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PREFACE

The right, title and interest with the computer program SASSI remains with the Regents of the
University of California, Berkeley. The licensing of the program is only permitted by the Regents
and/or its authorized agents.
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1. Introduction

This document presents the theoretical background on formulation of the ground motion
incoherency models in the computer program SASSI2000 (Lysmer, et. al, 1999), a brief
summary of the incoherency models implemented, computational steps to perform soil-
structure interaction (SSI) analysis with incoherency models, and a summary of the
verification of the new implemented feature. The general guide lines for using the
incoherency option are described at the end.

2. Ground Motion Incoherency Models

Two incoherency models have been implemented in SASS12000, the model by Mita and
Luco (1986) and the model by Abrahamson (2006, 2007). In these models the lateral
variability of the ground motion in the horizontal and vertical directions is characterized
using the coherency function, yj(&4), defined as

(CO) so,(co) (2.1)
js1, (o)s1 (co)

where Sii (co) and Sj (co) are the auto power spectrum density functions (PSD) of the
motions at locations i and j, and Sij (co) is the cross PSD between motions at locations i
andj.

a. Mita and Luco's Model

This model is a theoretical model that defines the spatial coherence function by:

(r, co) exp ]2 (2.2)

where y is the dimensionless spatial incoherence parameter, V, is the soil shear wave
velocity and co is the circular frequency (rad/sec).

The distance I Fj - F I is the measure of separation of two points, i and j, in the ground.

As shown in Equation (2.2), for short separation and low frequency, coherency function
approaches one i.e., the effect of spatial variability is very small. As the separation
distance and frequency increase, the coherency decreases (or incoherency increases).
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This model is not expected to be used for design purposes. However, as discussed later,
there are number of SSI analytical solutions published using the above model that permits
verification of SSI formulation implemented in SASSI2000 with this model. The SSI
computational steps remain the same among the models once the model type is selected
for the analysis.

b. Abrahamson's Model

Abrahamson has updated his model incorporating the most recent data from dense arrays.
His model provides the incoherency functions for soil sites for surface motion and
motions within shallow depths and also a most recent model for rock sites. The models
are all empirical and are based on a large set of recorded motions. The details of the
model and its basis are documented in separate reports by Abrahamson (2006, 2007).

Following the analysis of large set of recordings, the model proposed for SSI analysis is
the plane wave coherency model defined by the following functional form.

y )+(f,= f Tan~aý) )nl [ 12(f Tanta3 ).2 ]-Y (2.3)

In the above equation, f is the frequency in Hz, 4 is the separation distance in meter (m).
The coefficients for the model are provided by Abrahamson for soil sites for motions at
ground surface and at shallow depths as well as for rock sites. Equation (2.3) provides
the plane-wave coherency that should be used if a single plane wave is used as the input
to the SSI model. The coherency functions for soil sites are plotted in Figure 2.1 for
both horizontal and vertical directions for a range of separation distances. As depicted in
this figure, the coherency decreases with increasing frequency and separation distance.

It should be noted the model represented by Equation (2.3) provides the functional
relationships or constrains among the motions of a set of ground nodal points in the free-
field in terms of auto and cross power spectral density functions in a normalized form.
The actual intensity of the motion is defined by design motion and will be used in the
analysis as described: later while maintaining the constrains imposed by the model in
terms of cross-power spectra density function.
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Figure 2.1. Horizontal and Vertical Components of the Plane-Wave

Coherency Models.
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3. Theoretical Formulation of Incoherency Computation in
SASSI2000 Soil-Structure Interaction Framework

Seismic motions for "m" points in the ground at a given frequency co can generally be
characterized by the following power spectrum density (PSD) matrix

S1,1(co) S 1,2 (co) ... SIm(o)

IS,(0))] 1- CO) S2,2 (C) .. S i (3,1)

[Sm.1 (cW) Sm 2 (cW) ... Sr,m (cO)

In this matrix, the diagonal terms Si,i(co) are the auto power spectral density (PSD)
function for motion at location i, and Sij(co) are the cross PSD functions between motions
at locations i andj. [Sg(wo)] is by definition a hermitian matrix, i.e.,[Sg(co)]* = [Sg(co)

and Sj,(co) = Si~j(co), where the "*" denotes conjugated transpose, and the top bar, -

denotes conjugate of the complex term. Therefore the diagonal terms, Si,(co), i=1, m...,
are positive real functions.

It should be noted that the coherency models and the associated PSD matrix only
provide the amplitudes of PSD functions of the ground motions in a normalized
form. These functions do not provide any information on the relative phasing of the
motions among the group of "m" nodes. Thus, application of this model to
structural analysis stipulates a formulation that is capable of obtaining the PSD of
the structural response accurately. Similarly for SSI analysis, the approach adopted
in SASSI2000 is such that it amounts to the PSD of the response quantity of interest
consistent with the nature of the input motion expressed by PSD functions. As
shown below the square root of sum of the squares (SRSS) summation on spatial
modal structural responses is the preferred method that solves for the accurate PSD
of the structural responses.

Given the property of the PSD matrix described above, the matirx can be written in the
following form

[S,(CO)] = SD] r(W)][SD] (3.2)

Where

[SD]=diag[VLf, 1,2,2', Sm,m] (3.3)
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I x 71,2 "' 1,(. .S . (3.4)

vSi .S

r•j is the coherency function, such as the relationships developed by Mita and Luco
(Equation 2.2) or by Abrahamson (Equation 2.3). By definition yij is a positive real
function. However, a complex phase factor may be applied on rj to reflect the effect of
traveling waves. In the following discussion it is assumed that the general complex form
is utilized.

The PSD matrix [Sg (co)] can be expressed in the following form:

m

[Sg(co)] = (O i 101} (3.6)
i=1

Where 24 and { }1 are the eigenvalues and eigenvectors of the matrix that satisfy the
relationships

[Sg(O))]{ }0 = 2W{ }1 , i = 1 ... , (3.7)

A1 are all real numbers while { j}i are in general complex vectors satisfying

{•}-.{0)j= /j 1,ji=j (3.8)

Equation (3.7) shows that for "i" number of nodes in the ground, a set of"m" eigen
vectors (mode shapes) and associated eigen values can be obtained from the PSD matrix.
These modes can in fact be plotted. The main modes show modal shapes associated with
rigid body motion'of the group of "i" nodes whereas the higher modes depict the
rotations and deformed shape of the group.

Implementation of the incoherency model in SASSI2000 follows its sub-structuring
method. The commonly used sub-structuring formulations of the SSI problem for a fully
coherent wave field are presented in Attachment A. As shown in this Attachment, the
equation of motion for SASSI2000 "subtraction method" for each frequency requires
computation of the vector U'f representing the free-field motion for all interaction nodes
(Equation A.3-3). In a deterministic fully coherent analysis, U'f is obtained from the
solution to the site response problem in layered media and depends on the wave type and
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layered properties. U'f is a vector normalized to the amplitude of motion at the control
point using harmonic motion with unit amplitude at the control point. For incoherency
analysis, U'f can be expressed in terms of the eigen vectors and eigen values shown in
Equation (3.7).

In the following section it is shown that once the solution of the structural response
subjected to the individual mode and associated eigen value is obtained, the SRSS of
solutions for all the modes results in an accurate expression of the PSD of the
structural responses consistent with the prescribed PSD of the input motion.

The total responses of the structure system can be obtained by solving the equation of
motion to each of the eigen-pairs, i.e., construct the modal ground motion vector {ug}j

{Ug)j =• {•lj ,j-= 1, M... (3.9)

and solving the equation of motion (Equation A.3-3). Assuming a surface foundation for
the sake of simplicity in the derivation, the SAS SI Equations of Motion can be written as

[ c11  C11  us { 0j~ (3.10)

where the subscript i denotes the interaction nodes, and the subscripts is for all structural
nodes (see Attachment A). Xi is the impedance matrix of dimension m x m. Let
{u} = {uiU}IT, the solution of Equation (3.10) leads to

{u}j = [H] {ug}j (3.11)

where [H] = [Hi, H,] T, is the transfer function matrix, [H] is of dimension n x m. The
components of [H] are of the following form

SIU U-ci "S -1 Ci Xii (3.12)

H,=[C, +CX, -QCi (3.13)

After obtaining the solutions, {u}j, j = 1. m, the PSD matrix of the responses of the

structure system can then be obtained
m *

[S. (co)] (l {ulj ui (3.14)
j=1

Equation (3.14) can be proved easily. In fact, from Equations (3.6), (3.9), (3.11), it can
be shown that
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m m
J{u}l{u} = ,l[H]{ug}j{ug},.[H] [H] [Hl" =[H][Sg][H]" (3.15)

j=1 j=1

Note the diagonal terms of [S,], e.g., the k-th diagonal term, or the auto PSD for k-th
DOF:

Z U ZI Ukj 12 (3.16)
j=1 j=1

where Ukj is the k-th term of the solution vector {u}j. Note the summation is through all
spatial eigen modes.

Equation (3.16) shows that the auto PSD of any degree-of-freedom (DOF) in the structure
system can be obtained by first solving the equations of motion for all eigen modes of the
incoherent ground motion model obtained from the PSD matrix, then sum up the square
of the amplitudes of the response from the solutions of all modes.

The above discussion outlines the general approach in solving the SSI problem and
obtaining PSDs at all nodal points with the ground motion incoherency PSD matrix
defined. The method permits use of different motions at the m support points, i.e., the
diagonal terms in [Sg], S1,j, S2,2, ... , Smm,, can all be different. However, in most practical
applications, the ground motion is defined by a single design motion and the PSD of the
ground motions at all nodes are the same as the PSD of the design motion. This is a
reasonable assumption given the typical size of the foundations for critical facilities. Let
So be the uniform PSD for all nodes,

S11 =S2,2 .m,m =SO (3.17)

And Equation (3.2) reduces to

[Sg]=W[].So (3.18)

Note that So is a single number for each frequency and can be taken out of the matrix
operations. We can perform the eigen-decomposition and solution steps on [F] only and
multiply S0 back at the last step. Following Equation (3.16) and the above assumption,
the auto PSD of motion at the k-th DOF can be written as

Su.•, r1 uk.j 2 so (3.19)

Recall from the basic stochastic theory that for a linear system, the PSD of the system
response, Su,, can be represented as the product of the PSD of input, Si,, and the square
of the amplitude of the transfer function H, i.e.,

Su,(co) =1 H(co) t2 .S,)() (3.20)
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Comparing Equations (3.19) and (3.20), it is concluded that the total response of the
structure in terms of amplitude of transfer functions at any DOF can be calculated as the
SRSS of all spatial modal solutions.

I H(co) Ik= ZIUJk 12 (3.21)

It should be noted that the above derivation provides the exact solution for the
linear system since there is no other assumption/simplification introduced in the
solution process.

This approach is equally applicable to the calculation of structure forces and stresses due
to the incoherent ground motion. Let [Ke] .be the element stiffness matrix.. After solving
Equation (3.10) and obtaining the modal displacement solutions {u}j, the corresponding
modal force solution {W}j can be obtained by (conversion from global coordinates to local
coordinates is implied)

{f}j =[K ] {u}j (3.22)

Similarly, amplitude of the force/stress transfer function at any DOF k can be obtained as

I Q(w) Itf 2  (3.23)

In summary the above derivation confirms that, for ground motion incoherency models
formulated by the PSD matrix, the SRSS summation on spatial modal solutions is an
accurate method to compute the structural responses and is consistent with deivelopment
of the PSD of structural response subjected to the incoherent ground motions models
characterized by the PSD functions. A rational extension of this method is incorporation
of the random vibration theory (RVT) in the formulation of the .SSI solution. RVT
approach can be directly implemented so that by providing the response spectra or PSD
of input motion, the structural responses in terms of the power or response spectra can be
readily computed.

Estimate of Truncation Errors

Equation (3.16) establishes the exact solution form for the auto PSD at any specified
DOF. Furthermore, Equation (3.21) gives the equivalent transfer function for the DOF if
the ground motions at all interaction nodes, are specified by the same PSD value, So. A
complete solution, however, is quite time consuming since it would require that the
equations of motion, Equation (3.10), be solved for. all m spatial modes. In engineering
practice, however, only a subset of these spatial modes needs to be-solved to obtain
11 satisfactory solutions. The following section establishes an estimate on the upper bound
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of potential truncation errors of the solution by using only a subset of the eigen-mode
solutions.

The following characteristics of the solutions are observed from Equations (3.9), (3.11)
and (3.16):

(1) For each spatial mode, the magnitude of the solution vector is directly
proportional to the magnitude of the corresponding eigenvalue. In fact,

{u}j =[H]{ug}j =[H].J-/7{O}.j j= 1,2. m (3.24)

{ fuj} I 2= {uj I} {uj)} = U Ukj =1 j 1 11 {4}'[H]'[H] { } j Jt=•1 I Cj (3.25)
k=1

where "*" denotes for conjugated transpose, 11 {l)*[H]*[H]{O}j 1tis the absolute

value of the determinant of a square matrix, and C3 is that value. It can be proved
that for all spatial modes,j = 1, 2 ... , mn,.C, = C2 ="=Cm = C since [H] is

independent to the ground motions, and all {1} j are unit vectors.

(2) Following Equation (3.25), the square sum of the overall solution is directly
proportional to the sum of the absolute value of the eigenvalues. i.e.,

I uj 12 = I I l-C (3.26)
j=1 =

Equation (3.26) indicates that contributions of all spatial modes to the overall solutions
are additive since the right-hand-side in (3.26) are positive for all j values. Thus, if we
rearrange all eigenvalues from the largest to the smallest, and use a subset of only the
first "s" eigen-solutions, s << m, the truncation error of this subset can be established as:

1- Z • 1- 2  1

= = s<<m (3.27)

Equation (3.27) establishes the upper bound of truncation errors for the computation of
the transfer functions as defined by Equation (3.21) since this estimate is for the
magnitude of the entire PSD matrix and the solutions from Equation (3.21) is only a
subset of the PSD solutions. This estimate is also easy to implement in practical
computations since all it requires is the ratio of two sums for the eigenvalues computed in
the orthogonal decomposition process of the coherency matrix.

11 of 54



For most applications, it has been noted that using 10 spatial. modes will result in accurate
results with very small error. In the verification examples presented in Section 6, the
errors due to selection of limited spatial modes have been computed and sensitivity of the
results to limited number of spatial modes is demonstrated.

Frequencies of Analysis

For conventional SSI analysis, as described in SASSI user manual, a select group of 20 to
50 frequencies are sufficient to compute the total response of the structure. The results
for the remaining frequencies are obtained usingthe interpolation scheme in SASSI
which is based on the generalized shape of the transfer function for a two degree-of-
freedom system. For application with incoherent motion, it should be noted that the
incoherent ground motion is random in nature and the randomness is more evident at high
frequencies. This effect causes additional rocking and torsional vibration of the
structures. These modes of vibration can not be detected from conventional fixed base
and SSI analysis of the structure. It is recommended that a larger set of frequency points
to be used to capture additional modes of structural vibrations more accurately. Number
of frequencies between 50 to 100 points is expected to be adequate. The solution for the
remaining frequencies will be obtained using the same interpolation scheme implemented
in SASSI since once the SRSS is performed on the spatial modal solutions, the results are
the structural transfer functions independent of ground motions and can be interpolated as
in the case of coherent ground motions.. It has been noted that performing interpolation";
on individual spatial modal solution would require careful examination and further
smoothing of the interpolated results. This is mainly due to the fact that solution to each
spatial mode is not the complete transfer function to represent the structural response and
exhibits a significant undulation. The SRSS of the transfer function at computed
frequencies provides the total structural response which is a much smoother response and
can be used readily with the current SASSI interpolation scheme to obtain the transfer
function for all other frequencies.
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4. Implementation in the Computer Program SASSI2000

As shown in Equation (A.3-3), only the free-field load vector U'1 needs to be computed
using the coherent or incoherent ground motion model. This vector is computed for each
frequency and for the interaction nodes in contact with soil in the SSI model. To do so,
the following steps are taken:

0 For each frequency, the coherency functions in Equations (2.2) or (2.3) are used
to construct the coherency matrix for all interaction nodes, i. The matrix can be
readily constructed given the frequency of analysis and the separation distances
among the nodes. This is a full matrix with off-diagonal terms reducing in
absolute values as the separation distance among the nodes increases. Separate
coherency matrices for horizontal and vertical motions are constructed.

0 Each matrix is solved using a complex eigen equation solver to obtain the eigen
values and eigen vectors. Eigen vectors are used as mode shapes. Modal-weights
are the square root of the eigen values. All or selected sets of modes can be
considered in the analysis.

- The structural responses are computed for each spatial mode (Equation (3.9)
provides successive ground motion vector U'f). For embedded structures, the free-
field vector is adjusted for amplitude reduction of free-field vector with depth just
as it has been performed in the basic SASSI operation.
The total responses, or the transfer functions (TF) of the structure, are obtained
using the SRSS method dombining all spatial modal solutions.
Once the TF function for the response location of interest is obtained, other
responses of interest such as time histories, response spectra, etc. follows the
normal procedure using the Fourier Transform to convolve with the control
motion.
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5. User Guide for the Incoherency Option in SASSI20000

The user guide and technical manuals of the computer program SAS S12000 (Lysmer, et
.al, 1999) has been modified to include the incoherency models and the guide for its
execution. The program has been modified in a manner to reduce the impact on input
files previously generated for SSI analysis.

The revised layout of the program is shown in Figure 5.1. The sequence of runs and
modeling guides can be summarized as follows.

* The free-field soil profile and choice of frequency of analysis are modeled using
the program SITE with no change. The results of analysis are saved on Tapes 1
and 2 for the follow up runs.

* The program POINT remains the same and provides the point load solution to
compute the impedance matrix.

* The program HOUSE also remains the same to model the finite element part of
the SSI model.

* The new program INCOH has been developed to handle the incoherency models.
This program reads the frequency points from Tape 1 (generated by SITE) and the
nodal coordinate data from Tape 7 (generated by HOUSE). The program
computes the coherency matrix and decomposes the matrix to obtain the eigen
values and eigen vectors for each frequency of analysis. The results are saved on
Tape 11.

* The program ANALYS has been modified to read the eigen values and eigen
vectors from Tape 11 and solves for each mode. The results are saved on a series
of Tapes 8 each containing the solution for the selected incoherency modes.

* The program COMBIN has been modified to perform SRSS on the modal
solutions obtained from Tapes 8's and generate one final tape for the TF of the
structure.

* The program MOTION remains the same and receives the TF from Tape 8 to
compute other responses of interest (time histories, response spectra,...).

The general guidelines remain the same as those provided in SASS12000 user manual.
For incoherency analysis, the following needs to be observed.

" The incoherent ground motion is random in nature and the randomness is more
evident at high frequency. This effect causes additional rocking and torsional
vibration of the structures. These modes of vibration can not be detected from
conventional fixed bases analysis and conventional SSI analysis of the structure.
It is recommended that a larger set of frequency points to be used to capture
additional modes of structural vibrations more accurately. Number of frequencies
between 50 to 100 points, is expected to be adequate.

* The spatial modes used in the analysis can be selected by the user. While user has
the choice to use all the modes, it has been found that for critical structures with
fairly rigid mat a few modes are adequate. For low frequency responses, 3 to. 5
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modes are capable of capturing the responses adequately. For higher frequency
responses, a larger set of modes are needed. Analysis of typical nuclear power
plants and comparison with other published solutions confirm that 10 spatial
modes are generally adequate to obtain accurate results. The user has the option
to increase the number of modes to ensure the responses are not impacted.
Foundations, typically mat foundation, used for critical facilities are rigid in
horizontal directions. The mat foundation is not necessarily rigid in vertical
direction, particularly for high frequency responses. Due to spatial variability of
the ground motion and additional rocking caused by vertical excitation, care must
be exercised in modeling the mat foundation and its connection with interior and
exterior walls to adequately capture the foundation flexibility effects.
Assumption of rigid mat foundation for vertical analysis may not result in realistic
responses of the structure.

" The spatial variability of incoherent ground motions is random in nature. No
symmetry should be expected for the ground motions. Therefore, half or quarter
SASSI models with symmetry planes should not be used.

* For the same reasons stated above, 2D SSI analysis should not be performed with
the ground motion incoherency models
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6. Verification of the SRSS Method for SSI Analysis with Incoherent
Ground Motion

This section briefly presents the example problems used to verify the SRSS method for
analyzing the incoherent ground motion. There are number of published SSI solutions
using the theoretical model by Mita and Luco (1986). Since the same computational
steps described in Section 3 are used, these example problems havebeen analyzed to
verify accuracy. of the solution; Sensitivity analyses are performed for the examples to
illustrate the adequacy of using only limited spatial modes.

Example 1

Luco and Mita (1987) published analytical results for the responses of a rigid massless
foundation on a homogeneous half-space subjected to incoherent ground motions defined
by the Equation (2.1). The solutions for y = 0.1, 0.3 and 0.5 are provided in tabulated
form.

This problem is analyzed using SASSI2000. Results of analyses in terms of transfer
functions in horizontal, vertical, rocking and torsional directions are compared with the
Luco and Mita results (Figures 6.1, 6.3, 6.5, 6.7). SASSI numerical model for this
problem has a total of 69 interaction nodes, thus a total of 69 spatial modes may be
utilized in calculating the incoherent responses: All results shown above are computed
using all 69 modes. As shown in the figures, agreement between these two sets of results
is excellent.

A sensitivity analysis is performed on the effects of using a limited number of spatial
modes. This sensitivity study is performed for the y = 0.5 case only. Figures 6.2, 6.4, 6.6.
and 6.8 show the truncation errors of the transfer functions if the SRSS combinations are
performed using 10, 20 or 40 modes only. As shown in the figures, if 10 spatial modes
are utilized, the maximum relative errors are less than 2% in the translational directions.,
and are less than 4% in the rotational directions. These numbers are considered very
small considering the usual uncertainty involved in the dynamic calculations.
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Figure 6.1
Horizontal Transfer Functions at Center of a Massless Circular Foundation
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Figure 6.3

Vertical Transfer Functions at Center of a Massless Circular Foundation
Incoherent Runs
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Figure 6.4

Truncation Errors Using Limited Spatial Modal Solutions
Vertical Transfer Functions. At Center of Rigid Massless Disk, y 0.5
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Figure 6.5

Rocking Transfer Functions at Center of a Massless Circular Foundation
Incoherent Runs
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Figure 6.6

Truncation Errors Using Limited Spatial Modal Solutions
Rocking Transfer Functions. At Center of Rigid Massless Disk, y = 0.5
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Figure 6.7
Torsional Transfer Functions at Center of a Massless Circular Foundation
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Figure 6.8

Truncation Errors Using Limited Spatial Modal Solutions
Torsional Transfer Functions. At Center of Rigid Massless Disk, y = 0.5
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Example 2

Mita and Luco (1986) published analytical results for the responses of a cylindrical
building on a homogeneous half-space subjected to incoherent ground motions. The
coherency function defined in Equation (2.1) is used in this paper. A sketch of the
cylindrical building is shown in Figure 6.9.

x3

A2

.x1

Figure 6.9 A sketch of the Building Model

The Building has the following properties:

Radius
Height
Total Mass:

lOin
40 m
107kg

Fixed Base Natural Frequencies:

Horizontal
Vertical:

Structural Damping

2, 6, 10, 14, 18 Hz
3, 9, 15, 21, 27 Hz

0.02
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And the properties of the homogeneous halfspace are:

Shear Wave Velocity 400 (m/sec)

Poisson's Ratio 0.333

Material Damping 0.02

Mass Density 1875 (kg/m3)

This structure is analyzed by SASSI2000 following the-above outlined approach. The
cases of parameter y = 0 (the coherent motion), 0.1, 0.3 and 0.5 are analyzed. Results of
SASSI2000 analyses are compared with Mita and Luco's analytical results, as shown at
selected locations in Figures 6.10, 6.12, 6.14, 6.16, 6.18, 6.20 and 6.22. SASSI
numerical model for this problem has a total of 69 interaction nodes, thus a total of 69
spatial modes may be utilized in calculating the incoherent responses. All results shown
above are computed using all 69 modes. As shown in the figures, agreement between
these two sets of results is excellent.

A sensitivity analysis is performed on the effects of using a limited number of spatial
modes. This sensitivity study is performed for the y= 0.5 case only. Figures 6.11, 6.13,
6.15, 6.17, 6.19, 6.21 and 6.23 show the comparison plots for the responses using either
69 modes or 10 modes, and the relative errors induced in using 10 modes only.

As shown in the figures, the transfer functions generated by using 10 modal solutions or
by using 69 modal solutions are indistinguishable for the entire frequency range, and the
maximum relative errors induced in using 10 modes only never exceeds 1% for all
solutions at all locations, even at the highest frequency considered. Thus it can be
concluded that for the SSI analysis of this building model, 10 spatial modes are sufficient
in capture the effect of incoherent ground motions.
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Figure 6.10
Horizontal Motions due to Horizontal Shaking. At Base-Center J AI I U8 H I
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Figure 6.11
Effects of Using Limited Spatial Modal Solutions. Mita-Luco Cylindrical Building
Horizontal Motions due to Horizontal Shaking. At Base-Center I A1 / UgH I. Y = 0.5
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Figure 6.12
Vertical Motions due to Vertical Shaking. At Base-Center I A3 / Ugv I
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Figure 6.13
Effects of Using Limited Spatial Modal Solutions. Mita-Luco Cylindrical Building

Vertical Motions due to Vertical Shaking. At Base-Center I A3 I Ugv I. = 0.5
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Figure 6.14
Horizontal Motions due to Vertical Shaking. At Base-Center I A, / UOv I
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Figure 6.15
Effects of Using Limited Spatial Modal Solutions. Mita-Luco Cylindrical Building
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Figure 6.16
Vertical Motions due to Vertical Shaking. At Base-Edge A3 / Uwv I
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Figure 6.17
Effects of Using Limited Spatial Modal Solutions. Mita-Luco Cylindrical Building

Vertical Motions due to Vertical Shaking. At Base-Edge I A3 / Ugv I. Y = 0.5
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Figure 6.18
Horizontal Motions due to Horizontal Shaking. At Top-Center I AI1 UgH I
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Figure 6.19
Effects of Using ULmited Spatial Modal Solutions. Mita-Luco Cylindrical Building
Horizontal Motions due to Horizontal Shaking. At Top-Center I A, / UgH I. Y = 0.5
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Figure 6.20
Vertical Motions due to Vertical Shaking. At Top-Center A3 / Uv I
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Figure 6.21
Effects of Using Limited Spatial Modal Solutions. Mita-Luco Cylindrical Building
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100

10

1.00%

I

P

0.1

5 10 15 20 25

Frequency (Hz)

29 of 54



Figure 6.22
Vertical Motions due to Vertical Shaking. At Top-Edge 1 A3 / Uv [I
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Figure 6.23
Effects of Using Limited Spatial Modal Solutions. Mita-Luco Cylindrical Building

Vertical Motions due to Vertical Shaking. At Top-Edge I A3 I Uv I. Y = 0.5
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Additional Verification Examples

In addition to the above verification examples, a typical standard nuclear power plant
model has been analyzed using the Computer Programs SASSI and CLASSI (EPRI,
2007). The details of the multi-stick model and the input motion as well as the site
properties are fully described in the EPRI report. In the EPRI report, the results of
analysis are compared at numerous locations in the structure for both coherent motions
and incoherent motions with Abrahamson model. The SASSI2000-SRSS results are
compared with the results of number of other methods. In particular, solutions from the
CLASSI-SRSS method and the SASSI-Simulation method are found to be in close
agreement with the SASSI-SRSS method. All SASSI-SRSS results presented in the
EPRI report are computed using 10 spatial modal solutions. These results are not
repeated in here to avoid duplication.

A sensitivity analysis is performed on the effects of using a limited number of spatial
modes only. SASSI numerical model for this standard nuclear plant has a total of 169
interaction nodes, thus a total of 169 spatial modes may be utilized in calculating the
incoherent responses. For the purpose of this sensitivity analysis, the solutions for all 169
spatial modes are generated and transfer functions (TF) utilizing all modal solutions are
computed.

Figures 6.24 through 6:44 show comparison plots of the TFs generated using 10 modes
and 169 modes. The TFs are for X-X, Y-Y, Z-Z,,X-Y, X-Z, Z-X, Z-Y directions at the
three outriggers (ASB outrigger, Node 118, SCV outrigger, Node 145; and CIS outrigger,
Node 229). The X-Y TF denotes X-response due to Y-shaking.

As shown in the figures, the TFs in all major directions generated by using 10 modal
solutions or by using 169 modal solutions are indistinguishable for all practical purposes.
It is therefore concluded that for practical applications of SASSI SSI incoherent analysis,
utilization of up to 10 spatial modes shall be adequate to obtain accurate solutions.

(It should be noted that these figures are only samples at selected critical locations.
Comparison plots are generated at many other locations but not presented herein due to
space limitations. Observation from all comparison plots reaches the same conclusion.)
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Figure 6.24

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion-Analysis
X-X Transfer Functions at Node 118 (ASB Outrigger), AP1000 Outrigger Model.
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Figure 6.25

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Y-Y Transfer Functions at Node 118 (ASB Outrigger), AP1 000 Outrigger Model.
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Figure 6.26

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Z-Z Transfer Functions at Node 118 (ASB Outrigger), AP1000 Outrigger Model.
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Figure 6.27

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
X-Y Transfer Functions at Node 118 (ASB Outrigger), APIOO Outrigger Model.
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Figure 6.28

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
X-Z Transfer Functions at Node 118 (ASB Outrigger), AP1000 Outrigger Model.
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Figure 6.29

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Z-X Transfer Functions at Node 118 (ASB Outrigger), AP1000 Outrigger Model.
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Figure 6.30

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Z-Y Transfer Functions at Node 118 (ASB Outrigger), AP1000 Outrigger Model.
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Figure 6.31

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
X-X Transfer Functions at Node 145 (SCV Outrigger), APIOOO Outrigger Model.
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Figure 6.32

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Y-Y Transfer Functions at Node 145 (SCV Outrigger), AP1000 Outrigger Model.
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Figure 6.33

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Z-Z Transfer Functions at Node 145 (SCV Outrigger), APIO0 Outrigger Model.
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Figure 6.34

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
X-Y.Transfer Functions at Node 145 (SCV Outrigger), API 000 Outrigger Model.
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Figure 6.35

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
X-Z Transfer Functions at Node 145 (SCV Outrigger), AP1000 Outrigger Model.
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Figure 6.36

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Z-X Transfer Functions at Node 145 (SCV Outrigger), APIDOD Outrigger Model.
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Figure 6.37

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Z-Y Transfer Functions at Node 145 (SCV Outrigger), API 000 Outrigger Model.
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Figure 6.38

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
X-X Transfer Functions at Node 229 (CIS Outrigger), AP1 000 Outrigger Model.
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Figure 6.39

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Y-Y Transfer Functions at Node 229 (CIS Outrigger), AP1 000 Outrigger Model.
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Figure 6.40

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Z-Z Transfer Functions at Node 229 (CIS Outrigger), API 000 Outrigger Model.
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Figure 6.41

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis

X-Y Transfer Functions at Node 229 (CIS Outrigger), API 000 Outrigger Model.
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Figure 6.42

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
X-Z Transfer Functions at Node 229 (CIS Outrigger), AP1 000 Outrigger Model.
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Figure 6.43

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis

Z-X Transfer Functions at Node 229 (CIS Outrigger), AP1 000 Outrigger Model.
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Figure 6.44

Effects of Using Limited Spatial Modal Solutions for Incoherent Motion Analysis
Z-Y Transfer Functions at Node 229 (CIS Outrigger), APIO00 Outrigger Model.
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7. Summary and Conclusion

The document presented herein summarizes the theoretical formulation and
implementation of the SRSS method for analyzing ground motion incoherency effects in
SASSI2000. A brief discussion of the two incoherency models is presented and the
formulation that describes the reason for adoption and applicability of the SRSS method
is fully described. A summary of the verification examples verifying the solutions with
available published solutions and the solutions obtained from the computer program
CLASSI is presented. Sensitivity analyses are performed for all verification examples on
effects of using limited spatial modal solutions. Results of the sensitivity analyses
indicate that for practical purposes, using i0 spatial modes in the S SI analysis shall be
adequate in capturing the major effects of incoherent ground motions.

Based on the derivation and verification presented in this document, it is concluded that
the SRSS method for analyzing the ground motion incoherency effects implemented in
SASS12900 is an accurate method and can be used for design.
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ATTACHMENT A

SUBSTRUCTURING METHODS OF SASSI2000

(Chapter 2 of SASSI2000 Theoretical Manual)
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A.1 SUBSTRUCTURING METHODS OF SSI ANALYSIS

The soil-structure interaction problem is most conveniently analyzed using a

substructuring approach. In this approach, the linear soil-structure interaction

problem is subdivided into a series of simpler sub-problems. Each sub-problem

is solved separately and.the results are combined in the final step of the analysis

to provide the complete solution using the principle of superposition.

For the case of structures with surface foundations for which the structure and

the foundation interface boundary is on the surface of the foundation medium,

the substructuring method is relatively simple and many solution techniques are

available. For structures with embedded foundations, the substructuring method

becomes considerably more complicated. Conceptually, these methods can be

classified into four types depending on how the interaction at the soil and

structure interface degrees-of-freedom is handled. These four types are: 1) the

rigid boundary method, 2) the flexible boundary methods, 3) the flexible volume

method, and 4) the substructure subtraction method. The seismic SSI sub-

problems that these four types of substructuring methods are required to solve to

obtain the final solution are compared in Fig. A.1-1. As shown in this figure, the

solution for the site response problem is required by all four methods. This is,

therefore, common to all methods. The analysis of the structural response

problem is also required and involves essentially the same effort for all methods.

The necessity and effort required for solving the scattering and impedance

problems, however, differ significantly among the different methods. For the

rigid-boundary and the flexible-boundary methods, two explicit analyses are

required separately for solving the scattering and impedance problems. On the

other hand, the flexible volume method and the substructure subtraction method,

because of the unique substructuring technique (see Sections A.2 and A.3),

require only one impedance analysis and the scattering analysis is eliminated.

Furthermore, the substructuring in the subtraction method often requires a much

smaller impedance analysis than the flexible volume method. The SASSI

computer program adopts both the flexible volume method and the substructure

subtraction method of substructuring.
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Method Rigid Flexible Flexible Sutaio• od igidSubtraction
ysis Boundary Boundary Volume

Site
Response
Analysis

(a)

Scattering
Analysis None None

Impedance * 0

Analysis • •
(C)

Structural
Response Standard Standard + Standard + Standard +
Analysis

(d)

Figure A.1-1. Summary of Substructuring Methods
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A.2 THE FLEXIBLE VOLUME-METHOD

The flexible volume substructuring method is based on the concept of partitioning
the total soil-structure system as shown in Fig. A.2-la into three substructure
systems as shown in Figs. A.2-lb, A.2-1c and A.2-1d. The substructure I consists
of the free-field site, the substructure II consists of the excavated soil volume, and
the substructure III consists of the structure, of which the-foundation replaces the
excavated soil volume. The substructures I, HI and III, when combined together,
form the original SSI system shown in Fig. A.2-1 a. the flexible volume method
presumes that the free-field site and the excavated soil volume interact both at the
boundary of the excavated soil volume and within its body, in addition to
interaction between the substructures at the boundary of the foundation of the
structure. The theory and formulation that develop in the following sections are
equally applicable to two- and three-dimensional. SSIproblems.

The equations of motion for the SSI substructures shown in Figs. A.2-1b, A.2-lc
and A.2-1 d can be written in the following matrix form:

[M {U}+E[K)U}={Q} (A.2-1)

where [M] and [K] are the total mass and stiffness matrices, respectively. {
Is the vector of total nodal point displacements and {Q} are the forces due to
applied external dynamic forces or seismic excitations.

For the harmonic excitation at frequency co, the load and the displacement vectors
can be written as

{Q Q} ex'p(icot) (A.2-2)

And

{U ={Uexp(kcot) .(A.2-3)

where {Q} and {U} are the complex force and displacement vectors at
frequencywa. Hence, for each frequency, the equations of motion take the form

[c] {u} = {Q} (A.2-4)
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where [C] is a complex frequency-dependent dynamic stiffness matrix:

[C] = - 2 [M] (A.2.5)

Using the following subscripts, which refer to degrees of freedom associated with
different nodes (see Fig. A.2-1):

Subscript Nodes
b the boundary of the total system

at the boundary between the soil and the

structure

w within the excavated soil volume
g at the remaining part of the free-field site
s at the remaining part of the structure
f combination of i and w nodes

The equation of motion for the system is partitioned as follows:

C1ii - C+Xi -Cc" +X. .C11 U' x U'+Xw U,

WI + - C• + X 0 Uw U, + X• U" (A.2-6)

C10 C11 U, 0sL- i ' '

where superscripts, I, II and III, refer to the three substructures. The complex
frequency-dependent dynamic stiffness matrix on the left of Equation (A.2-6)
simply indicate the stated partitioning according to which the stiffness and mass
of the excavated soil volume are subtracted from the dynamic stiffness of the free-

field site and the structure. The frequency-dependent matrix, Xii XA, or

Xff], is called the impedance matrix, which is obtained from the model in

substructure I using the point load solutions. The vector, U{ or Uf

computed from the free-field motion for the interacting nodes shown in
substructure I. The motion is a function of prescribed wave field in the free-field.
The methods for solving the site response problem for body and surface waves are
described in Chapter 3. Degrees of freedom associated with nodes i and w are
considered interacting and included in the impedance analysis and in the load
vector in Equation (A.2-6).
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If the source of excitation is applied dynamic loading within the model, as in the
case of foundation vibrations, impact loads, and wind loads, the free-field motions

Ui } vanish and Equation (A.2-6) can be written asuf

U!,-- U C"! + .- -C X+ , C'II U,

! + X, CC" + O (A.2-7)
CII CIIo

where the load vector has non-zero terms only where external loads are applied.

Seismic and external loads can, in principle, be considered together by simply
adding the external loads {P} to the load vector in Equation (A.2-6). This method
is not used in SASSI, since in practice; the seismic excitations and the external
loads are seldom considered simultaneously.
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Figure A.2-1. Sub-structuring in the Flexible Volume Method
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A.3 THE SUBSTRUCTURE SUBTRACTION METHOD

The substructure subtraction method is basically based on the same sub-

structuring concept as the flexible volume method. The subtraction method

partitions the total soil-structure system as shown in Fig. A.3-1a into three

substructure systems as shown in Figs. A.3-1b, A.3-1c and A.3-1d. The

substructure I consists of the free-field site, the substructure II consists of the

excavated soil volume, and the substructure Ill consists of the structure. The

substructures 1, 11 and Ill, when combined together, form the original SSI system

shown in Fig. A.3-1a. However, the subtraction method recognizes that soil-

structure interaction occurs only at the common boundary of the substructures,

that is, at the boundary of the foundation of the structure. This often leads to a

smaller impedance analysis than the flexible volume method. The theory and

formulation that develop in the following sections are equally applicable to two-

and three-dimensional SSI problems.

The equations of motion for the SSI substructures shown in Figs. A.3-lb, A.3-1c
and A.3-1d can be written in the following matrix form as in the flexible volume
method:

[EM) { + [K) {} {Q} (A.3-1)

where [M] and [K] are the total mass and stiffness matrices, respectively. {U}is

the vector of total nodal point displacements and { Q } are the forces due to

applied external dynamic forces or seismic excitations.

For the harmonic excitation at frequencyco, the equations of motion can take the
form as discussed in Section A.2:

[C]{U} =M{Q} (A.3-2)

where {Q}, {U} and [C] are the complex force vector, the complex displacement
vector and the complex frequency-dependent dynamic stiffness matrix,
respectivelyý
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Use the same subscripts as in the flexible volume method to refer to degrees of
freedom associated with different nodes (see Fig. A.3-1):

Subscript Nodes
b the boundary of the total system
i at-the boundary between the ground and the

structure
w within the excavated soil volume
g at the remaining part of the free-field site
s at the remaining part of the structure
f same as i nodes

The equation of motion for the system is partitioned as follows in the subtraction
method:

i" Xiii UWis Xii Ui
wI •c-Cww 0 .U, = (A 3-3)

L C11 0 .c"l, Uf
-si - ss

where superscripts, I, ii and ImI, refer to the three substructures. The complex
frequency-dependent dynamic stiffness matrix on the left of Equation (A.3-3)
indicates the stated partitioning according to which the stiffness and mass of the
excavated soil are subtracted from the dynamic stiffness of the free-field site and
the structure. Compared to Equation (A.2-6) in Section A.2 for the flexible
volume method, this complex dynamic stiffness is much simpler because only the
degrees of freedom associated with nodes i are considered interacting. This also
leads to a impedance analysis involves less number of degrees of freedom and

therefore a smaller impedance matrix, [ X 1] or IXffI , which will be described in

Chapter 4. For the same reason, only the free-field motions at the degrees of

freedom associated with nodes i, {U,} or {Uf },computed from the site response

analysis are part of the load vector in Equation (A.3-3). The methods for solving
the site response problem for body and surface waves are described in Chapter 3.

If the source of excitation is applied dynamic loading within the model, as in the
case of foundation vibrations, impact loads, and wind loads, the free-field motions
{Ui} vanish and Equation (A.3-3) can be written as
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L cll III-xi c,, i i iPi0C 0o c';I, u, p. (A.3-4)

where the load vector has non-zero terms only where external loads are applied.
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