal to 100 gpm or greater, are possible within highly fractured strata or solution cavities. Localized weathered rock and alluvium can provide lesser, but adequate, groundwater yields for domestic use. (Miller 1990)

The Piedmont and Blue Ridge Physiographic Provinces are hydrologically similar in nature. Both provinces are composed primarily of metamorphic and igneous rocks. Surface materials in the Blue Ridge Province consist mainly of thin residual soils, alluvium, and colluvium. Surface materials in the Piedmont Province consist generally of more deeply weathered residual soils

(saprolite) and alluvium. Groundwater occurs both in the fractured portions of bedrock and within the saprolite and alluvium material. Well yields generally depend on the local fracture density and fracture connectivity of the bedrock and range from a few to 30 gpm. Localized groundwater well yields of 100 gpm or greater are possible. (Miller 1990)

The majority of Georgia's groundwater use occurs in the Coastal Plain Physiographic Province. The Coastal Plain sediments are thin, less than 200 ft thick, along the western boundary of the province (where they terminate at the contact with the Piedmont province, the Fall Line) and thicken to over 4,000 ft in an eastern-to-southeastern direction. The sediments range in age from Holocene to Cretaceous and overlie crystalline igneous and metamorphic bedrock, which is an eastward extension of the Piedmont province (Miller 1990).

Groundwater in the Coastal Plain is withdrawn from both unconfined, shallow aquifer systems and deeper, confined aquifer systems. These aquifers are recharged principally from their outcrop area along the western boundary of the province near the Fall Line and from localized infiltration of precipitation within the province. Precipitation migrates downward and laterally through the unconsolidated surficial materials and discharges to nearby streams and low areas or percolates downward into the deeper unconsolidated and consolidated material. The thickness and areal extent of the Coastal Plain sediments result in a storage capacity for groundwater that exceeds that of any other physiographic provinces in Georgia (Miller 1990).

2.3.1.2.1.1 Conceptual Model Description

The conceptual hydrogeological model for the VEGP site was developed using site-specific data acquired to support the ESP application, information and data included in the VEGP Updated Final Safety Analysis Report (UFSAR), U.S Geological Survey studies, and Georgia Geologic Survey studies.

As discussed above, the VEGP site is located in the Coastal Plain physiographic province. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. As presented by Clarke and West (1997), the aquifer systems are, in descending order: (1) the Floridan aquifer system, which consists of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system, consisting of the Millers Pond, upper Dublin, and lower Dublin of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system, consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. Note that nomenclature used by the U.S. Geological Survey (Clarke and West 1997) for geologic and hydrogeologic units differs from that used in this ESP application. In this ESP application, the Water Table aquifer comprises the Upper Three Runs aquifer, the Tertiary sand aquifer comprises the Gordon aquifer, and the Cretaceous aquifer comprises the Dublin and Midville aquifers. Figure 2.3.1-11 and Figure 4 of Clarke and West (1997) provide additional details.

The Upper Three Runs aquifer is the shallowest aquifer and is unconfined-to-semi-confined throughout most of the area. Groundwater levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Groundwater flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is characterized by local flow near outcrop areas to the northwest, changing to intermediate flow and then regional flow downdip (southeastward) as the aquifers become more deeply buried. Water levels in these deeper aquifers show a pronounced response to topography and climate in the vicinity of outcrops that diminishes southeastward where the aquifer is more deeply buried. Stream stage and pumpage affect groundwater levels in these deeper aquifers to varying degrees throughout the area. (Clarke and West 1997)

The geologic characteristics of the Savannah River alluvial valley substantially control the configuration of potentiometric surfaces, groundwater flow directions, and stream-aquifer relations. Data from 18 shallow borings (Leeth and Nagle 1996) indicate incision into each aguifer by the paleo Savannah River and subsequent infill by permeable alluvium have resulted in direct hydraulic connection between the aquifers and the Savannah River along various parts of its reach. This hydraulic connection may be the cause of large groundwater discharge to the river near Jackson, South Carolina, as evidenced by stream baseflow and potentiometric measurements, where the Gordon aquifer is in contact with Savannah River alluvium, and also the cause of lows or depressions in potentiometric surfaces of confined aquifers that are in contact with the alluvium. Groundwater in these aguifers flows toward the depressions. The influence of the river diminishes downstream where the aquifers become deeply buried beneath the river channel, and where upstream and downstream groundwater flow is possibly separated by a water divide or "saddle." Water-level data indicate that saddle features probably exist in the Gordon aguifer and Dublin aguifer system, with the groundwater divide occurring just downstream of the VEGP site, and also might be present in the Midville aguifer system. (Clarke and West 1997).

Basin-wide potentiometric-surface maps for the unconfined Upper Three Runs aquifer and confined Gordon, Dublin, and Midville aquifer systems have been prepared using historical data (Clarke and West 1997) and numerical simulation (Cherry 2006). Detailed discussions of these maps are provided in the cited references. Data from observation wells installed and monitored for an 18-month period at the VEGP site have also been used to develop potentiometric-surface maps on a more highly resolved, site-specific basis. These maps are discussed in detail in Section 2.3.1.2.3. The groundwater flow directions inferred from these maps are generally consistent with the larger-scale maps produced by Clarke and West (1997) and Cherry (2006), i.e., groundwater flow in the Upper Three Runs (Water Table) aquifer generally conforms with surface topography, while that in the confined Gordon (Tertiary) aquifer is toward the Savannah River.

Recharge to the Upper Three Runs (Water Table) aquifer is almost exclusively by precipitation, while discharge is primarily to local drainages. Recharge to the confined Gordon, Dublin, and

Midville (Tertiary and Cretaceous) aquifers occurs primarily by direct infiltration of rainfall in their outcrop areas northwest of the VEGP site that are generally parallel to the Fall Line (the boundary between the Coastal Plain and Piedmont physiographic provinces). Because the permeable alluvium of the Savannah River valley allows for direct hydraulic connection between aquifers and the Savannah River, the river serves as the major discharge area for the confined aquifers in hydraulic connection with the river valley alluvium. Potentiometric maps presented by Clarke and West (1997) indicate groundwater discharge from the confined Gordon, Dublin, and Midville aquifers to the Savannah River. For the shallower Gordon confined aquifer, groundwater flow directions are generally perpendicular to the river reach. In the case of the deeper Dublin and Midville aquifers, there are upriver components to the groundwater flow directions that depend on where the paleo river channel has breached confining units. Clarke and West (1997) provide a detailed discussion of this phenomenon.

Although a water budget for the VEGP site has not been quantified, recharge and discharge rates have been estimated on a basin-wide basis by other investigators. Clarke and West (1997) estimated groundwater discharge to the Savannah River based on the net gain in stream discharge for local, intermediate, and regional groundwater flow systems and for different hydrologic conditions. Groundwater discharge ranged from 910 ft³/s during a drought year (1941) to 1,670 ft³/s during a wet year (1949), and averaged 1,220 ft³/s. Of the average discharge, the local flow system contributed an estimated 560 ft³/s and the intermediate and regional flow systems contributed an estimated 660 ft³/s. Clarke and West (1997) approximated the long-term average recharge by weighting these values according to drainage area, and estimated the average groundwater recharge in the Savannah River basin to be 14.5 in., of which 6.8 in. is to the local flow system, 5.8 in. is to the intermediate flow system, and 1.9 in. is to the regional flow system. Mean-annual precipitation in the basin ranges from 44 to 48 in. Cherry (2006) presents simulated water budgets for different hydrologic conditions using a numerical model for groundwater flow near the Savannah River Site, Georgia, and South Carolina. Estimates of inflow or outflow across lateral boundaries, recharge, discharge, groundwater pumpage, and vertical flow upward and downward across confining units are obtained from the numerical model.

2.3.1.2.1.2 Tritium in Unconfined and Confined Aquifers

Several investigators have documented the presence of tritium in groundwater in eastern Burke County, Georgia. These investigations include those of Summerour et al. (1994), Summerour et al. (1998), and Georgia Department of Natural Resources (DNR) (2004). Descriptions of the data resulting from these investigations and associated conclusions are summarized below.

Summerour et al. (1994) reports the results of seven sub-investigations conducted to determine any possible threat to public health due to tritium in eastern Burke County. These sub-investigations included: (1) sampling and analyzing 109 domestic and public water wells; (2) performing baseflow studies to measure tritium abundance in local springs and creeks; (3)

installing and sampling 15 new groundwater monitoring wells at six cluster sites in eastern Burke County; (4) defining the local lithostratigraphic and hydrostratigraphic framework using core sample analyses, field mapping, and literature; (5) characterizing the hydrologic characteristics of the unconfined Upper Three Runs aquifer, the Gordon aquitard, and the confined Gordon aquifer using data from aquifer tests; (6) characterizing the geochemical characteristics of the Upper Three Runs and Gordon aquifers using analyses of water samples from public, private, and monitoring wells; and (7) conducting a seismic refraction survey of the Savannah River channel to evaluate the extension of the Pen Branch fault into the channel of the Savannah River and investigate the thickness of the river alluvium, the possible breaching of aquitards, and the correlation of seismic stratigraphic sequences with the local stratigraphy. The main conclusions resulting from this study are as follows:

- There is no evidence of a public health threat due to tritium pollution of aquifers in Burke County.
- There is widespread evidence of tritium in the water table aquifer in eastern Burke County, at levels well below the maximum concentration level (MCL) standard for drinking water set by the United States Environmental Protection Agency.
- There is no evidence of regional tritium pollution of the Gordon aquifer in eastern Burke County.
- Existing data do not fully resolve the issue of the tritium occurrence in water table aquifer. However, the investigation shows that some pathways are more likely than others and suggests specific pathway models for future investigations.

Follow-on, Phase II sub-investigations were conducted by the Georgia Geological Survey, results of which are reported by Summerour et al. (1998). The Phase II sub-investigations, conducted in eastern Burke County, recommended the following: (1) continued monitoring of tritium in the unconfined aquifer; (2) conducting high-resolution tritium analyses of groundwater in confined aquifers; (3) investigating the vertical distribution of tritium in the vadose zone; (4) investigating the vertical distribution of tritium in the unconfined aquifer; (5) completing a seismic survey across the projected location of the Pen Branch fault into Georgia; (6) investigating well construction in the public water supply well in which tritium was first discovered in Burke County groundwater; and (7) revising the lithostratigraphy and hydrostratigraphy of Burke County. Conclusions resulting from these sub-investigations, pertinent to the VEGP site, are summarized below.

- Tritium concentrations in the unconfined aquifer are declining. This decline in tritium concentration is probably due to a combination of radioactive decay, dilution by untritiated groundwater, and recharge by untritiated (or low tritium) rainwater.
- Very low, but measurable, levels of tritium are present in all of the confined aquifers. Because the water in these aquifers is very old (11,000 to 32,000 years) compared with the half-life of tritium (12.35 years), there should be no tritium present within the confined aquifers. The

tritium in these deep aquifers is believed to be due to cross contamination during drilling and well installation or to cross-contamination sampling. There is insufficient evidence to distinguish between these alternatives.

- Tritium is not uniformly distributed with depth in either the unsaturated (vadose) zone or in the unconfined aquifer. Within the vadose zone, tritium concentrations generally increase with increasing depth. Within the unconfined aquifer, tritium concentrations increase with increasing depth but then rapidly drop to below the detection limit in the basal units of the unconfined aquifer. Vertical tritium variations observed in the unsaturated zone and the upper part of the unconfined aquifer may represent a historical record of tritium influx into the water table aquifer.
- A seismic reflection survey across the projected location of the Pen Branch fault identified a series of 13 high-angle faults along approximately 4,550 ft of a 7,620-ft seismic line. The entire series of faults is considered to represent an extension of the Pen Branch fault zone into Georgia from South Carolina. Figure 23 of Summerour et al. (1998) shows the locations of the seismic survey line and the projected location of the Pen Branch fault. All 13 faults affect the basement rock and project upwards into the overlying Cretaceous-age sediments. None of these faults appear to have disturbed the Gordon aquitard, which isolates the unconfined aquifer from underlying confined aquifers. The seismic profile also shows other numerous minor fractures or faults within the Cretaceous and Tertiary Coastal Plain sediments. Summerour et al. (1998) indicate that while these minor fractures may cut the lower Midville, upper Midville, lower Dublin, upper Dublin, and Millers Pond aquitards, it is unclear whether the fractures also cut the Gordon aquitard (Lisbon Formation). The effect of the Pen Branch fault zone and other minor faults on groundwater flow patterns and pathways was not resolved in this investigation.
- The preponderance of evidence indicates that the primary pathway for tritium into the Upper
 Three Runs aquifer is through recharge of the aquifer by tritiated rainfall related to
 atmospheric tritium releases at the Savannah River Site. A possible secondary pathway for
 tritium is suggested by the presence of very low levels of tritium in all confined aquifers in
 Burke County.

More recently, the Georgia DNR (2004) reported tritium sampling results for the 2000–2002 period from monitoring wells and public water-supply wells located in the Savannah River Site/Vogtle Electric Generating Plant area. Georgia DNR (2004) concludes that no significant tritium contamination has been positively identified in any confined aquifers in Georgia, based on monitoring well data. On the other hand, it notes that extensive tritium contamination was present in groundwater in the relatively shallow (up to 200 ft deep) Upper Three Runs aquifer during the 2000–2002 period, with tritium concentrations averaging less than 1,000 pCi/l, which is well below the drinking water MCL of 20,000 pCi/l established by EPA. Georgia DNR (2004) indicates that contamination appears to be concentrated primarily within the Savannah River Site's

downwind footprint, suggesting a possible connection with airborne (or rain-borne) tritium from the Savannah River Site.

Based on the results of the investigations described above, it is likely that tritium is present in the Upper Three Runs (Water Table) aquifer at the VEGP site, given that tritium has been detected in adjacent monitoring wells and springs and creeks. The source of the tritium is most likely associated with atmospheric releases of tritium from the Savannah River Site because the VEGP site falls within the downwind footprint of the Savannah River Site and is in an area where elevated levels of tritium have been detected in the rainfall. The same investigations suggest the possibility of very low, but measurable, levels of tritium in the deeper, confined aquifers underlying the VEGP site. Possible sources of tritium in the confined aquifers of Burke County, Georgia, include cross contamination from well drilling, installation and during sampling.

2.3.1.2.1.3 Trans-River Flow

The potential for trans-river flow in the vicinity of the Savannah River Site and VEGP site has been discussed by Clarke and West (1997). Trans-river flow is a term that describes a condition under which groundwater originating on one side of a river migrates beneath the river floodplain to the other side of the river. Although some groundwater could discharge into the river floodplain on the opposite side of the river from its point of origin, such flow would likely be discharged to the river because flow in the alluvium is toward the river. Potentiometric-surface maps developed by Clarke and West (1997) for the Upper Three Runs aguifer and Gordon aguifers do not indicate the possible occurrence of trans-river flow. However, flow lines on potentiometric-surface maps of the confined Dublin and Midville aguifer systems do suggest the possible occurrence of transriver flow for a short distance into the Savannah River alluvial valley. The possible occurrence of trans-river flow in the Dublin aguifer system also is suggested by the chemical and isotopic composition of water from the Brighams Landing well-cluster site in Georgia. Clarke and West (1997) suggest that the potential for trans-river flow may be facilitated by groundwater withdrawal, particularly at pumping centers located near the Savannah River. Pumped wells on one side of the river could intercept groundwater that originates on the other side. For this to occur, pumping would need to be sufficient to reverse the hydraulic gradient away from the river and towards the pumping center.

Numerical simulation techniques have been used to further evaluate areas of previously documented trans-river flow on the Georgia side of the Savannah River (Clarke and West 1998; Cherry 2006). At such areas, local head gradients might allow the migration of contaminants from the Savannah River Site into the underlying aquifers and beneath the Savannah River into Georgia. Cherry (2006) identified the area near Flowery Gap Landing (covering about 1 mi²) as an area of potential trans-river discharge. Backward particle tracking analysis was conducted to better quantify trans-river flow. Between 29 and 37 percent of the particles released in this area backtracked to recharge areas on the Savannah River Site (trans-river flow), depending on the scenario being evaluated. Of the particles exhibiting trans-river flow, the median time-of-travel

ranged from 366 to 507 years. For the worst-case scenario evaluated (deactivation of Savannah River Site production wells), the median time-of-travel decreased to about 370 years, with a shortest time-of-travel period of about 80 years.

While the potential for trans-river flow exists, it is likely that such flow would be quickly discharged to the river because flow in the river alluvium is toward the river. Also, any tritiated water originating from the Savannah River Site and participating in trans-river flow would undergo significant radioactive decay, considering its 12.35-year half-life, relative to even the worst-case 80-year time-of-travel. Furthermore, pumping of the current makeup water wells for VEGP Units 1 and 2 does not appear to have intercepted groundwater originating from the other side of the river, based on the particle tracking results presented **by Cherry (2006). It** is also unlikely that pumping the additional water needed to supply VEGP Units 3 and 4 would be sufficient to reverse that hydraulic gradient and cause groundwater originating from South Carolina to be drawn any further into Georgia, given the high transmissivities of the confined Tertiary and Cretaceous aquifers. Therefore, trans-river flow does not appear to be a mechanism that would contribute to the contamination of aquifers underlying the VEGP site.

2.3.1.2.1.4 The Location and Role of the Pen Branch Fault

There is no evidence to suggest that the potential for groundwater leakage between the Upper Three runs (Water Table) aquifer and Gordon (Tertiary sand) aquifer in the vicinity of the Pen Branch fault exists at the VEGP site. SSAR Section 2.5.1.2.4 describes previous investigations of the Pen Branch fault and the site subsurface investigation of the fault that was conducted for the ESP application. Results of this investigation, which included seismic reflection and refraction surveys, clearly document that the Pen Branch fault strikes northeast and dips southeast beneath the VEGP site. SSAR Figure 2.5.1-42 shows the vertical projection of the Pen Branch fault from the top of basement rock in relation to VEGP Units 3 and 4. The plan projection of the intersection of the Pen Branch fault with the top of basement rock is located beneath or slightly southeast of the antiformal hinge at the top of the monocline in the Blue Bluff Marl (SSAR Figure 2.5.1-39). Because of its spatial association with the Pen Branch fault, it is likely that this monocline feature is the result of reverse or reverse-oblique slip on the Pen Branch fault. The seismic survey data further indicate that the fault terminates in the Cretaceous Coastal Plain deposits and overlying Tertiary deposits, including those comprising the Gordon (Tertiary sand) aquifer, Gordon aquitard (Blue Bluff Marl), and Upper Three Runs (Water Table) aquifer, are not considered to be affected by the Pen Branch fault. This result is consistent with that of Summerour et al. (1998), who reported that none of the faults identified in their seismic surveys appear to have disturbed the Gordon aquitard (Blue Bluff Marl), which isolates the unconfined aguifer from underlying confined aguifers.

Based on the results and discussion presented above, the Pen Branch fault has not affected the Tertiary age deposits at the VEGP site and would be neither a barrier nor a conduit for groundwater transport in these deposits. Insufficient data is available to determine if the fault

would be a barrier or conduit in the deeper, Cretaceous deposits that have been affected by the fault.

2.3.1.2.2 Local Hydrogeology

The VEGP site lies within the Coastal Plain Physiographic Province. The site is located approximately 40 mi southeast of the Fall Line, the northwestern boundary of the Coastal Plain province, and is adjacent to the Savannah River. Geologic conditions beneath the VEGP site generally consist of about 1000 ft of Coastal Plain sediments with underlying Triassic Basin rock southeast of the Pen Branch fault and Paleozoic crystalline rock northwest of this fault.

The Savannah River lies along the northeast border of the VEGP site and influences the local hydrogeologic conditions within the site area. This local hydrogeology discussion is restricted to the VEGP site vicinity (approximate radius of 5 mi) south of the Savannah River.

Geotechnical and hydrogeological investigations performed for this ESP application provide information on the VEGP site from the Triassic Basin rock to the ground surface. Results from these investigations indicate that there are three aquifers underlying the VEGP site, the Cretaceous, Tertiary, and Water Table (or Upper Three Runs), all of which belong to the Southeastern Coastal Plain aquifer system. Although present regionally, the Surficial aquifer system, consisting of Miocene (Hawthorne Formation) through Quaternary deposits, is not continuous over Burke County or the VEGP site (Miller 1990).

The lower aguifer at the VEGP site overlies the bedrock and is comprised of Cretaceous-age sediments. Locally, this aguifer system is known as the Cretaceous aguifer. The sediments include sands, gravels, and clays of the Cape Fear Formation, Pio-Nono Formation and associated unnamed sands, Gaillard Formation, Black Creek Formation, and Steel Creek The middle aguifer is made up of Tertiary-age sediments occurring over the Cretaceous-age sediments described above. The middle aguifer system is locally known as the Tertiary aguifer. It consists primarily of the permeable sands of the Still Branch and Congaree The relatively impermeable clays and silts of the Snapp and Black Mingo Formations overlie and confine the Cretaceous aquifer, while the clays and clayey sands of the Lisbon Formation overlie and confine the Tertiary aquifer. The upper aquifer is unconfined and is comprised of Tertiary-age sands, clays, and silts of the Barnwell Formation, which overlie the relatively impermeable Lisbon Formation. This aquifer is known locally as the Water Table aquifer or Upper Three Runs aquifer. A hydrostratigraphic section showing geologic units, confining units, and aquifers for the VEGP site and surrounding areas is shown in Figure 2.3.1-11. Further discussion of the aquifers underlying the VEGP site and surrounding area is provided below.

Cretaceous Aquifer

The Cretaceous aquifer locally comprises the Cape Fear Formation, Pio-Nono Formation/ unnamed sands, Gaillard Formation/Black Creek Formation, and Steel Creek Formation. These

formations generally consist of fluvial and estuarine deposits of cross-bedded quartzitic sand and gravel interbedded with silt and clay. The coarse-grained sediments are mostly unconsolidated and are generally permeable, while the fine-grained sediments are partially consolidated and are generally impermeable. In addition to the varying lithology, the formation also exhibits lateral facies changes, on-lap and off-lap relationships, and discontinuous lenses (Huddlestun and Summerour 1996). The elevations, thicknesses, and descriptions of these geologic formations, as determined from VEGP geotechnical boring B-1003, are summarized below:

- The basal Cape Fear Formation overlies the Triassic Dunbarton Basin bedrock, which is of Paleozoic age and consists of alternating mudstone, sandstone, and breccia. Boring B-1003 encountered top of bedrock at an elevation of approximately -826 ft msl and was advanced an additional 289 ft to elevation of -1,115 ft msl. The Cape Fear Formation consists of interbedded sands, silts, clays, and gravels. The formation is approximately 191 ft thick, with the top of the formation being at El. -635 ft msl.
- The Pio-Nono Formation and other unnamed sands overlie the Cape Fear Formation. This formation consists of sand, silt, and clay. The formation is approximately 60 ft thick, while the top of the formation is at approximately El. -575 ft msl.
- The undifferentiated Gaillard Formation and Black Creek Formation overlie the Pio-Nono Formation and unnamed sands. Most of the formation consists of sand with silt and clay, and layers of gravel. The deposit is approximately 211 ft thick, with the top of the formation being at approximately El. -364 ft msl.
- The Steel Creek Formation overlies the undifferentiated Gaillard Formation and Black Creek Formation. It consists mainly of sand with clay and silt. The formation is approximately 110 ft thick; the top of the formation is at approximately El. -254 ft msl.

The Cretaceous aquifer system has not been extensively developed, primarily because the shallower Tertiary system is adequate for most groundwater needs and is available for use throughout the region. Quantitative data from the limited number of test and production wells in the Cretaceous strata, and inferred data from geologic and stratigraphic studies, indicate clearly that the Cretaceous aquifer system is highly capable of yielding large quantities of good quality groundwater.

Recharge to the Cretaceous aquifer system is primarily by direct infiltration of rainfall in its outcrop area, located north of the VEGP site in a 10- to 30-mile-wide belt extending from Augusta, Georgia, northeastward across South Carolina to near the state line separating North and South Carolina. In the outcrop areas, precipitation penetrates the Cretaceous sediments. Groundwater in the outcrop areas is under water table conditions, but as it moves progressively downdip, it becomes confined beneath the overlying Snapp and Black Mingo Formations in the vicinity of the VEGP site. Hence, the Cretaceous aquifer system is under confined conditions for most of its areal extent. Discharge of the Cretaceous aquifer system is primarily from

subaqueous exposures of the aquifer that are presumed to occur along the Continental Shelf. Other discharge sources are to the Savannah River and by pumping.

Tertiary Aquifer

The most productive aquifer at the VEGP site consists of the Congaree and Still Branch Formations, which are hydraulically connected and are referred to as the Tertiary sand aquifer. The overlying Lisbon Formation, containing the Blue Bluff Marl, acts as a confining layer. The elevations, thicknesses, and descriptions of geologic formations comprising the Tertiary aquifer, as encountered in boring B-1003, are described below.

- The Black Mingo and Snapp Formations constitute a semi-confining hydrogeologic unit under the VEGP site that separates the underlying Cretaceous aquifer from the overlying Tertiary sand aquifer as they dip to the southeast. The Paleocene-age Black Mingo Formation is approximately 39 ft thick and consists of sand, clay, and silt. The top of the formation is at approximately El. -215 ft msl. The Snapp Formation overlies the Black Mingo Formation and consists of sand, clay and silt, and includes a basal gravel layer. The stratum is also Paleocene in age. The formation is approximately 107 ft thick. The top of the formation is at approximately El. -108 ft msl.
- Above the Snapp is the Eocene-age Congaree Formation. The Congaree Formation has a thickness of about 115 ft and consists primarily of sand with clay and silt, and a basal gravel layer. The top of the formation is at an elevation of approximately 7.3 ft msl. The overlying Still Branch and Bennock Millpond Sands Formation consist of sand, clay, and silt and has a weak carbonate component. The formation thickness is approximately 67 ft, with the top of the formation being approximately El. 74 ft msl.
- The Lisbon Formation overlies the Tertiary sediments is the Lisbon Formation. The Lisbon Formation is Eocene in age and is comprised of sand, clay, and silt with interbedded layers of fossiliferous limestone. The Lisbon Formation contains a marl known as the Blue Bluff Member (Blue Bluff Marl). The Lisbon Formation also contains the McBean Limestone Member, a fossiliferous limestone layer. The formation has a thickness of approximately 63 ft, and the top of the formation is at approximately El. 137 feet msl. This formation separates the confined and unconfined aguifer systems beneath the VEGP site.

VEGP Units 1 and 2 UFSAR Section 2.5.1.2.2.2.1.1 states that the Blue Bluff marl is a distinct unit that is relatively constant in thickness over many square miles, although variable in lithology. Contours of the upper and lower surfaces, as well as an isopach map of the marl in the vicinity of the plant, are shown on drawings AX6DD352, AX6DD371, and AX6DD372 of the UFSAR. These drawings indicate the Blue Bluff Marl to be continuous over the entire VEGP site. On the VEGP site, the ESP subsurface investigation (SSAR Appendix 2.5A) determined that the Blue Bluff Marl ranges in thickness from 63 to 95 ft at three locations

where the stratum was fully penetrated, with an average thickness of 76 ft and a median thickness of 69 ft.

Recharge to the Tertiary aquifer is primarily by infiltration of rainfall in its outcrop area, which is a belt 20 to 60 miles wide extending northeastward across central Georgia and into portions of Alabama to the west and South Carolina to the east. Discharge from the Tertiary aquifer occurs from pumping, from natural springs in areas where topography is lower than the piezometric level of the aquifer, and from subaqueous outcrops that are presumed to occur offshore. Discharge also occurs to the Savannah River where the river has completely eroded the Blue Bluff Marl confining layer allowing discharge from the aquifer to the river.

Water Table Aquifer

The uppermost aquifer at the VEGP site is unconfined and consists of the Barnwell Group, including the discontinuous deposits of the Utley limestone, as well as Quaternary deposits along adjacent stream channels. The saturated interval within the Barnwell Group is commonly referred to as the Water Table aquifer (also known as the Upper Three Runs aquifer) and is the first water-bearing zone encountered beneath the VEGP site. The descriptions of the Barnwell Group were determined from VEGP ESP geotechnical and hydrogeological borings and are described below.

• The basal Utley Limestone Member of the Barnwell Group consists of sand, clay, and silt with carbonate-rich layers. The stratum is discontinuous across the VEGP site and was not encountered in several of the borings. To assess its degree of discontinuity, borings logged for the hydrogeological and geotechnical investigations have been examined for the presence/ absence of the Utley limestone. Logs for these borings are included in SSAR Appendices 2.4A and 2.5A. In completing this assessment, effort was made to eliminate spatial bias. Therefore, only one boring log was considered when there were adjacent borings from OW-series well pairs, or adjacent B- and OW-series borings. The results are summarized in Table 2.3.1-27.

The data presented in Table 2.3.1-27 indicates that the Utley limestone is absent in 8 out of 18 borings, or 44 percent of the borings. Spatial trends in the presence/absence of the Utley limestone indicate that the unit tends to be present in the power block area for VEGP Units 3 and 4 and the area to the north toward Mallard Pond. The Utley limestone tends to be absent in the cooling tower area for VEGP Units 3 and 4 and the area to the south. These results are consistent with the Utley limestone isopachs presented in the UFSAR for VEGP Units 1 and 2 (Drawing No. AX6DD376). These isopachs indicate that the limestone increases in thickness to a maximum of about 80 ft and then decreases in thickness to 10 ft or less along a profile extending from the power block to Mallard Pond, with the long axis of this unit trending in a northeast-southwest direction.

 Overlying the Utley limestone are undifferentiated sands, clays, and silts. The thickness of the group is variable with a range of approximately 14 to 119 ft. The top of the group ranges from approximately El. 205 to 264 ft msl. At boring B-1003, the formation is approximately 48 ft thick with the top of the formation being at an elevation of approximately 223 ft msl.

Recharge to the Water Table aquifer is almost exclusively by infiltration of rainfall. The presence of porous surface sands and the moderate topographic relief in the VEGP site area suggest that a significant fraction of the precipitation either infiltrates the ground or is lost to the atmosphere by evapotranspiration. Discharge is to localized drainages and wells.

2.3.1.2.3 Observation Well Data

Data from a combination of new wells installed for the ESP application and existing VEGP site wells were used to develop the groundwater elevation contour maps. The new wells, designated OW-1001 through OW-1015, were installed in May and June 2005. (One of the wells, OW-1001, had very little change in groundwater levels and is not included in the analysis. A replacement well, OW-1001A, was installed in October 2005.) Ten of the new wells are screened in the Water Table aquifer and five are screened in the confined Tertiary aquifer system below the Blue Bluff Marl. No wells were installed into the deeper Cretaceous aquifer. Existing wells 142 and 179, remaining from the pre-construction monitoring network for VEGP Units 1 and 2, are screened in the Water Table aquifer. Existing wells with identifications beginning with the number 8 were installed between 1979 and 1985 to monitor construction dewatering of VEGP Units 1 and 2. These wells are screened in either the Water Table or Tertiary aquifers. Existing wells with an LT designation were installed in 1985 as part of post-construction monitoring activities and screened in the Water Table aquifer.

Observation well OW-1001A was installed at the site in October 2005 to replace OW-1001. Observation well OW-1001 was replaced because, following a period of groundwater level monitoring from June to September 2005, the groundwater level data from this well was considered invalid. This is discussed in more detail in the following section. Observation well OW-1001A was the only new "A" well installed at the site for the ESP application. Observation well OW-1001A should not be confused with the borings or drill logs contained in SSAR Appendix 2.4A that also use the suffix "A." The confusion arises because the boring or drill logs contained in SSAR Appendix 2.4A are labeled "OW" (for Observation Well) as opposed to "B" (for Boring log) or "D" (for Drill log). A summary of borings or holes drilled at the site to accommodate installation of the new observation wells is provided in Table 2.3.1-28.

Groundwater level elevations in OW-1001 measured between the period June 2005 and November 2006 (groundwater level data continues to be collected in wells OW-1001 and OW-1001A for observation purposes) range from about 114 to 118 ft msl, with a seasonal fluctuation of about 4.4 ft. These groundwater levels and seasonal fluctuations are not consistent with the groundwater levels and seasonal fluctuations of groundwater levels in the Water Table

aquifer and suggest that the screened portion of the well is not in good hydraulic communication with the Water Table aquifer. Review of the boring log, daily field log, well development log, and in situ hydraulic conductivity test results for the well indicate that either the formation material adjacent to the well was adversely affected by well construction or that the well was inadvertently installed in the confining unit underlying the formation material. Observation well OW-1001A was installed to replace well OW-1001, as discussed above. The construction log for OW-1001A contained in SSAR Appendix 2.5A (report Appendix D) indicates that the screened portion of the well ranges in elevation from 146.13 to 136.13 ft msl, while groundwater level elevations for the 17-month monitoring period range from 135.91 to 135.99 ft msl. These groundwater level data reveal that groundwater levels in the well are close to or below the bottom of the screened interval of the well, indicating no hydraulic communication with the Water Table aquifer. Groundwater data obtained from OW-1001 and OW-1001A are considered invalid and are not used in the following groundwater evaluations.

Monthly water levels in the observation wells were measured to characterize seasonal trends in groundwater levels and flow directions for the VEGP site. Monthly monitoring of these wells began in June 2005 and is continuing. An 18-month data set representing June 2005 through November 2006 is used for this ESP application. In addition, longer-term data is available for some of the existing wells completed in the Water Table and Tertiary aquifers, which are used to characterize historic trends.

The locations of VEGP site observation wells that are being monitored are shown in Figure 2.3.1-12. Table 2.3.1-18 lists the observation wells currently being used to monitor the Water Table aquifer, while Table 2.3.1-19 lists the observation wells currently being used to monitor the Tertiary aquifer.

The following groundwater piezometric surface trend discussion is based on the information presented in Figures 2.3.1-30 through 2.3.1-35, Figures 2.4.12-16 through 2.4.12-21, Figures 2.3.1-23 through 2.3.1-27, and Tables 2.3.1-18 and 2.3.1-19.

Water Table Aquifer

Groundwater level data for the Water Table aquifer available for 1979 through 2006 is provided in Figure 2.3.1-30. Also shown on this figure is annual precipitation measured at three climate stations close to the VEGP site, which includes the Augusta WSO Airport, Waynesboro 2 NE, and Milen 4N climate stations. Precipitation data was obtained from the South Carolina Department of Natural Resources website (SC DNR 2007). In addition, the Palmer Drought Severity Index (PDSI) and Palmer Hydrological Drought Index (PHDI) are plotted on Figure 2.3.1-31 for the same period. The PDSI attempts to measure the duration and intensity of the long-term cumulative meteorological drought and wet conditions. The PDHI is another long-term drought index intended to measure the hydrological impacts of drought (e.g., reservoir levels, groundwater levels, etc.). PDSI and PHDI data were obtained from the National Climatic Data Center website (NCDC 2007). These indices provide an indication of the severity of a wet or dry

spell. The indices generally range from +6 to -6, with negative values denoting dry spells and positive values denoting wet spells. Values of +0.5 to -0.5 indicate normal conditions.

Figure 2.3.1-30 shows that for the period 1979 to 1984, groundwater level elevations in the Water Table aguifer were affected (lowered) by construction dewatering of the power block excavation for VEGP Units 1 and 2 that was in effect from June 1976 to March 1983. Groundwater levels for subsequent years exhibit variability in response to meteorological conditions. The magnitude of the variability can be estimated using data from the wells having the longest period of record, which include wells 802A, 805A, 808, LT-7A, LT-12, and LT-13. Table 2.3.1-29 summarizes the minimum and maximum water levels recorded at each of these wells. These results indicate a 5to-8-ft range in water levels over the 17-year period of record for these wells. Inspection of the long-term hydrographs for wells 802A, 805A, 808, LT-7A, LT-12, and LT-13 in conjunction with the drought severity indices for the same period indicates that groundwater levels in the Water Table aguifer generally correlate with the PDSI and PDHI. Water levels tend to remain unchanged when the drought severity indices remain near normal (±1). During drought periods when the PDSI or PDHI index falls to -2 or below, groundwater levels tend to decline. Conversely, during wet periods when the PDSI or PDHI increases to +2 or more, groundwater levels tend to rise. Increases or decreases in the drought indices would be associated with the increases or decreases in the rate of recharge of the Water Table aquifer. Because of the relatively large depth to the water table (at least 60 ft), prolonged wet or dry periods on the order of a year in duration are apparently required to affect the recharge to the water table at these depths.

Groundwater data from June 2005 to November 2006 for the Water Table aquifer is summarized in Table 2.1.1-18 and shown in Figure 2.3.1-32. Groundwater elevations for this 18-month monitoring period range from about 133 to 165 ft msl, with seasonal fluctuations averaging about 1 ft. This data exhibits very little variability because the recharge during this period was evidently relatively constant. Comparison of historical groundwater level elevations with precipitation events and other meteorological indices over a longer period of time suggest that persistent and significant wet weather is required to elicit significant water table response, as discussed above. The annual precipitation, the PDSI, and the PDHI for 2004 to 2006 have been relatively stable and near normal values. Due to the absence of any upward or downward trends in these indices, it is expected that groundwater elevations in the Water Table aquifer would be relatively steady over this period.

The groundwater elevation data summarized in Table 2.3.1-18 were used to develop quarterly groundwater surface elevation contour maps for the Water Table aquifer. These maps are presented in Figures 2.3.1-16 through 2.3.1-20 and Figure 2.3.1-33 for June 2005 through November 2006. Note that a contour map for November 2006 was developed because no groundwater level data was available for September and October 2006. Note that October 2005 data, as opposed to September 2005 data, were used to develop the contour map for the second quarter so that data from replacement well OW-1001A, installed in October 2005, could be

incorporated. For each quarter, the spatial trend in the piezometric surface is similar, with elevations ranging from a high of approximately El. 165 ft msl in the vicinity of well OW-1013 to a low of less than El. 135 ft msl at well OW-1005. The groundwater surface contour maps indicate that horizontal groundwater flow across the VEGP site is in a north-northwest direction toward Mallard Pond (also known as Mathes Pond). This surface water feature is a local discharge point for the shallow groundwater flowing beneath the VEGP site. The horizontal hydraulic gradient across the site for the Water Table aquifer is relatively consistent between the five figures and is approximately 0.014 ft/ft.

Tertiary Aquifer

Historical groundwater elevations from 1971 through 1985 for Tertiary aquifer wells 27 and 29 are provided in Figure 2.3.1-21.

Recent groundwater elevation data from June 2005 to November 2006 for the Tertiary aquifer is summarized in Table 2.3.1-19 and shown in Figure 2.3.1-34. Groundwater elevations for this 18-month monitoring period range from about 82 to 128 ft msl. Elevations are relatively constant from June to August 2005. In most cases, the piezometric head of the aquifer declines from August 2005 through November 2005. The elevations begin to rebound in December 2006, continuing through February 2006. The lowering of the piezometric surface is likely in response to a decrease in precipitation. October and November are the months with the lowest precipitation during the year for this area. Well 27 shows a higher degree of variability than the others and is likely influenced by its proximity to the river.

The groundwater elevation data summarized in Table 2.3.1-19 were used to develop piezometric surface maps for the Tertiary aquifer. The Tertiary aquifer piezometric surface is presented in Figures 2.3.1-23 through 2.3.1-27 and Figure 2.3.1-35 for June 2005 through November 2006. The piezometric surfaces for the Tertiary aquifer show a relatively consistent flow pattern. In general, the groundwater in this aquifer unit shows an east-to-northeast flow pattern, toward the Savannah River. Head elevations range from approximately El. 125 ft msl in the western portion of the VEGP site to less than El. 100 ft msl in the vicinity of the bluff next to the Savannah River flood plain. The elevation of the piezometric head at the bluff and that of the Savannah River flood plain suggest groundwater is discharging to the Savannah River. The piezometric elevations in the Tertiary aquifer decreased at least 1.5 ft across the VEGP site in December 2005, reflecting the seasonal decrease in precipitation.

The horizontal hydraulic gradient across the site for the Tertiary aquifer is relatively consistent among the five figures and is approximately 0.006 ft/ft. In the center of the VEGP site, there is a downward head difference of approximately 50 ft between the Water Table aquifer and the Tertiary aquifer, suggesting hydraulic separation of the two aquifers. The Blue Bluff Marl confining unit that separates the aquifer systems has an average thickness of about 70 ft at the VEGP site.

Cretaceous Aquifer

At the VEGP site, both the Cretaceous and the Tertiary aquifers are considered confined beneath the Blue Bluff Marl but are in apparent hydraulic connection with each other. At some distance downdip of the VEGP site, the Cretaceous aquifer becomes hydraulically separated from the Tertiary aquifer. This separation is believed to be due to facies changes in the intervening clays and silts of the Snapp and Black Mingo formations becoming relatively impermeable. The point at which this occurs is not well defined but it is believed to be a few miles downdip (south) of the site.

The regional direction of the groundwater flow in the Cretaceous (and the Tertiary) aquifer system is south-by-southeast at a hydraulic gradient of approximately 6 to 20 ft/mi (0.001 to 0.004 ft/ft) (Siple 1967). From the vicinity of the Fall Line to a point expected to be a few miles south of the site, the Savannah River has downcut through the Blue Bluff Marl confining layer and into the underlying strata. The Savannah River channel cut allows both the Cretaceous and the Tertiary aquifers to discharge to the riverbed, resulting in a localized hydraulic (groundwater) sink. The aquifer flow directions in the vicinity of the river cut are affected by the hydraulic sink and do not follow regional trends.

2.3.1.2.4 Hydrogeologic Properties and Groundwater Travel Time

Slug tests were performed in the new groundwater observation wells installed in connection with the ESP application to determine in situ hydraulic conductivity values for the Water Table and Tertiary aquifers. Table 2.3.1-20 summarizes the test results. Soil samples collected from selected geotechnical and hydrogeological borings were submitted for laboratory tests to determine grain size, moisture content, and specific gravity, results from which are included in Tables 2.3.1-21 through 2.3.1-23. Similar data are available for the adjacent VEGP Units 1 and 2 site. The hydrogeological properties of the Water Table aquifer, Lisbon Formation (Blue Bluff Marl) confining unit, Tertiary aquifer, and Cretaceous aquifer at the VEGP site are discussed below.

Water Table Aquifer

In the vicinity of the VEGP site, the basal unit of the Barnwell Group, the Utley limestone member, is capable of transmitting groundwater but is of limited areal and vertical extent. In addition, the horizontal and vertical hydraulic conductivity of the saturated clays, silts, and sands within the Barnwell Group varies considerably, due to variable clay content.

The hydraulic conductivity of the Water Table aquifer within the vicinity of the VEGP site was measured previously by both in situ and laboratory testing methods during site characterization investigations for VEGP Units 1 and 2. In situ hydraulic conductivity values for the Barnwell Group sands, silts, and clays were found to range between 200 and 267 ft/yr (0.5 to 0.7 ft/day). Laboratory values varied considerably beyond the range of the in situ tests from 9.8 to 302 fy/yr (0.03 to 0.8 ft/day). Well pumping tests conducted in the Utley limestone resulted in hydraulic conductivities ranging from 3,250 to 125,400 ft/yr (9 to 343 ft/day), while falling and constant

head tests suggested lower values, ranging from 96 to 5,800 ft/yr (0.3 to 16 ft/day). These results indicate the possibility of localized, highly permeable zones in the Utley limestone. Laboratory porosity values for the Barnwell Group sands, silts, and clays were found to range from 34 to 61 percent, with a mean value of 44 percent.

Hydraulic conductivities were determined for the VEGP Units 3 and 4 site as part of the ESP investigation. Slug test results for the Water Table aquifer range from 0.12 to 2.65 ft/day, with a geometric mean of 0.41 ft/day (Table 2.3.1-20). Table 2.3.1-21 summarizes the laboratory test results for geotechnical samples of the Barnwell Formation, which were at depths ranging from EI. 108 to 248 ft msl. Sand and clay make up the majority of samples, with some gravel present. Measured moisture contents, by weight, range from 4 to 93 percent and have a median value of about 25 percent. Specific gravity analysis was performed only for the samples collected from the observation well borings. Values range between 2.59 to 2.75 and have a median value of 2.66. Using the median moisture content of 25 percent and a value of 2.66 for the specific gravity, the void ratio is estimated to be about 0.67. A total porosity of 40 percent is calculated from this void ratio (Craig 1994), and an effective porosity of about 32 percent is estimated based on 80 percent of the total porosity (de Marsily 1986). The specific yield for the Water Table aquifer was not determined; however, an estimate of this value taken from published literature for similar aquifer materials indicates that it may be in the range of 0.20 to 0.33 (McWhorter and Sunada 1977).

The groundwater travel time in the Water Table aquifer was calculated from the ESP site to the projected discharge point (Mallard Pond). A horizontal hydraulic gradient of 0.014 ft/ft was estimated using the maximum water level observed at OW-1009 (163.03 ft msl), the minimum water level observed at OW-1005 (132.53 ft msl), and the distance between the two observation wells of about 2,200 ft. A hydraulic conductivity value of 0.5 ft/day was used, which is considered to be a representative hydraulic conductivity value for the Barnwell Formation, which includes the Utley limestone. Using this hydraulic conductivity of 0.5 ft and an effective porosity of 32 percent, an average horizontal groundwater velocity of 0.02 ft/day was calculated (Heath 1998). Using a distance of approximately 2,450 ft from center of the power block area for the new AP1000 units to the closest point of Mallard Pond, the groundwater travel time from the power block area to Mallard Pond is estimated to be about 336 years.

The geotechnical boring logs contained in SSAR Appendix 2.5A, which report some occurrences of water loss during drilling through the Utley limestone, and high hydraulic conductivity test results for the Utley limestone obtained during site investigations for VEGP Units 1 and 2 indicate the possibility of localized highly permeable zones in the Utley limestone. These zones could act as preferential pathways for groundwater flow if there was an accidental liquid release of effluents to the groundwater at the VEGP site.

As described in SSAR Section 2.5.4.5, construction of the new Units 3 and 4 will require a substantial amount of excavation and backfill. The excavation will be necessary to completely

remove the sands, silt, clays, and Utley limestone of the Barnwell Group. Total excavation depth to the Blue Bluff Marl bearing stratum is expected to range from approximately 80 to 90 ft below existing grade. Backfilling will be performed from the top of the Blue Bluff Marl to the bottom of the containment and auxiliary buildings at a depth of about 40 ft below final grade. Filling will continue up around these structures to final grade. The fill will primarily consist of granular materials, selected from portions of the excavated sands and from other available borrow sources. Following the guidelines used during construction of VEGP Units 1 and 2, structural fill will be a sandy or silty sand material with no more than 25 percent of the particle sizes smaller than the No. 200 sieve. This structural fill will be compacted to a minimum of 97 percent of the maximum dry density.

Excavating existing soils and replacing these soils with structural fill will alter the hydrogeologic characteristics of the subsurface materials within the footprint of VEGP Units 3 and 4. In situ hydraulic testing of fill material for VEGP Units 1 and 2 indicates a hydraulic conductivity range of 480 ft/yr (1.3 ft/day) to 1,220 ft/yr (3.3 ft/day), based on data included in UFSAR Table 2.4.12-15. Values for Units 3 and 4 are expected to be similar because the borrow sources and compaction criteria for the fill will be the same. Compared with the hydraulic conductivities for the Water Table aquifer, as described above, it can be seen that the hydraulic conductivity of the fill is generally higher than that of the in situ soils.

Development of VEGP Units 3 and 4 will also increase the impervious area across the VEGP site where power generation and associated facilities are constructed. Storm water management facilities (e.g., catch basins, storm sewers) will be used to convey runoff from precipitation offsite. The increased impervious area and use of storm water management facilities will tend to reduce the recharge to the Water Table aquifer in areas affected by Unit 3 and 4 construction.

Construction of VEGP Units 3 and 4 will entail the placement of relatively large and impermeable structures below grade. The base elevations of the major structures (containment and auxiliary buildings) will be at about El. 180.5 ft msl. This elevation is at least 20 ft above the water table. Because these structures will not extend below the water table, they will not affect the hydrogeologic characteristics of the underlying saturated zone.

Lisbon Formation (Blue Bluff Marl) Confining Unit

The hydraulic conductivity of the marl layer is very low, and it effectively confines the aquifer underlying it. It is considered a barrier to vertical groundwater movement. In situ permeability tests (packer tests) were performed in the marl during site characterization investigations for VEGP Units 1 and 2. In 90 percent of the intervals tested, no measurable water inflow occurred. Laboratory permeability tests were also conducted on core samples collected from the marl. Laboratory measurements ranged from 0.0052 to 8.8 ft/yr (1.4×10⁻⁵ to 2.4×10⁻² ft/day) with a geometric mean of 1.3×10⁻³ ft/day, indicating the marl is nearly impermeable. Porosity values ranged from 24 to 62 percent, with a mean value of 48 percent.

Geotechnical laboratory results for the Lisbon Formation (Blue Bluff Marl) confining unit are summarized in Table 2.3.1-22 for the VEGP site. Soil samples were collected between El. 51 and 135 ft msl. The samples consist of gravel, sand, and clay. Moisture contents range from 13.5 to 67 percent, with porosities of 25 to 59 percent. Using the median moisture content of 29 percent from geotechnical laboratory results and an assumed specific gravity of 2.65, the void ratio of the confining unit is estimated to be 77 percent. Based on the void ratio value, total porosity is calculated to be 44 percent. The effective porosity of the Lisbon Formation was estimated using Figure 2.17 of de Marsily (1986). This figure plots total and effective porosity as a function of grain size. To estimate the effective porosity for the Lisbon Formation (Blue Bluff Marl), the ratio of effective to total porosity determined from Figure 2.17 was applied to the site-specific total porosity value for the VEGP site. Using the median D50 value of 0.24 mm as a representative grain size (Table 2.3.1-22), a ratio of effective to total porosity of about 0.8 was determined. Multiplying the median total porosity of 0.44 by this ratio yields an effective porosity of 0.35.

The effective porosity was also estimated as the difference between the total porosity and the residual water content, as given by Equation 4.4 of Yu et al. (1993). Grain size distribution data indicate that most of the Lisbon Formation samples can be classified as a silty sand (SM) or clayey sand (SC). The residual water content for SM or SC soils obtained from Carsel and Parrish (1988) using equivalent USDA-SCS soil textural classifications, ranges from 0.07 to 0.10. The effective porosity would then range from 0.34 to 0.37. This result indicates that the 0.35 value for effective porosity is representative of the Lisbon Formation.

Tertiary Aquifer

Hydraulic conductivities determined from Tertiary aquifer slug tests range from 0.35 to 2.1 ft/day, with a geometric mean of 0.83 ft/day (Table 2.3.1-20). These results are consistent with those for the VEGP Units 1 and 2 site for which the geometric mean was determined to be 0.51 ft/day. The laboratory results from the selected geotechnical samples collected in the Tertiary aquifer are presented in Table 2.3.1-23. Sample elevations range from El. -273 ft msl to 69 ft msl, with the samples consisting mainly of sand and fine particles, with some gravel. Moisture content ranges from 19 to 41 percent, with specific gravity values varying from 2.62 to 2.69. Using the median moisture content of 24 percent and a value of 2.67 for the specific gravity, the void ratio of the Tertiary aquifer is estimated to be about 0.64. A total porosity of 39 percent is calculated from this void ratio (Craig 1994), and an effective porosity of about 31 percent is estimated based on 80 percent of the total porosity (de Marsily 1986). The storage coefficient for the Tertiary aquifer alone was not determined; however, previous tests of wells completed in the combined Cretaceous/Tertiary aquifers suggest that a value on the order of 10⁻⁴ would be a reasonable estimate (see below).

The horizontal hydraulic gradient of the Tertiary aquifer is approximately 0.005 ft/ft, based on the maximum water level observed at well OW-1008 (127.99 ft msl), the minimum water level

observed at well 27 (81.5 ft msl), and the distance between the two observation wells of about 8,700 ft. The average horizontal groundwater velocity was calculated at 0.013 ft/day using a hydraulic conductivity of 0.83 ft/day, a hydraulic gradient of 0.005 ft/ft, and an effective porosity of 31 percent (Heath 1998). Using a distance of 5,600 ft from center of the power block area for the new AP1000 units to the closest point of the Savannah River, the groundwater travel time from the power block area to the Savannah River in the Tertiary aquifer is estimated to be about 1,180 years.

Cretaceous Aquifer

Two makeup water wells (designated as MU-1 and MU-2A) for VEGP Units 1 and 2 were reported to be capable of supplying water at 2,000 gal./min and 1,000 gal./min, respectively. The water is withdrawn from the combined Cretaceous/Tertiary aquifers. Pumping tests were conducted at these wells in 1977. Transmissivity values ranged between 110,400 to 130,900 gallons per day per foot (gpd/ft). A storage coefficient was calculated at 1.07×10^{-4} .

A pumping test was also conducted in a Cretaceous aquifer test well identified as TW-1 during site characterization activities for VEGP Units 1 and 2. A transmissivity value of 158,000 gpd/ft was calculated as an average value for the aquifer. The storage coefficient ranged between 3.3 x 10^{-4} and 2.1×10^{-4} , indicating the aquifer is effectively under confined conditions.

Vertical hydraulic conductivities were estimated assuming that the anisotropy ratio between the vertical and horizontal directions is 1:3, based on measured horizontal and vertical hydraulic conductivities for sandstone deposits (Freeze and Cherry 1979). The vertical hydraulic conductivities for the Water Table aquifer, Lisbon Formation confining unit, and Tertiary aquifer are estimated to be 0.14, 0.00045, and 0.28 ft/day, respectively.

2.3.1.2.5 Summary

The VEGP site lies within the Coastal Plain Physiographic Province. Geologic conditions beneath the VEGP site generally consist of about 1000 ft of Coastal Plain sediments with underlying Paleozoic sedimentary Triassic sediments and Paleozoic crystalline rock Groundwater at the site occurs in three aquifers that are part of the Southeastern Coastal Plain aquifer system. The lower (Cretaceous) aquifer is comprised of Cretaceous-age sediments, while the middle (Tertiary) aquifer is comprised of Tertiary-age sediments. Both are under confined conditions. The upper (Water Table) aquifer, comprised of Tertiary-age sediments, is unconfined. Recharge to the Cretaceous and Tertiary aquifers occurs in their outcrop areas north of the VEGP site. These aquifers discharge to the Savannah River and to subaqueous outcrops along the Continental Shelf. Recharge to the Water Table aquifer occurs by infiltration of precipitation. Discharge is to localized drainage and stream incisions.

Observation wells completed in the Water Table and Tertiary aquifers were used to develop piezometric contour maps and hydraulic gradients. Hydrogeologic properties of these aquifers were determined by laboratory testing of soil samples and by in situ testing. Piezometric contour

maps for the Water Table aquifer indicate that groundwater flow across the VEGP site is northward towards Mallard Pond, which serves as a discharge area. The groundwater travel time from the center of the VEGP site to Mallard Pond is estimated to be about,336 years. Piezometric contour maps for the Tertiary aquifer show groundwater flow across the VEGP site to be in the east-to-northeast direction toward the Savannah River, which serves as a discharge area. The groundwater travel time in the Tertiary aquifer, from the center of the VEGP site to the Savannah River, is estimated to be about 1,180 years. The Water Table and Tertiary aquifers are separated by a very low permeability stratum known as the Lisbon formation. Observation well data suggest that there is little to no hydraulic connectivity between the Water Table and Tertiary aquifers. No sole-source aquifers have been designated within the VEGP site region.

Table 2.3.1-1 Savannah River Sub-basins and Drainage Areas Above VEGP

NWS Subbasin			Drainage Area, mi ²	
No.	I.D.	NWS Subbasin Name		downstream of site (2)
1	TIGG1	Burton Dam, GA	122.3	0.0
2	JCSS1	Jocassee Dam, SC	157.7	0.0
3	KEOS1	Keowee Dam, SC	288.0	0.0
4	HRTG1	Hartwell Dam, GA	1544.7	0.0
5	RBRS1	R.B. Russell Dam	738.2	0.0
6	CARG1	Carlton Bridge, GA	760.6	0.0
7	CHDS1UP	Clark Hill - Thurmon Dam (upstream)	665.9	0.0
8	CHDS1	Clark Hill Dam	1847.7	0.0
9	MODS1	Modoc, S.C.	539.9	0.0
10	AGTG1	Steven Creek Dam, GA	454.8	0.0
11	AGSG1	Augusta 5th Street	77.1	0.0
12	AUGG1	Augusta/Butler Creek	273.6	0.0
13	JACS1	Jackson, S.C.	651.2	0.0
14	BFYG1	Burton's Ferry, GA	182.5	293.4
15	BRIG1	Millhaven, GA	0.0	646.2
16	CLYG1	Clyo, GA	0.0	634.7

Estimated Savannah River drainage area at site

8304.2

¹⁾ Based on data from Southeast River Flood Forecasting Center, Atlanta, GA. (NWS 2005)

²⁾ As estimated from HUC-12 shapefiles

Table 2.3.1-2 River Miles for Key Landmarks Along the Savannah River

Land Mark	River Mile *
Confluence of White Water & Toxaway Rivers	368.6
Confluence of Tallulah & Chatooga (forming the Tugaloo)	358.1
Confluence of the Keowee & Twelve Mile Creek (forming Seneca River)	338.5
Confluence of the Senaca & Tugaloo Rivers (forming the Savannah)	312.1
Hartwell Dam (USGS gage 02187250)	288.9
Iva gage (USGS gage 02187500)	280.4
Confluence of Broad River	269.6
Calhoun Falls (USGS gage 02189000)	263.6
Richard B. Russell Dam (USGS gage 02189004)	259.1
Conflence of Little River	223.4
J. Strom Thurmond Dam (USGS gage 02194500)	221.6
Confluence of Stevens Creek	208.1
Augusta City Dam	207.0
Augusta, GA at Fifth Street gage site (02197000)	199.6
Horse Creek at mouth	197.4
New Savannah Bluff Lock and Dam	187.7
Shell Bluff Landing, Georgia	161.9
Jackson, SC gage (02197320)	156.8
Vogtle Electric Generating Plant	150.9
Burtons Ferry Gage (02197500)	118.7
Confluence of Brier Creek	102.5
Clyo gage (02198500)	60.9
Ebenezer Landing, Georgia	48.1
Houlihan Bridge (U.S. Highway 17)	21.6
City of Savannah, GA at Bull Street	14.4
Mouth of the Savannah River	0.0

^{*} River miles measured from the mouth of Savannah Harbor, as reported by USACE 1996.

Source: Adapted from USACE 1996

Table 2.3.1-3 USGS 7.5-Minute Quadrangles for Savannah River Watershed

Map ID	7.5-minute Quadsheet Name	State	N. Latitude	W. Longitude
1	Tuckasegee	NC	35° 15' 00"	83° 00' 00"
2	Sam Knob	NC	35° 15' 00"	82 ° 52 ' 30 "
3	Wayah Bald	NC	35° 07' 30"	83 ° 30 ' 00 "
4	Glenville	NC	35° 07' 30"	83 ° 07 ' 30 "
5	Big Ridge	NC	35 ° 07 ' 30 "	83 ° 00 ' 00 "
6	Lake Toxaway	NC	35 ° 07 ' 30 "	82 ° 52 ' 30 "
7	Rosman	NC	35 ° 07 ' 30 "	82° 45' 00"
8	Rainbow Springs	NC	35° 00' 00"	83 ° 30 ' 00 "
9	Prentiss	NC	35 ° 00 ' 00 "	83 ° 22 ' 30 "
10	Scaly Mountain	NC	35 ° 00 ' 00 "	83° 15' 00"
11	Highlands	NC	35 ° 00 ' 00 "	83 ° 07 ' 30 "
12	Cashiers	NC	35 ° 00 ' 00 "	83 ° 00 ' 00 "
13	Reid	NC	35 ° 00 ' 00 "	82 ° 52 ' 30 "
14	Eastatoe Gap	NC	35 ° 00 ' 00 "	82 ° 45 ' 00 "
15	Table Rock	SC	35 ° 00 ' 00 "	82 ° 37 ' 30 "
16	Macedonia	GA	34 ° 52 ' 30 "	83 ° 37 ' 30 "
17	Hightower Bald	GA	34 ° 52 ' 30 "	83 ° 30 ' 00 "
18	Dillard	GA	34 ° 52 ' 30 "	83 ° 22 ' 30 "
19	Rabun Bald	GA	34 ° 52 ' 30 "	83 ° 15 ' 00 "
20	Satolah	GA	34 ° 52 ' 30 "	83 ° 07 ' 30 "
21	Tamassee	SC	34 ° 52 ' 30 "	83 ° 00 ' 00 "
22	Salem	SC	34 ° 52 ' 30 "	82 ° 52 ' 30 "
23	Sunset	SC	34 ° 52 ' 30 "	82 ° 45 ' 00 "
24	Pickens	SC	34 ° 52 ' 30 "	82 ° 37 ' 30 "
25	Dacusville	SC	34 ° 52 ' 30 "	82 ° 30 ' 00 "
26	Tray Mountain	GA	34 ° 45 ' 00 "	83 ° 37 ' 30 "
27	Lake Burton	GA	34 ° 45 ' 00 "	83 ° 30 ' 00 "
28	Tiger	GA	34 ° 45 ' 00 "	83 ° 22 ' 30 "
29	Rainy Mountain	GA	34 ° 45 ' 00 "	83° 15' 00"
30	Whetstone	SC	34 ° 45 ' 00 "	83 ° 07 ' 30 "
31	Walhalla	SC	34 ° 45 ' 00 "	83 ° 00 ' 00 "
32	Old Pickens	SC	34 ° 45 ' 00 "	82 ° 52 ' 30 "
33	Six Mile	SC	34 ° 45 ' 00 "	82 ° 45 ' 00 "
34	Liberty	SC	34 ° 45 ' 00 "	82 ° 37 ' 30 "
35	Easley	SC	34 ° 45 ' 00 "	82 ° 30 ' 00 "
36	Greenville	SC	34 ° 45 ' 00 "	82 ° 22 ' 30 "
37	Clarkesville NE	GA	34 ° 37 ' 30 "	83 ° 30 ' 00 "
38	Tallulah Falls	GA	34 ° 37 ' 30 "	83 ° 22 ' 30 "
39	Tugaloo Lake	GA	34 ° 37 ' 30 "	83 ° 15 ' 00 "
40	Holly Springs	SC	34 ° 37 ' 30 "	83 ° 07 ' 30 "
41	Westminster	SC	34 ° 37 ' 30 "	83 ° 00 ' 00 "
42	Seneca	SC	34 ° 37 ' 30 "	02 32 30
43	Clemson Five Forks	SC	34 ° 37 ' 30 "	82 ° 45 ' 00 " 82 ° 37 ' 30 "
44		SC	34 ° 37 ' 30 " 34 ° 37 ' 30 "	
45	Piercetown	SC		
46	Pelzer	SC	34 ° 37 ' 30 "	82 ° 22 ' 30 "
47	Clarkesville	GA	34 ° 30 ' 00 " 34 ° 30 ' 00 "	83 ° 30 ' 00 " 83 ° 22 ' 30 "
48	Ayersville	GA		
49 50	Toccoa Avalon	GA GA	34 ° 30 ' 00 " 34 ° 30 ' 00 "	83 ° 15 ' 00 " 83 ° 07 ' 30 "
51		SC	34 ° 30 ' 00 "	
	Oakway Fair Play			
52	Fair Play	SC SC		
53 54	La France Anderson North	SC	34 ° 30 ' 00 " 34 ° 30 ' 00 "	82 ° 45 ' 00 " 82 ° 37 ' 30 "
55	Belton West	SC	34 ° 30 ' 00 "	82 ° 30 ' 00 "
56	Belton East	SC	34 ° 30 ' 00 "	82 ° 22 ' 30 "
57 58	Lula Baldwin	GA GA	34 ° 22 ' 30 " 34 ° 22 ' 30 "	83 ° 37 ' 30 " 83 ° 30 ' 00 "
58	Lake Russell	GA	34 22 30 "	83 ° 22 ' 30 "
60	Red Hill	GA	34 ° 22 ' 30 "	83 ° 15 ' 00 "
00	Iven I IIII	GA	J 4 ZZ JU	00 10 00

Table 2.3.1-3 (cont.) USGS 7.5-Minute Quadrangles for Savannah River Watershed

Map ID	7.5-minute Quadsheet Name	State	N. Latitude	W. Longitude
61	Martin	GA	34 ° 22 ' 30 "	83 ° 07 ' 30 "
62	Lavonia	GA	34 ° 22 ' 30 "	83 ° 00 ' 00 "
63	Reed Creek	GA	34 ° 22 ' 30 "	82 ° 52 ' 30 "
64	Hartwell NE	SC	34 ° 22 ' 30 "	82 ° 45 ' 00 "
65	Anderson South	SC	34 ° 22 ' 30 "	82 ° 37 ' 30 "
66	Saylors Crossroads	SC	34 ° 22 ' 30 "	82 ° 30 ' 00 "
67	Honea Path	SC	34 ° 22 ' 30 "	82 ° 22 ' 30 "
68	Ware Shoals West	SC	34 ° 22 ' 30 "	82 ° 15 ' 00 "
69	Gillsville	GA	34° 15' 00"	83 ° 37 ' 30 "
70	Maysville	GA	34° 15' 00"	83 ° 30 ' 00 "
71	Homer	GA	34° 15' 00"	83 ° 22 ' 30 "
72	Ashland	GA	34 ° 15 ' 00 "	83 ° 15 ' 00 "
73	Carnesville	GA	34 ° 15 ' 00 "	83 ° 07 ' 30 "
74	Royston	GA	34 ° 15 ' 00 "	83 ° 00 ' 00 "
75	Hartwell	GA	34 ° 15 ' 00 "	82 ° 52 ' 30 "
76	Hartwell Dam	GA	34 ° 15 ' 00 "	82 ° 45 ' 00 "
77	Iva	SC	34 ° 15 ' 00 "	82 ° 37 ' 30 "
78	Antreville	SC	34 ° 15 ' 00 "	82 ° 30 ' 00 "
79	Due West	SC	34 ° 15 ' 00 "	82 ° 22 ' 30 "
80	Shoals Junction	SC	34 ° 15 ' 00 "	82 ° 15 ' 00 "
81	Cokesbury	SC	34 ° 15 ' 00 "	82 ° 07 ' 30 "
82	Waterloo	SC	34 ° 15 ' 00 "	82 ° 00 ' 00 "
83	Apple Valley	GA	34 ° 07 ' 30 "	83 ° 30 ' 00 "
84	Commerce	GA	34 ° 07 ' 30 "	83 ° 22 ' 30 "
85	lla	GA	34 ° 07 ' 30 "	83 ° 15 ' 00 "
86	Danielsville North	GA	34 ° 07 ' 30 "	83 ° 07 ' 30 "
87	Bowman	GA	34 ° 07 ' 30 "	83 ° 00 ' 00 "
88	Dewy Rose	GA	34 ° 07 ' 30 "	82 ° 52 ' 30 "
89	Rock Branch	GA	34 ° 07 ' 30 "	82 ° 45 ' 00 "
90	Lowndesville	SC	34 ° 07 ' 30 "	82 ° 37 ' 30 "
91	Latimer	SC	0. 0. 00	82 ° 30 ' 00 "
92	Abbeville West	SC	01 01 00	82 ° 22 ' 30 "
93 94	Abbeville East	SC SC	34 ° 07 ' 30 "	82 ° 15 ' 00 " 82 ° 07 ' 30 "
95	Greenwood	SC	34 ° 07 ' 30 " 34 ° 07 ' 30 "	
96	Ninety Six	SC	34 ° 07 ' 30 "	82 ° 00 ' 00 " 81 ° 52 ' 30 "
97	Dyson Nicholson	GA	34 ° 00 ' 00 "	83 ° 22 ' 30 "
98	Hull	GA	34 ° 00 ' 00 "	83 ° 15 ' 00 "
99	Danielsville South	GA	34 ° 00 ' 00 "	83 ° 07 ' 30 "
100	Carlton	GA	34 ° 00 ' 00 "	83 ° 00 ' 00 "
101	Elberton West	GA	34 ° 00 ' 00 "	82 ° 52 ' 30 "
102	Elberton East	GA	34 ° 00 ' 00 "	82 ° 45 ' 00 "
103	Heardmont	GA	34 ° 00 ' 00 "	82 ° 37 ' 30 "
104	Calhoun Falls	SC	34 ° 00 ' 00 "	82 ° 30 ' 00 "
105	Calhoun Creek	SC	34 ° 00 ' 00 "	82 ° 22 ' 30 "
106	Verdery	SC	34 ° 00 ' 00 "	82 ° 15 ' 00 "
107	Bradley	SC	34 ° 00 ' 00 "	
108	Kirksey	SC	34 ° 00 ' 00 "	82 ° 00 ' 00 "
109	Good Hope	SC	34 ° 00 ' 00 "	81 ° 52 ' 30 "
110	Saluda North	SC	34 ° 00 ' 00 "	81 ° 45 ' 00 "
111	Athens East	GA	33 ° 52 ' 30 "	83 ° 15 ' 00 "
112	Crawford	GA	33 ° 52 ' 30 "	83 ° 07 ' 30 "
113	Sandy Cross	GA	33 ° 52 ' 30 "	83 ° 00 ' 00 "
114	Vesta	GA	33 ° 52 ' 30 "	82 ° 52 ' 30 "
115	Jacksons Crossroads	GA	33 ° 52 ' 30 "	82 ° 45 ' 00 "
116	Broad	GA	33 ° 52 ' 30 "	82 ° 37 ' 30 "
117	Chennault	GA	33 ° 52 ' 30 "	82 ° 30 ' 00 "
118	Willington	SC	33 ° 52 ' 30 "	82 ° 22 ' 30 "
119	McCormick	SC	33 ° 52 ' 30 "	82 ° 15 ' 00 "
120	Winterseat	SC	33 ° 52 ' 30 "	82 ° 07 ' 30 "

Table 2.3.1-3 (cont.) USGS 7.5-Minute Quadrangles for Savannah River Watershed

Map ID	7.5-minute Quadsheet Name	State	N. Latitude	W. Longitude
121	Limestone	SC	33 ° 52 ' 30 "	82 ° 00 ' 00 "
122	Owdoms	SC	33 ° 52 ' 30 "	81 ° 52 ' 30 "
123	Saluda South	SC	33 ° 52 ' 30 "	81° 45' 00"
124	Maxeys	GA	33 ° 45 ' 00 "	83 ° 07 ' 30 "
125	Lexington	GA	33 ° 45 ' 00 "	83 ° 00 ' 00 "
126	Rayle	GA	33 ° 45 ' 00 "	82 ° 52 ' 30 "
127	Celeste	GA	33 ° 45 ' 00 "	82 ° 45 ' 00 "
128	Tignall	GA	33 ° 45 ' 00 "	82 ° 37 ' 30 "
129	Metasville	GA	33 ° 45 ' 00 "	82 ° 30 ' 00 "
130	Lincolnton	GA	33 ° 45 ' 00 "	82 ° 22 ' 30 "
131	Plum Branch	SC	33 ° 45 ' 00 "	82 ° 15 ' 00 "
132	Parksville	SC	33 ° 45 ' 00 "	82 ° 07 ' 30 "
133	Red Hill	SC	33 ° 45 ' 00 "	82 ° 00 ' 00 "
134	Edgefield	SC	33 ° 45 ' 00 "	81 ° 52 ' 30 "
135	Johnston	SC	33 ° 45 ' 00 "	81° 45' 00"
136	Penfield	GA	33 ° 37 ' 30 "	83 ° 07 ' 30 "
137	Woodville	GA	33 ° 37 ' 30 "	83 ° 00 ' 00 "
138	Philomath	GA	33 ° 37 ' 30 "	82 ° 52 ' 30 "
139	Washington West	GA	33 ° 37 ' 30 "	82 ° 45 ' 00 "
140	Washington East	GA	33 ° 37 ' 30 "	82 ° 37 ' 30 "
141	Aonia	GA	33 ° 37 ' 30 "	82 ° 30 ' 00 "
142	Woodlawn	GA	33 ° 37 ' 30 "	82 ° 22 ' 30 "
143	Leah	GA	33 ° 37 ' 30 "	82 ° 15 ' 00 "
144	Clarks Hill	SC	33 ° 37 ' 30 "	82 ° 07 ' 30 "
145	Colliers	SC	33 ° 37 ' 30 "	82 ° 00 ' 00 "
146	Ropers Crossroads	SC	33 ° 37 ' 30 "	81° 52' 30"
147	Trenton	SC	33 ° 37 ' 30 "	81° 45' 00"
148	Aiken NW	SC	33 ° 37 ' 30 "	81° 37' 30"
149	Union Point	GA	33 ° 30 ' 00 "	83 ° 00 ' 00 "
150	Crawfordville	GA	33 ° 30 ' 00 "	82 ° 52 ' 30 "
151	Sharon	GA	33 ° 30 ' 00 "	82 ° 45 ' 00 "
152	Cadley	GA	33 ° 30 ' 00 "	82 ° 37 ' 30 "
153	Wrightsboro	GA	33 ° 30 ' 00 "	82 ° 30 ' 00 "
154	Winfield	GA	33 ° 30 ' 00 "	82 ° 22 ' 30 "
155	Appling	GA	33 ° 30 ' 00 "	82 ° 15 ' 00 "
156	Evans	GA	33 ° 30 ' 00 "	82 ° 07 ' 30 "
157	Martinez	GA	33 ° 30 ' 00 "	82 ° 00 ' 00 "
158	North Augusta	SC	33 ° 30 ' 00 "	81 ° 52 ' 30 "
159	Graniteville	SC	33 ° 30 ' 00 "	81° 45' 00"
160	Aiken	SC	33 ° 30 ' 00 "	81° 37' 30"
161	Oakwood	SC	33 ° 30 ' 00 "	81° 30' 00"
162	Sparta NE	GA	33 ° 22 ' 30 "	82 ° 45 ' 00 "
163	Warrenton	GA	33 ° 22 ' 30 "	82 ° 37 ' 30 "
164	Thomson West	GA	33 ° 22 ' 30 "	82 ° 30 ' 00 "
165	Thomson East	GA	33 ° 22 ' 30 "	82 ° 22 ' 30 "
166	Harlem	GA	33 ° 22 ' 30 "	82 ° 15 ' 00 "
167	Grovetown	GA	33 ° 22 ' 30 "	82 ° 07 ' 30 "
168	Augusta West	GA	33 ° 22 ' 30 "	82 ° 00 ' 00 "
169	Augusta East	GA	33 ° 22 ' 30 "	81 ° 52 ' 30 "
170	Hollow Creek	SC	33 ° 22 ' 30 "	81 ° 45 ' 00 "
171	New Ellenton	SC	33 ° 22 ' 30 "	81 ° 37 ' 30 "
172	Windsor	SC	33 ° 22 ' 30 "	81 ° 30 ' 00 "
173	Williston	SC	33 ° 22 ' 30 "	81 ° 22 ' 30 "
174	Bastonville	GA	33 ° 15 ' 00 "	82 ° 30 ' 00 "
175	Bowdens Pond	GA	33 ° 15 ' 00 "	82 ° 22 ' 30 "
176	Avondale	GA	33 ° 15 ' 00 "	82 ° 15 ' 00 "
177	Blythe	GA	33 ° 15 ' 00 "	82 ° 07 ' 30 "
178	Hephzibah	GA	33 ° 15 ' 00 "	82 ° 00 ' 00 "
179	Mechanic Hill	GA	33 ° 15 ' 00 "	81 ° 52 ' 30 "
180	Jackson	SC	33 ° 15 ' 00 "	81° 45' 00"

Table 2.3.1-3 (cont.) USGS 7.5-Minute Quadrangles for Savannah River Watershed

182 New Ellenton SE	Map ID	7.5-minute Quadsheet Name	State	N. Latitude	W. Longitude
183	181	New Ellenton SW	SC	33 ° 15 ' 00 "	81 ° 37 ' 30 "
184 Wrens	182	New Ellenton SE	SC		
185 Matthews	183	Long Branch			
186	184	Wrens	GA	33 ° 07 ' 30 "	02 22 00
187 Storys Millpond					82 ° 15 ' 00 "
187	186	Keysville	GA	33 ° 07 ' 30 "	02 01 00
188 McBean GA 33 ° 07 ° 30 ° 81 ° 52 ° 30 ° 189 Shell Bluff Landing GA 33 ° 07 ° 30 ° 81 ° 52 ° 30 ° 190 Girard NW SC 33 ° 07 ° 30 ° 81 ° 37 ° 30 ° 30 ° 191 ° 31 ° 37 ° 30 ° 191 ° 31 ° 37 ° 30 ° 191 ° 31 ° 37 ° 30 ° 191 ° 31 ° 37 ° 30 ° 191 ° 31 ° 37 ° 30 ° 191 ° 30 ° 81 ° 37 ° 30 ° 192 ° 30 ° 81 ° 37 ° 30 ° 192 ° 30 ° 81 ° 32 ° 30 ° 30 ° 30 ° 30 ° 30 ° 30 ° 30	187	Storys Millpond	GA		82 ° 00 ' 00 "
190 Girard NW SC 33 ° 07 ° 30 ° 81 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 37 ° 30 ° 191 ° 30 ° 30 ° 31 ° 32 ° 30 ° 30 ° 30 ° 30 ° 30 ° 30 ° 30	188	McBean			01 02 00
191 Girard NE	189	Shell Bluff Landing	GA	33 ° 07 ' 30 "	81° 45' 00"
192 Snelling	190	Girard NW	SC	33 ° 07 ' 30 "	81 ° 37 ' 30 "
193 Barnwell SC 33 ° 07 ° 30 ° 81 ° 15 ° 00 ° 194 Kellys Pond GA 33 ° 00 ° 00 ° 82 ° 15 ° 00 ° 195 Gough GA 33 ° 00 ° 00 ° 82 ° 07 ° 30 ° 196 Waynesboro GA 33 ° 00 ° 00 ° 82 ° 07 ° 30 ° 197 Idlewood GA 33 ° 00 ° 00 ° 81 ° 52 ° 30 ° 198 Alexander GA 33 ° 00 ° 00 ° 81 ° 52 ° 30 ° 199 Girard GA 33 ° 00 ° 00 ° 81 ° 52 ° 30 ° 200 Millet SC 33 ° 00 ° 00 ° 81 ° 37 ° 30 ° 201 Martin SC 33 ° 00 ° 00 ° 81 ° 37 ° 30 ° 202 Allendale SC 33 ° 00 ° 00 ° 81 ° 37 ° 30 ° 203 Bellevue GA 32 ° 52 ° 30 ° 82 ° 00 ° 00 ° 204 Perkins GA 32 ° 52 ° 30 ° 81 ° 52 ° 30 ° 205 Sardis GA 32 ° 52 ° 30 ° 81 ° 52 ° 30 ° 207 Burtons Ferry Landing GA 32 ° 52 ° 30 ° 81 ° 37 ° 30 ° 208 Bull Pond SC 32 ° 52 ° 30 ° 81 ° 37 ° 30 ° 209 Barton SC 32 ° 52 ° 30 ° 81 ° 37 ° 30 ° 210 Bay Branch GA 32 ° 52 ° 30 ° 81 ° 37 ° 30 ° 211 Sylvania North GA 32 ° 45 ° 00 ° 81 ° 37 ° 30 ° 212 Jacksonboro Bridge GA 32 ° 45 ° 00 ° 81 ° 37 ° 30 ° 213 Brier Creek Landing GA 32 ° 45 ° 00 ° 81 ° 37 ° 30 ° 214 Solomons Crossroads SC 32 ° 37 ° 30 ° 81 ° 37 ° 30 ° 218 Shirley SC 32 ° 37 ° 30 ° 81 ° 37 ° 30 ° 229 Brighton SC 32 ° 37 ° 30 ° 81 ° 37 ° 30 ° 220 Pineland SC 32 ° 37 ° 30 ° 81 ° 37 ° 30 ° 221 Brighton SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 31 ° 222 Brighton SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 31 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 31 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 30 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 31 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 30 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 30 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 30 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 30 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 31 ° 30 ° 223 Pineland SC 32 ° 30 ° 00 ° 81 ° 31 ° 31	191	Girard NE	SC		
194 Kellys Pond GA 33 ° 00 ' 00 " 82 ° 15 ' 00 " 195 Gough GA 33 ° 00 ' 00 " 82 ° 07 ' 30 " 196 Waynesboro GA 33 ° 00 ' 00 " 82 ° 00 ' 00 " 197 Idlewood GA 33 ° 00 ' 00 " 81 ° 52 ' 30 " 198 Alexander GA 33 ° 00 ' 00 " 81 ° 52 ' 30 " 199 Girard GA 33 ° 00 ' 00 " 81 ° 37 ' 30 " 200 Millett SC 33 ° 00 ' 00 " 81 ° 37 ' 30 " 201 Martin SC 33 ° 00 ' 00 " 81 ° 30 ' 00 " 202 Allendale SC 33 ° 00 ' 00 " 81 ° 15 ' 00 " 203 Bellevue GA 32 ° 52 ' 30 " 81 ° 15 ' 00 " 204 Perkins GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 30 ' 00 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 30 ' 00 " 210 Bay Branch GA 32 ° 52 ' 30 " 81 ° 30 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 30 ' 00 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 22 ' 30 " 229 Brighton SC 32 ° 37 ' 30 " 81 ° 30 ' 00 " 221 Brighton SC 32 ° 30 ' 00 " 81 ° 30 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00	192	Snelling	SC	33 ° 07 ' 30 "	
195 Gough GA 33 ° 00 ' 00 " 82 ° 07 ' 30 " 196 Waynesboro GA 33 ° 00 ' 00 " 82 ° 00 ' 00 " 197 Idlewood GA 33 ° 00 ' 00 " 81 ° 52 ' 30 " 198 Alexander GA 33 ° 00 ' 00 " 81 ° 52 ' 30 " 199 Girard GA 33 ° 00 ' 00 " 81 ° 37 ' 30 " 200 Millett SC 33 ° 00 ' 00 " 81 ° 37 ' 30 " 201 Martin SC 33 ° 00 ' 00 " 81 ° 37 ' 30 " 202 Allendale SC 33 ° 00 ' 00 " 81 ° 15 ' 00 " 203 Bellevue GA 32 ° 52 ' 30 " 82 ° 00 ' 00 " 204 Perkins GA 32 ° 52 ' 30 " 82 ° 00 ' 00 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 15 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 15 ' 00 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 220 Diiver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 224 Pineland SC 32 °	193	Barnwell	SC	33 ° 07 ' 30 "	81° 15' 00"
196 Waynesboro GA 33 ° 00 ' 00 " 82 ° 00 ' 00 " 197 Idlewood GA 33 ° 00 ' 00 " 81 ° 52 ' 30 " 198 Alexander GA 33 ° 00 ' 00 " 81 ° 52 ' 30 " 199 Girard GA 33 ° 00 ' 00 " 81 ° 37 ' 30 " 200 Millett SC 33 ° 00 ' 00 " 81 ° 37 ' 30 " 201 Martin SC 33 ° 00 ' 00 " 81 ° 30 ' 00 " 202 Allendale SC 33 ° 00 ' 00 " 81 ° 15 ' 00 " 203 Bellevue GA 32 ° 52 ' 30 " 82 ° 00 ' 00 " 204 Perkins GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 214 Solomons Crossroads SC 32 ° 37 ' 30 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 15 ' 00 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 220 Diiver GA 32 ° 37 ' 30 " 81 ° 15 ' 00 " 221 Brighton SC 32 ° 30 ' 00 " 81 ° 31 ' 15 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	194	Kellys Pond	GA	33 ° 00 ' 00 "	82 ° 15 ' 00 "
197 Idlewood GA 33 ° 00 ° 00 " 81 ° 52 ° 30 " 198 Alexander GA 33 ° 00 ° 00 " 81 ° 45 ° 00 " 199 Girard GA 33 ° 00 ° 00 " 81 ° 45 ° 00 " 200 Millett SC 33 ° 00 ° 00 " 81 ° 30 ° 00 ° 00 " 201 Martin SC 33 ° 00 ° 00 " 81 ° 30 ° 00 ° 00 ° 202 Allendale SC 33 ° 00 ° 00 " 81 ° 15 ° 00 " 203 Bellevue GA 32 ° 52 ° 30 " 82 ° 00 ° 00 " 204 Perkins GA 32 ° 52 ° 30 " 81 ° 52 ° 30 " 205 Sardis GA 32 ° 52 ° 30 " 81 ° 52 ° 30 " 206 Hilltonia GA 32 ° 52 ° 30 " 81 ° 37 ° 30 " 207 Burtons Ferry Landing GA 32 ° 52 ° 30 " 81 ° 37 ° 30 " 208 Bull Pond SC 32 ° 52 ° 30 " 81 ° 30 ° 00 ° 00 ° 209 Barton SC 32 ° 52 ° 30 " 81 ° 30 ° 00 ° 00 ° 210 Bay Branch GA 32 ° 45 ° 00 " 81 ° 37 ° 30 " 211 Sylvania North GA 32 ° 45 ° 00 " 81 ° 37 ° 30 " 212 Jacksonboro Bridge GA 32 ° 45 ° 00 " 81 ° 37 ° 30 " 213 Brier Creek Landing GA 32 ° 45 ° 00 " 81 ° 37 ° 30 " 214 Solomons Crossroads SC 32 ° 45 ° 00 " 81 ° 37 ° 30 " 215 Sylvania South GA 32 ° 37 ° 30 " 81 ° 37 ° 30 " 216 Hunters GA 32 ° 37 ° 30 " 81 ° 15 ° 00 " 217 Blue Springs Landing GA 32 ° 37 ° 30 " 81 ° 15 ° 00 " 218 Shirley SC 32 ° 37 ° 30 " 81 ° 15 ° 00 " 229 Brighton SC 32 ° 30 ° 00 " 81 ° 15 ° 00 " 220 Cliver GA 32 ° 30 ° 00 " 81 ° 15 ° 00 " 221 Kildare GA 32 ° 30 ° 00 " 81 ° 15 ° 00 " 222 Brighton SC 32 ° 30 ° 00 " 81 ° 15 ° 00 " 223 Pineland SC 32 ° 30 ° 00 " 81 ° 52 ° 30 ° 30 ° 7 ° 30 " 223 Pineland SC 32 ° 30 ° 00 " 81 ° 57 ° 30 "	195	Gough	GA	33 ° 00 ' 00 "	
197 Idlewood GA 33 ° 00 ° 00 " 81 ° 52 ° 30 " 198 Alexander GA 33 ° 00 ° 00 " 81 ° 45 ° 00 " 199 Girard GA 33 ° 00 ° 00 " 81 ° 45 ° 00 " 200 Millett SC 33 ° 00 ° 00 " 81 ° 30 ° 00 ° 00 " 201 Martin SC 33 ° 00 ° 00 " 81 ° 30 ° 00 ° 00 ° 202 Allendale SC 33 ° 00 ° 00 " 81 ° 15 ° 00 " 203 Bellevue GA 32 ° 52 ° 30 " 82 ° 00 ° 00 " 204 Perkins GA 32 ° 52 ° 30 " 81 ° 52 ° 30 " 205 Sardis GA 32 ° 52 ° 30 " 81 ° 52 ° 30 " 206 Hilltonia GA 32 ° 52 ° 30 " 81 ° 37 ° 30 " 207 Burtons Ferry Landing GA 32 ° 52 ° 30 " 81 ° 37 ° 30 " 208 Bull Pond SC 32 ° 52 ° 30 " 81 ° 30 ° 00 ° 00 ° 209 Barton SC 32 ° 52 ° 30 " 81 ° 30 ° 00 ° 00 ° 210 Bay Branch GA 32 ° 45 ° 00 " 81 ° 37 ° 30 " 211 Sylvania North GA 32 ° 45 ° 00 " 81 ° 37 ° 30 " 212 Jacksonboro Bridge GA 32 ° 45 ° 00 " 81 ° 37 ° 30 " 213 Brier Creek Landing GA 32 ° 45 ° 00 " 81 ° 37 ° 30 " 214 Solomons Crossroads SC 32 ° 45 ° 00 " 81 ° 37 ° 30 " 215 Sylvania South GA 32 ° 37 ° 30 " 81 ° 37 ° 30 " 216 Hunters GA 32 ° 37 ° 30 " 81 ° 15 ° 00 " 217 Blue Springs Landing GA 32 ° 37 ° 30 " 81 ° 15 ° 00 " 218 Shirley SC 32 ° 37 ° 30 " 81 ° 15 ° 00 " 229 Brighton SC 32 ° 30 ° 00 " 81 ° 15 ° 00 " 220 Cliver GA 32 ° 30 ° 00 " 81 ° 15 ° 00 " 221 Kildare GA 32 ° 30 ° 00 " 81 ° 15 ° 00 " 222 Brighton SC 32 ° 30 ° 00 " 81 ° 15 ° 00 " 223 Pineland SC 32 ° 30 ° 00 " 81 ° 52 ° 30 ° 30 ° 7 ° 30 " 223 Pineland SC 32 ° 30 ° 00 " 81 ° 57 ° 30 "	196		GA		82 ° 00 ' 00 "
199 Girard GA 33 ° 00 ' 00 " 81 ° 37 ' 30 " 200 Millett SC 33 ° 00 ' 00 " 81 ° 37 ' 30 " 201 Martin SC 33 ° 00 ' 00 " 81 ° 22 ' 30 " 202 Allendale SC 33 ° 00 ' 00 " 81 ° 15 ' 00 " 203 Bellevue GA 32 ° 52 ' 30 " 82 ° 00 ' 00 " 204 Perkins GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 210 Bay Branch GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 37 ' 30 " 221 Kildare GA 32 ° 37 ' 30 " 81 ° 15 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 31 ' 51 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 37 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 '		Idlewood	GA	33 ° 00 ' 00 "	
199 Girard GA 33 ° 00 ' 00 " 81 ° 37 ' 30 " 200 Millett SC 33 ° 00 ' 00 " 81 ° 37 ' 30 " 201 Martin SC 33 ° 00 ' 00 " 81 ° 22 ' 30 " 202 Allendale SC 33 ° 00 ' 00 " 81 ° 15 ' 00 " 203 Bellevue GA 32 ° 52 ' 30 " 82 ° 00 ' 00 " 204 Perkins GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 210 Bay Branch GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 37 ' 30 " 221 Kildare GA 32 ° 37 ' 30 " 81 ° 15 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 31 ' 51 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 37 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 '	198		GA	33 ° 00 ' 00 "	81 ° 45 ' 00 "
201 Martin SC 33 ° 00 ' 00 " 81 ° 22 ' 30 " 202 Allendale SC 33 ° 00 ' 00 " 81 ° 15 ' 00 " 203 Bellevue GA 32 ° 52 ' 30 " 82 ° 00 ' 00 " 204 Perkins GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 22 ' 30 " 210 Bay Branch GA 32 ° 52 ' 30 " 81 ° 30 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania South GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 15 ' 00 " <td>199</td> <td>Girard</td> <td>GA</td> <td></td> <td>81 ° 37 ' 30 "</td>	199	Girard	GA		81 ° 37 ' 30 "
201 Martin SC 33 ° 00 ' 00 " 81 ° 22 ' 30 " 202 Allendale SC 33 ° 00 ' 00 " 81 ° 15 ' 00 " 203 Bellevue GA 32 ° 52 ' 30 " 82 ° 00 ' 00 " 204 Perkins GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 37 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 22 ' 30 " 210 Bay Branch GA 32 ° 52 ' 30 " 81 ° 30 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania South GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 15 ' 00 " <td>200</td> <td>Millett</td> <td>SC</td> <td>33 ° 00 ' 00 "</td> <td>81 ° 30 ' 00 "</td>	200	Millett	SC	33 ° 00 ' 00 "	81 ° 30 ' 00 "
202 Allendale					
203 Bellevue GA 32 ° 52 ' 30 " 82 ° 00 ' 00 " 204 Perkins GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 30 ' 00 " 208 Barton SC 32 ° 52 ' 30 " 81 ° 15 ' 00 " 210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 30 ' 00 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 15 ' 00 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 30 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32			SC	33 ° 00 ' 00 "	
204 Perkins GA 32 ° 52 ' 30 " 81 ° 52 ' 30 " 205 Sardis GA 32 ° 52 ' 30 " 81 ° 45 ' 00 " 206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 22 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 15 ' 00 " 210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00	203		GA	32 ° 52 ' 30 "	82 ° 00 ' 00 "
206 Hilltonia GA 32 ° 52 ' 30 " 81 ° 37 ' 30 " 207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 30 ' 00 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 22 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 15 ' 00 " 210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 30 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 30 ' 00 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 "	204	Perkins	GA	32 ° 52 ' 30 "	
207 Burtons Ferry Landing GA 32 ° 52 ' 30 " 81 ° 30 ' 00 " 208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 22 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 15 ' 00 " 210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 30 ' 00 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 30 ' 00 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 37 ' 30 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 30 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 30 ' 00 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " </td <td>205</td> <td>Sardis</td> <td>GA</td> <td>32 ° 52 ' 30 "</td> <td>81 ° 45 ' 00 "</td>	205	Sardis	GA	32 ° 52 ' 30 "	81 ° 45 ' 00 "
208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 22 ' 30 " 20 9 Barton SC 32 ° 52 ' 30 " 81 ° 15 ' 00 " 210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 22 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 22 ' 30 " 215 Sylvania South GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 15 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 30 " 32 ° 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 32 ° 30 ' 00 " 81 ° 15 ' 00 " 30 ° 30 ' 00 " 81 ° 15 ' 00 " 30 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10 °	206	Hilltonia	GA	32 ° 52 ' 30 "	81 ° 37 ' 30 "
208 Bull Pond SC 32 ° 52 ' 30 " 81 ° 22 ' 30 " 209 Barton SC 32 ° 52 ' 30 " 81 ° 15 ' 00 " 210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 30 ' 00 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 22 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 15 ' 00 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA	207	Burtons Ferry Landing	GA	32 ° 52 ' 30 "	81 ° 30 ' 00 "
210 Bay Branch GA 32 ° 45 ' 00 " 81 ° 45 ' 00 " 211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 30 ' 00 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 22 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 15 ' 00 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 31 ' 30 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 07 ' 30 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	208	Bull Pond	SC	32 ° 52 ' 30 "	81 ° 22 ' 30 "
211 Sylvania North GA 32 ° 45 ' 00 " 81 ° 37 ' 30 " 212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 30 ' 00 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 22 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 15 ' 00 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "		Barton			01 10 00
212 Jacksonboro Bridge GA 32 ° 45 ' 00 " 81 ° 30 ' 00 " 213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 22 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 15 ' 00 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 15 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 15 ' 00 "	210	Bay Branch			
213 Brier Creek Landing GA 32 ° 45 ' 00 " 81 ° 22 ' 30 " 214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 15 ' 00 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	211	Sylvania North			81° 37' 30"
214 Solomons Crossroads SC 32 ° 45 ' 00 " 81 ° 15 ' 00 " 215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 22 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	212	Jacksonboro Bridge	GA		81 ° 30 ' 00 "
215 Sylvania South GA 32 ° 37 ' 30 " 81 ° 37 ' 30 " 216 Hunters GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 22 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	213	Brier Creek Landing		32 ° 45 ' 00 "	81 ° 22 ' 30 "
216 Hunters GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 22 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	214		SC	32 ° 45 ' 00 "	81° 15' 00"
216 Hunters GA 32 ° 37 ' 30 " 81 ° 30 ' 00 " 217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 22 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "		Sylvania South			01 01
217 Blue Springs Landing GA 32 ° 37 ' 30 " 81 ° 22 ' 30 " 218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 22 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "		Hunters			81 ° 30 ' 00 "
218 Shirley SC 32 ° 37 ' 30 " 81 ° 15 ' 00 " 219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 22 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	217	Blue Springs Landing			01 22 30
219 Furman SC 32 ° 37 ' 30 " 81 ° 07 ' 30 " 220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 22 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "		Shirley			81 ° 15 ' 00 "
220 Oliver GA 32 ° 30 ' 00 " 81 ° 30 ' 00 " 221 Kildare GA 32 ° 30 ' 00 " 81 ° 22 ' 30 " 222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	219		SC	32 ° 37 ' 30 "	
222 Brighton SC 32 ° 30 ' 00 " 81 ° 15 ' 00 " 223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "		Oliver			01 00 00
223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	221	Kildare		32 ° 30 ' 00 "	81 ° 22 ' 30 "
223 Pineland SC 32 ° 30 ' 00 " 81 ° 07 ' 30 "	222		SC	32 ° 30 ' 00 "	
	223			32 ° 30 ' 00 "	
	224	Springfield North	GA	32 ° 22 ' 30 "	81° 15' 00"
225 Hardeeville NW SC 32 ° 22 ' 30 " 81 ° 07 ' 30 "					

Source: Compiled from Data, ESRI 2004

Table 2.3.1-4 Approximate Lengths and Slopes of Local Streams

Map ID	Stream Identification	Approximate length, ft *	Upstream Elevation	Outfall Elevation	Approximate Slope
1	Unnamed creek at Hancock Landing to the Savannah River	7,000	163	85	0.0111
2	Unnamed tributary to Daniels Branch to Daniels Branch	6,000	190	105	0.0142
3	Red Branch to Daniels Branch	10,500	235	115	0.0114
4	Daniels Branch D/S of embankment dam to confluence with Red Br.	5,500	140	115	0.0045
5	Unnamed tributary to Beaverdam Creek	8,500	235	87	0.0174
6	Beaverdam Creek to Telfair Pond	13,500	100	85	0.0011
7	Beaverdam Creek, D/S of Telfair Pond to Savannah River	21,000	190	105	0.0040

^{*} from outfall to end of longest tributary

Table 2.3.1-5 USGS Gage Data for the Savannah River

USGS		River		Gage	Area	Average	e daily flow s	series	Annual Peak flow series		
Gage ID	Location on Savannah River	Mile *	Coordinates	datum, ft MSL **	drained, mi ²	Start	End	No.	Qp start	Qp end	No.
2187252	below Hartwell Lake nr Hartwell, GA	288.9	34°21'15" N, 82°48'55" W	470.00	2,090	10/1/1984	9/30/1999	4,502	1/21/1985	8/24/1999	15
2187500	near Iva, SC	280.4	34°15'20" N, 82°44'42" W	432.26	2,231	10/1/1950	9/30/1981	11,323	10/8/1949	7/24/1981	32
2189000	near Calhoun Falls, SC	263.6	34°04'15" N, 82°38'30" W	363.53	2,876	10/1/1896	9/30/1979	17,044	4/5/1897	3/28/1980	82
2195000	near Clarks Hill, SC	NR	33°38'40" N, 82°12'05" W	182.69	6,150	5/14/1940	6/30/1954	5,161			0
2196484	near North Augusta, SC	207.0	33°33'06" N, 82°02'19" W	150.00	7,150	10/1/1988	9/30/2002	5,113	9/21/1989	3/4/2002	13
2197000	at Augusta, GA	199.6	33°22'25" N, 81°56'35" W	96.58	7,508	10/1/1883	9/30/2003	35,793	1/17/1796	6/14/2004	133
2197320	near Jackson, SC	156.8	33°13'01" N, 81°46'04" W	77.00	8,110	10/1/1971	9/30/2002	10,733	1/21/1972	3/5/2002	30
2197500	at Burtons Ferry Bridge nr Millhaven, GA	118.7	32°56'20" N, 81°30'10" W	52.42	8,650	10/1/1939	9/30/2003	18,993	10/1/1929	3/21/2003	53
2198500	near Clyo, GA	60.9	32°31'41" N, 81°16'08" W	13.39	9,850	10/1/1929	9/30/2003	25,567	1/24/1925	3/3/2004	80

^{*} River miles measured from the mouth of Savannah Harbor, as reported by USACE 1996.

Source: Adapted from USGS 2006a

^{**} NGVD 1929

Table 2.3.1-6 Mean Daily Flows on the Savannah River at Augusta, Georgia

Day of			Mea	n of daily	mean valu	es for this	day for 98	years of re	cord ¹ , in ft ³	³/s		
month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	10790	11320	17390	16289	10680	8129	7708	8359	8281	7717	5987	8172
2	11380	11860	15900	16230	10950	8078	8381	8139	8205	10460	6316	7694
3	11360	11960	14110	17210	10570	8107	7871	8541	7546	10080	6574	7651
4	12460	12860	13420	15820	10130	7917	7126	8446	7586	8478	6847	8232
5	13170	13380	14440	14099	9711	7943	7085	7901	7451	7249	6990	8680
6	12130	13339	14920	15170	9621	8233	7356	8065	7634	7143	6782	8617
7	11860	13850	15029	15920	9875	8760	7357	8125	7709	6793	6303	8444
8	12600	15250	15910	15740	10160	8985	7993	7921	7986	6526	6310	8281
9										6763	8289	
10	12080	15459	16070	15120	10110	8316	8541	8329	8819	7243	6846	8670
11	11550	15330	14549	14560	9318	8103	7732	7352	9687	7243	6650	8512
12	11790	15190	13940	13650	8830	8026	7387	7287	7867	7047	6635	8372
13	12240	14620	14520	12780	8648	8111	7342	7680	6671	7058	6901	8580
14	11610	14330	14940	12730	8600	8570	7788	8807	6223	6582	7357	8793
15	11200	14090	14690	13110	8388	8829	7669	9442	6372	6121	7344	9559
16	10860	13469	15490	13619	8393	9036	7872	9381	6331	5916	7227	10260
17	11570	13880	15880	13450	8369	8825	7699	9570	6543	6188	7475	9995
18	12350	15020	14779	12270	7988	8540	7635	9034	7583	6975	7398	9486
19	13900	15020	13869	11650	7629	8056	7612	8447	7598	6931	7311	9025
20	15450	14170	14490	11670	8318	7589	7735	8776	6913	6854	7297	8854
21	14820	14130	15780	11620	9137	7369	7393	8078	6540	7215	6879	9797
22	12730	15110	16450	11370	9283	7657	7171	7790	6591	7233	6834	9845
23	11580	14790	16189	10830	9216	7228	6961	7473	6438	7373	6792	9854
24	11800	14010	16550	10380	8788	7318	6879	7321	6270	7584	7131	9289
25	11990	13780	15960	10060	8499	8373	7196	7213	6418	7035	7296	9232
26	12190	13880	15079	10500	7805	8399	7623	7367	6989	6491	7352	9595
27	11760	14160	15370	10500	7795	7699	7499	7301	8905	6709	7551	10100
28	11260	16089	15380	10190	7904	7406	7428	7615	8902	6778	7584	10090
29	11310	11980	15300	9767	7866	7209	7655	8207	7516	6342	7950	10160
30	11450		16800	10480	7794	7598	8445	8447	7140	6319	8448	11020
31	11250		16920		7823		8962	8352		6173		11100
1 Availab	le period of r	ecord may	be less than	value sho	wn for certa	ain days of t	he year					

Source: USGS 2006c

Table 2.3.1-7 Mean Daily Flows on the Savannah River near Jackson, South Carolina

Day of			Mea	n of daily	mean valu	es for this	day for 31	years of red	cord ¹ , in ft ³	/s		
month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	8843	10990	10650	11520	9351	8778	8337	7511	7725	7052	7188	8115
2	9091	11140	11050	10540	8757	8383	7974	7581	7334	7079	7167	8850
3	9807	11920	11320	10560	8860	7941	7691	7778	7141	7541	7088	8730
4	9931	11990	11470	10660	8858	8393	7922	7877	7433	7708	7193	8524
5	9759	11430	12559	10900	9146	8316	7743	7420	7791	7885	7261	8674
6	9677	11560	12140	11150	8650	8323	8097	7441	7891	7779	7233	8840
7	9407	11650	12040	10630	8578	8328	8102	7409	7778	7589	7218	8908
8	9032	11730	12160	10290	7630	8169	7924	7463	7395	7581	7141	9053
9	9086	11620	12240	10180	7377	8247	7316	7566	7322	7791	7225	9121
10	9402	11830	12020	10470	8088	7944	7700	7752	7428	7937	7354	8978
11	9922	11430	11100	10920	7937	8374	7524	7465	7247	7994	7435	9219
12	10540	11980	11480	10510	8381	8175	7107	7766	7042	7991	7510	9271
13	10800	12060	11790	10360	8695	8682	7079	7695	7059	7850	7542	9356
14	10870	11850	11920	9937	8551	8554	7042	7798	7047	7693	7745	9084
15	10640	11930	11740	9614	8096	8441	7183	7859	7299	7367	8222	9007
16	10430	11840	11510	10490	8221	8061	7270	7835	7208	7330	8354	9235
17	10510	10920	11570	10510	8368	7730	7478	7945	7015	7739	7940	9326
18	10770	10540	11340	10150	8784	7774	7583	8110	6855	7308	7681	9248
19	11290	11110	10750	9529	9375	7715	7551	8038	6841	7717	7734	9064
20	11480	10840	10560	9320	8814	7670	7688	7437	6826	7695	7644	9841
21	11260	10200	10800	9484	8461	8276	7558	7482	6702	7905	7584	9628
22	11430	10260	10990	9388	8173	8800	7393	7431	7010	7758	7739	9536
23	11580	10760	10220	9379	8739	8878	7469	7361	7161	7848	8381	9469
24	11300	11080	9758	9780	9255	8404	7360	7312	7366	8257	8387	9350
25	11240	11250	10010	9456	9503	8230	7209	7335	7141	8340	8529	9362
26	10980	11090	11160	9380	9236	8154	7234	7284	7216	8108	8117	9653
27	10900	11380	11150	9780	9021	8113	7057	7332	7115	7974	7992	9524
28	11230	10990	10860	9542	8956	8240	6866	7430	6977	8022	7863	9155
29	10720	10540	11550	9237	9177	8481	6835	8035	7106	7759	8077	8781
30	10850		11950	9728	9396	8469	7195	7984	7017	7360	8527	8777
31	10870		11900		9236		7465	7957		7160		8816
1 Availab	e period of r	record may	be less thar	value sho	wn for certa	in days of t	he year.					

Source: USGS 2006d

Table 2.3.1-8 Mean Daily Flows on the Savannah River at Burtons Ferry

Day of			Mea	an of daily	mean valu	es for this	day for 52	years of red	cord ¹ , in ft ³	³/s		
month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	11640	11900	14530	16120	11670	8270	7836	7533	8094	6845	7130	8937
2	11370	12130	14499	16080	11890	8214	7980	7644	8149	6871	7009	9615
3	11430	12170	14549	15980	11930	8037	8060	7695	8228	6858	7056	9981
4	11910	12180	14720	15720	12160	7935	8041	7682	8357	6918	7115	9803
5	11980	12120	14829	15609	12410	7801	8040	7712	8495	6889	7252	9366
6	11760	11810	14840	15400	12360	7713	7950	7830	8406	6957	7376	9141
7	11410	11680	14850	15070	12120	7718	8050	7961	8309	6954	7402	8978
8	11230	11920	15160	14779	11940	7653	8087	8053	8129	6974	7470	8855
9												8950 9013
10												
11											7351	9081
12	12220	13239	17170	14560	11620	8339	8346	7986	7718	7372	7425	9075
13	11970	13650	17390	15040	11490	8564	8400	7962	7743	7492	7330	9058
14	11700	14110	17120	15230	11300	8704	8333	7931	7677	7566	7299	9178
15	11650	14480	16650	15129	11110	8718	8310	7944	7562	7597	7443	9410
16	11760	14530	16310	14729	10880	8806	8327	8556	7498	7674	7685	9572
17	11740	14440	16120	14490	10610	8694	8304	9731	7277	7613	7674	9626
18	11730	14249	16050	14430	10290	8511	8376	10130	7150	7411	7548	9686
19	11840	14120	15900	14420	10050	8397	8615	9983	7060	7316	7639	9708
20	12220	14060	15790	14260	9678	8231	8642	9682	7006	7304	7758	9599
21	12680	14099	15960	14120	9302	8082	8769	9205	6937	7412	7778	9540
22	13339	14640	16260	13710	9030	8146	8665	8847	6899	7499	7781	9636
23	14080	15359	16460	13280	8872	8375	8532	8534	7032	7498	7776	9637
24	14240	15750	17200	13100	8857	8257	8510	8351	7109	7566	7873	9662
25	13940	15480	18060	12920	9013	7987	8231	8309	7194	7657	8028	9821
26	13410	15070	18340	12420	8956	8036	8057	8310	7155	7856	8088	10070
27	12910	14810	18150	12020	8702	8025	7911	8290	7161	8068	8070	10410
28	12400	14690	17620	11750	8601	7838	7647	8208	6929	8098	8036	10550
29	11770	15150	16870	11520	8470	7682	7516	8102	6723	8005	8162	10850
30	11450		16350	11510	8421	7723	7498	8116	6761	7699	8371	11320
31	11560		16180		8327		7573	8088		7339		11660
1 Availab	le period of r	ecord may	be less than	n value sho	wn for certa	in days of t	he year					

Source: USGS 2006g

Table 2.3.1-9 Annual Mean Daily Flows on the Savannah River at Augusta, Georgia, and at Burtons Ferry Near Millhaven, Georgia

Year		n streamflow, ft³/s	Year		n streamflow, ft ³ /s	Year		n streamflow, ft³/s	Year	1	n streamflow, ft ³ /s
	Augusta	Burtons F.		Augusta	Burtons F.		Augusta	Burtons F.		Augusta	Burtons F.
1884	10,630		1931	6,806		1955	5,367	5,974	1979	11,710	
1885	9,642		1932	11,990		1956	5,550	6,309	1980	11,670	
1886	12,620		1933	7,461		1957	7,645	8,312	1981	5,921	
1887	9,718		1934	8,112		1958	10,300	11,040	1982	7,409	
1888	16,780		1935	7,492		1959	8,569	9,748	1983	10,990	
1889	12,700		1936	17,100		1960	11,110	13,110	1984	11,220	12,760
1890	8,665		1937	12,800		1961	9,349	10,910	1985	6,556	7,167
1891	14,050		1938	7,671		1962	8,746	10,580	1986	5,803	6,175
1896	7,802		1939	9,298		1963	10,020	11,140	1987	8,203	8,955
1897	9,730		1940	8,898	9,607	1964	18,530	20,500	1988	4,888	5,367
1898	9,894		1941	6,765	7,546	1965	10,800	12,780	1989	7,153	7,966
1899	11,270		1942	8,982	10,010	1966	9,398	11,180	1990	10,630	11,860
1900	12,310		1943	10,820	12,490	1967	9,152	10,570	1991	10,010	11,670
1901	16,430		1944	10,360	11,750	1968	8,281	9,624	1992	10,510	11,860
1902	12,290		1945	7,930	8,301	1969	9,821	10,950	1993	12,160	14,449
1903	13,530		1946	11,070	12,470	1970	6,967	12,350	1994	10,220	11,800
1904	5,528		1947	10,360	11,770	1971	9,479		1995	11,340	12,770
1905	8,676		1948	14,099	15,640	1972	9,957		1996	10,120	11,440
1906	15,840		1949	13,890	15,459	1973	12,740		1997	9,270	10,440
1925	7,892		1950	7,691	8,764	1974	9,840		1998	13,669	16,020
1926	7,743		1951	6,222	7,010	1975	13,590		1999	5,409	6,320
1927	6,219		1952	8,221	9,328	1976	12,290		2000	4,729	5,451
1928	11,210		1953	7,372	8,622	1977	10,320		2001	4,827	5,772
1929	21,130		1954	6,944	7,382	1978	9,336		2002	4,419	5,168

Source: USGS 2006c; USGS 2006g

Table 2.3.1-10 Mean Monthly Stream Flow on the Savannah River near Jackson, South Carolina

YEAR					Month	y mean str	eamflow, ir	n ft³/s				
TEAR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1971	*	*	*	*	*	*	*	*	*	6,973	7,280	13,969
1972	*	16,350	8,499	7,641	9,220	9,777	9,149	7,106	6,868	6,682	6,765	11,710
1973	14,810	18,670		*	11,180		9,275	8,005	6,852	6,695	6,692	8,437
1974	16,960	*	9,538	*	8,120	7,244	7,295	8,364	7,554	7,206	7,250	7,406
1975	12,839	*	*	*	13,930	9,854	8,653	7,502	8,194	11,750	14,570	13,590
1976	13,230	11,640	*	*	*	*	*	7,396	7,692	9,382	9,967	*
1977	14,870	9,364	13,760	*	8,704	7,573	7,368	7,276	7,133	7,249	12,910	13,020
1978	*	*	11,110	8,677	13,289	9,101	6,879	6,830	6,524	6,180	6,461	6,387
1979	6,737	*	*	*	*	16,820	8,685	8,529	7,794	8,745	11,460	12,550
1980	*	*	*	*	11,090	13,030	7,822	7,242	7,073	6,927	7,208	6,655
1981	6,803	7,836	6,898	6,641	5,679	6,710	5,465	5,689	5,656	5,071	4,563	5,734
1982	10,120	11,570	8,308	8,070	6,393	5,926	5,900	5,959	6,669	6,714	6,016	8,753
1983	14,779	*	*		9,075	10,500	6,951	6,627	6,701	6,136	5,798	9,127
1984	12,950	14,240	*	14,560	*	8,859	8,265	*	7,655	6,500	6,451	6,084
1985	6,482	13,260	7,478	6,283	5,568	5,351	5,820	5,725	5,486	6,521	6,876	6,694
1986	7,601	7,170	6,904	5,750	5,403	5,739	5,869	6,354	5,555	4,859	4,582	5,986
1987	9,399	11,590	*	11,010	5,896	5,434	6,221	8,941	9,859	7,552	6,455	5,816
1988	6,160	6,193	5,728	5,461	4,720	4,560	4,530	4,628	5,423	5,487	4,958	4,750
1989	5,162	5,833	6,983	6,701	5,123	5,334	6,739	5,978	8,670	14,280	6,924	16,880
1990	11,380	*	*	9,043	11,950	6,817	6,401	8,358	7,180	*	7,105	7,033
1991	8,097	10,170	*	13,160	*	9,750	11,430	16,510	7,645	6,621	7,560	7,410
1992	8,793	8,283	12,910	10,080	5,990	8,673	7,509	8,723	7,806	12,630	*	*
1993	*	*	*	*	9,660	8,632	7,620	7,573	6,437	6,147	6,498	6,624
1994	8,413	8,672	10,990	10,070	6,594	7,270	*	*	11,270	*	12,860	15,430
1995	15,210	*	*	8,012	6,330	6,937	7,422	9,027	10,630	11,290	*	14,140
1996	9,469	*	*	11,820	9,943	10,710	7,407	8,096	8,050	8,769	5,634	7,684
1997	11,790	14,850	*	11,160	11,490	9,784	8,263	9,418	6,090	7,312	7,570	12,210
1998	*	*	*	*	*	8,659	7,476	7,018	8,901	7,826	7,416	6,787
1999	7,096	9,446	7,075	6,901	5,789	5,672	6,427	6,761	6,528	5,088	4,600	4,583
2000	6,505	5,637	5,746	4,883	4,680	4,990	4,901	5,659	6,342	5,041	4,956	5,128
2001	5,531	5,637	8,030	5,830	4,837	5,968	5,169	5,094	4,763	4,659	4,744	5,000
2002	5,110	5,306	5,355	5,185	4,575	4,388	4,441	4,462	4,711	*	*	*
Mean of monthly stream flows	9,858	10,090	8,457	8,426	7,893	7,933	7,080	7,409	7,216	7,458	7,315	8,813

^{*} inidcates a month for which no value is reported by the USGS due to insufficient number of daily readings for meaningful average

Source: USGS 2006d

Table 2.3.1-11 Mean Monthly Stream Flow on the Savannah River at Augusta, Georgia

\/=45					Month	lv mean st	reamflow, i	in ft ³ /s				
YEAR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1883				-				_		2,611	3,901	4,263
1884	10,570	13,300	33,180	18,100	6,536	14,979	8,337	4,618	2,698	2,370	2,903	9,979
1885	21,820	15,800	8,516	5,878	7,036	6,463	3,888	3,929	7,793	11,730	11,970	11,270
1886	23,720	9,367	13,100	21,560	19,570	16,580	19,230	7,259	5,363	3,283	5,261	6,784
1887	6,128	13,080	9,900	5,387	4,645	6,398	12,450	35,030	4,957	5,570	4,305	8,510
1888	16,940	19,880	24,650	14,740	13,790	8,493	5,256	6,097	47,850	12,250	19,510	12,850
1889	26,570	30,840	15,830	10,650	6,219	7,451	10,750	15,509	9,469	4,975	10,060	5,443
1890	5,137	9,023	12,340	7,661	9,608	5,491	8,192	6,002	8,249	19,540	5,429	7,080
1891	14,660	34,300	43,060	17,650	8,755	8,647	6,534	13,669	5,622	3,520	5,951	7,591
1896	11,260	16,820	7,005	5,298	4,907	3,951	16,800	3,431	3,403	2,792	7,904	10,290
1897	9,167	24,470	20,200	18,630	7,516	5,538	7,301	8,177	4,100	3,741	3,857	5,265
1898	6,519	4,929	6,298	11,710	4,415	3,574	11,160	13,440	21,490	14,520	10,130	10,300
1899	16,020	34,870	24,790	14,380	7,638	6,090	5,145	5,128	5,554	5,608	4,808	7,045
1900	7,262	26,240	18,330	20,090	9,265	22,700	9,589	5,775	6,197	6,681	7,432	9,705
1901	14,280	16,560	15,140	25,380	15,340	19,570	8,979	26,260	20,570	9,170	7,547	18,570
1902	11,690	27,600	36,000	13,460	8,394	7,487	5,525	5,843	7,460	6,423	5,850	12,700
1903	10,590	39,560	32,930	19,900	10,040	17,280	7,275	8,195	5,316	4,179	4,979	4,405
1904	5,585 7,073	9,206 18,780	8,579 7,274	5,512 5,416	4,292 9,759	4,088 4,704	3,769 12,609	11,700 7,745	3,795 4,218	2,079 3,916	3,015 3,789	4,772 19,270
1905	28,670	10,760		10.760	8,022	16,100	19,480	16,180	19,620	18,140	8,824	9,576
1906	40,410	10,650	23,290 8,892	7,369	5,211	3,258	3,001	1,706	1,453	2,656	5,757	4,540
1925 1926	12,960	16,330	11,920	11,930	3,985	3,434	4,958	6,858	3,992	3,118	5,437	8,611
1926	5,840	10,400	10,340	5,845	3,427	5,613	9,276	3,569	2,727	2,625	3,121	12,010
1927	6,566	9,379	9,545	13,289	13,339	8,328	10,060	29,970	14,470	7,495	6,317	5,538
1929	8,176	22,690	52,440	14,870	20,670	10,350	8,318	5,870	35,850	42,170	16,990	15,110
1930	13,400	12,010	12,010	8,906	7,296	5,588	4,806	3,645	4,511	3.348	7,627	8,795
1931	9,933	6,967	8,287	10,780	9,360	3,794	4,720	4,304	2,501	2,399	2,614	15,790
1932	20,430	17,890	12,260	9,640	7,203	10,600	4,157	9,261	3,409	11,020	10,510	27,389
1933	14,860	19,910	9.088	8,305	6,966	5.020	5,124	4.611	5,284	3,385	3,580	4,355
1934	5,286	6,111	15,430	7,816	8.017	15,900	6,368	5.920	4.748	10,580	4.387	6,586
1935	11,620	8,819	12,130	10,510	6,963	4,361	6,805	6,899	6,247	2,923	7,043	5,656
1936	40,960	23,470	16,640	58,700	7,889	5,766	4,322	6,857	4,024	18,750	5,770	12,620
1937	31,619	23,180	13,610	18,320	13,710	7,244	5,518	8,195	6,793	13,270	6,245	6,427
1938	6,468	4,812	8,597	19,680	6,218	8,517	13,919	7,191	3,978	3,010	4,387	5,190
1939	6,503	25,090	22,400	10,740	8,399	6,032	5,860	11,830	4,927	3,412	3,192	4,304
1940	8,433	13,890	10,150	8,762	4,497	4,436	4,571	27,130	8,205	2,682	6,602	7,500
1941	8,308	5,188	10,730	7,052	3,615	6,138	15,870	5,322	2,735	2,325	2,673	10,800
1942	7,382	13,650	26,590	8,490	8,897	5,832	5,784	7,266	5,046	4,072	4,472	10,360
1943	26,329	14,670	19,380	14,610	8,975	6,725	13,619	6,219	4,932	3,662	4,528	6,157
1944	10,460	18,720	33,670	20,620	9,586	5,936	4,745	4,493	3,701	3,953	4,066	4,671
1945	5,802	13,400	9,961	12,720	6,855	4,507	5,182	5,008	7,770	3,897	4,527	15,989
1946	26,179	21,370	16,560	15,740	13,080	7,316	5,522	5,368	3,906	7,506	5,844	5,093
1947	21,560	8,909	16,070	14,610	6,030	5,870	4,366	4,336	3,248	4,887	20,450	13,969
1948	11,310	29,049	24,120	17,220	8,419	6,631	10,330	8,349	6,834	4,791	21,250	21,670
1949	17,920	25,140	12,860	14,549	18,670	11,900	14,190	11,800	13,080	9,557	9,393	8,433
1950	9,481	8,759	11,570	7,607	5,907	7,448	6,916	4,358	8,250	8,541	5,165	8,319
1951	6,581	7,451	9,764	11,440	6,580	5,963	4,570	3,464	3,389	2,728	4,196	8,662
1952	8,654	5,842	29,080	21,820	6,782	4,342	3,627	3,889	3,332	3,385	4,017	3,751
1953	4,084	5,889	11,390	6,460	15,150	5,778	5,750	5,696	7,231	7,171	6,498	7,115
1954	7,247	7,269	9,420	11,460	7,306	6,575	6,230	5,677	5,584	5,818	5,846	4,982
1955	4,600	5,278	5,767	7,119	5,804	5,227	5,205	5,225	4,995	4,976	5,076	5,150
1956	4,418	4,861	5,668	6,171	6,031	5,425	5,266	5,547	6,189	5,437	5,622	5,961
1957	6,105	5,988	6,772	8,225	9,802	6,138	6,143	6,171	6,452	7,347	9,310	13,130
1958	12,780	14,030	15,120	23,520	12,260	6,609	8,796	7,835	5,879	5,722	5,675	5,763
1959	6,026	7,395	7,322	6,721	5,780	13,060	6,613	7,070	8,559	12,680	12,400	9,298
1960	15,070	28,480	18,660	18,020	9,029	6,267	6,414	7,344	6,538	6,514	5,867	5,943
1961	6,198	9,951	11,980	21,770	7,425	6,783	8,840	7,700	7,835	5,679	5,537	12,700
1962	14,960	9,978	13,180	15,420	7,963	8,189	5,676	5,992	6,050	5,960	5,852	5,865

Table 2.3.1-11 (cont.) Mean Monthly Stream Flow on the Savannah River at Augusta, Georgia

YEAR					Month	y mean str	eamflow, i	n ft³/s				
IEAR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1963	9,178	9,885	18,450	7,675	14,900	10,090	11,220	7,875	7,488	6,559	6,826	9,818
1964	16,360	16,720	27,510	43,850	27,050	7,143	10,970	11,900	14,480	17,740	10,950	17,670
1965	17,610	10,120	17,450	16,370	9,574	12,760	7,652	9,027	7,959	7,057	6,958	7,060
1966	8,783	13,610	23,610	7,201	10,480	9,031	6,830	6,731	6,896	6,478	6,478	6,795
1967	8,718	8,439	9,228	6,870	7,036	14,440	8,713	8,625	8,740	6,286	7,593	15,100
1968	18,440	7,175	7,199	7,554	7,620	9,607	7,366	7,500	6,808	6,649	6,834	6,469
1969	10,210	13,590	11,350	20,800	13,680	7,370	6,942	7,128	7,177	6,602	6,586	6,867
1970	6,945	7,093	8,552	8,093	6,582	6,548	7,059	6,889	6,562	6,460	6,283	6,536
1971	7,151	7,314	21,580	8,658	9,374	7,339	7,248	8,471	7,306	7,198	7,504	14,160
1972	19,250	16,160	8,569	7,737	9,347	10,390	8,429	7,129	7,078	6,581	6,385	12,550
1973	15,260	19,080	18,180	25,620	11,030	22,830	7,906	7,469	6,344	6,076	6,153	7,845
1974	16,160	22,350	8,762	13,900	7,865	7,093	7,302	8,181	7,238	6,451	6,814	7,044
1975	12,170	18,140	28,490	21,380	13,430	9,235	8,231	7,546	7,882	11,100	13,139	12,680
1976	12,250	10,410	16,750	12,600	11,120	16,940	13,200	7,379	7,612	8,880	9,583	20,530
1977	13,210	8,924	13,020	20,180	8,396	7,745	7,612	7,235	6,909	7,045	11,940	11,610
1978	16,300	17,990	9,746	8,012	12,070	8,532	7,082	6,833	6,694	6,470	6,435	6,452
1979	6,821	11,040	18,690	24,720	11,800	14,449	7,629	7,778	7,317	8,491	10,800	11,300
1980	13,160	12,520	23,610	26,750	10,610	11,590	7,720	7,196	7,094	6,535	6,916	6,560
1981	6,670	7,211	6,390	6,179	5,691	6,203	5,587	5,667	5,840	5,294	4,624	5,794
1982	9,346	11,620	7,779	8,098	6,104	5,985	5,931	5,988	6,855	6,697	5,975	8,855
1983	13,780	17,210	17,230	26,210	8,244	9,724	6,489	6,573	6,467	6,067	5,534	9,062
1984	12,780	14,160	19,060	14,190	17,040	8,252	8,120	15,570	7,367	6,239	6,014	5,789
1985	6,252	12,360	7,050	6,133	5,515	5,256	5,715	5,678	5,575	6,581	6,636	6,402
1986	7,461	6,609	6,534	5,557	5,479	5,834	5,954	6,092	5,516	4,514	4,561	5,546
1987	8,365	10,660	15,290	9,937	5,639	5,353	6,136	8,671	9,440	7,036	6,284	5,804
1988	5,998	6,082	5,637	5,172	4,476	4,271	4,219	4,320	4,847	4,939	4,442	4,305
1989	4,734	5,290	6,149	5,794	4,672	4,810	6,001	5,541	7,814	13,150	5,977	15,590
1990	10,120	21,640	25,100	7,892	11,580	6,450	6,546	8,340	6,825	10,580	6,433	6,596
1991	7,422	9,371	12,310	11,570	16,830	9,222	10,900	14,810	6,983	6,353	7,201	6,881
1992	7,825	7,483	12,030	8,722	5,664	8,098	6,524	8,050	7,050	11,240	15,880	27,270
1993	30,240	22,920	22,910	19,040	8,241	7,644	6,938	6,885	5,553	5,223	5,363	5,657
1994	7,362	7,544	9,658	8,775	5,779	7,576	12,050	15,820	9,531	13,460	11,280	13,450
1995	13,930	19,020	18,980	7,388	5,897	6,127	6,843	8,000	9,342	9,907	18,610	12,630
1996	9,627	24,210	23,460	9,290	7,935	8,307	5,220	6,047	6,986	8,204	5,455	7,270
1997	10,640	13,860	14,960	9,127	9,117	8,644	7,325	8,489	5,306	6,430	6,491	11,050
1998	21,530	30,600	24,960	22,460	19,020	7,571	6,768	6,522	7,651	6,566	6,183	5,535
1999	5,669	7,711	5,704	5,620	4,735	4,878	5,499	6,173	5,812	4,764	4,288	4,239
2000	5,921	4,882	5,014	4,371	4,089	4,269	4,359	5,180	5,661	4,387	4,196	4,416
2001	4,853	4,908	7,038	4,764	4,037	5,160	4,564	4,589	4,284	4,436	4,527	4,749
2002	4,690	4,774	4,687	4,641	4,250	4,139	4,246	4,204	4,318	3,973	4,304	4,824
2003	4,126	5,548	17,820	13,660	19,060	14,199	16,850	10,420	5,514		+	
Mean of monthly stream flows	12,100	14,120	15,370	13,080	8,979	8,098	7,669	8,168	7,413	7,115	7,038	9,170
Mean from 1984 to 2003	9,477	11,982	13,218	9,205	8,453	6,803	7,039	7,970	6,569	7,262	7,059	8,316

Source: USGS 2006c

Table 2.3.1-12 Mean Monthly Stream Flow on the Savannah River at Burtons Ferry Near Millhaven, Georgia

YEAR -	Jan	E.L.				lly mean st						
4000	oun	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1939										4,182	3,807	4,792
1940	9,086	14,790	10,680	9,345	5,114	5,071	5,078	28,040	9,677	3,573	6,783	8,139
1941	9,548	6,139	9,687	9,919	4,192	5,262	19,400	6,375	3,597	2,984	3,284	9,764
1942	11,030	14,670	28,120	11,900	9,450	7,007	6,498	7,473	5,739	4,945	5,249	8,129
1943 1944	27,530 12,630	21,820 18,780	21,240 33,880	16,320 25.430	10,740 13,270	7,371 6,894	15,380 5,651	7,433 5,308	5,931 4,576	4,566 4.602	5,540 4,332	6,401 5,919
1944	6,787	12,290	11,690	10,270	11,840	5,172	5,405	6,006	8,201	4,802	5,024	12,300
1945	33,190	22,330	16,690	19,180	14,099	8,167	6,172	5,966	4,574	8.020	6,210	5,573
1947	21,510	10,480	17,680	16,660	7,625	7,618	5,541	5,497	4,479	5,954	22,070	16,130
1948	12,860	30,440	26,710	21,570	9,045	8,674	10,430	9,177	7,979	6,818	12,150	32,410
1949	21,650	26,870	14,970	15,759	20,630	13,050	15,050	12,100	16,100	10,510	10,470	9,305
1950	11,070	10,450	12,580	9,574	6,944	8,663	7,730	5,608	8,917	8,696	6,109	8,939
1951	7,864	8,425	10,550	12,730	7,483	6,615	5,233	4,147	3,861	3,598	5,094	8,658
1952	9,916	7,315	28,710	26,620	8,169	4,705	4,178	4,628	4,091	4,074	4,813	4,677
1953	5,649	7,137	13,350	8,969	16,640	6,878	6,571	6,314	8,058	7,910	7,320	8,412
1954	8,609	8,011	9,425	12,670	7,786	6,591	6,422	5,844	5,742	5,880	6,198	5,524
1955	5,594	6,256	6,401	8,094	6,331	5,648	5,604	5,629	5,523	5,233	5,578	5,859
1956	5,067	6,192	7,342	7,745	7,098	5,941	5,531	5,890	6,665	5,842	5,887	6,528
1957	6,522	6,820	7,753	8,958	10,450	7,000	6,497	6,433	7,137	8,660	8,769	14,560
1958	13,660	15,270	16,660	24,310	13,980	7,559	9,066	8,178	5,881	5,810	6,080	6,394
1959	6,972	9,057	8,823	7,846	6,365	13,990	7,128	7,198	9,130	14,240	15,650	10,760
1960	15,609	32,429	24,520	23,490	11,250	7,593	7,534	8,249	7,261	7,252	6,478	6,685
1961	7,255	9,672	16,130	24,200	10,900	7,413	10,650	8,817	9,717	6,181	6,540	13,440
1962	18,760	11,860	17,820	18,270	9,399	9,320	6,808	6,866	6,834	6,812	7,032	7,275
1963	10,640	11,920	17,980	10,670	15,480	10,130	13,260	8,787	8,462	7,695	7,566	10,890
1964	17,850 21,180	20,040 12,770	27,080 19.010	46,240	29,980 11,770	8,418 13.640	11,140 9.797	13,310	20,010	20,150	14,240	17,700
1965 1966	10,130	13,289	30,180	21,870 9,741	12,850	11,030	8.041	10,580 7,988	8,836 7,776	8,121 7,530	7,934 7,543	7,940 7,920
1966	10,130	9,752	11,230	8,155	8,282	15,960	10,530	9,677	10,580	7,330	8,632	16,320
1968	22,200	10,070	8,643	8,535	8,479	10,500	8,075	8,093	7,524	7,459	7,937	7,870
1969	10,500	17,050	12,709	18,970	17,910	8,366	7,751	7,910	8,092	7,342	7,433	7,864
1970	7,954	8,308	9,695	10,070	7,660	7,457	7,685	7,794	7,268	7,042	7,400	7,004
1982	7,001	0,000	0,000	10,010	7,000	1,101	1,000	7,701	7,200	7,158	6,356	8,959
1983	15,609	19,670	20,720	29,540	9,621	10,460	7,268	6,929	7,027	6,408	6,150	9,597
1984	13,780	14,950	23,540	15,580	21,300	9,361	8,470	17,810	7,924	6,848	6,770	6,551
1985	6,987	13,719	7,813	6,530	5,873	5,779	6,156	6,098	5,658	6,413	7,681	7,830
1986	8,158	8,178	7,887	5,915	5,481	5,953	5,649	6,153	5,558	4,657	4,529	6,087
1987	9,893	11,700	17,780	11,650	6,246	5,639	6,298	8,660	9,573	7,495	6,596	6,117
1988	6,502	6,516	6,089	5,886	4,994	4,856	4,510	4,484	5,469	5,336	4,981	4,839
1989	5,419	5,785	7,108	6,855	5,053	5,296	6,717	5,694	8,867	14,800	6,450	17,200
1990	11,560	20,770	30,240	10,620	12,310	7,526	6,788	8,535	7,623	12,690	7,136	6,860
1991	8,217	10,760	14,929	14,560	19,830	10,210	11,810	19,220	8,322	6,619	7,845	7,503
1992	9,016	8,560	13,230	11,120	6,385	9,812	8,122	9,026	7,731	13,210	14,380	31,390
1993	35,290	28,220	27,389	26,000	9,788	8,379	7,016	6,858	6,259	5,993	6,632	6,627
1994	8,378	9,021	11,290	10,420	6,387	6,717	15,709	16,010	12,420	15,509	13,010	16,260
1995 1996	16,550 9,575	19,080 26,379	24,640 25,450	8,388 13,630	6,253 9,622	7,288 10,380	7,138 6,764	8,834 7,482	10,290 7,518	10,780 8,511	18,210 5,336	16,150 7,262
1996	11,510	14,610	19,350	10,360	11,250	9,212	7,737	8,795	5,654	6,932	7,497	12,500
1997	24.510	33.880	31,310	27,200	24,420	8.671	7,737	6.903	8.613	7,375	6.929	6,350
1999	6,745	9,690	6,946	6,653	5,536	5,325	6,420	6,431	6,418	5,685	5,119	5,148
2000	7,143	6,080	6,029	4,849	4,514	4,786	4,718	5,268	6,258	5,003	5,205	5,480
2001	5,961	5,806	7,900	6,501	5,319	6,313	5,645	5,445	5,256	4,935	4,984	5,204
2002	5,517	5,870	5,687	5,734	4,881	4,700	4,746	4,718	4,573	4,577	5,197	5,868
2003	5,224	6,419	18,730	16,410	19,140	19,110	19,510	13,320	7,211	,	-, -	-,
Mean monthly flow	12,131	13,584	16,192	14,202	10,489	8,144	8,163	8,346	7,547	7,381	7,591	9,670
Mean from 1984 to 2003	10,797	13,300	15,667	11,243	9,729	7,766	7,868	8,787	7,360	8,077	7,605	9,538

Source: USGS 2006g

Table 2.3.1-13 Average Daily Flows by Month for Three Gages on the Savannah River for Entire Record Length and Common Period of Complete Regulation

	Augusta 1884-2003	Augusta 1984-2002	Jackson 1971-2002	Jackson 1984-2002	Burtons Ferry 1939 2003	Burtons Ferry 1984 2002
Jan	12,101	9,759	9,858	8,538	12,131	10,304
Feb	14,122	12,320	10,086	9,021	13,584	14,202
Mar	15,370	12,975	8,457	7,720	16,192	16,227
Apr	13,077	8,971	8,426	8,583	14,202	11,081
May	8,979	7,894	7,893	6,784	10,489	10,104
Jun	8,098	6,414	7,933	7,028	8,144	8,421
Jul	7,669	6,522	7,081	6,773	8,163	7,790
Aug	8,168	7,841	7,409	7,549	8,346	7,466
Sep	7,413	6,624	7,216	7,316	7,547	6,866
Oct	7,115	7,262	7,458	7,536	7,381	6,736
Nov	7,038	7,059	7,315	6,574	7,591	7,310
Dec	9,170	8,316	8,813	8,132	9,670	7,995

Table 2.3.1-14 N-Day Low Flow Values for the Savannah River at Augusta, Georgia

V		N-day I	Low Flow Va	lues from SV	VSTAT for US	SGS Gage 02	197000	
Year	3-day	7-day	10-day	30-day	60-day	90-day	183-day	365-day
1885	2060. 11	2160. 9	2230. 9	2330. 6	2430. 4	2620. 4	4780. 17	9670. 51
1886	2510. 22	2710. 21	2890. 22	3710. 26	3810. 23	4140. 21	5820. 38	9700. 53
1887	3050. 32	3080. 28	3150. 27	3230. 19	3520. 15	4420. 27	5580. 34	11100.68
1888	2890. 27	3050. 27	3160. 28	3840. 30	4720. 41	4780. 32	8550. 83	12200.80
1889	3530. 36	4070. 45	4460. 52	5100. 53	5430. 49	6180. 68	14900. 94	17700. 94
1890	3960. 50	4010. 43	4120. 44	4780. 48	5200. 45	5960. 58	7100. 67	8910. 43
1891	2890. 28	3110. 29	3550. 33	4300. 42	6210. 74	6370.70	7540. 77	14000.87
1897	2070. 13	2210. 10	2300. 10	2580. 7	3100. 9	3130. 7	5540. 31	9310. 47
1898	2350. 20	2440. 14	2560. 16	3330. 21	3550. 17	3740. 17	4720. 15	6830. 19
1899	2340. 19	2420. 13	2510. 13	3150. 17	3620. 18	5210.41	10800. 91	14600.89
1900	2800. 24	3000. 25	3140. 26	3770. 29	4570. 37	4880. 37	5300. 24	9320. 48
1901	4040. 52	4110. 47	4370. 50	4810. 49	5590. 54	6070.62	7500. 75	11900. 76
1902	5750. 80	6400. 89	7210. 93	7530. 95	7700. 94	9280. 94	14000. 93	18800. 95
1903	3920. 48	4280. 52	4450. 51	4870. 50	5650. 56	5790. 52	6330. 49	12800. 85
1904	3630. 38	3640. 35	3660. 35	4150. 37	4380. 34	4440. 28	5190. 23	8600. 35
1905	1740. 6	1880. 3	1850. 3	2060. 2	2420. 3	2780. 6	4670. 14	6270. 12
1906	2860. 26	3020. 26	3090. 24	3550. 22	3740. 22	3880. 18	6170. 44	11200. 69
1926	1140. 1	1170. 1	1180. 1	1300. 1	1510. 1	1640. 1	2850. 1	6290. 13
1927	1720. 5	1960. 5	1900. 4	2680. 10	2940. 7	3430. 9	4240. 6	6550. 15
1928	1220. 2	1360. 2	1420. 2	2100. 3	2440. 5	2620. 5	4420. 9	6130. 9
1929	4160. 53	5060. 64	4950. 61	5470. 63	5790. 63	6410. 71	9380. 88	16000. 91
1930	3980. 51	4210. 50	4220. 47	5110. 55	6140. 73	7470. 89	15900. 95	17300. 93
1931	2120. 14	2540. 17	2530. 15	2900. 13	3730. 21	3650. 13	4630. 12	6640. 17
1932	1420. 3	1920. 4	2010. 6	2170. 4	2360. 2	2500. 2	3370. 2	8880. 42
1933	2040. 10	2360. 11	2340. 11	3150. 16	3990. 24	5530. 45	6730. 59	11400. 70
1934	2230. 16	2640. 18	2610. 17	2980. 14	3330. 13	3500. 12	4380. 8	6130. 8
1935	2840. 25	3620. 34	3460. 32	4220. 40	4940. 42	5660. 47	6330. 50	8580. 34
1936	1930. 8	2500. 16	2470. 12	2840. 11	3640. 19	4790. 34	5480. 29	11500. 71
1937	2920. 29	3150. 30	3280. 30	4020. 33	5020. 43	5100.40	7610. 80	16000.90
1938	3610. 37	3770. 38	3820. 38	4690. 47	5130. 44	5780. 51	7020. 64	8820. 41
1939	2180. 15	2680. 19	2630. 18	2890. 12	3280. 11	3690. 15	5020. 20	10400. 59
1940	2270. 17	2860. 23	2860. 20	3080. 15	3150. 10	3480. 11	5500. 30	7500. 22
1941	1980. 9	2110. 8	2200. 8	2670. 9	3290. 12	4150. 22	5850. 39	8260. 29
1942	1690. 4	2010. 6	1980. 5	2300. 5	2470. 6	2540. 3	5160. 22	8680. 37
1943	2930. 30	3000. 24	3090. 25	3730. 27	4080. 28	4440. 29	5400. 28	10100. 56
1944	3130. 34	3340. 32	3350. 31	3560. 23	4060. 26	4020. 19	5810. 37	10900.66
1945	2960. 31	3260. 31	3270. 29	3560. 24	3680. 20	3700. 16	4280. 7	7520. 23
1946	2540. 23	2850. 22	3070. 23	3770. 28	4120. 30	4650.30	5110. 21	10800.63
1947	2060. 12	2490. 15	2880. 21	3630. 25	4010. 25	4670. 31	5550. 32	9680. 52
1948	2280. 18	2400. 12	2510. 14	3190. 18	3530. 16	3670. 14	4750. 16	11800. 72
1949	3630. 39	4090. 46	4340. 49	4650. 46	5740. 61	6120.66	7510. 76	13400. 86
1950	6030. 85	6380. 88	6340. 87	7150. 92	8110. 95	8630. 93	9240. 86	11800. 74
1951	3200. 35	3470. 33	3590. 34	4250. 41	5620. 55	5930. 55	6280. 48	7190. 21
1952	1830. 7	2090. 7	2100. 7	2620. 8	2970. 8	3150. 8	4030. 4	7850. 26
1953	2420. 21	2680. 20	2740. 19	3270. 20	3330. 14	3440. 10	3660. 3	6340. 14
1954	4350. 57	5240. 66	5530. 71	5680. 69	5700. 59	5740. 50	6350. 51	7580. 24
1955	4210. 54	4240. 51	4300. 48	4440. 45	4680. 40	4920. 38	5340. 25	6260. 11
1956	3730. 41	4180. 49	4180. 46	4350. 44	4590. 38	4780. 33	4900. 19	5310. 5
1957	4800.63	4830. 59	4840. 56	5260. 58	5320. 48	5390. 43	5570. 33	5880. 7
1958	5170. 69	5690. 75	5670. 74	6010. 76	6080. 70	6120. 65	6520. 52	9540. 50
1959	5390. 75	5550. 73	5580. 73	5650. 67	5680. 57	5690. 49	6050. 42	8560. 33
1960	5360. 74	5400. 71	5420. 69	5690.70	6120. 71	6890. 83	7940. 82	11900. 77

Table 2.3.1-14 (cont.) N-Day Low Flow Values for the Savannah River at Augusta, Georgia

ν.		N-dav	Low Flow Va	lues from SV	VSTAT for US	SGS Gage 02	197000	
Year	3-day	7-day	10-day	30-day	60-day	90-day	183-day	365-day
1961	5260. 72	5660.74	5690. 75	5850. 74	5880. 65	5990. 61	6240. 47	8320.30
1962	4860.64	5110.65	5140. 64	5370. 61	5520. 51	5630.46	7020. 65	10200. 58
1963	5240. 71	5380.70	5410. 68	5640.66	5780. 62	5830. 54	5890. 40	8700. 38
1964	5530. 77	5810. 78	5810. 77	6440. 85	6650. 86	6850. 82	7860. 81	11800. 75
1965	6710. 93	6840. 93	6930. 92	7020. 91	7480. 92	9330. 95	12100. 92	17300. 92
1966	6350. 91	6610. 90	6600. 88	6840. 87	6920. 87	6960. 84	7580. 78	10800. 64
1967	6180. 88	6250.85	6300. 86	6450.86	6470. 80	6530. 74	6690. 57	7770. 25
1968	5880. 83	6020.80	6020. 79	6270. 79	6330. 77	7320. 88	8730. 84	9710. 54
1969	5850. 82	6010. 79	6110. 80	6390. 82	6510. 84	6550. 75	6790. 60	8430. 32
1970	6070.87	6170. 82	6260. 84	6420. 84	6500. 82	6650. 78	6840. 61	8810. 40
1971	5450. 76	5760. 77	5760. 76	5840. 73	6250. 76	6290. 69	6580. 54	8110. 28
1972	5980. 84	6340. 87	6750. 91	7000. 90	7140. 89	7230. 87	7490. 74	10100. 57
1973	5800. 81	6030. 81	6130. 81	6250. 78	6360. 78	6520. 73	7590. 79	10600.61
1974	5600. 78	5750. 76	5920. 78	6000. 75	6050. 69	6160. 67	6930. 62	12300. 81
1975	6040. 86	6240. 84	6190. 83	6370. 81	6510. 83	6620. 76	7140. 71	10900.65
1976	6910. 95	7330. 95	7390. 95	7470. 94	7670. 93	7810. 91	9350. 87	11900. 78
1977	6740. 94	7240. 94	7230. 94	7300. 93	7470. 91	7950. 92	9990. 90	11900. 79
1978	6620. 92	6770. 92	6750. 90	6870. 88	6930. 88	6990. 85	7370. 72	11000. 67
1979	6200. 89	6300.86	6290. 85	6390. 83	6430. 79	6440. 72	6600. 55	8760. 39
1980	6310. 90	6740. 91	6710. 89	6980. 89	7470. 90	7560. 90	8890. 85	12700. 84
1981	5680. 79	6180. 83	6180. 82	6300.80	6570. 85	6630. 77	6710. 58	9250. 46
1982	3060. 33	3750. 36	3740. 36	4200. 39	4670. 39	5010. 39	5360. 26	6600. 16
1983	5070. 68	5470. 72	5540. 72	5840. 72	5900. 67	5940. 56	6240. 46	9020. 45
1984	4860. 65	5030. 62	5130. 63	5370.60	5730. 60	5970. 60	6640. 56	10800.62
1985	5330. 73	5380. 69	5450. 70	5720. 71	5870. 64	5950. 57	7080. 66	9500. 49
1986	4870. 66	5030.63	5060. 62	5160. 56	5310. 47	5460. 44	5640. 35	6170. 10
1987	3830. 45	3940. 41	4000. 41	4140. 35	4480. 35	4820. 35	5360. 27	6930. 20
1988	4610. 62	4760. 58	4820. 55	5080. 52	5480. 50	5660. 48	6140. 43	6810. 18
1989	3880. 47	3940. 42	4000. 42	4150. 36	4220. 32	4270. 24	4500. 11	4760. 2
1990	3870. 46	4140. 48	4140. 45	4320. 43	4520. 36	4850. 36	5760. 36	10500.60
1991	4470. 60	4880. 60	4930. 59	5420. 62	6250. 75	6690. 80	7480. 73	8370. 31
1992	4220. 55	4530. 54	4950. 60	6170. 77	6480. 81	6660. 79	7120. 69	9850. 55
1993	4950. 67	5300. 67	5340. 66	5660. 68	6130. 72	6730. 81	7120. 68	14500. 88
1994	4410. 59	4600. 56	4590. 53	4940. 51	5220. 46	5300. 42	5920. 41	7910. 27
1995	4560. 61	5020. 61	5220. 65	5580. 64	5880. 66	7050. 86	9830. 89	12500. 83
1996	5210. 70	5310. 68	5370. 67	5630. 65	5920. 68	5970. 59	7130. 70	11800. 73
1997	3810. 43	4480. 53	4700. 54	5100. 54	5560. 53	6070. 63	6530. 53	8650. 36
1998	4340. 56	4540. 55	4880. 58	5310. 59	5690. 58	6090. 64	6970. 63	12300. 82
1999	4400. 58	4750. 57	4860. 57	5260. 57	5550. 52	5790. 53	6210. 45	8930. 44
2000	3950. 49	4060. 44	4090. 43	4180. 38	4260. 33	4390. 25	4820. 18	5150. 4
2001	3680. 40	3750. 37	3800. 37	4040. 34	4080. 27	4200. 23	4640. 13	4810. 3
2002	3740. 42	3780. 39	3870. 39	3960. 32	4130. 31	4390. 26	4480. 10	4600. 1
2003	3820. 44	3840. 40	3870. 40	3920. 31	4120. 29	4130. 20	4170. 5	5550. 6

Table 2.3.1-15 SWSTAT Output for Log Pearson Frequency Analysis of 7-Day Low Flows on the Savannah River at Augusta, Georgia

```
Log-Pearson Type III Statistics
                                 SWSTAT 4.1
                     (based on USGS Program A193)
Notice -- Use of Log-Pearson Type III or Pearson-Type III distributions are for preliminary computations.

User is responsible for assessment and
             interpretation.
                 SAVANNAH RIVER AT AUGUSTA, GA
                  April 1 - start of season
March 31 - end of season
1986 - 2003 - time period
                     7-day low - parameter
18 - non-zero values
                               0 - zero values
                               0 - negative values (ignored)
         5025.714
                                        4758.571
                                                        3940.000
                         3935.714
                                                                        4138.571
         4884.286
                        4531.429
                                        5304.286
                                                        4600.000
                                                                        5020.000
                        4477.143
                                        4540.000
                                                        4752.857
         5307.143
                                                                        4057.143
         3745.714
                        3775.714
                                        3844.286
The following 7 statistics are based on non-zero values:
Mean (logs)
Variance (logs)
                                                           0.003
Standard Deviation (logs)
                                                           0.051
Skewness (logs)
                                                          -0.075
Standard Error of Skewness (logs)
Serial Correlation Coefficient (logs)
Coefficient of Variation (logs)
                                                           0.536
                                                           0.339
                                                           0.014
      Non-exceedance
                               Recurrence
                                                       Parameter
        Probability
                                Interval
                                                         Value
              0.0100
                                    100.00
                                                        3369.406
              0.0200
                                      50.00
                                                        3484.674
              0.0500
                                      20.00
                                                        3663.468
              0.1000
                                     10.00
                                                        3828.398
              0.2000
                                       5.00
                                                        4035.955
              0.3333
                                       3.00
                                                        4235.952
              0.5000
                                       2.00
                                                        4457.744
                                                        4913.406
              0.8000
                                       1.25
              0.9000
                                       1.11
                                                        5165.582
              0.9600
                                       1.04
                                                        5445.413
              0.9800
                                                        5632.292
                                       1.02
```

Table 2.3.1-16 Annual Peak Discharges on the Savannah River at Augusta, Georgia

Tear (feet) (cfs) Tear (feet) (cfs) Tear (feet) (feet	eak
1796 Jan. 17, 1796 38 280,000 (2) 1937 Jan. 04, 1937 30.1 91 1840 May 28, 1840 37.5 260,000 (2) 1938 Oct. 21, 1937 30.1 91 1852 Aug. 29, 1852 36.8 230,000 (2) 1939 Mar. 02, 1939 24.1 294 295 1864 Jan. 01, 1864 34 160,000 (2) 1940 Aug. 15, 1940 29.4 29.9 1865 Jan. 11, 1865 36.4 220,000 (2) 1941 Jul. 08, 1941 22.89 53 1876 Dec. 30, 1875 28.6 86,400 1942 Mar. 23, 1942 24.56 1877 Apr. 14, 1877 31.4 119,000 1943 Jan. 20, 1943 25.11 117 1878 Nov. 23, 1877 23.5 51,500 1944 Mar. 22, 1944 25.53 1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 64 1880 Dec. 16, 1879 30.1 102,000 1946 Jan. 09, 1946 24.43 97 1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 23.9 83 1883 Jan. 22, 1882 29.3 93,300 1948 Feb. 10, 1948 23.9 83 1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1886 May 21, 1886 32.5 135,000 1950 Oct. 09, 1949 20.1 32.9 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 Mar. 06, 1952 21.53 39 1888 Sep. 11, 1888 38.7 30.300 1954 Mar. 30, 1954 71.99 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1899 Feb. 27, 1890 22.9 48,500 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Mar. 30, 1954 17.39 25 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1960 Apr. 12, 1966 22.58 34 1893 Feb. 19, 1899 33.3 111,000 1960 Apr. 1969 22.24 45 1900 Feb. 27, 1890 22.9 48,500 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 35.5 197,000 1967 May 7, 1957 14.08 18 1900 Feb. 15, 1900 32.7 13	harge
1840 May 28, 1840 37.5 260,000 (2) 1938 Oct. 21, 1937 30.1 91 1852 Aug. 29, 1852 36.8 230,000 (2) 1939 Mar. 02, 1939 24.1 90 1864 Jan. 01, 1864 34 160,000 (2) 1940 Aug. 15, 1940 29.4 29.9 1865 Jan. 11, 1865 36.4 220,000 (2) 1941 Jul. 08, 1941 22.89 53 1876 Dec. 30, 1875 28.6 86,400 1942 Mar. 23, 1942 24.56 103 1877 Apr. 14, 1877 31.4 119,000 1943 Jan. 20, 1943 25.1 117 1878 Nov. 23, 1877 23.5 51,500 1944 Mar. 22, 1944 25.53 128 1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 4880 Dec. 16, 1879 30.1 102,000 1946 Jan. 09, 1946 24.43 97 1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 23.97 8182 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 23.9 83 1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 23.2 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1954 Mar. 30, 1994 20.1 32 38 38 38 38 38 38 38	fs)
1852 Aug. 29, 1852 36.8 230,000 20 1939 Mar. 02, 1939 24.1 90 1864 Jan. 01, 1864 34 160,000 21 1940 Aug. 15, 1940 29.4 239 1865 Jan. 11, 1865 36.4 220,000 20 1941 Jul. 08, 1941 22.89 53 1876 Dec. 30, 1875 28.6 86,400 1942 Mar. 23, 1942 24.56 105 1877 Apr. 14, 1877 31.4 119,000 1943 Jan. 20, 1943 25.1 117 1878 Nov. 23, 1877 23.5 51,500 1944 Mar. 22, 1944 25.53 128 1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 64 1880 Dec. 16, 1879 30.1 102,000 1946 Jan. 09, 1946 24.43 97 1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 39.7 88 1882 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 23.9 83 1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 67.7 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 15, 1955 67.7 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 15, 1955 61.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 15, 1955 61.77 23 1899 Feb. 19, 1899 33.3 149,000 1957 May 7, 1957 14.08 1899 Apr. 16, 1895 30.5 107,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 20, 1892 32.8 140,000 1956 Apr. 12, 1956 14.7 14.8 1899 Apr. 06, 1897 29.3 39.300 1963 Mar. 23, 1963 19.52 31 1899 Feb. 08, 1899 31 113,000 1966 Mar. 09, 1964 24.16 87 1900 Mar. 10, 1895 30.5 107,000 1960 Mar. 20, 1966 20.6 34 1900 Apr. 09, 1964 24.16 87 1900 Mar. 05, 1900 32.7 138,000 1960 Ma	400
1864 Jan. 01, 1864 34 160,000 (2) 1940 Aug. 15, 1940 29.4 239 1865 Jan. 11, 1865 36.4 220,000 (2) 1941 Jul. 08, 1941 22.89 53 1876 Dec. 30, 1875 28.6 86.400 1942 Mar. 23, 1942 24.56 105 1877 Apr. 14, 1877 31.4 119,000 1943 Jan. 20, 1943 25.1 117 1878 Nov. 23, 1877 23.5 51,500 1944 Mar. 22, 1944 25.53 128 1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 64 1880 Dec. 16, 1879 30.1 102,000 1946 Jan. 09, 1946 24.43 97 1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 23.97 86 1882 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 1899 Jan. 11, 1895 30.4 106,000 1960 Apr. 12, 1956 14.7 18 1894 Aug. 07, 1894 24 54,000 1960 Apr. 12, 1966 20.58 1896 Jan. 11, 1895 30.4 106,000 1967 May 7, 1957 14.08 18 1894 Aug. 07, 1894 24 54,000 1960 Apr. 12, 1966 20.58 34 1900 Apr. 06, 1897 29.3 33,000 1964 Apr. 09, 1968 20.99 32 1897 Apr. 06, 1897 29.3 33,000 1964 Apr. 12, 1966 20.56 34 1896 Jan. 11, 1895 30.4 106,000 1967 Apr. 23, 1963 19.52 31 1900 Apr. 06, 1897 29.3 33,000 1965 Apr. 12, 1966 20.56 34 1900 Apr. 06, 1897 29.3 33,000 1965 Apr. 12, 1966 20.56 34 1900 Apr. 06, 1897 29.3 33,000 1965 Apr. 12, 1968 20.94 35 1900 Apr. 06, 1897 29.3 33,000 1967 Apr. 23, 1963 19.52 31 1900 Apr. 25, 1967 20.5	400
1866 Jan. 11, 1865 36.4 220,000 (2) 1941 Jul. 08, 1941 22.89 53 1876 Dec. 30, 1875 28.6 86,400 1942 Mar. 23, 1942 24.56 105 1877 Apr. 14, 1877 31.4 119,000 1943 Jan. 20, 1943 25.1 117 1878 Nov. 23, 1877 23.5 51,500 1944 Mar. 22, 1944 25.53 128 1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 64 64 64 64 64 64 64	900
1876 Dec. 30, 1875 28.6 86,400 1942 Mar. 23, 1942 24.56 105 1877 Apr. 14, 1877 31.4 119,000 1943 Jan. 20, 1943 25.1 117 1878 Nov. 23, 1877 23.5 51,500 1944 Mar. 22, 1944 25.53 128 1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 64 1880 Dec. 16, 1879 30.1 102,000 1946 Jan. 09, 1946 24.43 97 1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 23.97 86 1882 Sep. 12, 1882 29.3 93,300 1947 Jan. 22, 1947 23.97 86 1882 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 23.9 83 1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1844 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 4886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1889 Feb. 19, 1889 33.3 149,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1897 Apr. 04, 1894 24 54,000 1960 Feb. 14, 1960 20.56 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1899 Feb. 08, 1899 31 113,000 1966 Mar. 20, 1964 20.56 34 1899 Feb. 08, 1899 31 113,000 1966 Mar. 23, 1963 19.52 11.53 19.00 1967 Aug. 25, 1964 20.62 34 1900 Feb. 14, 1905 25.8 60,000 1960 Feb. 14, 1960 20.58 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 20.60 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 20.60 34 1900 Feb. 14, 1905 25.8 64,800 1977 Apr. 07, 1977 20.5 34 1900 Apr. 04, 1901 31.8 124	
1877 Apr. 14, 1877 31.4 119,000 1943 Jan. 20, 1943 25.1 117 1878 Nov. 23, 1877 23.5 51,500 1944 Mar. 22, 1944 25.553 128 1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 64 1880 Dec. 16, 1879 30.1 102,000 1946 Jan. 09, 1946 24.43 97 1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 23.97 86 1882 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 15, 1955 14.77 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1896 Jul. 10, 1896 30.5 107,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1963 Mar. 23, 1963 19.52 31 1899 Feb. 08, 1899 31 113,000 1964 Apr. 02, 1964 24.16 87 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1896 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1899 Feb. 08, 1899 31 113,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Apr. 01, 1970 17.68 25 1900 Apr. 04, 1901 31.8 124,000 1977 Apr. 07, 1977 20.5 34 1900 Apr. 05, 1906	300
1878 Nov. 23, 1877 23.5 51,500 1944 Mar. 22, 1944 25.53 128 1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 64 1880 Dec. 16, 1879 30.1 102,000 1946 Jan. 09, 1946 24.43 97 1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 23.97 86 8882 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 23.9 83 1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 27, 1890 22.9 48.500 1955 Apr. 15, 1955 14.77 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 23 1899 Feb. 27, 1890 22.9 48.500 1960 Feb. 27, 1961 20.56 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1895 Jan. 11, 1896 30.5 107,000 1962 Jan. 09, 1962 20.9 32.8 140,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1896 30.5 107,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1896 30.5 107,000 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1896 Jan. 10, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1900 Jan. 05, 1906 29.6 66,600 1977 Apr. 07, 1977 20.5 34 1900 Feb. 15, 1906 29.6 66,600 1977 Ap	
1879 Aug. 03, 1879 22 44,000 1945 Apr. 27, 1945 23.16 64	
1880 Dec. 16, 1879 30.1 102,000 1946 Jan. 09, 1946 24.43 97 1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 23.97 86 1882 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 23.9 83 1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1	
1881 Mar. 18, 1881 32.2 130,000 1947 Jan. 22, 1947 23.97 86 1882 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 23.9 83 1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1952 Mar. 06, 1952 21.53 30 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1955 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1955 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25.8 1903 Feb. 14, 1905 25.8 64,800 1971 Apr. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1900 Apr. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1901 Apr. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1901 Apr. 05, 1906 23.6 52,000 1977 Apr. 07,	000
1882 Sep. 12, 1882 29.3 93,300 1948 Feb. 10, 1948 23.9 83 1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 15, 1957 14.08 18 1891 Mar. 10, 1891 35.5 197,000 <td< td=""><td></td></td<>	
1883 Jan. 22, 1883 30.8 111,000 1949 Nov. 30, 1948 26.61 154 1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1966 Mar. 06, 1966 21.5 39 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 29.6 96,600 1974 Apr. 05, 1975 22.24 45 1909 Jun. 05, 1909 28.7 87,300 1974 Feb. 23, 1974 20.13 32 1910 Mar. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 05, 1909 28.7 87,300 1975 M	
1884 Apr. 16, 1884 28 81,000 1950 Oct. 09, 1949 20.1 32 1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1953 May 8, 1953 20.8 35 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 20, 1892 32.8 140,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 <td>200</td>	200
1885 Jan. 26, 1885 27.5 77,000 1951 Oct. 22, 1950 22.32 46 1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1957 May 7, 1957 14.08 18 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.56 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1909 Jun. 05, 1909 28.7 87,000 1976 Jun. 05, 1976 20.27 33 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 M	
1886 May 21, 1886 32.5 135,000 1952 Mar. 06, 1952 21.53 39 1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.56 34 1895 Jan. 11, 1895 30.4 106,000 19	500
1887 Jul. 31, 1887 34.5 173,000 1953 May 8, 1953 20.8 35 1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1895 Apr. 06, 1897 29.3 93,300 19	
1888 Sep. 11, 1888 38.7 303,000 1954 Mar. 30, 1954 17.39 25 1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 <td< td=""><td>300 (5</td></td<>	300 (5
1889 Feb. 19, 1889 33.3 149,000 1955 Apr. 15, 1955 16.77 23 1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1950 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 <td< td=""><td></td></td<>	
1890 Feb. 27, 1890 22.9 48,500 1956 Apr. 12, 1956 14.7 18 1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1	
1891 Mar. 10, 1891 35.5 197,000 1957 May 7, 1957 14.08 18 1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 <td< td=""><td></td></td<>	
1892 Jan. 20, 1892 32.8 140,000 1958 Apr. 18, 1958 22.91 66 1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 <td< td=""><td></td></td<>	
1893 Feb. 14, 1893 25 60,000 1959 Jun. 08, 1959 18.65 28 1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 1965 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 <td< td=""><td>000 (6</td></td<>	000 (6
1894 Aug. 07, 1894 24 54,000 1960 Feb. 14, 1960 20.58 34 1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000	
1895 Jan. 11, 1895 30.4 106,000 1961 Apr. 02, 1961 20.56 34 1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000	
1896 Jul. 10, 1896 30.5 107,000 1962 Jan. 09, 1962 20.09 32 1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800	
1897 Apr. 06, 1897 29.3 93,300 1963 Mar. 23, 1963 19.52 31 1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 <	
1898 Sep. 02, 1898 31.3 117,000 1964 Apr. 09, 1964 24.16 87 1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 <	
1899 Feb. 08, 1899 31 113,000 1965 Dec. 27, 1964 20.62 34 1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 <	
1900 Feb. 15, 1900 32.7 138,000 1966 Mar. 06, 1966 21.5 39 1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1910 Mar. 05, 1909 28.7 87,300	
1901 Apr. 04, 1901 31.8 124,000 1967 Aug. 25, 1967 18.1 26 1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800	
1902 Mar. 01, 1902 34.6 175,000 1968 Jan. 12, 1968 20.94 35 1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800	
1903 Feb. 09, 1903 33.2 147,000 1969 Apr. 21, 1969 22.24 45 1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 <	
1904 Aug. 10, 1904 25.5 63,000 1970 Apr. 01, 1970 17.68 25 1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 <	
1905 Feb. 14, 1905 25.8 64,800 1971 Mar. 05, 1971 23.3 63 1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 <	
1906 Jan. 05, 1906 29.6 96,600 1972 Jan. 20, 1972 20.36 33 1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	
1907 Oct. 05, 1906 23.6 52,000 1973 Apr. 08, 1973 21.63 40 1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	
1908 Aug. 27, 1908 38.8 307,000 1974 Feb. 23, 1974 20.13 32 1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	
1909 Jun. 05, 1909 28.7 87,300 1975 Mar. 25, 1975 22.24 45 1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	
1910 Mar. 02, 1910 26.4 69,800 1976 Jun. 05, 1976 20.27 33 1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	
1911 Apr. 14, 1911 19.1 32,800 1977 Apr. 07, 1977 20.5 34 1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	
1912 Mar. 17, 1912 36.8 234,000 1978 Jan. 26, 1978 21.98 43 1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	200 (6
1913 Mar. 16, 1913 35.1 156,000 1979 Feb. 27, 1979 21.13 37 1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	100 (6
1914 Dec. 31, 1913 24.3 48,000 1980 Mar. 31, 1980 22.33 47	300 (6
	200 (6
	700 (6
	700 (6
	100 (6
	000 (6
	700 (6
	000 (6
	200 (6
	600 (6
	200 (6

Table 2.3.1-16 (cont.) Annual Peak Discharges on the Savannah River at Augusta, Georgia

Water Year	Date	Gage Height (feet)	Peak discharge (cfs)	Water Year	Date	Gage Height (feet)	Peak discharge (cfs)
1924	Sep. 22, 1924	28	59,700	1990	Feb. 27, 1990	20.69	35,300 (6)
1925	Jan. 20, 1925	36.5	150,000	1991	Oct. 13, 1990	22.8	59,200 (6)
1926	Jan. 20, 1926	27.3	55,300	1992	Mar. 27, 1992	16.29	22,100 (6)
1927	Dec. 30, 1926	24	39,000	1993	Jan. 14, 1993	21.81	45,100 (6)
1928	Aug. 17, 1928	40.4	226,000	1994	Jul. 01, 1994	21.4	40,700 (6)
1929	Sep. 27, 1929	46.3	343,000	1995	Feb. 19, 1995	20.28	33,600 (6)
1930	Oct. 02, 1929	45.1	350,000	1996	Feb. 05, 1996	20.48	34,400 (6)
1931	Nov. 17, 1930	19.9	26,100	1997	Mar. 10, 1997	18.11	26,300 (6)
1932	Jan. 09, 1932	30.4	93,800	1998	Feb. 07, 1998	21.63	43,000 (6)
1933	Oct. 18, 1932	30.3	92,600	1999	Feb. 02, 1999	14.72	19,000 (6)
1934	Mar. 05, 1934	28.5	73,200	2000	Jan. 25, 2000	13.25	16,800 (6)
1935	Mar. 14, 1935	27.4	63,700	2002	Mar. 04, 2002	7.14	8,510 (6)
1936	Apr. 08, 1936	41.2	258,000	2003	May 24, 2003	20.42	31,600 (6)
				2004	Jun. 14, 2004	13.82	17,600 (6)

^{2 --} Discharge is an Estimate

Source: USGS 2006c

^{5 --} Discharge affected to unknown degree by Regulation or Diversion

^{6 --} Discharge affected by Regulation or Diversion

Table 2.3.1-17 Inventory of Savannah River Watershed Water Control Structures

Name of Dam or Reservoir	Owner or Operator	Stream	Savannah River Mile	Distance U/S of Vogtle Site	Drainage Area above dam (sq. mi.)	Storage, in thousands of acrefeet	Normal Pool Elev, ft MSL	Spillway Crest Elevation, ft. MSL	Top of Dam Elevation, ft. MSL	Generator Capacity, MW
New Savannah Bluff Lock & Dam	USACE	Savannah River	187.7	36.8	7,508	RoR	115.0	n/a	n/a	n/a
Stevens Creek	SC Electric & Gas	Savannah River	208.1	57.2	7,173	11	n/a	n/a	n/a	19.2
J. Strom Thurmond Lake & Dam	USACE	Savannah River	221.6	70.7	6,144	2,510	335.0	300	351	280
Richard B. Russell Lake & Dam	USACE	Savannah River	259.1	108.2	2,900	1,020	475.0	436	495	300
Hartwell Lake & Dam	USACE	Savannah River	288.9	138.0	2,088	2,550	660.0	630	679	330
Yonah Dam	GA Power Company	Tugaloo-Chatooga	340.0	189.1	470	10.2	744.2	742	757	22.5
Keowee Lake & Dam	Duke Power Company	Senaca-Keowee	341.0	190.1	439	940	800.0	765	815	157.5
Tugaloo Lake & Dam	GA Power Company	Tugaloo	343.1	192.2	464	43.2	891.5	885	905	45
Tallulah Falls Dam	GA Power Company	Tallulah River	346.7	195.8	186	2.46	1,500.0	1493	1514	72
Mathis Lake & Dam	GA Power Company	Tallulah River	353.4	202.5	151	31.4	1,689.6	1681	1704	16
Jocassee Lake & Dam	Duke Power Company	Senaca-Keowee	357.0	206.1	148	1,100	1,110.0	1077	1125	612
Nacoochee Dam	GA Power Company	Tallulah River	362.1	211.2	136	8.2	1,752.5	1753	1765	4.8
Little River Lake & Dam	Duke Power Company	Senaca-Keowee	366.0	215.1	439	940	800.0	765	815	
Burton Lake & Dam	GA Power Company	Tallulah River	366.4	215.5	118	108	1,866.6	1860	1873	6.1

Source: Compiled from USACE 1996

2.3.1-56 Revision 2 April 2007

Table 2.3.1-18 Monthly Groundwater Level Elevations in the Water Table Aquifer

								Ground	water Le	vel Eleva	ition (ft m	sl)						
Well No.	Jun-05	Jul-05	Aug-05	Sep-05	Oct-05	Nov-05	Dec-05	Jan-06	Feb-06	Mar-06	Apr-06	May-06	Jun-06	Jul-06	Aug-06	Sep-06	Oct-06	Nov-06
142	154.37	154.38	154.49	154.64	154.75	154.69	154.60	154.71	154.78	154.71	154.63	154.55	154.48	154.41	154.36	0.00	0.00	154.16
179	147.42	148.40	148.42	148.72	148.69	148.75	148.52	148.61	148.64	148.72	148.66	148.76	148.78	148.56	148.75	0.00	0.00	148.79
802A	157.88	157.86	158.07	158.23	158.29	158.34	158.28	158.28	158.39	158.23	158.17	158.09	157.99	157.91	157.89	0.00	0.00	157.56
803A	159.98	159.91	160.15	160.32	160.39	160.48	160.39	160.37	160.48	160.45	160.30	160.20	160.12	159.96	159.88	0.00	0.00	159.64
804	163.73	163.62	163.92	164.10	164.21	164.23	164.05	164.08	164.23	164.30	164.11	163.99	163.88	163.69	163.69	0.00	0.00	162.84
805A	158.53	158.57	158.84	158.98	159.09	159.09	159.05	158.94	158.92	158.98	158.82	158.82	158.63	158.53	158.45	0.00	0.00	158.19
806B	155.62	155.65	155.78	155.90	155.96	155.98	155.88	155.97	155.98	156.03	155.85	155.78	155.73	155.68	155.62	0.00	0.00	155.42
808	158.88	159.14	159.42	159.55	159.49	159.37	159.15	159.04	159.19	159.15	158.99	158.53	158.80	158.72	158.65	0.00	0.00	158.40
809	152.78	152.70	152.75	152.89	152.98	152.97	152.98	153.10	153.22	153.18	153.05	153.02	153.00	152.88	152.86	0.00	0.00	152.71
LT-1B	154.92	154.82	155.01	155.16	155.18	155.22	155.06	155.18	155.52	155.28	155.18	155.15	154.95	154.95	154.95	0.00	0.00	154.78
LT-7A	154.39	154.15	154.33	154.46	154.48	154.46	154.31	154.57	154.83	154.59	154.57	154.50	154.41	154.30	154.34	0.00	0.00	154.25
LT-12	158.21	157.90	158.07	158.22	158.31	158.28	158.21	158.53	158.66	158.48	158.54	158.48	158.23	158.19	158.18	0.00	0.00	158.11
LT-13	156.10	155.92	156.13	156.30	156.32	156.37	156.23	156.36	156.66	156.35	156.32	156.32	156.23	156.08	156.14	0.00	0.00	155.93
OW-1003	155.94	155.89	156.06	156.29	156.24	156.36	156.26	156.34	156.37	156.43	156.32	157.24	156.16	156.03	155.98	0.00	0.00	155.90
OW-1005	132.95	132.73	132.88	133.01	132.67	132.65	132.53	132.74	133.04	133.12	133.14	133.20	133.12	132.94	132.84	0.00	0.00	132.50
OW-1006	147.66	147.48	147.57	147.60	147.49	147.20	147.18	147.41	147.40	147.37	147.35	147.12	147.05	146.88	146.80	0.00	0.00	146.47
OW-1007	151.82	151.72	151.78	151.63	151.45	151.15	151.05	151.41	151.49	151.45	151.22	151.11	150.99	150.76	150.53	0.00	0.00	150.08
OW-1009	162.38	162.40	162.71	162.90	163.01	163.03	162.87	162.93	163.01	163.01	162.89	162.79	162.65	162.50	162.44	0.00	0.00	162.17
OW-1010	163.06	163.26	163.59	163.77	163.81	163.78	163.62	163.60	163.63	163.57	163.44	163.29	163.09	162.91	162.84	0.00	0.00	162.51
OW-1012	161.83	161.93	162.07	162.06	161.98	161.80	161.71	161.82	161.86	161.80	161.68	161.53	161.37	161.22	161.00	0.00	0.00	160.49
OW-1013	164.95	165.00	165.29	165.47	165.48	165.42	165.21	165.29	165.46	165.31	165.23	165.11	164.96	164.79	164.68	0.00	0.00	164.25
OW-1015	159.63	159.58	159.78	159.90	159.96	159.96	159.82	159.81	159.79	159.89	159.75	159.66	159.58	159.45	159.35	0.00	0.00	159.06

Notes:

Groundwater level data for the period between June 2005 and February 2006 provided Request For Information (RFI) Number 25144-000-GRI-GEX-00027, SNC ALWR ESP Project. (Bechtel Power Corporation, March 2006).

Groundwater level data for the period between March 2006 and June 2006 provided Request For Information (RFI) Number 25144-000-GRI-GEX-00038, SNC ALWR ESP Project. (Bechtel Power Corporation, June 2006).

Groundwater level data for the period between July 2006 and November 2006 provided Request For Information (RFI) Number 25144-000-GRI-GEX-00039, SNC ALWR ESP Project (Bechtel Power Corporation, November 2006).

Table 2.3.1-19 Monthly Groundwater Level Elevations in the Tertiary Aquifer

							(Groundw	ater Leve	l Elevation	on (ft msl)						
Well No.	Jun-05	Jul-05	Aug-05	Sep-05	Oct-05	Nov-05	Dec-05	Jan-06	Feb-06	Mar-06	Apr-06	May-06	Jun-06	Jul-06	Aug-06	Sep-06	Oct-06	Nov-06
27	91.50	89.96	91.63	83.96	82.13	88.24	82.57	84.62	85.77	84.49	83.42	83.08	83.03	84.54	84.73	0.00	0.00	81.50
29	98.88	97.80	98.33	93.17	91.86	91.89	92.59	93.97	94.19	93.63	93.05	92.16	91.76	91.86	91.44	0.00	0.00	89.97
850A	105.27	104.68	104.76	101.04	100.03	99.91	100.70	101.86	101.69	101.48	101.14	100.07	99.63	99.23	98.57	0.00	0.00	97.56
851A	114.54	114.40	114.02	111.59	111.38	110.60	112.34	112.32	112.43	112.42	112.23	111.08	110.36	109.31	108.00	0.00	0.00	107.77
852	114.71	114.49	114.00	111.88	111.09	111.21	111.88	113.06	113.51	113.14	112.82	111.74	110.38	108.78	107.20	0.00	0.00	108.35
853	108.60	108.17	107.98	104.51	103.64	103.45	104.18	105.32	105.14	104.97	104.65	103.58	103.15	102.57	101.86	0.00	0.00	101.13
854	107.06	106.88	106.65	103.37	102.38	102.23	102.38	104.13	103.85	103.73	103.45	102.31	101.86	101.31	100.57	0.00	0.00	99.87
855	102.63	101.74	102.00	97.22	96.08	96.21	96.85	98.43	98.48	98.15	97.53	96.75	95.93	95.85	94.96	0.00	0.00	94.12
856	114.07	113.94	113.49	111.37	110.57	110.63	111.31	112.52	112.46	112.39	112.07	111.21	109.94	108.36	106.75	0.00	0.00	107.75
OW-1002	120.76	120.61	120.04	118.65	117.81	117.71	118.44	119.36	119.63	119.64	119.43	118.37	117.65	116.45	114.48	0.00	0.00	114.77
OW-1004	108.27	108.14	108.01	105.06	104.05	103.75	104.51	105.56	105.38	105.28	105.12	103.88	103.54	102.81	102.06	0.00	0.00	101.26
OW-1008	126.06	127.99	125.09	124.24	123.49	123.51	124.19	125.10	125.46	125.54	125.21	124.33	123.42	122.18	119.64	0.00	0.00	120.42
OW-1011	122.50	122.38	121.49	120.37	119.59	119.73	120.46	121.41	121.64	121.70	121.48	120.47	119.37	117.67	115.35	0.00	0.00	116.59
OW-1014	111.18	111.00	110.74	108.34	107.34	107.11	107.81	108.87	108.73	108.75	108.66	107.41	106.94	105.98	104.86	0.00	0.00	104.44

Notes:

Groundwater level data for the period between June 2005 and February 2006 provided Request For Information (RFI) Number 25144-000-GRI-GEX-00027, SNC ALWR ESP Project. (Bechtel Power Corporation, March 2006).

Groundwater level data for the period between March 2006 and June 2006 provided Request For Information (RFI) Number 25144-000-GRI-GEX-00038, SNC ALWR ESP Project. (Bechtel Power Corporation, June 2006).

Groundwater level data for the period between July 2006 and November 2006 provided Request For Information (RFI) Number 25144-000-GRI-GEX-00039, SNC ALWR ESP Project. (Bechtel Power Corporation, November 2006).

Table 2.3.1-20 Hydraulic Conductivity Values

Observation	Depth Test			Hydraulic C	onductivity
Well No.	Interval	Aquifer	Material		
	(ft)			(cm/sec)	(ft/day)
OW-1003	72 - 91	Water Table	Reddish brown silty SAND (SM) with Light tan silty SAND with Tan and grey clayey COQUINA.	4.4E-05	0.12
OW-1005	143 - 169	Water Table	Pale yellow, silty SAND, calcareous (SM), fine-coarse-grained with shell pieces.	1.1E-04	0.32
OW-1006	113 - 136	Water Table	Very light tan silty SAND (SM) with light gray COQUINA, unconsolidated (OW-1006A). Tan sandy and shelly CLAY (CH), saturated with light tan, fine-coarse grained SAND with shell (SW) (OW-1006).	4.8E-04	1.4
OW-1007	99 - 120	Water Table	Tan fine-grained silty SAND (SM), saturated with very light tan silty SAND (SM) becoming shelly with light olive grey CLAY (CH).	9.3E-04	2.65
OW-1009	81 - 98	Water Table	Very light tan silty SAND (SM) with Tan limestone shell hash, very light tan silty SAND (SM) WITH "Brown silty CLAY.	4.0E-04	1.1
OW-1010	70 - 92	Water Table	Tan poorly graded SAND with silt (SP-SM) with brownish yellow clayey silty SAND (SC-SM), soft with white SHELL HASH.	6.4E-05	0.18
OW-1012	71 - 94	Water Table	Brown SAND, fine-to-medium-grained with pale yellow silt (SM) with Pale olive silt (ML) with pale yellow SILT, micaceous (ML).	1.4E-04	0.39
OW-1013	81 - 104	Water Table	Tan fine-to-medium-grained SAND (SP-SM) with tan or clay tubes or bioturbation with light olive tan calcareous silty fine grained-grained SAND (SP-SM) with light olive tan calcareous CLAY (CL), wet but not saturated.	1.3E-04	0.38
OW-1015	90 - 120	Water Table	Grayish white, fine-to-medium-grained SAND (SP) saturated with very light tan poorly graded SAND with silt (SP-SM) with tan shelly (coarse) fine to medium grained clayey SAND (SC).	1.5E-04	0.44

Table 2.3.1-20 (cont.) Hydraulic Conductivity Values

Observation	Depth Test			Hydraulic C	onductivity
Well No.	Interval	Aquifer	Material		
	(ft)			(cm/sec)	(ft/day)
OW-1002	216 - 237	Tertiary	Light greenish gray fine- to medium- grained silty, glauconitic SAND with gray clay layer (SM).	3.2E-04	0.9
OW-1004	150 - 187	Tertiary	Fine- to medium- grained dark gray SAND with organics, wet, poorly graded with silt (SP-SM).	1.3E-04	0.35
OW-1008	226 - 247	Tertiary	Gray, fine SAND (SW) with light gray fine sand (SM).	7.5E-04	2.1
OW-1011	197 - 218	Tertiary	Dark bluish-gray silty fine- to medium- grained SAND, very moist with gray, poorly graded sand with silt (SP-SM) with silty gravelly sand with fossils, shark teeth with gray medium-to coarse-grained SAND.	3.8E-04	1.1
OW-1014	179 - 197	Tertiary	Dark gray silty SAND (SM-SP), high organic content, saturated with light gray fine quartz SAND (SP), silty SAND (SM) and dark gray Sandy SILT (ML).	1.9E-04	0.54
	<u>'</u>		Geometric Mean Water Table Aquifer	1.75E-04	0.5
			Geometric Mean Tertiary Aquifer	2.95E-04	0.83

Note.

Hydraulic conductivity values provided in SSAR Appendix 2.5A (report Appendix D)

Material descriptions from the borings logs provided in SSAR Appendix 2.4A (report Appendix E)

Table 2.3.1-21 Summary of Laboratory Test Results on Grain Size, Moisture Content, and Specific Gravity for the Barnwell Formation

	0	Grain	NA - ! - 4	On a sifi a			
Develoe / Well	Sample Elevation	Grain Size Distribution Gravel Sand Clay/Silt			Moisture Content	Specific Gravity	
Borehole / Well No.	(ft msl)	(%)	(%)	(%)	(%)	Gravity	
OW-1003	144.5	0.0	65.1	34.9	ND	2.69	
OW-1003	139.5	31.1	50.0	18.4	ND	2.68	
OW-1005	115.9	8.9	57.0	34.1	ND ND	2.63	
OW-1005	110.9	18.2	47.6	34.3	ND ND	2.61	
OW-1005	113.6	7.0	61.1	31.9	ND ND	2.67	
OW-1006	108.6	3.6	74.4	22.0	ND ND	2.59	
OW-1007	113.4	0.0	85.0	15.0	ND	2.65	
OW-1007	108.4	0.0	85.0	18.1	ND	2.66	
OW-1009	135.9	2.7	74.6	22.7	ND	2.61	
OW-1009	130.9	34.7	45.9	19.2	ND	2.75	
OW-1010	143.4	0.0	89.3	10.7	ND	2.67	
OW-1010	138.4	0.0	63.5	36.5	ND	2.63	
OW-1012	131.9	0.0	76.1	23.9	ND	2.66	
OW-1012	126.9	0.0	14.1	85.9	ND	2.66	
OW-1013	132.9	0.0	91.1	8.9	ND	2.65	
OW-1013	122.9	0.0	91.1	8.9	ND	2.65	
OW-1015	126.9	0.0	97.7	2.8	ND	2.63	
OW-1015	125.4	0.0	93.2	6.8	ND	2.67	
B-1002	214.3	6.6	84.0	9.4	6.2	ND	
B-1002	203.5	0.0	62.9	37.1	24.4	ND	
B-1002	193.5	0.0	75.1	24.9	31.8	ND	
B-1002	188.5	0.0	68.4	31.6	58.8	ND	
B-1002	168.5	0.0	89.5	10.5	42.9	ND	
B-1002	158.5	0.0	92.8	7.2	29.3	ND	
B-1002	148.5	0.4	89.6	10.0	24.5	ND	
B-1002	138.5	0.0	93.9	6.1	27.6	ND	
B-1003	208.2	0.0	79.1	20.9	13.4	ND	
B-1003	185.2	0.0	70.2	29.8	42.1	ND	
B-1003	168.2	52.2	34.4	13.4	17.5	ND	
B-1003	148.2	0.0	91.8	8.2	32.3	ND	
B-1004	240.8	0.0	75.6	24.4	13.8	ND	
B-1004	237.8	0.7	76.2	23.1	14.5	ND	
B-1004	226.3	0.2	84.9	14.9	18.5	ND	
B-1004	206.3	0.0	40.0	60.0	46.2	ND	
B-1004	196.3	0.0	59.0	41.0	62.9	ND	
B-1004	181.3	10.5	69.6	19.9	24.1	ND	

Table 2.3.1-21 (cont.) Summary of Laboratory Test Results on Grain Size,
Moisture Content, and Specific Gravity for the Barnwell Formation

	Sample	Grain Size Distribution		Moisture	Specific	
Borehole / Well	Elevation	Gravel	Sand	Clay/Silt	Content	Gravity
No.	(ft msl)	(%)	(%)	(%)	(%)	
B-1004	166.3	0.0	88.5	11.5	28.8	ND
B-1004	126.3	48.6	32.2	19.2	19.7	ND
B-1006	248.5	0.0	92.7	7.3	3.8	ND
B-1006	222.5	0.1	73.8	26.1	19.7	ND
B-1006	197.5	0.0	41.7	58.3	92.8	ND
B-1006	187.5	0.1	96.8	3.1	25.4	ND
B-1006	167.5	0.0	84.3	15.7	51.9	ND
B-1006	147.5	30.7	47.8	21.5	22.0	ND
B-1010	211.1	0.0	92.2	7.8	5.7	ND
B-1010	185.1	0.0	83.0	17.0	18.9	ND
B-1010	160.1	0.0	86.7	13.3	27.3	ND
		•		Median	25	2.66

Note.

ND - Not Determined

OW-series data are provided in SSAR Appendix 2.4A B-series data are provided in SSAR Appendix 2.5A

Moisture content is by weight percent.

Table 2.3.1-22 Summary of Laboratory Test Results on Grain Size, Moisture Content, and Porosity for the Lisbon Formation

	Sample	Grain Size Distribution		Moisture			
Borehole / Well	Elevation	Gravel	Sand	Clay/Silt	Content	D50	Porosity
No.	(ft msl)	(%)	(%)	(%)	(%)	(mm)	
B-1002	130.0	49.4	21.7	28.9	52.1	3.49	0.59
B-1002	118.5	22.9	41.2	35.9	56.5	0.26	0.56
B-1002	108.5	12.8	53.4	33.8	25.5	0.21	0.36
B-1002	98.5	53.7	21.8	24.5	13.5	7.52	0.25
B-1002	88.5	26.3	49.4	24.3	28.6	0.87	0.45
B-1003	135.2	16.5	50.1	33.4	67.4	0.43	ND
B-1003	130.2	1.6	57.8	40.6	30.6	0.14	0.46
B-1003	118.5	1.2	67.1	31.7	40.6	0.27	0.52
B-1003	101.5	11.7	45.8	42.5	28.0	0.12	0.42
B-1003	81.5	7.3	58.5	34.2	25.9	0.15	0.39
B-1004	105.8	1.0	52.7	46.3	44.6	0.10	0.56
B-1004	96.3	0.7	57.6	41.7	30.1	0.15	0.45
B-1004	86.3	38.0	29.8	32.2	25.1	0.49	0.43
B-1004	72.8	20.9	37.4	41.7	20.8	0.12	0.38
B-1004	61.3	34.9	41.3	23.8	29.0	0.85	0.44
B-1004	51.3	5.2	60.3	34.5	26.2	0.18	0.39
				Median	20	0.24	0.44

Median

29

0.24

0.44

Note.

ND - Not Determined

B-series data are provided in SSAR Appendix 2.5A

Moisture content is by weight percent.

Porosity calculated assuming specific gravity of 2.65.

Table 2.3.1-23 Summary of Laboratory Test Results on Grain Size, Moisture Content, and Specific Gravity for the Still Branch And Congaree Formations

	Sample	Grain Size Distribution			Moisture	Specific	
Borehole / Well	Elevation	Gravel	Sand	Clay/Silt	Content	Gravity	
No.	(ft msl)	(%)	(%)	(%)	(%)		
OW-1002	8.9	0.2	79.6	20.2	ND	2.65	
OW-1002	-9.6	0.0	1.4	90.6	ND	2.62	
OW-1004	69.4	0.1	89.7	10.2	ND	2.69	
OW-1004	64.4	0.0	93.4	6.6	ND	2.67	
OW-1008	-11.9	0.0	83.2	16.8	ND	2.69	
OW-1008	-21.9	2.2	67.9	20.3	ND	2.68	
OW-1011	12.3	0.0	88.9	10.8	ND	2.67	
OW-1011	-2.7	4.5	89.6	5.9	ND	2.66	
OW-1014	37.4	0.0	87.8	12.2	ND	2.69	
OW-1014	32.4	0.0	89.6	10.4	ND	2.66	
B-1002	68.5	20.0	40.6	39.4	23.3	ND	
B-1002	33.5	0.0	93.4	6.6	40.7	ND	
B-1002	-16.5	3.1	84.6	12.3	18.5	ND	
B-1003	57.5	0.0	94.6	5.4	23.6	ND	
B-1003	37.5	0.9	82.7	16.4	32.3	ND	
B-1003	17.5	1.4	77.2	21.4	39.3	ND	
B-1003	-17.5	0.0	89.1	10.9	23.2	ND	
B-1003	-57.5	0.3	85.5	14.2	23.2	ND	
B-1003	-92.5	70.7	26.0	3.3	32.7	ND	
B-1003	-127.5	0.0	21.5	78.5	21.3	ND	
B-1003	-177.5	0.3	83.9	15.8	18.9	ND	
B-1003	-227.5	0.0	84.1	15.9	28.6	ND	
B-1003	-273.5	0.0	86.8	13.2	26.4	ND	
				Median	24.0	2.67	

Note.

ND – Not Determined OW-series data are provided in SSAR Appendix 2.4A B-series data are provided in SSAR Appendix 2.5A Moisture content is by weight percent.

Table 2.3.1-24 Availability of USGS Water Quality Data for the Savannah River

USGS Site Number	Site Name	From	То	Count	suspended sediment data available
	SAVANNAH RIVER AT GA 181 NEAR MONTEVIDEO, GA.	1/10/2002	12/11/2002		turbidity only
2187500	SAVANNAH RIVER NEAR IVA,S.C.	5/24/1957	11/14/1985	138	suspended solids, residue
2189000	SAVANNAH RIVER NEAR CALHOUN FALLS, S. C.	3/29/1956	7/10/1974	63	turbidity only
21964839	SAVANNAH RIVER NEAR MARTINEZ, GA	7/24/1990	2/16/1994	44	none
	SAVANNAH RIVER (AUGUSTA INTAKE) NR AUGUSTA, GA.	10/12/1970	10/12/1970	1	none
2196650	SAVANNAH R NR BEECH ISLAND, S. C.	12/10/1971	7/12/1972	5	none
	SAVANNAH RIVER JEFFERSON DAVIS BR, AT AUGUSTA, GA.	1/14/2002	12/16/2002	20	residue
2196671	SAVANNAH RIVER (US 1) AT AUGUSTA, GA.	1/28/1997	8/13/1998	18	turbidity, residue
	SAVANNAH RIVER ABOVE LOCK AND DAM AT AUGUSTA, GA.	1/14/2002	12/16/2002	20	turbidity, residue
2197000	SAVANNAH RIVER AT AUGUSTA, GA	7/24/1990	7/20/1998	62	turbidity, residue
					turbidity
'	SAVANNAH RIVER BELOW SPIRIT CREEK, NEAR AUGUSTA,GA	7/23/1990	8/9/2005	243	turbidity, residue
2197320	SAVANNAH R. NR JACKSON, SC	10/3/1972	6/27/1974	23	turbidity
2197375	SAVANNAH RIVER AT STONY BLUFF LANDING, GA.	11/3/1937	12/17/2002	83	turbidity, residue
'	SAVANNAH R AT BURTONS FERRY BR NR MILLHAVEN, GA	10/19/1993	2/15/1994	5	turbidity
	SAVANNAH RIVER NEAR CLYO, GA	5/1/1938	7/8/2003	771	suspended solids, residue
2198920	SAVANNAH RIVER AT GA 25, AT PORT WENTWORTH, GA	5/2/1958	8/10/2005	101	turbidity, residue
2198975	SAVANNAH RIVER AT SAVANNAH, GA	1/16/2002	12/2/2004	63	turbidity, residue
	SAVANNAH RIVER AT FORT JACKSON, NEAR SAVANNAH, GA	1/17/2002	12/2/2004	63	turbidity, residue
219897992	SAVANNAH RIVER AT SOUTH CHANNEL,NEAR SAVANNAH, GA	1/17/2002	12/2/2004	63	turbidity
219897996	SAVANNAH RIVER AT FIELDS CUT, NEAR SAVANNAH, GA	1/17/2002	12/2/2004	63	turbidity, residue
219897998	SAVANNAH RIVER NEAR FORT PULASKI, GA	1/17/2002	12/2/2004	63	turbidity, residue
2198980	SAVANNAH RIVER AT FORT PULASKI, GA	3/7/1960	3/8/1960	3	residue