Washington

TRU Solutions LLC

TS:09:02005 UFC:5822.00

February 23, 2009

MM55

ATTN: Document Control Desk Director, Spent Fuel Project Office Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Subject: RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FOR REVIEW OF AN APPLICATION FOR REVISION 22 OF THE TRUPACT-II SHIPPING PACKAGE APPLICATION (DOCKET No. 71-9218, TAC No. L24217) AND REVISION 5 OF THE HalfPACT SHIPPING PACKAGE APPLICATION (DOCKET No. 71-9279, TAC No. L24218)

References:

 Letter from T. E. Sellmer to M. Rahimi dated April 14, 2008, subject: Response to Request for Additional Information for Review of an Application for Revision 22 of the TRUPACT-II Shipping Package Application (Docket No. 71-9218, TAC No. L24110) and Revision 5 of the HalfPACT Shipping Package Application (Docket No.71-9279, TAC No. L24111)

 Letter from K. J. Hardin to T. E. Sellmer dated November 26, 2008, subject: Request for Additional Information for Review of the Certificates of Compliance No. 9218 and 9279, Revision for the Model Nos. TRUPACT-II and HalfPACT Packages

Dear Sir or Madam:

Washington TRU Solutions LLC, on behalf of the U.S. Department of Energy, hereby submits an amendment to Revision 22 of the application for a Certificate of Compliance (CoC) for the TRUPACT-II Packaging, U.S. Nuclear Regulatory Commission (NRC) Docket No. 71-9218, and Revision 5 to the application for a CoC for the HalfPACT Packaging, NRC Docket No. 71-9279 (Reference 1). The amendment is in response to the Request for Additional Information (RAI) (Reference 2).

The amendment consists of the following documents:

- TRUPACT-II Safety Analysis Report (SAR), Revision 22
- HalfPACT SAR, Revision 5
- Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC), Revision 3
- CH-TRU Payload Appendices, Revision 2.

Document Control Desk

-2-

This letter includes the following attachments:

- Attachment A Responses to RAI
- Attachment B Revised Documents
- Attachment C Supplementary References
- Attachment D Thermal Analysis Files.

Individual responses to the RAI are provided in Attachment A, which also outlines specific changes to the revised documents provided in Attachment B. In addition, a revised calculation package for the thermal analysis of the HalfPACT package containing three shielded containers is provided in Attachment C. The shielded container thermal analysis model input and output files are provided in Attachment D. All technical changes necessary to specifically address the RAI are indicated by right-bars in the margin of the documents ("|"). Right-bars in the margin of the documents in the original submittal of this application have been retained.

To facilitate implementation, it is requested that the current package CoCs be valid for use one year from the date of issuance of the revised CoCs.

If you have any questions regarding this submittal, please contact Mr. B. A. Day of my staff at (575) 234-7414.

Sincerely,

Jodd Sell

T. E. Sellmer, Manager Packaging Integration

TES:clm

cc: M. Brown, CBFO D. Gadbury, CBFO

TRUPACT-II SAR

s i

Chapter 3 Thermal Review

3-1 Original 3-1: Provide an uncertainty analysis for the TRUPACT-II maximum normal operating pressure (MNOP) analysis. Justify the pressure calculation conservatively accounts for uncertainty of decay heat, temperature, void volume, etc.

Original: In the payload assembly decay heat limits analysis, Table 3.4-6 shows pressure increase of 49.74 psig for Type III.1. The pressure increase is very close to the specification of 50 psig. Same issue applies to Table 3.4-7 to 3.4-11.

This information is needed to ensure compliance with 10 CFR 71.4 and 71.33(a)(5).

New: Provide measurement data to validate the calculated flammable gas generation rate. Clarify whether the $G_{theoretical}/G_{actual}$ ratio estimated in CH-TRAMPAC Section 5.2.5.3.3 holds for all types of waste and configuration. Provide experiment measurements of MNOP to validate the MNOP analysis for both TRUPACT-II and HalfPACT.

In the RAI 3-1 response, the applicant states "An analysis of the relationship between flammable gas generation and total gas generation is provided in CH-TRAMPAC Section 5.2.5.3.3. The payload container flammable gas generation limits correspond to low total gas generation, which means that the 50-psig design pressure specification will be met by a large margin for payloads comprised of payload containers that meet flammable gas generation limits. Therefore, compliance with the payload container flammable gas generation limits will ensure compliance with the MNOP." In CH-TRAMPAC Section 5.2.5.3.3, an example was presented to show the relation between actual G value and theoretical G value and the conclusion was the actual G value is 18 times lower than the theoretical value. However, the "actual" value is obtained from the hydrogen gas generation rate formula derived by the gas generation methodology, not a measurement value. In light of the small margin for the payload container flammable gas generation limits, staff needs experimental validation to support the methodology.

This information is needed to ensure compliance with 10 CFR 71.31(a)(2) and 71.43(d).

Response:

The calculated flammable gas generation rate (FGGR) of 1.79E-07 moles/ second (mol/s) used in the example presented in CH-TRAMPAC Section 5.2.5.3.3 is the <u>FGGR limit</u> specific to the hypothetical standard waste box (SWB) used in the example. By comparison, data for all SWBs shipped to date under the test category show the highest actual FGGR value based on headspace measurement to be 5.683E-09 mol/s. Similarly, the gas generation ratio ($G_{theoretical}/G_{actual}$) estimated in CH-TRAMPAC Section 5.2.5.3.3 is specific to the hypothetical Waste Material Type III.1 SWB. The $G_{theoretical}/G_{actual}$ ratios for other types of waste and configurations differ, but are greater than one when the FGGR limits are met, meaning that G_{actual} is always lower than $G_{theoretical}$. For Waste Types I, II, and III, when FGGR limits are met, compliance with the design pressure limit (due to total gas generation) is ensured because the primary mechanism for flammable and total gas generation is the same (i.e., radiolysis).

In order to more clearly illustrate this fact and directly address the purpose of the CH-TRAMPAC Section 5.2.5.3.3 example, alternate pressure increase calculations for Waste Material Type III.1 have been added to CH-TRAMPAC Section 5.2.5.3.3. These calculations are based on the maximum possible FGGR limits. Maximum possible FGGR limits per payload container type were used to calculate maximum possible FGGR-limited pressures at the end of the 60-day shipping period. In each case, the pressure increase is well below the 50-psig pressure design limit. For comparison, pressure increase calculations based on actual FGGR values calculated from measurement data also are provided. Sample shipment data for 4,008 payload containers shipped in 354 payloads, each of which included at least one test category container, were evaluated to determine the highest possible pressure increase based on the actual payload FGGR and wattage values. The shipment data calculations validate the bounding FGGR-limited pressure values as the highest pressure increase for each is less than the maximum pressure increase for the applicable payload container type.

Experimental measurements of MNOP to validate the MNOP analysis for TRUPACT-II and HalfPACT packages are not available. Upon shipment completion (typical shipping periods are not more than 5 days; see Table 3.6-3 of CH-TRU Payload Appendix 3.6, *Shipping Period – Controlled Shipments*), the packages are connected to a vacuum system and the inner containment vessels (ICVs) are partially evacuated to facilitate rotation of the locking rings and removal of the lids. Pressure in the ICVs is monitored during the evacuation process, but the pressure at the start of the evacuation process has not historically been recorded. However, the more than 7,000 TRUPACT-II and HalfPACT shipments completed to date have arrived with no evidence of any significant pressurization above normal atmospheric pressures.

Contact Handled-Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC)

CH-1 <u>Original CH-2</u>: Provide validation of the analytical shipping category for waste Type I, II, and III based on existing shipment data.

<u>Original</u>: The staff needs to verify the consistency between gas generation compliance methods and the gas generation methodology based on the measurement of flammable gas concentration or flammable gas generation rate (FGGR) from shipments, particularly validation of analytical category for Type I, II, and III. For analytical category, the head space sampling data should prove the flammable gas concentration meets the limit predicted by the methodology based on waste type, package configuration, decay heat, and shipping period.

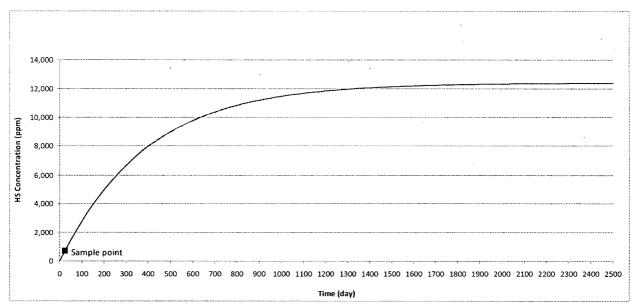
<u>New</u>: Characterize the analytical category shipments that show unqualified FGGR limits in the validated set and provide a methodology to exclude them from the analytical category. Alternatively, the applicant should justify why the current configuration of the analytical category drums and methodology ensure that hydrogen concentrations will not exceed 5% even without headspace sampling. Specify the phenomena and waste configurations of the analytical category shipments that result in hydrogen concentrations that are not as conservative as initially expected.

The applicant stated in the CH-2 RAI response that an analysis of the estimated FGGR for individual drums shows that approximately 96% of the 9,665 drums have measured headspace sampling hydrogen concentration values that comply with the assigned payload shipping category FGGR limits. The applicant indicates the drums in the remaining 4% of the data set comply with the 5% hydrogen concentration limit based on the reported headspace hydrogen concentration data and other mitigating factors.

The applicant indicated these FGGR unqualified drums were shipped based on compliance of reported headspace hydrogen concentration data in consideration with other factors such as venting, overly estimated hydrogen concentration, drum opening, and overly conservative confinement assumptions. The analytical category containers basically require confirmation with only decay heat requirements. However, the historical shipping data indicates that a significant number of package configurations (i.e., 4%) may need to undergo a remediation process or some other type of evaluation. The licensee should characterize these exceptional configurations and determine if they require a special category. A methodology should be developed to identify these packages and exclude them out of the analytical shipping category (similar to the approach for 100-gallon drums containing 55-gallon puck drums). The applicant should clarify the extent that headspace sampling is relied upon to identify analytical configurations that may not comply with FGGR. The staff notes that headspace sampling is not required in the current CoC for analytical configurations.

This information is needed to ensure compliance with 10 CFR 71.31(a)(2) and 71.43(d).

Response:


- Reference CH-1.1: Letter from T. E. Sellmer to M. Rahimi dated April 14, 2008; subject: Response to Request for Additional Information for Review of an Application for Revision 22 of the TRUPACT-II Shipping Package Application (Docket No. 71-9218, TAC No. L24110) and Revision 5 of the HalfPACT Shipping Packaging Application (Docket No. 71-9279, TAC No. L24111).
- Reference CH-1.2: Letter from T. E. Sellmer to K. Hardin dated December 5, 2008; subject: Teleconference Summary and Clarification Regarding the Verification of the Analytical Shipping Category Based on Existing Shipment Data.

There is no compliance issue with respect to the 5% hydrogen concentration limit for the entire data set of 9,665 55-gallon drums used in the validation analysis presented in response to the original CH-2 RAI (Reference CH-1.1). The hydrogen headspace measurement method consistently validates the analytical category decay heat limits. Both methods are conservative with respect to the 5% hydrogen concentration limit. A drum passing either method will not violate the regulatory boundary of less than or equal to 5% hydrogen in the innermost confinement layer.

The results of the Reference CH-1.1 validation analysis reflected the facts that the headspace data was not collected for the purpose of determining compliance with FGGR limits under the test category and the analysis was simplified (Reference CH-1.2). For approximately 4% of the 9,665 drum population (410 drums), these limitations of the data analysis resulted in overestimated FGGR values. Further analysis of this population showed that there were no compliance issues for these 410 drums with respect to the 5% limit on hydrogen concentration in the innermost layer of confinement. Attachment A-1 (at the end of Attachment A) provides a summary of this analysis on a drum-by-drum basis. Key elements of this analysis are provided below.

Drums with No Detectable Hydrogen Measured (288 of 410 drums) The majority of the 410 drums (288 drums) detected no hydrogen upon headspace measurement. The hydrogen concentration in these containers was below the detection limit, which is the minimum hydrogen concentration that can be measured by a given piece of analytical equipment (i.e., gas chromatograph [GC] or GC/mass spectrometer). For drums with no detectable hydrogen measured in the headspace, the value of the hydrogen detection limit was used (instead of zero) in the Reference CH-1.1 validation analysis. The FGGR values calculated by the AltMeth model were overestimated for these drums due to the use of the hydrogen detection limit value as the measured value.

As a specific example, no detectable hydrogen was measured in the headspace of Drum No. SR510338A. The hydrogen detection limit value of 700 ppm (0.07 volume percent) was used in the simplified AltMeth model. With the large number of layers of confinement for this container (five) and a short time interval between drum generation/venting and sampling (25 days), the AltMeth measurement methodology results in a high FGGR. Figure CH-1.1 shows a graphical depiction of the headspace hydrogen profile for this drum. The gradient between the headspace and the innermost confinement layer predicted by AltMeth for this drum is greater than a factor of 70 (7,000%). When combined with the use of the hydrogen detection limit value, this results in an overprediction of the FGGR value even when no hydrogen is detected.

Figure CH-1.1 - Headspace Hydrogen Profile Predicted by AltMeth for Drum No. SR510338A

Location of Hydrogen Sampling (53 of 410 drums)

The simplified AltMeth model compliance evaluation assumed that each of the 410 drums was sampled for hydrogen in the drum headspace just below the drum lid. Of the 410 drums, 53 drums were actually sampled inside the rigid drum liner at the time of container and rigid liner venting instead of above the unvented high-density polyethylene rigid drum liner. As such, the FGGR values calculated by the AltMeth model in the Reference CH-1.1 validation analysis are overestimated for these drums due to the use of an inaccurate simplifying assumption. When correctly modeled with respect to sampling location (below the rigid drum liner), these drums do not fail FGGR limits.

For example, the FGGR limit for Drum No. NT041865 is 8.170E-09 mol/s. The simplified AltMeth model incorrectly calculated an FGGR value of 1.863E-07 mol/s. The revised calculation (correcting the sampling location) results in an FGGR value of 5.871E-10 mol/s (below the FGGR limit). In this case, the incorrect assumption of sampling above an unvented rigid liner results in an AltMeth prediction of a very large gradient across the rigid liner (which does not exist when the sample is collected under the rigid liner).

Drums Sampled During Aspiration (31 of 410 drums)

An additional 31 drums were generated in an unvented condition and were vented some time after generation prior to sampling. Payload containers that have been stored in an unvented condition are subject to the aspiration requirements of the CH-TRAMPAC and aspirate until equilibration of any gases that may have accumulated in the closed container. Because these drums were sampled while aspiration was occurring, the headspace hydrogen concentration of these drums at the time of shipment is expected to be lower than that used in the Reference CH-1.1 validation analysis.

Hydrogen Gradients Likely Overpredicted (38 of 410 drums)

The Reference CH-1.1 validation analysis results for the remaining 38 drums can be explained by the likely overestimation of the number of confinement layers associated with a conservatively assigned payload shipping category (i.e., the assigned payload shipping category assumes more confinement layers than are actually present) and the assumption of slow hydrogen transport across the layers. The overestimation of the number of confinement layers results in the overprediction of hydrogen gradients. The AltMeth model predicts hydrogen concentrations per innermost confinement layer by building up the headspace concentration to the steady state value. A significant overprediction of the gradient between the headspace and innermost layer occurs whenever the actual gas release rates are higher than predicted by the model and/or when sampling of the headspace is performed close to the generation/venting date.

Drum No. NT042003 provides an example of the result of AltMeth hydrogen gradient overprediction when the number of confinement layers is overestimated. This drum is assigned to a payload shipping category describing four confinement layers and was sampled 50 days after generation/venting. For Drum No. NT042003, the FGGR limit associated with the four-layer payload shipping category is 8.170E-09 mol/s. The Reference CH-1.1 validation analysis calculated an FGGR value of 3.436E-07 mol/s. Assuming that the number of confinement layers is one, the resulting FGGR value is 5.524E-08 mol/s, which is below the revised FGGR limit of 6.667E-08 mol/s corresponding to a payload shipping category describing one confinement layer.

In summary, there is no compliance issue with respect to the analytical category inventory, and all drums that meet analytical category limits meet the 5% limit on hydrogen concentration in the innermost layer of confinement.

CH-2 Clarify if waste type IV materials are proposed authorized contents for the shielded container.

The applicant stated in Section 5.2.5.4.1 "Compliance with flammable (gas/VOC) limits for shielded containers may not be evaluated by testing." For Type IV waste, the shipment is subject to full container testing according to Figure 5.2-1. The applicant should clarify whether Type IV waste is an authorized content for the shielded container.

This information is required by the staff to assess compliance with 10 CFR 71.31(a)(2) and 71.43(d).

Response:

Comment incorporated. Waste Type IV material is not an authorized content for the shielded container. CH-TRAMPAC Sections 5.2.2.4, 5.2.5.2, and 5.2.5.4.1 have been revised to state that "Compliance with flammable (gas/VOC) limits for shielded containers shall not be evaluated by testing." CH-TRAMPAC Sections 5.2.2.4, 5.2.5.1.2, 5.2.5.2, and 5.2.5.4.1 have been revised to add text explicitly stating that Waste Type IV material is not authorized for shipment in the shielded container. Because testing is the only method of qualification for Waste Type IV containers, Waste Type IV is not allowed in shielded containers.

CH-3 <u>Original CH-6</u>: Explain the procedure to handle the scenario when a 9-day transport and unloading time limit is not met.

<u>Original</u>: In Procedure 6.2.3.3, a procedure is specified if the 24-hr limit is not met. For procedure 6.2.3.7, there is no procedure specified if the 9-day transport and unloading time limit is not met. Provide the procedure for this scenario.

<u>New</u>: Provide the procedure to handle the scenario when a 9-day transport and unloading time is not met.

Revised Procedure 6.2.3.7 in response to RAI CH-6 does not provide a procedure for the scenario that the 9-day transport and unloading time is not met. A procedure similar to 6.2.3.3 should be provided (i.e., if total loading time is less than or equal to 24 hours, proceed to Step 6.2.3.4. If total loading time exceeds 24 hours, the package must be vented for a period at least as long as the period the TRUPACT-II or HalfPACT ICV was sealed and the closure process must be repeated.)

This information is needed to ensure compliance with 10 CFR 71.35(c) and 71.43(d).

Response:

Comment incorporated. As detailed in CH-TRU Payload Appendix 3.6, the determination of the 10-day controlled shipping period is based on conservative time estimates for loading, transport, and unloading activities and includes a margin of safety of three days. CH-TRU Payload Appendix 3.6 and CH-TRAMPAC Section 6.2.3 outline administrative controls imposed for the controlled 10-day shipping period to ensure venting of the ICV within 9 days of shipment departure from the shipping site. Should it ever become evident that the 9-day period may be exceeded, circumstance-specific actions will be identified and taken as needed to ensure venting within 9 days (e.g., prohibit initiation of a controlled shipment at times when adverse weather exists or is forecasted). If the 9-day transport and unloading time is exceeded, the shipment is noncompliant with the Certificate of Compliance for the applicable package. Under the scenario in which the 9-day transport and unloading time is not met, the protocol established by 10 CFR §71.95 requires that the incident be reported to the NRC. CH-TRAMPAC Section 6.2.3.6 has been revised to add text to this effect.

Contact Handled-Transuranic (CH-TRU) Payload Appendices

AP-1 Provide materials of construction for the 30-gallon payload drum. Refer to CH-TRU Payload Appendices, Appendix 4.5, page 4.5-1.

This information is necessary to accurately provide a sufficient basis for evaluation of the SAR.

This information is needed to ensure compliance with 10 CFR 71.33.

Response:

¢

Comment incorporated. The material of construction of the 30-gallon payload drum is steel. Steel 30-gallon drums were utilized for certification testing as referenced in Section 4.5.3.2, *Structural Evaluation for Hypothetical Accident Conditions*, of CH-TRU Payload Appendix 4.5, *Description of Shielded Container*.

CH-TRAMPAC Section 2.9.10 and Section 4.5.2 of CH-TRU Payload Appendix 4.5 have been revised to specify that the 30-gallon payload drum is to be constructed of steel. AP-2 <u>Original AP-2</u>: Include the proposed controls for the 100-gallon drums loaded with compacted 55-gallon drums in CH-TRAMPAC (Section 3.10.1) with the additional information on adjusted hydrogen concentration based on the decay curve.

<u>Original</u>: Per January 21, 2008 letter, WTS proposed to include specific controls for 100-gallon drums loaded with compacted 55-gallon drums in the CH-TRAMPAC. Staff agrees with the addition of the proposed control. However, more explanation is needed on the use of the decay curve for determining an adjusted hydrogen concentration.

<u>New</u>: Revise Figure 6.14-2 in CH-TRU Payload Appendices and provide a measurement time for hydrogen concentration.

The decay curve provided (Figure 6.14-2) in the RAI response (AP-2) does not include the original data points and has no numerical values on the axes. It is merely a statistical trend with no indication of measurement time. No definitive time in days is specified in the curve or in the method to perform the proposed hydrogen concentration measurement. A conservative measurement time is needed to ensure the acceptable hydrogen concentration limit is met.

This information is required by the staff to assess compliance with 10 CFR 71.31(a)(2) and 71.43(d).

Response:

Reference AP-2.1: Letter from T.E. Sellmer to M. Rahimi dated January 21, 2008; subject: Proposed Methodology for Shipment of Analytical Category 100-Gallon Drum Transuranic Wastes in TRUPACT-II and HalfPACT Packages.

Figure 6.14-2 of CH-TRU Payload Appendix 6.14, *Test Category Measurement Methodology for Analytical Category 100-Gallon Drums Containing 55-Gallon Puck Drums*, is not used, but rather the headspace hydrogen concentration at the time of sampling is used <u>without decay</u> in the evaluation of compliance with the applicable FGGR limit. This conservative approach was selected in order to facilitate use of the existing CH-TRAMPAC methodology (i.e., with no adjustment for the decay of the hydrogen concentration after sampling) for 100-gallon drums as outlined in CH-TRU Payload Appendix 6.14.

Figure 6.14-2 was generated as a curve-fit for data points from resampling of 100-gallon drums containing 55-gallon puck drums that had initially elevated headspace hydrogen concentrations (Reference AP-2.1). The resampling data showed that the initially elevated headspace hydrogen concentrations decreased exponentially with time. While some intermediate headspace hydrogen concentration data points showed slight increases, subsequent sampling

supported the downward trend of the decay curve concentrations. The proposed methodology of using the measured headspace hydrogen concentration without credit for any decay establishes a conservative compliance limit. For example, the proposed methodology (using the measured headspace hydrogen concentration as the steady state value) when applied to a payload of six 100-gallon drums and a 60-day shipping period limits the headspace hydrogen concentration of each drum to only 0.5883 volume percent. Any measured headspace hydrogen configuration will fail the FGGR limit. Therefore, the FGGR limit established by the proposed methodology requires that any initially elevated headspace hydrogen concentration decay to very low levels before a drum can pass.

For clarity, Figure 6.14-2, which is not used (i.e., no credit is taken for the decay of hydrogen), has been deleted from CH-TRU Payload Appendix 6.14. Text in Section 6.14.3 of CH-TRU Payload Appendix 6.14 referring to Figure 6.14-2 also has been deleted.

AP-3 Justify the load resistance for the shielded container. Explain the difference between the values and other drums.

Table 2.2-4 shows load type resistance for the shielded container. The resistance factor for the shielded container is relatively smaller than 55, 85, or 100 Gallon drums for different shipping periods.

This information is needed to ensure compliance with 10 CFR 71.31(a)(2) and 71.43(d).

Response:

The load type resistance defines the resistance to hydrogen release that is attributed to the buildup of hydrogen in the package void space during the defined shipping duration. The load type resistance is represented by the term "(t)(n_{gen})/ N_{tg} " that is added to the "effective resistance" (R_{eff}) in the denominator of Equation 4 of CH-TRU Payload Appendix 2.3, *Derivation of Decay Heat Limits*.

The load type resistance values specified in Table 2.2-4 of CH-TRU Payload Appendix 2.2, *Procedure for Determining Numeric Payload Shipping Category*, are determined using the following formula:

$$R_{LoadType} = \frac{t * n_{gen} / N_{tg}}{100}$$

where,

t = shipping period duration (i.e., 60, 20, or 10 days), in seconds
 n_{gen} = number of hydrogen generators (number of payload containers per payload – 3 shielded containers per HalfPACT)

 N_{tq} = total moles of gas inside the ICV cavity, calculated as:

$$N_{to} = (P)(V_{void}) / RT$$

where,

P = 760 mm Hg

- V_{void} = ICV cavity void volume for a given payload (2,100 liters per HalfPACT payload of 3 shielded containers)
- R = 62.361 mm Hg-liter/mole-K

 $T = 70^{\circ}F(294K)$

For the HalfPACT payload of three shielded containers, N_{tg} is:

$$N_{ig} = \frac{(760mmHg)(2,100L)}{(62.361mmHg - L/mole - K)(294K)} = 87.05 \text{ moles}$$

The load type resistance value calculation for the shielded container HalfPACT payload and a 60-day shipping period is as follows:

$$R_{LoadType} = \frac{\left[(60 days)(86,400 \sec/day)(3 containers)\right]/87.05 moles}{100} = 1,787$$

Per the above formula, the load type resistance value is directly proportional to the ratio of the number of generators to the ICV cavity void volume for the payload. The table below provides values for number of hydrogen generators and ICV cavity void volume in drum payloads, which are inputs to the formula for calculating the load type resistance values. Per the formula for load type resistance, the ratio of these two parameters is controlling. Among comparable drum payloads, this ratio is the lowest for the shielded container payload as shown below. Consequently, the load type resistance values for shielded container payloads are lower (by this ratio) than those for 55-, 85-, and 100-gallon drum payloads.

Payload Type	No. of Hydrogen Generators [®]	ICV Cavity Void Volume [©]	Ratio of No. of Hydrogen Generators to ICV Cavity Void Volume (x 10 ⁻³)
55-gallon drum	14	2,450	5.714
Shielded container	3 [®]	2,100 [®]	1.429
85-gallon drum	8	2,087	3.833
100-gallon drum	6	2,715	2.210

¹⁰ References: TRUPACT-II SAR Section 3.4.4.2.1, Tables 3.4-6, 3.4-9, and 3.4-10; HalfPACT SAR Section 3.4.4.2.1, Table 3.4-8.

As the shielded container is proposed only as a HalfPACT payload, the parameters reflect HalfPACT payload values (55-, 85-, and 100-gallon drum payloads use the bounding TRUPACT-II payload values).

HalfPACT Review Contact Handled-Transuranic (CH-TRU) Payload Appendices

HP-1 Provide the shielded container thermal analysis model input and output files.

The licensee provided HalfPACT Shielded Container Thermal Analysis Report (P04F.M2.02-03) with computer run records. A complete thermal model input deck and run results should be provided to facilitate the review. Refer to ISG-21 for guidance on the use of computational modeling software and the kinds of information to be provided to support a licensing action.

This information is needed to ensure compliance with 10 CFR 71.35, 71.71(b)(c).

Response:

Electronic copies of the input and output files are provided on the CD-ROM entitled Shielded Container Thermal Analysis Model Input and Output Files attached to this transmittal (Attachment D). HP-2 Justify the direct application of insolation load to the components on the inside of polyurethane foam.

In SAR Section 3.4, the applicant states "Accordingly, a 100°F ambient temperature with the following insolation values are used for heat input to the exterior package surfaces." While in Section 4.5.4.1 of CH-TRU Payload Appendices, the 24-hour averaged insolation load is applied to the components on the inside of polyurethane foam including payload and internal package. The licensee should reconcile this difference. The solar load is usually applied on the package exterior boundary and then the heat diffuses to the internal package through heat transfer mechanisms (conduction, convection, and radiation). The applicant should provide the reasons for applying direct heat source on the internal components.

This information is required by the staff to assess compliance with 10 CFR 71.35 and 71.71(c).

Response:

Comment incorporated. There is no inconsistency between SAR Section 3.4 and Section 4.5.4.1 of the CH-TRU Payload Appendices in regards to how the solar heat load is applied; in all cases it is applied to the external surfaces of the HalfPACT package. As described in HalfPACT SAR Section 3.1.3, *Boundary Conditions*, the application of insolation values averaged during 24 hours is used to determine the peak temperature of components interior to the polyurethane foam, while the application of insolation values averaged during 12 hours is used to determine the peak temperature of the outer segments of the polyurethane foam and outer containment assembly outer shell. The justification for the use of two separate steady-state analyses is provided in HalfPACT SAR Section 3.1.3.

The RAI appears to misinterpret the intent of the wording in Section 4.5.4.1 of the CH-TRU Payload Appendices stating that "...components on the inside of the polyurethane foam use the insolation values of 10 CFR§71.71(c)(1), averaged over 24 hours" to mean the insolation is applied directly to the components. The text in CH-TRU Payload Appendix 4.5.4.1 has been revised along with the Calculation Package (P04F.M2.02-03, Section 2.4.1) to provide a consistent and clear description of how the insolation heat loads are handled.

- HP-3 Provide the following clarifications to the thermal models for HalfPACT/Shielded Container configuration.
 - a. The thermal model of HalfPACT is a three-dimensional 180 degree symmetry model. According to the model description, six segments of the two-dimensional lumped parameter HalfPACT SAR model, each encompassing a 30 degree wide segment of the packaging circumference, are combined to form a 180 degree symmetry model. The applicant needs to clarify how these 2-D segments can simulate 3-D effects.
 - b. In Section 6.2.2 of Calculation Package P04F.M2.02-03, the applicant states "Figure 6-6 repeats the model layout shown in Figure 6-5 but with the addition of the ICV shell and honeycomb spacer surfaces. These surfaces represent the boundary with the HalfPACT modeling obtained from the HalfPACT SAR." The applicant should clarify whether the final solution is obtained from simultaneous solution of both HalfPACT and Shielded Container models. If not, the applicant should clarify the details of integrated solution method, which include the interface between two models and the sequence of calculation.
 - c. Provide thermal properties of the material inside shielded container.

The applicant stated "The payload within the shielded containers is conservatively assumed to be paper and to exhibit the thermal conductivity of air in order to bound the potential temperature rise and temperature limit within the payload." The thermal properties of the materials (paper) are not included in either SAR or the calculation package (P04F.M2.02-03). The applicant needs to provide these properties and the actual material thermal properties to verify the adequacy of conservatism in this assumption.

This information is needed to ensure compliance with 10 CFR 71.35 and 71.71(b)(c).

Response:

a. Comment incorporated. As described in HalfPACT SAR Section 3.4.1.1, *Analytical Model*, the thermal model of the HalfPACT packaging represents a two-dimensional lumped parameter model encompassing a 30 degree wide segment of the packaging circumference. In the same manner that a series of 1-D models can be connected to form a 2-D model, the HalfPACT 2-D lumped parameter representation is applicable in the construction of a 3-D lumped parameter model of the HalfPACT packaging. In this instance, the 2-D modeling from the original HalfPACT packaging model is used to determine the radial and axial conduction of heat within each 30 degree wide circumferential segment of the 3-D lumped parameter model. To complete the 3-D model, circumferential thermal conductors were added under this modeling effort in order to capture the interaction between the individual thermal nodes representing the temperature at each 30 degree segment. The combined effect is a 3-D lumped parameter model of the HalfPACT packaging.

Section 4.5.4.1 of CH-TRU Payload Appendix 4.5 and the Calculation Package (P04F.M2.02-03, Section 6.2.1) have been revised to clarify the modeling approach.

 b. Comment incorporated. As explained in Calculation Package P04F.M2.02-03, Section 6.2.1, the thermal model of the Shielded Containers within the HalfPACT packaging is a composite of a newly generated 'solids' model of the Shielded Containers, the waste contents, dunnage, pallets, etc., and an existing 2-D lumped parameter model of the HalfPACT packaging that was incorporated into a 3-D representation (see the response to HP-3 a, above). These two sub-models are combined using a feature of the SINDA/FLUINT computer code and solved simultaneously to generate a unified thermal solution.

The common boundary between the two sub-models is the inner surfaces of the ICV shell and the honeycomb spacers. The heat transfer mechanisms interior to these surfaces is determined by the 'solids' submodel, while the heat transfer exterior to these surfaces, including the ICV shell and the honeycomb spacers, is determined by the 3-D submodel of the HalfPACT packaging.

The above details have been added to the description of the thermal model in Section 4.5.4.1 of CH-TRU Payload Appendix 4.5 and the Calculation Package (P04F.M2.02-03, Section 6.2.1) to clarify the modeling approach.

c. Comment incorporated. As stated in Section 4.5.4.1 of CH-TRU Payload Appendix 4.5, "The payload within the shielded containers is conservatively assumed to be paper and to exhibit the thermal conductivity of air" The thermal properties of air are provided in Table 3-3 of calculation package P04F.M2.02-03. A similar set of properties are provided in Table 3.2-3 of the HalfPACT SAR.

The definition of the payload as being paper with the thermal properties of air is meant to imply that the heat transfer within the waste containers is via conduction only since the thermal conductance of crumpled paper would be dominated by the trapped air spaces and the multiple paper surfaces will prevent any significant radiation heat transfer from the payload interior to the surfaces of the waste container. This analysis approach is consistent with the prior thermal evaluations performed for all other authorized HalfPACT payload configurations. The description of the payload has been revised in Section 4.5.4.1 of CH-TRU Payload Appendix 4.5 and the Calculation Package (P04F.M2.02-03, Section 6.2.2) to add clarification and to specifically reference the properties of air for the thermal properties of the waste payload.

- HP-4 Justify the reason for no HAC thermal evaluations of the shielded container, and that the evaluations of the approved containers are bounding, given the following differences and discrepancies between the shielding container and approved containers.
 - a. The third justification in CH-TRU Payload Appendices 4.5.4.2 assumes greater thermal mass for a single shielded container than a single 55-gallon drum. The 4-th justification in the calculation package (Section 5.0 in P04F.M2.02-03) assumes the maximum payload mass of the shielded container payload is identical to the maximum base payload mass. The applicant should clarify the difference in these statements.
 - In Calculation Package P04F.M2.02-03, a statement of less heat transfer rate to the shielded containers is used to support no safety evaluation for HAC. The justification of this statement is not provided in the CH-TRU Payload Appendices. The applicant should revise the CH-TRU Payload Appendices 4.5.4.2 to reconcile the differences.
 - c. The applicant predicts the shielded container configuration will be bounded by the base load configuration (seven 55-gallon drums) in HAC. Based on the NCT calculation results, Table 4.5-1, the shielded container is more limiting than the base load configuration. It appears to staff that the shielded containers would expect to be less limiting under both NCT and HAC. The applicant should explain this discrepancy.

This information is needed to ensure compliance with 10 CFR 71.35 and 71.73(4).

Response:

a. Comment incorporated. The third justification provided in Section 4.5.4.2 of CH-TRU Payload Appendix 4.5 and the fourth justification in P04F.M2.02-03 are each correct as stated. The third justification refers to the thermal mass of an individual payload container, whereas the fourth justification refers to the thermal mass of the packaging contents (i.e., payload containers, waste contents, dunnage, pallets, etc.). As defined in Table 2.3-1 of the CH-TRAMPAC, the maximum gross weight of a 55-gallon drum is 1,000 lbs., whereas the maximum gross weight of a shielded container is 2,260 lbs. As defined in Table 2.3-3 of the CH-TRAMPAC, the maximum gross weight of the payload (contents) in a HalfPACT is 7,600 lbs. for all payload assembly configurations. Table 2.2-1 of the HalfPACT SAR defines how the total weight of the payload (packaging contents), when maximally loaded, is restricted to the same limit in both the 55-gallon drum and shielded container payload configurations.

The fourth justification in Section 5.0 of P04F.M2.02-03 has been modified to clarify that the statement is referring to the entire payload (i.e., the packaging contents). The fourth justification has been added to Section 4.5.4.2 of CH-TRU Payload Appendix 4.5.

- b. Comment incorporated. Section 4.5.4.2 of CH-TRU Payload Appendix 4.5 has been revised to include the statement and associated justification.
- Comment incorporated. The justification provided in Section 4.5.4.2 of C. CH-TRU Payload Appendix 4.5 for not requiring a specific hypothetical accident conditions (HAC) thermal analysis or testing for the shielded containers is based on the expected temperature rise. It is temperatures of the shielded container base, lid, and sidewall that are of importance as it relates to the ability of the package to continue to serve its shielding function in a post-fire scenario. Per Table 4.5-1 of CH-TRU Payload Appendix 4.5, the normal conditions of transport (NCT) thermal response of the shielded container is within 3°F of the 55-gallon drum payload configuration when comparing the container enclosure temperatures. Similarly, per Table 4.5-2 of CH-TRU Payload Appendix 4.5, with all decay heat in a single container, the NCT thermal response of the shielded container is within 7°F of the 55-gallon drum payload configuration. Further, for this latter case, temperatures for the worst-case 55-gallon drum are greater than temperatures for the worst-case shielded container.

As discussed in Section 4.5.4.2 of CH-TRU Payload Appendix 4.5, the significantly higher thermal mass of an individual shielded container will ensure that the temperature rise exhibited by an individual 55-gallon drum sidewall under HAC conditions (i.e., $\Delta T = 156$ °F to 290 °F = +134 °F) will bound that which would be seen by a shielded container under the same HAC condition. As such, the peak temperature of the shielded container base, lid, and sidewall can be conservatively predicted by applying the same ΔT to their respective NCT temperature.

The HAC justification logic has been clarified in Section 4.5.4.2 of CH-TRU Payload Appendix 4.5 and the Calculation Package (P04F.M2.02-03, Section 5.0).

ATTACHMENT A-1

Summary of 410 Drums Referenced in RAI CH-1 Response

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

Ŷ

Container No.	CH- TRUCON Code	Shipping Category	Time Between Venting and Generation (days)	Time Between Sampling and Venting (days)	Hydrogen Conc. (ppm)	FGGR Limit (mol/s)	Simplified AltMeth FGGR (mol/s)	Comments / Explanation
0015819	RH2251	3001091018	0		90		5.054E-09	No detectable hydrogen measured
0017087	RH2251	3003401018	0	100	230			No detectable hydrogen measured
0017130	RH2251	3001091018	0		90		5.994E-09	No detectable hydrogen measured
0017141	RH225I	3003401018	0	163	230		7.650E-09	No detectable hydrogen measured
0017146	RH2251	3003401018	0		220		7.434E-09	No detectable hydrogen measured
0017149	RH225I	3003401018	0		210		6.513E-09	No detectable hydrogen measured
0017180	RH225I	3001091018	0		230			No detectable hydrogen measured
0017184	RH225I	3001091018	0		240			No detectable hydrogen measured
0017212	RH2251	3001091018	0		230			No detectable hydrogen measured
0017213	RH225I	3001091018	0				5.364E-09	No detectable hydrogen measured
0017272	RH2251	3001091018	0		240			No detectable hydrogen measured
0017288	RH2251	3001091018	0	163	220			No detectable hydrogen measured
0017312	RH2251	3001091018	0		220			No detectable hydrogen measured
0017322	RH2251	3003401018	. 0		220			No detectable hydrogen measured
0017403	RH2251	3001091018	0		220		8.246E-09	No detectable hydrogen measured
0017411	RH2251	3003401018	0	90	90			No detectable hydrogen measured
0017413	RH2251	3003401018	0		90			No detectable hydrogen measured
0017442	RH2251	3001091018	0	142	210			No detectable hydrogen measured
0017445	RH225I	3001091018	0	85	90			No detectable hydrogen measured
0018119	RH225I	3001091018	0	85	90			No detectable hydrogen measured
0018160	RH225I	3001091018	0	92	90			No detectable hydrogen measured
0018175	RH2251	3001091018	0		90			No detectable hydrogen measured
0019420	RH2251	3003401018	0	0.	90	4.912E-09		No detectable hydrogen measured
0020412	RH2251	3003401018	0			4.912E-09		No detectable hydrogen measured
D16789A		3003400455	0		270	1.099E-08		No detectable hydrogen measured
FBL05104A	SR225A	3003400839	0		80	5.959E-09	1.238E-08	No detectable hydrogen measured
H-0017274	RH225I	3001091018	0		210			No detectable hydrogen measured
H-0019057	RH225I	3001091018	0		90			No detectable hydrogen measured
H-0022872	RH225I	3003401018	0		90			No detectable hydrogen measured
H-0023208		3003401018	0	, •	90	4.912E-09		No detectable hydrogen measured
H-0023216	RH2251	3003401018	0		90	4.912E-09		No detectable hydrogen measured
H-0023884		3003401018	0		130			No detectable hydrogen measured
H-0023922	RH2251	3003401018	. 0		90			No detectable hydrogen measured
H-0026843	RH225I	3003401018	0		90			No detectable hydrogen measured
H-0036050	RH225F	3003400481	0		970			No detectable hydrogen measured
LA00000052045		3001090813	0		900	6.150E-09		No detectable hydrogen measured
LA00000052374		3003400233	0		900			No detectable hydrogen measured
LA00000052451		2000320813	0		900			No detectable hydrogen measured
LA0000052471		3003400233	0			2.146E-08		No detectable hydrogen measured
LA00000053069	LA125B	3001090233	0		900	2.146E-08		No detectable hydrogen measured
LA0000053134		3001090233	0		900	2.146E-08		No detectable hydrogen measured
LA0000053175		3001090233	0		900	2.146E-08		No detectable hydrogen measured
LA00000053206		3001090233	0		900	2.146E-08		No detectable hydrogen measured
LA00000053335	LA125G	3001090813	0	132	900	6.150E-09	3.067E-08	No detectable hydrogen measured

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

5

Container No.	CH- TRUCON Code	Shipping Category	Time Between Venting and Generation (days)	Time Between Sampling and Venting (days)	Hydrogen Conc. (ppm)	FGGR Limit (mol/s)	(mol/s)	Comments / Explanation
LA00000053369	LA125B	3001090233	0	48	900			No detectable hydrogen measured
LA00000053415	LA125B	3001090233	0	49	900			No detectable hydrogen measured
LA00000053423	LA125B	3001090233	0	49	900	2.146E-08		No detectable hydrogen measured
LA0000053547	LA125B	3001090211	0	51	900			No detectable hydrogen measured
LA0000053572	LA125B	3001090233	0	50	9000	2.146E-08		No detectable hydrogen measured
LA00000053581	LA125B	3001090233	0	50	900			No detectable hydrogen measured
LA00000053599	LA125B	3001090233	0	48	900			No detectable hydrogen measured
LA0000053903	LA125B	3001090233	0	46	900			No detectable hydrogen measured
LA0000053950	LA125B	3001090233	0	50	900			No detectable hydrogen measured
LA0000054489	LA125G	3001090813	0	5178	900			No detectable hydrogen measured
LA0000054506	LA125B	3001090233	0	48	900			No detectable hydrogen measured
LA00000054521	LA125B	3003400233	0	50	900			No detectable hydrogen measured
	LA125B	3001090233	0	49	900			No detectable hydrogen measured
	LA125B	3003400233	0	46	900			No detectable hydrogen measured
	LA125B	3001090233	0	48	900			No detectable hydrogen measured
		2000320813		189	900			No detectable hydrogen measured
LA0000057389	LA125G	3001090813	0	474 47	900 900	6.150E-09 2.146E-08		No detectable hydrogen measured
LA0000058055	LA125B	3003400233	-		900			No detectable hydrogen measured
LA0000058135	LA125G	3003400813	1181 802	575 575	900			No detectable hydrogen measured
LA00000058304 LA00000058366	LA125G LA125B	3001090813 3003400233	002	575	900			No detectable hydrogen measured No detectable hydrogen measured
	LA125B	3003400233	0	49	2000			No detectable hydrogen measured
	LA125B	3003400233	0	49 52	900			No detectable hydrogen measured
	LA125B	3001090233	0	51	900			No detectable hydrogen measured
	LA125B	3003400233	0	50	900			No detectable hydrogen measured
	LA125B	3003400233	0	46	900			No detectable hydrogen measured
LA00000059039	LA125B	3001090233	0	40	900			No detectable hydrogen measured
LA00000059035	LA1256	3003400813	816	61	2800			No detectable hydrogen measured
LA00000059054	LA125G	3001090813	782	582	900			No detectable hydrogen measured
LA00000059054	LA125G	3003400813	782	582	900			No detectable hydrogen measured
	LA125G	3001090813	782	582	900			No detectable hydrogen measured
LA00000059064	LA1230	2000320813	702	61	2700			No detectable hydrogen measured
	LA125G	3003400813	720	582	900		7.557E-09	No detectable hydrogen measured
	LA125B	3001090233	0	48	900		2 311F-08	No detectable hydrogen measured
LA00000059084	LA125G	3003400813	810	582	900			No detectable hydrogen measured
LA00000059089	LA125B	3003400233	010	51	900			No detectable hydrogen measured
LA00000059180	LA125B	3001090233	0	47	900			No detectable hydrogen measured
LA00000059315	LA125B	3003400233	0	48	900			No detectable hydrogen measured
LA00000059322	LA125G	3001090813	0	130	900			No detectable hydrogen measured
	LA125B	3003400233	0	49	900			No detectable hydrogen measured
LA00000059368	LA125G	3003400813	780	582	900			No detectable hydrogen measured
	LA125G	3001090813	748	575	900			No detectable hydrogen measured
	LA125B	3003400233	0	52	900	2.146E-08		No detectable hydrogen measured
	LA125G	3003400813	780	575		6.150E-09		No detectable hydrogen measured

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

Container No.	CH- TRUCON Code	Shipping Category	Time Between Venting and Generation (days)	Time Between Sampling and Venting (days)	Hydrogen Conc. (ppm)	FGGR Limit (mol/s)	Simplified AltMeth FGGR (mol/s)	Comments / Explanation
LA0000059385	LA117B	2000320211	0					No detectable hydrogen measured
LA0000059395	LA125G	3003400813	777			6.150E-09		No detectable hydrogen measured
LA0000059425	LA125B	3003400233	0		900			No detectable hydrogen measured
LA0000059426	LA125G	3001090813	697	582 575	900	6.150E-09		No detectable hydrogen measured
LA0000059437	LA125G	3001090813	686 0			6.150E-09 2.146E-08		No detectable hydrogen measured
LA00000059470 LA00000059485	LA125B LA125G	3001090233 3001090813	564		900			No detectable hydrogen measured No detectable hydrogen measured
LA00000059568	LA125G	3003400813	0					No detectable hydrogen measured
LA00000059713	LA225G	3001090813	593			6.150E-09		No detectable hydrogen measured
LA00000059734	LA125G	3003400813	560					No detectable hydrogen measured
LA00000059760	LA1258	3001090233	0			2.146E-08		No detectable hydrogen measured
LA00000059780	LA125B	3001090233	0		900			No detectable hydrogen measured
LA00000060462	LA125G	3001090791	0		200			No detectable hydrogen measured
LA00000060706	LA125B	3001090233	0		900			No detectable hydrogen measured
LA00000060747	LA125B	3003400233	0					No detectable hydrogen measured
LA00000061048	LA125B	3003400233	0					No detectable hydrogen measured
LA00000061262	LA125G	3003400813	0	÷ ·				No detectable hydrogen measured
LA00000062026	LA125G	3003400791	0		200			No detectable hydrogen measured
LA00000062029	LA225G	3003400791	0					No detectable hydrogen measured
LA00000062030	LA225G	3003400791	0		200			No detectable hydrogen measured
LA00000062043	LA225G	3003400791	0		200			No detectable hydrogen measured
LA0000062045	LA225G	3003400791	0		200			No detectable hydrogen measured
LA0000062422	LA125G	3003400791	193		200			No detectable hydrogen measured
LA0000062540	LA225G	3003400791	193		200			No detectable hydrogen measured
LA0000062555	LA225G	3001090791	193		200			No detectable hydrogen measured
LA0000062557	LA125G	3003400791	173	304	200			No detectable hydrogen measured
LA0000062566	LA225G	3003400791	193		200			No detectable hydrogen measured
LA0000062570	LA125G	3001090791	193		200			No detectable hydrogen measured
LA0000062814	LA225G	3003400791	295		200			No detectable hydrogen measured
LA0000062833	LA225G	3001090791	246		200			No detectable hydrogen measured
LA0000062835	LA225G	3003400791	224	130	200		7.598E-09	No detectable hydrogen measured
LA0000062839	LA225G	3001090791	210		200		7.737E-09	No detectable hydrogen measured
LA0000062842	LA225G	3003400791	232		200			No detectable hydrogen measured
LA0000062852	LA225G	3001090791	218	139		6.321E-09		No detectable hydrogen measured
LA0000062859	LA225G	3003400791	185		200	6.321E-09		No detectable hydrogen measured
LA0000062865	LA225G	3001090791	184	140	200	6.321E-09		No detectable hydrogen measured
LA0000062888	LA225G	3001090791	175		200			No detectable hydrogen measured
LA0000062916	LA125G	3003400791	0	169	200			No detectable hydrogen measured
LA0000062917	LA125G	3001090791	0		200			No detectable hydrogen measured
LA0000062918	LA125G	3001090791	0	184	200		1.305E-08	No detectable hydrogen measured
LA0000062920	LA125G	3003400791	0	180	200			No detectable hydrogen measured
LA0000062924	LA125G	3003400791	. 0		200	6.321E-09	1.267E-08	No detectable hydrogen measured
LA0000062934	LA125G	3003400791	0		200	6.321E-09		No detectable hydrogen measured
LA0000062940	LA125G	3001090791	0	154	200	6.321E-09	1.507E-08	No detectable hydrogen measured

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

æ.

			Time	Time Between				
			Between	Sampling			Simplified	
	CH-		Venting and	and	Hydrogen		AltMeth	
	TRUCON	Shipping	Generation	Venting	Conc.	FGGR Limit	FGGR	
Container No.	Code	Category	(days)	(days)	(ppm)	(mol/s)	(mol/s)	Comments / Explanation
LA0000062972	LA225G	3003400791	0		200			No detectable hydrogen measured
LA0000062991	LA125G	3003400791	0		200			No detectable hydrogen measured
LA0000063221	LA225G	3003400791	149		200			No detectable hydrogen measured
LA0000063245	LA225G	3001090791	129	230	200			No detectable hydrogen measured
LA0000063248	LA125G	3003400791	136	158	200		9.014E-09	No detectable hydrogen measured
LA0000063291	LA225G	3003400791	0		200			No detectable hydrogen measured
LA0000063507	LA225G	3003400791	0		200		and the second sec	No detectable hydrogen measured
LA0000063513	LA225G	3003400791	0		200			No detectable hydrogen measured
	LA225G	3003400791	0		200		1.004E-08	No detectable hydrogen measured
	LA225G	3003400791	0		200		9.533E-09	No detectable hydrogen measured
LA0000063542	LA125G	3001090791	0		200		1.079E-08	No detectable hydrogen measured
	LA225G	3003400791	0		200	6.321E-09		No detectable hydrogen measured
	LA225G	3001090791	0	237	200	6.321E-09	1.076E-08	No detectable hydrogen measured
	LA225G	3001090791	. 0		200		1.170E-08	No detectable hydrogen measured
	LA225G	3003400791	0		200		1.157E-08	No detectable hydrogen measured
LA0000063617	LA225G	3003400791	0	89	200	6.321E-09	2.424E-08	No detectable hydrogen measured
LA0000063618	LA225G	3001090791	0		200	6.321E-09	2.400E-08	No detectable hydrogen measured
		3003400791	0		200	6.321E-09	2.767E-08	No detectable hydrogen measured
LA0000063664		3003400791	0		200	6.321E-09	3.286E-08	No detectable hydrogen measured
LA0000063674	LA225G	3003400791	0	62	200	6.321E-09	3.385E-08	No detectable hydrogen measured
LA0000063677	LA125G	3003400791	0	64	200		3.286E-08	No detectable hydrogen measured
LA0000063679	LA125G	3003400791	0		200		3.438E-08	No detectable hydrogen measured
		3003400791	. 0	63	200	6.321E-09	3.335E-08	No detectable hydrogen measured
		3003400791	0		90	6.321E-09	9.455E-09	No detectable hydrogen measured
		3003400813	0		900			No detectable hydrogen measured
		3001090233	0		900		2.234E-08	No detectable hydrogen measured
LAS833495	LA125B	3003400233	0		900		2.164E-08	No detectable hydrogen measured
	LA125B	3003400233	0		900		2.164E-08	No detectable hydrogen measured
	LA125B	3003400233	0		900		2.311E-08	No detectable hydrogen measured
	LA125B	3001090233	0		900			No detectable hydrogen measured
LAS846578	LA125B	3001090233	0		900			No detectable hydrogen measured
	LA125B	3001090233	0		900			No detectable hydrogen measured
LAS852930	LA125B	3001090233	0		900	2.146E-08		No detectable hydrogen measured
	LA125B	3001090233	0		900	2.146E-08		No detectable hydrogen measured
LAS853821	LA125B	3001090233	0		900	2.146E-08	2.311E-08	No detectable hydrogen measured
	LA125B	3001090233	0		900	2.146E-08		No detectable hydrogen measured
LAS853897	LA125B	3001090233	0		900	2.146E-08		No detectable hydrogen measured
		3003400233	0		900	2.146E-08		No detectable hydrogen measured
		3001090233	0		900	2.146E-08		No detectable hydrogen measured
	LA125B	3001090233	. 0		900	2.146E-08		No detectable hydrogen measured
	LA125B	3001090233	0		900	2.146E-08	2.351E-08	No detectable hydrogen measured
	LA125B	3003400233	0		900	2.146E-08	2.311E-08	No detectable hydrogen measured
	LA125B	3003400233	0		900	2.146E-08	2.351E-08	No detectable hydrogen measured
LAS861741	LA125B	3001090233	0	47	900	2.146E-08	2.351E-08	No detectable hydrogen measured

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

•

.

Container No.	CH- TRUCON Code	Shipping Category	Time Between Venting and Generation (days)	Time Between Sampling and Venting (days)	Hydrogen Conc. (ppm)	FGGR Limit (mol/s)	Simplified AltMeth FGGR (mol/s)	Comments / Explanation
LAS862961	LA125B	3001090233	0	49	900			No detectable hydrogen measured
	LA125B	3003400233	0	46	900	2.146E-08	2.394E-08	No detectable hydrogen measured
	LA125B	3001090233	0	51	900	2.146E-08	2.198E-08	No detectable hydrogen measured
LAS864353	LA125B	3001090233	0	47	900	2.146E-08	2.351E-08	No detectable hydrogen measured
		3001090233	0	47	900			No detectable hydrogen measured
		3003400233	0	. 47	900		2.351E-08	No detectable hydrogen measured
		2000320813	5424	1296	900			No detectable hydrogen measured
		3001090233	0	47	900		2.351E-08	No detectable hydrogen measured
	LL216A	3003400521	0	34	200			No detectable hydrogen measured
	LL216A	3001090481	0	31	600			No detectable hydrogen measured
	LL216A	3001090481	0	39	300	1.040E-08		No detectable hydrogen measured
		3001090481	0	31	600	1.040E-08		No detectable hydrogen measured
		3001090839	0	455	450	5.959E-09	6.182E-09	No detectable hydrogen measured
		3001090521	0	35	200	9.597E-09		No detectable hydrogen measured
		3001090481	0	34	260	1.040E-08		No detectable hydrogen measured
LL85300287TRU	LL216A	3001090481	0	33	300	1.040E-08	2.031E-08	No detectable hydrogen measured
LL85300409TRU	LL216A	3001090481	0		500	1.040E-08	3.104E-08	No detectable hydrogen measured
	LL216A	3001090481	0		600	1.040E-08	3.943E-08	No detectable hydrogen measured
LL85300739TRU	LL216A	3001090481	0	35	300	1.040E-08	1.915E-08	No detectable hydrogen measured
LL85401333TRU	LL216A	3001090481	0	33	500	1.040E-08		No detectable hydrogen measured
LL85500125TRU	LL216A	3001090481	0	46	300	1.040E-08	1.468E-08	No detectable hydrogen measured
LL85500291TRU	LL216A	3001090481	0		500	1.040E-08	2.799E-08	No detectable hydrogen measured
		3001090481	0	41	440	1.040E-08		No detectable hydrogen measured
LL85501257TRU	LL216A	3001090481	0	35	490	1.040E-08		No detectable hydrogen measured
LL85601186TRU	LL216A	3001090481	0	34	900	1.040E-08	5.915E-08	No detectable hydrogen measured
LL85701015TRU	LL216A	3003400481	0		390	1.040E-08	2.132E-08	No detectable hydrogen measured
LL85800416TRU	LL216A	3003400481	0		300	1.040E-08		No detectable hydrogen measured
LL85800421TRU	LL216A	3001090481	0		200	1.040E-08		No detectable hydrogen measured
LL85801185TRU	LL216A	3003400481	0		300	1.040E-08		No detectable hydrogen measured
LL85801213TRU	LL216C	3001090839	0	· 598	7000	5.959E-09	8.445E-08	No detectable hydrogen measured
		3001090481	0		500	1.040E-08		No detectable hydrogen measured
LL85900294TRU	LL216A	3001090481	0	39	480	1.040E-08	2.755E-08	No detectable hydrogen measured
LL85900369TRU	LL216A	3001090481	<u> </u>	34		1.040E-08		No detectable hydrogen measured
	LL216A	3003400481	0		400	1.040E-08		No detectable hydrogen measured
	LL216A	3003400481	0	34	700	1.040E-08		No detectable hydrogen measured
	NT225A	3003400612	0	56	170	8.170E-09		No detectable hydrogen measured
	NT225A	3001090612	0		250	8.170E-09		No detectable hydrogen measured
	NT225A	3003400612	0	50	650	8.170E-09		No detectable hydrogen measured
	NT225A	3003400660	· 0	80	250	7.576E-09		No detectable hydrogen measured
		3003400612	· 0	113	310	8.170E-09		No detectable hydrogen measured
		3001090660	0	55	170	7.576E-09		No detectable hydrogen measured
		3001090612	0	47	190	8.170E-09		No detectable hydrogen measured
	NT225A	3003400612	0	75	260	8.170E-09		No detectable hydrogen measured
NT041657	NT225A	3001090612	0	58	180	8.170E-09	9.929E-09	No detectable hydrogen measured

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

æ

Container No.	CH- TRUCON Code	Shipping Category	Time Between Venting and Generation (days)	Time Between Sampling and Venting (days)	Hydrogen Conc. (ppm)	FGGR Limit (mol/s)	Simplified AltMeth FGGR (mol/s)	Comments / Explanation
NT041758	NT225A	3003400612	0		640		3.366E-08	No detectable hydrogen measured
NT041790	NT225A	3003400612	0		260			No detectable hydrogen measured
NT041822A	NT225A	3003400612	0		. 270			No detectable hydrogen measured
NT041859	NT225A	3003400612	0		280			No detectable hydrogen measured
NT041868	NT225A	3003400612	0		270			No detectable hydrogen measured
NT041933	NT225A	3003400612	0		270			No detectable hydrogen measured
NT041940	NT225A	3003400612	0		270			No detectable hydrogen measured
NT041954	NT225A	3003400612	0		2700			No detectable hydrogen measured
NT041967	NT225A	3003400612	0		430			No detectable hydrogen measured
NT042013	NT125A	3003400660	0		270			No detectable hydrogen measured
NT042015	NT125A	3003400660	0		270			No detectable hydrogen measured
NT042023	NT225A	3003400612	0		270			No detectable hydrogen measured
NT042029	NT225A	3003400612	· 0		270			No detectable hydrogen measured
NT042032	NT225A	3003400612	0		270			No detectable hydrogen measured
NT042033	NT225A	3003400612	0		270			No detectable hydrogen measured
NT042038	NT225A	3003400612	. 0		270			No detectable hydrogen measured
NT042039	NT125A	3001090612	0		270			No detectable hydrogen measured
NT042052	NT225A	3003400612	0		270			No detectable hydrogen measured
NT042097	NT125A	3003400660	0		200			No detectable hydrogen measured
NT052117	NT125A	3003400660	0		270			No detectable hydrogen measured
NT052122	NT225A	3003400700	0		220			No detectable hydrogen measured
NT052124	NT125A	3003400660	0		350			No detectable hydrogen measured
NT052132	NT125A	3003400660	0		180	7.576E-09		No detectable hydrogen measured
NT052140	NT225A	3003400612	0		270	8.170E-09		No detectable hydrogen measured
NT052148	NT225A	3003400660	0		160			No detectable hydrogen measured
NT052149	NT125A	3003400660	0	-	150			No detectable hydrogen measured
NT052153	NT125A	3003400612	0		140			No detectable hydrogen measured
NT052154	NT125A	3003400612		47	140			No detectable hydrogen measured
RFD82532	RF121A	3001090455	234	0	135	1.099E-08		No detectable hydrogen measured
RFD88375 RFDD3608	RF121A RF116N	3003400455	282	0 15	135	1.099E-08		No detectable hydrogen measured
RFDD3608 RFDD9811		3003400433	244		76	1.155E-08		No detectable hydrogen measured
RFDE4148	RF130A	3000400455		0	148	1.099E-08		No detectable hydrogen measured
RFDE4148 RFDE4470	RF121N RF116N	3003400433 3001090433	0		· 101 181	1.155E-08		No detectable hydrogen measured
RFDE4470 RFDE7225	RF116N RF121N	3001090433	0		181	1.155E-08 1.155E-08		No detectable hydrogen measured
RFDE7225 RFDE7232			0					No detectable hydrogen measured
RFDE7232 RFDE8960	RF121N RF116N	3003400433 3003400433	0		101	1.155E-08		No detectable hydrogen measured
RFDE8960 RFDE8961		3003400433	0		101	1.155E-08		No detectable hydrogen measured
RFDE8961 RFDE8971	RF121N		0	. –	101 285	1.155E-08		No detectable hydrogen measured
RFDE8971 RFDE9470	RF121N RF130A	3003400433 3000400455	0		285	1.155E-08		No detectable hydrogen measured
RFDE9470 RFDE9472	RF130A RF130A		0		171	1.099E-08		No detectable hydrogen measured
RFDE9472 RFDF0036	RF130A RF118N	3000400455 2001700433	0		101	1.099E-08		No detectable hydrogen measured
RFDF0036 RFDF0138		2001700433	0		101	1.155E-08 1.155E-08		No detectable hydrogen measured
RFDF0138 RFDF0151		2001700433	0					No detectable hydrogen measured
REDEVISI		2001700433	0	13	101	1.155E-08	2.13/E-08	No detectable hydrogen measured

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

	RUCON Code	Shipping Category	Between Venting and Generation (days)	Sampling and Venting (days)	Hydrogen Conc. (ppm)	FGGR Limit (mol/s)	Simplified AltMeth FGGR (mol/s)	Comments / Explanation
		2001700433	0	13	101	1.155E-08	2.137E-08	No detectable hydrogen measured
		2001700433	0	12	101			No detectable hydrogen measured
		2001700433	0	13				No detectable hydrogen measured
		2001700433	0	13	101	1.155E-08	2.137E-08	No detectable hydrogen measured
	118N	2001700433	0	. 12	76	1.155E-08	1.767E-08	No detectable hydrogen measured
RFDF0716 RF1	118N	2001700433	· 0	13	101	1.155E-08	2.137E-08	No detectable hydrogen measured
	118N	2001700433	0	13	76	1.155E-08	1.608E-08	No detectable hydrogen measured
RFDF0722 RF1	118N	2001700433	0	12	101	1.155E-08	2.349E-08	No detectable hydrogen measured
RFDF0724 RF1	118N	2001700433	0	13	101	1.155E-08	2.137E-08	No detectable hydrogen measured
RFDF0747 RF1	117N	2001700433	0	13	101	1.155E-08	2.137E-08	No detectable hydrogen measured
RFDF0762 RF1	116N	3003400433	0	. 15	101	1.155E-08	1.602E-08	No detectable hydrogen measured
RFDF0764 RF1	118N	2001700433	0	13	101	1.155E-08	2.137E-08	No detectable hydrogen measured
RFDF0767 RF1	118N	2001700433	0	13	101	1.155E-08		No detectable hydrogen measured
RFDF0794 RF1	117N	2001700433	0	13	101	1.155E-08	2.137E-08	No detectable hydrogen measured
RFDF0795 RF1	116N	3003400433	0	13	101	1.155E-08		No detectable hydrogen measured
RFDF0819 RF1	116N	3003400433	0	13	144	1.155E-08		No detectable hydrogen measured
RFDF2555 RF1	121N	3003400433	0	4	101	1.155E-08		No detectable hydrogen measured
		3003400839	. 0	41	90	5.959E-09		No detectable hydrogen measured
		3003401018	0	38	700			No detectable hydrogen measured
		3003400839	0	37	700	5.959E-09		No detectable hydrogen measured
		3003400839	· 0	45	80			No detectable hydrogen measured
		3003400839	0	25	700			No detectable hydrogen measured
		3003400302	0	53	700			No detectable hydrogen measured
		3003400839	0	29	700			No detectable hydrogen measured
		3001090455	7050	0	3860			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7097	0				Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
1		3003400455	7121	0				Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7034	0	2200			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3003400455	7135	0				Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7034	0	2900		· · · · · · · · · · · · · · · · · · ·	Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7097	0	1960			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7133	0	4980			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
	233AR	3003400455	7135	0	3260			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
D16820 NT2	233AR	3001090455	7148	0	1650			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3003400455	7159	0	2860			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090612	7049	0	23380			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
	-	3001090455	7034	. 0	1930			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7130	0	5020			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7096	0	2640			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7096	0	2090			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090455	7033	0	2600			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090660	8306	0				Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090612	7266	0				Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
		3001090612	7170	0				Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

ę.

. .

Container No.	CH- TRUCON Code	Shipping Category	Time Between Venting and Generation (days)	Time Between Sampling and Venting (days)	Hydrogen Conc. (ppm)	FGGR Limit (mol/s)	Simplified AltMeth FGGR (mol/s)	Comments / Explanation
NT041813	NT225A	3001090612	8853	0	1360	8.170E-09	8.618E-09	Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041823	NT225A	3001090612	6511	0	2720	8.170E-09	1.887E-08	Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041830	NT225A	3001090612	7537	0	4720		3.121E-08	Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041851	NT225A	3001090660	6542	0	1870			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041865	NT225A	3001090612	7511	0	28150			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041872	NT225A	3001090612	7507	0	4730			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041882	NT225A	3001090612	8081	0	2390			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041908	NT225A	3001090612	7528	0	4030			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041917	NT225A	3001090612	7278	0	5630			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041921	NT225A	3001090612	7347	0	1450			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041928	NT225A	3001090612	. 6544	0	15820			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041942	NT225A	3001090612	7829	0	25180			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041944	NT225A	3001090612	7679	0				Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041957	NT225A	3001090612	7515	0	1900			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041959	NT225A	3001090612	8088	0	6370			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041961	NT225A	3001090612	7268	0	4200			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041965	NT225B	3001090075	7954	0		6.667E-08		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041977	NT225A	3001090612	8057	0		8.170E-09		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041978	NT225A	3001090612	7124	0		8.170E-09		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041979	NT225A	3001090612	8298	0		8.170E-09		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041982	NT225A	3001090612	7307	0		8.170E-09		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT041996	NT225A	3001090612	7494	0		8.170E-09		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT042027	NT125B	3003400075	7262	0	17620		-	Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT042054	NT225A	3001090612	6567	0		8.170E-09		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT042089	NT225A	3001090612	6356	0	1550			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT285126	NT225A	3001090612	7095	0		8.170E-09		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
NT980327	NT225A	3001090612	6499	0		8.170E-09		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
RFD72075	RF132A	1001300107	5483	0		4.673E-08		Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
RFD84731	RF121A	3001090455	. 2295	0	4242			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
RFDC4240	RF118N	2000320481	843	0	1460			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
RFDD4825	RF130A	3000400455	306	0	173			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
RFDD7739	RF130A	3001850455	244	0	530			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
RFDE5303	RF116I	3001090079	6346	0	17235			Container sampled below rigid liner; FGGR calculated based on sampling in drum headspace
A12751	RH225AL	3001092020	7037	19	1260			Container vented after generation and subject to aspiration requirements
A13378	RH225AL	3001091995	· 6649	62		2.506E-09		Container vented after generation and subject to aspiration requirements
BN10061453	ID225K	3001090302	10604	239	22000			Container vented after generation and subject to aspiration requirements
BN10113493	ID211P	1001600133	11558	. 72		3.759E-08		Container vented after generation and subject to aspiration requirements
BN10119720	ID211P	1001600133	11491	41		3.759E-08		Container vented after generation and subject to aspiration requirements
BN10130270	ID211P	1001600133	11537	37		3.759E-08		Container vented after generation and subject to aspiration requirements
BN10130307	ID211P	1001600133	11517	50	6700			Container vented after generation and subject to aspiration requirements
H-PNL-TRU-95045	RH2251	3001091044	5219	108	4300			Container vented after generation and subject to aspiration requirements
LA0000053671	LA125G	3001090813	6428	153	3961			Container vented after generation and subject to aspiration requirements
LA0000054741	LA225G	3001090791	4380	1190	3700			Container vented after generation and subject to aspiration requirements
LA00000055739	LA125G	3001090813	3016	189	4083	6.150E-09	1.207E-08	Container vented after generation and subject to aspiration requirements

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

-

Ē

Container Wolf Con- TRUCON Time Singling Supplies Bitwein Sampling Variang (day) Singling Variang (day) Singling Variang (day) Singling Variang (day) Singling Variang (day) Singling Variang (day) Singling Variang (day) Singling Variang V					Time				
Chi Verting of constraint Verting (days) Verting (da				Time	Between				
TRUCON Shipping Generation Volt FGGR Limit, FGGR Container Vol. Godge Catage (mpm) (mpm) Godge Comments / Explanation LA00000059323 LA125G 0001090613 798 F00 5158-69 3752-68 Container venica dare generation and subject to aspiration requirements. LA0000005233 LA125G 0003400911 523 429 800 5807-69 7256-69 Container venica dare generation and subject to aspiration requirements. LA0000005236 LA225G 0003400791 302 221 500 5312-69 Container venica dare generation and subject to aspiration requirements. LA0000005236 LA225G 0003400791 161 168 300 5321-69 Container venica dare generation and subject to aspiration requirements. LA000005236 LA125G 000400871 151 168 3206 5352-69 Container venica dare generation and subject to aspiration requirements. LA000005236 LA125G 000400871 151 168 2006-27 Container venica dare generation and subject to aspiration requirements.				Between	Sampling			Simplified	
Container No. Code Category (days) (gays) (gays) (molts) (molts) Comments / Explanation L00000055565 L42256 00340081 933 200 2500 61506-08 1578E-08 Container vented after generation and subject to aspiration requirements L00000052548 L42256 00340081 193 318 300 5.321E-08 2747E-08 Container vented after generation and subject to aspiration requirements L00000062368 L42256 003400791 312 222 100 5.321E-08 26456 Container vented after generation and subject to aspiration requirements L00000062838 L42256 003400791 116 168 300 5.321E-08 264266 Container vented after generation and subject to aspiration requirements LA3000062838 L42214 101300365 2538 117 2014 Container vented after generation and subject to aspiration requirements LA300006284 L42214 1003100865 2538 117 2000 Container vented after generation and subject to aspiration requirements LA3804064 L42214 <td></td> <td>CH-</td> <td></td> <td>Venting and</td> <td>and</td> <td>Hydrogen</td> <td></td> <td>AltMeth</td> <td></td>		CH-		Venting and	and	Hydrogen		AltMeth	
LA00000698133 LA125 Option Payle P39 P39 <td></td> <td>TRUCON</td> <td>Shipping</td> <td>Generation</td> <td>Venting</td> <td>Conc.</td> <td>FGGR Limit</td> <td>FGGR</td> <td></td>		TRUCON	Shipping	Generation	Venting	Conc.	FGGR Limit	FGGR	
LA0200059858 LA256 300340081 933 200 2200 6 1050-60 1.5756-08 Container vented after generation and subject to aspiration requirements LA0000052548 LA256 3001400791 193 318 300 6 321E-00 2.7256-09 Container vented after generation and subject to aspiration requirements LA0000052358 LA2556 3001400791 302 209 700 6 321E-00 2.725-08 Container vented after generation and subject to aspiration requirements LA0000052358 LA2556 3001400791 161 168 300 6 321E-09 1.2452-08 Container vented after generation and subject to aspiration requirements LA5516462 LA2561 A1756 3004400713 8116 7146 300 6 324E-03 Container vented after generation and subject to aspiration requirements LA5516472 LA2154 3004400813 8158 770 2000 6 1662-03 Container vented after generation and subject to aspiration requirements LA551648 LA2154 3001400813 856 770 2000 6 1662-03 Container vented after generation and subu	Container No.	Code		(days)	(days)	(ppm)	(mol/s)	(mol/s)	Comments / Explanation
LA02000059738 LA125C 300340081 525 428 800 5.807E-09 Cratainer vented after generation and subject to aspiration requirements LA02000052810 LA225C3 3003400791 302 209 77.00 6.321E-09 Cratainer vented after generation and subject to aspiration requirements LA00000052856 LA255G 3003400791 151 168 300 6.321E-05 L144E-08 Container vented after generation and subject to aspiration requirements LA00000052856 LA215G 3003400718 161 1080 6.321E-05 12.44E-08 Container vented after generation and subject to aspiration requirements LA5810462 LA255G 3001090813 8210 1190 28006 1.56E-08 2.04E-08 Container vented after generation and subject to aspiration requirements LA5810462 LA255G 3001090813 8723 770 2000 6.16E-08 Container vented after generation and subject to aspiration requirements LA5810476 LA125G 3001090813 8734 710 2000E-08 7.74E-08 Container vented after generation and subject to aspiration requirements	LA00000059323	LA125G	3001090813		609	4700	6.150E-09	3.952E-08	Container vented after generation and subject to aspiration requirements
LA0000026244 LA2263 S001980791 198 316 300 6.321E-08 2.9747E-09 Container vented after generation and subject to aspiration requirements LA0000026238 LA2263 S00190791 232 221 600 6.321E-08 2.014E-08 Container vented after generation and subject to aspiration requirements LA00000026238 LA22563 S001909013 161 168 300 6.321E-08 Container vented after generation and subject to aspiration requirements LAS810462 LA22563 S001909013 813 119 28006-07 Container vented after generation and subject to aspiration requirements LAS810575 LA22563 S001909013 8164 784 6400 6.150E-08 S24E-08 Container vented after generation and subject to aspiration requirements LAS81057 LA2156 S001900913 8163 7700 2000 6.150E-08 S001180r vented after generation and subject to aspiration requirements LAS81257 LA1256 S001906913 6733 449 100 6.150E-08 S00140007 S001901078 S001901078 S001901078 S0	LA00000059585	LA225G	3003400813	933		2500	6.150E-09	1.578E-08	Container vented after generation and subject to aspiration requirements
LA02000028210 LA225G 3003400791 302 209 700 6.321E-09 2.128E-08 Container wented after generation and subject to aspiration requirements LA00000028256 LA225G 3003400791 161 168 300 6.321E-09 1.244E-08 Container wented after generation and subject to aspiration requirements LAS810466 LA211A 1003300085 8238 718 13200 6.352E-08 Container wented after generation and subject to aspiration requirements LAS810476 LA215G 300190813 8154 748 4600 6.150E-08 2.098E-37 Container wented after generation and subject to aspiration requirements LAS810476 LA215G 3003400813 8154 770 2000 6.150E-08 2.098E-37 Container wented after generation and subject to aspiration requirements LAS823160 LA125G 3001908013 8736 771 7000 6.150E-08 2.098E-30 Container wented after generation and subject to aspiration requirements LAS823164 LA125G 3001908012 6674 156 1560-20 2.078E-08 Container wented after generat	LA00000059738					800	5.807E-09	7.359E-09	Container vented after generation and subject to aspiration requirements
LA0000002838 LA22G 3001900791 222 221 600 6 321E-09 2 014E-08 Container vented after generation and subject to a spiration requirements LAS810462 LA22G 3001900013 6228 718 12400-582E-08 1.117E-07 Container vented after generation and subject to a spiration requirements LAS810462 LA22G 3001900013 6154 784 6400 6 150E-09 2.236E-08 Container vented after generation and subject to a spiration requirements LAS815512 LA21A 1001300065 6003 1002 540E-09 1.246E-08 Container vented after generation and subject to a spiration requirements LAS815512 LA21A LA21GG 30013000813 7733 449 1000 6150E-09 1.298E-08 Container vented after generation and subject to a spiration requirements LAS8325612 LA125G 3001300813 6733 449 1006 1.50E-09 2.28E-E08 Container vented after generation and subject to a spiration requirements LAS8325612 LA125G 3001300813 6733 449 1.678E-08 Container vented after generation and subject	LA0000062548		3001090791	193		300	6.321E-09	9.747E-09	Container vented after generation and subject to aspiration requirements
LA00000028265 LA12G 9003400791 161 166 300 6.3216-29 1.2446-36 Container vented after generation and subject to aspiration requirements. LAS810466 LA211A 1001300065 8228 718 1200 6.150E-D9 2.096E-07 Container vented after generation and subject to aspiration requirements. LAS810476 LA125G 3001300081 8053 1092 3245E-08 Container vented after generation and subject to aspiration requirements. LAS810476 LA125G 3001300081 8068 377 700 2006 Container vented after generation and subject to aspiration requirements. LAS823460 LA125G 3001300811 8086 377 700 2006 Container vented after generation and subject to aspiration requirements. LAS834575 LA125G 3001309011 6066 2021 1570 8170E-D9 1.478E-08 Container vented after generation and subject to aspiration requirements. LAS834576 LA125G 3001309012 6541 77 6501 2.776E-09 Container vented after generation and subject to aspiration requirements. LAS83457<						700		2.125E-08	Container vented after generation and subject to aspiration requirements
LAS10466 LA211A 1001300085 8238 716 13200 5.8827-06 1.117E-07 Container vented after generation and subject to spiration requirements LAS10462 LA225G 3003400813 8154 744 6400 6.150E-09 2.290E-07 Container vented after generation and subject to spiration requirements LAS10512 LA211A 1001300085 8063 7092 2.000 6.150E-09 2.290E-02 Container vented after generation and subject to spiration requirements LAS2325146 LA125G 3001909013 6733 449 1100 6.150E-09 9.298E-09 Container vented after generation and subject to spiration requirements LAS832560 LA125G 3001090913 6734 66 1176 2.508E-09 2.374E-09 Container vented after generation and subject to spiration requirements RH2-301.41427 RH225AL 3001090913 6734 66 1160 2.508E-09 3.712E-09 Container vented after generation and subject to spiration requirements RH2-301.41427 RH225AL 3001090210 6719 477 2400 2.4755-09 6.210E-	LA00000062838		3001090791				6.321E-09	2.014E-08	Container vented after generation and subject to aspiration requirements
LAS916492 LA225G 3001909013 8210 1190 29900 6.150E-09 2096-07 Container vented after generation and subject to aspiration requirements LAS916775 LA215G 3003400013 8154 784 6400 6.150E-09 2324E-08 Container vented after generation and subject to aspiration requirements LAS931576 LA125G 3003400013 8366 371 7300 6.150E-09 1992E-08 Container vented after generation and subject to aspiration requirements LAS933570 LA125G 3001909012 6066 2021 1570 8.170E-09 1992E-09 Container vented after generation and subject to aspiration requirements RH2-103A-14827 8001090912 6674 1671 6.210E-09 Container vented after generation and subject to aspiration requirements RH2-301-14427 RH223AL 300199200 7701 18 1400 2.475E-09 3.274E-09 Container vented after generation and subject to aspiration requirements Z441134 RH223AL 300199200 7701 18 1400 2.475E-09 3.274E-09 Container vented after generation and subject to asp	LA0000062856		3003400791		168	300	6.321E-09	1.244E-08	Container vented after generation and subject to aspiration requirements
LAS816775 LA125G 3003400813 8154 774 6400 6.160E-08 22642.80 Container vented after generation and subject to aspiration requirements LAS816512 LA211A 1001300085 8063 770 2000 6.150E-08 Container vented after generation and subject to aspiration requirements LAS82556 LA125G 3001090613 6733 449 1100 6.150E-09 1299E-08 Container vented after generation and subject to aspiration requirements LA8585475 LA125G 3001090613 6733 449 1100 6.150E-09 1294E-08 Container vented after generation and subject to aspiration requirements LA358475 LA125G 3001090515 6574 66 1160 2.505E-09 5.644E-00 Container vented after generation and subject to aspiration requirements RH2-301-A14687 RH225A1 300190202 6719 47 2402 2.475E-09 6.21E-09 Container vented after generation and subject to aspiration requirements RH2-301-A1425A1 300190202 7730 11658 2.475E-09 1.27E-00 Container vented after generation and subject to aspi	LAS810466							1.117E-07	Container vented after generation and subject to aspiration requirements
LAS11512 LA211A 1001300065 9063 1092 9411 5.8822146 7.56120 Container vented after generation and subject to aspiration requirements LAS823146 LA125G 300190813 8366 371 7300 6.150E-09 1.9924E08 Container vented after generation and subject to aspiration requirements LAS834575 LA125G 300190812 6066 2021 1100 6.150E-09 2.984E08 Container vented after generation and subject to aspiration requirements RHZ-103-A14893 RH225A1 300199956 6574 1160 2.506E-09 3.744E-08 Container vented after generation and subject to aspiration requirements RHZ-301-A1437 RH225A1 300199202 6779 47 2420 2.475E-09 6.711E-09 Container vented after generation and subject to aspiration requirements RH2301-A14257 300190202 7254 255 5690 3.71E-09 Container vented after generation and subject to aspiration requirements RH2301-A14251 30019018 0 2245 5600 3.412E-08 Actual number of layers likely lower. hydrogen gradient likely veerpredicted	LAS816462		3001090813				6.150E-09	2.090E-07	Container vented after generation and subject to aspiration requirements
LAS22146 LA125G 200109813 7723 770 2000 6.156-09 1.094E-08 Container wented after generation and subject to aspiration requirements LAS832560 LA125G 3001400813 6.733 449 1100 6.150E-09 1.994E-08 Container wented after generation and subject to aspiration requirements NT896488 NT225A 3001190915 6.374 56 1160 2.564E-09 Container wented after generation and subject to aspiration requirements RH2-301-A142617 RH225AL 300119956 6.541 156 2.564E-09 5.644E-09 Container wented after generation and subject to aspiration requirements RH2-301-A14267 RH225AL 3001109202 6.719 47 2420 2.475E-09 6.210E-69 Container vented after generation and subject to aspiration requirements Z4A411334 RH225AL 3001092020 7251 47 256 6.210E-09 Container vented after generation and subject to aspiration requirements Z4A411334 RH225AL 300109202 7271 168 2.41E-09 Container vented after generation and subject to aspiration requirements	LAS816775	LA125G	3003400813	8154			6.150E-09	3.254E-08	Container vented after generation and subject to aspiration requirements
LAS32580 LA125G 2003400813 6366 371 7300 6.150E-09 1993E-08 Container vented after generation and subject to aspiration requirements LAS854575 LA125G 3001090612 6066 2021 1577 8.170E-09 17478E-08 Container vented after generation and subject to aspiration requirements RH2-301-A14217 RH225AL 3001091995 6541 176 1502 2.506E-09 3.774E-09 Container vented after generation and subject to aspiration requirements RH2-301-A1467 RH225AL 3001091995 6541 176 1502 2.506E-09 3.74E-09 Container vented after generation and subject to aspiration requirements RH2-301-A1467 RH225AL 3001092020 7501 18 14502 2.475E-09 3.121E-09 Container vented after generation and subject to aspiration requirements Z84A11033 RH225AL 3003400212 0 771 186 1.375E-08 Container vented after generation and subject to aspiration requirements H-002669 RH225F 3003400018 0 3.721E-09 Chatainumber of layersi like/J lower, hydrogen gradient like/J venerpedic	LAS818512	LA211A	1001300085				5.882E-08	7.961E-08	Container vented after generation and subject to aspiration requirements
LA585475 LA125G 3001090813 6733 449 1100 6,150E-09 224E-09 Container vented after generation and subject to aspiration requirements NT880488 NT225A 300109012 6667 2021 1570 8,77E-09 LA78E-09 Container vented after generation and subject to aspiration requirements RH2-301-A14217 RH225AL 300109020 6719 47 260 Container vented after generation and subject to aspiration requirements RH2-301-A14287 RH225AL 3001092020 6719 47 2202 5201E-09 6.210E-09 Container vented after generation and subject to aspiration requirements Z84A11053 RH225AL 3001090202 7531 18 1450 2.475E-09 1.378E-08 Container vented after generation and subject to aspiration requirements X1041715 NT225A 3003040012 0 77 1060 8.170E-09 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0025670 RH225F 3003400481 0 337 3600 1.040E-08 3.248E-08 Actual number of layers likely lower, hydrogen gradient likely over	LAS823146	LA125G	3001090813			2000	6.150E-09	1.004E-08	Container vented after generation and subject to aspiration requirements
NT980488 NT225A 3001090612 6066 2021 1570 8.170C-90 1.478E-08 Container vented after generation and subject to aspiration requirements RH2-301-A14217 RH225AL 3001091995 6541 176 1620 2.506E-09 S.044E-08 Container vented after generation and subject to aspiration requirements RH2-301-A14277 RH225AL 3001091995 6541 176 1620 S.044E-08 Container vented after generation and subject to aspiration requirements Z84A11053 RH225AL 3001092020 7301 18 1475E-09 Container vented after generation and subject to aspiration requirements Z84A11053 RH225AL 3003040202 7254 25 6500 2.475E-09 Container vented after generation and subject to aspiration requirements H-0020667 RH225F 300304012 0 77 1606 170E-09 2.214E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0020469 RH225F 3003400481 0 337 3100 1.040E-08 2.214E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted	LAS832580	LA125G	3003400813		371	7300	6.150E-09	1.993E-08	Container vented after generation and subject to aspiration requirements
RH2:03-X14893 RH225AL 3001091995 6374 56 1160 2.506E-09 3.774E-09 Container vented after generation and subject to aspiration requirements RH2:301-A14217 RH225AL 3001092020 6719 47 2400 2.475E-09 Container vented after generation and subject to aspiration requirements Z84A11333 RH225AL 3001092020 7231 18 1450 2.475E-09 3.121E-08 Container vented after generation and subject to aspiration requirements Z84A11334 RH225AL 3001092020 7254 25 5690 2.475E-09 3.121E-08 Container vented after generation and subject to aspiration requirements NT041715 NT225A 3001091018 0 2028 23004 9.12E-09 2.214E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-002649 RH225F 30030400481 0 373 3600 1.040E-08 3.498E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0030337 RH225F 3003400481 0 373 3100 1.040E-08 3.498E-08 Ac	LAS854575	LA125G	3001090813	6733	449	1100	6.150E-09	9.294E-09	Container vented after generation and subject to aspiration requirements
RH2:301-A14217 RH225AL 3001091995 6541 176 1620 2.505-09 5.644-09 Container vented after generation and subject to aspiration requirements RH2:301-A14687 RH225AL 3001092020 7730 18 1450 2.475E-09 6.210E-09 Container vented after generation and subject to aspiration requirements Z4A11033 RH225AL 300302020 7254 25 5660 2.475E-09 3.121E-08 Container vented after generation and subject to aspiration requirements X1041715 NT225A 300340020 7254 25 56600 2.475E-09 3.21E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-00205670 RH2255 3001091018 0 2028 2.300 1.040E-08 3.24E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0020468 RH2255 3003400481 0 337 3600 1.040E-08 2.74E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0030327 RH2256 3003400481 0 352 24001 1.040E-08 2	NT980488	NT225A	3001090612	6066	2021	1570	8.170E-09	1.478E-08	Container vented after generation and subject to aspiration requirements
RH225AL 3001092020 6719 47 2420 2475E-09 6.210E-09 Container vented after generation and subject to aspiration requirements Z84A11053 RH225AL 300340020 7301 18 1450 2.475E-09 0.178E-08 Container vented after generation and subject to aspiration requirements NT041715 NT225A 3003400512 0 77 1060 8.170E-09 4.492E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0005570 RH225F 3001090481 0 904 3400 1.040E-08 3.264E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0026801 RH225F 3003400481 0 337 3100 1.040E-08 3.264E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0030337 RH225F 3003400481 0 337 3100 1.040E-08 3.75E-09 2.78E-09 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031682 RH225F 3003400481 0 378 2100 7.57E-09 2.78E-08	RHZ-103-A14893	RH225AL	3001091995	. 6374	56	1160	2.506E-09	3.774E-09	Container vented after generation and subject to aspiration requirements
ZB4A11053 RH225AL 3001092020 7301 18 1450 2.475E-09 3.121E-09 Container vented after generation and subject to aspiration requirements ZB4A11334 RH225AL 3003400202 7254 25 5690 2.475E-09 1.378E-08 Container vented after generation and subject to aspiration requirements NT041715 NT225A 3003400612 0 77 1060 8.170E-09 2.214E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0020469 RH225F 3001300401 0 337 3600 1.040E-08 3.284E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0020469 RH225F 3003400481 0 337 3400 1.040E-08 2.75F-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-003038 RH225F 30034004060 0 239 2.000 7.57E-09 2.98EE-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0031682 RH225F 3003400481 0 224 2100 1.040E-08 2.74E-08 <td>RHZ-301-A14217</td> <td></td> <td></td> <td>6541</td> <td>176</td> <td>1620</td> <td></td> <td>5.644E-09</td> <td>Container vented after generation and subject to aspiration requirements</td>	RHZ-301-A14217			6541	176	1620		5.644E-09	Container vented after generation and subject to aspiration requirements
ZB4A11334 RH225AL 1003402020 7254 25 6600 2.475E-09 Container vented after generation and subject to aspiration requirements NT041715 NT225A 3003400612 0 77 1060 8.170E-09 4.492E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0020469 RH225F 3001090481 0 904 3400 1.040E-08 3.248E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0020811 RH225F 3003400481 0 337 3100 1.040E-08 3.498E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0030337 RH225F 3003400481 0 355 2400 1.040E-08 2.495E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031682 RH225G 3003400481 0 356 2400 1.040E-08 2.742E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031682 RH225F 3001900660 0 378 2100 7.65E-09 2.742E-08 Actual numb	RHZ-301-A14687	RH225AL	3001092020	6719	47	2420	2.475E-09	6.210E-09	Container vented after generation and subject to aspiration requirements
NT041715 NT225A 3003400612 0 77 1060 8.170E-09 4.492E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-00026610 RH2255 3001090481 0 904 3400 1.040E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0026811 RH225F 3003400481 0 337 3600 1.040E-08 3.264E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0030327 RH225F 3003400481 0 373 3100 1.040E-08 2.757E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0031607 RH225G 3003400660 0 299 2000 7.576E-09 2.985E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0031682 RH225F 3003400481 0 224 2100 1.440E-08 2.742E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0032824 RH225F 3003400481 0 224 2100 1.440E-08 2.745E-08 Actual n	Z84A11053	RH225AL	3001092020	7301			2.475E-09	3.121E-09	Container vented after generation and subject to aspiration requirements
H-0005570 RH225I 3001091018 0 2028 2300 4.912E-09 2.214E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0026469 RH225F 3001090481 0 904 3400 1.040E-08 3.264E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0026811 RH225F 3003400481 0 373 3100 1.040E-08 3.264E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0030327 RH225F 3003400481 0 373 3100 1.040E-08 2.757E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0031682 RH225G 3003400660 0 378 2100 7.576E-09 2.956E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0032652 RH225F 3003400481 0 22 2300 1.040E-08 2.742E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0032652 RH225F 3003400481 0 122 2300 1.040E-08 2.742E-	Z84A11334		3003402020	7254	25	5690	2.475E-09	1.378E-08	Container vented after generation and subject to aspiration requirements
H-0020469 RH225F 300190481 0 904 3400 1.040E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0026811 RH225F 3003400481 0 337 3600 1.040E-08 4.219E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0030327 RH225F 3003400481 0 355 2400 1.040E-08 2.985E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031807 RH225G 3003400660 0 299 2000 7.576E-09 2.761E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031862 RH225F 3003400481 0 222 2000 1.040E-08 2.742E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0032824 RH225F 3003400481 0 322 2300 1.040E-08 2.742E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0034848 RH225F 3003400481 0 182 2400 1.040E-08 1.3636E-08 Actual	NT041715		3003400612	0	77	1060	8.170E-09	4.492E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0026811 RH225F 3003400481 0 337 3600 1.040E-08 4.219E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0030327 RH225F 3003400481 0 373 3100 1.040E-08 3.498E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0030383 RH225F 3003400481 0 375 277E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-003162 RH225G 300190660 0 378 2100 7.57E-09 2.761E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-003262 RH225F 3003400481 0 224 2100 1.040E-08 2.745E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0032624 RH225F 3003400481 0 182 2400 1.040E-08 2.745E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0034648 RH225F 3003400481 0 148 1.040E-08 1.345E-08 Actual number of layers likely lower; hydrogen gradient l		RH2251	3001091018	0	2028	2300	4.912E-09	2.214E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0030327 RH225F 3003400481 0 373 3100 1.040E-08 3.498E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-00310338 RH225F 3003400481 0 355 2400 1.040E-08 2.757E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031607 RH225G 3003400481 0 299 2000 7.576E-09 2.985E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031682 RH225G 3003400481 0 264 2100 1.040E-08 2.742E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0032824 RH225F 3003400481 0 322 2000 1.040E-08 2.742E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0034648 RH225F 3003400481 0 182 2400 1.040E-08 2.176E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0034648 RH225F 3003400481 0 304 1100 1.040E-08 1.345E		RH225F	3001090481	0	904	3400	1.040E-08	3.264E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0030338 RH225F 3003400481 0 355 2400 1.040E-08 2.757E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031607 RH225G 3003400660 0 299 2000 7.576E-09 2.985E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0031662 RH225F 3003400481 0 264 2100 7.576E-09 2.74E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0032624 RH225F 3003400481 0 322 2300 1.040E-08 2.74E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0034588 RH225F 3003400481 0 182 2400 1.040E-08 2.745E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0034648 RH225F 3003400481 0 118 1000 1.040E-08 1.345E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0036067 RH225F 3003400481 0 235 1000 1.040E-08 1.336E-08	H-0026811	RH225F	3003400481	0	337	3600	1.040E-08	4.219E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0031607 RH225G 3003400660 0 299 2000 7.576E-09 2.985E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0031682 RH225G 3001090660 0 378 2100 7.576E-09 2.761E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0032652 RH225F 3003400481 0 264 2100 1.040E-08 2.742E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0032824 RH225F 3003400481 0 182 2400 1.040E-08 2.742E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0034648 RH225F 3003400481 0 182 2400 1.040E-08 3.863E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0034648 RH225F 3003400481 0 304 1100 1.040E-08 1.345E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0036667 RH225F 3003400481 0 235 1000 1.040E-08 <td< td=""><td>H-0030327</td><td></td><td>3003400481</td><td>0</td><td></td><td>3100</td><td>1.040E-08</td><td>3.498E-08</td><td>Actual number of layers likely lower; hydrogen gradient likely overpredicted</td></td<>	H-0030327		3003400481	0		3100	1.040E-08	3.498E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0031682 RH225G 3001090660 0 378 2100 7.576E-09 2.761E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0032652 RH225F 3003400481 0 224 2300 1.040E-08 2.742E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0032624 RH225F 3003400481 0 322 2300 1.040E-08 2.745E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0034588 RH225F 3003400481 0 182 2400 1.040E-08 2.176E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0034648 RH225F 3003400481 0 118 1000 1.040E-08 1.345E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0036067 RH225F 3003400481 0 235 1000 1.040E-08 1.386E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0036616 RH225F 3003400280 0 209 2100 1.786E-08 Actual	H-0030338		3003400481	0	355	2400		2.757E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0032652 RH225F 3003400481 0 264 2100 1.040E-08 2.742E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0032824 RH225F 3003400481 0 322 2300 1.040E-08 2.745E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0034588 RH225F 3001900481 0 182 2400 1.040E-08 3.863E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0034648 RH225F 3003400481 0 118 1000 1.040E-08 1.345E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0036067 RH225F 3003400481 0 235 1000 1.040E-08 1.386E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0036067 RH225F 3003400481 0 296 1.040 1.040E-08 1.382E-08 Actual number of layers likely lower, hydrogen gradient likely overpredicted H-0036068 RH225F 3003400481 0 296 1.040 1.040E-08 1.278				0	299	2000	7.576E-09	2.985E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0032824RH225F3003400481032223001.040E-082.745E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-0034588RH225F3001090481018224001.040E-083.863E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-0034648RH225F3003400481011810001.040E-082.176E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-0034766RH225F3003400481030411001.040E-081.345E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-0036067RH225F3003400481023510001.040E-081.386E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-0036728RH225B3003400481029614001.786E-082.273E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-0036826RH225B3003400280017567001.786E-087.696E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-0037168RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-086.848E-08Actual number of layers likely lower, hydrogen gradient likely overpredictedH-003764RH225F300340048101822500<	H-0031682	RH225G	3001090660	0	378	2100	7.576E-09	2.761E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0034588RH225F3001090481018224001.040E-083.863E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0034648RH225F3003400481011810001.040E-082.176E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0034766RH225F3003400481030411001.040E-081.345E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036067RH225F3003400481023510001.040E-081.386E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036766RH225F3003400481029614001.040E-081.732E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036728RH225B3003400280020921001.786E-082.273E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036826RH225B3003400280017567001.786E-087.696E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037168RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037764RH225F3003400481018225001.040E-08				· 0				2.742E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0034648RH225F3003400481011810001.040E-082.176E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0034766RH225F3003400481030411001.040E-081.345E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036067RH225F3003400481023510001.040E-081.386E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036616RH225F3003400481029614001.040E-081.732E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036728RH225B3003400280020921001.786E-082.273E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036826RH225B3003400280017567001.786E-087.696E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037168RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-084.217E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-003764RH225F3003400481020328001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-003764RH225F300340048101882400 </td <td></td> <td>RH225F</td> <td>3003400481</td> <td>0</td> <td></td> <td>2300</td> <td>1.040E-08</td> <td>2.745E-08</td> <td>Actual number of layers likely lower; hydrogen gradient likely overpredicted</td>		RH225F	3003400481	0		2300	1.040E-08	2.745E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0034766RH225F3003400481030411001.040E-081.345E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036067RH225F3003400481023510001.040E-081.386E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036616RH225F3003400481029614001.040E-081.732E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036728RH225B3003400280020921001.786E-082.273E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036826RH225B3003400280017567001.786E-087.696E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037168RH225B3001090280014316001.786E-081.999E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037203RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-084.024E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-003764RH225F3003400481018225001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037944RH225F300340048101882400<			3001090481	0		2400		3.863E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0036067RH225F3003400481023510001.040E-081.386E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036616RH225F3003400481029614001.040E-081.732E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036728RH225B3003400280020921001.786E-082.273E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036826RH225B3003400280017567001.786E-087.696E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037168RH225B3001090280014316001.786E-081.999E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037203RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-084.024E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037764RH225F3003400481020328001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037944RH225F3003400481018824001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0040900RH225B30034002800792200<		RH225F	3003400481	0		1000	1.040E-08	2.176E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0036616RH225F3003400481029614001.040E-081.732E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036728RH225B3003400280020921001.786E-082.273E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036826RH225B3003400280017567001.786E-087.696E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037168RH225B3001090280014316001.786E-081.999E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037203RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-084.024E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037764RH225F3003400481020328001.040E-084.217E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037944RH225F3003400481018824001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0040900RH225B300340028007922001.786E-083.868E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0040900RH225B30034002800792200 </td <td></td> <td>RH225F</td> <td>3003400481</td> <td>0</td> <td></td> <td>1100</td> <td>1.040E-08</td> <td>1.345E-08</td> <td>Actual number of layers likely lower; hydrogen gradient likely overpredicted</td>		RH225F	3003400481	0		1100	1.040E-08	1.345E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0036728RH225B3003400280020921001.786E-082.273E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0036826RH225B3003400280017567001.786E-087.696E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037168RH225B3001090280014316001.786E-081.999E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037203RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-084.024E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037764RH225F3003400481020328001.040E-084.217E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037944RH225F3003400481018824001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0040900RH225B300340028007922001.786E-083.868E-08Actual number of layers likely lower; hydrogen gradient likely overpredicted				0		1000	1.040E-08	1.386E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0036826RH225B3003400280017567001.786E-087.696E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037168RH225B3001090280014316001.786E-081.999E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037203RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-084.024E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037764RH225F3003400481020328001.040E-084.217E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037944RH225F3003400481018824001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0040900RH225B300340028007922001.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredicted	H-0036616	RH225F	3003400481	0	296	1400	1.040E-08	1.732E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0037168RH225B3001090280014316001.786E-081.999E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037203RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-084.024E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037764RH225F3003400481020328001.040E-084.217E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037944RH225F3003400481018824001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0040900RH225B300340028007922001.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredicted	H-0036728	RH225B	3003400280	0	209	2100	1.786E-08	2.273E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0037203RH225F300340048109727001.040E-086.848E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037602RH225F3003400481018225001.040E-084.024E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037764RH225F3003400481020328001.040E-084.217E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037944RH225F3003400481018824001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0040900RH225B300340028007922001.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredicted	H-0036826		3003400280	0		6700	1.786E-08	7.696E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0037602RH225F3003400481018225001.040E-084.024E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037764RH225F3003400481020328001.040E-084.217E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0037944RH225F3003400481018824001.040E-083.786E-08Actual number of layers likely lower; hydrogen gradient likely overpredictedH-0040900RH225B300340028007922001.786E-083.868E-08Actual number of layers likely lower; hydrogen gradient likely overpredicted			3001090280	0	143	1600	1.786E-08	1.999E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0037764 RH225F 3003400481 0 203 2800 1.040E-08 4.217E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0037944 RH225F 3003400481 0 188 2400 1.040E-08 3.786E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0040900 RH225B 3003400280 0 79 2200 1.786E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted	H-0037203	RH225F	3003400481	0	97	2700	1.040E-08	6.848E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0037764 RH225F 3003400481 0 203 2800 1.040E-08 4.217E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0037944 RH225F 3003400481 0 188 2400 1.040E-08 3.786E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0040900 RH225B 3003400280 0 79 2200 1.786E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted	H-0037602	RH225F	3003400481	0		2500	1.040E-08	4.024E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0037944 RH225F 3003400481 0 188 2400 1.040E-08 3.786E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted H-0040900 RH225B 3003400280 0 79 2200 1.786E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted	H-0037764	RH225F	3003400481	0	203	2800		4.217E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
H-0040900 RH225B 3003400280 0 79 2200 1.786E-08 3.868E-08 Actual number of layers likely lower; hydrogen gradient likely overpredicted	H-0037944	RH225F	3003400481	0		2400			
	H-0040900	RH225B	3003400280	0	79	2200			
	LA0000058024		3001090211	Ö	56	500			Actual number of layers likely lower; hydrogen gradient likely overpredicted

*

ł

Attachment A-1 Summary of 410 Drums Referenced in RAI CH-1 Response

Container No.	CH- TRUCON Code	Shipping Category	Time Between Venting and Generation (days)	Time Between Sampling and Venting (days)	Hydrogen Conc. (ppm)	FGGR Limit (mol/s)	Simplified AltMeth FGGR (mol/s)	Comments / Explanation
LA00000059410	LA125B	3001090233	0	47	900	2.146E-08	2.351E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
LA0000062020	LA225G	3003400813	0	196	300	6.150E-09	7.375E-09	Actual number of layers likely lower; hydrogen gradient likely overpredicted
LA0000062607	LA125B	3001090211.	0	60	500	2.370E-08	2.631E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
LA0000063600	LA225G	3003400791	0	90	300	6.321E-09	3.600E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
LA0000063620	LA225G	3003400791	0	117	500	6.321E-09	4.755E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
LAS822057	LA211A	1001300055	0	58	27262	9.091E-08	5.213E-07	Appears to be outlier based on \approx 1,800 drum population. Actual number of layers likely lower
LAS824231	LA125B	3001090233	0	49	2700	2.146E-08	6.814E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
LAS841060	LA211A	1001300085	0	364	31470	5.882E-08	2.662E-07	Appears to be outlier based on ≈ 1,800 drum population. Actual number of layers likely lower
LAS862049	LA125B	3001090233	0	50	4300	2.146E-08	1.067E-07	Actual number of layers likely lower; hydrogen gradient likely overpredicted
NT041664	NT225A	3001090612	0	7354	1690	8.170E-09	1.604E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
NT042003	NT225A	3003400612	0	50	5400	8.170E-09		Actual number of layers likely lower; hydrogen gradient likely overpredicted
NT042010	NT225A	3001090612	0	124	2020	8.170E-09	5.658E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
NT052142	NT125A	3001090660	. 0	6567	1130	7.576E-09	1.072E-08	Actual number of layers likely lower; hydrogen gradient likely overpredicted
RFDE5587	RF116A	3003400455	0	100	1495	1.099E-08		Actual number of layers likely lower; hydrogen gradient likely overpredicted

ATTACHMENT B – Revised Documents

(Two Hard Copies and Seven CDs in Adobe PDF Format)

- TRUPACT-II SAR, Revision 22
- HalfPACT SAR, Revision 5
- CH-TRAMPAC, Revision 3
- CH-TRU Payload Appendices, Revision 2

(Two Hard Copies and Seven CDs in Adobe PDF Format)

• G. J. Banken, *HalfPACT Shielded Container Thermal Analysis*, P04F.M2.02-03, Rev. 2, AREVA Federal Services LLC, Tacoma, WA, February 2009.

February 2009

C-1

(Seven CDs in Adobe PDF Format)

• Electronic copies of the shielded container thermal analysis model input and output files.

	•				
	7				
State Image:		File Edit View Favorites Tools Help	>> × ×9 ⊡ X h 1		-
		Address D:\Documents	Dirkseek	ation	
In the constant of the cons		Desktop Gesktop My Documents	Files Currently on the CD		
Image:	-11 	응 당 My Computer 데 5 (A:) 3½ Floppy	CH-TRU PAYLOAD APPENDICE 14,551 KB Adobe Acrobat Docu 02/16/2009 2:00 PM File HalfPACT SAR.pdf () 52,610 KB Adobe Acrobat Docu 02/16/2009 5:07 PM File	is Currently on th.,, is Currently on th.,,	
		 □ (D:) Ver: 0209nrc ○ Acrobat 	Z TRUPACT-II SAR.pdf () 14,534 KB Adobe Acrobat Docu 02/16/2009 5:09 PM File		×
<pre>* * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron traditional construction * * C 0 does no hadron * * C 0 does n</pre>	•	A Index A References	\overline{c}		
 a to (b) find on the state of a construction of a constru		🕫 🛩 (F:) Removable Disk			
 * 2(6) Backsky or Tructional, uncounter * 2(1) Backsky or Tructiona,	Eventuality and the second	 ⊕ ≤ (J:) Adams on 'Hq2k3ele9\FullText' ⊕ ≤ (K:) Adams on 'Hq2k3ele9' 			
 B Control Mark State State		 ⊕ ॾ (R:) Readonly on 'Twolfs01_nrc02s\Nr ⊕ ॾ (S:) Shared on 'Twolfs01_nrc02s\Nrc0 			
		🕫 🛫 (Z:) Nrc02 on 'Twclfs01_nrc02s'			
		B SRC Network			•
	. With the second se			· · ·	
	pocularia angest con				
		objects			
		ad Million of Law 25 Million Hanny Million graph (Thing and particular and the second second second second second			
		•			
				:	
			$\label{eq:constraint} \begin{split} & = \sum_{i=1}^{n} \left(\frac{1}{2} \sum_{i=1}^{n} \frac$	·	