HARRIS NUCLEAR PLANT 2006 ENVIRONMENTAL MONITORING REPORT

January 2008

Environmental, Health and Safety Services Section

PROGRESS ENERGY CAROLINAS, INC. Raleigh, North Carolina

Preface

This copy of the report is not a controlled document as detailed in Environmental Services Section Biology Program Procedures and Quality Assurance Manual. Any changes made to the original of this report subsequent to the date of issuance can be obtained from:

> Director Environmental, Health and Safety Services Section Progress Energy Carolinas, Inc. 410 South Wilmington Street Raleigh, NC 27601

Table of Contents

Table of Contents	
	Page
Preface	1
List of Tables	iii
List of Figures	iii
List of Appendices	iii
Metric-English Conversion and Units of Measure	iv
Water Chemistry Abbreviations	iv
HARRIS NUCLEAR PLANT 2006 ENVIRONMENTAL MONITORING REPORT	
Reservoir Description	1
Objectives	1
Methods	2
Discussion	7
REFERENCES	8

<u>Figure</u>

Page

List of Tables

Table		Page
1	Environmental monitoring program at Harris Reservoir for 2006	4
2	Field sampling and laboratory methods followed in the 2006 environmental monitoring program at Harris Reservoir	5
3	Common and scientific names of species mentioned in this report	6

List of Figures

1	Sampling areas and stations at Harris Reservoir during 2006	3

List of Appendices

<u>Appendix</u>		Page
1	Water temperature, dissolved oxygen, conductivity, pH, and Secchi disk transparency data collected from Harris Reservoir during 2006	9
2	Means, ranges, and spatial trends of selected limnological variables from the surface waters of Harris Reservoir during 2006	11
3	Mean number per hour for fish collected with electrofishing sampling by transect from Harris Reservoir during 2006	12
4	Mean weight per hour for fish collected with electrofishing sampling by transect from Harris Reservoir during 2006	13
5	Length-frequency distributions for bluegill, redear sunfish, and largemouth bass collected with electrofishing sampling from Harris Reservoir in 2006	14

iii

Metric-English Conversion and Units of Measure

Length

1 micron (Φ m) = 4.0 x 10⁻⁵ inch 1 millimeter (mm) = 1000 Φ m = 0.04 inch 1 centimeter (cm) = 10 mm = 0.4 inch 1 meter (m) = 100 cm = 3.28 feet 1 kilometer (km) = 1000 m = 0.62 mile

Area

1 square meter $(m^2) = 10.76$ square feet 1 hectare (ha) = 10,000 m² = 2.47 acres

Volume

1 milliliter (ml) = 0.034 fluid ounce 1 liter = 1000 ml = 0.26 gallon 1 cubic meter = 35.3 cubic feet

Weight

1 microgram (Φ g) = 10⁻³ mg or 10⁻⁶ g = 3.5 x 10⁻⁸ ounce 1 milligram (mg) = 3.5 x 10⁻⁵ ounce 1 gram (g) = 1000 mg = 0.035 ounce 1 kilogram (kg) = 1000 g = 2.2 pounds 1 metric ton = 1000 kg = 1.1 tons 1 kg/hectare = 0.89 pound/acre

Temperature Degrees Celsius (EC) = 5/9 (EF-32)

Specific conductance

 Φ S/cm = Microsiemens/centimeter

Turbidity

NTU = Nephelometric Turbidity Unit

Water Chemistry Abbreviations Cl Chloride NH₃-N Ammonia-nitrogen SO_4^{2-} Sulfate $NO_{3}^{-} + NO_{2}^{-} - N$ Nitrate + nitrite-nitrogen Ca^{2+} TP Total calcium Total phosphorus Mg^{2+} Total magnesium Total organic carbon TOC Na^+ Total sodium Total copper Cu TN Total nitrogen TDS **Total Dissolved Solids**

HARRIS NUCLEAR PLANT 2006 ENVIRONMENTAL MONITORING REPORT

Reservoir Description

Harris Reservoir, located in Chatham and Wake Counties, North Carolina, was created by impounding Buckhorn Creek, a tributary of the Cape Fear River (Figure 1). The main body of Harris Reservoir has a surface area of 1,680 ha; the auxiliary reservoir has a surface area of 130 ha. The main reservoir has a maximum depth of 18 m, a mean depth of 5.3 m, a volume of 8.9 x 10^7 m³, a full-pool elevation of 67.1 m NGVD, and an average residence time of 28 months. The reservoir began filling in December 1980 and reached full-pool elevation in February 1983. The 64.5-km shoreline is mostly wooded and the 183.9-km² drainage area is mostly rolling hills with land used primarily for forestry and agriculture. The conversion of areas from forestry or agricultural purposes to residential uses continues in many areas of the drainage.

Harris Reservoir was constructed to supply cooling tower makeup and auxiliary reservoir makeup water to the 900-MW Harris Nuclear Plant, which began commercial operation in May 1987. In 1986 the bottom waters of the reservoir near the main dam began receiving National Pollutant Discharge Elimination System (NPDES)-permitted wastewater discharges from the power plant cooling tower. Tributaries also receive NPDES-permitted discharges from the Harris Energy and Environmental Center and from wastewater treatment plants at Apex and Holly Springs. The reservoir is a source of drinking water for Progress Energy employees at the Harris Nuclear Plant and the Harris Energy and Environmental Center.

Objectives

The primary objectives of the 2006 Harris Nuclear Plant non-radiological environmental monitoring program were to: (1) assess the overall water quality of Harris Reservoir, (2) identify any natural or power plant-induced effects on reservoir water quality, (3) document the introduction and expansion of nonnative plant and animal populations in the reservoir, and (4) demonstrate the existence of a reasonable recreational fishery.

Methods

The Harris Nuclear Plant environmental program for 2006 included monitoring the reservoir's: (1) limnological characteristics (water quality, water chemistry, and phytoplankton), (2) fisheries community, (3) possible introductions of zebra and quagga mussels, and (4) distribution of aquatic vegetation. Sampling methods and statistical analyses for data collected during 2006 were similar to those used for data collected during 2004 (PEC 2005) (Tables 1 and 2). A list of common and scientific names of species mentioned in this report is provided (Table 3).

All analytical testing completed in support of the Harris Reservoir environmental program was performed by laboratories which were certified by the State of North Carolina to perform water and wastewater testing (except for the analysis of total phosphorus). Total phosphorus analysis was conducted by The University of Missouri—a vendor approved by Progress Energy Carolinas, Inc., for this testing. The accuracy and precision of laboratory analyses of water chemistry data were determined with analytical standards, spikes, and replicates. Quality assurance information including the accuracy and percent recovery of water chemistry standards are available upon request. In this report where concentrations were less than the laboratory-reporting limit, the concentrations were assumed to be at one-half the reporting limit for the calculation of the mean.

Figure 1. Sampling areas and stations at Harris Reservoir during 2006.

Program	Frequency	Location
Water quality	January, May, July, November	Stations E2, H2, P2, and S2 (surface to bottom at 1-m intervals)
Water chemistry	January, May, July, November	Stations E2, H2, P2, and S2 (surface samples at all stations)
Plankton		
Chlorophyll <i>a</i>	January, May, July, November	Stations E2, H2, P2, and S2
Phytoplankton ⁺	January, May, July, November	Stations E2, H2, P2, and S2
Biofouling monitoring		
Zebra mussel surveys	January, May, July, November	Areas E, P or Q, and V
Fisheries		
Electrofishing	February, May, August, November	Stations E1, E3, H1, H3, P1, P3, S1, S3, V1, and V3
Aquatic vegetation survey	November	Areas MI and Z

Table 1. Environmental monitoring program at Harris Reservoir for 2006.

⁺Phytoplankton samples were collected and preserved but were not identified because all sampled chlorophyll *a* concentrations were $< 40 \text{ }\Phi \text{g/L}$.

Table 2. Field sampling and laboratory methods followed in the 2006 environmental monitoring program at Harris Reservoir.

Program	Methods
Water quality	Temperature, dissolved oxygen, pH, turbidity, and specific conductance were measured with calibrated YSI [®] multi-parameter instruments and YSI [®] dissolved oxygen meters. Measurements were taken from surface to bottom at 1-m intervals. Water clarity was measured with a Secchi disk.
Water chemistry	Surface water samples were collected in appropriate containers, transported to the laboratory on ice, and analyzed according to accepted laboratory methods.
Phytoplankton	Equal amounts of water from the surface, the Secchi disk transparency depth, and twice the Secchi disk transparency depth were obtained with a Van Dorn sampler and mixed in a plastic container. A 250-ml sub sample was taken and preserved with 5 ml of "M3" fixative.
Chlorophyll <i>a</i>	Equal amounts of water from the surface, the Secchi disk transparency depth, and twice the Secchi disk transparency depth were obtained with a Van Dorn sampler and mixed in a plastic container. A 1000-ml sub sample was collected in a dark bottle, placed on ice, and returned to the laboratory. In the laboratory a 250-ml sub sample was analyzed according to Strickland and Parsons (1972) and APHA (1995).
Electrofishing	Fifteen-minute samples were collected at each station using a Smith-Root Type VI-A, 5.0 GPP, or 7.5 GPP equipped, Wisconsin-design electrofishing boat with pulsed DC current. Fish were identified to species, measured to the nearest mm, weighed to the nearest gram, examined for the presence of disease and deformities, and released.
Biofouling monitoring	The dock at the Holleman's boat ramp or water quality station marker buoys were visually inspected for mussels during routine water quality monitoring.
Aquatic vegetation survey	Portions of the shoreline and/or littoral zone of the Harris Plant main reservoir intake canal and auxiliary reservoir were systematically surveyed by boat to document the presence of aquatic vegetation, specifically hydrilla and water primrose.

 Common Name		Scientific Name
	Fish	
Black crappie		Pomoxis nigromaculatus
Bluegill		Lepomis macrochirus
Bluespotted sunfish		Enneacanthus gloriosus
Bowfin		Amia calva
Brown bullhead		Ameiurus nebulosus
Chain pickerel		Esox niger
Channel catfish		Ictalurus punctatus
Coastal shiner		Notropis petersoni
Common carp		Cyprinus carpio
Flat bullhead		Ameiurus platycephalus
Gizzard shad		Dorosoma cepedianum
Golden shiner		Notemigonus crysoleucas
Grass carp		Ctenopharyngodon idella
Largemouth bass		Micropterus salmoides
Redear sunfish		Lepomis microlophus
Snail bullhead		Ameiurus brunneus
Threadfin shad		Dorosoma petenense
Unidentified killifish		Fundulus spp.
Warmouth		Lepomis gulosus
White catfish		Ameiurus catus
White perch		Morone americana
	Mussels	
Quagga mussel		Dreissena hugensis
Zebra mussel		Dreissena polymorpha
	Aquatic Vegetation	
Water primress		Induigia ann
Water primose		Luuwigiu spp. Hydrilla yortioillata
 пушпа		Tiyarilla verlicillala

Table 3. Common and scientific names of species mentioned in this report.

Discussion

Harris Reservoir supplies makeup water to the closed-cycle cooling system for the Harris Nuclear Plant. The Harris Nuclear Plant discharges primarily cooling tower blowdown, along with low volume waste discharges, into the reservoir near the main dam.

Harris Reservoir continued to show qualities of a typical, biologically productive, southeastern reservoir in 2006. Reservoir waters were well-mixed during late autumn and winter months with similar temperature and dissolved oxygen levels throughout the water column. Dissolved oxygen levels declined near the bottom with stratification during late spring and summer. Nutrient concentrations remained somewhat similar to recent years and were in an expected range for a productive reservoir in this area of the Piedmont. Total nitrogen, nitrate + nitrite-N, and total phosphorus values have shown slightly increasing trends in recent years but are not considered biologically significant.

Largemouth bass, bluegill, and redear sunfish continued to dominate the fish community in Harris Reservoir during 2006. Annual catch rates for redear sunfish and largemouth bass were similar to catch rates in previous years while the annual catch rates for bluegill sunfish increased from recent years. Bluegill and largemouth bass were represented by multiple size groups and an abundance of small fish indicated good reproduction. Similar to previous years, young redear sunfish were less common in samples than young bluegill and largemouth bass. The largemouth bass population remained balanced with a high percentage of larger fish present in the population.

No exotic mussel species that could cause biofouling problems were found in Harris Reservoir or the auxiliary reservoir during 2006. During November of 2006 a visual aquatic vegetation survey of the shoreline was conducted in the Thomas Creek arm of the Harris Reservoir and in the HNP intake canal. Similar to previous years, the dominant aquatic vegetation was hydrilla and water primrose (*Ludwigia* spp.). The areal coverage of both aquatic weeds was similar to recent years and no fouling of the plant intake screens occurred. No stands of hydrilla were observed in the littoral zone of the auxiliary reservoir during 2006. The attempt to control hydrilla by releasing grass carp in the auxiliary cooling reservoir continues to be effective in preventing infestation and spread of hydrilla.

REFERENCES

- APHA. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington, DC.
- PEC. 2005. Harris Nuclear Power Plant 2004 environmental monitoring report. Progress Energy Carolinas, New Hill, NC.
- Strickland, J. D. H., and T. R. Parsons. 1972. A practical handbook of seawater analysis. Bulletin No. 167 (2nd ed.). Fisheries Research Board of Canada.

Appendix 1. Water temperature, dissolved oxygen, conductivity, pH, and Secchi disk transparency data collected from Harris Reservoir during 2006.

January 24, 2006																			
Depth (m)	Te	Temperature (°C)			Dissolved oxygen (mg/L)			Conductivity (µS/cm)			рН				Secchi disk depth (m)				
	E2	H2	P2	S2	E2	H2	P2	S2	E2 H2	P2	S2	E2	H2	P2	S2	E2	H2	P2	S2
$\begin{array}{c} 0.2 \\ 1.0 \\ 2.0 \\ 3.0 \\ 4.0 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0 \\ 9.0 \\ 10.0 \\ 11.0 \\ 12.0 \\ 13.0 \\ 14.0 \\ 15.0 \\ 16.0 \\ \end{array}$	10.3 9.8 9.2 9.1 9.1 9.1 9.1 9.1 9.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.8 9.6 9.6 9.5 9.3 9.2 9.2 9.2	9.8 9.6 9.3 9.2 9.2 9.2 9.2 9.2 9.2	93 92 91 91 91	11.9 12.1 12.1 11.7 11.3 11.1 11.0 10.8 10.7 10.6 10.5 10.5 10.5 10.4 10.4 10.4 10.4	$10.8 \\ 10.8 \\ 10.8 \\ 10.9 \\ 10.8 \\ 10.8 \\ 10.4 \\ 10.0 \\ 9.8 \\ 9.7 \\$	11.5 12.4 11.5 11.3 11.1 11.0 10.7 10.7 10.6	8.9 8.4 8.5 8.2 8.1	133 119 133 119 133 119 133 119 133 121 133 123 134 123 135 133 136 123 137 123 138 123 139 133 133 133 133 133 133 133 133 133 133 133 134 134	129 129 128 128 128 129 129 129	156 155 153 156 156	7.7 7.7 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.9 7.9 7.8 7.8 7.8 7.7 7.7 7.6 7.6	8.3 8.0 7.9 7.8 7.8 7.8 7.8 7.8 7.8	8.3 8.3 8.2 8.2 8.1	1.2	1.2	1.2	0.9

May 10, 2006

Depth (m)	Temperature (°C)		!	Dissolved oxygen (mg/L)			en	Conduc (µS/c	рН				Secchi disk depth (m)						
	E2	H2	P2	S2	E2	H2	P2	S2	E2 H2	P2	S2	E2	H2	P2	S2	E2	H2	P2	S2
0.2	21.1	20.3	20.1	20.0	9.2	9.2	9.3	7.3	160 158	161	149	7.9	7.7	7.7	6.9	2.2	1.5	1.8	1.0
1.0	21.1	20.2	20.1	19.2	9.1	9.2	9.3	6.8	160 158	161	148	7.9	7.7	7.7	6.8				
2.0	20.1	19.7	19.8	18.7	8.5	8.7	9.2	6.0	160 157	161	146	7.6	7.4	7.6	6.7				
3.0	19.7	19.6	19.5	16.2	5.8	8.4	8.8	2.3	161 157	161	123	6.9	7.3	7.5	6.1				
4.0	18.9	19.5	19.1	16.0	5.4	7.7	8.0	2.2	161 157	161	123	6.7	7.1	7.1	6.2				
5.0	18.3	19.4	18.9	16.0	3.3	7.1	7.2	2.2	161 157	161	124	6.5	7.0	7.0	6.7				
6.0	18.1	19.0	18.6		2.2	5.6	6.0		161 154	161		6.5	6.8	6.8					
7.0	17.5	17.8	18.0		1.9	2.2	4.0		167 144	164		6.4	6.5	6.6					
8.0	16.9	17.1	17.4		1.6	0.6	2.3		168 163	174		6.4	6.7	6.6					
9.0	16.4		17.3		1.5		1.5		171	185		6.4		6.7					
10.0	16.2				1.3				172			6.4							
11.0	15.8				11				174			64							
12.0	15.3				0.9				176			64							
13.0	14.5				0.5				182			6.5							
14.0	14.5				0.3				186			6.6							
15.0	12.0				0.5				101			67							
15.0	12.9				0.5				201			0.7							
10.0	13./				0.5				201			0./							
17.0	13./				0.3				203			6.8							

Appendix 1 (continued)

	July 10, 2006																		
Depth (m)	1 Temperature (°C) E2 H2 P2 S2			Dissolved oxygen (mg/L) E2 H2 P2 S2			Conductivity (µS/cm) E2 H2 P2 S2			pH E2 H2 P2 S2				Secchi disk depth (m) E2 H2 P2 S2					
$\begin{array}{c} 0.2\\ 1.0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ 9.0\\ 10.0\\ 11.0\\ 12.0\\ 13.0\\ 14.0\\ 15.0\\ 16.0\\ 17.0\\ \end{array}$	27.7 27.5 27.1 26.2 25.3 23.1 21.9 21.3 20.7 20.2 19.7 19.2 17.8 16.7 16.2 16.0 15.9 15.8	28.2 28.0 27.5 27.2 24.8 22.4 21.0 20.8 20.6	28.0 28.0 27.3 27.3 21.2 20.8 20.4	27.7 27.6 27.4 26.3 23.9 23.7	8.9 8.8 8.3 2.5 0.5 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1	8.5 8.5 7.7 4.7 0.5 0.4 0.3 0.2 0.2	8.5 8.5 8.3 7.8 6.0 0.5 0.3 0.2 0.2	7.7 7.5 7.1 0.5 0.3 0.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	138 138 138 138 138 138 144 139 138 140	133 133 134 143 156 155	$\begin{array}{c} 8.2\\ 8.0\\ 7.8\\ 6.3\\ 6.2\\ 6.2\\ 6.2\\ 6.2\\ 6.2\\ 6.2\\ 6.2\\ 6.3\\ 6.4\\ 6.5\\ 6.6\\ 6.6\\ 6.7\\ 6.7\end{array}$	7.7 7.7 6.4 6.2 6.1 6.1	8.0 8.0 7.7 6.2 6.1 6.1 6.2	7.2 7.1 7.0 6.5 6.5 6.5	1.4	1.3	1.7	1.3

November 30, 2006																				
Depth (m)	Temperature (°C)				Dissolved oxygen (mg/L)			Conductivity (µS/cm)			рН				Secchi disk depth (m)					
	E2	Ĥ2	P2	S2	E2	HŽ	P2	S2	E2	H2	P2	S2	E2	H2	P2	S2	E2	H2	P2	S2
0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	12.6 12.5 12.3 11.8 11.7 11.6 11.5 11.4 11.4 11.4 11.4 11.4 11.4	15.0 14.7 14.3 12.6 12.0 11.5 11.3 11.2 11.2	14.4 14.4 14.2 12.3 12.0 11.9 11.5 11.3 11.1 11.0	15.4 15.1 13.7 10.0 9.6 9.5 9.5	8.3 8.2 8.2 8.1 7.7 7.1 6.3 6.1 6.2 6.1 6.2 6.3 6.3	11.3 11.2 10.9 9.8 9.1 8.9 8.5 6.4 5.7	11.3 11.3 11.1 9.9 9.0 9.0 9.0 8.6 8.0 7.4	12.2 11.3 6.8 5.0 4.8 3.4 3.8	123 122 120 110 106 104 107 107 108 107 108 109 109	123 123 123 122 119 112 109 101 101	124 124 124 123 120 112 103 96 95	113 113 99 62 62 65 80	$\begin{array}{c} 7.3\\ 7.2\\ 7.1\\ 7.1\\ 7.0\\ 7.0\\ 6.9\\ 6.8\\ 6.8\\ 6.8\\ 6.8\\ 6.8\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\end{array}$	7.5 7.5 7.4 7.3 7.2 7.2 7.0 6.9	7.6 7.6 7.5 7.4 7.3 7.2 7.1 7.1	7.4 7.2 6.8 6.9 7.2 7.2 7.2 7.4	1.0	1.5	1.2	0.9

Appendix 2. Means, ranges, and spatial trends of selected limnological variables from the surface waters of Harris Reservoir during 2006.

			Reservoir		
Variable	E2	H2	P2	S2	Mean
Total dissolved solids (mg/L)	86	82	87	92	87
	(76-98)	(73-92)	(72-103)	(79-110)	(72-110)
Turbidity (NTU)	3.3	3.5	2.9	8.0	4.4
	(1.9-4.6)	(1.0-5.7)	(1.7-4.0)	(5.5-13)	(1.0-13)
Secchi disk transparency (m)	1.4	1.4	1.5	1.0	1.3
	(1.0-2.2)	(1.2-1.5)	(1.2-1.8)	(0.9-1.3)	(0.9-2.2)
Chlorophyll a (µg/L)	16	16	12	9.5	13
	(1.8-29.9)	(5.7-21.3)	(6.3-17.1)	(4.2-13.2)	(4.2-29.9)
Nutrients (mg/L)					
Ammonia-N	0.02	0.01	0.01	0.03	0.02
	(< 0.02-0.02)	(< 0.02-0.02)	(< 0.02-0.02)	(< 0.02-0.08)	(< 0.02-0.08)
Nitrate + nitrite-N	0.14	0.14	0.14	0.08	0.12
	(0.05-0.24)	(0.06-0.22)	(0.05-0.21)	(0.03-0.14)	(0.03-0.24)
Total nitrogen	0.96	0.98	0.87	0.89	0.92
	(0.73-1.29)	(0.66-1.44)	(0.60-1.13)	(0.62-1.10)	(0.60-1.44)
Total phosphorus	0.048	0.031	0.036	0.035	0.037
	(0.030-0.069)	(0.024-0.034)	(0.030-0.046)	(0.027-0.041)	(0.024-0.069)
Total organic carbon	7.3	7.7	7.9	8.7	7.9
	(5.8-8.5)	(6.5-8.9)	(7.2-8.7)	(7.8-9.4)	(5.8-9.4)
Hardness [∞]	19	19	19	22	20
	(18-21)	(17-21)	(18-21)	(19-26)	(17-26)
Specific conductance (µS/cm)	139	134	138	138	137
	(123-160)	(119-158)	(124-161)	(113-156)	(113-161)
Ions (mg/L)					
Calcium	4.3	4.3	4.2	5.3	4.5
	(3.9-4.8)	(3.7-4.8)	(3.8-4.8)	(4.5-7.0)	(3.7-7.0)
Chloride	18	18	18	17	18
	(17.4-19.6)	(16.7-18.4)	(17.6-19.2)	(15.1-20.4)	(15.1-20.4)
Magnesium	2.1	2.1	2.1	2.0	2.1
	(2.0-2.1)	(1.9-2.2)	(1.9-2.2)	(1.9-2.1)	(1.9-2.2)
Manganese	102	61	66	135	91
	(47.2-168.0)	(43.0-83.8)	(53.8-88.3)	(39.6-207.0)	(39.6-207.0)
Sodium	13.4	13.2	14.5	13.0	13.2
	(12.8-14.1)	(11.8-14.4)	(12.6-14.4)	(12.0-13.8)	(11.8-14.4)
Sulfate	15	15	14	14	15
C	(13.4-17.5)	(12.2-16.5)	(11.7-17.2)	(9.5-20.6)	(9.5-20.6)
Total alkalinity [∞]	17	16	16	19	17
	(16-20)	(14-20)	(14-18)	(15-28)	(14-28)
Copper (µg/L)	1.8	1.5	5.6	1.7	2.7
	(1.1-2.8)	(1.0-2.1)	(1.0-18.1)	(1.3-2.7)	(1.0-18.1)

 $^{\&}Total$ alkalinity units are in mg/L as CaCO_3 and hardness is calculated as mg equivalents CaCO_3/L.

		Reservoir				
Species	Е	Η	Р	S	V	mean
Bowfin	0	< 1	1	2	2	1
Gizzard shad	12	16	3	38	13	16
Threadfin shad	28	36	192	202	< 1	92
Common carp	0	1	0	0	< 1	< 1
Golden shiner	2	2	3	4	4	3
Coastal shiner	0	2	1	< 1	0	1
Snail bullhead	1	0	0	0	0	< 1
White catfish	4	1	4	< 1	6	3
Brown bullhead	1	4	2	3	1	2
Flat bullhead	< 1	0	0	0	1	< 1
Channel catfish	0	0	0	0	< 1	< 1
Chain pickerel	0	0	0	4	4	2
Unidentified killifish	0	0	1	0	0	< 1
White perch	1	< 1	< 1	0	0	< 1
Bluespotted sunfish	0	0	0	2	< 1	1
Warmouth	2	3	< 1	14	4	5
Bluegill	130	184	118	174	154	152
Redear sunfish	60	76	22	32	5	39
Sunfish (hybrid)	0	0	0	< 1	0	< 1
Largemouth bass	26	23	29	28	36	28
Black crappie	16	72	12	6	5	22
Total ^{&}	284	423	389	512	236	369

12

Appendix 3. Mean number per hour for fish collected with electrofishing sampling by transect from Harris Reservoir during 2006.

[&]Summations may vary from column totals due to rounding.

		Reservoir				
Species	Е	Н	Р	S	V	mean
Bowfin	0	0.6	1.5	2.3	4.4	1.8
Gizzard shad	2.5	4.0	0.7	5.7	3.8	3.3
Threadfin shad	0.3	0.3	1.6	2.2	< 0.1	0.9
Common carp	0	4.7	0	0	2.2	1.4
Golden shiner	0.1	0.1	0.1	0.1	< 0.1	0.1
Coastal shiner	0	< 0.1	< 0.1	< 0.1	0	< 0.1
Snail bullhead	< 0.1	0	0	0	0	< 0.1
White catfish	2.1	0.6	2.4	0.2	3.3	1.7
Brown bullhead	0.2	1.6	0.8	1.2	0.2	0.8
Flat bullhead	< 0.1	0	0	0	0.2	< 0.1
Channel catfish	0	0	0	0	0.4	0.1
Chain pickerel	0	0	0	2.1	1.4	0.7
Unidentified killifish	0	0	< 0.1	0	0	< 0.1
White perch	0.1	0.1	< 0.1	0	0	< 0.1
Bluespotted sunfish	0	0	0	< 0.1	< 0.1	< 0.1
Warmouth	0.1	0.2	< 0.1	0.5	0.4	0.3
Bluegill	4.0	6.9	3.5	5.6	5.6	5.1
Redear sunfish	7.3	6.8	2.4	2.0	0.3	3.8
Sunfish (hybrid)	0	0	0	< 0.1	0	< 0.1
Largemouth bass	11.2	17.5	16.2	10.8	36.0	18.3
Black crappie	1.6	8.0	1.2	1.5	0.4	2.5
Total ^{&}	29.7	51.4	30.5	34.2	58.7	40.9

13

Appendix 4. Mean weight (in kilograms) per hour for fish collected with electrofishing sampling by transect from Harris Reservoir during 2006.

[&]Summations may vary from column totals due to rounding.

Appendix 5. Length-frequency distributions for bluegill, redear sunfish, and largemouth bass collected with electrofishing sampling from Harris Reservoir in 2006.