VERIFY HARD COPY AGAINST WEB SITE IMMEDIATELY PRIOR TO EACH USE

West Valley	Doc. ID Number	WVDP-493
Demonstration Project	Revision Number	REV. 1
_	Revision Date	12/29/08

WEST VALLEY DEMONSTRATION PROJECT NORTH PLATEAU BACKGROUND SOIL CHARACTERIZATION REPORT

Cognizant Author: D.P. KLENK

Cognizant Manager: J.R. GERBER

West Valley Environmental Services LLC 10282 Rock Springs Road West Valley, New York USA 14171-9799

WV-1816, Rev. 6

TABLE OF CONTENTS

1.0	INTRODU		3
	1.1 G	eneral	3
	1.2 S	ite Location and Background	3
	1.3 P	revious Investigations	4
	1.4 S	ite Investigation Objectives	4
	1.5 R	eport Organization	4
2.0	SITE INVI	ESTIGATION ACTIVITIES	5
	2.1 G	General	5
	2.2 G	eoprobe [®] Soil Sampling	5
	2.3 S	ite Survey	6
3.0	PHYSICA	L CONDITIONS	6
0.0	3.1 T	opography. Land Usage. Drainage	6
	3.2 S	ite Geology	7
4.0	SOIL QUA		
	4.1 S	ample Identification	8
	4.2 S	oil Analytical Results	8
	4	21 Radiological Data	8
	4	2.2 Metals Data	
	4.3 D	ata Validation	10
5.0	SUMMAR	RY AND CONCLUSIONS	
0.0	5.1 R	adiological Background Data	
	5.2 M	letals Background Data	
60	REFEREN	NCES	11
0.0			

LIST OF TABLES

Table 1.	Geoprobe [®] Soil Boring Summary	14
Table 2.	Soil Analytical Data Summary – Radiological Constituents	15
Table 3.	Soil Analytical Data Summary of Positive Detections - Radiological Constituent Comparison	19
Table 4.	Soil Analytical Data Summary – Metal Constituents – Sand & Gravel Unit	21
Table 5.	Soil Analytical Data Summary – Metal Constituents – Unweathered Lavery Till	22
Table 6.	Soil Analytical Data Summary – Proposed Site-Specific Background Metal Concentrations	23

LIST OF FIGURES

Figure 1.	Western New York Nuclear Service Center	25
Figure 2.	Former Nuclear Fuel Reprocessing Plant Location	26
Figure 3.	North Plateau Background Subsurface Soil Sample Location Map	27

LIST OF APPENDICES

Appendix A. Geoprobe [®] Boring Logs	28
---	----

WEST VALLEY DEMONSTRATION PROJECT NORTH PLATEAU BACKGROUND SOIL CHARACTERIZATION REPORT

1.0 INTRODUCTION

1.1 General

This report has been prepared by URS Group, Inc. (URS) for West Valley Environmental Services Company LLC (WVES) to present the findings of the 2008 north plateau background subsurface soil investigation conducted at the West Valley Demonstration Project (WVDP), located in the town of Ashford, Cattaraugus County, New York. The subsurface investigation activities were implemented and completed following requirements detailed in WVDP-466, *Sampling and Analyses Plan for Background Subsurface Soil on the North Plateau* (SAP), prepared by WVES for the U.S. Department of Energy. This SAP was approved by the New York State Department of Environmental Conservation (NYSDEC) in its correspondence dated November 5, 2007.

The objective of the investigation was to obtain supplemental background subsurface soil data for metals and radiological constituents from areas of the north plateau that are interpreted to be unaffected by site operations and activities (i.e., where there are no suspected sources of contamination). The investigative activities described in this report augment previous Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) activities performed in accordance with the RCRA 3008(h) Administrative Order on Consent, conducted in 1993. The RFI activities included acquisition of soil samples from two soil borings, one each on the north and south plateaus, to identify background subsurface soil conditions for selected metals on the WVDP. Radiological data obtained during this investigation will be used to confirm that background boring locations have not been impacted by site activities. These background sampling results will also be used to establish site-specific soil concentrations for metals to be used in future site evaluations. Results of the investigative activities, as well as summary and conclusions, are presented in the following sections.

1.2 Site Location and Background

The WVDP is located in western New York state about 30 miles south of Buffalo, New York. The WVDP facilities occupy a security-fenced area of about 167 acres within the 3,338-acre Western New York Nuclear Services Center (WNYNSC), Figure 1.

The WNYNSC was established in 1961 under the direction of the New York State Office of Atomic Development (OAD). Nuclear Fuels Services, Inc. (NFS) leased the property from the OAD and operated a nuclear fuel reprocessing facility at the site from 1966 to 1972, the only commercial nuclear fuel reprocessing plant to have operated in the United States.

The U.S. Department of Energy (DOE) assumed control of the Main Plant Process Building (MPPB) and related facilities that comprise the WVDP from NFS in 1981. Subsequently, DOE has been engaged in carrying out Public Law 96-368 (the WVDP Act). DOE's responsibilities are limited to carrying out certain specific activities set forth in the Act.

The WVDP is bisected by Erdman Brook, which separates the site into two areas known as the north plateau and south plateau, Figure 2. The north plateau area includes the MPPB. The location of the background characterization area and the sampling locations are presented on Figure 3.

WVDP-493 Rev. 1 Page 4 of 33

1.3 Previous Investigations

The WVDP, including the north plateau and MPPB area has been the focus of significant historical subsurface characterization activities. In 1993, gross beta activity in excess of 1.0E-06 microcuries per millimeter was detected in surface water on the north plateau. The gross beta activity was determined to primarily be a result of strontium-90 (Sr-90). Records review and subsequent subsurface investigations identified the presumed primary source of the Sr-90 plume as originating beneath the southwest corner of the MPPB during NFS operations, and that the groundwater plume is slowly migrating towards the northeast quadrant of the north plateau. The investigation of the MPPB source area and the surrounding environs have been reported as follows:

- West Valley Nuclear Services Company, Inc (WVNSCO), 1995, Subsurface Probing Investigation on the North Plateau at the West Valley Demonstration Project, WVDP-220;
- WVNSCO and Dames and Moore, 1996. *Resource Conservation and Recovery Act Facility Investigation Report Volume 6, Low–Level Waste Storage Area*, WVDP-RFI-022; and
- WVNSCO, 1998, 1998 Geoprobe[®] Investigation of the Core Area of the North Plateau Groundwater Plume, WVDP-346.

During the scope of the RFI activities, background subsurface soil sampling on the north plateau was limited to three samples collected from borehole BH-38, advanced on October 26, 1993, as reported in WVDP-RFI-022. The location of BH-38 is shown on Figure 3 and the analytical results for radiological constituents and metals in subsurface soil are summarized in Tables 2 through 5. Later investigative activities were focused on subsurface soil conditions in the plume source area, and in particular the identification and delineation of impacts to groundwater quality. In 1990, prior to many of the above investigations, soil background data were collected in support of preparation of the WVDP-EIS-008, *Environmental Information Document, Volume IV, Soils Characterization* (WVNSCO, 1994).

1.4 <u>Site Investigation Objectives</u>

The objective of this investigation was to obtain supplemental background soil data from areas of the north plateau that were interpreted to be unaffected by site operations and activities (i.e., where there were no suspected sources of contamination). Geoprobe[®] sample locations were selected to provide additional data to represent background conditions by accounting for heterogeneity of the area's glacial and fluvial deposits. Areas interpreted to provide sufficient thickness of the sand and gravel (S&G) unit, upgradient of current and former WVDP facilities, were identified.

1.5 Report Organization

This report presents a summary of the investigation field activities and analytical results, as well as an evaluation of the data and proposed new site-specific background concentrations for metals. The report has been organized into the following remaining sections:

- Section 2 Site Investigation Activities;
- Section 3 Physical Conditions;
- Section 4 Soil Quality; and
- Section 5 Summary and Conclusions.

2.0 SITE INVESTIGATION ACTIVITIES

2.1 <u>General</u>

This section of the characterization report presents a description of the field procedures that were performed during implementation of the field investigation. As a precaution for the potential presence of radiological constituents, all soil samples were screened during sample collection for radiological activity using a portable GeigerMuller (GM) meter. The samples were also screened for the presence of organic vapors with an organic vapor meter (OVM). Additional protocols required for health and safety purposes were performed in accordance with WVDP-010, *WVDP Radiological Controls Manual*.

2.2 <u>Geoprobe[®] Soil Sampling</u>

To accomplish the investigation objective, five soil borings were advanced at the site by SJB Services, Inc., Hamburg, New York (SJB) during the period of July 14 and 15, 2008, under oversight by URS personnel. URS staff were responsible for field activities as follows:

- Coordinating SJB site activities;
- Screening and logging of samples;
- Selection of sample intervals for laboratory analyses; and
- Initiating and maintaining chain-of custody documentation for release of samples to the URS Environmental Laboratory.

At each boring location a Geoprobe[®] Large Bore (LB) sampler equipped with a disposable, clear plastic liner was advanced from ground surface through the S&G unit into the Unweathered Lavery till (ULT) unit (approximately two feet). Total depth of the soil borings ranged from seven to 30 feet below ground surface. The LB sampler acquires a nominal 1-inch diameter sample.

The borings were advanced by attaching a sealed LB soil sampler to the leading Geoprobe[®] rod and advancing the assembly to the top of the sampling interval. The piston stop-pin was detached from the inner rod allowing the LB piston top to retract and the sampler to be driven 24 inches to obtain a discrete interval soil sample. The probe rods were retracted from the hole with the sample assembly. The sampler was detached from the rods and was screened by the radiological technician for the potential presence of radioactivity. The soil sample was removed from the liner and the samples placed onto clean plastic and re-screened by the radiological technician for radiological activity. There were no detections of radioactivity above site background levels in any of the soil borings as established by the radiological technician through procedure RC-ADM-22, *Performing Routine Radiological Control Technician Tasks*.

The samples were subsequently screened by the site geologist for the presence of organic vapors with an OVM prior to handling. There were no detections of organic vapors during the sample screening process. The sample soil lithology was characterized using the Unified Soil Classification System (USCS) and Burmister lithologic descriptions in accordance with EM-500, *Drilling, Soil Sampling and Geologic Logging Procedures*. Soil boring logs (Appendix A) contain the field screening data and soil descriptions. Discussion of the subsurface conditions is presented in Section 3.2.

Samples selected for laboratory analyses were placed in appropriate sample jars or containers. Each jar was labeled with a unique Environmental Laboratory Information Management System (ELIMS) sample number, location, depth interval, date, time of sample collection, sampler, and required analyses. The containerized samples were surveyed by the radiological technician, and placed in shipping coolers for delivery to the respective laboratory under chain-of-custody. Soils samples that were not selected for laboratory analyses were containerized as noted above, except for the ELIMS sample number and "required analysis". The samples were held in storage for future use, or reference as necessary, in accordance with the SAP.

The process described above was repeated at each subsequent sampling location. The borings were abandoned upon completion by backfilling with bentonite chips. The downhole Geoprobe[®] equipment was decontaminated prior to each use and the Geoprobe[®] rig and equipment were decontaminated prior to leaving the site in accordance with procedures identified in Section 3.5 of the SAP. Soil and other related investigative derived waste was managed in accordance with Section 3.6 of the SAP.

Upon receipt of the samples under chain-of-custody from the field staff, URS Environmental Laboratory and data validation personnel were responsible for the following activities:

- Receiving samples from the field personnel, maintaining chain-of-custody documentation;
- Review of soil sample pre-screening data to determine radiological classification for appropriate shipping protocols;
- Shipment of the metals samples to a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory for metals analyses;
- Shipment of samples to an off-site laboratory for analysis of radiological constituents in accordance with established WVDP protocols and procedures;
- Receipt of sample analytical results and upload of data to the ELIMS;
- Coordination with the off-site laboratory to resolve data problems or questions; and
- Validation of the data in accordance with data quality objectives (DQOs).

The following URS documents outlining investigative, documentation and laboratory and data validation procedures and protocols were utilized in support of the investigative activities:

- EM-52, Environmental Sample Receipt, Handling, Storage, Packaging and Shipment;
- EM-109, Quality Assurance Plan;
- EM-108, Data Validation; and
- EM-74, Radioanalytical Data Validation.
- 2.3 Site Survey

On November 5, 2008, a New York State-licensed surveyor located and surveyed each Geoprobe[®] boring location with respect to the existing site coordinate system. Vertical control was also established for the ground surface at each soil boring location and referenced to the site-specific datum. The respective survey data for each soil boring location is summarized in Table 1.

3.0 PHYSICAL CONDITIONS

3.1 <u>Topography, Land Usage, Drainage</u>

The WVDP, which includes the north plateau, ranges in elevation from 1,300 to about 1,445 feet above mean-sea-level. The undeveloped part of the larger WNYNSC that surrounds the WVDP remains a mixture of forest, wetlands and abandoned farmland.

The three named streams in the vicinity of the WVDP are Erdman Brook, Franks Creek, and Quarry Creek. The MPPB and related facilities are located on the north plateau (Figure 2).

WVDP-493 Rev. 1 Page 7 of 33

3.2 Site Geology

The subsurface conditions on the north plateau encountered during the implementation of the soil characterization program can be generally characterized as follows:

- S&G unit encountered from ground surface to approximately 28 feet brown to grey silty sand with variable angular gravel and trace clay; and
- ULT unit encountered from bottom of S&G unit to approximately 30 feet dark grey dense silty clay with little to some fine gravel.

A layer of soil, described as disturbed (i.e., re-worked) gravel and sand, was encountered at boring locations GPBG01-08 through GPBG04-08. For purposes of this investigation, this material is comparable with the S&G unit. The S&G and ULT units were present at all background boring locations, but the S&G unit was very thin (i.e., slightly over three feet thick) at boring GPBG02-08. The S&G unit is known to pinch out from northeast to southwest across the WVDP near Rock Springs Road. Therefore, this subsurface observation is expected. The S&G unit ranged in thickness from approximately 3.4 feet (GPBG02-08, includes re-worked soil) to approximately 28.4 feet (GPBG03-08, includes re-worked soil). The top of the ULT unit was encountered at depths ranging from 3.4 feet below the ground surface (GPBG02-08) to 28.4 feet (GPBG03-08).

The SAP called for termination of the borings at approximately two feet into the ULT. However, the total depth of the individual borings and the selection of the intervals for subsequent laboratory analysis were modified in the field, based on encountered conditions, as deemed appropriate by the field sampling team and Project Manager.

The geologic units included in the subsurface soil characterization program, including the BH-38 samples, were as follows:

- S&G unit 10 samples submitted for laboratory analysis (see Tables 1 and 2, Figure 3); and
- ULT seven samples submitted for laboratory analysis (see Tables 1 and 2, Figure 3).

The number of samples collected was dictated by the SAP and actual encountered field conditions. Depth to groundwater in the proximity of the background soil borings is typically in the range of about eight feet below grade, subject to seasonal variations. In the surrounding north plateau area depth to groundwater ranges from surface to about 16 feet below grade. Groundwater in the MPPB area generally flows northeastward toward Franks Creek.

4.0 SOIL QUALITY

The SAP outlined the basic requirements for the sampling and analysis activities to be performed. The implementation of the SAP resulted in 15 samples (14 samples plus one field duplicate).

URS personnel collected representative samples for laboratory analyses from the recovered Geoprobe[®] core samples during field investigation activities. A brief summary of the sample identification method, the analytical results, the constituents of concern, and data validation results are presented below. The sample locations are presented on Figure 3. Analytical results are discussed in Sections 4.2 and 4.3, and are summarized in Tables 2 and 3.

Sampling activities were conducted on July 14 and 15, 2008. URS staff shipped the samples to the off-site laboratory under appropriate chain-of-custody protocols in accordance with EM-52 procedures. Radiological and metals analysis for this project was performed by GEL Laboratories, LLC (GEL), a NYSDOH ELAP-Certified Laboratory located in Charleston, South Carolina. GEL analyzed metals samples, including all quality assurance/quality control (QA/QC) samples, as specified in the SAP,

according to U.S. Environmental Protection Agency (USEPA) Solid Waste 846 (SW-846) Methodology, Method 7471 for mercury and Method 6010 for all other metal constituents. GEL services were performed in conformance with site procedure EM-109, *Quality Assurance Plan*.

4.1 Sample Identification

Each sample was uniquely identified in such a manner that the sample number identifies the location of the sample collection point and the type of sample. This alphanumeric system included a two-letter prefix describing the sample method, followed by a two-letter prefix describing the sample type, a two-digit number indicating the sample location, and a two digit number representing the year. The bottles containing samples for laboratory analyses were labeled with a unique ELIMS sample number as described in WVDP-466. Information on the labels also included the sample location, depth interval, date, time of sample collection, sampler, and required analysis.

4.2 Soil Analytical Results

Background soil samples were collected for analysis of radiological and chemical parameters. The radiological data was used to determine which background soil borings have or have not been impacted by WVDP activities. Then, the boring locations that have not been impacted by WVDP activities, and resultant chemical data, can be used to quantify background soil concentrations for metals. Soil analytical results for metals were assessed in accordance with the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) #4046, *Determination of Soil Cleanup Objectives and Cleanup Levels*, January 24, 1994 (TAGM 4046). Specifically, the last paragraph of Section 2, *Basis for Soil Cleanup Objectives*, of TAGM 4046 states that "...soil background data near the site, if available, is preferable and should be used as the cleanup objective for such metals. Background samples should be free from the influences of this site and any other source contaminants. Ideal background samples may be obtained from uncontaminated upgradient and upwind locations."

4.2.1 Radiological Data

A total of 15 soil samples, including one duplicate, were collected from five soil boring locations (GPBG01-08 to GPBG05-08). These 15 sample sets were tested for 19 radiological analytes known to be present as contaminants on the site. The samples were transported under chain-of-custody for radiological constituent analyses under WVDP protocols. Due to the size of the laboratory reports, they are not included with this report. This data will be made available upon request.

Radiological data from the five background soil borings advanced as part of this investigation, and BH-38, advanced in support of RFI activities, are summarized in Table 2. The quality assurance/quality control protocol outlined in WVDP-RFI-014, *West Valley Demonstration Project RCRA Facility Investigation Work Plan* (WVNSCO, 1993) used to support RFI activities is comparable to that used for the current investigation. The radiological concentrations are presented by boring location with the uncertainty value associated with each reported concentration. The uncertainty is defined in DOE's Environmental Management Laboratory's *Procedure Manual* (HASL-300, 1997) as "The range of values within which the true value is estimated to lie. It is the best estimate of possible inaccuracy due to both random and systematic errors." Based on comparison of the radiological concentration, the uncertainty, and the data validation results, the significance of each result was qualified (i.e., not detected, detected estimated value) in the "qualifier" column next to each result in Table 2.

Table 3 has been generated from Table 2 to present only the positive detections of radioactivity in the newly collected background samples. To evaluate whether the newly collected background soil sample have been radiologically, and thus potentially chemically impacted by site activities, these radiological data were compared to two off-site soil

WVDP-493 Rev. 1 Page 9 of 33

samples (SSOOANW and SSOOBNW) collected on August 9, 1990, from one location in a pasture located two kilometers upwind and upgradient of the WVDP on Dutch Hill Road. The two samples were collected from depths of ground surface to six inches and from 12 to 18 inches. The radiological data from this off-site sampling location is reported in Table 3-2 of the WVDP soils characterization document WVDP-EIS-008. Table 3 provides a comparison of the analytical results from these two off-site locations with the positive detections of three samples from BH-38 and from the 15 samples collected from the five background soil borings for all comparable radiological parameters analyzed.

The data comparison shown in Table 3 indicates that only potassium-40 (K-40) and gross beta have detections in the new background data slightly higher than the maximum of the two off-site soil sample results for the radiological parameters analyzed for in both data sets. However, the gross beta concentrations observed in the new data were lower than the gross beta in BH-38. Although there is a difference in gross beta concentration between BH-38 and the off-site soil samples, in only the surface soil sample at BH-38 were there any detections of Sr-90 or cesium-137 (Cs-137), suggesting the gross beta detected in BH-38 is most likely not anthropogenic. This concentration of K-40, which occurs naturally in soils, is consistent amongst all of the newly collected background soil samples and only slightly above the off-site background.

Gross alpha and uranium-238 (U-238) were measured at detectable concentrations in all of the newly collected concentrations at levels below the maximum of the two off-site soil sample results. U-238 occurs abundantly in natural soils and is a contributor to the very low but detectable gross alpha result. There was one positive detection of Cs-137 in a borehole duplicate and two detections of Sr-90 in the newly collected background soil samples, all at levels below the two off-site background results. Nearly all of the new background soil samples contained very low but detectable levels of U-233/234 and U-235/236. These positive detections are not shown in Table 2 because the surface soil samples were not analyzed for these parameters. However, the observed uranium isotopic activity ratios in the new background soil samples are consistent with normal expected natural distribution ratios (Shlein et al., 1998).

Because of worldwide radioactivity fallout (surface background) and other natural daughter product influences (subsurface background), there are expected differences between the subsurface soils and the near-surface soils. These differences notwithstanding, either data set is useable as a background reference. Therefore, the six boreholes (excluding the surface soil sample at BH-38 taken in fill material in an area within the Cs-137-impacted surficial area identified in previous investigations) appear to be representative of conditions indicating no impact from WVDP activities.

4.2.2 Metals Data

A total of 15 soil samples, including one duplicate sample, were collected from five Geoprobe[®] boring locations (see Figure 3) for metals analyses during this investigation. A summary of the metals analytical results is presented in Tables 4 and 5, and the laboratory reports are available upon request.

The tables also include the data from borehole BH-38 installed in 1993 as an initial north plateau background subsurface soil sampling location. The BH-38 metals data set was reviewed in comparison to the current background soil sampling program data.

As presented in Section 3.2, a total of 10 soil samples from the S&G unit were collected, both from the previous RFI activities (one sample), and this background soil characterization effort (nine samples). The analytical data associated with these 10 samples are presented in Table 4. The laboratory reports are not presented in this document based on the volume of paperwork, but are available upon request. The last WVDP-493 Rev. 1 Page 10 of 33

column of Table 4 identifies the maximum reported concentration for a given analyte from the S&G unit samples.

A total of seven soil samples were evaluated from the ULT: one sample from the previous RFI activities and six samples from the current background soil characterization effort. The analytical data associated with these seven samples are presented in Table 5 and the laboratory reports are available upon request. The last column of Table 5 identifies the maximum reported concentration for a given analyte from the ULT unit samples.

Table 6 presents the maximum reported concentrations for the S&G and ULT units, as summarized in Tables 4 and 5, respectively. As such, Table 6 presents the site-specific background metals concentrations for the S&G and ULT units at the WVDP.

4.3 Data Validation

In accordance with the SAP, metals and radiological analytical data packages were validated by URS, in accordance with EM-108 and EM-74 procedures for inorganics (e.g., metals) and radiological sample analyses, respectively. The data validation process included review of laboratory data documentation as follows:

- completeness;
- holding time compliance;
- QC data (blank, surrogates, recoveries, laboratory controls, etc.);
- system performance; and
- data qualifier assessment.

The data validation reports are available upon request.

During the review process, laboratory qualified and unqualified data were verified against the supporting documentation. Based on this review, additional qualifier codes were entered into the ELIMS and added to the data summary tables (Tables 2 through 5) that may not be present on the final data packages received from the analytical laboratory.

5.0 SUMMARY AND CONCLUSIONS

5.1 Radiological Background Data

Radiological data generated for the background soil characterization effort were compared to offsite soil sample radiological data. The off-site samples were collected from property on Dutch Hill Road, located upwind and upgradient to the WVDP. The two of-site soil samples were collected from depths of ground surface to six inches and from 12 to 18 inches. The data radiological evaluation focused on radionuclides common to both data sets to evaluate if significant differences existed to then determine if the background samples were impacted by site activities.

The comparison indicated that a majority of the radiological parameters (six of the nine evaluated in Table 3) were below off-site soil levels. For those parameters that were greater than off-site soil, principally gross beta and K-40, the concentrations were slightly less than an order of magnitude higher. These differences may be attributed to worldwide fallout (e.g., gross alpha and beta) and the heterogeneity of soils associated with naturally occurring radionuclides (e.g., K-40). Therefore, the six boreholes (excluding the BH-38 0'-2' sample taken in fill material) were determined to be comparable to off-site conditions thereby indicating no impact from WVDP activities.

WVDP-493 Rev. 1 Page 11 of 33

5.2 Metals Background Data

To provide analytical data that are not impacted by site activities, five upgradient and upwind sampling locations were identified in the SAP. Radiological data were compared to off-site data to determine whether radiological impacts were present in the background soil borings. As presented above, the background radiological data indicate that the tested background sample locations are not impacted by site activities and the resultant metals data would be representative of background soil conditions. The analytical data generated for the background soil characterization program were validated by URS personnel. All data were determined to be useable and representative for the project. The maximum detectable metals concentrations for the S&G and ULT units, as presented in Table 6, are proposed as site-specific background concentrations for the WVDP.

6.0 <u>REFERENCES</u>

New York State Department of Environmental Conservation, January 24, 1994. Division of Environmental Remediation. Technical and Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Clean-up Objectives and Cleanup Levels.

Schlein, B., Slaback, L.A., and Birky, B.K., 1998. Handbook of Health Physics and Radiological Health, Third Ed., Baltimore, MD, Table 12.25.

URS Group, Inc., 2003. Environmental Sample Receipt, Handling, Storage, Packing and Shipment. EM-52.

_____. 2004. Radioanalytical Data Validation. EM-74.

_____. 2006. Data Validation. EM-108.

_____. 2007. Drilling, Soil Sampling and Geologic Logging Procedures. EM-500.

_____. 2007. Quality Assurance Plan. EM-109.

U.S. Department of Energy. Environmental Management Laboratory, 1997, Procedure Manual. HASL-300.

West Valley Nuclear Services Company, Inc. 1993. West Valley Demonstration Project Facility Investigation Work Plan, WVDP-EIS-014.

______. 1994. Environmental Information Document, Volume IV, Soil Characterization, WVDP-EIS-008.

______. 1995. Subsurface Probing Investigation on the North Plateau at the West Valley Demonstration Project, WVDP-220.

______. 1998. 1998 Geoprobe[®] Investigation of the Core Area of the North Plateau Groundwater Plume, WVDP-346.

_____. 2006. WVDP Radiological Controls Manual, WVDP-010.

_____. 2007. Corrective Measures Study Work Plan for the West Valley Demonstration Project. WVDP-462.

_____. 2007. Preparing Environmental Monitoring Program Reports, EMP-109.

______. 2008. Performing Routine Radiological Control Technician Tasks, RC-ADM-22.

_____. 2008. Sampling and Analyses Plan for Background Subsurface Soil Data on the North Plateau, WVDP-466.

WVDP-493 Rev. 1 Page 12 of 33

_____ and Dames and Moore, 1996. Resource Conservation and Recovery Act Facility Investigation Report Volume 6, Low–level Waste Storage Area, WVDP-RFI-022.

_____. 1998. 1997 Geoprobe[®] Investigation of the North Plateau at the West Valley Demonstration Project, WVDP-298.

WVDP-493 Rev. 1 Page 13 of 33

TABLES

WVDP-493 Rev. 1 Page 14 of 33

Boring Location	Ground Surface Elevation (feet)	Top of Sand & Gravel Elevation (feet)	Sand & Gravel Thickness (feet)	Sand & Gravel Sampling Intervals	Top of Unweathered Lavery Till Elevation (feet)	Unweathered Lavery Till Sampling Intervals
GPBG01-08	1430.79	1430.79*	10.5*	4–6' 6–8' 8–10'	1420.29	No ULT Sample
GPBG02-08	1403.81	1403.81*	3.42*	No S&G Sample	1400.39	3–5' 5–7' (**)
GPBG03-08	1423.79	1423.79*	28.42*	5–7' 13–15'	1395.37	28–30'
GPBG04-08	1405.76	1405.76*	18.50*	5–7' 13–15'	1387.26	19–25'
GPBG05-08	1395.68	1395.68	7.5	5–7' 7–8'	1388.18	8–11'

Table 1. Geoprobe[®] Soil Boring Summary

Notes:

* Includes reworked near surface soils ** Duplicate sample also collected at this depth and location

WVDP-493 Rev. 1 Page 15 of 33

Boring ID	GPBG01-08		GPBG01-08		GPBG01-08		GPBG02-08		GPBG02-08	
Sample Depth	4'6'		6'-8'		8'-10'		3'–5'		5'-7'	
Geologic Unit	Reworked Sand & Gravel		Sand & Gravel		Sand & Gravel		Unweathered Lavery Till		Unweathered Lavery Till	
Analyte	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Gross Beta	2.50E+01±4.19E+00		2.11E+01±4.05E+00		2.04E+01±3.09E+00		3.00E+01±3.73E+00		3.22E+01±4.94E+00	
Gross Alpha	9.97E+00±4.46E+00	J	1.00E+01±4.61E+00	J	1.34E+01±4.28E+00	J	1.09E+01±3.93E+00	J	9.08E+00±4.39E+00	J
H-3	1.45E+00±4.24E+00	ND	1.09E+00±4.33E+00	ND	3.85E+00±4.43E+00	ND	1.84E+00±4.88E+00	ND	-8.52E-1±4.66E+00	ND
C-14	1.31E-01±1.01E-01	ND	-1.48E-01±9.44E-02	ND	-2.12E-01±9.40E-02	ND	-1.11E-01±9.56E-02	ND	-1.67E-01±9.53E-02	ND
Sr-90	1.49E-02±1.79E-02	ND	-1.37E-03±2.00E-02	ND	2.36E-02±2.39E-02	ND	-1.83E-03±1.37E-02	ND	-1.12E-03±1.18E-02	ND
Tc-99	-2.08E-01±3.83E-01	ND	-7.58E-02±3.22E-01	ND	-3.97E-01±3.91E-01	ND	-3.32E-01±2.99E-01	ND	-2.47E-01±3.56E-01	ND
I-129	-9.56E-02±2.03E-01	ND	-2.20E-01±2.35E-01	ND	1.57E-01±2.41E-01	ND	1.04E-02±2.19E-01	ND	-9.64E-02±2.00E-01	ND
K-40	2.11E+01±1.68E+00		1.78E+01±1.48E+00		2.12E+01±1.79E+00		2.67E+01±2.11E+00		2.16E+01±2.04E+00	
Co-60	-4.47E-03±2.77E-02	ND	-6.17E-03±2.92E-02	ND	-3.72E-03±2.94E-02	ND	1.82E-02±2.47E-02	ND	-1.99E-02±3.07E-02	ND
Cs-137	-4.42E-03±2.51E-02	ND	-1.28E-02±2.55E-02	ND	-9.52E-03±2.90E-02	ND	-1.34E-02±2.21E-02	ND	1.18E-02±2.74E-02	ND
Eu-154	1.26E-02±8.94E-02	ND	-1.31E-02±8.09E-02	ND	5.30E-02±1.01E-01	ND	6.19E-02±7.43E-02	ND	-9.51E-02±9.07E-02	ND
U-233/234	8.74E-01±1.40E-01		7.15E-01±1.11E-01		8.59E-01±1.25E-01		8.25E-01±1.35E-01		7.86E-01±1.36E-01	
U-235/236	2.85E-02±3.18E-02	ND	8.57E-02±3.86E-02		1.17E-01±4.60E-02		7.53E-02±4.56E-02	J	8.64E-03±2.64E-02	ND
U-238	9.28E-01±1.43E-01		8.75E-01±1.23E-01		9.20E-01±1.29E-01		9.45E-01±1.44E-01		7.01E-01±1.30E-01	
Np-237	3.34E-03±1.24E-02	ND	-1.83E-03±9.47E-03	ND	1.63E-03±1.24E-02	ND	-1.14E-02±1.17E-02	ND	-1.94E-03±8.35E-03	ND
Pu-239/240	1.66E-02±1.87E-02	ND	-3.22E-03±9.50E-03	ND	0.00E+00±1.04E-02	ND	8.82E-03±1.41E-02	ND	3.28E-03±8.69E-03	ND
Pu-241	-4.50E-02±3.19E-01	ND	1.84E-02±3.28E-01	ND	-2.05E-02±3.64E-01	ND	-2.14E-01±3.86E-01	ND	-1.69E-01±3.30E-01	ND
Am-241	-8.10E-03±1.13E-02	ND	-1.30E-03±1.11E-02	ND	-8.23E-03±1.22E-02	ND	-6.50E-03±1.11E-02	ND	-5.35E-03±9.58E-03	ND
Cm-244	2.83E-03±1.13E-02	ND	0.00E+00±1.08E-02	ND	-1.42E-03±1.19E-02	ND	2.60E-03±1.04E-02	ND	4.90E-03±9.60E-03	ND

Table 2. Soil Analytical Data Summary – Radiological Constituents

Notes:

(1) All results reported in picocuries per gram (pCi/g).(2) ND: Not detected

(3) J: Estimated concentration

(4) Q: Qualifier

WVDP-493 Rev. 1 Page 16 of 33

Boring ID	GPBG02-08 DUPLIC/	٩ΤΕ	GPBG03-08		GPBG03-08		GPBG03-08		GPBG04-08	
Sample Depth	5'-7'		5'-7'		13'–15'		28'-30'		5'-7'	
Geologic Unit	Unweathered Lavery	Till	Sand & Gravel		Sand & Gravel		Unweathered Lavery Till		Sand & Gravel	
Analyte	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Gross Beta	3.57E+01±5.01E+00		1.50E+01±3.33E+00		2.68E+01±4.38E+00		2.20E+01±3.85E+00		2.71E+01±4.18E+00	
Gross Alpha	1.36E+01±5.49E+00	J	1.44E+01±5.28E+00	J	7.74E+00±4.08E+00	J	7.22E+00±4.04E+00	J	1.69E+01±5.39E+00	J
H-3	2.62E+00±4.44E+00	ND	4.28E-01±4.72E+00	ND	-4.21E-1±4.62E+00	ND	2.40E+00±4.78E+00	ND	2.83E+01±5.51E+00	
C-14	-1.87E-01±9.81E-02	ND	9.11E-02±1.00E-01	ND	1.54E-01±1.19E-01	ND	8.25E-02±1.18E-01	ND	5.74E-02±1.14E-01	ND
Sr-90	1.29E-02±1.70E-02	ND	-1.10E-02±1.78E-02	ND	1.30E-03±1.28E-02	ND	-8.07E-03±2.22E-02	ND	1.89E-02±2.38E-02	ND
Tc-99	-4.21E-02±2.85E-01	ND	-3.79E-01±5.48E-01	ND	2.59E-01±4.40E-01	ND	-2.69E-01±3.94E-01	ND	4.17E-01±4.99E-01	ND
I-129	7.20E-03±2.28E-01	ND	1.87E-01±2.21E-01	ND	6.81E-02±1.85E-01	ND	1.93E-01±1.80E-01	ND	5.17E-02±2.06E-01	ND
K-40	2.21E+01±1.35E+00		1.40E+01±1.13E+00		1.92E+01±1.64E+00		2.06E+01±1.85E+00		1.80E+01±1.38E+00	
Co-60	1.30E-02±1.03E-02	ND	5.66E-03±2.42E-02	ND	-1.50E-02±2.85E-02	ND	1.01E-02±2.53E-02	ND	-1.47E-02±1.89E-02	ND
Cs-137	2.87E-01±3.93E-02		-2.40E-02±2.56E-02	ND	1.23E-03±2.52E-02	ND	-1.30E-02±2.30E-02	ND	3.72E-03±1.79E-02	ND
Eu-154	-2.64E-02±3.30E-02	ND	-5.14E-02±7.42E-02	ND	3.22E-02±8.53E-02	ND	-6.41E-02±7.78E-02	ND	-1.49E-02±5.94E-02	ND
U-233/234	7.72E-01±1.39E-01		8.01E-01±1.39E-01		8.41E-01±1.38E-01		9.02E-01±1.43E-01		8.80E-01±1.31E-01	
U-235/236	3.28E-02±2.88E-02	J	2.90E-02±3.23E-02	ND	8.55E-02±4.33E-02	J	9.63E-02±4.75E-02		7.77E-02±3.96E-02	J
U-238	9.85E-01±1.58E-01		9.87E-01±1.50E-01		8.95E-01±1.41E-01		9.23E-01±1.44E-01		8.53E-01±1.28E-01	
Np-237	-3.18E-03±9.39E-03	ND	-3.05E-03±8.98E-03	ND	3.15E-03±8.36E-03	ND	4.10E-03±8.04E-03	ND	3.22E-03±8.54E-03	ND
Pu-239/240	4.28E-03±8.38E-03	ND	-1.74E-03±7.49E-03	ND	7.63E-03±1.22E-02	ND	-2.74E-03±1.18E-02	ND	-3.49E-03±1.50E-02	ND
Pu-241	7.35E-02±4.38E-01	ND	-1.43E-01±3.15E-01	ND	-8.15E-02±4.82E-01	ND	-4.47E-02±3.53E-01	ND	-1.80E-01±3.33E-01	ND
Am-241	5.41E-03±1.07E-02	ND	-5.43E-03±1.04E-02	ND	-6.55E-03±9.68E-03	ND	6.62E-03±1.24E-02	ND	-9.80E-03±1.27E-02	ND
Cm-244	4.14E-03±1.10E-02	ND	-1.28E-03±1.08E-02	ND	1.47E-02±1.94E-02	ND	-4.36E-03±1.29E-02	ND	-4.31E-03±1.27E-02	ND

Table 2. Soil Analytical Data Summary – Radiological Constituents (continued)

Notes:

(1) All results reported in picocuries per gram (pCi/g).(2) ND: Not detected

(3) J: Estimated concentration(4) Q: Qualifier

WVDP-493 Rev. 1 Page 17 of 33

Boring ID	GPBG04-08		GPBG04-08		GPBG05-08		GPBG05-08		GPBG05-08	
Sample Depth	13'–15'		19'–25'		5'-7'		7'-8'		8'–11'	
Geologic Unit	Sand & Gravel		Unweathered Lavery	Till	Sand & Gravel		Sand & Gravel		Unweathered Lavery Till	
Analyte	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Gross Beta	1.88E+01±4.01E+00		3.58E+01±4.22E+00		2.24E+01±3.44E+00		3.38E+01±4.60E+00		3.14E+01±4.31E+00	
Gross Alpha	8.44E+00±4.34E+00	J	1.29E+01±4.64E+00	J	1.22E+01±4.06E+00	J	1.07E+01±4.30E+00	J	1.31E+01±4.61E+00	J
H-3	2.70E+00±4.72E+00	ND	2.97E+00±4.75E+00	ND	5.24E+00±4.47E+00	ND	1.20E+00±4.13E+00	ND	1.37E+00±4.39E+00	ND
C-14	-6.81E-02±1.14E-01	ND	2.32E-01±1.20E-01	J	2.04E-01±4.70E-01	ND	-1.01E+00±4.56E-01	ND	-8.30E-01±4.46E-01	ND
Sr-90	-4.99E-03±2.01E-02	ND	5.90E-03±2.76E-02	ND	1.24E-01±2.78E-02		3.13E-02±1.89E-02		-2.68E-03±1.20E-02	ND
Tc-99	1.72E-01±4.90E-01	ND	1.85E-01±3.77E-01	ND	-5.85E-01±9.13E-01	ND	-3.29E-01±9.65E-01	ND	-5.14E-01±8.62E-01	ND
I-129	1.39E-01±1.67E-01	ND	-1.28E-01±1.98E-01	ND	-8.72E-02±1.76E-01	ND	-1.06E-01±1.71E-01	ND	-8.92E-02±1.95E-01	ND
K-40	1.61E+01±1.40E+00		2.67E+01±2.62E+00		2.11E+01±1.54E+00		2.67E+01±1.91E+00		2.66E+01±2.08E+00	
Co-60	7.95E-03±2.39E-02	ND	2.93E-02±2.56E-02	ND	5.96E-03±2.18E-02	ND	9.64E-03±2.69E-02	ND	2.91E-03±2.49E-02	ND
Cs-137	-1.69E-02±2.08E-02	ND	1.82E-02±2.76E-02	ND	-2.04E-02±1.80E-02	ND	-2.80E-03±2.42E-02	ND	-1.51E-02±2.05E-02	ND
Eu-154	1.16E-02±7.26E-02	ND	3.36E-02±9.07E-02	ND	3.22E-03±6.33E-02	ND	-1.11E-01±8.68E-02	ND	-3.08E-02±7.42E-02	ND
U-233/234	7.80E-01±1.35E-01		1.08E+00±1.50E-01		6.83E-01±1.15E-01		7.79E-01±1.25E-01		8.94E-01±1.39E-01	
U-235/236	3.60E-02±3.23E-02	ND	4.89E-02±3.45E-02	J	3.20E-02±3.11E-02	ND	7.68E-02±4.08E-02		9.22E-02±4.75E-02	
U-238	7.98E-01±1.36E-01		1.11E+00±1.53E-01		6.63E-01±1.14E-01		8.50E-01±1.31E-01		8.94E-01±1.40E-01	
Np-237	3.99E-03±7.82E-03	ND	-5.01E-03±9.28E-03	ND	-2.97E-03±8.77E-03	ND	-1.97E-03±8.50E-03	ND	0.00E+00±1.91E-02	ND
Pu-239/240	-3.77E-03±1.11E-02	ND	-9.94E-04±8.35E-03	ND	1.07E-02±1.85E-02	ND	-4.57E-03±1.03E-02	ND	-1.10E-03±9.24E-03	ND
Pu-241	-1.99E-01±3.32E-01	ND	-2.08E-01±5.07E-01	ND	2.47E-02±2.94E-01	ND	-9.28E-02±3.45E-01	ND	-5.99E-01±7.48E-01	ND
Am-241	-6.44E-03±1.12E-02	ND	-1.57E-04±1.04E-02	ND	3.52E-03±1.26E-02	ND	-2.69E-03±1.11E-02	ND	-1.50E-03±1.04E-02	ND
Cm-244	-2.42E-03±1.04E-02	ND	5.31E-03±1.04E-02	ND	-1.42E-03±1.19E-02	ND	-2.58E-03±1.11E-02	ND	1.03E-02±1.43E-02	ND

Table 2. Soil Analytical Data Summary – Radiological Constituents (continued)

Notes:

(1) All results reported in picocuries per gram (pCi/g).(2) ND: Not detected

(3) J: Estimated concentration

(4) Q: Qualifier

WVDP-493 Rev. 1 Page 18 of 33

Boring ID	BH38		BH38		BH38		
Sample Depth	0'-2'		12'-14'		26'-28'		
Geologic Unit	Fill		Sand & Gravel		Unweathered Lavery Till		
Analyte	Result	Q	Result	Q	Result	Q	
Gross Beta	7.10E+01±4.00E+00		6.10E+01±4.00E+00		5.50E+01±4.00E+00		
Gross Alpha	4.80E+00±4.70E+00		1.30E+01±6.00E+00		1.40E+01±6.00E+00		
H-3	Not Analyzed		Not Analyzed		Not Analyzed		
C-14	Not Analyzed		Not Analyzed		Not Analyzed		
Sr-90	8.20E-01±8.00E-02		2.50E-02±2.90E-02	ND	2.50E-02±2.70E-02	ND	
Tc-99	Not Analyzed		Not Analyzed		Not Analyzed		
I-129	Not Analyzed		Not Analyzed		Not Analyzed		
K-40	Not Analyzed		Not Analyzed		Not Analyzed		
Co-60	Not Analyzed		Not Analyzed		Not Analyzed		
Cs-137	1.10E+01±1.00E+00		1.30E-02±2.70E-02	ND	2.30E-02±2.40E-02	ND	
Eu-154	Not Analyzed		Not Analyzed		Not Analyzed		
U-233/234	1.90E-01±4.00E-02		1.30E-01±3.00E-02		1.70E-01±3.00E-02		
U-235/236	1.04E-02±8.78E-03		7.62E-03±9.05E-03	ND	1.14E-02±9.74E-03		
U-238	1.10E-01±3.00E-02		1.00E-01±3.00E-02		1.30E-01±3.00E-02		
Np-237	Not Analyzed		Not Analyzed		Not Analyzed		
Pu-239/240	1.60E-01±4.00E-02		4.30E-04±4.25E-03	ND	1.80E-03±1.83E-02	ND	
Pu-241	2.10E-00±1.50E+00		6.40E-01±9.80E-01	ND	-1.40E+00±5.30E+00	ND	
Am-241	3.70E-01±8.00E-02		7.70E-04±7.73E-03	ND	8.20E-04±8.19E-03	ND	
Cm-244	Not Analyzed		Not Analyzed		Not Analyzed		

Table 2. Soil Analytical Data Summary – Radiological Constituents (concluded)

Notes:

(1) All results reported in picocuries per gram (pCi/g).(2) ND: Not detected.

(3) J: Estimated concentration(4) Q: Qualifier

WVDP-493 Rev. 1 Page 19 of 33

Table 3. Soil Analytical Data Summary of Positive Detections – Radiological Constituent Comparison

Sample Location	SSOOANW	SSOOBNW	GPBG01-08	GPBG01-08	GPBG01-08	GPBG02-08	GPBG02-08	GPBG0208DUP	GPBG03-08
Sample Depth	0—6"	6–18"	4'-6'	6'-8'	8–10'	3'–5'	5'-7'	5'-7'	5'-7'
Analyte	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g
Gross Beta	1.91E+01	1.39E+01	2.50E+01	2.11E+01	2.04E+01	3.00E+01	3.22E+01	3.57E+01	1.50E+01
Gross Alpha	9.61E+00	1.71E+01	9.97E+00	1.00E+01	1.34E+01	1.09E+01	9.08E+00	1.36E+01	1.44E+01
Sr-90	6.04E-01	1.86E+00							
K-40	1.43E+01	1.31E+01	2.11E+01	1.78E+01	2.12E+01	2.67E+01	2.16E+01	2.21E+01	1.40E+01
Co-60	<4.5E-02	<4.4E-02							
Cs-137	4.12E-01	4.79E-02						2.87E-01	
U-238	1.36E+00	1.01E+00	9.28E-01	8.75E-01	9.20E-01	9.45E-01	7.01E-01	9.85E-01	9.87E-01
Pu-239/240	<2.5E-02	<5.7E-02							
Am-241	3.88E-01	9.45E-02							
<u>.</u>									

Sample Location	SSOOANW	SSOOBNW	GPBG03-08	GPBG03-08	GPBG04-08	GPBG04-08	GPBG04-08	GPBG05-08	GPBG05-08
Sample Depth	0–6"	6–18"	13–15'	28–30'	5–7'	13–15'	19–25'	5–7'	7–8'
Analyte	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g
Gross Beta	1.91E+01	1.39E+01	2.68E+01	2.20E+01	2.71E+01	1.88E+01	3.58E+01	2.24E+01	3.38E+01
Gross Alpha	9.61E+00	1.71E+01	7.74E+00	7.22E+00	1.69E+01	8.44E+00	1.29E+01	1.22E+01	1.07E+01
Sr-90	6.04E-01	1.86E+00						1.24E-01	3.13E-02
K-40	1.43E+01	1.31E+01	1.92E+01	2.06E+01	1.80E+01	1.61E+01	2.67E+01	2.11E+01	2.67E+01
Co-60	<4.5E-02	<4.4E-02							
Cs-137	4.12E-01	4.79E-02							
U-238	1.36E+00	1.01E+00	8.95E-01	9.23E-01	8.53E-01	7.98E-01	1.11E+00	6.63E-01	8.50E-01
Pu-239/240	<2.5E-02	<5.7E-02							
Am-241	3.88E-01	9.45E-02							

Notes:

(1) All results reported in picocuries per gram (pCi/g).(2) Not detected.

WVDP-493 Rev. 1 Page 20 of 33

Table 3. Soil Analytical Data Summary of Positive Detections – Radiological Constituent Comparison (concluded)

Sample Location	SSOOANW	SSOOBNW	GPBG05-08	BH-38	BH-38	BH-38
Sample Depth	0—6"	6–18"	8–11'	0'-2'	12'–14'	26'–28'
Analyte	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g
Gross Beta	1.91E+01	1.39E+01	3.14E+01	7.10E+01	6.10E+01	5.50E+01
Gross Alpha	9.61E+00	1.71E+01	1.31E+01	4.80E+00	1.30E+01	1.40E+01
Sr-90	6.04E-01	1.86E+00		8.20E-01		
K-40	1.43E+01	1.31E+01	2.66E+01			
Co-60	<4.5E-02	<4.4E-02				
Cs-137	4.12E-01	4.79E-02		1.10E+01		
U-238	1.36E+00	1.01E+00	8.94E-01	1.10E-01	1.00E-01	1.30E-01
Pu-239/240	<2.5E-02	<5.7E-02		1.60E-01		
Am-241	3.88E-01	9.45E-02		3.70E-01		

Notes:

(1) All results reported in picocuries per gram (pCi/g).(2) ND: Not detected.

WVDP-493 Rev. 1 Page 21 of 33

Sample Location		GPBG0108		GPB	G0308	GPBC	G0408	GPBG050		BH-38	Maximum
Sample Depth	4–6'	6–8'	8–10'	5–7'	13–15'	5–7'	13–15'	5–7'	7–8'	12–14'	Concentration
Sample ID	2008-04811	2008-04809	2008-04807	2008-04819	2008-04821	2008-04825	2008-04827	2008-04831	2008-04833	RFI-00397	Reported
Aluminum	11,100	9,970	15,400	13,900	9,820	10,400	12,800	7,410	12,200	12,500	15,400
Antimony	0.553 J	0.967 J	0.883 J	0.946 J	0.536 J	0.903 J	0.585 J	0.982 J	1.7 J	2.04	2.04
Arsenic	11	11.6	8.8	10.1	12.5	8.15	11.4	8.88	7.03	6.06	12.5
Barium	110 J	77.1 J	110 J	38.9 J	65.8 J	49.7 J	107 J	62.8	108	139	139
Beryllium	0.679	0.54	0.814	0.658	0.585	0.454 J	0.788	0.38 J	0.644	0.602	0.814
Cadmium	0.382 J	0.269 J	0.533 J	0.259 J	0.453 J	0.279 J	0.282 J	<0.108	<0.111	<0.226	0.533 J
Calcium	2,180	1,810	25,000	1,450	1,230	977	8,850	4,670	25,300	17,400	25,300
Chromium	14.2 J	11.8 J	21.8 J	17 J	12.9 J	11 J	16.8 J	9.86	17.6	NE	21.8 J
Cobalt	8.19	9.16	13.4	9.75	8.19	7.04	10.6	5.94	9.94	11.2	13.4
Copper	32.8	21.6	26	24.6	33.1	19.6	26.5	23.2	25.8	24.8	33.1
Iron	26,400	23,600	29,400	27,200	28,000	22,800	29,100	19,700	27,300	26,800	29,400
Lead	26.5	30.9	13.3	16.9	24.5	28.1	12.7	19.1	11.8	14.0	30.9
Magnesium	3,410	3,120	8,910	4,480	3,710	3,500	6,660	2,830	7,460	6,050	8,910
Manganese	463	740	339	451	846	487	328	494	361	486	846
Mercury	0.0131	0.00767 J	0.0109 J	0.0153	0.0146	0.00812 J	0.00503 J	0.00555 J	0.0106 J	0.02	0.02
Nickel	20.1 J	19.5 J	37.3 J	26.1 J	21.8 J	18.2 J	26.2 J	15.7	28.6	27.0	37.3 J
Potassium	773 J	856	1,860 J	1,020 J	849 J	720 J	1,150 J	736 J	1,340 J	1,700	1,860 J
Selenium	4.4	3.2	0.574	8.2	6	5.3	8.8	3.95 J	1.16	<0.107	8.8
Silver	0.5 J	0.621	0.134 J	0.226 J	<0.112	<0.11	<0.106	0.157 J	<0.111	<0.339	0.621
Sodium	331	308	143	39.3	63	90.7	106	97.7	113	76.0	331
Thallium	0.143 J	0.205 J	0.256 J	0.109 J	0.157 J	0.135	0.141 J	0.137 J	0.308 J	<0.107	0.308 J
Vanadium	14.5	15.8	20.9	13.8	14.9	15.5	15.5	14.8	25.3	16.9	25.3
Zinc	99.7 J	65 J	70.2 J	82.6 J	94.2 J	66.1 J	81.9 J	61.8	68.9	80.0	99.7 J

Table 4. Soil Analytical Data Summary – Metal Constituents – Sand & Gravel Unit

Notes:

(1) All values shown in milligrams per kilogram or parts per million.

(2) Borehole BH-38 installed on October 26, 1993 to establish background soil conditions in the north plateau area of the WVDP site in support of the RCRA Facility Investigation process, as reported in WVDP-RFI-022.

(3) Laboratory analyses for metal constituents from samples from the 2008 Geoprobe borings were performed by GEL Laboratories LLC, Charleston, South Carolina under SW-846 protocols.

(4) J = reported value is less than the CRQL but greater than or equal to the MDL.

WVDP-493 Rev. 1 Page 22 of 33

Sample Location		GPBG0208		GPBG0308	GPBG0408	GPBG0508	BH-38	Maximum
Sample Depth	3–5'	5–7'	5–7' DUP	28–30'	19–25'	8–11'	26–28'	Concentration
Sample ID	2008-04813	2008-04815	2008-04837	2008-04823	2008-04829	2008-04835	RFI-00670	Reported
Aluminum	5,490 J	14,000	13,300 J	9,140	9,980	12,700	14,000	14,000
Antimony	<0.363	0.907 J	1.28	<0.345	0.873 J	1.3 J	2.28	2.28
Arsenic	9.12	8.46	6.67	10	9.08	9.58	5.09	10
Barium	29.2 J	98.2 J	81.6 J	71.7 J	71.7 J	114	15.1	114
Beryllium	0.314 J	0.744	0.653	0.521 J	0.558 J	0.724	0.691	0.744
Cadmium	0.186 J	0.483 J	0.432 J	0.3 J	0.462 J	<0.111	<0.247	0.483 J
Calcium	30,000	29,800	32,500	23,700	57,600	27,200	29,400	57,600
Chromium	8.05 J	20.2 J	17.3 J	14.3 J	16.6 J	19.4	NE	20.2 J
Cobalt	5.53 J	12.1	11.2 J	8.93	10.1	13.7	13.2	13.7
Copper	19.1	26.7	24.1	26.4	26.1	30	23.5	30
Iron	15,600 J	27,700	25,700 J	23,100	25,400	30,700	28,000	30,700
Lead	10.4	14.4	13.2	12.6	12.5	14.5	16.7	16.7
Magnesium	10,500	10,900	10,800	9,320	10,400	9,010	10,800	10,900
Manganese	310	438	399	380	484	435	433	484
Mercury	0.0134	0.00837 J	0.0126	0.00463 J	0.0126	0.00955 J	0.0212	0.0212
Nickel	13.6 J	32.9 J	29.5 J	23.1 J	27.6 J	34.5	32.6	32.9 J
Potassium	885 J	1,920 J	1,730 J	1,340 J	1,550 J	1,500 J	2,580	2,980
Selenium	5.4 J	6.2	0.99 J	7.2	4.1	1.58 J	<0.125	7.2
Silver	0.212 J	0.14 J	0.36 J	0.449 J	<0.121	0.174 J	<0.370	0.449 J
Sodium	101	122	113	101	150	125	127	150
Thallium	0.225 J	0.313 J	0.268 J	0.226 J	0.27 J	0.3255	<0.125	0.313 J
Vanadium	13.5 J	26.4	27.3 J	17.3	18.5	29.1	20.9	27.3 J
Zinc	40.6 J	65.8 J	61.3 J	74.3 J	56.9 J	76.4	65.8	76.4

Table 5. Soil Analytical Data Summary – Metal Constituents – Unweathered Lavery Till

Notes:

(1) All values shown in milligrams per kilogram or parts per million.

(2) Borehole BH-38 installed on October 26, 1993 to establish background soil conditions in the north plateau area of the WVDP site in support of the RCRA Facility Investigation process, as reported in WVDP-RFI-022.

(3) Laboratory analyses for metal constituents from samples from the 2008 Geoprobe borings were performed by GEL Laboratories LLC, Charleston, SC under SW-846 protocols.

(4) J = reported value is less than the CRQL but greater than or equal to the MDL.

Table 6. Soil Analytical Data Summary – Proposed Site-Specific Background Metal Concentrations

Analyte	Sand & Gravel Unit	Unweathered Lavery Till Unit
-	Site-Specific	Site-Specific
	Concentration	Concentration
Aluminum	15,400	14,000
Antimony	2.04	2.28
Arsenic	12.5	10
Barium	139	114
Beryllium	0.814	0.744
Cadmium	0.533	0.483
Calcium	25,300	57,600
Chromium	21.8	20.2
Cobalt	13.4	13.7
Copper	33.1	30
Iron	29,400	30,700
Lead	30.9	16.7
Magnesium	8,910	10,900
Manganese	846	484
Mercury	0.02	0.0212
Nickel	37.3	32.9
Potassium	1,860	2,980
Selenium	8.8	7.2
Silver	0.621	0.449
Sodium	331	150
Thallium	0.308	0.313
Vanadium	25.3	27.3
Zinc	99.7	76.4

Note: All values shown in milligrams per kilogram or parts per million.

WVDP-493 Rev. 1 Page 24 of 33

FIGURES

WVDP-493 Rev. 1 Page 25 of 33

J:/GIS/ArcMap/North_Plateau/NP_GPbkg_Rpt/GPBkgRpt_Fig_1_WNYNSC.mxd, r.0 10/28/2008 AFS

WVDP-493 Rev. 1 Page 26 of 33

J:/GIS/ArcMap/North_Plateau/NP_GPbkg_Rpt/GPBkgRpt_Fig_3_SampLocs.mxd, r.1 11/18/2008 AFS

WVDP-493 Rev. 1 Page 28 of 33

> Appendix A Geoprobe Boring Logs

							UR	SB	OF	RIN	IG LOG		
WVDF CHAR	2008 NO	ORT ZATI	H PLA	TEAU	BA (66)	CKGR()	OUND SO	DILS			BORING NUMBER GPBG	05-08	}
CLIENT	:	WVE	S			PROJE	ECT # 39400-399 WELL NO: N/A						
DRILLIN	IG CONTR	АСТ	DR:	SJB Se	rvic	es, Inc.					BORING LOCATION: 892422.76		1129673.73
	GRO	UNDV	VATER				CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION: 1395.68' Above MSL	,	
DATE	TIME		LEV	/EL		TYPE		Geoprobe	-	-	DATE STARTED: 7/15/2008 12:50		
						DIA.		1"	-	-	DATE FINISHED: 7/15/2008 13:48		
						wт.	-		-	-	DRILLER: Matt Matthies		
						FALL	-		-	-	GEOLOGIST: Martin Regan/Jennifer Ki	elly	
							β/γb:	ackground =	100	cpm	REVIEWED BY: Francine Cohen/Alison S	steiner	
DEPTH								S/	AMPLE	DES	CRIPTION		
FEET	STRATA	NO	турғ	BLOW PER 6	/S ;"	REC				MATER	RIAL DESCRIPTION	PAD	
5.0.0.		1	GP		,	3	Dry Jaro	GRAVEL	Drv	arass i	n boring	BKG	GC
			01		_		Dry Silt	/ SAND 18	arde an	idular (GRAVEL	Ditto	00
		2	GP -			10		,,,		gala		BKG	GM
	9						Dry SAN	D and sm	aller G	RAVEI			0101
5		3	GP			10	, c				-	BKG	GP
J					_		Top 5" S	SAND and	GRAV	FL sor	me roots. Bottom 4" wet with some roots		
		4	GP		_	9	and a 1-	inch sized	weath	ered co	bble. Sample collected (5-7').	BKG	GW
					_		Top 6" S	aturated S	SAND	and as	sorted GRAVEL Next 12" Saturated brown-		
	_	5	GP		_	24	arav der	ise CLAY.	Sam	ile colle	acted (7-8').	BKG	SVV/GVV-
10	F						o i Dark ora	VCLAY s	ome si	mall Gi	ravel saturated (Top 4" sand and gravel		UL.
10	Ē	6	GP		_	22	fall-in fro	m shallow	er inte	rval.) S	ample collected (8-11').	BKG	CI.
					_							Dito	UL.
			'										
												<u> </u>	
15			'										
												<u> </u>	
			'										
20													
			'										
			'										
25													
30													
													
			,										
35													
icom	ments:												

Surface: Soil and Grass, tall Weeds. E.O.B. 11 ' B.G.S. Boring was backfilled with Bentonite to grade upon completion. All Radiological Meter readings NDA>BKG. All Organic Vapor Meter readings 0.0 ppm.

							UR	S B	OR	RIN	G LOG			
WVDP	2008 N	ORT	H PLA	TEA	U BA	CKGR	OUND S	DILS			GPBG)2-08		
CHAR	ACTERI	ZAT	ION (V	VVDF	- 466	5)					BORING NUMBER			
CLIENT	:	WVE	S			PROJE	ECT # 39400-399 WELL NO: N/A							
DRILLIN		ACT	OR:	SJB	Servic	ces, Inc.								
	GROL	JNDV	VATER				CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION: 1403.81' Above MSL			
DATE	TIME		LEV	'EL		TYPE		Geoprobe DATE STARTED: 7/15/2008 14:35						
						DIA.		1"	-	-	DATE FINISHED: 7/15/2008 15:05			
						WΤ.	-	DRILLER: Matt Matthies						
						FALL	-		-	-	GEOLOGIST: Martin Regan/Jennifer M	elly		
							β/γ ba	ckground =	100	cpm	REVIEWED BY: Francine Conen/Alison :	Steiner		
DEPTH		_				-		SA	MPLE	DESC	RIPTION			
FEET B.G.S.	STRATA	NO.	TYPE	BL(PE	DWS R 6"	REC (in)				MATER	RAL DESCRIPTION	RAD	USCS	
	D	1	GP			12	Brown C	LAY, som	e smal	l Grave	I. Boring soils include some dry grass and	BKG	CL	
	ist. S2						Damp d	av SII T ar	nd SAI	ND with	some Clay fine			
	ด็มาะ	2	GP			24	J.	-,				BKC	MLTCD	
	ed						Top 5" o	omo os ob	ava B	ottom (16" dady gray dapped CLAX, trace small	DNG	IVIL ' OF	
		З	GP			21	TOP 5 S	ame as ap Comple oo	uve. E Koofoa	0110m	to luark gray dense CLAY, trace small		ML+SP/	
5							yraver.	затріе со	necteu	(3-0).		BKG	CL	
		л	GP			15	Damp da	ark gray de	ense C	LAY. S	ample and duplicate collected (5-7') .			
		4										BKG	CL	
					ĺ									
10														
10						4								
15														
	ł													
	-					4								
20														
25	t l				İ	1	I							
							<u> </u>							
						1	I							
	\mathbf{H}													
	ļ						L							
30														
	t l				İ 👘	1	I							
		-			-									
95						1								
30 Com	monte				<u> </u>	L	L							

Surface: Soil and Tall Grass. E.O.B. 7 ' B.G.S. Boring was backfilled with Bentonite to grade upon completion. All Radiological Meter readings NDA>BKG. All Organic Vapor Meter readings 0.0 ppm.

WDP 2009 NORTH PLATEAU BACKGROWD SOILS CLEMT: DORING NUMBER GPBG03-08 CLEMT: WKS PR0JECT# 39400-399 WELL ND: N/A BULING CONTROM: NRSKes, hc. GROWD LCATOR: 1288736 DATE TIME LEVEL PR0JECT# 39400-399 WELL ND: N/A DATE TIME LEVEL TYPE Geoprote GROWD LCATOR: 1288736 DATE TIME LEVEL TYPE Geoprote GROWD LCATOR: 1288736 DETE TIME LEVEL TYPE Geoprote GROWD LCATOR: 1288736 GROWD NEWSTER VFPE TRES STATA No. TYPE FR04 V VALL V Catao GROWD REWSTERCE G								UK	RS B	OI	RIN	NG LOG		
CHARGE LERVEL WES PROJECT # 39400-399 DUNITY ROMBER Control to the control of the contre control of the control of the control of the cont	WVDP	2008 N				U BA	CKGR	OUND S	OILS				03-08	
Clerkin Control Subserves, inc. Borns Location Base Mathematication Base Mas		ACTERIA			WDP	-466		CT #	20400 20	0				
Induction Control (1923) Induction (1923)				<u>.s</u>	610.0	Forda	PROJE	CI#	39400-39	9		WELL NU: N/A		1128837.38
Date Time LEVEL Type Case Date Time Owner Tim	DRILLIF			JK: MATED	200 3	Servic	es, inc.	CAS		CODE	TUDE	CROUND ELEVATION: 1422 70' Above MSI		1120031.00
ONCL Time Left L Dital 1 Dital Transfer Dital Transfer Transfer 0 <td< td=""><td>DATE</td><td>TIME</td><td></td><td>VALEN</td><td>/E1</td><td></td><td>тупс</td><td>CAS.</td><td>Geoprobe</td><td>CORL</td><td>TODE</td><td>DATE STARTED: 7/14/2009 12:24</td><td></td><td></td></td<>	DATE	TIME		VALEN	/E1		тупс	CAS.	Geoprobe	CORL	TODE	DATE STARTED: 7/14/2009 12:24		
WT I	DATE	TINE		LEV	ICL .				1"	-	-	DATE STARTED: 7/14/2008 15:34		
FAL - - - - GEOLOGIST: Marbin Regandlernfer Kelly REVEREND BY: Francine Cohen/Alison Stener 0EPTH - - - - - - - - - REVEREND BY: Francine Cohen/Alison Stener 0EPTH SAMPLE DESCRPTION RAD uscs - - - - - - - - - - - - - - - REVEREND BY: Francine Cohen/Alison Stener 00000 10 GP 10 Brown Silty GRAVEL, some organics, reworked. EKG GM 00000 3 GP 14 Same as above. BKG GM - BKG GM 10 GP 15 Trace olay. Same as above. BKG SM SMG SMG SMG SMG GM SMG SMG GM - BKG SM SMG							WT.	_	'	_	-	DRILLER: Matt Matthies		
Image: Second							FALL	-		-	-	GEOLOGIST: Martin Regan/Jennifer Ke	llv	
OFFIN SAMPLE DESCRIPTION FEET NO. TYPE FRC [®] BLOWS (m) REC (m) MATERIAL DESCRIPTION RAD USCS 9.6.5 STRATA NO. TYPE FRC [®] (m) Brown Sitty SAND and GRAVEL, some organics, reworked. BKG GM 9.6.5 2 GP 10 Brown Sitty GRAVEL, fill material. BKG GM 5 3 GP 14 Same as above. BKG GM 5 GP 10 Top 4" same as above. Next 14" dry, Sitty SAND, large angular Gravel, trace clay. BKG SM 10 GP 15 Top 4" same as above. Next 14" dry, Sitty SAND, large angular Gravel, trace clay. BKG SM 10 GP 15 Top 4" same as above, hown, smaller angular Gravel, trace clay. BKG SM 10 GP 18 Top 8" same as above, saturated, with rounded, assorted pebbles BKG SM-GW 11 GP 18 Top 12" Same as above, saturated, smaller Gravel, some larger Gravel, trace clay. BKG SM-GW 10 GP 14 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>j β/γp</td> <td>ackground =</td> <td>56</td> <td>com</td> <td>REVIEWED BY: Francine Cohen/Alison St</td> <td>teiner</td> <td></td>								j β/γp	ackground =	56	com	REVIEWED BY: Francine Cohen/Alison St	teiner	
FEET STRATA NO. TYPE BLOWS PER 6* REC (m) MATERIAL DESCRIPTION RAD USCS 8.6.5 1 0.9 1 0.9 10 0.9 10 0.9 10 Brown Silty GRAVEL, fill material. BKG GM 5 3 GP 11 Same as above. BKG GM 5 4 GP 15 Top 4* same as above. Next 14* dry, Silty SAND, large angular Gravel, trace clay. BKG SM 10 5 GP 20 Dry, Silty SAND, large angular Gravel, trace clay. BKG SM 10 6 GP 20 Dry, Silty SAND, large angular Gravel, trace clay. Bottom 3* includes a weathered iron-rich cobble. BKG SM 10 6 GP 20 Dry, Silty SAND, large angular Gravel, trace clay. Bottom 4*'' BKG SM 10 6 GP 14 Top 0* same as above, with smaller Gravel, trace clay. Bottom 4*'' BKG SM 10 GP 14 Top 10* same as above, saturated, with rounded, assorted pebbles BKG	DEPTH								S	AMPL	E DES	CRIPTION		
Internal No. Type PER 6* (m) PAD USCS Image: Stratz A No. Type PER 6* (m) Brown Sity SAND and GRAVEL, some organics, reworked. BKG GM Image: Stratz A Image: Stratz A Image: Stratz A Image: Stratz A BKG GM GM BKG GM GM GM BKG GM GM GM BKG GM GM BKG GM GM GM BKG GM GM GM BKG GM GM BKG SM BKG SM	EFFT				BLC	21610								
3.3.3 3.144.14 CH2 PLACE (III) Brown Silty SAND and GRAVEL, some organics, reworked. BKG GM 1 GP 1 GP 10 Brown Silty GRAVEL, fill material. BKG GM 5 3 GP 14 Same as above. BKG GM 6 4 GP 10 Top 4" same as above. Next 14" dry, Silty SAND, large angular Gravel, trace clay. BKG SM 10 5 GP 20 Dry, Silty SAND, large angular Gravel, trace clay. BKG SM 10 6 GP 20 Dry, Silty SAND, large angular Gravel, trace clay. BKG SM 10 6 GP 20 Dry, Silty SAND, large angular Gravel, trace clay. BKG SM 10 6 GP 20 Dry, Silty SAND, large angular Gravel, trace clay. BKG SM 10 6 GP 118 Top 10" same as above, brown, smaller angular Gravel, trace clay. BKG SM 10 GP 118 Top 12" same as above, saturated, with rounded,		STDATA	NO	тупс			REC				MATE	RIAL DESCRIPTION		UECE
1 0 1 0 1 0	B.G. 3.	SINATA	MO.	CD	P CI		(in) 10	Brown		and G		como organico, roworkod	RKC	GM
Image: state of the s		믿	1	GP			10	Drown a	SILY SAND	anu G	RAVE	L, Some organics, reworked.	DNG	Givi
No. 1 No. 1 No. 1 Same as above. BKG GM 5 3 6 14 Same as above. Next 14" dry. Silty SAND, large angular Gravel, race day. BKG GM 6 6 6 15 Top 4" same as above. Next 14" dry. Silty SAND, large angular Gravel, race day. BKG SM 10 6 6 7 20 Dry. Silty SAND, large angular Gravel, race day. BKG SM 10 6 6 7 20 Dry. Silty SAND, large angular Gravel, trace day. BKG SM 10 6 6 7 20 Dry. Silty SAND, large angular Gravel, trace day. BKG SM 10 7 0P 18 Top 0" same as above, whorn, smaller angular Gravel, trace day. BKG SM 10 8 0P 14 Saturated, weathered GRAVEL. Same as above, saturated, with rounded, assorted pebbles SM 11 0 14 Saturated various sized GRAVEL. some SAND, Clay from 18-18.5' Decay BKG SM-GW 12 0 18 Top 12" same as above, saturated, smaller Gravel, saturated. Bottom 4" Fine SAND on there SAND on the of por Dense CLAY, smaller Gr		st S	2	GP			19	Brown S	SILLY GRAVI	EL, TIII	maten	al.		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ur &(BKG	GM
5 2 3 0.1 1		ωġ	з	GP			14	Same a	s above.					
4 GP 15 Top 4" same as above. Next 14" dry. Silty SAND, large angular Gravel. BKG SM 5 GP 20 Dry. Silty SAND, large angular Gravel, trace clay. BKG SM 10 6 GP 20 Dry. Silty SAND, large angular Gravel, trace clay. BKG SM 10 6 GP 23 Dry. Silty SAND, large angular Gravel, trace clay. BKG SM 10 6 GP 13 Top 8" same as above, brown, smaller angular Gravel, trace clay. Bottom 3" includes a weathered inon-rich cobble. BKG SM 7 GP 14 Top 10" same as above, brown, smaller angular Gravel. Next 10" damp. BKG SM-GW 8 GP 14 Top 10" same as above, with smaller Gravel. trace clay. Bottom 4" saturated, weathered GRAVEL. Sample collected (13-15) BKG SM-GW 10 GP 14 Top 12" Same as above, saturated, smaller Gravel, trace clay. BKG GW-CL 20 11 GP 12 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5' Decay odor. BKG GW-CL 11 GP 12 Saturated various sized Gravel, smaller Gravel, some larger Gravel, trace clay. <td>5</td> <td>pe</td> <td>J</td> <td></td> <td></td> <td></td> <td>1 '</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BKG</td> <td>GM</td>	5	pe	J				1 '						BKG	GM
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		*****						Top 4" s	same as ab	ove. N	Vext 14	" dry, Silty SAND, large angular Gravel,		
Image: constraint of the second sec			4	GP			15	trace cla	ay. Sample	e colle	cted (5	5-7').	BKG	SM
Image: Section of the sectio			-					Dry Silt	V SAND 10	irde ar	naulari	Gravel trace day	DINO	0101
10 24 3aturated various sized GRAVEL. Sample collected (13-15) BKG SM-GW 10 GP 11 10 Saturated various sized GR			5	GP			20	Dry, On	y O/414D, 16	ngo ai	iguiai ·		BIZA	<u></u>
10 6 6 6 6 6 7 23 Weathered iron-rich cobble. BKG SM 11 7 6 7 6 18 Top 8" same as above, brown, smaller angular Gravel, trace clay. Bottom 4" BKG SM 11 8 6 6 7 19 10 70 18 Top 10" same as above, with smaller Gravel, trace clay. Bottom 4" BKG SM 116 8 6 6 14 Top 10" same as above, saturated, weathered GRAVEL. Sample collected (13-15). BKG SM-6W 11 9 6P 18 Top 12" Same as above, saturated, weathered GRAVEL. Sample collected (13-15). BKG SM-6W 11 0P 18 Top 12" Same as above, saturated, with rounded, assorted pebbles BKG SM-6W 11 0P 12 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5' Decay BKG GW-6W 11 0P 12 Same as above, saturated, smaller Gravel, saturated. Bottom 4" Fine SAND on on the saturated is a bove, saturated, smaller Gravel, saturated Bottom 4" Fine SAND on the saturated for the pebbles GP-SP-CL 12 0P 16 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BKG</td> <td>SM</td>													BKG	SM
1 1	10		6	GP -			23	Dry, Silt	y SAND, Ia	irge ar	ngular i	Gravel, trace clay. Bottom 3" includes a		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								weather	red iron-ricr	n copp	le.		BKG	SM
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			7	CD			10	Top 8" s	same as ab	ove, b	prown,	smaller angular Gravel. Next 10" damp,		
15 8 6P 14 Top 10" same as above, with smaller Gravel, trace clay. Bottom 4" saturated, weathered GRAVEL. Sample collected (13-15). BKG SM-GW 9 6P 1 18 Top 10" same as above, saturated, with rounded, assorted pebbles grading to larger Gravel. BKG SM-GW 10 6P 1 18 Top 12" Same as above, saturated, with rounded, assorted pebbles grading to larger Gravel. BKG SM-GW 20 10 6P 1 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5' Decay odor. BKG GW-CL 20 11 6P 1 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5' Decay odor. BKG GW-CL 20 11 6P 12 Same as above, saturated, smaller Gravel, some larger Gravel, trace clay. BKG GW-CL 21 6P 11 18 Top 12" same as above, larger Gravel, saturated. Bottom 4" Fine SAND on top of Dense CLAY, smaller Gravel. BKG GP-SP- CL 25 14 6P 10 10 No Recovery. BKG GP-CL 30 Ttut <t< td=""><td></td><td></td><td>()</td><td>GP</td><td></td><td></td><td>18</td><td>larger si</td><td>zed GRAV</td><td>EL.</td><td></td><td></td><td>BKG</td><td>SM</td></t<>			()	GP			18	larger si	zed GRAV	EL.			BKG	SM
15 8 GP 14 saturated, weathered GRAVEL. Sample collected (13-15). BKG SM-GW 16 9 GP 18 Top 12" Same as above, saturated, with rounded, assorted pebbles grading to larger Gravel. BKG SM-GW 10 GP 18 Top 12" Same as above, saturated, with rounded, assorted pebbles grading to larger Gravel. BKG SM-GW 20 10 GP 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5' Decay odor. BKG GW-CL 20 11 GP 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5' Decay odor. BKG GW-CL 20 11 GP 24 Same as above, saturated, smaller Gravel, some larger Gravel, trace clay. BKG GW-CL 20 11 GP 10 16 Top 12" same as above, larger Gravel, saturated. Bottom 4" Fine SAND on top of Dense CLAY, smaller Gravel. BKG GP-SP-CL 13 GP 16 Top 17" same as above, with small Gravel. Bottom 7" saturated brown BKG GP-CL 13 GP 12 Dense Sity grayish dark brown CLAY. BKG GP-CL 13 GP 12 Dense Sity								Top 10"	same as a	bove.	with sr	maller Gravel. trace clav. Bottom 4"		
15 9 GP 18 Top 12" Same as above, saturated, with rounded, assorted pebbles grading to larger Gravel. BKG SM-G W 10 GP 18 Top 12" Same as above, saturated, with rounded, assorted pebbles grading to larger Gravel. BKG SM-G W 20 10 GP 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5" Decay odor. BKG GW-CL 20 11 GP 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5" Decay odor. BKG GW-CL 20 11 GP 24 Same as above, saturated, smaller Gravel, some larger Gravel, trace clay. bdor BKG GW-CL 20 11 GP 12 Same as above, saturated, smaller Gravel throughout. BKG GP 12 GP 16 Top 12" same as above, larger Gravel, saturated. Bottom 4" Fine SAND on top of Dense CLAY, smaller Gravel. BKG GP-SP- CL GP-SP- BKG GP-CL 13 GP 24 Top 17" same as above, with small Gravel. Bottom 7" saturated brown CLAY. Sample collected (28-30'). BKG GP-CL 30 TIL 16 GP 12 Dense Sitty grayish dark brown CLAY. BKG CL	15		8	GP			14	saturate	d, weather	ed G R	AVEL	. Sample collected (13-15').	BKG	SM-GW
9 GP 18 Inp 12 Jointe as above, saturated, with Hounded, associed pebbles BKG SM-GW 10 GP 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5' Decay odor. BKG GW-CL 20 11 GP 24 Saturated various sized GRAVEL, some SAND, Clay from 18-18.5' Decay odor. BKG GW-CL 20 11 GP 12 Same as above, saturated, smaller Gravel, some larger Gravel, trace clay. BKG GW 11 GP 12 Same as above, saturated, smaller Gravel, saturated. Bottom 4" Fine SAND on the BKG GP GP 12 GP 16 Top 12" same as above, with small Gravel. BtKG GP-SP-CL 14 GP 16 O No Recovery. BKG GP-CL 13 GP 24 Top 17" same as above, with small Gravel. Bottom 7" saturated brown CLAY. BKG GP-CL 13 GP 24 Top 17" same as above, with small Gravel. Bottom 7" saturated brown CLAY. BKG GP-CL 13 GP 24 Top 17" same as above, with small Gravel. Bottom 7" saturated brown CLAY. BKG GP-CL 13 GP 2	15							Top 12"	Samo ac /	abovo	catura	ated with rounded accorted pobbles	DITO	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			9	GP		<u> </u>	18	aradina	to largor G	abuve, ravol	satura	ared, with rounded, assorted peppies		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								graung	to larger o	raver.			BKG	SM-G W
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			10	GP			24	Saturate	ed various :	sized	grave	EL, some SAND, Clay from 18-18.5' Decay		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				01			- '	odor.					BKG	GW-CL
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20		44				10	Same a	s above, sa	aturate	ed, sma	aller Gravel, some larger Gravel, trace clay.		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				GP			12						BKG	GW
12 GP 17 BKG GP 13 GP 18 Top 12" same as above, larger Gravel, saturated. Bottom 4" Fine SAND on top of Dense CLAY, smaller Gravel. GP-SP-CL 14 GP 18 Top 17" same as above, with small Gravel. Bottom 7" saturated brown CLAY. Sample collected (28-30'). BKG GP-SP-CL 30 TILL 16 GP 24 Top 17" same as above, with small Gravel. Bottom 7" saturated brown CLAY. Sample collected (28-30'). BKG GP-CL 30 TILL 16 GP 12 Dense Silty gravish dark brown CLAY. BKG CL 30 I				_				Same a	s above, sa	aturate	ed, sma	aller Gravel throughout.		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			12	GP -	├		17				.,		BKG	GP
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Top 10"	camo ao c	hovo	larger	Gravel saturated Bottom /"Fine SAND on	DNG	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			13	GP			16	top of D	anco (1 A)	ibuve, / ems	illor Gr	avel		GP-SP-
Index Index	25									, эптс			BKG	CL
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			14	GP			n l	No Reci	overy.					
Image: Problem intermediate				0.			Ŭ							
Image: Normal system Image: Normal system <td></td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td>24</td> <td>Top 17"</td> <td>same as a</td> <td>bove,</td> <td>with sr</td> <td>mall Gravel. Bottom 7" saturated brown</td> <td></td> <td></td>			15				24	Top 17"	same as a	bove,	with sr	mall Gravel. Bottom 7" saturated brown		
30 TILL 16 GP I 12 Dense Silty grayish dark brown CLAY. BKG CL Image: Second second			15	GP			24	CLAY. Sample collected (28-30').					BKG	GP-CL
30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 35 1 1 1 1 1 1 1	30	TILL	16	GP			12	Dense S	Silty gravist	n dark	brown	CLAY.	BKG	CL
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					<u> </u>	-			-, 3, 2, 0,					
Image: Section of the section of t					<u> </u>									
35 I </td <td></td> <td></td> <td></td> <td> ,</td> <td>┣───</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				,	┣───		•							
35 Image: Constraint of the second seco				Ļ	<u> </u>			L						
35				,										
	35													

Comments:

Surface: Silty FILL. E.O.B. 30 ' B.G.S. Boring was backfilled with Bentonite to grade upon completion. All Radiological Meter readings NDA>BKG. All Organic Vapor Meter readings 0.0 ppm.

							UK	RS B	OF	RIN	IG LOG		
WVDF CHAR	2008 N ACTERI	ORT ZATI	H PLA ON (W	TEAU	J BA -466	CKGR	OUND S	OILS			BORING NUMBER GPBG	04-08	}
CLIENT	•	WVE	S			PROJE	CT #	39400-39	9		WELL NO: N/A		
DRILLIN	IG CONTR	АСТО	DR:	SJB S	Servic	es, Inc.	BORING LOCATION: 892042.7						1129180.34
	GRO	UNDV	VATER				CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION: 1405.76' Above MSL		
DATE	TIME		LEV	/EL		TYPE		Geoprobe	-	-	DATE STARTED: 7/15/2008 8:40		
						DIA.		1"	-	-	DATE FINISHED: 7/15/2008 10:50		
						WT.	-		-	-	DRILLER: Matt Matthies		
						FALL	-		-	-	GEOLOGIST: Martin Regan/Jennifer K	.elly	
							β/γ b	ackground =	100	cpm	REVIEWED BY: Francine Cohen/Alison S	Steiner	
DEPTH		_						S/	AMPLE	DESC	CRIPTION		-
FEET				BLO)WS	REC				MATER	RIAL DESCRIPTION		
B.G.S.	STRATA	NO.	TYPE	PEF	R 6"	(in)						RAD	USCS
		1	GP			6	GRAVE	L and Silty	SAND	, moist	Top 6" contain some organic material.	BKG	GM
	S&G	2	GP			24	Rework	ed Silty SA	ND, so	me Gr	avel, trace clay, dry.		
	4 oed											BKG	SM-GM
		3	GP			19	Dry SAI	VD and GR	AVEL.				
5		_										BKG	SW-GW
		4	GP			13	Top 3" o	dry SAND a	and GR	AVEL.	Next 10" wet SAND and GRAVEL.		
							Sample	collected (5-7').			BKG	SW-GW
		5	GP			22	Saturate	ed Sandy S	ilty var	ious si	zed GRAVEL.		
												BKG	GM
10	6	6	GP			21	Saturate	ed Silty Sar	ndy sm	allersi	zed GRAVEL.		
												BKG	GM
	(2)	7	GP			12	Top 12"	'same as a Iou	ibove,	saturat	ed. Bottom 12" larger sized GRAVEL with		
							Some C	idy.		1		BKG	GM-GC
		8	GP			12	Saturate	ed Silty SAI	ND and	d vanoi	us sized GRAVEL. Sample collected (13-		
15							Coturot			م المراجعة الم	is sized CDAVEL some Clau	BKG	SM-GM
		9	GP			22	Saturate	au Silty SAI	ND and	u vanot	us sizeu GRAVEL, some Clay.	BKA	SM-GM-
		<u> </u>					Top 10"	Saturated	Cilto C		nd Jargo sized CRAVEL, some Clau	BNG	GC
		10	GP			12	Bottom	2" dense b	rown a	rav Cl	AY	BKC	GM-GC-
20							Saturate	n aense n	rav bro		AY (12" of silty sand and gravel fall-in)	BNG	
20		11	GP			4	Sample	collected ('19-25')).)	(12) of sity sund and graver fairing.	BKG	
							No Rec	overv	,				
		12	GP			0		or or y.					
							Saturate	ed arav dar	k brow	n dens	e CLAY.	<u> </u>	
25		13	GP			9		• •				вкд	CL
												<u> </u>	<u> </u>
		<u> </u>											
30													
35													
Com	ments:												
Surfac	e: Soil a	nd G	rass.E	E.O.B	. 25	'B.G.S	Boring \	was backfil	led with	n Bento	onite to grade upon completion. All Radiolog	ical Mete	r readings
NDA>I	BKG. All	Orga	anic Va	apor N	vlete	r readir	ngs 0.0 pp	om.					

							UR	SB	OF	RIN	G LOG				
WVDF CHAR	2008 NO	ORT ZATI	H PLA	TEAU	ВА 466	CKGR	OUND SC	DILS			BORING NUMBER GPBG	05-08	}		
CLIENT	:	WVE	S			PROJE	CT #	39400-39	9		WELL NO: N/A				
DRILLI	IG CONTR	АСТ	OR:	SJB S	ervic	es, Inc.					BORING LOCATION: 892422.76		1129673.73		
	GRO	UNDV	VATER				CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION: 1395.68' Above MSL				
DATE	TIME		LEV	/EL		TYPE		Geoprobe	-	-	DATE STARTED: 7/15/2008 12:50				
						DIA.		1"	-	-	DATE FINISHED: 7/15/2008 13:48				
						WT.	-		-	-	DRILLER: Matt Matthies				
						Fall	-		-	-	GEOLOGIST: Martin Regan/Jennifer K	elly			
							β/γ ba	ackground =	100	cpm	REVIEWED BY: Francine Cohen/Alison S	iteiner			
DEPTH								S/	AMPLE	E DESC	RIPTION				
FEET B.G.S.	STRATA	NO.	түре	BLO PER	₩S 6"	REC (in)				MATER	RIAL DESCRIPTION	RAD	liscs		
		1	GP			3	Dry large	e GRAVEL	Dry	grass i	n boring.	BKG	GC		
						1.0	Dry, Silty	/ SAND, la	arge an	gular G	RAVEL.				
		2	GP			10			-	-		BKG	GM		
						1.0	Dry SAN	ID and sm	aller G	RAVEL		<u> </u>			
5		3	GP			10	· ·					BKG	GP		
							Top 5" S	AND and	GRAV	EL, sor	ne roots. Bottom 4" wet with some roots	<u> </u>			
		4	GP			9	and a 1-	inch sized	weath	ered co	bble. Sample collected (5-7').	BKG	GW		
							Top 6" S	aturated S	SAND 8	and ass	orted GRAVEL. Next 12" Saturated brown-		SWIGW		
		5	GP			24	gray der	ise CLAY.	Samp	le colle	ected (7-8').	BKG	CL		
10	=						Dark ara	IV CLAY. s	ome s	mall Gr	avel, saturated. (Top 4" sand and gravel				
	Ē	6	GP			22	fall-in fro	m shallow	er inte	rval.) S	ample collected (8-11').	BKG	CL		
												Ditto	02		
												<u> </u>			
15				┝──┼											
.0															
												<u> </u>			
20															
25			1												
												[
	1														
												[
	1					1									
30	1					Ì									
	1														
	1					İ									
	1					1									
	1					İ									
35	1					1									
Com	montor			· · · · ·			-								

Comments:

Surface: Soil and Grass, tall Weeds. E.O.B. 11 ' B.G.S. Boring was backfilled with Bentonite to grade upon completion. All Radiological Meter readings NDA>BKG. All Organic Vapor Meter readings 0.0 ppm.

WVDP-493 Rev. 1

WVDP RECORD OF REVISION

Rev. No.	Description of Changes	Revision On Page(s)	Dated
0	Original Issue ESHQ and Deputy Regulatory Strategy impacted by this document.	All	12/16/08
1	General text revisions for consistency. Revision to Table 2 to remove "ND" from BH-38 (0–2"). Revision to Table 6 to change barium data point for Unweathered Lavery till.	All	12/29/08
	ESHQ and Deputy Regulatory Strategy impacted by this document.		