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1.3.4 Emplacement Areas of the Subsurface Facility
[NUREG-1804, Section 2.1.1.2.3: AC 3, AC 5, AC 6; Section 2.1.1.6.3: AC 1, AC 2; 
Section 2.1.1.7.3.1: AC 1; Section 2.1.1.7.3.2: AC 1; Section 2.1.1.7.3.3(II): AC 1, 
AC 2, AC 3; AC 5, AC 6; AC 9; Section 2.1.1.7.3.3(III): AC 1]

The design of the subsurface emplacement area structures, systems, and components (SSCs) is 
described in this section, including the emplacement drifts, excavation, ground support system, 
invert, waste package emplacement pallet, drip shield, and waste package emplacement system.
Emplacement drifts are limited to the area between the end of the turnout and the exhaust main.

The subsurface emplacement area is divided into emplacement panels, each of which contains a 
group of emplacement drifts. Panels vary in size depending on physical and design constraints. The 
emplacement drifts provide a controlled environment for waste emplacement and monitoring 
during the preclosure phase. In addition, they provide the environmental setting for waste packages 
and other engineered barrier components after repository closure. These attributes contribute to the 
classification of the emplacement drifts as important to waste isolation (ITWI) (Table 1.9-8).

There are two components within the emplacement drift that are classified as ITWI: the drip shield 
and the waste package. The drip shield is classified as ITWI because it prevents seepage entering the 
drift from dripping onto the waste packages after repository closure and protects the waste package 
from direct impact from rockfall (Table 1.9-8). The waste package is also classified as important to 
safety (ITS), and both the ITS and ITWI classifications for the waste package are discussed in 
Section 1.5.2.

The only design feature of the emplacement drifts classified as ITWI is the emplacement drift 
configuration. The emplacement drift configuration constraint states that the emplacement drift 
excavation shall be circular in cross section with a nominal diameter of 5.5 m. The drift diameter 
ITWI attribute is related to the kinematics of keyblocks analyzed for drift degradation (rockfall) 
during the postclosure period.

The transport and emplacement vehicle (TEV) operates inside the emplacement drifts but is not a 
permanent in-drift feature. The TEV is classified as ITS. This classification is due to the 
requirements imposed on the TEV to handle the waste package during emplacement operations and 
the TEV’s role in preventing or mitigating a Category 1 or Category 2 event sequence. The 
emplacement operations performed by the TEV consist of moving the emplacement pallet and 
waste package along the emplacement drift and placing the pallet and its waste package at a 
designated location on the invert structure.

1.3.4.1 Description of Subsurface Facility Emplacement Areas
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1)]

Reported dimensions and sizes for the subsurface excavations are nominal. The drifts are designed 
to accommodate the emplacement of waste packages, to provide space for cooling the waste 
packages by means of ventilation, to provide space for monitoring the waste packages during 
preclosure as a part of the Performance Confirmation Program (Section 4.2.4.1), and to provide 
space for the installation of drip shields prior to closure. While the length of each emplacement drift 
varies, each emplacement drift will be built and equipped the same way. After an emplacement drift 
— —
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is accepted and commissioned for emplacement operations and begins accepting waste packages, it 
becomes a very high radiation area (Section 1.10.2.5).

The emplacement drifts are designed to accommodate as many waste packages as it is physically 
possible, considering waste package emplacement constraints such as: a nominal spacing between 
waste packages; thermal seven-waste-package segment and line-load limitations; emplacement 
drift standoff distances; and, standoff distances for geologic anomalies as applicable. Spacing 
between waste packages end-to-end is nominally 10 cm. This spacing is one dimension used to meet 
the temperature limits specified for the repository as provided in Table 1.3.1-2. Thermal constraints
consist of limiting the waste package loading in accordance with the emplacement drift loading plan 
as described in Section 1.3.1.2.5.

Operational equipment inside the emplacement drifts includes the TEV (Section 1.3.4.8) and the 
remotely operated vehicles used for inspections and monitoring. Additionally, during closure, the 
drip shield emplacement gantry operates inside the emplacement drift (Sections 1.3.4.7 and 1.3.6). 
The TEV, the gantry, and other remotely operated vehicles stay inside the emplacement drift only 
for the necessary duration to execute their function. Vehicle time in the drift is controlled to 
minimize the effects of heat and radiation on the instrumentation and controls.

The emplacement access doors remain closed and locked (Section 1.3.5.1.4) except during access 
to the emplacement drifts by the TEV, drip shield emplacement equipment, and drift inspection and 
performance confirmation equipment. A regulator placed adjacent to the emplacement access doors 
controls ventilation airflow through the drift (Figure 1.3.5-9). Both doors and regulator are installed 
in the turnout bulkhead. Airflow from the emplacement drift into the exhaust main is unrestricted. 
The subsurface ventilation system is designed to maintain repository temperatures at acceptable 
levels for subsurface operations and to meet the repository thermal management goals described in 
Sections 1.3.1.2.5 and 1.3.5. Calculations indicate that the temperature of air exiting the 
emplacement drifts is no more than 99.8°C during normal operations

After all the waste is emplaced, postemplacement monitoring is conducted related to 
(1) Performance Confirmation Program activities (Chapter 4); (2) maintenance of the openings and 
repository support systems in adequate condition and working order to emplace the drip shields 
(Section 1.3.6) and to support retrieval (Section 1.11), if needed; and, (3) continued monitoring of 
the ventilation system to ensure conformance to the postemplacement heat removal and air quality 
requirements (Sections 1.3.1 and 1.3.5). The subsurface ventilation system will continue to operate 
for the remainder of the preclosure period after all the waste is emplaced. The emplacement drifts 
provide an environment suitable for repository operations, including heat removal through forced 
ventilation and repository monitoring during the preclosure period, estimated to last up to 
100 years. After closure, the emplacement drifts contain the Engineered Barrier System (EBS) 
components (waste package, waste package emplacement pallet, drip shield, and invert structure) 
that are evaluated along with the natural barriers for postclosure performance.
— —
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1.3.4.2 Emplacement Areas Design Description
[NUREG-1804, Section 2.1.1.2.3: AC 3(1); Section 2.1.1.7.3.3(II): AC 2(4), (5)]

1.3.4.2.1 Design Considerations for Location of the Emplacement Areas

Standoffs—Standoff is a minimum distance to be maintained between specific design features 
and certain components of the natural barriers. Figure 1.3.4-1 is a simplified representation of the 
subsurface facility standoffs as applicable to a typical emplacement drift. Design criteria for 
standoffs affecting the location of emplacement and nonemplacement openings are described in 
Section 1.3.2.2.1.

The Underground Layout Configuration for LA (BSC 2007a, Sections 1, 3.2, and 4.3) invokes the 
Underground Layout Configuration (BSC 2003a) calculation to demonstrate conformance to 
geologic standoffs and other design constraints imposed on the repository emplacement area 
locations. More specifically, the layout design relies on the following information from the 
Underground Layout Configuration (BSC 2003a) calculation:

• Geologic setting
• Emplacement drift orientation
• Waste inventory
• Water table standoff
• Perched water standoff
• Geologic fault standoff
• Standoffs from certain geologic units (Section 1.3.2.2.1)
• The repository host horizon
• Overburden cover.

The Underground Layout Configuration (BSC 2003a) was developed with the qualified VULCAN 
software (VULCAN Version 4.0NT, STN: 10044-4.0NT-00) with input from the three-dimensional 
database from the mountain-scale geologic framework model. Design enhancements performed in 
the Underground Layout Configuration for LA (BSC 2007a) were developed in a MicroStation 
platform from the VULCAN output file Subsurfaceladesign_m.dxf (BSC 2003a, Attachment V). 
The MicroStation output for the enhanced design was verified (BSC 2007a, Section 4.3 and 
Attachment VI) to represent the geometric control for the layout configuration as established in the 
original calculation. The underground layout described in Sections 1.3.1 through 1.3.6 meets the 
standoffs and geologic constraints (Section 1.3.2.2.1) imposed on the location of the emplacement 
areas as demonstrated in the Underground Layout Configuration (BSC 2003a, Sections 7, 8, 9, and 
Attachments I through V).

Opening Stability—Location criteria related to opening stability are:

• The emplacement drift azimuth is selected to place the drifts in a stable orientation with 
respect to the prevailing joint direction (BSC 2007b, Section 4.2.13.8.6).
— —
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• The vertical separation between crossing drifts is a minimum of 10 m from the crown of 
the lower opening to the invert of the upper opening (BSC 2007b, Section 4.2.13.8.1).

• Drifts running parallel are spaced at least three drift diameters apart, centerline to 
centerline, based upon the diameter of the largest drift (BSC 2007b, Section 4.2.13.8.2).

Emplacement Drift Configuration—The emplacement drift configuration criteria include 
(BSC 2008a, Section 8.2.1.8):

• The excavated diameter of openings that are used to dispose of waste packages is a 
nominal 5.5 m to accommodate waste package and drip shield emplacement equipment.
Emplacement drifts are excavated with a tunnel boring machine.

• The emplacement drift spacing, centerline to centerline, is a nominal 81 m.

• Emplacement drifts are excavated nominally parallel and the design azimuth is within a 
range of 70° to 80°.

• The grade of the emplacement drifts is horizontal.

1.3.4.2.2 Design Considerations on Faulting

The location of the repository is in a block defined by block-bounding faults. This block has been 
the principal focus of site characterization studies. Bedrock Geologic Map of the Yucca Mountain 
Area, Nye County, Nevada (Day et al. 1998) presents a 1:24,000 scale map that includes the 
structural features near the main block. A detailed three-dimensional interpretation of the geology 
surrounding the repository area is presented in analyses detailing the construction and interpretation 
of the geologic framework model, Geologic Framework Model (GFM2000). GFM2000 is a 
three-dimensional database model of Yucca Mountain geology. The model is one component of the 
integrated site model and contains information pertaining to the surface topography, rock layers, 
faults, and boreholes. GFM2000 interfaces with subsurface design software to provide geologic 
information related to repository design and configuration. GFM2000 is also used to demonstrate 
that the subsurface repository configuration is compliant with science design constraints driven by 
hydrologic flow and radionuclide transport modeling.

Fault displacement analyses (BSC 2003b, Sections 4.2 and 7.0) conclude that a 60-m standoff 
between the main trace of any Quaternary fault with potential for significant displacement and any 
subsurface opening is effective in reducing the potential impact of fault movements. This standoff 
considers fractured ground in the proximity of Quaternary faults with potential for significant 
displacement and uncertainty in the location of the fault at depth. The design constraint is for 
emplacement drifts to be located a minimum of 60 m from a Quaternary fault with potential for 
significant displacement (BSC 2008b, Table 1, Derived Internal Constraint 01-05). There is no such 
constraint for nonemplacement openings.

There are two known Quaternary faults with potential for significant displacement in the immediate 
vicinity of the repository area: the Solitario Canyon Fault and the Bow Ridge Fault. The Solitario 
Canyon Fault is the only one of these faults that is close enough to the emplacement areas to warrant 
— —
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consideration of the standoff requirement. The subsurface layout maintains the 60-m standoff to the 
Solitario Canyon Fault and the Bow Ridge Fault based on current geologic information on their 
locations (BSC 2003a, Section 7.1.3). During initial construction activities in the Solitario Canyon 
Fault area, the location of the fault will be confirmed, and the condition of the rock near the fault will 
be examined. A construction standoff will then be evaluated based on observational data to confirm 
the design basis (BSC 2003b, Section 7).

The effects of fault displacement on emplacement drifts and other repository openings have been 
assessed. These effects are described in terms of displacement and stress induced by fault 
displacement, focusing primarily on the preclosure fault displacement (BSC 2003b, Sections 6.5.1, 
6.5.2, and 7). The calculation considers a constant fault displacement, ranging from 1 to 1,000 mm. 
The largest mean preclosure fault displacement is 320 mm at the Solitario Canyon Fault
corresponding to an annual exceedance of 10−5. In this respect, a 1,000-mm fault displacement 
considered in this assessment bounds the current preclosure fault displacement hazards and extends 
into the postclosure period (BSC 2003b, Section 7).

Based on the results of the probabilistic seismic hazard analyses for fault displacement and 
vibratory ground motion at Yucca Mountain, the probability of having a new fault develop within 
the repository footprint is below the threshold for Category 2 event sequences. Therefore, the 
impact from such an unlikely scenario has not been considered for the preclosure period
(BSC 2003b, Section 7).

The effects of fault displacement on emplacement drifts manifest themselves primarily in terms of 
reduction to the operational clearance envelope and disturbance to drift stability. Based on the 
analyses, the induced stresses and rock movement at a distance of 60 m from a fault with a 
displacement of 1,000 mm are small and have no operational effects on the repository openings and 
their ground support systems (BSC 2003b, Section 7).

1.3.4.2.3 Summary of Emplacement Area Design Features

Emplacement Drifts—The emplacement drifts are straight tunnels and include the invert 
structure, ground support, and other infrastructure for operation of the TEV and the drip shield 
emplacement gantry.

The overall underground layout is developed in a series of emplacement panels (Figure 1.3.4-2). A 
portion of the initial panel is designed to facilitate early initiation of waste emplacement. This initial 
emplacement area consists of three emplacement drifts in Panel 1. Separation of this initial 
emplacement area from construction activities in the rest of the panel is achieved through the 
deployment of temporary isolation barriers (Section 1.3.5) and other engineering barriers such as 
access and safeguard and security controls. The division of the repository emplacement areas into 
panels facilitates separation of development activities from waste emplacement operations.

Emplacement drifts are aligned at a nominal azimuth of 72° to orient the drifts favorably with 
respect to the prevalent orientation of rock joint sets (CRWMS M&O 1999a, Sections 7 and 8.2). 
This azimuth orientation improves ground stability and minimizes maintenance of the ground 
support in the emplacement drifts during preclosure. The azimuth of a drift is the orientation 
expressed as an angular distance measured from north toward east. In some cases, the emplacement 
— —
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drift orientation is expressed as an azimuth of 72° and in others as 252°, based on the direction of 
the drift excavation. These two values correspond to the same orientation with respect to north but 
are measured from starting points at opposite ends of the emplacement drifts. For example, 
excavation of emplacement drifts in Panels 3E and 4 (Figure 1.3.1-1) is initiated from a 
southwestern vantage point with respect to the location of the drifts, and the azimuth of the heading 
is measured clockwise from true north as 72°.

Emplacement drifts are laid out in a parallel pattern and spaced nominally 81 m apart. The pillar is 
the undisturbed rock between adjacent emplacement drifts. The nominal spacing is determined to 
prevent thermal interaction between adjacent drifts and to allow drainage of natural percolation and 
thermally mobilized water within the rock pillars to percolate past the drifts (CRWMS M&O 1999b, 
Figures 2-1 and 2-3 and Sections 5.1.2 and 6.1.1.1; BSC 2008b, Table 1, Derived Internal 
Constraint 01-13).

Emplacement drifts are nominally 5.5 m (18 ft) in excavated diameter. Waste emplacement is 
limited to 800 m of emplacement drift length to ensure ventilation efficiency is maintained. Most 
emplacement drifts are less than 800 m in emplacement length, with an average emplacement 
length of slightly over 600 m.

The grade of the emplacement drift shall be nominally horizontal so that overall water drainage is 
directly into the rock to prevent water accumulation (BSC 2008b, Table 1, Derived Internal 
Constraint 01-11). Therefore, the invert elevation at the start of each emplacement drift excavation 
is the same as the corresponding hole through drift invert elevation at the exhaust main. Layout 
location information for exhaust mains and emplacement drifts is designated at the elevations of the 
excavated inverts for each.

The underground layout and the geologic units within each panel are shown in Figure 1.3.4-2. This 
figure also shows the footprint-of-emplacement-area boundary determined by the design 
considerations discussed above and the standoffs described in Section 1.3.2.2.1. The 
footprint-of-emplacement-area boundary is defined as the horizontal projection or extent of the 
volume of host rock suitable for waste emplacement development and meeting repository location 
criteria and applicable standoffs for the license application design. Utilization of the entire length 
of the three northernmost emplacement drifts in Subpanel 3-East is limited by the 
footprint-of-emplacement-area boundary (BSC 2007a, Figure 11). Figure 1.3.4-3 illustrates a 
typical configuration for an emplacement drift, the intersections to the access main via the turnout, 
and the intersection to the exhaust main. A typical cross section of an emplacement drift is shown 
in Figure 1.3.4-4. This cross section illustrates the configuration for a completed drift prior to 
repository closure, with its components in place. The emplacement drift components shown are: 
ground support (Section 1.3.4.4), invert structure (Section 1.3.4.5), waste package emplacement 
pallet (Section 1.3.4.6), waste package (Section 1.5.2), and drip shield (Section 1.3.4.7).

Invert—The lowest point in an underground opening is typically referred to as the invert and the 
highest point is designated as the crown. A clarification is made because the term “invert” is used 
in this license application, unless otherwise stated, to include the bottom part of each emplacement 
drift including the “invert structure.” Each emplacement drift has a steel invert structure 
(Figure 1.3.4-5), which provides a working platform for the emplacement equipment and a 
bearing surface for the loaded waste package emplacement pallet. The invert structure also 
— —
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includes a layer of crushed tuff ballast placed below and in between the steel structure members 
(BSC 2007c, Section 6).

Performance Confirmation Thermally Accelerated Drift—The Performance Confirmation 
Program includes monitoring a thermally accelerated emplacement drift after waste emplacement. 
The program will monitor near-field conditions of emplacement drift #3 in Panel 1 for a selected 
period during preclosure. The types of monitoring to be performed in the thermally accelerated 
drift in Panel 1 require special control of ventilation flow rates to achieve in-drift environmental 
conditions required by the monitoring program (Section 4.2).

Other subsurface openings used by the Performance Confirmation Program, such as the observation 
drift and alcove, are located in the nonemplacement areas and are described in Section 1.3.3.1.6.

1.3.4.3 Excavation
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1), (2)]

The emplacement drift excavation activity consists of developing the series of subsurface openings 
that house waste packages for permanent disposal. The spacing between the openings is selected to 
meet the thermal performance goals. The method of excavation for the emplacement drifts is by use 
of a 5.5-m (18-ft) diameter tunnel boring machine, a proven excavation technology that has already 
been demonstrated at Yucca Mountain. The tunnel boring machine is an electrically powered 
mechanical excavator that creates a circular opening by advancing a cutter head through the rock. 
The cutter head rotates across the full diameter of the excavation normal to the axis of the drive. The 
cutter head has multiple disc cutters that engage the rock face and initiate tensile failure in the rock 
as the tunnel boring machine applies force by thrusting forward from the grippers. The rock 
fractures into chips that are scooped up in buckets built into the rotating cutter head, channeled to 
a conveyor, and removed from the excavation face. A schematic illustration of a typical tunnel 
boring machine is shown in Figure 1.3.4-6. The use of a tunnel boring machine for excavating the 
emplacement drifts assures a correct alignment of the drifts and produces a clean bore that facilitates 
the installation of the ground supports designed for the emplacement drifts. The smoother 
excavation also improves ventilation efficiency.

Excavation of the emplacement drifts follows the excavation of the access main, the exhaust main, 
and the excavation and completion of the tunnel boring machine launch chamber within the turnout. 
The turnout portion between the launch chamber and the emplacement drift is excavated by the 
tunnel boring machine at the same diameter as the emplacement drift and follows the configuration 
shown in Figure 1.3.3-13. The tunnel boring machine excavates each emplacement drift at the 
prescribed azimuth and at a horizontal grade. After the tunnel boring machine breaks through at the 
exhaust main, its cutter head is partially disassembled, and the machine and components are 
transported back to the next turnout for excavation of the adjacent emplacement drift. This operation 
is repeated until all emplacement drifts in a panel are excavated (BSC 2007d, Section 7.2).

Geologic mapping is performed in the emplacement drift during development and after initial 
ground support has been installed for personnel safety to support engineering analyses and in 
conformance with the Performance Confirmation Program (Section 4.2.2.1). This includes 
mapping of fracture and fault zone characteristics, stratigraphic contacts, and lithophysal content in 
the emplacement drifts. The mapping is performed before installation of the final ground support.
— —
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Faults, when found during excavation, will be analyzed as part of the implementation of Procedural 
Safety Control 25 (PSC 25).

Anomalies could be associated with geologic faults or fault splay zones, zones of unusually large 
lithophysae, or changes in rock types. The emplacement panels are located to minimize the potential 
of encountering areas of potentially poor quality rock, but there is a possibility of encountering 
anomalies because characterization data do not provide complete coverage of the host rock
(Section 1.3.4.2.2). In previous characterization excavations such as the Exploratory Studies 
Facility tunnel and the Enhanced Characterization of the Repository Block Cross-Drift, analyses
and operational procedures were put in place to address such an eventuality. Similar analyses and 
operational procedures implemented during construction of the repository will provide steps to 
analyze any such problem, maintain or restore excavation alignment, implement mitigation 
measures to ensure drift stability, and restore an excavated drift cross section. Implementation of 
these procedures provides assurance of the horizontal and vertical alignment of the drifts, within 
allowable tolerances, as necessary for installation of the invert structures and rail system. The total 
drift length available for emplacement includes some excess capacity available as emplacement 
contingency if needed because of unacceptable rock conditions or any other reason resulting in loss 
of available emplacement drift length (Section 1.3.2.4.3.1; Table 1.9-10, PSC-25).

Because excavation occurs concurrently with and adjacent to waste package emplacement 
operations, separation of the subsurface construction activities from the waste emplacement 
operations is maintained throughout the repository development phase. The repository design uses 
engineering controls to achieve and maintain this separation, as presented in Section 1.3.5. A 
combination of engineering and administrative controls is also put in place to maintain access, 
radiation protection, and safeguard and security controls at the interface points, as applicable
(BSC 2008c).

1.3.4.4 Ground Support System
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1), (2); Section 2.1.1.7.3.2: AC 
1(2); Section 2.1.1.7.3.3 (II): AC 3(3), AC 5(1) through (10), AC 6(1), (2), (3), (4); 
AC 9(1), (2)]

The ground support for emplacement drifts consists of 3-m-long Super Swellex-type stainless steel 
rock bolts set in a square grid pattern at 1.25-m centers, and a 3-mm Bernold-type perforated 
stainless steel liner. The rock bolts and the steel liner are installed in a 240° arc around the drift 
periphery and above the invert structure (BSC 2007e, Section 7).

The emplacement drift ground support is classified as non-ITS because it is not relied on to prevent
or mitigate a Category 1 or Category 2 event sequence, and it is not ITWI because the total system 
performance assessment (TSPA) does not take credit for ground support during the postclosure 
performance period (Tables 1.9-1 and 1.9-9). The emplacement drifts are very high radiation areas 
after emplacement operations begin. The ground support system is designed to last at least 
100 years without planned maintenance even in the severe environmental conditions to be expected 
in the emplacement drifts. Any necessary maintenance needs triggered by unfavorable inspection 
results or by off-normal operational conditions will be evaluated taking into full account the 
information gathered by the inspection and monitoring activities (BSC 2007e, Section 6.6.1.3).
— —
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To provide added assurance that ground support will continue to function effectively during its 
design service life with little or no maintenance, emphasis is placed on reliability of design methods, 
simplicity of design, materials selection, and consideration of the rock formation properties and 
variability of those properties throughout the emplacement areas. Repository host-rock physical 
features and thermal-mechanical properties are summarized in design documents. Inputs to the 
design from field and laboratory testing include geotechnical data and evaluations of the sufficiency 
of existing data to support engineering design and performance assessment. The design 
documentation also includes fracture geometry parameters; rock density and porosity data; intact 
rock physical, mechanical, and thermal parameters; rock mass quality estimates; and estimated rock 
mass physical, thermal, and mechanical properties. Ranges or distributions for geotechnical and 
design parameters, including uncertainties, and spatial and temporal variability are also 
summarized in the design documentation. Rock properties used for engineering design calculations 
are presented in Section 1.3.3 (BSC 2007f, Sections 6 and 7; BSC 2007e, Section 6.2).

Where necessary, thermal and mechanical rock properties used in design of the openings, ground 
support, and thermal-mechanical interactions are reported separately for lithophysal and 
nonlithophysal rock. Emplacement drifts are located in the two major Topopah Spring Tuff subunit 
categories that comprise the repository (Section 1.1.5.1): lithophysal tuff, with approximately 
80% of the emplacement areas in the lower lithophysal unit and 5% in the upper lithophysal unit, 
and nonlithophysal tuff, with approximately 10% of the emplacement areas in the middle 
nonlithophysal unit and 5% in the lower nonlithophysal unit (Figure 1.3.4-2). In the lithophysal 
rock structure, the reported compressive strength varies as a function of porosity and sample size. 
The unconfined compressive strength values vary from about 10 MPa to about 30 MPa 
(Table 1.3.3-2) (BSC 2007e, Sections 4.3 and 6.12, and Table 6-4).

The lithophysal rocks are characterized by approximately 5% to 40% void porosity in the form of 
lithophysae. The lithophysae are of varying shape, distribution, and size. They average about 10 cm 
in diameter but can be as large as 1.8 m in diameter. Additionally, the lower lithophysal unit is 
highly fractured. The fractures that interconnect lithophysae are predominantly vertically oriented 
with spacing of a few centimeters and trace lengths averaging about 0.3 m.

Physical features and properties for characterization of the rock include rock density, porosity, and 
fracture geometry. Rock density and porosity data derived from geophysics and laboratory 
measurements are summarized in design documentation. Site-specific field mapping and 
measurements are used to determine fracture geometry and orientation, abundance and size 
distribution of lithophysae, and rock mass quality.

The thermal properties of the Yucca Mountain lithostratigraphic rock units consist of intact and rock 
mass values of thermal conductivity, specific heat, and coefficient of thermal expansion
(BSC 2007e, Tables 6.2 and 6.3). Factors affecting thermal properties include porosity, moisture 
content, temperature, sample size, fracturing, mineralogy, and loading conditions.

Mechanical properties for both intact rock and rock mass include: (1) elastic properties such as 
Young’s modulus and Poisson’s ratio, (2) strength parameters such as compressive and tensile 
strengths, cohesion, and internal friction and dilation angles used in the Mohr-Coulomb criterion, 
as well as those used in the nonlinear Hoek-Brown criterion, and (3) stiffness and strength data for 
rock joints. Intact rock and joint properties are used in a discontinuum modeling approach, while the 
— —
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rock mass properties are used in a continuum modeling approach. Rock mass mechanical 
parameters for lithophysal rock are summarized in Table 1.3.3-2. Rock mass mechanical 
parameters for nonlithophysal rock are summarized in Table 1.3.3-3.

The rock mass mechanical behavior of the nonlithophysal units is controlled primarily by the 
fractures in these units, and the mechanical properties of rock fractures or joints have been identified 
and documented. These include fracture elastic parameters (normal and shear stiffness), peak and 
residual strength (friction angle and cohesion), and volumetric behavior (dilation angle). The major 
factors affecting these parameters include fracture roughness, sample size, surface mineralogy, 
temperature, and chemical or mechanical degradation of asperities. When deriving rock mass 
elastic and strength properties for nonlithophysal rock, field-measured fracture and rock conditions 
are key factors in addition to intact rock properties.

Site-specific field testing includes data from the Single Heater Test, the Drift Scale Test, rock mass 
mechanical field tests (borehole jack, plate loading, and in situ slot tests), and monitoring of tunnel 
deformation and steel sets,.

1.3.4.4.1 System Description

System Functions—Maintaining stable repository openings to enhance personnel safety
facilitates operations by minimizing maintenance requirements and allows for drip shield 
installation and inspection. The ground support system functions provide the stable repository 
openings by providing a drift lining that limits loosening of rock and a keyblock anchoring system 
that limits rockfall.

Initial Ground Support Description—The initial ground support is used as necessary to provide 
worker safety until the final ground support system is installed. The initial ground support consists 
of carbon steel frictional rock bolts, such as split sets, and wire mesh based on industry standard 
materials (carbon steel). Rock bolts with a length of 1.5 m are installed in a square-grid pattern 
(minimum of four bolts in each row), with a spacing of 1.5 m in conjunction with wire mesh that 
has a grade of W2 × W2 and 100-mm center-to-center spacing. The initial ground support is 
installed in the drift crown only, immediately following excavation. The wire mesh is removed 
prior to installation of the final ground support, while the initial rock bolts remain in place. The 
purpose of this initial ground support is to protect personnel from loosened rock during the 
tunneling process, as well as to protect the geologic mapping personnel that follow behind the 
tunnel boring machine. Consistent with mining industry practice, field engineering determines the 
extent of the initial ground support.

Final Ground Support Description—The final ground support is installed prior to the drifts 
being equipped with electrical and communications equipment and invert structures. Radially 
oriented friction rock bolts, with faceplates, fasten overlapping perforated steel sheets with 
approximately 240° coverage around the tunnel above the invert (Figure 1.3.4-7). Friction rock 
bolts are used to provide a shearing contact or frictional resistance between the rock bolt hole and 
the bolt surface. This type of bolt is particularly effective in the lithophysal rocks, where the 
surface contact of the bolt to the bore hole may not be continuous due to the lithophysal voids. The 
combination of frictional resistance and mechanical interlock generated along the full length of 
the contact between the friction bolt and the rock provides adequate ground support. The 3-m-long 
— —
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friction-type rock bolts (e.g., Super Swellex-type) spaced at 1.25 m provide adequate factors of 
safety (1.6 to 11.6) to prevent the dislodging of a rock block as a result of a preclosure seismic 
event with a mean annual probability of exceedance of 10−4 (beyond design basis ground motion 
(BDBGM) event; see “Seismic Loads” in Section 1.3.4.4.1.2). The design basis for ground 
support is the DBGM-2 event (mean annual probability of exceedance of 5 × 10−4), but the design 
is also checked against an event with a mean annual probability of exceedance of 10−4 as part of 
evaluating design sensitivity to seismic events (BSC 2004a, Sections 6.3.4 and 6.3.5).

The steel liner is composed of 3-mm-thick perforated sheets (i.e., Bernold-type sheets). The steel 
sheeting provides a confinement to the rock surface around the upper two-thirds of the drift surface, 
limiting the initiation of loosening or raveling of the rock surface and any subsequent rockfall. This 
function is particularly important in the lithophysal rocks, where rock block size is small (on the 
order of inches). The small perforations or slotting of the steel sheet are sufficient to allow air 
circulation and drying of the rock surface but small enough that most rock particles in the 
lithophysal rock, where rock block size is small (on the order of inches), cannot pass through the 
openings.

Calculations show that the combination of rock bolts and steel sheets provides ample support, even 
in scenarios with blocks in the most unfavorable orientation and with the rock bolts penetrating 
through the peaks of the unstable blocks, resulting in shorter anchored lengths (BSC 2004a, 
Sections 6.3.5 and 6.3.6).

Both the friction-type rock bolts and the perforated steel sheets are made of Stainless Steel 
Type 316. This material is corrosion resistant and is chosen based on the potential corrosion 
mechanisms that may occur in the repository environment, including dry oxidation, humid-air 
corrosion, aqueous corrosion, pitting and crevice corrosion, stress corrosion cracking, hydrogen 
embrittlement, and microbially influenced corrosion. The stainless steel rock bolts and perforated 
stainless steel sheets are expected to fulfill their functions during the preclosure period without 
excessive corrosion (BSC 2003c, Sections 7.3 and 7.4).

1.3.4.4.1.1 Design Criteria

Design criteria are specified for ground support to provide worker safety and operational 
efficiency. These functions are neither ITS nor ITWI. The following criteria are applicable to the 
design of the ground support system in emplacement drifts:

• The ground support is designed to maintain equipment operating envelopes throughout 
preclosure for emplacement drifts.

• The initial ground support is designed to accommodate geologic mapping of 
emplacement drifts. Initial ground support allows direct access to the drift wall for 
geologic observations and mapping. Installation of final ground support follows after 
completion of the mapping activities.

• The ground support is designed for the appropriate worst-case combination of in situ, 
thermal, seismic, construction, and operational loads for the preclosure period.
— —
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• The ground support for emplacement drifts considers safety margin in design.

• The ground support uses materials of types and quantities that do not have adverse 
long-term effects on waste isolation and are accounted for in the performance assessment.

• The ground support is designed to withstand an earthquake with a mean annual 
probability of exceedance of 5 × 10−4 (DBGM-2).

• The ground support for emplacement drifts is designed to function without planned 
maintenance during the operational life of the subsurface facility of up to 100 years, while 
providing for the ability to perform unplanned maintenance in the emplacement drifts on 
an as-needed basis. However, maintenance will require the temporary relocation of the 
emplaced waste packages to another emplacement drift. Depending on the location of the 
affected area and on temporary engineering and administrative controls that could be put 
in place for personnel protection against radiation, complete evacuation of drift contents 
may not be necessary to perform maintenance.

Design Considerations—Ground support is a static system interfacing with the natural and 
engineered environments. It is designed to perform its function in that environment for the entire 
preclosure period. The environmental conditions presented below are addressed in the design 
considerations for longevity of the emplacement drift ground support.

The most important environmental conditions in emplacement drifts related to longevity of steel 
ground support components are temperature, relative humidity, and air and water chemistry. A 
testing program to conduct corrosion testing of the proposed ground support materials may include 
a testing alcove or section of the observation drift to be utilized for monitoring the corrosion or 
degradation of rock bolts (BSC 2008d, Section 3.3).

The drift wall temperature profiles show that the highest temperature of the emplacement drift walls 
is less than 107°C, which is less than the 200°C limit. The preclosure emplacement drift wall 
temperature varies from approximately 45°C at 100 m to approximately 91°C at 600 m along the 
emplacement drift and generally decreases as a function of ventilation time. For an 800-m
emplacement drift, the maximum drift wall temperature during preclosure reaches approximately 
107°C. The rock bolts and perforated sheets are designed to support the rock over the temperature 
range described above. Impacts of higher temperatures on ground support have been analyzed and 
indicate negligible effect on displacement.

Ventilation affects the relative humidity. During the preclosure period, the drifts are ventilated with 
outside air. Consequently, the relative humidity inside the drift remains low. In the event that 
ventilation is interrupted, the period of no ventilation and increased relative humidity is short 
compared to the service life of the ground support and does not impact its performance. The relative 
humidity inside a bolthole is higher than that inside the emplacement drift. The stainless steel 
friction-type rock bolts with the specified bolt thickness provide resistance for potential corrosion 
attack in this high relative humidity environment and preserve performance for the service life of the 
system during the preclosure period.
— —
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Potential corrosion of ground support due to seepage water and air chemistry is also considered in 
the design of the system. The most important characteristics of seepage water chemistry related to 
steel corrosion are chloride, sulfate, bicarbonate, and pH. Sulfate and chloride ions are considered 
to be the most corrosive of the common ions found in naturally occurring waters, with sulfate 
generally regarded as the most corrosive, while bicarbonate and carbonate ions are considered 
corrosion inhibitors (Tilman et al. 1984, p. 16). Representative values for the concentrations of 
chloride, sulfate, and bicarbonate and for pH value in the initial fracture and matrix water are used 
to evaluate potential corrosion rates, which are factored into the design of the system. The air in the 
emplacement drifts is composed of outside air drawn from various intake shaft locations at the top 
of Yucca Mountain and through the three ramps; thus, the composition of the air in these drifts is 
similar to the composition of the outside air. The ventilation rate of approximately 15 m3/s in each 
emplacement drift is the dominant air exchange. This ventilation air rate far exceeds the air 
exchange rate inside the rock mass. Therefore, emplacement drift air chemistry is nominally outside 
air that is noncorrosive, and ventilation air chemistry has no discernible impact on the corrosion of 
ground support components (BSC 2003c, Section 6.2.3).

The analysis of the emplacement drift ground reaction curves and direct modeling of ground support 
using structural elements within the models is summarized below.

Ground Reaction Curve Analysis—Evaluation of the excavation openings using ground 
reaction curve analysis shows that the openings equilibrate in a self-supporting mode and the drift 
remains stable with no further supports required. Thus, the role of ground support is to maintain 
the excavation surface condition and integrity of the rock mass against loosening or deterioration 
during the preclosure time period.

Rock Bolt Load Determination—A series of calculations of the estimated loading of friction 
rock bolts and the associated deformations of the excavations is conducted for the rock mass 
strength and loading variations. The force-displacement characteristics of the rock bolt structural 
elements are derived and calibrated from pull tests on friction rock bolts. Straining of the 
overlapped surface sheeting is derived from the circumferential strain on the opening surface due 
to predicted radial deformations. From these analyses, in the worst case, the loads are well below 
the anchorage capacity of the friction rock bolts in both the lithophysal and nonlithophysal rocks. 
These loads are a small percentage of the loading from in situ and thermal stresses.

1.3.4.4.1.2 Model Selection for Ground Support Analysis

A number of different numerical modeling methods are required for analysis of ground support 
issues depending on the particular rock type (e.g., lithophysal or nonlithophysal) and the loading 
conditions (e.g., quasistatic or dynamic) to be examined.

In general, two-dimensional equivalent continuum-based models are used for analysis of 
lithophysal rocks in which a standard Mohr-Coulomb plasticity material model describes the 
mechanical response of the rock mass. A two-dimensional continuum model (FLAC V. 4.0. 
STN: 10167-4.0-00) is used for equivalent continuum parameter studies for cross-sectional analysis 
of emplacement drifts. The variability of rock mass quality and the associated elastic and strength 
properties are based primarily on lithophysal porosity. Parametric studies are conducted using a 
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range of properties that reflect the range of rock mass porosities encountered in the Enhanced 
Characterization of the Repository Block Cross-Drift excavations.

Both two- and three-dimensional equivalent continuum models are used for analysis of the 
nonlithophysal rock mass but only the two-dimensional continuum (FLAC) model is used for 
equivalent continuum parameter studies for cross-sectional analysis of emplacement drifts. Rock 
mass property estimates for the nonlithophysal rock are developed from in situ rock mass 
classifications using an empirical method. A summary of the modeling methods used for the ground 
support studies is given in Table 1.3.4-1.

The repository excavations are initially loaded by the in situ gravitational stresses. At Yucca 
Mountain, the vertical gravitational stress is the maximum component, while the principal 
horizontal components vary somewhat, depending on the topography.

The stresses applied to the emplacement drifts accounted for in the ground support design include 
three basic categories: in situ, seismic, and thermal stresses. Construction loads (i.e., tunnel boring 
machine weight) and operational loads (i.e., emplacement equipment and waste package weights) 
do not have an impact on the ground support systems.

In Situ Stress—The in situ stress state is measured at the excavation location, showing the 
vertical component to be the maximum principal stress (s1), which is taken to be equal to the 
overburden load at that location. The minimum (s3) and intermediate (s2) principal stresses are 
subhorizontal and oriented at N105E and N15E directions, respectively. The ratio of the minimum 
principal stress to maximum principal stress (s3:s1) is 0.36, and the ratio of the intermediate 
principal stress to the maximum principal stress (s2:s1) is 0.62. These values are within the 
bounding limits used for ground support design.

Seismic Loads—The ground motions associated with an earthquake (a mean annual probability 
of exceedance of 10−4) are used to determine the impact of seismic shaking on emplacement drift 
stability. Repetitive seismic loading is also examined for applied ground motions with a mean 
annual probability of exceedance of 5 × 10−4. The analyses of drift degradation and rockfall due to 
seismic loading utilize discrete element analyses to estimate the amount of rockfall that may be 
caused by seismic ground motions expected at the emplacement drifts. Preclosure seismic hazard 
analyses are described in Section 1.3.2.5.1. Postclosure drift stability analyses are discussed in 
Section 2.3.4.

Thermally Induced Stress—Heat generated by the waste packages results in temperature 
increases in the rock mass surrounding the emplacement drifts. This temperature rise results in 
thermal expansion of the rock mass surrounding the emplacement drifts and a resultant thermal 
stress increase that is proportional to the rock mass deformation modulus and thermally induced 
strain. The thermal stress at maximum temperature is included in the estimation of drift stability.

In addition to the base thermal loading, transient temperature increases caused by ventilation 
interruption are considered (Section 1.3.5.3). However, transient spikes in temperature above the 
normal operating temperature ranges (Table 1.3.5-2) do not have an impact on the stability of the 
emplacement drifts.
— —
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1.3.4.4.1.3 Summary of Ground Support Analyses

The excavations have been demonstrated to be self-supporting with safety factors of 2 or greater 
against collapse modes for the rock mass quality conditions. Therefore, the primary role of ground 
support at Yucca Mountain is to prevent deterioration and loosening of the rock mass tunnel 
periphery. The stainless steel components provide sufficient corrosion resistance for the ground 
support service life during the preclosure period. The ground support system is designed to last at 
least 100 years without planned maintenance even in the severe environmental conditions expected 
in the emplacement drifts.

The friction rock bolts and overlapped surface sheeting perform satisfactorily under in situ, thermal, 
and seismic loads. Design analysis results are within the specified factors of safety.

The surface sheeting is structurally capable of supporting potentially loosened rock between rock 
bolts and has the deformation capacity to withstand deformation-induced strains during transient 
loading.

1.3.4.4.2 Operational Processes

The ground support for the emplacement drifts is designed to function without planned maintenance 
for the preclosure period even in the severe environmental conditions to be found in the 
emplacement drifts. Benefits of repairs and replacements would be weighed against potential 
radiological exposures and other operational concerns specific to the situation. However, these 
repairs and replacements are intended as contingencies and not as planned activities for 
emplacement drift ground support.

During the preclosure period, observation and instrumentation readings are used as bases for 
assessing the performance of the ground support and opening stability and as bases for maintenance 
decisions. The primary assessment method is observation of ground support and tunnel conditions. 
Because of the environmental conditions related to heat and radiation after waste is emplaced in the 
drifts, observations are made remotely.

Repair activity in an active emplacement drift would likely require removal of all waste packages 
from the affected drift prior to any repair work. Repair or maintenance of the ground support 
involves standard procedures typical of mining or civil tunneling operations. The repair operation 
typically involves removal of any failed ground support, scaling and removal of loosened rock, and 
reinstallation of support. Drift conditions are analyzed before a decision to re-emplace waste is 
made. It is possible that decisions for not emplacing waste packages along a specific area of the 
emplacement drift are also made.

1.3.4.4.3 Design Codes and Standards

The following codes and standards are applicable to the emplacement drift ground support: 

• ASTM A 36/A 36M-05, Standard Specification for Carbon Structural Steel
• ASTM A 82-01, Standard Specification for Steel Wire, Plain, for Concrete Reinforcement
— —
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• ASTM A 276-06, Standard Specification for Stainless Steel Bars and Shapes
• ASTM F 432-95, Standard Specification for Roof and Rock Bolts and Accessories.

1.3.4.5 Invert System
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 5(3), AC 6(1); Section 2.1.1.7.3.3(II): 
AC 3(1), (2); Section 2.1.1.7.3.3(III): AC 1(1), (2), (3), (13)]

1.3.4.5.1 System Description

The invert structure consists of two components: the steel invert structure and the ballast fill. 
Figures 1.3.4-8, 1.3.4-9, and 1.3.4-10 illustrate the design and details for the invert structure 
components. The ballast fills the voids between the drift rock and the invert steel frame, and the 
level of the ballast is brought up to the top level of the steel. Steel and crushed tuff ballast materials 
are selected for the invert components based on structural strength properties, compatibility with the 
emplacement drift environment, and expected longevity.

The steel invert structure provides a platform that supports the emplacement pallets, waste 
packages, and drip shields. The steel invert structure also provides a platform that supports the crane 
rail system for operation of the TEV for emplacement, recovery, and potential retrieval of waste 
packages, and for operations of the drip shield emplacement gantry and the remotely operated 
inspection vehicles.

The steel invert structure supports repository preclosure operations that include waste package 
emplacement, recovery, and potential retrieval during the 100-year preclosure period. The 
performance of the invert structure will not be affected by corrosion due to the low relative humidity 
in the emplacement drifts during the preclosure period and the specification of corrosion resistant 
steel that conforms to ASTM A 588/A 588M-05, Standard Specification for High-Strength 
Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric 
Corrosion Resistance (BSC 2007g, Section 4.3.6 and Attachment B).

The steel invert structure consists of transverse beams interconnected to four longitudinal beams
(see typical invert plan and elevation in Figure 1.3.4-8). The transverse beams span the width of the 
drift at the top of the invert section. The transverse beams are bolted to the longitudinal beams. The 
two outermost longitudinal beams at either end of the invert section are attached to and rest on stub 
columns that transfer the loads to the substrate rock. The stub columns with base plates are anchored 
to the drift floor with rock anchors. The outer sections of the transverse beams are terminated on 
rolled side plates that are also anchored to the drift rock wall with rock anchors (Figure 1.3.4-10). 
Installation of the steel invert structure includes aligning, shimming, and anchoring the attached 
stub columns and rolled side plates to the drift rock wall (Figure 1.3.4-9). The waste package 
emplacement pallet, loaded with a waste package, rests directly on the steel invert structural frame 
(Figure 1.3.4-8). The steel invert structural frame will also support the drip shield. The invert steel 
structure is designed to accommodate the relatively small structural displacement expected to occur 
in the emplacement drifts. Slotted holes are provided at bolt connections, as well as half-inch 
expansion joints between the rail runway beams and quarter-inch expansion joints between the 
longitudinal beams (Figure 1.3.4-10) (BSC 2007g, Section 6.1.2). 
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The steel invert structure is designed for construction loads, waste package emplacement, recovery,
and potential retrieval loads, drip shield loads, thermal loads, and seismic loads (BSC 2007g, 
Section 4.3.2). The crane rails are mounted on the two outer longitudinal beams or rail runway 
beams. The rails support the operation of the TEV, remotely operated inspection vehicles, and the 
drip shield gantry. The crane rail is designed in conformance with ASTM A 759-00, Standard 
Specification for Carbon Steel Crane Rails, and following the crane rail tolerance specifications of 
ASME NOG-1-2004, Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, 
Multiple Girder). The crane rail is 171 lb/yd (BSC 2007g, Section 6).

The ballast material is crushed tuff from the repository excavations, processed so it is well-graded 
material (Figure 1.3.4-8). The ballast material is compacted to minimize long-term settlement.
During postclosure, waste package, pallet, and drip shield loads will gradually transfer (due to 
corrosion of the carbon steel) from the steel invert structure to the invert ballast. A discussion of the 
postclosure performance of the invert ballast is presented in Section 2.3.4.1. Analyses have been 
performed to examine the dynamic shaking effects on the invert and the mechanical response of the 
waste package, pallet, and drip shield. The analyses indicate that these effects are minor and that 
uneven settlement of the invert ballast from seismic events does not compromise the capability of 
the drip shield to support static loads, as discussed in FEP 2.1.06.05.0B, Mechanical Degradation 
of the Invert (Table 2.2-5).

The invert ballast helps maintain the emplaced waste packages in a nominal horizontal position 
during the postclosure period (BSC 2008b, Table 1, Derived Internal Constraint 02-07).

The invert structural steel frame is prefabricated in modules to facilitate installation of the structure 
in the emplacement drift. Following installation of the modules, the ballast is placed in lifts and 
compacted to specifications. Completion of the invert structure assembly is followed by installation 
and alignment of the crane rails. A third rail that provides electrical power to the TEV, drip shield 
emplacement gantry, and inspection and performance confirmation vehicles is installed following 
installation of the invert structure.

Longitudinal expansion joints are provided in the crane rail using a mitered gap. Expansion is 
accounted for in the longitudinal beam using a gap between the members and longitudinal slotted 
holes in the splice plates (Figure 1.3.4-10). Expansion in the transverse beams is accounted for by 
the slotted holes in the top plate connected to the vertical support, as shown in Figure 1.3.4-10.

1.3.4.5.2 Operational Processes

The invert structure is a static component providing a foundation upon which other components are 
supported. There are no invert operational processes. Emplacement drift invert structures are 
designed to minimize the need for maintenance during the preclosure period.

1.3.4.5.3 Safety Category Classification

The emplacement drift invert structure is non-ITS because it is not relied on to prevent or mitigate 
a Category 1 or Category 2 event sequence (Table 1.9-1). The emplacement drift invert structure is 
not classified as ITWI because no credit is taken for the diffusivity of the invert ballast (Table 1.9-8).
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1.3.4.5.4 Administrative or Procedural Safety Controls to Prevent Event Sequences or 
Mitigate Their Effects

There are no administrative or procedural safety controls applicable to the steel invert structure, 
crane rail, and ballast to prevent event sequences or mitigate their effects.

1.3.4.5.5 Design Criteria and Design Bases

Design criteria applicable to the invert steel structure are as follows:

• The invert structure is designed for construction loads, waste package emplacement pallet 
and waste package loads, drip shield loads, thermal loads, and seismic loads.

• The invert structure is designed for the appropriate worst-case combinations of in-place, 
thermal, seismic, and operational loads.

• The invert structure supports the operational loads from the TEV, remotely operated 
vehicles, and the drip shield emplacement gantry.

• The emplacement drift invert structures are fabricated of materials that undergo minimal 
corrosion during the preclosure period.

Design criteria for the steel invert structure are in accordance with International Building Code 
2000 (ICC 2003) and Manual of Steel Construction, Allowable Stress Design (AISC 1997).

Design criteria applicable to the invert ballast are that it provides a nominally level surface that 
supports the drip shield, waste package, and waste package emplacement pallet for static loads 
and that limits degradation of these EBS components associated with ground motion (but 
excluding faulting displacements) after closure of the repository (BSC 2008b, Table 1, Derived 
Internal Constraint 02-07).

1.3.4.5.6 Design Methodologies

The steel invert structure is analyzed using conventional structural design methods (BSC 2007g).

Longitudinal beams and transverse support beams of the steel invert structure are designed with 
DBGM-2 or 2,000-year-return-period (5 × 10−4 annual exceedance frequency) seismic loads. The 
TEV rail and rail runway beams are designed with DBGM-1 or 1,000-year-return-period (10−3

annual exceedance frequency) seismic loads. Site-specific acceleration response spectra are 
developed at the repository horizon in the three orthogonal directions, two horizontals and one 
vertical. Seismic loads for the invert structure are computed based on the equivalent static load 
method in accordance with the requirements of NUREG-0800 (NRC 1989, Section 3.7.2). Since the 
lumped mass of the TEV is acting on the top of the crane rails as a single-degree-of-freedom model, 
the multimode factor is considered as 1.0, and the design acceleration is conservatively taken as the 
calculated peak spectral acceleration developed for the Yucca Mountain site at the repository 
elevation of the emplacement drifts (BSC 2007g, Section 4.3.2).
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1.3.4.5.7 Consistency of Materials with Design Methodologies

The main components of the invert in the emplacement drifts are structural steel and ballast.

Material for the steel invert structure conforms to ASTM A 588/A 588M-05, Standard Specification 
for High-Strength Low-Alloy Structural Steel up to 50 ksi (345 MPa) Minimum Yield Point, with 
Atmospheric Corrosion Resistance. This material is selected because it is corrosion resistant and 
high-strength, low-alloy steel. Structural bolts conform to ASTM A 325-06, Standard Specification 
for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength; or ASTM 
A 490-06, Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum 
Tensile Strength.

Crane rails for the TEV consist of ASTM A 759-00, Standard Specification for Carbon Steel Crane 
Rails, carbon steel material (BSC 2007g, Section 4.3.5.1).

Materials in the emplacement drift will also include the third-rail components. Materials for the 
third rail are commercially available and typically include a copper rail with wear strip and insulator.
Specifications will ensure that postclosure requirements for committed materials are satisfied
(BSC 2008b, Table 1, Derived Internal Constraint 02-06).

The ballast material for the emplacement drift invert structure is crushed tuff.The ballast material 
is well graded and compacted. 

1.3.4.5.8 Design Codes and Standards

The following codes and standards are applied to the design of the invert steel structure, as shown 
in Figure 1.3.4-8:

1. Structural steel shapes and plates conform to ASTM A 588/A 588M-05, Standard 
Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi (345 MPa) 
Minimum Yield Point, with Atmospheric Corrosion Resistance.

2. The crane rail conforms to ASTM A 759-00, Standard Specification for Carbon Steel 
Crane Rails.

3. Rock anchors for anchoring steel to drift invert conform to ASTM F 432-95 
(Reapproved 2001), Standard Specification for Roof and Rock Bolts and Accessories
(ASTM 1995) (BSC 2007b, Section 4.2.13.7.1).

4. Structural steel bolts conform to ASTM A 325-06, Standard Specification for Structural 
Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength, or to ASTM 
A 490-06, Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150 ksi 
Minimum Tensile Strength.

5. Welding is in accordance with the AWS D1.1/D1.1M:2006, Structural Welding Code— 
Steel.
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1.3.4.5.9 Design Load Combinations

1.3.4.5.9.1 Loads

A number of loads are considered in the design of the steel invert structure (BSC 2007b, 
Section 4.2.13.5). Each type of load is described below; the letters in parentheses following the 
name of the load are used in the load combinations presented in Section 1.3.4.5.9.2.

Dead Loads (D)—Dead loads are those that remain permanently in place and include the weight 
of framing, permanent equipment, and attachments.

Live Loads (L)—Minimum live construction loads used for the design shall not be less than 
500 psf.

Seismic Loads (E)—Longitudinal beams and transverse support beams of the steel invert 
structure are designed with DBGM-2 or 2,000-year-return-period (5 × 10−4 annual exceedance 
frequency) seismic loads. The TEV rail and rail runway beams are designed with DBGM-1 or 
1,000-year-return-period (10−3 annual exceedance frequency) seismic loads (BSC 2007g, 
Section 3.2.4). In addition, steel invert structures connected to the subsurface emplacement drift 
walls undergo structural deformations that are imposed and controlled by the tunnel deformations 
caused by the seismic ground motion. Such actions are termed deformation-controlled and are 
evaluated and accounted for in the design of steel inverts in emplacement drifts.

Crane Loads (CL)—Since the TEV is a crane-based vehicle, crane supplier’s information is used 
for the equipment weight, wheel loads, and lifted loads for the design of crane rails and supporting 
structural steel beams. Impact allowances are in accordance with Manual of Steel Construction, 
Allowable Stress Design (AISC 1997, Sections A4.2 and A4.3). The weight of the loaded 
equipment, such as the TEV, is considered simultaneously with the seismic loads. The horizontal 
and vertical inertial forces are obtained by multiplying the weight of the equipment by the 
appropriate accelerations. Design allowances for the crane rail are in accordance with ASME 
NOG-1-2004, Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, 
Multiple Girder). Loads for the TEV control the design of the emplacement drift invert structure.

Waste Package Loads (WP)—For steel invert design, the weight of the Naval Long waste 
package or the transportation, aging, and disposal (TAD) canister waste package, which are the 
heaviest waste packages to be emplaced (both have the same weight), are used in the analysis 
(BSC 2007g, Section 4.3.2). The analysis also considers the load from either of these waste 
packages collectively with the estimated maximum weight of the waste package emplacement 
pallet.

Drip Shield Loads (DS)—Drip shields are installed after the completion of emplacement of all 
waste packages and prior to closure. Drip shield loads are considered in the design of the steel 
invert structure.

Temperature Loads (T)—The steel invert structure design includes the effects of variations in 
temperatures. Transient peak drift wall temperature during off-normal events in the emplacement 
drifts is not expected to exceed 200°C (Table 1.3.1-2). Thermal analyses indicate that, during 
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normal operations, the temperature of the air exiting the emplacement drifts with lengths up to 
800 m is no more than 99.8°C. Expansion joints are provided in the longitudinal members of the 
steel invert structure and the rails in emplacement drifts (BSC 2007h). Expansion joints for the 
invert steel are designed for temperatures up to 392°F (200°C) to prevent buckling of the steel and 
potential impacts to waste package emplacement pallet and drip shield positions and alignments 
within the emplacement drift (BSC 2007g, Section 6.1.2).

Ventilation Pressure Load (P)—Maximum ventilation differential pressure is equivalent to the 
potential maximum primary fan pressure transmitted when the barrier and turnout bulkheads are 
closed. This load does not apply to the invert structure design.

1.3.4.5.9.2 Load Combinations

Definitions of standard load terms are included in Section 1.3.2. The following load combinations 
and allowable stresses are considered in the design of the steel invert structure in emplacement 
drifts:

• S = D + CL + L + P
• S = D + CL + L + P + T
• S = D + WP + DS + L + P
• S = D + WP + DS + L + P + T
• S = D + CL + L + P + E
• S = D + CL + L + P + T + E
• S = D + WP + DS + L + P + E
• S = D + WP + DS + L + P + T + E.

S is allowable stress, as permitted by Manual of Steel Construction, Allowable Stress Design (AISC
1997).

1.3.4.6 Waste Package Emplacement Pallet System
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1), (2); Section 2.1.1.7.3.3(II): 
AC 3(1), (2); Section 2.1.1.7.3.3 (III): AC 1(1), (2), (3)]

The waste package emplacement pallet supports the waste package during handling, transport, and 
emplacement during the preclosure period and while emplaced during the postclosure period. The 
loaded waste package emplacement pallet is lifted from the bottom of the Alloy 22 (UNS N06022) 
plates.

The waste packages are required to be retrievable during the preclosure period. Therefore, the waste 
package emplacement pallet is designed to remain in a condition and position such that it can be 
lifted by the TEV at any time throughout this period.

During preclosure and after closure, the emplacement pallet prevents the waste package from 
coming into contact with the invert of the drift. For the static design load, the emplacement pallet 
maintains the waste package emplacement nominal position for at least 300 years and maintains a 
nominally horizontal waste package emplacement for 10,000 years (BSC 2008b, Table 1, Derived 
Requirement 08-02). The postclosure analysis of the mechanical performance of the emplacement 
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pallet is addressed in Section 2.3.4.5. Analysis of the performance of the pallet during seismic 
events indicates that it will deform plastically under impact loading from the waste package but will 
continue to fulfill its function of supporting the waste package (Sections 2.3.4.1 and 2.3.4.5).

1.3.4.6.1 System Description

There are two sizes of emplacement pallet. One is designed to accommodate all waste package 
configurations except for 5-DHLW/DOE Short waste packages. A second, short emplacement 
pallet configuration is specifically developed for the 5-DHLW/DOE Short waste package. The 
discussions in this section apply to both waste package emplacement pallet sizes unless otherwise 
specifically noted.

Both sizes of waste package emplacement pallets (Figures 1.3.4-11 and 1.3.4-12) are fabricated 
from Alloy 22 plates welded together to form the waste package supports. Using the same material 
on the plates as used in the waste package surface minimizes the potential for galvanic corrosion at 
the areas of contact between the waste package and the emplacement pallet. A standard 
nomenclature has been established for referring to the components of the waste package 
emplacement pallet. This nomenclature is shown in Table 1.3.4-2. Two waste package supports are 
connected by square Stainless Steel Type 316 tubes to form the waste package emplacement pallet. 
Each waste package support includes a V-shaped cradle to accommodate all waste package 
diameters. The emplacement pallet is shorter than the waste packages; therefore, the waste package 
is supported on the outer corrosion barrier. The waste package is not mechanically attached to the 
pallet. The fact that the waste package is longer than the emplacement pallet allows the waste 
packages to be placed end-to-end at close distances without interference from the pallets.

An isometric view of the waste package emplacement pallet supporting a waste package is shown 
in Figure 1.3.4-13.

1.3.4.6.2 Operational Processes

The waste package emplacement pallet is a means of handling, transporting, and providing 
long-term support of the waste package. Section 1.3.4.8 provides information regarding operations 
involving the pallet. 

The emplacement drift invert is designed to accommodate the design loads and spatial constraints 
associated with the emplacement pallet and waste package, as described in Section 1.3.4.5.

The waste package emplacement pallet is designed so as not to need maintenance during preclosure.

The waste package and the emplacement pallet will be monitored in the postemplacement period 
with the use of remotely operated vehicles. Periodic inspections will be controlled by procedure. A
final inspection will be done prior to installation of the drip shields at closure to confirm that the 
waste packages and pallets have not been impacted by rockfall and that the conditions of these 
components assumed in TSPA for initiation of the postclosure performance period have not been 
compromised (BSC 2008b, Table 1, Derived Internal Constraint 03-24).
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1.3.4.6.3 Safety Category Classification

The waste package emplacement pallet is classified as non-ITS since it is not relied on to prevent 
or mitigate the effects of a potential Category 1 or 2 event sequence in waste package drop analyses 
while being loaded on the pallet at the surface nuclear facilities (Section 1.9).

The waste package emplacement pallet is classified as non-ITWI because it does not have a barrier 
function and it does not reduce the potential for damage to the waste package during a seismic event. 
However, the emplacement pallet maintains the waste package in a nominally horizontal 
emplacement for 10,000 years (BSC 2008b, Table 1, Derived Internal Constraint 08-02). Analysis 
of the performance of the pallet during seismic events indicates that it will deform plastically under 
impact loading from the waste package but will continue to fulfill its function of supporting the 
waste package (Sections 2.3.4.1 and 2.3.4.5). The waste package emplacement pallet also prevents 
continuous contact between the waste package and differing materials, which prevents galvanic 
corrosion of the waste package (BSC 2008b, Table 1, Derived Internal Constraint 08-04).

1.3.4.6.4 Administrative or Procedural Safety Controls to Prevent Event Sequences or 
Mitigate Their Effects

There are no administrative or procedural safety controls associated with the waste package 
emplacement pallet.

1.3.4.6.5 Design Criteria and Design Bases

1.3.4.6.5.1 Preclosure Requirements for the Waste Package Emplacement Pallet

Discussed below are the preclosure design bases and corresponding design criteria for the waste 
package emplacement pallet.

Design Basis and Performance Requirement—The waste package emplacement pallet supports 
the waste package, providing only Alloy 22–to–Alloy 22 contact surfaces.

Design Criterion—Figures 1.3.4-11 and 1.3.4-12 show that each waste package support includes 
a V-shaped cradle, fabricated from Alloy 22 plates, to accommodate all waste package diameters. 
This design feature provides the Alloy 22 contact surface for the waste package, which meets the 
performance requirement.

Design Basis and Performance Requirement—The waste package emplacement pallet retains 
its form sufficiently to allow lifting of the waste package by the pallet after exposure to applicable 
loads under normal operating conditions.

Design Criterion—The two normal condition loads for the waste package emplacement pallet are 
the horizontal lifting of the emplacement pallet loaded with the waste package and the 
emplacement pallet under the waste package static load as emplaced in the drift. The calculation 
results for the waste package emplacement pallet lifting shows that the maximum stress intensity 
(difference between first and third principal stresses) in the pallet due to horizontal lifting is less 
than the corresponding Alloy 22 yield strength. Therefore, no permanent deformation takes place 
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in the waste package emplacement pallet as a result of a horizontal lift. A second calculation, 
degraded waste package emplacement pallet static load evaluation, indicates that the maximum 
stress intensity in the emplacement pallet while loaded with the heaviest waste package is less than 
the corresponding Alloy 22 yield strength. Therefore, no permanent deformation takes place on 
the waste package emplacement pallet while emplaced in the drift. The stress and yield strength 
values at higher temperatures also indicate similar results. Hence, for the lifting and static loads of 
the waste package on the pallet, the requirement stated above is met.

Design Basis and Performance Requirement—Configuration of the waste package 
emplacement pallet facilitates emplacement of the waste packages at short distances from each 
other to facilitate line loading of the drift.

Design Criterion—Figure 1.3.4-13 shows that the pallet is designed for lifting by the plates 
located below the upper structural tubes. Additionally, the waste package is longer than the 
emplacement pallet. The combination of these two features removes any physical limit for the 
minimum spacing between waste packages due to the emplacement pallet design.

1.3.4.6.5.2 Postclosure Requirements for the Waste Package Emplacement Pallet

Discussed below are the postclosure design bases and corresponding design criteria for the waste 
package emplacement pallet.

Performance Requirement—The waste package emplacement pallet supports the waste 
package, as needed for TSPA for at least 10,000 years after closure (BSC 2008b, Table 1, Derived 
Internal Constraint 08-02).

The pallet is evaluated statically loaded with the waste package. The analysis conservatively 
assumes that the plate thicknesses are reduced in order to include the effects of corrosion during the 
10,000 years after closure. The average maximum stress intensity in the pallet due to static waste 
package load is 276 MPa at room temperature. The corresponding Alloy 22 allowable design stress 
intensity is 310 MPa. Since the calculated value is less than the allowable value, no permanent 
deformation takes place on the waste package emplacement pallet. The stress and yield strength 
values at higher temperatures also indicate similar results. Hence, the performance requirement is 
met.

Performance Requirement—The waste package emplacement pallet prevents continuous 
contact of the waste package with anything other than the Alloy 22 waste package emplacement 
pallet surfaces during and after exposure to the loads defined by the nominal repository 
performance scenario.

The degraded waste package emplacement pallet static load calculation shows that the pallet 
components do not experience any permanent deformation. Therefore, the pallet prevents contact 
of the waste package with anything other than Alloy 22, and the performance requirement is 
addressed.
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1.3.4.6.6 Design Methodologies

The stress magnitudes, deformations, and potential failure mechanisms for the waste package 
emplacement pallet are evaluated using finite element analysis and the principles of mechanics of 
materials.

1.3.4.6.7 Consistency of Materials with Design Methodologies

The main function of the emplacement pallets is to support the waste package during emplacement, 
preclosure, and postclosure periods. This prevents the waste package from coming in contact with 
the drift invert and, therefore, prevents direct exposure to invert moisture or materials that may 
induce corrosion. Long-term corrosion resistance is required so that the pallet can perform its 
structural support function with high reliability for at least 10,000 years after closure. The waste 
package support material (Alloy 22) provides the long-term corrosion resistance and the means for 
an identical material contact with the waste package outer corrosion barrier. The connecting 
stainless steel tubes provide structural strength and also long-term resistance to external loads on the 
pallet. The general corrosion rate of the stainless steel tubes is low enough for the 
repository-relevant environments that the tubes will remain structurally sound throughout the 
preclosure period and the 10,000 years after closure.

1.3.4.6.8 Design Codes and Standards

For manufacturing purposes, appropriate sections of 2001 ASME Boiler and Pressure Vessel Code
(ASME 2001) are used. The following sections of 2001 ASME Boiler and Pressure Vessel Code
(ASME 2001) and other ASME standards are used: 

• 2001 ASME Boiler and Pressure Vessel Code (ASME 2001, Section II)

• 2001 ASME Boiler and Pressure Vessel Code (ASME 2001, Section III, Division I, 
Subsection NF/NCA)

• 2001 ASME Boiler and Pressure Vessel Code (ASME 2001, Section V)

• 2001 ASME Boiler and Pressure Vessel Code (ASME 2001, Section IX)

• ASME Y14.5M-1994, Dimensioning and Tolerancing

• ASME B46.1-1995, Surface Texture (Surface Roughness, Waviness, and Lay)

• ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications, 
Subparts 2.1 and 2.2.

In addition, welding standards ANSI/AWS A2.4-98, Standard Symbols for Welding, Brazing, and 
Nondestructive Examination, and ANSI/AWS A5.32/A5.32M-97, Specification for Welding 
Shielding Gases, are also used (BSC 2003d, Section 4.1).
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1.3.4.6.9 Design Load Combinations

The waste package emplacement pallet structural performance is evaluated in terms of stress 
magnitudes, deformations, and potential failure mechanisms using finite element analysis and the 
principles of mechanics of materials (Section 2.3.4.5).

Waste Package Emplacement Pallet Lift—An upper-bound vertical acceleration of 1 m/s2 (total 
upward acceleration being 10.81 m/s2 including gravity) is established for the lifting of the waste 
package emplacement pallet. However, since the TEV lifts the waste package emplacement pallet 
at a maximum hoisting speed of 9 ft/min, the vertical acceleration limit established for the waste 
package emplacement pallet conservatively bounds the hoisting velocity of the TEV.

Horizontal Drop with Waste Package Emplacement Pallet—A discussion of the lifting height 
limitations that are included in the TEV design to minimize the potential and severity of a drop are 
included in Section 1.3.3.5.1. Waste package drops for surface and subsurface facilities are 
described in Section 1.6. Structural analyses ensure that the design bases for the waste package, as 
defined in Section 1.9, are met.

1.3.4.7 Drip Shield System
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 5(3), AC 6(1), (2); 
Section 2.1.1.7.3.3(II): AC 1(1); AC 3(1), (2); Section 2.1.1.7.3.3(III): AC 1(1), (2), 
(3), (11)]

Drip shields are installed over the waste packages as part of the repository closure process. After 
closure and after the heat produced by the waste package has dissipated, moisture may enter the 
emplacement drifts in liquid form or as water vapor. The primary function of the drip shield is to 
divert the liquid moisture that drips from the drift walls around the waste packages and to the drift 
invert, increasing the longevity and prolonging the structural integrity of the waste packages. The 
drip shields are designed to link together, forming a single, continuous barrier to advective water 
flow for the entire length of the emplacement drift. Table 1.3.4-3 summarizes the dimensions and 
material definitions for the drip shield design.

The design requirements for drip shields include corrosion resistance, as well as structural strength. 
Corrosion resistance is required so the drip shields can perform their moisture diversion function 
with high reliability during the postclosure period prior to their structural degradation. The drip 
shields must also withstand the static loads from rubble resulting from drift degradation 
(Section 2.2).

1.3.4.7.1 System Description

All drip shields are uniformly sized so that one design can enclose any of the waste package 
configurations. The drip shield sections are designed to accommodate an interlocking feature to 
prevent separation between the contiguous segments. This feature consists of an overlapping 
section with connector guides between the drip shield segments. The minimum lift height required 
to interlock the drip shield segments is 40 in. for clearance between the two drip shield segments. 
The drip shield base plates rest on the transverse support beams of the drift invert and inside of the 
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rail runway beams. The drip shield is designed so that, when in its position, it does not contact the 
emplacement pallet, the waste package, or the rail runway beams (Figure 1.3.4-4).

Details of the drip shield interlocking features and the assembly are shown in Figures 1.3.4-14 and 
1.3.4-15. An isometric view of the drip shield is provided in Figure 1.3.4-14.

Several major components comprise the drip shield. A standard nomenclature was established for 
referring to these components. A description of these components and the standard nomenclature is 
presented in Table 1.3.4-4.

The drip shield is fabricated from Titanium Grade 7 plates for diversion of dripping water, Titanium 
Grade 29 for structural support, and Alloy 22 for the base plates to prevent direct contact between 
the titanium and the steel members in the invert (Table 1.3.4-4). The drip shield top plates and the 
sidewalls are exposed to direct contact with dripping water or rockfall from the emplacement drift 
walls. The geometry of these plates is configured so that water is diverted around the waste package 
and onto the emplacement drift invert section. The interlocking feature of the drip shield includes 
water diversion rings and connector plates to divert water at the seams between the drip shield 
segments and around the waste packages to the emplacement drift invert section.

In case of rockfall and subsequent static loads from fallen rocks, the load is transferred from the top 
plates to the structural support members. Since the drip shield bulkheads and the longitudinal 
stiffeners are placed directly under the top plate, the vertical load is partially carried by these 
members. The internal forces and bending moments due to external forces are subsequently 
transferred to the internal and external support plates, then to the support beams and sidewalls, and, 
finally, to the emplacement drift invert structure. The base plates prevent potential hydrogen 
embrittlement of titanium, serving as a barrier between the titanium and the invert steel beams. The 
titanium components are assembled by welding. However, the Alloy 22 base plates are 
mechanically attached to the titanium sidewalls by Alloy 22 pins since the two materials cannot be 
reliably welded together (BSC 2007i, Section 6.1.1).

1.3.4.7.2 Operational Processes

Installation of Drip Shields—Drip shields will be installed as part of closure of the repository. At 
that time, in-drift environmental conditions are expected to be suitable for use of gantries with 
some additional cooling required for the longer emplacement drifts. After 50 years of forced 
ventilation, the average air temperatures are projected to be approximately 50°C and 60°C, 
respectively, at the end of 600- and 800-m-long emplacement drifts. Figure 1.3.4-16 illustrates the 
emplacement drift exhaust air temperatures throughout the preclosure period. The air 
temperatures in the shorter drifts, after 50 years of ventilation, will be at or below the maximum 
50°C operating limit for remotely operated equipment (BSC 2008a, Section 22.2.1.2). Air 
temperatures in the longer drifts will also be acceptable for equipment operation after cooling 
prior to beginning of drip shield emplacement. The subsurface ventilation system will continue to 
operate at normal airflow rates during installation of the drip shields after in-drift air temperatures 
of 50°C or less have been achieved.

Drip Shield Gantry—The drip shield emplacement gantry is designed specifically to install drip 
shields over waste packages in the emplacement drifts. The drip shield emplacement gantry 
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design, like the TEV (Section 1.3.4.8), is based on nuclear and industrial crane technology. 
Although the TEV and drip shield gantry have similar drive and control systems, the TEV has a 
shielded enclosure that lifts the waste package and emplacement pallet while the drip shield gantry 
has a structural steel frame with lifting beams and hooks that interface with the drip shield. Both 
the TEV and the drip shield gantry have lifting mechanisms with vertical movement only. 
Figure 1.3.4-17 shows the drip shield emplacement gantry. The drip shield emplacement gantry 
has lifting beams that engage brackets attached to the sides of the drip shield. The surface of the 
drip shield is not handled during emplacement operations. The only contact between the drip 
shield and the drip shield emplacement gantry is at the lifting brackets.

The lifting mechanism on the drip shield emplacement gantry uses screw jacks to raise the drip 
shields. The gantry frame is a steel structure designed to support its own weight and the weight of 
the drip shield. The gantry is self-propelled, with a truck and wheel assembly at each corner of the 
gantry frame. Drive motor integral disc brakes work in a fail-safe configuration. The 
electromechanically operated disc brakes are activated by the onboard programmable logic 
controller (PLC) network, the Central Control Center, or automatically, should loss of power, 
communication, or control signal occur. Gantry drive motors, screw jack motors, and any other 
operating components of the gantry are electrically operated and controlled by the onboard PLC 
network, with remote monitoring from the Central Control Center.

The gantry frame and lifting mechanism dimensions are sized to provide sufficient clearance for the 
drip shield to be moved over the waste packages when the gantry is traveling along a loaded drift

The drip shield gantry will use a similar electrical and control system and other SSCs as those used 
by the TEV. Like the TEV, the drip shield emplacement gantry is designed to operate in the 
environment inside the emplacement drifts, taking into account the temperature of up to 50°C and 
the design basis radiation environment around the TAD waste package containing 21-PWR fuel 
assemblies, which is the waste package with the highest potential dose rates (BSC 2008e, 
Section 3.2.2.3; BSC 2007j, Sections 4.3 and 5; BSC 2007k, Section 6.1.2).

The control system for the drip shield gantry will be similar to the system used for the TEV. Primary 
control of the drip shield gantry functions will be performed by an onboard PLC network and 
operators located in the Central Control Center will monitor drip shield emplacement gantry 
operations and have control override capability for all drip shield gantry functions. The primary 
source of electrical power for the drip shield emplacement gantry is an electrified third rail system. 
It is the same electrical supply system that is used by the TEV. Like the TEV, the drip shield 
emplacement gantry is supplied with dual power pickup mechanisms to ensure a reliable and 
continuous source of power (BSC 2007j, Section 4.5).

Instrumentation and controls on the drip shield emplacement gantry consist of high-resolution, 
articulated cameras and a series of high-intensity lights. The gantry is equipped with thermal and 
radiological sensing instruments. Onboard cabinets and temperature-sensitive components are 
cooled with air-conditioning units mounted on each equipment cabinet. The gantry is also equipped 
with a fire protection system that responds automatically if an onboard fire is detected. The gantry 
fire protection system provides fire event information to the repository fire protection system to 
annunciate the location and nature of the onboard fire (BSC 2007j, Section 4.5). Radiation shielding 
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for the drip shield emplacement gantry instrumentation will be similar to instrumentation shielding 
design for the TEV (Section 1.3.3.5.1.5).

In an operational process similar to that described in Section 1.3.3.5.2.1 for the TEV and a waste 
package, a drip shield is installed in an emplacement drift. Monitoring, communication, and control 
override capabilities for drip shield gantry functions are performed from the Central Control Center. 
Moving under supervision of the operators in the Central Control Center, the drip shield 
emplacement gantry picks up a drip shield at a drip shield staging area and proceeds into the 
subsurface to the turnout for the designated emplacement drift. The onboard PLC network, 
monitored from the Central Control Center, then directs the drip shield emplacement gantry into the 
drift with the drip shield (BSC 2007j, Section 4.5).

The gantry carries the drip shield through the emplacement drift and over the waste packages to 
emplace the drip shield (BSC 2007l); BSC 2007j, Section 4.1). The design of the drip shields and 
the drip shield emplacement gantry is such that during normal operations it is not physically 
possible for the drip shield to contact the waste package while the drip shield is being installed 
(Figure 1.3.4-18). Because of design and operational similarities with the TEV, a drip shield 
emplacement gantry equipment malfunction or other off-normal event will be handled in a similar 
manner as for the TEV and will include an evaluation performed to assess conditions, identify 
potential hazards, and provide a basis for implementation of a recovery action (BSC 2008e, 
Section 3.4; BSC 2007j, Section 5).

The emplacement drift invert is designed to accommodate the design loads and spatial constraints 
associated with emplacement of the drip shields.

1.3.4.7.3 Safety Category Classification

The drip shield prevents or substantially diverts dripping water that could otherwise contact the 
waste package and protects the waste package against damage by rockfall during the postclosure 
period. For these reasons, the drip shield is ITWI (Table 1.9-8). However, the drip shield and the 
drip shield emplacement gantry are non-ITS since neither the drip shield nor the gantry are relied 
on during preclosure operations to prevent or mitigate any Category 1 or Category 2 event 
sequences (Tables 1.9-1 and 1.9-7).

1.3.4.7.4 Administrative or Procedural Safety Controls to Prevent Event Sequences or 
Mitigate Their Effects

There are no administrative or procedural safety controls associated with the drip shields. 

1.3.4.7.5 Design Criteria and Design Bases

The characteristics of rockfall affecting the drip shield performance varies with the type of 
predominant rock types in the repository host rock, as follows:

Rockfall in Nonlithophysal Zone—The potential source of damage to the drip shield in the 
nonlithophysal zones is rock blocks that can fall from the walls during a seismic event. The 
potential source of damage to the drip shield considered in the nonlithophysal zone is damage 
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from rock blocks that fall on the drip shield. A description of the mechanical performance of the 
drip shield subjected to those loading conditions is provided in Section 2.3.4.5.2.2.

Rockfall in Lithophysal Zone—The structural response of the drip shield to the static rock 
rubble load from fallen host rock generated by tunnel collapse in the lithophysal units has been 
evaluated with structural response calculations. Those calculations are described in 
Section 2.3.4.5.2.2.

A discussion of the design bases and corresponding design criteria is provided below.

Performance Requirement—The emplacement drifts accommodate a drip shield structure that 
protects the waste packages from credible postclosure rockfall.

The performance of the drip shield was examined for (1) general structural stability in the event that 
emplacement drift collapse has occurred and the resulting rubble loads the drip shield in a 
quasi-static fashion, and (2) damage resulting from dynamic impact of rock blocks dislodged by a 
seismic event. The analysis shows that the drip shield maintains structural integrity in a complete 
collapse of the emplacement drift (Section 2.3.4.5.3) (SNL 2007a, Sections 6.7 and 6.8).

The drip shield mechanical response to rockfall was analyzed (Section 2.3.4.5). The results of the 
calculation are reported in terms of damaged areas, where the residual stress values exceed 80% of 
Titanium Grade 7 yield strength. This threshold stress value bounds any form of potential failure 
due to stress corrosion cracking and surface failures due to localized stress concentrations 
subsequent to rockfall. A set of representative rock blocks that span the block energy distribution 
and impact location is selected in order to evaluate the structural response of the drip shield. For 
each representative block and impact location, a structural response calculation is performed to 
determine the damage to the drip shield. Results of those damage calculations are described in 
Section 2.3.4.5.

Performance Requirement—The interlocking drip shields are designed not to separate in order 
to prevent rocks from impacting the waste package corrosion barrier.

The structural calculations of a drip shield exposed to vibratory ground motion indicate that there 
is no separation of the drip shields for ground motion events with horizontal peak ground velocity 
levels up to and including 5.35 m/s corresponding to a 10−7 annual probability of exceedance 
ground motion (Section 2.3.4.3.3.4). The kinematic numerical analyses that demonstrate that drip 
shield separation does not occur under postclosure seismic vibratory motion are described in 
Section 2.3.4.5.

Performance Requirement—The drip shield is constructed of corrosion resistant materials and 
includes corrosion allowance for all surfaces for the expected postclosure performance period 
longevity.

The drip shield is fabricated from Titanium Grade 7 for the top and sidewall plates, Titanium 
Grade 29 for the structural stiffeners, and Alloy 22 for the base plates. The maximum corrosion of 
these materials for the performance period of the drip shield after closure is taken into consideration 
by reducing the related material thickness in the structural calculations. Titanium Grade 29 has a 
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higher rate of corrosion when compared to Titanium Grade 7, but Titanium Grade 29 is still highly 
resistant to corrosion. The corrosion loss over a 10,000-year period for Titanium Grade 29 was 
determined to be less than 1 mm—the corrosion allowance for drip shield exposed surfaces.
Corrosion analysis results for Titanium Grades 7 and 29 are presented in General Corrosion and 
Localized Corrosion of the Drip Shield (SNL 2007b, Sections 6.1[a] and 6.2[a]). The structural 
adequacy of these materials, including the effects of corrosion, is demonstrated through the results 
of the rockfall response of the drip shield. Hence, the performance requirement is met.

Performance Requirement—The interlocking drip shields prevent water dripping from the rock 
from contacting the waste packages.

The geometry of the drip shield is such that the dripping water is diverted around the waste package 
and onto the emplacement drift invert. Hence, the performance requirement is met.

1.3.4.7.6 Design Methodologies

The drip shield component of the EBS is a unique component, and, as such, there are no established 
industry practices for its design. As a result, the structural performance of the drip shield is 
evaluated in terms of postclosure functions and postulated postclosure events. The stress 
magnitudes, deformations, and potential failure mechanisms are evaluated using finite element 
analyses and the principles of mechanics of materials. These finite element analyses allow 
verification of the design performance in the changing emplacement drift environment during the 
postclosure period, including possible drift degradation and seismic ground motions (SNL 2007c, 
Sections 6.4 and 6.5).

The structural analysis methods are used to predict margin to failure by ductile tearing. Appropriate 
fracture mechanics and toughness values of the drip shield materials are considered in the 
evaluation of potential brittle fracture. A combination of ductile and brittle failure has been 
considered. The drip shield materials, in general, are characterized by ductile behavior. If 
mixed-mode failure (i.e., a combination of ductile tearing and crack propagation) is identified for 
the drip shield materials, specifications are developed with allowable flaw sizes that ensure that drip 
shield failure due to crack propagation is prevented. This design approach is mainly derived from 
the fact that failure by fracture is governed by both material susceptibility (fracture toughness) and 
maximum permitted flaw size.

Evaluation of Repository Components Exposed to Vibratory Ground Motion—The motion 
of repository components, namely waste package, waste package emplacement pallet, and drip 
shield, due to a seismic event is evaluated using both two-dimensional discrete element and 
three-dimensional finite element representation with either a velocity or an acceleration time 
history as an externally applied load.

The analysis of waste package, waste package emplacement pallet, and drip shield mechanical 
response to vibratory motion from a postclosure seismic event is described in Section 2.3.4.5.
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1.3.4.7.7 Consistency of Materials with Design Methodologies

There are no applicable codes and standards that govern the selection of materials for use in the drip 
shield components. The selection of the drip shield materials is dependent on the mechanical 
properties and long-term corrosion performance of the drip shield plates and sidewalls and the 
structural strength of the support structure. A mechanism for generating hydrogen can occur 
through the galvanic coupling between the titanium drip shield surface and the emplacement drift 
steel structural invert components. The likelihood of galvanic coupling is minimized by a design 
feature, Alloy 22 base plates, that serves as a barrier between the titanium and the invert structure 
steel beams. The titanium components are assembled by welding, and welds are subsequently 
stress-relieved.

One of the main functions of the drip shield is to divert the water that drips from the emplacement 
drift walls around the waste packages and to the invert section, prolonging the longevity and 
structural integrity of the waste packages. Hence, corrosion resistance is required so that the drip 
shields can perform their water diversion function with high reliability for their period of 
postclosure performance. As such, Titanium Grade 7 was selected for the drip shield plates and 
sidewalls. The general and localized corrosion behavior of Titanium Grade 7 was evaluated and 
provides the basis for selection of this material.

The design requirements for the drip shield also include structural strength. Structural strength is 
required so that the drip shield can protect the waste package against damage by rockfall resulting 
from drift wall degradation. The drip shields must also withstand the static loads from fallen rocks 
while limiting contact with the waste package. The structural performance of the drip shield under 
such conditions was evaluated, and postulated postclosure events are summarized in 
Section 2.3.4.5. The high strength characteristics of the Titanium Grade 29 were the basis of 
selecting it as the drip shield structural material for these mechanical load conditions.

Details of the fabrication of the drip shield are described in Yucca Mountain Project Engineering 
Specification Prototype Drip Shield (BSC 2007m). The drip shield assembly, including the lifting 
feature assemblies, are stress relieved after completion of fabrication work and final machining. The 
drip shield assembly and lifting feature assemblies are furnace heated for stress relief at a prescribed 
temperature and duration, followed by cooling by air.

All drip shield fabrication welds are visual-examination-tested to meet the nondestructive 
examination requirements. All Alloy 22 and titanium full-penetration welds are radiographically 
and ultrasonically examined. Welds using ASME Boiler and Pressure Vessel Code, Section III, 
Subsection NC requirements (ASME 2001) are examined with the liquid-penetrant method in 
conformance with the code.

1.3.4.7.8 Design Codes and Standards

Codes and standards applicable to the design and fabrication of the drip shield are listed in 
Section 1.3.2 (Table 1.3.2-5)
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1.3.4.7.9 Design Load Combinations

Drip Shield Emplacement Gantry—Gantry crane supplier’s information is used for the crane 
weight, wheel loads, and lifted loads for the design of crane rails and supporting structural steel 
beams. Impact allowances are in accordance with Manual of Steel Construction, Allowable Stress 
Design (AISC 1997, Sections A4.2 and A4.3). The weight of the loaded crane is considered 
simultaneously with the seismic loads. The horizontal and vertical inertia forces are obtained by 
multiplying the weight of the crane by the appropriate accelerations (BSC 2007b, 
Section 4.2.13.5).

Geometry of Collapsed Drift—The dislodging of rock blocks that may occur due to seismic 
activity or drift collapse during postclosure results in external pressure on the drip shield from 
rock rubble. This loose rock load is taken into account to prevent or limit impacts to the waste 
package in the structural performance of the drip shield (BSC 2004b, Section 6.4)).

Rock Geometry for Rockfall Analysis—The rock block shapes, sizes, and velocities used in 
drip shield mechanical analyses are described in Section 2.3.4.5.

1.3.4.8 Waste Package Emplacement System
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1), (2); Section 2.1.1.6.3: 
AC 1(2)(c), (h), (i), (m), AC 2(2); Section 2.1.1.7.3.1: AC 1(1), (2), (3); 
Section 2.1.1.7.3.3(II): AC 1(1), AC 2(3), (6), AC 9(1), (2)]

This section describes the process for emplacing waste packages in the subsurface drifts. 
Emplacement is the last step in the operational process of moving waste packages from the surface 
facilities into the subsurface. Movement of the waste packages from the surface facilities into the 
subsurface repository is described in Section 1.3.3.5.

1.3.4.8.1 System Description

As discussed in Section 1.3.3.5, the TEV is the specialized, crane rail-based transporter designed to 
safely move waste packages from the surface facilities into the subsurface facility for emplacement. 
The TEV transports an individual waste package from the surface facilities into the subsurface on 
an emplacement pallet, places the waste package and pallet at a designated location in an 
emplacement drift, and returns to the surface facilities to repeat the process.

If waste package retrieval is required, the emplacement operation is performed in reverse order, 
using the TEV to remove waste packages from the emplacement drift and transport them to the 
surface facilities or to an alternate or contingency emplacement drift. Waste package retrieval would 
be initiated with the removal of the waste package emplaced nearest the emplacement drift entrance. 
The waste package emplacement process does not allow the lifting of one waste package over 
another, so the waste packages would be removed in reverse sequence to emplacement. Potential 
retrieval operations are further discussed in Section 1.11.

Operational interfaces between the waste package emplacement and retrieval system and repository 
facilities are described in Section 1.3.3.5.2.4.
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1.3.4.8.1.1 Transport and Emplacement Vehicle Design Description

The TEV is designed to accommodate the waste packages and associated emplacement pallets to be 
placed in the repository. The functions of the emplacement and retrieval system are designed to 
support the throughput described in Section 1.2.1. A more detailed system description of the TEV 
is presented in Section 1.3.3.5.1. Figures 1.3.3-39 and 1.3.3-40 present a simplified general 
arrangement and plan and elevation views of the TEV.

1.3.4.8.1.2 Fire Protection

Fire protection is integrated into the design of the TEV and related support systems. As discussed 
in more detail in Section 1.3.3.5.1.4, a fire protection system on the TEV provides automatic fire 
protection by monitoring, detecting, annunciating, and suppressing any fires that occur in the TEV
shielded cabinets that house the communications and electronic controls equipment. Additional 
information regarding fire protection is presented in Section 1.4.3. Maintenance activities will be 
conducted in accordance with plans and procedures described in the repository Maintenance 
Program. Information regarding the Maintenance Program is presented in Section 5.6.

1.3.4.8.2 Operational Processes

Emplacement operational processes and considerations are discussed in this section. These 
operational processes are to be specifically defined prior to operations. TEV emplacement functions 
will be performed in accordance with procedures developed to address normal operations and 
off-normal events. If an off-normal event did occur, an evaluation would be conducted to assess 
recovery options and develop an implementation strategy (BSC 2007n, Section 3.1). In addition to 
operational processes, TEV emplacement operations will be supported by a maintenance program 
that includes monitoring, routine and preventive maintenance, and inspections to ensure 
performance within design specifications. Maintenance activities will be conducted in accordance 
with plans and procedures described in the repository Maintenance Program. Information regarding 
the Maintenance Program is presented in Section 5.6.

1.3.4.8.2.1 Operational Overview

The TEV receives the waste package and emplacement pallet assembly at the surface facilities 
loadout area. Once the waste package emplacement pallet is lifted inside the TEV and the shielded 
enclosure doors have been closed and locked, the loaded TEV travels into the subsurface to the 
turnout for the designated emplacement drift. After passing through the turnout 
(Section 1.3.3.5.2.1), the TEV enters the emplacement drift and proceeds to the selected 
emplacement location. The operating speed for the TEV when carrying a waste package is 
150 ft/min (1.7 mph). This rate of speed is described in industry guidance as the design rated load 
speed and is considered a safe operating speed for gantry cranes carrying loads similar in weight to 
the waste packages carried by the TEV (ASME NOG-1-2004, Rules for Construction of Overhead 
and Gantry Cranes (Top Running Bridge, Multiple Girder), Table 5333.1-1). Additionally, the 
operating speed of 150 ft/min (1.7 mph) does not cause a waste package breach in the event of 
collision (Sections 1.6 and 1.7).
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At the selected emplacement location, the TEV is designed to emplace a waste package at a nominal 
spacing of 10 cm from a previously emplaced waste package. The operating methodology used to 
achieve this spacing interval is described in the emplacement drift loading plan (Section 1.3.1). 
When the waste package and pallet are lowered onto the invert structure, the TEV moves away from 
the emplaced waste package. The TEV returns to the drift entrance and proceeds through the 
subsurface to the surface facilities to begin another waste package transportation and emplacement 
cycle. The waste package emplacement operations are illustrated in Figures 1.3.4-19 and 1.3.4-20.

1.3.4.8.2.2 Operational Sequence

The following sequence presents TEV operations required for waste emplacement and retrieval, if 
needed, within the emplacement drift. The steps for transporting waste packages from the surface 
nuclear facilities to the emplacement drifts are presented in Section 1.3.3.5.2.1.

Waste Emplacement Operations—Operational steps for waste package emplacement within the 
emplacement drifts include (BSC 2008e, Section 2.5):

1. After traveling along the emplacement drift at a normal operating speed of 150 ft/min, 
the TEV nears the designated emplacement location and stops. The TEV rail brakes are 
set and the shielded enclosure doors are unlocked and fully opened.

2. The rear shielded door is raised, and the shielded enclosure base plate is extended 
before the TEV moves forward to the designated waste package emplacement location.

3. The TEV advances at a crawl speed, nominally 15 ft/min, to a predetermined position 
that is relative to a previously emplaced waste package. Operation of the positioning 
instrumentation is checked. Positioning instrumentation may include: drive shaft speed 
monitoring encoders, range detection indicators, and cameras for visual monitoring.

4. The speed of the TEV is decreased further, and the TEV proceeds forward at a slow 
crawl speed, nominally 1.5 ft/min, until the designated emplacement location for the 
onboard waste package and emplacement pallet is reached. Operational requirements 
for positioning a waste package include a nominal spacing distance of 10 cm from the 
previously emplaced waste package (BSC 2008a, Section 14.2.2.2).

5. When the waste package is confirmed as correctly positioned by the operators in the 
Central Control Center, the TEV screw jacks are raised slightly from a lowered parked 
position to engage the lifting features and support the weight of the shielded enclosure. 
The transportation shot bolts are retracted to the unlocked position. These shot bolts 
extend from the TEV chassis and support the weight of the shielded enclosure during 
waste package transport. After the shot bolts are retracted, the shielded enclosure is 
lowered, placing the waste package and pallet on the emplacement drift invert structure. 
The weight indicators for the screw jacks are monitored to confirm that the waste 
package and emplacement pallet are not being supported by the TEV lifting features.

6. After placing the waste package and emplacement pallet, the TEV moves away from 
the emplaced waste package and pallet at a slow crawl speed, nominally 1.5 ft/min. The 
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TEV stops at a predetermined distance that is sufficient to allow proper operation of the 
shielded enclosure doors and the base plate.

7. The shielded enclosure is raised to the travel height and the transportation shot bolts are 
extended into the locked position, allowing the screw jacks to be lowered into a parked 
position that transfers the weight of the shielded enclosure onto the shot bolts. This 
action reduces vibrations transmitted from the rails during movement of the TEV.

8. The base plate is retracted and the rear shield door is lowered, mechanically preventing 
movement of the base plate. The shielded enclosure front doors are closed and locked. 
When these actions are completed, the TEV returns, at normal operating speed, through 
the emplacement drift and turnout to the emplacement access doors.

Waste Retrieval Operations—Normal retrieval is the reverse of the waste emplacement process 
through the point at which the TEV exits the subsurface (Section 1.11).

Waste Package Recovery—Recovery of specific waste packages may be required to address 
concerns related to off-normal conditions. Unlike retrieval, which is based on a program decision 
to remove all waste packages, a recovery action is implemented to restore or maintain normal 
emplacement operations. If a recovery action becomes necessary, an evaluation would be 
conducted to assess recovery options and an implementation strategy would be developed.

1.3.4.8.2.3 Transport and Emplacement Vehicle Operational Controls

Operating requirements will be incorporated as the design of the TEV control system evolves for 
modes and conditions such as startup, normal operations, shutdown, off-normal operation, and 
other system operations.

The TEV control system is based on proven technologies that can be implemented with several 
layers of functional and physical redundancies. Control system reliability and availability are 
increased by providing backup electrical power and employing varied technologies that are not 
susceptible to similar failures from a single cause (Section 1.4.2.1). The onboard control system 
includes the PLC which implements the monitoring and control functions on the TEV. The 
environment within the emplacement drifts may warrant supplemental shielding of components or 
selection of radiation-hardened components, as applicable (BSC 2008e, Sections 3.2.1.40.1 and 
3.3.15).

Shielded and insulated cabinets protect the heat- and radiation-sensitive instrumentation, and 
solid-state air-conditioning units regulate the cabinet temperature. Built-in fire detection 
automatically activates fire suppression systems should an onboard fire be detected in the 
communications and electronic control cabinets (Sections 1.3.3.5.1.4 and 1.3.3.5.1.5).

1.3.4.8.2.4 Monitoring Processes

The TEV video monitoring and control system provides operators at the Central Control Center 
with real-time visual information about the operating environment and vehicle performance. The 
focus of the monitoring and control process will be on the precise movements needed during waste 
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package emplacement. The video monitoring system installed on the TEV will include video 
cameras and a series of high-intensity lights. The video monitoring information and images are 
provided to the Central Control Center via the repository communications system. Through this 
interface, monitoring and control information for the emplacement and retrieval system is 
provided on the digital control and management information system human machine interface 
console in the Central Control Center. The information provided to the console may include but is 
not limited to (Section 1.4.2):

• Graphic representation of equipment and operations

• TEV location and positioning information

• Video images of the operations to aid operators in the control process

• Status indications and operator messages concerning emplacement and retrieval 
operations

• Audible and visual alarms indicating off-normal operation 

• Data collection, trending, and reporting of emplacement and retrieval operations 
parameters.

1.3.4.8.2.5 In-Drift Positioning of Waste Packages

Waste package positioning during emplacement maintains a minimum standoff of 15 m (49 ft) 
between the end of the last waste package and the centerline of the exhaust main and a minimum of 
1.5 m (5 ft) between the end of the turnout and the first waste package. More specific information 
regarding these standoffs is provided in Section 1.3.2.4.3.3.

The emplacement operating procedures will specify the safety control measures that will be 
implemented to orient (position) the waste packages within the emplacement drift consistent with 
the initial condition assumptions and requirements identified in the preclosure safety analysis. This 
procedural safety control, PSC-25, will be implemented by either (1) completing an analysis that 
confirms a fault cannot credibly lead to a breach of the waste package during the preclosure period, 
or (2) confirming waste package emplacement positions are a minimum standoff distance from the 
outer boundary of fault locations (Table 1.9-10, PSC-25). 

Positioning instrumentation on the TEV confirms that the standoff distances are achieved and 
provides this information to the Central Control Center to allow the operators to supervise and 
control the waste package positioning process (BSC 2003a, Section 6.3; BSC 2008e, Sections 2.5.4 
and 3.2.1.39).

Emplacement operating criteria also require that waste packages be emplaced with a nominal 
spacing of 10 cm between them. This spacing interval is driven by thermal management 
requirements which specify that the local average line-load in the emplaced repository will not 
exceed 2.0 kW/m and no waste package will exceed a thermal output of 18 kW. Additionally, waste 
package emplacement will be such that other relevant thermal limits will not be exceeded, including 
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mid-pillar temperature, drift wall temperature, waste package temperature, and cladding 
temperature (BSC 2008b, Table 1, Derived Internal Constraints 05-02 and 05-03).

Instrumentation mounted on the TEV provides monitoring and control capabilities to the Central 
Control Center for the positioning process and confirms that the spacing distance is achieved. The 
waste package positioning instrumentation provides real-time spacing information to the operators 
in the Central Control Center and allows them to provide commands to the TEV to implement the 
equipment actions needed to place the waste package at the designated location. Measuring 
equipment and video components will be selected to support system operability and reliability (BSC
2008e, Sections 2.5.4, 3.2.1.41.3, and 3.3.15).

Evaluations of spacing measurement instrumentation systems have identified several 
methodologies with capabilities for meeting waste package positioning requirements (BSC 2008e, 
Section 2.5.4). Specific requirements and design features for the waste package positioning 
instrumentation and operational process will be addressed through the component development 
process described in Section 1.3.2.7.

1.3.4.8.3 Safety Category Classification

The waste package transportation and emplacement system design complies with the classification 
requirements of the preclosure safety analysis. The TEV is classified as ITS. More information 
regarding the safety category classification is provided in Section 1.3.3.5.3.

1.3.4.8.4 Administrative or Procedural Safety Controls to Prevent Event Sequences or 
Mitigate Their Effects

Information regarding procedural safety controls to prevent event sequences or mitigate their 
effects is provided in Section 1.9. One preclosure procedural safety control has been identified for 
the waste package emplacement process (Table 1.9-10). The procedural safety control (PSC-25) is 
related to standoff distances for waste package emplacement. Implementation of PSC-25 is 
discussed in Section 1.3.4.8.2.5.

1.3.4.8.5 Design Criteria and Design Bases

The nuclear safety design bases for ITS SSCs and features are derived from the preclosure safety 
analysis presented in Sections 1.6 through 1.9. The nuclear safety design bases identify the safety 
function to be performed and the controlling parameters with values or ranges of values that bound 
the design. The nuclear safety design bases and design criteria for the TEV are discussed in 
Section 1.3.3.5.5 and presented in Table 1.3.3-5.

1.3.4.8.6 Design Methodologies

Design methodologies for the waste package transportation and emplacement system utilize proven 
and established nuclear crane and industrial crane rail-based technologies. More information 
regarding design methodologies is provided in Section 1.3.3.5.6.
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1.3.4.8.7 Consistency of Materials with Design Methodologies

Materials selected for the design of equipment and components that are part of the waste package 
transportation and emplacement system are considered based on the range of anticipated operating 
conditions. More information regarding consistency of materials with design methodologies is 
provided in Section 1.3.3.5.7.

1.3.4.8.8 Design Codes and Standards

Demonstration of assurance that ITS functions will be performed as required by TEV features will 
be achieved by following established codes and standards that prescribe how the components are to 
be designed, fabricated, and tested. More information regarding design codes and standards is 
provided in Section 1.3.3.5.8.

1.3.4.8.9 Design Load Combinations

Codes and standards are the basis for the TEV equipment design loads (ASME NOG-1-2004, 
Section 4130). More information regarding design load combinations is provided in 
Section 1.3.3.5.9.

1.3.4.9 Conformance of Design to Criteria and Bases
[NUREG-1804, Section 2.1.1.7.3.1: AC 1(1)]

The TEV operates in the emplacement areas and is classified as ITS. The information related to 
conformance of the TEV to its design criteria and preclosure nuclear safety design bases has already 
been included in Section 1.3.3.6 and Table 1.3.3-5. The subsurface facility has no other SSC in the 
emplacement areas with an ITS classification.

Table 1.3.4-5 includes postclosure nuclear safety design bases and associated derived internal 
constraints that apply to subsurface facility emplacement SSCs. This table includes summarized 
information on conformance of the SSC designs to the design criteria and design considerations 
related to the postclosure control parameters and constraints and on implementation controls to 
ensure conformance with the postclosure nuclear safety design bases.
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Table 1.3.4-1. Summary of Numerical Models Used for Emplacement and Nonemplacement Drift Ground 
Support Analyses 

Rock Type Comment Model

Nonlithophysal Rock mass behavior controlled by 
fracture geometry

Three-dimensional continuum 
(FLAC3D) model for equivalent 
continuum parameter studies of drift 
and drift/shaft intersections

Two-dimensional continuum (FLAC) 
model for equivalent continuum 
parameter studies for cross-sectional 
analysis of emplacement drifts

Three-dimensional discontinuum 
(3DEC) model for analysis of drift 
intersections

Lithophysal Rock mass behavior controlled by 
lithophysal porosity and dense 
fracturing

Two-dimensional continuum (FLAC) 
model for equivalent continuum 
parametric studies

Table 1.3.4-2.  Standard Nomenclature for Waste Package Emplacement Pallet Components 

Preferred Terminology
Acceptable for Clarity or 

Brevity Description

Waste Package Support Alloy 22 Piers Alloy 22 structures that cradle the waste package 
during handling, emplacement, preclosure, and 
postclosure; also provide lifting points for handling the 
emplacement pallet loaded with the waste package 
during handling, emplacement, and potential retrieval 

Stainless Steel Tubes Longitudinal Stiffeners and 
Tubes

Stainless steel tubes that keep the waste package 
supports aligned during handling, emplacement, 
potential retrieval, and postclosure
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Table 1.3.4-3.  Drip Shield Design Detail 

Item Detail

Material

• 15-mm water diversion surfaces Titanium Grade 7 (UNS R52400)

• Structural members Titanium Grade 29 (UNS R56404)

• Base Alloy 22 (UNS N06022)

Dimensions

• Height 113.630 in. (overlap end) 
111.071 in. (butt end)

• Width 99.806 in. (overlap end) 
99.437 in. (butt end)

• Length 228.543 in. 

• Weight 11,000 lbs 
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Table 1.3.4-4.  Standard Nomenclature for Drip Shield Components 

Preferred Terminology Acceptable for Clarity or Brevity Description

Drip Shield Top Plate Drip Shield Plate 1 The plate that covers the top of the drip shield 
(Titanium Grade 7)

Drip Shield Sidewall Drip Shield Plate 2 The vertical plate on either side of the drip 
shield (Titanium Grade 7)

Internal Support Plate NA Support plate located at the drip shield corner 
below the top plate (Titanium Grade 7)

External Support Plate NA Support plate located at the drip shield corner 
on the outer surface of the sidewall (Titanium 
Grade 7)

Drip Shield Connector Plate Connector Plate Plates designed to connect one drip shield to 
another (Titanium Grade 7)

Water Diversion Ring Drip Shield Connector Guide Structural connector rings located below the 
connector plates (Titanium Grade 7)

Bulkhead NA The structural support member located under 
the top plate that spans from one sidewall to 
the other (Titanium Grade 29)

Longitudinal Stiffener Bulkhead Longitudinal Stiffener The structural support member located under 
the top plate that runs in longitudinal (axial) 
direction (Titanium Grade 29)

Support Beam NA High-strength vertical beam located on the 
outer surface of the sidewall (Titanium 
Grade 29)

Base Base Plate Base plate (Alloy 22) mechanically attached to 
the bottom of the sidewalls

NOTE: Figure 1.3.4-14 provides component identification. 
NA = not applicable.
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Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Para

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
Number and 

Title
Values, Ranges of Values or 

Constraints

Subsurface 
Facility

01-01
Repository 
Geographic 
and Geologic 
Location 
(Controlled 
Interface 
Parameter)

The location of the subsurface facility of 
the repository within the footprint of the 
emplacement area boundary and the 
repository host horizon within the 
lithostratigraphic detail shall be 
controlled through the configuration 
management system (Section 5).

No Design considerations for locati
emplacement areas are describ
Section 1.3.4.2.1. Location and
configuration of the subsurface 
of the repository is as illustrated
Figure 1.3.4-2. 

Subsurface 
Facility

01-02
Repository 
Layout 
(Controlled 
Interface 
Parameter)

The general layout and configuration of 
the subsurface facility, including shafts, 
portals, ramps, mains, emplacement 
drifts, observation drifts, and other 
subsurface features, and waste package 
nominal endpoint coordinates, 
elevations, and available drift lengths 
shall be controlled through the 
configuration management system 
(Section 5).

No The design description of the ge
layout of the subsurface facility 
is presented in Sections 1.3.3 a
1.3.4. 

Subsurface 
Facility

01-03
Repository 
Geologic 
Location 
(Controlled 
Interface 
Parameter)

The repository areas, emplacement area 
by geologic unit, fault intersection 
coordinates, and borehole locations shall 
be controlled through the configuration 
management system (Section 5).

No. The design descriptions of the 
repository areas, geologic units
intersections and borehole loca
presented in Sections 1.3.3 and
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Subsurface 
Facility

01-04
Repository 
Elevation – 
Standoff from 
Water Table

The base of the emplacement drifts shall 
be located at least 120 m above the 
maximum elevation of the present-day 
water table. 
Note: Based on its current location, the 
maximum elevation of the present-day 
water table beneath the emplacement 
area is approximately 850 m above sea 
level. Thus the minimum elevation of the 
base of the emplacement drifts shall be 
970 m above sea level.

Yes The design of the repository ide
the lowest elevation for a repos
opening at approximately 1,022
above mean sea level 
(Section 1.3.1.1). 

Subsurface 
Facility

01-05
Repository 
Standoff from 
Quaternary 
Fault

The emplacement drifts shall be located 
a minimum of 60 m from a Quaternary 
fault with potential for significant 
displacement.

No The repository design has locat
emplacement openings with a 
minimum standoff of 60 m from
Quaternary Fault with potential 
significant displacement 
(Section 1.3.2.2.1).

Subsurface 
Facility

01-06
Repository 
Elevation – 
Overburden 
Thickness

The overburden thickness (i.e., the 
distance from the top of each 
emplacement drift to the topographic 
surface) shall be a minimum of 200 m.

Yes The repository design has locat
emplacement drifts a minimum 
distance of 200 m from the topog
surface (Section 1.3.2.2.1) 

Subsurface 
Facility

01-07
Repository 
Standoff from 
Perched 
Water

The emplacement drifts shall be located 
a minimum of 30 m from the top of the 
Tptpv2 (Topopah Spring Tuff 
Crystal-poor Vitric Zone) because 
perched water may occur at the base of 
the Topopah Spring Tuff Unit.

No The repository design has locat
emplacement openings with a 
minimum standoff of 30 m from 
of the Tptpv2 (Topopah Spring T
Crystal-poor Vitric Zone) which 
the base of the Topopah Spring
Unit (Section 1.3.2.2.1)

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
Number and 

Title
Values, Ranges of Values or 

Constraints
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Subsurface 
Facility

01-08
Orientation of 
Emplacement 
Drifts

The emplacement drifts will be nominally 
parallel. The design azimuth shall be the 
same for all emplacement drifts and shall 
be within a range of 70° to 80°.

No The layout design provides 
emplacement drifts within each 
emplacement panel that are no
parallel to each other as illustra
Figure 1.3.4-2. The layout of the
emplacement drifts is presented
Section 1.3.4.2.3 and incorpora
azimuths of 72° for emplacemen

Subsurface 
Facility

01-10
Emplacement 
Drift 
Configuration

The emplacement drift excavations shall 
be circular in cross section with a 
nominal diameter of 5.5 m.

Yes The emplacement drift opening 
sizes the opening at a nominal 
This and additional characterist
illustrated in Figure 1.3.4-4.

Subsurface 
Facility

01-11
Emplacement 
Drift Gradient

The grade of the emplacement drifts 
shall be nominally horizontal so that 
overall water drainage is directly into the 
rock to prevent water accumulation.

No The layout design information 
presented in Section 1.3.4.2.3 in
a nominally horizontal grade for
emplacement drifts as describe
Section 1.3.4.2. 

Subsurface 
Facility

01-13
Emplacement 
Drift Spacing

The subsurface facility shall be designed 
to locate the emplacement drifts 
nominally 81 m apart to prevent thermal 
interaction between adjacent drifts and to 
allow drainage of thermally mobilized 
water within the rock pillars to percolate 
past the drifts.

No The layout design information, 
including a nominal spacing of 8
all 108 emplacement drifts is illu
in Figure 1.3.3-8. 

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
Number and 

Title
Values, Ranges of Values or 

Constraints
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tion
Postclosure Procedural 

Safety Control
Subsurface 
Facility

01-14
Verification of 
Design Rock 
Properties

The emplacement openings shall 
provide for postexcavation investigations 
of each drift that will be conducted under 
the Performance Confirmation Program. 
The objective of postexcavation 
investigations is to verify that host rock 
properties are bounded by the rock 
properties described within the in situ 
observations and model assumptions 
used in postclosure analyses. 
Postexcavation investigations will 
include geologic mapping to confirm that 
fracture geometric variability and initial 
rock properties are within the model 
input parameter range used in rockfall 
calculations.

No Design and installation of the 
emplacement drift ground supp
provide for geologic mapping ac
before the emplacement walls a
covered with final ground suppo
materials that may impede visu
inspections and observations 
(Section 1.3.4.4). The postexca
investigations, including geolog
mapping to verify design rock 
properties are presented in 
Section 4.2.2.

Subsurface 
Facility

01-15
Design of 
Ground 
Support 
System 
(Controlled 
Interface 
Parameter)

The design and materials used for 
ground support shall be controlled 
through the configuration management 
system (Section 5).

No The design of ground support fo
emplacement drifts includes ma
that will not have a detrimental 
on repository performance. The
ground support design for 
emplacement drifts includes 3-m
Super Swellex-type stainless st
rock bolts set in a square grid p
at 1.25-m centers, and a 3-mm 
Bernold-type perforated stainles
liner. The rock bolts and the ste
are to be installed in a 240° arc 
the drift periphery and above the
structure. The ground support s
is described in Section 1.3.4.4 1

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
Number and 

Title
Values, Ranges of Values or 

Constraints
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Postclosure Procedural 

Safety Control
Subsurface 
Facility 

01-16
Air Circulation 
through 
Ground 
Support

The permanent ground support shall be 
perforated to allow air circulation 
between the host rock and the in-drift 
environment.

No The ground support design of th
emplacement drifts as specified
Section 1.3.4.4.1 is perforated 
stainless steel sheeting around
perimeter of the drift (upper 240
openings of adequate size to al
circulation between the steel lin
the drift wall.

Subsurface 
Facility

01-17
Emplacement 
Drift Ground 
Support

(a) The emplacement drift ground 
support system shall prevent raveling or 
rockfall in the emplacement drifts that 
could induce residual tensile stresses in 
the waste package above 257 MPa. (b) 
In the event the ground support system 
fails, the waste packages that come into 
contact with fallen rock or ground 
support materials shall be inspected for 
surface damage and remediated as 
required prior to closure.

No (a) The ground support design 
presented in Section 1.3.4.4 inc
rock bolts for prevention of detac
of large key blocks, as well as 
coverage of the drift wall above 
the sides of the waste package
prevent rubble from falling on th
waste packages or accumulatin
the invert surface.

Subsurface 
Facility

01-18
Unheated Drift 
Length

As boundary conditions for the 
thermal-hydrologic model in the 
postclosure, in the event that access 
main and exhaust main drifts are 
backfilled, areas at both ends of the 
emplaced waste will be free of backfill. 
The two areas will be a minimum of 15 m 
long and their combined length will total 
a minimum of 75 m. 
Note: Emplacement areas will not be 
backfilled (see Parameter 05-04).

No The repository design does not 
backfill in the access or exhaust
Repository backfill is limited to t
openings that connect the 
emplacement area to the surfac
mainly ramps and shafts 
(Section 1.3.6.1). On the acces
side of the emplacement drifts, 
design maintains an unobstruct
turnout as illustrated in 
Figures 1.3.3-13 and 1.3.3-34.

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
Number and 

Title
Values, Ranges of Values or 

Constraints
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Postclosure Procedural 

Safety Control
Subsurface 
Facility

01-20
Repository 
Standoff from 
Paintbrush 
Nonwelded 
Hydrogeologic 
Unit

The minimum distance between the top 
of each emplacement drift and the base 
of the Paintbrush nonwelded 
hydrogeologic unit shall be 100 m.

Yes The repository design has locat
emplacement openings with a 
minimum standoff of 100 m from
base of the Paintbrush nonweld
hydrogeologic unit (Section 1.3

Subsurface 
Facility

01-21
Minimum 
Thickness of 
the Paintbrush 
Nonwelded 
Hydrogeologic 
Unit above the 
Repository

The minimum thickness of the 
Paintbrush nonwelded hydrogeologic 
unit above the repository shall be 10 m.

Yes The repository design has locat
emplacement openings in areas
overlayed by the Paintbrush 
nonwelded hydrogeologic unit w
minimum formation thickness o
(Section 1.3.2.2.1).

Subsurface 
Facility

01-22
Repository 
Standoff from 
Calico Hills 
Nonwelded 
Hydrogeologic 
Unit

The minimum distance between the 
base of each emplacement drift and the 
top of the Calico Hills nonwelded 
hydrogeologic unit shall be 60 m.

No The repository emplacement op
have been located with a minim
standoff of 60 m from the top of
Calico Hills nonwelded hydroge
Unit (Section 1.3.2.2.1).

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
Number and 

Title
Values, Ranges of Values or 

Constraints
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tion
Postclosure Procedural 

Safety Control
Emplacement 
Drift 
Configuration 

02-01
As-Emplaced 
Waste 
Configuration 
(Controlled 
Interface 
Parameter)

The configuration for the emplaced 
waste packages shall be controlled 
through the configuration management 
system (Section 5).

No The process for emplacing the 
packages and maintaining the 
configuration of their emplacem
described in Section 1.3.4.8.2. 
process includes the operationa
monitoring controls related to th
in-drift positioning of the waste 
packages. Design consideration
emplacement of sequences of w
packages in a drift for thermal 
management purposes are des
in Section 1.3.1.2.5.

Emplacement 
Drift 
Configuration

02-02
As-Emplaced 
Waste 
Package Drip 
Shield 
Configuration 
(Controlled 
Interface 
Parameter)

The minimum distance from the top of 
the waste package to the interior height 
of the drip shield shall be controlled 
through the configuration management 
system (Section 5).

No The in drift component design s
minimum vertical distance betwe
waste package surface and the 
surface of the drip shield varies
14 in. for the 5-DHLW/DOE SNF
waste package to 27 in. for the 
2-MCO/2-DHLW waste package

Emplacement 
Drift 
Configuration

02-04
Invert and 
EBS 
Components 
In Situ Stress 
and Thermal 
Response

The invert and EBS components shall be 
designed to accommodate at least a 
10-mm displacement to account for 
potential in situ stress and thermal 
response.

No The design of the emplacemen
invert structure allows for therm
loads resulting from potential pe
temperatures of 200°C (392°F) 
(BSC 2007g, Section 6.1.2) to 
accommodate the 10-mm 
displacement due to in situ stre
thermal response. The design 
description for the invert structu
described in Section 1.3.4.5.

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
Number and 

Title
Values, Ranges of Values or 

Constraints
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(a) Verification of conformance to 
this requirement will be done, at 
the time of closure, by developing 
procedures that will include 
inspecting the as-built 
configuration of emplacement 
drift EBS components and 
third-rail component to ensure no 
waste package or drip shield 
contact with copper materials is 
possible. 

—Emplacement Areas (Continued)

tion
Postclosure Procedural 

Safety Control
Emplacement 
Drift 
Configuration

02-05
EBS In-Drift 
Materials 
Interactions

EBS materials shall be inert relative to 
each other so that physical contact 
between EBS materials minimizes 
dissimilar material interaction 
mechanisms. The waste package outer 
corrosion barrier shall not contact EBS 
components other than the Alloy 22 
support surfaces of the pallet.

No Design criteria for material 
characteristics and configuratio
establish conformance with this
requirement are included in des
specifications for EBS compone
Sections 1.3.4.5 (Invert System
1.3.4.6 (Waste Package Emplac
Pallet), 1.3.4.7 (Drip Shield Sys
and 1.5.2 (Waste Package). 

Emplacement 
Drift 
Configuration

02-06
EBS Material 
Interactions – 
Copper

(a) For the as-emplaced configuration, 
the drip shields and waste packages 
shall not contact any copper that may be 
present in other EBS components such 
as parts of the emplacement vehicle rail 
system. 
(b) The total mass of elemental copper 
per meter of emplacement drift shall be 
less than 5.0 kg/m.

No (b) Specifications identified in 
Section 1.3.4.5.7 will ensure the
as-emplaced configuration mee
these constraints. The only 
emplacement drift component 
containing copper that has been
identified in preliminary estimat
committed materials is the third
conductor (Table 1.3.6-1). 
Emplacement drift configuration
preclude contact between the d
shield or waste package with th
rail. 

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
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Postclosure Procedural 

Safety Control
Emplacement 
Drift 
Configuration

02-07
Emplacement 
Drift Invert 
Function

The emplacement drift invert (ballast) 
shall provide a nominally level surface 
that supports the drip shield, waste 
package, and waste package 
emplacement pallet for static loads and 
that limits degradation associated with 
ground motion (but excluding faulting 
displacements) after closure of the 
repository.

No The design of the invert ballast 
carry the loads from the waste 
package emplacement pallets, 
waste packages, and drip shield
invert ballast helps maintain the
emplaced waste packages in a 
nominal horizontal position duri
postclosure period as identified
Section 1.3.4.5.1. The design lo
analyzed in the invert design ar
discussed in Section 1.3.4.5.9.

Emplacement 
Drift 
Configuration

02-08
Invert 
Materials 
(Controlled 
Interface 
Parameter – 
 Item a only)

(a) The components and materials used 
in the invert and for the gradation and 
placement of the invert ballast material 
shall be controlled through the 
configuration management system 
(Section 5).
(b) The invert material will be carbon 
steel and crushed tuff. The crushed tuff 
shall have properties consistent with the 
repository host rock excavated by 
mechanical means.

No (a) and (b) The composition of t
invert materials are illustrated in
Figure 1.3.4-9, and described in
Section 1.3.4.5.7. 

Emplacement 
Drift 
Configuration

02-10
Emplacement 
Drift Invert 
Configuration 
(Controlled 
Interface 
Parameter)

The general configuration, plan, and 
details of the emplacement drift invert 
shall be controlled.

No  The general configuration of th
emplacement drift invert is illustr
Figures 1.3.3-8 and 1.3.4-9.

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura
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The waste package handling and 
emplacement procedures will be 
developed and include 
requirements for monitoring 
during handling. Verification of 
waste package handling will be 
done by an operator from the 
remote CCCF location with the 
use of high-resolution cameras 
and electronic sensors. An 
independent inspector will verify 
the adequacy of the 
emplacement. 

esign 
te 
f 10 cm 
ste 

The waste package 
emplacement procedures will be 
developed and include 
emplacement limitations to be 
met. Monitoring equipment, 
instrumentation, and sensors that 
are part of the TEV are used to 
control this operation. The 
controls and instrumentation 
needed to satisfy this 
requirement are described in 
Section 1.3.4.8.2.5.

luding 
 
 in 
5, and 

NA

—Emplacement Areas (Continued)

tion
Postclosure Procedural 

Safety Control
Emplacement 
Drift 
Configuration 

05-01
Waste 
Package 
Handling and 
Emplacement

Waste package handling and 
emplacement activities shall be 
monitored through appropriate 
equipment. An operator and an 
independent inspector shall verify proper 
waste package installation. 

No NA 
(Background information: The 
operational and monitoring cont
the waste package emplaceme
system are presented in 
Sections 1.3.4.8.2.3 and 1.3.4.8
respectively. Design of monitori
equipment, instrumentation, an
sensors that are part of the tran
and emplacement vehicle and t
needed to satisfy this requireme
described in Section 1.3.4.8.2.5

Emplacement 
Drift 
Configuration

05-02
Waste 
Package 
Spacing

Adjacent waste packages in a given 
emplacement drift shall be emplaced 
0.1 m (nominal) apart, from the top 
surface of the upper sleeve of one waste 
package to the bottom surface of the 
lower sleeve of the adjacent waste 
package.

No NA 
(Background information: The d
of the TEV is to emplace a was
package at a nominal spacing o
from a previously emplaced wa
package as presented in 
Section 1.3.4.8.2.1.)

Drip Shield 07-01
Drip Shield 
Design 
(Control 
Interface 
Parameter)

The drip shield dimensions and 
characteristics shall be controlled 
through the configuration management 
system (Section 5).

No The design of the drip shield inc
dimensions, characteristics, and
material definitions are provided
Section 1.3.4.7.7, Figure 1.3.4-1
Table 1.3.4-3.

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters
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(b) The drip shield placement 
procedures will be developed 
and include handling 
requirements that include 
verification of proper drip shield 
interlocking mechanism 
compliance during installation. 
This operation will be performed 
by independent operators in the 
CCCF using remote equipment. 
Installation discussion is in 
Table 1.3.6-3. Drip shield 
handling and emplacement 
activities are described in 
Section 1.3.4.7.2.)

terials 
 

NA

 plate 
tact of 
hield 
vert. 

NA

—Emplacement Areas (Continued)

tion
Postclosure Procedural 

Safety Control
Drip Shield 07-02
Drip Shield 
Design and 
Installation

(a) The drip shield shall be designed to 
interlock and overlap in a manner that 
prevents a liquid drip path from above 
the drip shield to the waste package. 
(b) The drip shield handling and 
emplacement activities shall be 
monitored through appropriate 
equipment. An operator and an 
independent inspector shall verify proper 
drip shield installation. Records 
demonstrating compliance shall be 
maintained.

Yes (a) The design of the details of t
shield interlocking features and
assembly are provided in 
Figures 1.3.4-14 and 1.3.4-15. 
interlock feature that prevents a
path from above the drip shield
waste package is described in 
Section 1.3.4.7.1. 

Drip Shield 07-04
Drip Shield 
Materials and 
Thicknesses

The drip shield shall be constructed of 
Titanium Grade 7, with a minimum 
thickness of 15 mm. The drip shield 
structural material shall be manufactured 
of Titanium Grade 29.

Yes The design of the drip shield ma
and thicknesses are provided in
Table 1.3.4-3

Drip Shield 07-07
EBS Drip 
Shield/ 
Emplacement 
Drift Invert 
Materials 
Interactions

Alloy 22 bases shall be attached to the 
drip shield to preclude titanium contact 
with the invert (including transport 
equipment rails).

Yes The design of the Alloy 22 base
attachment will preclude the con
the titanium portion of the drip s
with the steel members in the in
The description of the design 
configurations is provided in 
Section 1.3.4.7.1 and in 
Figure 1.3.4-14.

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters
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Postclosure Control Parameter
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Postclosure Procedural 

Safety Control
Drip Shield 07-08
Drip Shield 
Seismic 
Performance 
(Controlled 
Interface 
Parameter)

The drip shield design shall be controlled 
such that during a seismic event it resists 
separation through failure of the DSC 
connector guides, the DSC left/right 
support beams, and the left/right support 
beam connectors.
Note: Compliance with the postclosure 
performance aspects of the drip shield 
within this constraint is demonstrated in 
postclosure analyses (only).

No A description of the structural 
calculations, which indicate tha
is no separation of the drip shie
ground motion events with peak
ground velocity levels up to and
including 5.35 m/s correspondin
10−7 annual probability of excee
ground motion as identified in 
Section 1.3.4.7.5, are provided 
Section 2.3.4.3.3.4.

Drip Shield 07-09 Drip 
Shield
Fabrication

The drip shield shall be fabricated in 
accordance with standard nuclear 
industry practices, including material 
control, welding, weld flaw detection and 
repair and heat treatment.

Yes The fabrication specification wil
require that procedures develop
the fabricator be developed con
with standard nuclear industry 
practices, for the subject constr
for the applicable codes and sta
listed in Table 1.3.2-5.

Drip Shield 07-10
Drip Shield 
Fabrication 
Weld 
Inspections

The drip shield full-penetration 
fabrication welds shall be 
nondestructively examined by visual, 
liquid penetrant, and ultrasonic testing 
for flaws. Fillet welds shall be inspected 
by means of liquid penetrant and visual 
testing for flaws. All flaws larger than 
code standards shall be repaired.

Yes The nondestructive inspection o
drip shield fabrication welds usi
liquid penetrant and visual exam
testing per the constraint will be
provided in the procurement 
specification to the fabricator. T
requirements are consistent wit
applicable codes and standards
listed in Table 1.3.2-5. 

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters
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System and 
Component

Postclosure Control Parameter
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Parameter 
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Safety Control
Drip Shield 07-11
Drip Shield 
Fabrication 
Welding Flaws

The welding techniques for the 
fabrication welds shall be constrained to 
gas metal arc welding, except for 
short-circuiting mode, and automated 
gas tungsten arc welding. Welding flaws 
will be repaired in accordance with 
written procedures that have been 
accepted by the design organization 
prior to their usage.

Yes The procurement specification s
constrain the welding technique
the drip shield fabrication welds 
constraint. Requirements for the
correction of drip shield fabricat
welding flaws will be included in
procurement specification to the
fabricator. The applicable codes
standards are listed in Table 1.3
The procurement specification w
require that such weld flaw proc
be approved by the repository d
organization prior to their use.

Drip Shield 07-12
Drip Shield 
Fabrication 
Weld 
Materials

(a) All drip-shield welding shall be 
conducted in accordance with standard 
nuclear industry practices.
(b) For Titanium Grade 7 to Titanium 
Grade 7 welds, Titanium Grade 7 weld 
filler material shall be used. For Titanium 
Grade 29 to Titanium Grade 29 welds, 
Titanium Grade 29 shall be used. For 
Titanium Grade 7 to Titanium Grade 29 
welds, Titanium Grade 28 weld filler shall 
be used.

Yes (a) and (b) The fabrication 
specification will require that 
procedures developed by the 
fabricator be developed consiste
these requirements and with sta
nuclear industry practices for th
applicable codes and standards
in Table 1.3.2-5. Additionally 
requirements for the fabrication
specification will include the spe
material requirements of part (b
subject constraint.

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters
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(a) The drip shield placement 
procedures will be developed 
and require handling of the drip 
shield that will minimize damage, 
surface contamination, exposure 
to adverse substances, and 
impacts as presented in 
Section 1.3.4.7.2. 
(b) The procedures will require 
actions to minimize 
misinstallation. Placement of the 
drip shields will be inspected, and 
records developed, remotely 
from the CCCF by two 
independent operators. An alarm 
showing potential misalignment 
between successive drip shields 
will be developed to support the 
installation process.

—Emplacement Areas (Continued)

tion
Postclosure Procedural 

Safety Control
Drip Shield 07-13
Drip Shield 
Heat 
Treatment

After fabrication, the drip shield 
assembly and lifting feature assemblies 
shall be stress-relieved. After completion 
of all required fabrication work except for 
the final machining, the drip shield 
assembly and lifting feature assemblies 
shall be treated for stress-relief. The drip 
shield assembly and lifting feature 
assemblies shall be furnace-heated for 
stress relief at 1,100°F +/- 50°F for a 
minimum of 2 hours. To prevent pickup of 
hydrogen, a slightly oxidizing 
atmosphere shall be used; air-cooling is 
allowed.

Yes The fabrication specification wil
require that the specific stress r
requirements of the subject con
be performed. The drip shield s
is discussed in Section 1.3.4.7

Drip Shield 07-14
Drip Shield 
Handling

a) The drip shield shall be handled in 
accordance with standard nuclear 
industry practices to minimize damage, 
surface contamination, exposure to 
adverse substances, and impacts.
b) Drip shield installation shall be 
controlled and monitored through 
appropriate equipment to minimize 
possible waste package/drip shield 
damage and/or misinstallation. 
Installation shall include the use of 
equipment with an alarm, an operator, 
and an independent checker. Records 
demonstrating compliance shall be 
maintained.

Yes NA

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters
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Safety Control
Drip Shield 07-15
Drip Shield 
Thermal 
Expansion 
Constraint

To account for volume increase of 
corrosion products, the drip shield shall 
not be constrained laterally or 
longitudinally, or rigidly mounted to the 
invert. Drip shield connectors will be 
designed to allow thermal expansion 
without binding to 300°C.

No The design of the drip shield co
an allowance for both the volum
increase of corrosion products a
thermal expansion without bind
up to 300°C. The drip shield res
the steel invert structure and it i
constrained laterally by any EB
component or invert structure 
component. The drip shield will
longitudinally constraining by th
adjacent drip shields on either s
the drip shields are mechanical
interlocked when emplaced. 
Figure 1.3.4-4 illustrates the 
placement of the drip shield in t
emplacement drift. 
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Safety Control
Drip Shield 07-16
As-Emplaced 
Waste 
Configuration 
—Waste 
Package / 
Drip Shield 
Clearance 
(Controlled 
Interface 
Parameter)

The minimum distance from the top of 
the waste package to the interior height 
of the drip shield shall be controlled 
through the configuration management 
system (Section 5).

No The in drift component design s
minimum vertical distance betwe
waste package surface and the 
surface of the drip shield varies
14 in. for the 5-DHLW/DOE SNF
waste package to 27 in. for the 
2-MCO/2-DHLW waste package

Waste 
Package 
Emplacement 
Pallet

08-01
Emplacement 
Pallet Design 
(Controlled 
Interface 
Parameter)

The emplacement pallet dimensions and 
characteristics shall be controlled 
through the configuration management 
system (Section 5).

No Dimensions for the standard wa
package emplacement pallet ar
provided in Figure 1.3.4-11, and
dimensions for the short waste 
package emplacement pallet ar
provided in Figure 1.3.4-12. De
characteristics (i.e., system 
description) of the waste packa
emplacement pallet are discuss
Section 1.3.4.6.1.

Table 1.3.4-5.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configura

Parameter 
Number and 

Title
Values, Ranges of Values or 

Constraints
1.3.4-63



—
—

D
O

E/RW
-0573, R

ev. 1 
Yucca M

ountain Repository SAR
D

ocket N
o. 63–001

d pallet 
 of the 

allet to 
a 
nd a 
 
 loads. 

 as 
he 

s that 
ment, 

 and 
 the 

NA 

—Emplacement Areas (Continued)

tion
Postclosure Procedural 

Safety Control
Waste 
Package 
Emplacement 
Pallet

08-02
Emplacement 
Pallet 
Function

For the design static load, the 
emplacement pallet shall maintain the 
waste package emplacement nominal 
position for at least 300 years and shall 
maintain a nominally horizontal waste 
package emplacement for 10,000 years.

No The design of the drift, invert an
each contribute to the capability
waste package emplacement p
maintain the waste package in 
nominal position for 300 years a
nominally horizontal position for
10,000 years considering static
The emplacement drifts will be 
excavated at a horizontal grade
described in Sections 1.3.4.3. T
steel invert structure supports 
repository preclosure operation
include waste package emplace
recovery, and potential retrieval
the invert ballast helps maintain
emplaced waste packages in a 
nominal horizontal position as 
described in Section 1.3.4.5.1. 
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08-03
Emplacement 
Pallet 
Fabrication 
and Corrosion 
Allowance 
(Controlled 
Interface 
Parameter – 
Item (a) only)

(a) The emplacement pallet material 
properties shall be controlled through the 
configuration management system 
(Section 5).
(b) The emplacement pallet shall be 
fabricated of Alloy 22 plates and square 
stainless steel tubes.
(c) The contacts between the waste 
package and emplacement pallet shall 
be Alloy 22.
(d) The corrosion allowance for the 
Alloy 22 components shall be at least 
2 mm.
(e) The corrosion allowance for the 
stainless steel components shall be at 
least 2 mm.
(f) The mechanical properties at 150°C 
or higher shall be used for postclosure 
analysis.

No (a), (b), and (c) Fabrication and
construction of the waste packa
emplacement pallet will control 
contacts between the waste pac
and emplacement pallet and ar
described in Section 1.3.4.6.1 p
subject constraints of (a) and (c
waste package emplacement p
design will be configured per th
subject constraint in (b) and is s
in Figure 1.3.4-11.
(d), (e), and (f) Design conform
corrosion allowances and mech
properties of the materials at the
temperature.

Waste 
Package 
Emplacement 
Pallet

08-04
EBS Materials 
Interactions – 
Emplacement 
Pallet 
Function

EBS materials shall be inert relative to 
each other so that physical contact 
between EBS materials minimizes 
dissimilar material interaction 
mechanisms. The emplacement pallet 
shall be designed such that, for the 
nominal scenario (e.g., not seismic or 
igneous), the waste package outer 
corrosion barrier shall not contact EBS 
components other than the Alloy 22 
support surfaces of the pallet.

No Design criteria controlling fabric
and construction of the waste pa
emplacement pallet and design
contacts between the waste pac
and emplacement pallet are des
in Section 1.3.4.6.1. EBS mater
used in the fabrication of waste
package emplacement pallet ar
described in Section 1.3.4.6.7. 
standard and short waste packa
emplacement pallets are shown
Figures 1.3.4-11 and 1.3.4-12. 
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08-05
Waste 
Package and 
Emplacement 
Pallet Static 
Stresses

The tensile stresses imposed on the 
Alloy 22 components of both the waste 
package and the emplacement pallet 
shall be less than 257 MPa (the 
approximate stress corrosion cracking 
threshold for Alloy 22).

No Analyses demonstrating that te
stresses imposed on Alloy 22 
components of both the waste 
package and emplacement pall
less than 257 MPa are discusse
Section 1.5.2.6.1.8.

OTE: See Table 1.9-9 for additional information on postclosure analyses control parameters.

ource: BSC 2008b, Table 1.
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Figure 1.3.4-1. Simplified Representation of the Subsurface Facility Standoffs as Applicable to an 
Emplacement Drift

NOTE: Drawing is not to scale. 
Tptpv2 = Topopah Spring Tuff crystal-poor vitric zone; CHn = Calico Hills nonwelded unit; PTn = Paintbrush 
nonwelded unit.
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Figure 1.3.4-2.  Underground Layout Configuration and Geologic Units by Panel
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Figure 1.3.4-3. Typical Emplacement Drift Configuration
NOTE: Emplacement drift—turnout demarcation boundary is 5.0 ft (1.5 m) from the Waste Package Endpoint. The waste 
package standoff distance to the centerline of the exhaust main is 49 ft (15 m).

The VULCAN model (Section 1.3.4.2.1) uses geometric control points and centerlines as the basis for the underground 
layout. In the VULCAN model the emplacement drift end point is the centerline intersection of the exhaust main and the 
emplacement drift. However, the end of the emplacement drift is where the emplacement drift excavation breaks through 
into the exhaust main excavation. Available emplacement drift length (drift length available for waste package 
emplacement) is determined by subtracting the applicable standoffs, the 15-m offset measured from the exhaust main 
centerline and the 1.5-m offset from the end of the turnout.
The following emplacement drifts in Panel 2 are affected at the exhaust end of the drift by the following operational 
standoffs applicable in addition to the 15-m offset (the operational standoff is provided in parentheses for each affected 
drift): 2-17 (5 m), 2-18 (10 m), 2-19 (10 m), 2-20 (11 m), 2-21 (11 m), 2-22 (11 m), and 2-23 (6 m).
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Figure 1.3.4-4.  Typical Emplacement Drift Cross Section

NOTE: The spring line is a horizontal line passing through the center of the tunnel.
— —
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Figure 1.3.4-5.  Emplacement Drift Steel Invert

NOTE: The third rail detail is not included.  
Ballast shown partially to illustrate configuration of the invert steel structure.
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d Attachment 1.
Figure 1.3.4-6. Conceptual Tunnel Boring Machine for 

the Emplacement Drift
NOTE: Elec = electrical; Hyd = hydraulic. Source: Colorado School of Mines 2004, Figures 2-4, 3-6, an



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001

INTENTIONALLY LEFT BLANK
— —
1.3.4-74



DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001
Figure 1.3.4-7.  Schematic of Typical Emplacement Drift Permanent Ground Support

NOTE: Emplacement drift ground support design is the same for openings in lithophysal and nonlithophysal rock. 
Rock symbols are for illustration purposes only and not intended to depict the rock characteristics or fracture 
orientation.
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Figure 1.3.4-8. Emplacement Drift Invert—Plan and 
Elevation
NOTE: SHT = sheet.
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Figure 1.3.4-9. Emplacement Drift Invert—Steel Frame 
and Ballast Details
NOTE: F. S. = far sight; NA = not applicable; N. S. = near sight; PL = plate.
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Figure 1.3.4-10. Emplacement Drift Invert—Steel 
Structure Details
NOTE: F. S. = far sight; N. S. = near sight.
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Figure 1.3.4-11. Standard Waste Package Emplacement 
Pallet
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Figure 1.3.4-12. Short Waste Package Emplacement 
Pallet
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Figure 1.3.4-13.  Emplacement Pallet Loaded with Waste Package
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Figure 1.3.4-14. Interlocking Drip Shield
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Figure 1.3.4-15. Drip Shield Structural Details

 

shutecj
Line
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Figure 1.3.4-16. Emplacement Drift Exhaust Air Temperatures as a Function of Time and Distance from 
the Drift Inlet (Full Drift) for Drifts Loaded with a Thermal Line Load of 2.0 kW/m
— —
1.3.4-93



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001
Figure 1.3.4-17.  Drip Shield Emplacement Gantry

NOTE: Third rail is not shown.
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Figure 1.3.4-18. Emplacement Drift Configuration for Drip 
Shield Emplacement
NOTE: Third rail is not shown.
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Figure 1.3.4-19. Conceptualized Representation of Waste 
Package Emplacement Operations
NOTE: A more specific presentation of the Transport and Emplacement 
Vehicle configuration is provided in Figures 1.3.3-39 and 1.3.3-40. 
Third rail is not shown.
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Figure 1.3.4-20.  Transport and Emplacement Vehicle with Waste Package in the Emplacement Drift

NOTE: The plan view (B) of the above end view is depicted in Figure 1.3.3-40. 
Third rail is not shown.
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1.3.5 Subsurface Facility Ventilation
[NUREG-1804, Section 2.1.1.2.3: AC 3, AC 6; Section 2.1.1.7.3.1: AC 1; Section 
2.1.1.7.3.2: AC 1; Section 2.1.1.7.3.3(II): AC 2, AC 3, AC 7]

The subsurface facility design includes openings that connect the surface to the waste package 
emplacement areas for the purpose of providing ventilation to those areas. These openings are 
directly or indirectly connected to the access mains or to the exhaust mains so that together they 
form a continuous path of airways for the subsurface ventilation system. The path of some of the 
airways is permanently divided at certain locations by isolation barriers. These permanent isolation 
barriers separate the outside ambient air intake and distribution airways from the heated air 
collection and exhaust airways. The subsurface facility is thus divided into thermal zones, the intake 
air zone and the exhaust air zone, with the emplacement drifts being the connecting conduits where 
heat is exchanged. The emplacement drifts contain the waste packages that generate the heat being 
removed by the subsurface ventilation system. The subsurface ventilation system operates 
throughout the preclosure period under this thermal-zone concept. When the repository reaches full 
emplacement, the entire subsurface facility is operated with one subsurface ventilation system in 
place. That system uses all the intake and exhaust ventilation airways described in the design, and 
it distributes air from the intake air zone into the emplacement drifts and removes heated air from 
the emplacement drifts into the heated air zone and out to the surface. The continuous forced 
ventilation to the emplacement drifts for an extended period after emplacement of waste packages 
provides heat removal that is considered as part of the bases for postclosure analyses.

The configuration of the subsurface facility ventilation system changes over time as the facility is 
developed into a fully-loaded repository. During initial construction of the repository and before 
waste package emplacement begins, the subsurface ventilation system is used as a single system that 
only supports construction operations through a limited number of available airways. At this stage 
of development, a continuous underground airway path has not been established, so the construction 
ventilation system uses air ducts to supply and exhaust construction air out of dead-end excavations 
and, in this way, maintains the supply air separate from the exhaust air. Dust, fumes, and naturally 
occurring radon gas are removed with the exhaust air from the excavation areas. In the development 
areas there are also outside ambient air intake airways and exhaust airways that become part of the 
repository operations ventilation system when the ventilation airway path is established as the new 
drifts are commissioned for waste emplacement.

During the time period when repository development and emplacement activities occur 
concurrently, the intake and exhaust thermal zones described in the previous paragraphs are divided 
into two areas with separate ventilation systems operating on either side of a set of temporary 
isolation barriers. As the initial emplacement drifts are commissioned and before they are turned 
over for waste package emplacement, temporary isolation barriers are placed at the access mains to 
separate the intake air from one source going into the emplacement drifts from the intake air from 
a different source being distributed to the development areas, and to effectively separate 
development activities from active waste emplacement areas. Temporary isolation barriers are also 
placed in the exhaust mains to separate the heated exhaust air being removed from the emplacement 
drifts from the air on the development side of the barrier, and to effectively separate the construction
activities from the waste emplacement areas. Additional temporary isolation barriers are placed in 
a similar fashion as more emplacement drifts are completed and made ready for waste emplacement, 
and the previously installed temporary isolation barriers are removed so that there is only one set of 
— —
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functional temporary isolation barriers at any time separating the construction activities from the 
waste emplacement activities in a particular panel.

The development ventilation system uses temporary fans installed at the intake shaft openings that 
force air into the development areas. The emplacement ventilation system uses permanent fans 
installed at the exhaust shaft openings that draw air from the emplacement areas. The isolation 
barriers separating the two systems are thus exposed to a relative pressure differential created by a 
positive pressure on the development side and a negative pressure on the emplacement side of the 
barrier. This pressure differential induces airflow from the development side to the emplacement 
side if there is any leakage across the barrier. Airflow across the barriers is controlled by two 
bulkheads that are part of the isolation barrier and that function together as an airlock structure. 
Bulkhead doors are activated on either side of the isolation barrier for passage by personnel.

The design of the subsurface facility ventilation system is described in this section. The subsurface 
ventilation system is classified as not important to safety (non-ITS) because it is not relied upon to
prevent or mitigate any Category 1 or 2 event sequences (Sections 1.7 and 1.9, and Table 1.9-1).
The system is also not important to waste isolation (non-ITWI) (Table 1.9-8) because repository 
thermal goals and postclosure thermal performance can be achieved without relying on the 
ventilation system for periods of at least 30 days for naval SNF canisters or even longer for other 
waste forms. The typical role that ventilation systems routinely perform in assuring confinement of 
radiological material is not a function required from the subsurface ventilation system. With respect 
to nonnuclear safety considerations, the subsurface ventilation system plays an important life safety 
role in conforming to appropriate life safety codes (i.e., applicable parts of the Occupational Safety 
and Health Administration and Mine Safety and Health Administration as administered by the U.S. 
Department of Energy (DOE) through implementation of 10 CFR 851 regulations).

Bases for Classification of the Subsurface Ventilation System—The classification of the 
subsurface ventilation system is predicated on the capability of the repository to withstand 
temporary ventilation system failures without the system being needed to prevent or mitigate the 
occurrence of an event sequence or being the cause of an event sequence. Since neither of these 
cases occurs, the system is classified as non-ITS (Table 1.9-1). The system does not contribute 
significantly to postclosure barrier performance and therefore, is classified as non-ITWI 
(Table 1.9-8).

The subsurface ventilation system operates continuously and removes decay heat from the waste 
packages in order to meet the thermal limits of the waste forms, the waste packages and the host 
rock. The continuous operation also assures that the initial thermal conditions for the postclosure 
safety analyses are established during the preclosure operating and monitoring periods. In terms of 
the loss of ventilation, short-duration interruptions in the continuous operation of the ventilation 
system do not adversely affect the ability to establish the repository postclosure thermal conditions 
because of the small changes in thermal energy transferred to the host rock during such events. 
However, the loss of subsurface ventilation for short durations could impact repository operations, 
so it is incumbent that the subsurface ventilation system be restored promptly.
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The operational limits that the subsurface ventilation system must maintain are as follows:

• Commercial spent nuclear fuel (SNF) cladding temperature must not exceed a maximum 
temperature of 350°C upon emplacement and must not exceed 570°C for off normal 
conditions.

• The drift wall temperature must not exceed 200°C during both normal and off normal 
conditions.

• The naval SNF canister surface temperature inside a waste package must, at no time 
during the preclosure or postclosure period, exceed a naval SNF canister thermal 
envelope defined by the time-temperature plot shown in Figure 1.3.1-8. If the envelope is 
exceeded during preclosure, the DOE and the Naval Nuclear Propulsion Program will 
evaluate if any adverse effects have occurred to the naval SNF. The postclosure portion of 
the envelope will not be exceeded if the naval waste package is placed in accordance with 
the naval SNF waste package operational thermal loading limits for emplacement 
described in Section 1.3.1.2.5, and ventilation is maintained for the preclosure period, 
allowing for short-duration interruptions, so that the naval SNF canister surface 
temperature stays within the thermal envelope shown in Figure 1.3.1-8.

Section 1.3.1.2.5 describes how repository operations will be conducted to ensure that the above 
limits and other thermal management constraints will be met. The evaluations described in 
Section 1.3.5.3.2 show that for short-duration subsurface ventilation losses, where short duration is 
defined as 30 days or less, the above limits are not violated.

The subsurface ventilation system is designed so that it can handle potential ventilation failures 
without exceeding thermal limits and assure restoration of operations within a 30-day period, 
providing additional margin to the thermal limits. This restoration is assured by the following 
subsurface ventilation system features and margins:

• Supplemental cooling provided by natural ventilation

• Excess installed capacity with dual fan installations at each exhaust shaft

• Ability for rapid fan replacement with spare fans and parts stocked on site, and a 
maintenance capability available on site

• Low probability of overall power loss (Section 1.4.1)

• Dual power lines and backup generators for both surface and subsurface operations

• Standby diesel power generators connected and available to three exhaust fans, and 
connections for mobile backup diesel generators at all the exhaust shaft pads

• Rock formations suitable for stable underground openings, even if unsupported
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• Ground support system designed to withstand a DBGM-2 ground motion 
(Sections 1.3.3.3 and 1.3.4.4)

• Capability to maintain ventilation flow through partially blocked drifts

• Ability to track waste packages during operations to identify and remediate waste 
packages that have been exposed to off-normal loss of ventilation events resulting in 
exposures over the thermal basis.

Subsurface off-normal events impacting ventilation are discussed in Section 1.3.5.3.2.

1.3.5.1 System Description
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1), (2); Section 2.1.1.7.3.2: 
AC 1(1); Section 2.1.1.7.3.3(II): AC 2(1), AC 3(4), AC 7(2) to (4)]

As previously mentioned, subsurface ventilation consists of two operationally independent and 
separate systems during the period of time when there is concurrent development and emplacement. 
After development activities cease and when all the emplacement drifts are commissioned, there is 
only one subsurface ventilation system. Before complete repository development is achieved, 
isolation barriers physically separate the development areas from the emplacement areas. This 
arrangement allows concurrent development of emplacement drifts on one side of the isolation 
barriers and waste emplacement in operational emplacement drifts on the other side of the isolation 
barriers. The two areas have independent airflow networks and fan systems that operate 
concurrently. The development ventilation system uses fans installed on the intake shafts to force 
air into the development areas of the underground. Typically, during development, the development 
areas exhaust air is discharged through either the South Portal or the North Construction Portal, 
depending on the location of the area being developed. The emplacement ventilation system uses 
fans installed on the exhaust shafts to draw air from the emplacement areas. Generally, intake air for 
the emplacement areas is supplied through the intake shafts no longer used for development and 
through the North Portal and other portals no longer used for development. This configuration 
ensures that if one system shuts down, the flow direction of potential leakage across the isolation 
barriers is maintained toward the emplacement areas. In the case of a complete power failure in 
which the ventilation systems on both sides of the isolation barrier are not functioning, a natural 
ventilation airflow on the emplacement side, driven by the thermal energy from the waste packages, 
maintains flow in the same direction as the forced ventilation (BSC 2007a, Section 7; BSC 2005, 
Section 7).

1.3.5.1.1 System Function

The subsurface ventilation system provides fresh air for personnel and equipment and supports 
thermal management goals by cooling the emplacement drifts. The subsurface ventilation system is 
designed to handle both normal and off-normal situations in the operational phases of the repository.

The subsurface ventilation system is illustrated in Figure 1.3.5-1 and system components are 
described further in this section. This diagram is representative of a partially developed 
emplacement panel with concurrent development and emplacement activities. On the emplacement 
side, air regulators are indicated at the entrance to the emplacement drifts (turnout bulkheads) and 
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fan isolation louvers at the fan locations (exhaust shafts). The diagram also illustrates the three types 
of isolation barriers and identifies instrumentation for monitoring environmental and airflow 
parameters for system operations. Type A and Type B isolation barriers separate the emplacement 
area from the development area. These separated areas have individual and unique ventilation 
systems. Type C isolation barriers separate fresh-air airways from exhaust-air airways containing 
heated air.

1.3.5.1.2 System Location and Functional Arrangement

The subsurface ventilation system components include ventilation fans, emplacement access doors 
and regulators, isolation barriers, and instrumentation for control and monitoring of the system. The 
subsurface openings used by the ventilation system include the ramps, access mains, turnouts, 
emplacement drifts, shaft access drifts, and shafts. Although the system ventilates the underground, 
some of the structures, systems, and components (SSCs) are located on the surface.

The ventilation system connects the emplacement areas to the surface through the ramps, access and 
exhaust mains, shaft access drifts, and shafts. Locations of these design features are illustrated in 
Figure 1.3.5-2. Section 1.3.3 describes the ramps, shafts, access and exhaust mains, and other 
nonemplacement areas and openings. Section 1.3.4. describes the emplacement drifts.

The subsurface facility ventilation system is designed to support repository thermal management 
goals by maintaining subsurface air, near-field rock strata, and engineered-barrier component 
temperatures below preclosure limits (Table 1.3.1-2). The system also removes enough heat 
generated by the waste packages during preclosure to ensure repository temperature limits after 
closure (Table 1.3.1-2) are not exceeded. The subsurface ventilation system provides a nominal 
airflow of 15 m3/sec to each loaded emplacement drift for a minimum duration of 50 years after last 
waste emplacement for the total system performance assessment (TSPA) thermal reference case 
(Section 1.3.1.2.5). The system is designed to operate for a nominal period of 100 years throughout 
subsurface development, waste emplacement, postemplacement monitoring, and closure (BSC 
2008a, Sections 4.3.2 and 6.2). The flow rate and duration have been demonstrated to work with 
efficiencies of 85% to 90% in terms of heat removal during the preclosure period, for the nominal 
and higher analyzed thermal loading plans (Section 1.3.1.2.5) proposed for the repository (SNL 
2007, Section 7; SNL 2008a, Sections 6.1.2 and 6.1.3). The total ventilation duration of 100 years 
from the start of emplacement until repository closure allows for completion of waste emplacement 
prior to the 50-year nominal emplacement period, while assuring that the ventilation period 
assumed as part of the estimated limiting waste stream demonstration (Section 1.3.1.2.5) of a 
representative waste stream emplacement is met.

1.3.5.1.3 Subsystems and Major Components

The primary components of the subsurface ventilation system for the emplacement areas include 
ramps, intake shafts and their access drifts, access mains, turnouts, turnout bulkheads with 
emplacement access doors and airflow regulators, emplacement drifts, exhaust mains, isolation 
barriers, exhaust shafts and their access drifts, exhaust fans, ventilation instrumentation, and 
monitoring equipment to control the system. The subsurface emplacement ventilation equipment 
and instrumentation are standard commercial-grade components.
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The primary components of the subsurface ventilation system for the development areas include 
ramps, access mains, intake shafts and their access drifts, intake fans, dust control equipment, 
auxiliary fans, ductwork, instrumentation, and controls. Intake fans, dust control equipment, 
auxiliary fans, ductwork, instrumentation, and controls are standard, commercial-grade 
components.

Ventilation volumetric flow rates for the subsurface development and emplacement ventilation 
systems are based on the considerations of airflow for minimum breathing air requirements for 
personnel, equipment operations, and air quality control. Thermal management is an additional 
consideration and the limiting consideration for the emplacement area ventilation system in terms 
of determining airflow rates and durations of ventilation. The system is designed to operate with the 
incoming air characteristics listed in Table 1.3.5-1 and to control underground component 
temperatures to the limits stated in Table 1.3.1-2.

The subsurface ventilation system is designed to operate throughout the subsurface development 
and waste emplacement phases and during the postemplacement monitoring and repository closure 
operations, a period of nominally 100 years. The subsurface ventilation system operates for a 
minimum period of 50 years after final waste emplacement to achieve the repository thermal 
conditions for initiation of the postclosure phase for the TSPA thermal reference case 
(Section 1.3.1.2.5) and for nominally 100 years to support repository operations through closure.

As discussed in Sections 1.3.1.2.5 and 2.3.5.4.3, the analysis for the postclosure thermal reference 
case for TSPA included the assumption of instantaneous emplacement of all waste packages, 
followed by 50 years of preclosure ventilation (SNL 2008b, Section 5.2.3). This approach was 
further analyzed for sensitivity to waste package emplacement sequences with an estimated limiting 
waste stream (SNL 2008a, Section 6.1.2). The estimated limiting waste stream was selected from 
simulations of waste stream scenarios that considered constraints imposed by the contracts between 
the DOE and the nuclear power utilities, and the operational processes of waste selection, 
canisterization, and transport to the repository (BSC 2006). The estimated limiting waste stream 
represented waste packages to be received at the repository for a period of approximately 35 years 
(depending on emplacement sequence), with each waste package having its own thermal decay 
function based on the radionuclide inventory it contains. Thermal power for waste packages to be 
shipped to the repository for the emplacement sequence analyses was set higher (22.0 kW) than for 
the TSPA thermal reference case (SNL 2008a, Section 6.1.2). Operational thermal loading limits for 
the emplacement sequences analyzed with a ventilation efficiency of 86% were as follows: (1) limit 
mid-pillar rock temperatures to 96°C or lower; (2) limit emplacement drift thermal line load to 
2.0 kW/m averaged over any adjacent seven waste packages; and, (3) limit waste package power at 
emplacement to 18.0 kW (SNL 2008a, Section 6.1.3). Results of the emplacement sequence 
analyses indicate that for far-field thermal effects, the effects of variability among waste packages 
(decay history, ventilation time) are negligible. Thus, the postclosure reference case defines the 
thermal envelope for far-field analyses. For near-field effects, the impact of emplacement sequence 
on all postclosure temperature limits was found to be acceptable for normal (uncollapsed) 
conditions (SNL 2008a, Section 6.1.7). Additional information is provided in Section 2.3.5.4.3 and 
the associated features, events, and processes (Section 2.2). The results of the analyses (SNL 2008a, 
Section 6.3) demonstrate that the preclosure ventilation rate and duration are satisfactory for 
preclosure and postclosure thermal management objectives, given the potential variability in waste 
package emplacement sequences that may be experienced at the repository.
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The subsurface emplacement ventilation system maintains acceptable ranges of normal operating 
temperatures (Table 1.3.5-2) for the subsurface environment throughout preclosure. A single set of 
normal temperatures cannot be used to characterize the subsurface facility operations phase. There 
are normal ranges for habitable areas of the facility and for areas where it is suitable to use 
mechanical equipment with operational thermal limitations. Uninhabitable areas and areas that 
have limited equipment operation have a higher range of normal temperatures.

Analyses demonstrate that, although the subsurface ventilation system is operated to maintain 
repository temperatures at acceptable operational levels during the preclosure period and to 
maintain an adequate margin for temperature limits listed in Table 1.3.1-2, the temperature limits 
are not exceeded during system shutdowns of limited duration, up to 30 days, resulting from power 
failure, fan failure and replacement, or from partial airflow blockage due to rockfall 
(Section 1.3.5.3). The analyses show that there is sufficient time to restore the system or portions of 
the system to normal operating conditions before incurring the risk of exceeding the temperature 
limits (BSC 2007b, Section 7.5).

1.3.5.1.3.1 Fan Installations

The exhaust fan installations are located at the surface openings of exhaust shafts for emplacement 
area ventilation. Typically, for an emplacement side exhaust shaft, there are two fans operating in 
parallel, sized to provide the desired airflow. The fans provide the design basis airflow with margin. 
The fans are variable pitch, axial flow, and are driven by variable-speed motors. These 
characteristics allow flexibility to supply air to a varying number of emplacement drifts as 
emplacement operations advance to successive drifts and panels over time and as the number of 
loaded drifts increases. Airflow rates through individual emplacement drifts are controlled with 
airflow regulators located in the turnout bulkheads at the entrances to the turnouts. The design 
includes louvers at each fan for isolation purposes, for single-fan operation as the air volume 
requirements vary during waste emplacement operations, or for ventilation system maintenance.
The fans are sized to provide a range of airflow rates that accommodate heat removal and other 
operational needs for a fully loaded repository. Airflow rates to a single drift can be varied from zero 
to a maximum of 100,000 cfm (47 m3/s). The airflow rate provided to a fully loaded drift is a 
nominal 32,000 cfm (15 m3/s) for the range of acceptable emplacement drift thermal line loads up 
to 2.0 kW/m.

The total power required for the ventilation fans at each exhaust shaft for the preclosure period is 
approximately 1,800 hp, or 900 hp per fan. Three of the exhaust fans will be connected to diesel 
standby power generators (Section 1.4.1.1.1.3). Additionally, exhaust fan installations will be 
provided with connections for mobile diesel backup power generators to maintain repository 
airflow patterns during a major network power failure or during a power supply interruption to the 
subsurface facility.

Figure 1.3.5-3 shows the exhaust fan configuration. The shaft collar designs accommodate both 
development and emplacement use. For example, exhaust shaft 2 in Panel 2 is used as a supply air 
shaft (intake) during development of the panel, as described in Section 1.3.5.1.3.2.

The design of the exhaust fan installations includes applicable seismic and environmental design 
criteria to ensure their continued function and readiness to support operations (Section 1.3.2). In a 
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large-diameter exhaust shaft where normally two fans operate simultaneously, if one fan fails or is 
off-line for maintenance, the second fan remains operational and produces approximately 70% of 
the required air volume; therefore, it will not be necessary to curtail repository operations if a 
ventilation fan is down for repairs or maintenance for short durations. With multiple ventilation 
shafts, each having two fans, a single fan down for maintenance does not have a major impact on 
the repository airflow volume. The small-diameter exhaust shafts normally operate only one fan, so 
the second fan provides 100% of the required airflow rate if the other fan is shut down for repairs 
or maintenance (Section 1.3.5.3.1).

The ventilation fans are located at the exhaust shaft collar in the heated air stream; however, the 
operating temperatures (Table 1.3.5-2) do not require special equipment. The fans provided in the 
design can withstand the operating conditions that they will be exposed to at the shaft outlets (high 
temperatures), so there is no need for additional equipment to mitigate or improve those operating 
conditions, and temperature-sensitive equipment such as the electric motors are located outside the 
airstream. The fans are made of steel and cast alloy blade assemblies. The shaft collar ductwork is 
constructed of steel and is designed within applicable structural and hazard requirements
(Section 1.3.5.4).

The intake fans are located on the surface and connected to intake shafts for development area 
ventilation. When development of an area is complete and ready for turn over to emplacement 
operations, the intake fans are no longer needed and can be removed. Figure 1.3.5-4 shows the 
intake shaft configuration. Fan characteristics for the development side may be similar to those 
discussed for the fans on the emplacement side. The operational mode for each system is different. 
The development side fans are configured to force air into the subsurface while the emplacement 
side fans are configured to draw heated air from the subsurface. Auxiliary fans and ducting are also 
used in the subsurface excavations to direct fresh air into advancing excavation fronts and to remove 
dust-laden air away from the excavation fronts to be scrubbed or filtered prior to discharge to the 
surface.

1.3.5.1.3.2 Isolation Barriers

The ventilation system uses isolation barriers located in the access mains and exhaust mains to 
separate emplacement areas from development areas (temporary), or to separate the intake 
airways from the exhaust airways in the emplacement areas (permanent). The following types of 
barriers are used in the repository.

• Type A—Barrier between the development and emplacement ventilation systems that 
does not permit emergency egress

• Type B—Barrier between the development and emplacement ventilation systems that 
permits emergency egress

• Type C—Barrier between intake airflow and exhaust airflow.

During the development phase, isolation barriers Type A and Type B are installed in the access and 
exhaust mains to separate the development ventilation system from the emplacement ventilation 
system. The two separate ventilation systems create two distinct fire areas, and the barriers are fire 
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rated for a minimum of three hours (BSC 2007c, Section 7.1.3). Type A and Type B isolation 
barriers are located on a temporary basis and are moved as the development and construction effort 
progresses. The Type B isolation barrier bulkheads (two) form an airlock chamber, and both 
bulkheads have a door for emergency egress for escape purposes. Isolation barrier monitoring 
functions are included for monitoring ventilation pressure and door status. These functions are 
monitored from the Central Control Center.

The third type of isolation barrier (Type C) is installed between the intake air and exhaust air flow 
paths, ensuring that access to high-radiation and high-temperature areas is not possible and that 
exhaust airflow does not recirculate. Access ports for deployment of remotely controlled inspection 
devices may be made available at some of the Type C barriers for conducting inspections of ground 
support systems in the nonaccessible exhaust mains and exhaust shaft access drifts (BSC 2008b, 
Section 6.2.1). The Type C barriers are permanent because they remain in place for the entire period 
of ventilation and after final emplacement. Type C isolation barrier locations are shown in 
Figure 1.3.5-5.

Isolation barrier bulkheads and turnout bulkheads are designed with penetration openings for 
flexibility to maintain the operability of the repository. Allowance for penetrations includes crane 
rail, electrical wiring for power and instrumentation, and other utilities that will be required as 
needed. Flexibility for future penetrations will be accommodated by empty openings appropriately 
sealed in the isolation barrier bulkheads. Bulkheads for temporary and permanent barriers are 
mostly of the same size.

Figure 1.3.5-5 shows an isometric view of the subsurface ventilation system for a fully developed 
repository, with the intake airways differentiated from the exhaust airways to illustrate the effect of 
the permanent isolation barriers. In contrast, Figures 1.3.5-6 and 1.3.5-7 illustrate concurrent 
development and emplacement ventilation systems during development of Panel 1 and Panel 2. 
These figures illustrate the role of temporary and permanent isolation barriers, separation between 
development and emplacement zones within a single panel, and typical airflow circulation patterns 
for the concurrent but separate operations.

Relocation Sequence for Isolation Barriers—Isolation barriers are typically relocated in sets of 
two. Each isolation barrier structure consists of two bulkheads spaced a sufficient distance apart to 
form an airlock chamber between the two bulkheads. The length of the airlock chamber is 
dependent on the specific application. The typical general arrangements for the Type A, B, and C 
isolation barriers are illustrated in Figure 1.3.5-8. Location of the isolation barriers in the access 
mains will also be coordinated with location of the electrical equipment alcoves such that there is 
no impact to their intended functions. A set will typically consist of a Type A barrier in the exhaust 
main and a Type B barrier in the access main, located at directly opposite sides of the 
emplacement panel. Panels 1 and 2 are used in Figures 1.3.5-6 and 1.3.5-7 to illustrate the basic 
steps involved in the relocation of isolation barriers to maintain separation of the development and 
emplacement sides at all times. These figures also provide good examples of how the functions of 
some of the ventilation openings change over time, such as in the case of the Enhanced 
Characterization of the Repository Block (ECRB) shaft that is initially used for Panel 1 as an air 
intake to support construction but as emplacement advances, becomes an exhaust airway for 
Panels 1 and 2. The sequence of barrier relocations shown in Figures 1.3.5-6 and 1.3.5-7 is 
conceptual because a detailed construction sequence has not yet been developed.
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As described in Section 1.3.1, development of the initial operating capability for the repository 
includes commissioning of the first three drifts in Panel 1 for waste emplacement. Figure 1.3.5-6 is 
a simplified schematic of the ventilation system configuration for this initial operating capability. A 
set of isolation barriers is placed in the access and exhaust mains between emplacement drifts 1-3 
and 1-4. These isolation barriers separate emplacement operations in drifts 1-1 to 1-3 from 
continuing development activities in the rest of Panel 1. Air supply for drifts 1-1 to 1-3 is provided 
through the North Portal and North Ramp. These openings also provide air to the observation drift 
and observation alcove extending below the emplacement horizon. A bulkhead and airflow 
regulator at the entrance of the observation drift control air flow into the drift, and a sealed bulkhead 
at the end of the observation drift separates it from the heated air of the Panel 1 exhaust main. 
Another isolation barrier is installed at the connector drift to the future area for Panel 3-West. This 
isolation barrier will facilitate future development activities north of the connector drift, 
maintaining separation of the future activity from the emplaced waste in Panel 1. Heated air from 
emplacement drifts 1-1 to 1-3 is removed through exhaust shaft 1 connected to the Panel 1 exhaust 
main via a short shaft access drift. Figure 1.3.5-6 also illustrates an excavated drift, future 
emplacement drift 1-4, as part of the excavation for the initial operating capability. This drift allows 
intake air provided through the ECRB shaft to circulate around the development area of Panel 1 and 
completes the connection of this temporary intake airway to the access main from where it is 
exhausted through the South Ramp and South Portal. The ECRB shaft is connected to the ECRB 
Cross-Drift, which is connected to the Panel 1 exhaust main through a ventilation raise and two raise 
access drifts. The emplacement and development ventilation system configurations described in 
this paragraph will remain in place until a second set of isolation barriers is installed in the northern 
portion of Panel 2, and until the next set of emplacement drifts is commissioned.

In this conceptual sequence of repository development, the next drifts to be commissioned for waste 
emplacement are the last three drifts in Panel 1 and the first two drifts in Panel 2. Figure 1.3.5-7
illustrates the advancement of emplacement activities from Panel 1 into the northern portion of 
Panel 2. This advancement requires the placement of isolation barriers in the access main and 
exhaust main of Panel 2 between drifts 2-2 and 2-3. Similar to the strategy with drift 1-4 in Panel 1’s 
initial operating capability, drift 2-3 would have to be excavated prior to closing the second set of 
isolation barriers so that ventilation air can be circulated around the Panel 2 development area from 
a source different from the North Portal. That new source of intake air is intake shaft 2 connected 
to the access main of Panel 2 through a shaft access drift. Air from the development areas south of 
the second set of isolation barriers flows to the South Ramp and is exhausted through the South 
Portal. Other required changes to the emplacement and development ventilation system 
configurations prior to removal of the first set of isolation barriers in Panel 1 are (1) installation of 
a set of fans at the ECRB shaft to convert it from a temporary development intake shaft into a 
permanent exhaust shaft; and (2) excavation of a shaft access drift connecting the ECRB shaft 
station to the Panel 2 exhaust main. Closing of the second set of isolation barriers makes Panel 1 and 
the first two drifts in Panel 2 a continuous waste emplacement area with the North Portal as the 
intake air source, and exhaust shaft 1 and the ECRB shaft as the exhaust airways. The first set of 
isolation barriers from Panel 1 are then removed. The isolation barrier on the access main from set 1 
can be relocated to the set 2 access main location between drifts 2-7 and 2-8; however, the isolation 
barrier from the Panel 1 exhaust main can not be reused because it is of a smaller size (18 ft) than 
what is required for the exhaust main set 2 location (25 ft). This pattern of leap-frogging the sets of 
isolation barriers continues in a southward direction in Panel 2 until the entire panel is developed. 
The shaft at the southern end of Panel 2 can be initially used as an intake airway. After all the drifts 
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in Panel 2 are developed, a permanent isolation barrier (Type C) is installed at the southern end of 
the perimeter main drift of the panel, thus creating a boundary between the access main and the 
exhaust main for the southern portion of the panel. As waste emplacement advances southward in 
the panel, additional air exhaust capacity is required, so exhaust fans are installed at the shaft at the 
southern end of the panel and it becomes exhaust shaft 2. At that point, intake air for Panel 2 is 
provided from intake shaft 2 and the South Portal and exhaust air is drawn out through the ECRB 
shaft and exhaust shaft 2. After all the temporary isolation barriers in Panel 2 are removed, the 
access main will be connected without interruption to both the North and South Portals, with the 
combined air intake through both portals and intake shaft 2 supplying intake air to the Panel 1 and 
Panel 2 emplacement areas.

The permanent electric power, permanent crane rail, third-rail power system, and data and 
communication systems will be installed up to and across the isolation barriers to allow activation 
of these services in the expanded emplacement areas with a minimum of construction effort. The 
disconnection point to isolate the communication lines and electrical feeds will occur in an 
appropriate junction box or terminal apparatus located in the vicinity of the isolation barrier 
bulkheads. Details and requirements for separation and isolation of the utility systems will be 
included in the construction specifications. Some utility systems may be isolated on the 
emplacement side of the isolation barriers while others will be isolated in a construction area on the 
development side.

The process described above limits the work activities in the emplacement side of the isolation 
barriers to a controlled disassembly of the bulkhead from its structural frame and its removal via rail 
car on the access main side, or via rail car, rubber tire or track equipment on the exhaust main side. 
Design and fabrication of the bulkhead structures will include features that allow for a continued 
installation of emplacement rail and electric power up to or across the isolation barrier bulkheads. 
When completed, the isolation barriers bulkheads will be sealed to minimize air leakage and to 
provide a fire barrier between the development and emplacement sides.

Each time an isolation barrier is relocated, the boundaries for the development and emplacement 
ventilation areas change, and both systems are rebalanced. The design of the subsurface ventilation 
system and the selection of the isolation barrier locations take those boundary changes into 
consideration.

1.3.5.1.3.3 Turnout Bulkheads, Emplacement Access Doors, and Airflow Regulators

Turnout bulkheads, emplacement access doors, and airflow regulators control the ventilation 
airflow to the emplacement drift. The doors and regulator are located in the turnout bulkhead, which 
is the main structure in the turnout to support these pieces of equipment. The turnout bulkhead is 
constructed of steel and occupies the cross-sectional area of the turnout. The bulkhead is structurally 
designed for the expected differential pressures across the bulkhead from normal operations. 
Sealant is used around the periphery of the turnout bulkhead to minimize leakage of air. 
Figure 1.3.5-9 shows the location and configuration of the turnout bulkhead and emplacement 
access doors. The turnout bulkhead is located close to the junction of the turnout and the access 
main, as close to the access main as possible in order to minimize the potential radiation dose rate 
at the door location.
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Figure 1.3.5-10 shows the emplacement access doors and airflow regulator locations. The steel 
emplacement access doors within the turnout bulkhead accommodate the waste package transport 
and emplacement vehicle clearance envelope. The gaskets on the emplacement access doors are 
located on the intake side or within reach from the intake side of the door to facilitate inspection, 
maintenance, and replacement. Equipment that requires maintenance, such as electrical or 
instrumentation equipment, is also placed outside the intersection of the mains and turnouts to 
reduce potential radiation exposure.

Figures 1.3.5-11 and 1.3.5-12 illustrate the concepts for the mechanisms that activate the 
emplacement access doors and the instrumentation and controls for the operation. Figure 1.3.5-13
shows the concept for the type of airflow regulator that will be utilized and the associated controls 
and instrumentation.

1.3.5.1.4 System Interfaces

The subsurface development ventilation system interfaces with the repository subsurface facility 
openings, electrical, communications, safety and health, fire protection, and monitoring systems to 
provide adequate airflow for personnel underground. The system design considers dust, diesel 
particulates, and other potential airborne contaminants, heat control, and naturally occurring radon. 
The subsurface emplacement ventilation system interfaces with the electrical, communications, 
monitoring and control systems, performance confirmation, safeguards and security, fire protection, 
and environmental safety and health systems to ensure thermal goals are satisfied and access to 
emplaced waste is controlled.

The emplacement access doors provide restricted personnel and equipment access to the turnouts 
and to the emplacement drifts. Dose rates from emplaced waste packages in the emplacement drifts 
are expected to range from 57 rem/hr at 1 m from the waste package in the axial direction facing the 
turnouts to approximately 1,100 rem/hr on the surface in the radial direction (sides) of emplaced 
waste packages. The emplacement drift and adjacent portion of turnout inside the emplacement 
access doors will be treated as a very high radiation area (Section 5.11) in accordance with 10 CFR 
20.1602 and Regulatory Guide 8.38. The emplacement access doors function as the access point, or 
entrance, to the very high radiation area. As such, the emplacement access doors also serve as the 
access control mechanism by remaining locked, except during periods of access, to prevent 
unauthorized or inadvertent access to the area controlled as the very high radiation area within the 
emplacement drift and turnout.

Specific subsurface ventilation system interfaces and interface functions are summarized as 
follows:

• Digital Control and Management Information System (Section 1.4.2)

– Compile and relay ventilation component information to Central Control Center
– Report fan and controls status to Central Control Center
– Data storage for ventilation monitoring equipment
– Video and voice communications
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• Electrical Power System (Section 1.4.1)

– Power supply to construction and emplacement ventilation components

– Power supply to ventilation instrumentation and monitoring components

– Standby backup power supply for three exhaust fans and connections at all exhaust 
shaft locations for mobile diesel backup generators

• Electrical Power Support System (Section 1.4.1)

– Ventilation system requirements for cable raceways and grounding
– Lightning protection on main fans

• Emplacement Drift (Section 1.3.4)

– Emplacement access doors prevent access to areas controlled as very high radiation 
areas

– Preclosure airflow control and regulation supports thermal management

• Emplacement and Retrieval System (Sections 1.3.3.5 and 1.11)

– Ventilation structures accommodate equipment envelopes
– Provide proper airflow to ensure equipment operating temperature limits are met

• Environmental and Meteorological Monitoring System

– Support effluent monitoring from the subsurface repository exhaust system
– Meteorological data

• Fire Protection System (Section 1.4.3)

– Fire detection
– Fire suppression
– Fire rating of isolation barriers and doors
– Emergency egress and evacuation
– Refuge station location and design
– Smoke and combustion by-product removal
– Main fan control and component control for emergency management

• Performance Confirmation Program (Section 4)

– Provide ventilation to observation drift and alcove, and to other alcoves and niches, as 
applicable

– Coordination of ventilation needs for test drift(s)
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• Plant Services System

– Water requirements for subsurface development dust control

• Radiation and Radiological Monitoring System

– Access control to radiologically controlled areas
– Accommodate radiological monitoring instrumentation
– Personnel tracking and exposure records

• Safeguards and Security System

– Access control and alarms at emplacement access doors and isolation barriers

• Subsurface Development (Section 1.3.1)

– Development ventilation system supplies airflow to development operations
– Shaft and drift construction sequencing to maintain fresh air
– Openings are sized to support ventilation requirements.

1.3.5.1.5 System Maintenance Considerations

The subsurface ventilation system will be maintained to support a nominal service life of 100 years. 
The subsurface facility ventilation system will be maintained and rebalanced as needed to ensure 
required ventilation flow rates are maintained throughout the preclosure period.

Fan monitoring information includes vibration, bearing temperature, pressure, and airflow rate and 
temperature. The motors are also monitored. Maintenance will be performed in accordance with 
manufacturer guidelines. In large-diameter exhaust shaft installations, if one fan fails or is off-line 
for maintenance, the second fan can remain operational and produce approximately 70% of the 
original airflow volume. In small-diameter shaft installations, either of the two installed fans can 
provide 100% of the required airflow rates. In addition, the fans are all located on the surface and 
are easily accessible for maintenance.

The emplacement access doors are part of the subsurface ventilation system because of the impact 
a door operational failure could have on the balance of the ventilation system. Radiation control 
personnel have control of opening the doors and granting emplacement drift access per established 
administrative control (Section 5.11). The emplacement access doors require periodic inspection. 
The turnout bulkhead and frame are designed to require minimal maintenance. Components are 
modular and are designed for ease of replacement, if needed. Seals, bearings, and electronics are 
industrial grade.

No routine maintenance activities are planned on the door actuators. The actuators are planned to 
operate a few hundred times at each turnout, since approximately 100 waste packages are emplaced 
in each drift. After waste emplacement occasional activation of the doors will be required for 
remotely-operated monitoring equipment access, and for inspections and maintenance as needed. 
The actuators are tested remotely to determine operational readiness and, if found to be inoperable, 
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can be replaced if emplacement drift access is required. The failure rate of the actuators is expected 
to be low because of the low frequency of use and the simplicity of their design. Door actuators are 
to remain operational throughout the preclosure period to support performance confirmation and 
retrieval activities, as needed.

Scheduled maintenance is planned for the regulators. The regulator components are located on the 
access main side of the turnout bulkhead to prevent unnecessary radiation exposures for routine 
maintenance, calibration, inspection, and repair. The modular components are expected to be a 
bolted design to facilitate repair or replacement.

Standard commercially available instrumentation (temperature, pressure, and flow rate) will be 
used, and the manufacturer recommendations will be followed for maintenance, calibration, and 
testing. Multiple instrumentation devices are incorporated into the monitoring system; these allow 
for error checking by operators of individual sensors incorporated into the redundant system 
(Figure 1.3.5-1).

1.3.5.2 Operational Processes and Procedures
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1), (2)]

Subsurface ventilation system components will be inspected and maintained to keep the system 
fully functional and in a continuous operating mode for the duration of the preclosure period. 
Components requiring maintenance at the fan pads and underground are readily accessible to 
facilitate inspections, maintenance and repairs. Instrumentation will be utilized to monitor the major 
electrical and mechanical components so that conditions indicative of potential failures can be 
detected and mitigated. Components exposed to heat and radiation are designed to withstand the 
environmental conditions of their locations. The gasket material on the emplacement access doors, 
for example, will have a high-radiation exposure rating (greater than 1,000 rad) to ensure that it lasts 
the life of the preclosure period. The emplacement access door and regulator components, such as 
actuators and louvers, will require regular maintenance and inspection. These components are 
modular and designed to facilitate replacement, if necessary. The subsurface ventilation 
components in the turnouts will be located on the access main side of the turnout bulkhead to 
prevent unnecessary radiological exposures to personnel performing routine inspection, 
maintenance, calibration, and repair. The isolation barrier bulkheads are of modular construction 
and can be accessed and repaired. Ventilation airflow separation and regulation at the isolation 
barrier can still be maintained during bulkhead repairs by installing a temporary airlock 
compartment to the companion bulkhead (Figure 1.3.5-8).

Operational procedures for the subsurface ventilation system including inspection and maintenance 
activities will be developed and implemented in accordance with the program described in 
Section 5.6. Operational interfaces of concurrent development and emplacement ventilation 
systems are developed by analyzing the ventilation design aspects of a single emplacement panel. 
Panel 1 is chosen since it is the first panel to be used for emplacement.

Figure 1.3.5-14 presents ventilation flow diagrams for development and emplacement ventilation. 
Figure 1.3.5-15 is a schematic representation of Panel 1 during concurrent development and 
emplacement operations. These two figures use alphabetic designators to denote the different 
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design features that can be traced directly from the flow diagram to the schematic representation of 
the ventilation system operations in Panel 1.

Development and emplacement in Panel 1 require the isolation of several existing openings to route 
the airflow and to separate access to the different areas. Starting at the North Ramp, an isolation 
barrier blocks the entrance to the ECRB Cross-Drift to control the interaction of the airways. The 
ECRB Cross-Drift is initially used (for initial operating capability) as a development intake airway 
when connected to the ECRB shaft and to Panel 1 drifts not included in the initial operating 
capability. Later on, when the ECRB shaft becomes an exhaust shaft, the ECRB isolation barrier 
becomes a permanent barrier separating the North Ramp intake air from the Panels 1 and 2 exhaust 
air. Farther downstream, in the vicinity of where the North Ramp meets the access main, an isolation 
barrier is installed in the connector drift (short drift connecting the Panel 1 access main to the future 
access main for Panel 3 to the north) to isolate Panel 1 emplacement operations from future 
development activities in Panel 3. This isolation barrier will be removed during commissioning of 
the emplacement drifts in that area of Panel 3 (initial drifts to be emplaced in Panel 3-West). 
Continuing from the access main and along Emplacement Drift 1-1 to the beginning of the Panel 1 
exhaust main, there is another isolation barrier in the connector drift between Panel 1 and the future 
Panel 4. This barrier will isolate Panel 1 exhaust air from the future development activities in 
Panel 4. This isolation barrier will be removed during commissioning of emplacement drifts in that 
area of Panel 4. Figure 1.3.5-15 also shows the first set of temporary isolation barriers to be 
deployed in Panel 1. These two isolation barriers are deployed in the access main and exhaust main 
between emplacement drifts 1-3 and 1-4 to separate the construction of drifts 1-4 through 1-6 from 
the emplacement of waste in drifts 1-1 through 1-3. The schematic in Figure 1.3.5-15 shows this, as 
well as the roles of the ECRB Cross-Drift shaft and the South Portal as the intake and exhaust ports 
for Panel 1 development, respectively, while the North Portal and exhaust shaft 1 provide intake and 
exhaust airways for the emplacement side, respectively.

The components in the local ventilation box in the airflow diagram presented in Figure 1.3.5-14
identify a concept of temporary ventilation systems set up during construction to provide air 
circulation and dust collection at the excavation fronts. These systems also help in removal of radon 
gas that is released from the rock as the excavation equipment exposes the strata to atmospheric 
pressure and an open air environment. Figure 1.3.5-16 presents a typical arrangement for such a 
local ventilation system that could be used for excavation of the emplacement drifts using an 18-ft 
diameter tunnel boring machine. In the case of the tunnel boring machine excavation as illustrated 
in this figure, high-pressure water spray nozzles are provided at the cutter head to mitigate dust 
generation. Flexible ducting, dust extractors, and dust collectors are also provided to reduce 
airborne dust in the areas of the excavation and behind the tunnel boring machine where personnel 
are deployed performing multiple duties. Ducting is used to draw fresh air from the intake airway, 
in this case the access main, and to release the air extracted from the construction front back to the 
airway.

The design of the subsurface ventilation system includes monitoring to satisfy requirements for
personnel safety, system operations, operation of other systems such as the waste emplacement and 
retrieval system and the drift inspection equipment, and to provide information needed by other 
repository activities, such as the Performance Confirmation Program.
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The basic requirements of the subsurface ventilation system monitoring and controls are related to 
the functions listed below:

• The status, display, and command override functions of subsurface ventilation systems 
that support fire and worker protection, such as dampers and fan controls, are accessible 
from the fire command center.

• The emplacement access doors control access to the emplacement drifts.

• Emplacement drift environmental conditions are at temperatures and relative humidities 
that support the performance of the repository.

• To be within the acceptable range for the remotely operated repository equipment, the 
system maintains emplacement drift air temperatures at 50°C or below in the 
emplacement drift during transport and emplacement vehicle (TEV) and gantry 
operations. TEV operations are described in Section 1.3.4.8, and drip shield emplacement 
gantry operations are described in Section 1.3.4.7.

• The subsurface ventilation system provides airflow control to individual emplacement 
drifts.

The repository ventilation is controlled through the operation of the surface based exhaust fans and 
the regulators located in the turnout bulkheads for individual emplacement drifts. The airflow 
through the exhaust fans can be adjusted using either variable frequency drives on the motors to vary 
the rotational speed of the fan or with adjustable pitch blades. The surface fans are equipped with 
louvers for the sole purpose of isolating the fan when performing maintenance. In the 
small-diameter exhaust shaft installations where one fan is typically on standby, the idled fan would 
be isolated (louver closed). The airflow through the emplacement drifts can be adjusted using the 
regulator located in the turnout bulkhead. Both the position and status of the regulator and the 
emplacement access doors are monitored remotely. The airflow through the regulator is also 
remotely monitored, and the regulator can be remotely adjusted to achieve the required airflow. 
Regulators and fans can also be adjusted manually.

The airflow regulator instrumentation includes air velocity, airflow volume (calculated), 
temperature, and humidity, and it provides for manual overrides. The instrumentation is linked to 
the Central Control Center and interfaces with the digital control and management information 
system to provide real-time monitoring, adjustment, and recording of the ventilation conditions for 
each emplacement drift.

The airflow distribution through the repository is continuously monitored and automatically 
controlled by the digital control and management information system. As the airflow requirements 
vary over time or as changes in performance are detected, changes in system setpoints or operation 
can be evaluated and implemented remotely through the digital control and management 
information system.
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The airflow regulator louvers are interlocked with the emplacement access door position indicators 
so that when an emplacement access door is opened, causing a temporary airflow anomaly, the 
regulator louvers do not adjust for the temporary decrease in airflow.

The Type C isolation barrier prevents a ventilation bypass in the system between intake and exhaust
airways. Access from the development side is limited to the area between the bulkheads. Security 
personnel will control access into the emplacement area, and such access will only be allowed in 
case of an emergency. Personnel from the emplacement side may exit through both isolation barrier 
bulkheads in case of emergency (BSC 2008c, Sections I.4.1.3 and P.2.1.1).

1.3.5.2.1 Emplacement Access Door Operation 

Emplacement access doors are opened in opposite rotational directions. That is, as one door opens 
inward toward the emplacement drift, its complementary door opens outward toward the access 
main. This design feature uses the force exerted on the face of the doors from the pressure of the 
ventilation system to aid in the movement of one door of the tandem set, while opposing the 
movement of the opposite door. The door closest to the access main always opens toward the access 
main. This configuration is advantageous based on the geometry of the turnout.

Before the TEV accesses the turnout and before the emplacement access doors are opened, 
radiological access controls (as discussed in Section 5.11) and engineering controls (as discussed in 
this section and in Section 1.3.3.5) are in place to provide positive access control and prevent 
unauthorized or inadvertent access to the very high radiation areas in the drift and turnout.

1.3.5.2.2 Airflow Regulator Operation 

The airflow regulator located within the turnout bulkhead is the principal component for regulating 
airflow rates to the emplacement drift. Figures 1.3.5-9 and 1.3.5-10 show the location and general 
configuration of the airflow regulator. The louver opening within the regulator is adjustable and 
normally open but is also capable of closing.

Regulators designed for application in extreme environmental conditions and for many industrial 
settings are installed. Due to the location of the regulators in the turnout, the repository environment 
to which the regulators are exposed is similar to those for other industrial applications. The expected 
temperature and radiation environment at the turnout bulkhead location is considered mild to 
moderate (Table 1.3.5-2 and Figure 1.3.3-13).

The functionality criteria for the regulator located at each emplacement drift include an adjustable 
opening, seals capable of full closure to limit air bypassing the regulator, and handling of a nominal 
airflow rate of 32,000 cfm (15 m3/s), as well as a larger flow rate up to 100,000 cfm (47 m3/s) for 
cooling purposes. The regulators are electronically controlled to maintain the nominal airflow rate 
of 32,000 cfm (15 m3/s) per drift and can be adjusted to increase or decrease the flow rate as needed 
for other operational purposes such as additional cooling of the drift if needed for equipment 
incursions or mitigation of off-normal events, or to compensate for variables, such as drift length 
and drift thermal loading. The regulators can operate in automatic or manual mode.
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Reliability criteria include proper functioning of the regulator, with planned maintenance and 
replacement, over the preclosure period of up to 100 years. The regulators have a minimal number 
of moving parts, and common commercial parts, so that maintenance or replacement is facilitated.

The subsurface ventilation system is used for repository decay heat removal. The ability built into 
the system to modify flow rates and distribution patterns to meet the cooling demand for different 
applications during normal and off-normal situations also provides operational flexibility as 
repository operational conditions change.

The variable-speed fans, dual-fan installations, and adjustable regulators provide the means to vary 
emplacement drift airflow rates to meet thermal requirements. Fresh air from the access main enters 
the emplacement drift as regulated by an automated regulator located in the turnout bulkhead of 
each emplacement drift. The air volume required is minimal at the start of the emplacement 
operations and gradually increases as waste packages are loaded in an emplacement drift. When an 
emplacement drift is fully loaded, the design basis airflow rate to maintain thermal goals in the 
natural and engineered barriers is 32,000 cfm (15 m3/s). This airflow rate is the basis for the 
ventilation system design.

1.3.5.3 Safety Category Classification
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1), (2); Section 2.1.1.7.3.3(II): 
AC 2(1), AC 7(5), (6)]

The subsurface ventilation system is neither ITS nor ITWI because the system does not prevent or 
mitigate an event sequence in the preclosure period and does not contribute to a significant barrier 
function in the postclosure period.

The system is required to maintain thermal limits that assure the performance of the host rock and 
to protect the commercial SNF cladding and naval SNF properties. Maintaining the host rock 
temperature below 200°C assures that elevated temperatures do not adversely affect the strength 
properties of the rock. Prevention of damage to the commercial SNF is assured by maintaining the 
cladding temperature of the commercial SNF below 350°C for normal operations and below 570°C 
for off-normal operations. Maintaining the appropriate time and temperature relationship, for 
example, as shown in Figure 1.3.1-8, ensures that the properties of the naval SNF used for 
preclosure and postclosure safety analyses are not adversely affected as discussed in Section 1.5.1.4 
of the Naval Nuclear Propulsion Program Technical Support Document. Establishing a maximum 
30-day time period in which to restore subsurface ventilation ensures flexibility for subsurface 
operations. The operational approach, however, is to resolve outages as soon as practical. The 
thermal effects and consequences of a shutdown of forced ventilation for the subsurface facility are 
discussed in Section 1.3.5.3.1.

Although the rock properties and cladding behavior are considered in preclosure and postclosure 
safety analysis, exceeding these limits does not affect the safety classification of the subsurface 
ventilation system. The non-ITS classification for the subsurface ventilation system includes the 
isolation barriers, which are not relied on for limiting or preventing dose exposure to personnel 
working on the development side of the repository. However, the isolation barriers constitute a 
physical barrier to prevent access to high radiation areas in the exhaust mains, in addition to their 
ventilation function.
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1.3.5.3.1 Events Leading to Ventilation Shutdown

A forced (mechanical) ventilation shutdown to one or more emplacement drifts would require one 
or more of the following events to occur:

• Mechanical failure of exhaust fans

• Power failure to exhaust fans including loss of transmission lines

• Closure of ventilation control regulators

• Collapse and blockage of a portion of an emplacement drift or its supply or exhaust 
airways.

The ventilation fans located on exhaust shafts are designed as two fans operating in parallel for the 
large diameter shafts. Small diameter shafts are also equipped with dual fans, but only one fan is 
operational at any given time. In a parallel fan arrangement, if one fan fails or is taken off-line for 
maintenance purposes, the remaining fan produces approximately 70% of the original airflow 
volume of the two fans operating together. Because the repository layout has multiple exhaust and 
intake shafts, each with two fans, a shutdown of a fan does not have a major impact on the repository 
airflow volume and does not affect the ability of the ventilation system to supply each emplacement 
drift with sufficient airflow to meet the repository temperature limits.

In the event of loss of normal power to all of the exhaust fans, ventilation air circulation through the 
emplacement drifts is supplied from two sources. First, three exhaust fans are provided with standby 
backup power supplies. Additionally, all exhaust shaft surface pads are equipped with connections 
for mobile diesel backup generators. Second, air circulation throughout the repository continues due 
to thermal gradient. The air in the emplacement drifts is heated from the waste packages. This 
heating decreases the density of the air, creating buoyancy-driven natural convection currents in 
which hot air is exhausted from shafts and cool, fresh air is drawn into the repository through the 
ramp and intake shafts. Natural ventilation airflow rates have been calculated to be about 50 % of 
the forced ventilation flow rate during the preclosure period, for fully loaded emplacement drifts.
For a partially loaded emplacement drift, analyses show that it would take a length of approximately 
120 m of emplaced waste to develop sufficient natural ventilation pressure to assure flow (BSC 
2005, Section 7). Once natural ventilation pressure has been established in the first emplacement 
drift, natural ventilation airflow will continue to occur and is further enhanced as more waste 
packages are added throughout the remaining emplacement drifts.

Ventilation control regulators for the emplacement drifts are located in each turnout bulkhead. The 
air pressure and flow rate at each bulkhead are monitored, and the regulators are positioned 
automatically to control airflow at the desired level. With a loss of power, the control regulators fail 
as-is, in the current position, allowing natural airflow resulting from thermal convection currents to 
proceed through the emplacement drifts. In the event that it is necessary during a loss of power event 
to open the emplacement access doors, it is possible to manually open the emplacement access doors
by removing a locking pin, once the appropriate radiological protection and security controls are in 
place.
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Numerical modeling of the preclosure stability of emplacement drifts under in situ, thermal, and 
seismic loading indicates that unsupported emplacement drifts are stable with only minor collapse 
possible from combined thermal and seismic effects (Sections 1.3.3.3 and 1.3.4.4). Considering the 
emplacement drift ground support, which consists of closely spaced stainless steel rock bolts and 
stainless steel surface sheeting, a collapse that substantially prevents airflow through a drift is not 
expected during the preclosure period (Section 1.3.5.3.2.3).

1.3.5.3.2 Analysis of Thermal Effects from a Ventilation Shutdown

Analyses of loss of ventilation include the following off-normal cases:

• A worst-case analysis of a complete shutdown of ventilation, with no credit taken for 
natural convection

• A more realistic analysis in which ventilation shutdown occurs and cooling is through 
natural convection

• Reduction in ventilation flow rates due to obstructions in an emplacement drift or in a 
supply or exhaust airway.

1.3.5.3.2.1 Complete Ventilation System Shutdown without Natural Convection 
Cooling

Numerical simulations examined the impact of a subsurface ventilation shutdown with no natural 
convective cooling on the drift wall, waste package surface, and fuel cladding temperatures for the 
2.0 kW/m emplacement drift linear heat load and a maximum waste package initial heat output of 
18.0 kW. Previous analyses of subsurface ventilation shutdown scenarios for a drift thermal line 
load of 1.45 kW/m showed that ventilation shutdown cases with no natural convection and 
occurring 1 year after the beginning of emplacement resulted in the most conservative or bounding 
cases in terms of potentially exceeding repository temperature limits (Table 1.3.1-2). Results of the 
numerical simulations for such an off-normal case for the higher drift thermal line load of 2.0 kW/m 
are presented in Figure 1.3.5-17 for the waste package arrangement defined in Table 1.3.5-3. The 
maximum temperatures as reported in Figure 1.3.5-17 correspond to the location of waste package 
6 in the waste package segment in Table 1.3.5-3. The simulation results show that at 30 days after 
loss of ventilation the peak waste package surface temperature is 244°C. The waste package surface 
temperature reaches the limit of 300°C at 162 days after loss of ventilation. The drift wall reaches 
176.7°C at 28.6 days after loss of ventilation and reaches the limit of 200°C at 55.3 days after loss 
of ventilation. Simulation results of thermal response for the waste package and waste package 
internal components for the same off-normal loss of ventilation case are shown in Figure 1.3.5-18. 
The results show that cladding temperatures stay well below 570°C for the extended period 
simulated without ventilation.

1.3.5.3.2.2 Complete Ventilation System Shutdown with Natural Convection Cooling

Figure 1.3.5-19 shows the time-versus-temperature curve after emplacement for the naval SNF 
canister in a waste package with natural convection considered. The upper curve shows the thermal 
response for a naval SNF canister contained in a naval waste package with a thermal power of 
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12.9 kW (at the time of emplacement) emplaced between two commercial SNF waste packages 
with thermal power of 11.8 kW each, and within a seven-waste-package segment with a line load 
of 1.45 kW/m. The naval SNF waste package is analyzed as being placed at the center of the 
seven-waste-package segment. The upper curve shows repository closure taking place 
approximately 50 years after emplacement of the package. Since the emplacement thermal power 
limit for the naval waste package is 11.8 kW, this result (performed at 12.9 kW) thermally envelopes 
the naval SNF canister surface temperature inside a waste package after emplacement of a naval 
SNF waste package in accordance with naval SNF waste package emplacement operational thermal 
loading limits. As discussed in Section 1.3.1.2.5, the Naval Nuclear Propulsion Program uses this 
thermal envelope to evaluate naval SNF canisters that have an overall maximum thermal power of 
11.8 kW and a maximum peak axial heat load of 5.0 kW/m to confirm that the naval SNF is not 
adversely affected by the thermal conditions.

Since the naval waste package has an emplacement operational thermal loading limit 
(Section 1.3.1.2.5) that requires placement of nearby waste packages to be lower in thermal output 
than most packages (11.8 kW versus 18.0 kW), the potential exists for an error to occur during 
emplacement. Accordingly, analyses have been performed to evaluate the potential misplacement 
of a high-thermal power commercial SNF waste package next to a naval waste package to determine 
whether the operational limit of 30 days for subsurface ventilation restoration is adequate. 
Evaluation of the emplacement system controls and human performance in the emplacement 
process show that the total probability of misplacement over the preclosure period of two 
high-thermal power commercial SNF waste packages within a naval seven waste package segment 
is 1 × 10−5 (BSC 2008d, Section 7.3). The case, however, of a single 18.0 kW-thermal power 
commercial SNF waste package being misplaced next to a naval waste package could occur. To be 
conservative, misplacement of the maximum possible thermal-power commercial SNF waste 
package (22.0 kW), was evaluated and the resulting thermal response curve is shown in 
Figure 1.3.5-19 (lower curve). Allowing for natural convection cooling, the results demonstrate a 
less-limiting temperature profile (i.e., the peak temperatures of the misplacement analysis during 
the preclosure and postclosure periods do not exceed the peak temperatures of the reference curve 
and the profile of the misplacement curve follows generally the same profile as the reference curve).

A different misplacement case is possible where a naval SNF waste package with a thermal power 
of 11.8 kW is mistakenly placed in a seven-waste-package segment loaded to the commercial SNF 
operational thermal loading limits (commercial SNF waste packages with a maximum thermal 
power of 18.0 kW and a drift load not to exceed 2.0 kW/m). Allowing for natural convection 
cooling, the naval SNF canister thermal response from an emplaced 11.8 kW naval SNF waste 
package with a peak axial thermal load of 4.45 kW/m is represented by the lower curve in 
Figure 1.3.5-20 (the upper curve in the figure represents the naval SNF canister thermal reference 
envelope that is also presented in Figure 1.3.5-19). The thermal response shown in Figure 1.3.5-20
identifies margin as well as no exceedance of the naval SNF canister time-temperature reference 
envelope. The margin indicates that an analysis that would include a maximum peak axial thermal 
load of 5.0 kW/m for the naval SNF waste package would likely have a response below the thermal 
reference envelope as well. This analysis will be completed prior to emplacement of a naval waste 
package with a peak axial thermal load that exceeds 4.45 kW/m, to show conformance with the 
thermal limits for preclosure and postclosure. Evaluation of the emplacement system controls and 
human performance in the emplacement process show that the probability of a misplacement of a 
naval SNF waste package into a seven-waste-package segment loaded to the commercial SNF 
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operational thermal loading limits, combined with a misplaced commercial SNF waste package that 
exceeds 11.8 kW, is 6 × 10−6 (BSC 2008d, Section 7.3).

Both misplacement scenarios described above take credit for natural convection ventilation, which 
will not be present until the first 120 m of the first drift have been loaded (BSC 2005, Section 7). In 
the initial 120-m section of drift, unlike the misplacement cases described above, a single 
misplacement (placement of a commercial SNF waste package that exceeds a thermal power of 
11.8 kW next to a naval SNF waste package with a thermal power greater than 8.5 kW, or placement 
of a naval SNF waste package with a thermal power greater than 8.5 kW in a seven-waste-package 
segment loaded to the commercial SNF operating thermal loading limit of 2.0 kW/m) could lead to 
an unacceptable naval SNF canister temperature profile as compared to the thermal reference 
envelope in Figures 1.3.5-19 and 1.3.5-20. The probability of such a misplacement has been 
calculated and is very small (2 × 10−5 over the preclosure period) (BSC 2008d, Section 7.3).

An analysis of natural convection for a fully loaded emplacement drift estimated the natural 
convective airflow rates for the repository during a mechanical ventilation shutdown. A sustained 
power outage to ventilation fans could result in loss of forced ventilation to the subsurface facility. 
Analysis of the natural convection potential of a fully loaded drift during the preclosure period 
indicates that, in the absence of forced ventilation, airflow rates of about 6.4 to 10.1 m3/s will be 
maintained across the emplacement drifts, for drifts loaded to 1.45 and 2.0 kW/m, respectively. 
Therefore, natural ventilation alone provides sufficient airflow for a fully loaded drift to ensure that 
the fuel cladding temperature limit (the overall controlling temperature limit) is not exceeded even 
during an extended power outage.

The results indicate that for the realistic case of natural convection, the 30-day time limit is 
adequate. Furthermore, the emplacement of naval SNF waste packages has been analyzed for an 
18-year emplacement period, with natural convection cooling considered. Longer emplacement 
periods for the naval SNF waste packages are feasible given the margin identified in these 
calculations or possible adjustments to the operational thermal loading limits for the naval SNF 
waste packages.

1.3.5.3.2.3 Ventilating Partially Obstructed Emplacement Drifts

The potential for rockfall in emplacement drifts during preclosure, resulting only from the 
combined effects of thermal and seismic loading, is minor. A partial obstruction of an emplacement 
drift was analyzed. This analysis assumed an unsupported emplacement drift, even though ground 
support will be used throughout the emplacement drifts during the preclosure period. The 
calculations show that the ventilation system is capable of maintaining normal system airflow rates 
through an emplacement drift that is approximately 94% obstructed by rockfall in a localized area.
Therefore, even in the event of unexpected rockfall, the ventilation system is capable of maintaining 
airflow through emplacement drifts. The analysis accounts for supply or exhaust airway collapse or 
obstruction indirectly as a loss in heat removal potential.

Analyses of drift degradation indicate that blockage of emplacement drifts by rockfall is not likely 
during the preclosure period in drifts located in either the nonlithophysal or the lithophysal rock 
(BSC 2004, Section 6). Stability analyses of unsupported drifts in lithophysal rock based on a 
seismic event with a mean annual exceedance probability of 1 × 10−4 (occurring once in 10,000 
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years), indicate that rockfall is most likely in the form of rubble than as a wedge-type failure during 
the preclosure period. The resulting volume of rockfall was estimated at 0.19 m3 per linear kilometer 
of drift (BSC 2004, Table 6-49). Any potential rockfall during preclosure in areas of lithophysal 
rock would be associated with small loosening and unravelling rock pieces, which can be prevented 
with the perforated stainless steel sheet liner proposed for the emplacement drifts.

Stability analyses of unsupported drifts in nonlithophysal rock based on a seismic event with a mean 
annual exceedance probability of 1 × 10−4 (occurring once in 10,000 years), predicted the heaviest 
key block to be 2.72 metric tons. Assuming a cube-shape for this key block, it would have an 
approximate dimension of 1 m per side (BSC 2004, Table 6-20). A rock bolt such as those specified 
for the emplacement drifts ground support design would have enough holding capacity, whether it 
is calculated for the anchorage force of the bolt or the shear resistance force along the interface 
between the bolt and the key block, to prevent the 2.72-metric-ton block from falling. From these 
results, it can be determined that, even if the prescribed ground supports failed, the volume of 
rockfall estimated for these rockfall events in lithophysal or nonlithophysal rock would not be 
sufficient to completely obstruct a 5.5-m diameter emplacement drift.

Analyses performed with the UDEC model (BSC 2004, Section 6.4) for emplacement drifts located 
in lithophysal rock, assuming an unsupported condition (no ground support), estimated no rockfall 
for rock mass in Categories 2 to 5 (Table 1.3.3-2) when subjected to ground motions with an annual 
exceedance probability of 1 × 10−4. Similar analyses performed for Category 1 rock mass, the 
weakest lithophysal rock mass, resulted in minor spalling (BSC 2004, Figure 6-120). Category 1 
lithophysal rock is only found sporadically at the repository level as demonstrated by geologic 
mapping results for the Enhanced Characterization of the Repository Block Cross-Drift, where less 
than 3% of the rock in that drift was rated as Category 1 (BSC 2007d, Sections 6.3 and 6.4.4).

1.3.5.3.3 Summary of Ventilation Loss Analyses Results

The analysis of loss of forced ventilation airflow to the emplacement drifts shows that no 
temperature limits are exceeded for durations of at least 30 days for the commercial SNF, 
codisposal, and naval SNF waste packages; therefore, there would be sufficient time to take 
reasonable steps to restore forced ventilation airflow.

1.3.5.3.4 Considerations for Potential Radioactive Releases from the Subsurface 
Facility

Normal operations at the subsurface facility involve the transport and placement of waste packages 
that are closed and sealed. A breach of a waste package and leakage of radioactive material from a 
waste package have been identified as a beyond Category 2 event sequence during preclosure. No 
Category 1 or 2 event sequences have been identified for operations of the subsurface facility 
(Sections 1.7 and 1.8).
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There are three mechanisms that could generate potential airborne releases of radioactive 
materials during normal operations of the subsurface facility:

• Resuspension of radioactive contamination from the external surfaces of the emplaced 
waste packages

• Neutron activation of ventilating air inside the emplacement drifts

• Neutron activation of removable host rocks (rock dust) inside the emplacement drifts.

Section 1.8.2.2 discusses the methodology and results for these potential releases, and it has been 
determined that any resulting radiological doses would not exceed the regulatory limits of 10 CFR 
63.111 (a)(2). Therefore, the subsurface ventilation system is not required to prevent or mitigate 
releases from the subsurface and no filtration is included in the subsurface ventilation system 
design. Furthermore, the subsurface ventilation system is designed such that airflow direction is 
away from normally occupied underground openings and into the exhaust airways.

1.3.5.4 Design Codes and Standards
[NUREG-1804, Section 2.1.1.2.3: AC 3(1); Section 2.1.1.7.3.1: AC 1(5); Section 
2.1.1.7.3.3(II): AC 7(1), (6)]

Steel structures, such as the isolation barriers and the emplacement access doors, are designed in 
accordance with the allowable stress design method of Manual of Steel Construction, Allowable 
Stress Design (AISC 1997; BSC 2007e, Section 4.2.13.2.4).

The subsurface ventilation system is classified as non-ITS. Therefore, subsurface ventilation 
system SSCs located at the surface, such as fan structures, including steel, concrete pads, 
foundations, and footings, are designed to International Building Code Seismic Use Group I or II, 
depending on hazard occupancy rating (Section 1.3.2 and Table 1.3.2-2). In accordance with 
International Building Code 2000 (ICC 2003), each structure is provided with complete lateral- and 
vertical-force-resisting systems capable of providing adequate strength, stiffness, and energy 
dissipation capacity to withstand the design earthquake ground motions within the prescribed 
deformation limits. Applying the seismic design parameters to the fan installations ensures that 
there is no structural failure of the components because of a seismic event. The fans may trip off 
because of vibration sensors but can be restarted after verification of the cause and after equipment 
inspection.

The cabling and other electrical components of the subsurface ventilation system are designed to 
minimize fire hazards by complying with requirements in NFPA 1, Uniform Fire Code, and NFPA 
801, Standard for Fire Protection for Facilities Handling Radioactive Materials.
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Other codes and standards applicable to the subsurface ventilation system are:

• TLVs and BEIs, Based on the Documentation of the Threshold Limit Values for Chemical 
Substances and Physical Agents & Biological Exposure Indices (ACGIH 2006).

• Air pollutants (carbon monoxide, lead, nitrogen dioxide, ozone, sulfur oxides, and 
particulate matter)—Releases from underground shall not exceed the limits of the 
National Ambient Air Quality Standards (40 CFR Part 50).

• Diesel Use—Mobile diesel-powered equipment used underground in atmospheres other 
than gassy operations shall comply with applicable standards as regulated by DOE in 
accordance with 10 CFR Part 851, such as the Federal Mine Safety and Health Act of 
1977.

• Construction area—Shall have reversibility in ventilation in conformance with applicable 
standards, such as the Occupational Safety and Health Administration (29 CFR 1926), as 
regulated by DOE in accordance with 10 CFR Part 851.

• MIL-STD-1472F, Change Notice 1, 2003, Human Engineering.

• ACI 318-02/318R-02, Building Code Requirements for Structural Concrete (ACI 318-02) 
and Commentary (ACI 318R-02).

• The Electrical Engineering Handbook (Dorf 1993).

• Manual of Steel Construction, Allowable Stress Design (AISC 1997).

1.3.5.5 Conformance of Design to Criteria and Bases
[NUREG-1804, Section 2.1.1.2.3: AC 3(1)]

The subsurface ventilation system is classified as non-ITS (Table 1.9-1); therefore, there are no 
preclosure nuclear safety design bases to be satisfied by this system.

The subsurface ventilation system is classified as non-ITWI (Table 1.9-8), however, there are 
requirements derived from postclosure nuclear safety design bases considerations that relate to the 
design of the subsurface ventilation system because of the role the system plays in the repository 
meeting postclosure conditions consistent with the analyzed repository total system performance.
Table 1.3.5-4 presents the derived requirements from postclosure nuclear safety design basis 
considerations that relate to the subsurface ventilation system, related design criteria 
considerations, and types of controls, either configuration management or procedural safety, that 
will be implemented to ensure the parameter conditions and characteristics that contribute 
significantly to barrier performance are established or maintained.
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Table 1.3.5-1. Emplacement Drift Inlet Air Properties, Weighted Averages at Exploratory Studies Facility 
Station 28+93

Air Property Weighted Average

Dry Bulb Temperature 75°F (23.82°C)

Wet Bulb Temperature 51.7°F (10.94°C)

Relative Humidity 19.22%

NOTE: Air temperatures represent a 4-year average of actual underground temperatures as measured at the 
Exploratory Studies Facility tunnel. These averages are used in the analyses in lieu of diurnal or seasonal 
inputs.

Table 1.3.5-2.  Normal Range of Air Temperatures for Subsurface Facility

Subsurface Facility Area
Air Temperature 

Range (°C) Comment

Access mains (habitable) 
Turnouts (uninhabitable)

7 to 31 None.

Fully loaded emplacement drifts 
(uninhabitable)

23 to 100 In-drift air temperatures vary per these 
parameters: location in drift (low values 
near drift entrance), emplacement drift 
length, and years of ventilation. 
Note: In-drift air temperatures are 
maintained below 50°C when 
emplacement equipment is operating.

Exhaust mains, shaft access drifts, and shafts 
(uninhabitable)

Up to 100 Temperatures in these areas vary with 
extent of emplacement in a given area or 
panel and with years of ventilation.

Exhaust fans 100 maximum The temperatures at the shaft collar will be 
equal to the temperature of the air 
exhausting from the emplacement areas, 
or slightly lower due to cooling of the air in 
the vertical ascent through the shaft.
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Table 1.3.5-3. Twelve Waste Package Segment Used in Numerical Simulations of Subsurface Ventilation 
Shutdown Cases, with Waste Package Order of Emplacement in the Segment and Initial 
Heat Loads

Waste Package Number Waste Package Type Initial Heat (kW)

12a TAD 3.042

11 5-Long 0.637

10 TAD 18.009

5 TAD 11.557

4 TAD 11.557

2 TAD 18.009

1 5-Long 0.637

3 TAD 14.955

6 TAD 18.009

7 5-Short 9.470

8 TAD 11.557

9 TAD 18.009

13a 5-Long 0.319

NOTE: ahalf waste package. 
TAD = transportation, aging, and disposal; 5-Long = 5-DHLW/DOE Long Codisposal; 
5-Short = 5-DHLW/DOE Short Codisposal.
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Part (d) – Procedures will be 
developed that will control the 
operation of the subsurface 
ventilation system to assist in the 
control of concrete dust generation. 
This will be accomplished by 
providing localized controls in areas 
where concrete work is being done. 
Such controls may include the use 
of air ducting to remove dust-laden 
air, or dust scrubbers and air filters 
to trap the dust before it gets carried 
out into the repository airways. Dust 
suppression through the use of 
inflatable barriers, foam coatings 
and surfactants may also be used 
as the activity demands.
Table 1.3.5-4.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Param

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configurat

Parameter Number 
and Title

Values, Ranges of Values or 
Constraints

Subsurface 
Facility - 
Closure

02-03 
Committed 
Materials

During construction of the 
emplacement drifts, and operation 
and closure of the repository, 
administrative controls will be 
imposed to prevent impact on waste 
isolation from materials used, lost, or 
left in the repository. These controls 
will be supported by technical 
evaluation. 
The following constraints will be 
imposed on the administrative control 
of tracers, fluids, and materials; 
construction materials; and 
committed materials:
Parts (a) through (c): Controls related 
to the use of approved tracers, fluids, 
and materials during construction, 
operation, and closure are addressed 
in Table 1.3.6-3.
d) Concrete dust generation shall be 
kept to a minimum through the use of 
surface coatings and / or the use of 
dust suppression and ventilation 
control during concrete installation 
and/or removal.
e) Controls related to the use of 
approved tracers, fluids, and 
materials during construction, 
operation, and closure are addressed 
in Table 1.3.6-3.

Yes Part (d) – Concrete dust 
generation is likely during 
repository development activi
during emplacement and 
postemplacement as a result
maintenance of invert structu
and ground support in 
nonemplacement areas, and 
during closure as a result of 
removal of noncommitted 
cementitious materials in the 
shafts, ramps, access mains,
turnouts, invert structures, an
miscellaneous slabs.
Dust suppression and emissi
controls will be controlled by 
development contractors thro
contract specifications and 
contractual special conditions
Dust suppression measures w
also be enforced during 
emplacement and 
postemplacement for any 
concrete dust generating 
activities in the repository. Du
suppression and mitigation 
considerations during closure
the repository will be develop
and incorporated into the clos
design to be submitted as pa
the license amendment 
application to close the repos
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Procedures controlling the thermal 
management plan and waste 
package loading plan will include 
the requirement of a minimum of 50 
years of ventilation, following the 
final waste package emplacement 
as part of the calculation for thermal 
loading.

Subsurface Ventilation (Continued)

ion
Postclosure Procedural Safety 

Control
Emplacement 
Drift 
Ventilation

06-01
Duration of 
Ventilation 

The duration of the ventilation period 
shall be a minimum of 50 years after 
final emplacement.

No NA 
(Background information: 
Operational criteria for the 
subsurface ventilation system
described as part of the therm
management discussion in 
Section 1.3.1.2.5. As stated in
Section 1.3.5.1.3, the therma
management plans demonstr
the ability to utilize varying 
ventilation periods. The 
demonstration case for therm
loading that is described in 
Section 1.3.1.2.5, provides fo
ventilation period of 65 years
Accordingly, thermal 
management planning will inc
a minimum 50 year ventilation
duration after final waste pack
emplacement. The design of 
subsurface ventilation system
and its components, as descr
in Section 1.3.5.1, has the 
capability to provide continuo
ventilation to each of the 
repository emplacement drifts
nominal rates of 32,000 cfm f
minimum of 50 years after wa
emplacement is complete.)

Table 1.3.5-4.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters—

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configurat

Parameter Number 
and Title

Values, Ranges of Values or 
Constraints
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Subsurface Ventilation (Continued)

ion
Postclosure Procedural Safety 

Control
Emplacement 
Drift 
Ventilation

06-02
Drift Wall 
Temperature

The maximum preclosure 
emplacement drift wall temperature 
shall not exceed 200°C to avoid 
possible adverse conditions 
(e.g., mineralogical transitions, rock 
weakening).

No The calculations performed in
support of the thermal loading
plan assures that the 
emplacement drift wall 
temperature limits of the subj
constraint are not violated. Th
thermal management approac
described in Section 1.3.1.2.5
with supporting postclosure 
analyses described in 
Section 2.3.5.4.3. The subsur
ventilation design will provide
ventilation flow rates and 
durations as required by thes
analyses, as described in 
Section 1.3.2.4.5.2.

Emplacement 
Drift 
Ventilation

06-03
Waste Package 
Temperature Limit

The waste package surface 
temperature shall be kept below 
300°C for the first 500 years and 
below 200°C for the next 9,500 years 
to eliminate postclosure issues 
(i.e., phase stability).
Note: Compliance with this constraint 
after repository closure is 
demonstrated in postclosure 
analyses (only). Parameters 05-03, 
06-01, and 06-06 support compliance 
with this constraint during both the 
preclosure and postclosure periods.

Yes The calculations performed in
support of the thermal loading
plan assures that the waste 
package surface temperature
limits of the subject constraint
not violated. The thermal 
management approach is 
described in Section 1.3.1.2.5
with supporting postclosure 
analyses described in 
Section 2.3.5.4.3. This 
requirement is represented a
one of the thermal managem
criteria for the repository as st
in Table 1.3.1-2 and as a des
criterion for the subsurface 
ventilation system in 
Section 1.3.2.4.5.2.

Table 1.3.5-4.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters—

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configurat

Parameter Number 
and Title

Values, Ranges of Values or 
Constraints
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Subsurface Ventilation (Continued)

ion
Postclosure Procedural Safety 

Control
Emplacement 
Drift 
Ventilation

06-05
Maximum 
Temperature of 
HLW Glass 
Canisters – 
Ventilation

The maximum HLW glass 
temperature shall be less than 400°C.

No The calculations performed in
support of the thermal loading
plan assures that the HLW gl
temperature limits of 400°C a
not violated. The thermal 
management approach is 
described in Section 1.3.1.2.5
with supporting postclosure 
analyses described in 
Section 2.3.5.4.3. The subsur
ventilation design will provide
ventilation flow rates and 
durations as required by thes
analyses, as described in 
Section 1.3.2.4.5.2

Emplacement 
Drift 
Ventilation

06-06
Average Airflow 
Rate for Preclosure 
Ventilation of 
Emplacement Drifts

During the preclosure phase, the 
nominal inlet airflow rate per 
emplacement drift shall be 15 m3/sec. 
The range of airflow rate in a given 
drift shall be 15 m3/sec ± 2 m3/sec, 
based on integrated ventilation 
efficiency and drift length.

No The design of the subsurface
ventilation system will provide
airflow rates per the subject 
constraint. These airflow rates
consistent with the thermal 
loading management approac
described in Section 1.3.1.2.5
with supporting postclosure 
analyses described in 
Section 2.3.5.4.3. The subsur
ventilation design will provide
ventilation flow rates and 
durations as required by thes
analyses, as described in 
Section 1.3.2.4.5.2

OTE: NA = not applicable.

ource: Table 1.9-9; BSC 2008e, Table 1.

Table 1.3.5-4.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameters—

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI Design Criteria/Configurat

Parameter Number 
and Title

Values, Ranges of Values or 
Constraints
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Figure 1.3.5-1. Subsurface Ventilation System and 
Instrumentation Diagram
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Figure 1.3.5-2.  Underground Layout and Location of Ramps and Shafts

NOTE: The North Construction, North, and South Ramps serve as intake airways in conjunction with the intake 
ventilation shafts.
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Figure 1.3.5-3.  Typical Exhaust Fan Installation Configuration, Section and Plan View
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Figure 1.3.5-4.  Typical Intake Shaft Configuration, Section and Plan View

NOTE: Intake fan installation detail is not shown. Intake fan installation details will be provided by construction 
contractor.
— —
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Figure 1.3.5-5. Subsurface Repository Ventilation 
System at Full Emplacement
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Figure 1.3.5-6. Concurrent Development and 
Emplacement Operations in Panel 1 
(Initial Operating Capability)
NOTE: The observation drift is only equipped with ventilation bulkheads and not 
isolation barriers. Source: BSC 2008a, Figure 16.
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Figure 1.3.5-7. Concurrent Development and 
Emplacement Operations in Panel 2 
(Panel 1 Fully Loaded)
NOTE: The observation drift is only equipped with ventilation bulkheads and not 
isolation barriers.
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Figure 1.3.5-8. Isolation Barriers Types A, B, and 
C—General Arrangements
NOTE: Temporary airlock chamber connected to the bulkhead on the left side 
of this figure is only necessary when the other bulkhead is not 
functional as illustrated in this figure.
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Figure 1.3.5-9. Turnout Bulkhead and Emplacement 
Access Doors
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Figure 1.3.5-10. Typical Turnout Bulkhead and 
Emplacement Access Door Dimensions
NOTE: Detail 1 called out in Elevation View is shown in Figure 1.3.5-11.
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Figure 1.3.5-11. Emplacement Access Doors—Counter 
Opening Arrangement
NOTE: Location for Detail 1 is shown in Figure 1.3.5-10, Elevation View.
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Figure 1.3.5-12.  Emplacement Access Door Instrumentation and Controls

NOTE: The purpose of the surface remote control switch is to prevent the emplacement access doors from being 
opened from underground without Central Control Center Facility action. The local enclosed/locked manual 
override switch works in conjunction with the surface remote control switch to provide locked controls for the 
emplacement access doors at each location. The audiovisual alarm provides a strobe and audible signal 
when the door is about to open. The time delay works in conjunction with the alarm. The motorized actuator 
and microprocessor indicate the status and action of the door-opening mechanism. The emplacement access 
door panels aid in monitoring the positions (status) of the emplacement access doors.
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Figure 1.3.5-13. Example of Butterfly-Type Airflow 
Regulator
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Figure 1.3.5-14.  Subsurface Ventilation Flow Diagrams for Development and Emplacement Sides

NOTE: Letters in diamonds and circles refer to features or locations also used in Figure 1.3.5-15 for the emplacement 
and development sides, respectively. 
TBM = Tunnel boring machine.
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Figure 1.3.5-15. Subsurface Ventilation Schematic for 
Panel 1 Development and Emplacement 
Sides
NOTE: TBM = Tunnel boring machine.
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Figure 1.3.5-16.  Typical Local Ventilation Arrangement for the Tunnel Boring Machine Excavation

NOTE: TBM = tunnel boring machine.
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Figure 1.3.5-17. Peak Temperature Histories for Emplacement Drift Wall and EBS Components 
Adjacent to the Location of the Hottest Waste Package (WP6), for the Numerical 
Simulation of Forced Ventilation Shutdown Occurring One Year After Beginning of 
Emplacement, Without Natural Convective Cooling and Without Resumption of Forced 
Ventilation

NOTE: WP = waste package; Invert = emplacement drift invert structure; 5 m = simulated rock temperature 5 meters 
from the emplacement drift wall; Between Drifts = simulated mid-pillar rock temperature; Case 4v_1y = case 
analyzed as described in Section 1.3.5.3.2.1; WP6 = location of waste package #6 listed in Table 1.3.5-3 and 
indicative of the location in the waste package segment for which temperatures are provided in figure.
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Figure 1.3.5-18. Temperature Histories for an 18.0-kW TAD Waste Package, Case 4v_1y Boundary 
Conditions

NOTE: TAD = transportation, aging, and disposal container; OCB = outer corrosion barrier; Case 4v_1y = case 
analyzed as described in Section 1.3.5.3.2.1.
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Figure 1.3.5-19. Naval SNF Canister Surface Temperature Comparison—Misplacement of a 22.0-kW 
Commercial SNF Waste Package in a 1.45-kW/m Naval Drift Segment Loaded with 
One 12.9-kW Naval SNF Waste Package, with 40% Natural Ventilation Efficiency 
During Preclosure and with Occurrence of an Off-Normal Condition
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Figure 1.3.5-20. Naval SNF Canister Surface Temperature Comparison—Misplacement of an 11.8-kW 
Naval SNF Waste Package in a 2.0-kW/m Commercial SNF Drift Segment with 40% 
Natural Ventilation Efficiency During Preclosure and with Occurrence of an Off-Normal 
Condition
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1.3.6 Subsurface Facility Closure
[NUREG-1804, Section 2.1.1.2.3: AC 3, AC 6; Section 2.1.1.7.3.2: AC 1; 
Section 2.1.1.7.3.3(III): AC 1]

This section describes the subsurface facility closure including: inspection of waste packages, 
installation of drip shields, removal of noncommitted materials, placement of backfill in ramps and 
shafts, and site restoration.

1.3.6.1 Closure Processes
[NUREG-1804, Section 2.1.1.2.3: AC 3(1), AC 6(1), (2); Section 2.1.1.7.3.3(III): 
AC 1(12)]

The final phase of the repository preclosure period is the closure of the subsurface facility. Closure 
consists of the following activities:

• Installation of drip shields
• Removal of noncommitted materials from the subsurface facility
• Placement of backfill in ramps and shafts
• Regrading of affected areas and installation of surface monuments
• Final site restoration.

Installation of the drip shields will be initiated after the U.S. Nuclear Regulatory Commission has 
issued a license amendment to close the repository in accordance with 10 CFR 63.51. The drip 
shield design is described in Section 1.3.4.7. The equipment and the process for installation of the 
drip shields are also discussed in Section 1.3.4.7.

The repository’s postclosure nuclear design basis that addresses closure of boreholes located within 
or near the footprint of the repository block (BSC 2008a, Table 1, Derived Internal Constraint 
09-03) is satisfied by backfilling the boreholes with materials compatible with the host rock 
materials, and plugging the boreholes at the surface. The time of closure for each borehole will be 
determined on a case-by-case basis.

The closure process also involves removal of items outside the emplacement drifts that could have 
an impact on long-term repository performance. These items are designated as noncommitted 
materials in the nonemplacement areas and are subjected to conformance with the repository’s 
postclosure nuclear safety design bases. These items include most concrete, miscellaneous steel 
structures, turnout bulkheads and emplacement access doors, electrical equipment and cables, and 
rails. The approach to be used for removal of noncommitted subsurface materials and planned 
decommissioning activities is described in Section 1.3.6.1.3. The operating philosophy for the 
emplacement drifts is to ensure that at closure no removal of materials or remediation is expected 
within the drift in order to close. That is, the emplacement drifts are maintained in a ready to close 
condition at all times, except for installation of the drip shields.

Repository backfill is limited to openings that connect the emplacement areas to the surface, mainly 
the ramps and the shafts, and it is not required for performance of the engineered barriers 
(Table 1.9-8). The backfilling strategy requires interface with the subsurface ventilation system to 
regulate and adjust airflow, as needed, and to control dust. The ventilation system has the flexibility 
— —
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to support backfilling operations. Placement of backfill also requires interface with removal and 
transportation of noncommitted materials. Ducted ventilation systems and dust filters installed to 
support closure will be utilized to ventilate dead-end work spaces being backfilled and to limit 
migration of dust into the emplacement drifts.

Subsequent to backfilling of shafts, the surface-based ventilation equipment and ancillary facilities 
will be dismantled, and the shaft collars will be removed to allow surface restoration. The surface 
terrain will be restored to as close to natural conditions as practicable (BSC 2008b, Section 6.6).

Closure structures, systems, and components (SSCs) are classified as non-ITS. The drip shields are 
classified as important to waste isolation (ITWI) because of their role in protecting the waste 
package during postclosure from rockfall and water seepage into drifts (Table 1.9-8).

General Sequence of Closure Activities—Figure 1.3.6-1 presents a general flow diagram of the 
subsurface facility closure activities. Generally, closure activities in the repository that rely on the 
crane rail transportation system would begin in the emplacement areas farthest away from the 
North Portal. Closure activities would then work towards the North Portal, successively 
implementing the closure activities while allowing for fully functional transportation and 
ventilation systems to be available to the work areas until work is completed in a section of a given 
panel. Sections of invert, crane rail, and electrical equipment and cables will be removed in 
nonemplacement areas no longer needing rail transportation, such as in areas adjacent to 
emplacement drifts where all the drip shields have been installed. Removal of noncommitted 
materials will be done via the South and North Construction Portals using other means of 
transportation. The exhaust fans will continue normal operation throughout the closure period 
until the drip shields have been installed and the noncommitted materials have been removed at 
the repository level (BSC 2008b, Section 6). Operational procedures and controls for SSCs 
described in Sections 1.3.1 through 1.3.5 will govern closure operations as applicable to SSCs 
active during the closure phase.

Initiation of closure activities in emplacement drifts is preceded by inspection of the emplaced 
waste packages to ensure that no unacceptable damage has occurred to waste packages in areas 
where ground support may have failed and/or rockfall may have occurred (BSC 2008a, Table 1, 
Derived Internal Constraint 03-24). If damage to any waste package is found, it will be evaluated 
with respect to potential impact on postclosure performance, and mitigation measures such as waste 
package repair or repackaging of the waste will be implemented if necessary.

Installation of drip shields will proceed from one emplacement drift to the next within a panel. The 
direction of advance of drip shield emplacement in a given panel is a function of materials traffic 
coordination. During emplacement of the drip shields, noncommitted materials will be removed 
from the repository during the same period of time. Coordination of this work will be done to ensure 
safe operation of the repository while minimizing schedule impacts. The drip shield emplacement 
gantry uses the same crane rail as the transport and emplacement vehicle; therefore, the crane rail 
operational support systems would have to be kept fully functional along the transportation routes 
except in the sections of access mains and turnouts serving emplacement drifts with drip shields 
already in place.
— —
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Prior to removal of noncommitted materials, the respective areas and materials would be surveyed 
and sampled to determine the potential presence of radioactive contamination. If contamination is 
found, decontamination and dismantlement methods will be implemented for the safe handling and 
disposal of the contaminated materials.

Once the drip shields are installed in a contiguous group of emplacement drifts within a panel, 
removal of noncommitted materials in their respective turnouts and in the adjacent sections of 
access main can begin following standard construction demolition methods with the appropriate 
controls in place for dust suppression and for spread of contamination, as applicable. Some of these 
controls may include deployment of inflatable isolation barriers to minimize dust-laden airflow into 
the emplacement drifts adjacent to areas in the turnouts where demolition activities are taking place. 
Additional controls for worker radiological protection and safeguards and security will be provided 
with design documentation for the license amendment to close the repository. 

After completion of drip shield installations and removal of noncommitted materials, the exhaust 
fans can be turned off and dismantled. Backfilling of the ramps and shafts can then be initiated. 
Backfill work fronts in the ramps and shafts will require local ventilation systems with dual ducting 
for air supply and air removal and dust control equipment. Backfill placement in shafts or ramps can 
be done sequentially or concurrently since the ramps and shafts are physically separated from each 
other and have no operational interfaces at this stage of closure. Backfill operations for each shaft 
or ramp would have their own access and support systems, including separate ventilation systems.

Once placement of backfill in the ramps and shafts is completed, surface restoration and installation 
of permanent repository monuments take place.

1.3.6.1.1 Final Inspection of Waste Packages

In conformance with the postclosure design bases for repository closure, the waste packages that 
have come in contact with fallen rock or ground support materials will be inspected prior to 
installation of the drip shields. Damage to the waste package corrosion barrier must be checked to 
ensure that scratches are less than 1.6 mm (1/16 in.) in depth and that deformations such as dents do 
not leave residual tensile stresses greater than 257 MPa (BSC 2008a, Table 1, Derived Internal 
Constraint 03-24).

The final inspection of the emplacement drifts ground support and waste packages will be 
performed with a remotely operated inspection gantry that uses the same rail, power feed, and 
communications systems as the drip shield emplacement gantry. The inspection gantry will also 
monitor the general condition of other emplacement drift components such as the waste package 
emplacement pallet and the condition of the crane rail in preparation for deployment of the drip 
shield emplacement gantry.

If a waste package is found to exceed the postclosure design bases damage limitations noted above, 
a remediation plan will be developed specific to the findings from the inspection. Such remediation 
may include removal of the damaged waste package for repair or replacement of the damaged 
corrosion barrier. Depending on the location of the damaged waste package in the drift, this 
operation may involve the temporary relocation of all the waste packages in front of the damaged 
waste package in the affected drift and placing the waste packages back in the drift at the conclusion 
— —
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of remediation and in conformance with the original in-drift loading plan (Section 1.3.1.2.5). 
Enough excess emplacement drift capacity will be available at closure for the relocation of the 
unaffected waste packages while remediation of the damaged waste package takes place.

1.3.6.1.2 Installation of Drip Shields

Equipment and methodology for installation of the drip shields are described in Section 1.3.4.7.2.

1.3.6.1.3 Removal of Noncommitted Materials from the Subsurface

Other than materials to be removed at closure, materials of potential concern to repository 
postclosure performance fall into two categories: (1) those materials that are brought into the 
repository environment as components of the engineered SSCs and that are proposed to become 
permanent fixtures of the repository, and (2) spurious materials and materials that unintentionally 
or inadvertently may get left behind after construction and operation activities but that are not a part 
of the engineered SSCs. The materials in the first category, such as most of the materials installed 
in the emplacement drifts and selected materials installed in nonemplacement openings, are 
designated as committed materials and are evaluated for their overall impact on long-term 
repository performance through performance assessment analyses. The types and quantities of 
these committed materials are controlled throughout the design, construction, and operational 
phases of the repository so that they are not exceeded beyond the limits analyzed in the performance 
assessment analyses (BSC 2008a, Table 1, Derived Internal Constraint 02-03). A preliminary 
inventory of these committed materials is presented in this section (Tables 1.3.6-1 and 1.3.6-2). The 
second category of materials designated as nondesign or undesirable committed materials 
originates mainly as residues from operation of construction or maintenance equipment and related 
activities, and they include such materials as organic residues from diesel equipment operations; 
maintenance materials such as lubricants, oils, cleaning solvents, anti-freeze liquids; organic 
residues from explosive materials; and dust control substances and additives. The nondesign 
committed material types and quantities are estimated and their potential impact to repository 
long-term performance is evaluated on an ongoing basis throughout repository lifetime, through the 
Site Performance Protection Evaluation Program to determine their status as committed or to be 
removed (FEP 1.1.02.03.0A) (Section 2.2, Table 2.2-1).

Materials and equipment not committed as permanent features of the repository will be removed 
from the nonemplacement areas of the subsurface at closure. In general, the items to be removed 
include:

• Mobile and fixed equipment

• Concrete inverts

• Electrical items, such as a third-rail conductor, cable, wire, conduit, cable tray, and 
electrical equipment

• Communication items, such as antennae, feeder cable, and fiber-optic cable

• Miscellaneous steel structures, turnout bulkheads, and emplacement access doors
— —
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• Ventilation equipment and structures

• Refuge chamber material

• Steel rails, switches, and other rail components.

Removal of the ventilation equipment and structures, in addition to the items installed underground, 
includes the surface-based components, such as the shaft collars, fans, ductwork, electrical 
equipment, and other appurtenances located around the shaft surface openings, to allow for shaft 
pads surface restoration.

Ground support materials in the turnouts, ramps, and access and exhaust mains will not be removed 
because of concerns for the safety of personnel who would be involved in that removal. Rock bolts 
and other temporary ground support installed during construction of the shafts will become 
committed materials because their removal would be impractical. The concrete and shotcrete shaft 
lining materials are all removed at closure. Removal of the cementitious-material liners and 
placement of backfill in the shafts are done sequentially in length increments from bottom to top. 
The backfill materials in the shafts and ramps also become committed materials. The concrete 
ground support in the shafts will be removed in short sections of shaft. The short sections will be 
backfilled and the process repeated until the backfill reaches the surface. Materials that will remain 
underground after closure of the repository will become committed materials. Preliminary estimates 
of committed materials in the emplacement and nonemplacement areas of the repository are listed 
in Tables 1.3.6-1 and 1.3.6-2. Quantities of committed materials at closure have been evaluated for 
their effect on postclosure performance in Chapter 2. The license amendment for closure of the 
repository will identify the maximum quantities of committed materials approved to be left within 
the repository.

Radiological controls will be required during some closure activities. Management practices for 
decontamination and dismantlement as discussed in Section 1.12 for surface facilities will also be 
applied as appropriate for the subsurface facility closure activities.

Decontamination and dismantlement activities for readiness of the subsurface facility for closure 
will parallel similar activities described in Section 1.12 for the surface facilities. However, the 
levels of contamination for the subsurface facility at closure are expected to be minimal. These 
activities that will be performed either throughout repository lifetime or in advance of 
decontamination and dismantlement activities will include, generally:

• Implementation of as low as is reasonably achievable principles for worker protection

• Characterization of potentially contaminated areas

• Development of plans and designs for contamination removal

• Development of mitigation measures to prevent or minimize the spread of contamination
— —
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• Development of plans and designs for removal and disposal of noncommitted materials

• Implementation of waste management practices in conformance with project 
requirements.

Specific equipment, methods, and designs to be utilized for decontamination and dismantlement 
activities in the subsurface facility will be identified in the license amendment application for 
closure of the repository.

A radiation health and safety program to be implemented during closure of the subsurface facility 
will be consistent with the components of the program for the surface facilities as described in 
Section 1.12.3.9.

Removal of noncommitted materials in the turnouts includes invert steel, rail, turnout bulkhead, 
emplacement access doors, air regulator, electrical equipment and cables, and instrumentation. 
These demolition and removal activities will occur in close proximity to the emplacement drifts and 
will require additional radiological worker protection measures, possibly including some temporary 
shielding. Other closure activities described in this section occur in repository locations distant from 
the emplacement drifts and will not require additional radiological worker protection measures.

1.3.6.1.4 Placement of Backfill

Backfill material for the ramps and shafts will meet material and placement specifications to be 
provided prior to initiation of closure operations.

Backfilling operations will consist of a surface preparation plant, a stockpile/loading component, 
and a conveyance system to the area being backfilled. Crushed tuff from the repository excavation 
will be reclaimed from the muck stockpiles and processed to the specifications for backfill material 
and placement to be developed during preparation of the license amendment to close the repository. 
It is anticipated that the preparation plant will include a crusher, a screen plant to provide graded fill, 
and a stacker. Screen analyses of previously excavated materials at Yucca Mountain show that the 
tunnel boring machine muck is fairly well graded, but crushing will be required for larger flat rock 
pieces typically produced by the tunnel boring machine’s disc cutters. Crushing and screening of the 
muck to produce the desired gradation range will provide an optimal engineered backfill 
(BSC 2008b, Section 6.3).

Backfill materials for the ramps and shafts may require additional treatment to achieve the desired 
hydraulic conductivity properties of the backfill in certain areas. Some of this additional treatment 
may include mixtures of bentonite, sand, and other crushed materials (BSC 2008b, Section 6.4).

1.3.6.1.4.1 Placement of Backfill in Ramps

Backfill in the ramps provides long-term stability of the openings and prevents human intrusion 
into the waste emplacement areas.

Figure 1.3.6-2 shows a conceptual representation of the backfilling operations in the ramps.
— —
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Placement of the backfill in the ramps can be accomplished by pneumatic stowing as shown in 
Figure 1.3.6-2, by simple hydraulic push plates, or using an archimedean screw type of device. The 
backfill emplacement machine will be self-propelled and will have a roof shield for personnel 
protection when steel sets are being removed. To operate efficiently, the backfill emplacement 
machine will have the capabilities to be conveyor-fed and to place and compact the backfill over the 
entire tunnel cross section (BSC 2008b, Section 6.3). Backfilling of the ramps will require a ducted 
ventilation system to provide fresh air and to remove exhaust air.

The total volume of backfill material for the ramps has been estimated as 472,887 yd3 (BSC 2008b, 
Table 2).

1.3.6.1.4.2 Placement of Backfill in Shafts

Backfill in the shafts provides long-term stability of the openings and prevents human intrusion into 
the waste emplacement areas.

The shafts will be backfilled starting from the bottom and progressing to the top. A section of the 
shaft concrete liner will be removed and that section backfilled. Concrete removal and backfilling 
continue until the shaft is filled (BSC 2008b, Section 6.4).

Figure 1.3.6-3 illustrates the typical conceptual design of equipment that will be used for backfilling 
of shafts.

Gravity will facilitate the conveyance of the backfill material to the shaft bottom by use of a “slick 
line.” Figure 1.3.6-3 shows a typical shaft galloway setup common to the mining industry. After the 
concrete liner and shaft furnishings are removed from a section of shaft, backfill will be delivered 
to the shaft bottom, leveled, and compacted. The material leveling and compacting can be 
accomplished by typical construction equipment hoisted in and out of the shaft or mounted on the 
galloway (BSC 2008b, Section 6.4).

The total volume of backfill material for the shafts has been estimated as 176,748 yd3 (BSC 2008b, 
Table 2).

1.3.6.1.5 Regrading and Site Restoration

As stated in Final Environmental Impact Statement for a Geologic Repository for the Disposal of 
Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada
(DOE 2002, Section 2.1.2.4), the repository site reclamation includes restoring the site to as near its 
preconstruction condition as practicable, including the recontouring of disturbed surface areas, 
surface backfill, soil buildup and reconditioning, site revegetation, site water course configuration, 
and erosion control, as appropriate.
— —
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Subsequent to site restoration, several items are listed in 10 CFR 63.51 as further requirements to 
permanently close the repository. These include:

• Preservation of records (Section 5.2)
• Installation of monuments (Section 5.8)
• Continued oversight of the repository (Section 5.8).

1.3.6.2 Operational Processes

Operational interfaces are described in Section 1.3.1.3. Operational processes for closure activities 
will be developed and implemented in accordance with Section 5.6.

Operational processes for drip shield emplacement gantry operations are described in 
Section 1.3.4.7.2.

The removal of noncommitted materials from the subsurface facility is described in 
Section 1.3.6.1.3, and the general practices for implementing decontamination and dismantlement 
of the subsurface facility will be similar to those practices described in Section 1.12 for the surface 
facilities.

The placement of backfill in ramps and shafts is discussed in Sections 1.3.6.1.4.1 and 1.3.6.1.4.2, 
respectively.

Regrading and site restoration are described in Section 1.3.6.1.5.

1.3.6.3 Safety Category Classification

Repository backfill and the drip shield emplacement gantry are not important to safety (ITS) since 
they are not relied upon to prevent or mitigate any Category 1 or 2 event sequences. The drip shield 
is classified as ITWI (Table 1.9-8) because it prevents water contact with the waste packages and 
protects waste packages from rockfall damage.

1.3.6.4 Procedural Safety Controls to Prevent Event Sequences or Mitigate Their 
Effects

There are no procedural safety controls that are directly applicable to closure activities. 
Table 1.3.6-3 provides information on controls that will be put in place during closure activities to 
ensure conformance of these activities with postclosure nuclear safety design bases.

1.3.6.5 Design Criteria and Design Bases

Subsurface facility closure SSCs are non-ITS because none of the closure activities can cause a 
Category 1 or 2 event sequence. Section 1.3.2.4 describes the design criteria applicable to the 
closure activities.
— —
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1.3.6.6 Design Methodologies

Section 1.3.2.5 provides the design methodologies applicable to the closure activities.

1.3.6.7 Consistency of Materials with Design Methodologies

The materials used in the closure activities are consistent with the design criteria and methodologies 
discussed in Section 1.3.2.

1.3.6.8 Design Codes and Standards 
[NUREG-1804, Section 2.1.1.2.3: AC 3(1)]

Codes or standards specifically related to design of closure SSCs will be identified when the designs 
are finalized and submitted with the license amendment application for closure of the repository. 
Specific criteria related to civil structures, materials, and geotechnical engineering will be used, as 
appropriate.

1.3.6.9 Design Load Combinations

Section 1.3.2.8 discusses applicable structural load combinations for subsurface closure SSCs.

1.3.6.10 Conformance of Design to Criteria and Bases
[NUREG-1804, Section 2.1.1.7.3.2: AC 1(1)]

The subsurface facility closure SSCs are classified as non-ITS; therefore, there are no preclosure 
nuclear safety design bases to be satisfied by this system or process.

There are several derived internal constraints from postclosure nuclear safety design basis 
considerations that relate to the design of the subsurface facility closure SSCs and activities because 
of the role they play in the repository meeting postclosure conditions consistent with the analyzed 
total system performance. Table 1.3.6-3 presents the derived internal constraints from postclosure 
nuclear safety design basis considerations that relate to the subsurface facility closure SSCs and 
activities, related design criteria considerations, and the types of controls that will be put in place to 
ensure conformance with postclosure control parameter values and derived internal constraints.

1.3.6.11 General References

BSC (Bechtel SAIC Company) 2008a. Postclosure Modeling and Analyses Design Parameters. 
TDR-MGR-MD-000037 REV 02. Las Vegas, Nevada: Bechtel SAIC Company. 
ACC: ENG.20080108.0002.

BSC 2008b. Closure Design Calculation. 800-KMC-MGR0-00200-000-00E. Las Vegas, Nevada: 
Bechtel SAIC Company. ACC: ENG.20080808.0002.

DOE (U.S. Department of Energy) 2002. Final Environmental Impact Statement for a Geologic 
Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca 
Mountain, Nye County, Nevada. DOE/EIS-0250. Washington, D.C.: U.S. Department of Energy, 
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Office of Civilian Radioactive Waste Management. ACC: MOL.20020524.0314 through 
MOL.20020524.0320.

YMP (Yucca Mountain Site Characterization Project) 2001. Reclamation Implementation Plan. 
YMP/91-14, Rev. 2. Las Vegas, Nevada: Yucca Mountain Site Characterization Office. 
ACC: MOL.20010301.0238.
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Table 1.3.6-1. Repository Committed Materials in Emplacement Drifts—Summary of Preliminary 
Estimates 

Feature Material
Estimated 

Unit Quantity
Estimated 

Total Quantity Comment

Initial Ground 
Support—Rock Bolts

Carbon steel 
split set rock 
bolts with 
plates

9.1 kg/m 615,763 kg —

Initial Ground Support—
Welded Wire Mesh

Carbon steel 9 kg/m 0 Carbon steel welded wire mesh will 
be removed to allow installation of 
perforated steel sheets.

Final Ground 
Support—Rock Bolts

Stainless steel 
friction-type 
rock bolts with 
plates

98 kg/m 6,653,458 kg —

Final Ground 
Support—Perforated 
Sheets (Bernold Type)

Stainless steel 374.4 kg/m 25,428,157 kg —

Invert Steel Structure, 
Runway Beams, and 
Crane Rail but Excluding 
Anchor Rock Bolts

Carbon steel 671 lb/ft 149,511,040 lb Based on total length of 
emplacement drifts (67,915 m)

Invert Steel Structure 
Anchor Rock Bolts

Stainless steel 9 lb/ft 2,005,364 lb Based on total length of 
emplacement drifts (67,915 m)

Invert Third Rail and 
Supports

Copper and 
stainless steel

Copper: Less 
than 5 kg/m

Stainless 
steel: see 
comment

Less than 
339,575 kg

See comment

Material types and quantities 
selected through design will be 
compatible with TSPA committed 
materials approval process.a

Invert Third Rail 
Insulator

See comment See comment See comment Material types and quantities 
selected through design will be 
compatible with TSPA committed 
materials approval process.a

Invert Ballast Crushed tuff 46 ft3/ft 10,249,639 ft3 Based on total length of 
emplacement drifts (67,915 m)

Waste Package 
Emplacement 
Pallet—Standard

Stainless steel 724.0 kg ea. 7,189,320 kg Based on 9,930 standard pallets

Waste Package 
Emplacement 
Pallet—Standard

Alloy 22 
(UNS N06022)

1,290.0 kg ea. 12,809,700 kg Based on 9,930 standard pallets

Waste Package 
Emplacement 
Pallet—Short

Stainless steel 432.0 kg ea. 495,504 kg Based on 1,147 short pallets

Waste Package 
Emplacement 
Pallet—Short

Alloy 22 1,290.0 kg ea. 1,479,630 kg Based on 1,147 short pallets
— —
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Waste Package 
Emplacement Pallet—
Standard and Short

Weld metal See comment. See comment. Weld metal quantities are included 
in quantities calculated for individual 
metals.

Drip Shield—Plates and 
Connector Guides

Titanium 
Grade 7 
(UNS R52400)

3,646.0 kg ea. 41,677,426 kg Number of drip shields is based on 
the estimated number of waste 
packages of the different types, 
multiplied by their average lengths 
(9,930 × 5.716 m + 1,147 × 3.697 = 
61,000.34 m), a 10-cm spacing 
between waste packages, and the 
net length of the drip shield 
considering the maximum 
interlocking overlap distance 
(5.805 − 0.320 = 5.485 m). A total 
number of drip shields is obtained 
as [61,000.34 + (9,930 + 
1,147) × 0.1] / 5.485 = 11,323. An 
allowance of an extra drip shield per 
emplacement drift is added for a 
grand total of (11,323 + 108) 
= 11,431.

Weld metal quantities for the drip 
shields are included in quantities 
calculated for individual metals.

Drip Shield—Structural 
Members

Titanium 
Grade 29 
(UNS R56404)

1,142.0 kg ea. 13,054,202 kg

Drip Shield Weld metal See comment. See comment.

Drip Shield—Base Alloy 22 109.0 kg ea. 1,245,979 kg

NOTE: aMaterials selection and quantities shall conform with postclosure constraint 02-03 in Table 1.3.6-3.  
TSPA = total system performance assessment.

Table 1.3.6-1. Repository Committed Materials in Emplacement Drifts—Summary of Preliminary 
Estimates (Continued)

Feature Material
Estimated 

Unit Quantity
Estimated 

Total Quantity Comment
— —
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Table 1.3.6-2. Repository Committed Materials in Nonemplacement Openings—Summary of Preliminary 
Estimates 

Feature Material

Estimated 
Unit 

Quantity
Estimated 

Total Quantity Comment

Portals NA — — — —

Ramps Ground 
Support—Rock Bolts

Grouted carbon 
steel rock bolts with 
plates

Varies 1,073,862 kg —

Ground 
Support—Welded 
Wire Mesh

Carbon steel Varies 306,538 kg —

Ground 
Support—Cement 
Products

Cement grout Varies 308,575 kg —

Ground 
Support—Cement 
Products

Shotcrete Varies 21,342,124 kg —

Access and 
Exhaust Mains

Ground 
Support—Rock Bolts

Grouted carbon 
steel rock bolts with 
plates

Varies 2,489,884 kg —

Ground 
Support—Rock Bolts

Carbon steel split 
sets with plates

Varies 143,181 kg —

Ground 
Support—Welded 
Wire Mesh

Carbon steel Varies 1,130,986 kg —

Ground 
Support—Cement 
Products

Cement grout Varies 684,582 kg —

Ground 
Support—Cement 
Products

Shotcrete 0 0 —

Access 
Main—Turnout 
Intersections

Final Ground 
Support—Rock Bolts

Grouted carbon 
steel rock bolts with 
plates

350.42 kg/m 1,362,491 kg —

Lattice Girder Carbon steel 230 kg/m 894,046 kg —

Final Ground 
Support—Concrete 
and Shotcrete

Cement grout Varies 419,765 kg —

Final Ground 
Support—Cement 
Products

Shotcrete Varies 26,591,140 kg —
— —
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Turnouts Initial Ground 
Support—Rock Bolts

Carbon steel split 
sets with plates

Varies 67,981 kg —

Final Ground 
Support—Rock Bolts

Grouted carbon 
steel rock bolts with 
plates

Varies 180,431 kg —

Final Ground 
Support—Welded 
Wire Mesh

Carbon steel welded 
wire mesh

5.31 kg/m2 79,228 kg —

Final Ground 
Support—Cement 
Products

Cement grout Varies 82,681 kg —

Final Ground 
Support—Rock Bolts

Stainless steel 
friction-type rock 
bolts with plates

98 kg/m 607,594 kg —

Final Ground Support 
—Welded Wire Mesh

Stainless steel  5.41 kg/m2 386,163 kg —

Exhaust 
Main—Emplace
ment Drift 
Intersections

Final Ground 
Support—Rock Bolts

Grouted carbon 
steel rock bolts with 
plates

223 to 270.8 
kg/m

394,478 kg —

Final Ground Support 
—Cement Products

Cement grout Varies 121,533 kg —

Final Ground 
Support—Cement 
Products

Shotcrete Varies 5,645,407 kg —

Shaft and Raise 
Access Drifts

Ground 
Support—Rock Bolts

Grouted carbon 
steel rock bolts with 
plates

Varies 589,826 kg —

Ground 
Support—Rock Bolts

Carbon steel split 
sets with plates

Varies 12,548 kg —

Ground 
Support—Welded 
Wire Mesh

Carbon steel Varies 267,363 kg —

Ground 
Support—Cement 
Products

Cement grout Varies 162,170 kg —

Ground 
Support—Cement 
Products

Shotcrete 0 0 —

Shaft and Raises Ground 
Support—Rock Bolts

Carbon steel split 
sets with plates

Varies 97,412 kg —

Table 1.3.6-2. Repository Committed Materials in Nonemplacement Openings—Summary of Preliminary 
Estimates (Continued)

Feature Material

Estimated 
Unit 

Quantity
Estimated 

Total Quantity Comment
— —
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Observation 
Drift, Alcoves, 
and 
Miscellaneous 
Openings

Ground 
Support—Rock Bolts

Grouted carbon 
steel rock bolts with 
plates

Varies 153,786 kg —

Ground 
Support—Welded 
Wire Mesh

Carbon steel Varies 69,164 kg —

Ground 
Support—Cement 
Products

Cement grout Varies 42,283 kg —

NOTE: NA = not applicable.

Table 1.3.6-2. Repository Committed Materials in Nonemplacement Openings—Summary of Preliminary 
Estimates (Continued)

Feature Material

Estimated 
Unit 

Quantity
Estimated 

Total Quantity Comment
— —
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Parts (b), (c), and (e)—Procedures will 
be developed to control and evaluate 
materials not already controlled by the 
design that are used in the subsurface 
facility during the preclosure period.
Table 1.3.6-3.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Para

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI 

Design 
Criteria/Configuration

Parameter 
Number and Title

Values, Ranges of Values or 
Constraints

Subsurface 
Facility - 
Closure

02-03 
Committed 
Materials

During construction of the emplacement 
drifts, and operation and closure of the 
repository, administrative controls will be 
imposed to prevent impact on waste 
isolation from materials used, lost, or left 
in the repository. These controls will be 
supported by technical evaluation. 
The following constraints will be 
imposed on the administrative control of 
tracers, fluids, and materials; 
construction materials; and committed 
materials:
a) Material not technically evaluated and 
determined acceptable prior to the 
permanent closure of the repository will 
be removed from subsurface facilities 
prior to permanent closure.
b) Committed materials that are 
proposed to remain in the underground 
repository following permanent closure 
will be technically evaluated and 
determined acceptable prior to use.
c) Administrative controls will include 
accounting and inspection, as 
appropriate to confirm that controls on 
the approved tracers, fluids, and 
material quantities and compositions are 
met.
d) Controls related to dust generation 
are addressed in Table 1.3.5-4.
e) Tracers, fluids, and materials that 
may be used during construction, 
operation, or closure shall be controlled. 

No Part (a)—The design includ
estimates of the materials 
used in the emplacement 
drifts and nonemplacement
openings. These materials a
included as committed 
materials, as listed in 
Tables 1.3.6-1 and 1.3.6-2.
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Procedures will be developed that will 
control the final inspection, prior to 
placement of drip shields, of the 
emplacement drift ground support and 
waste packages. The inspection will 
be performed with a remotely 
operated inspection gantry from the 
CCCF to inspect for the limitations 
imposed by the subject constraint. 
Repairs, if needed will be controlled by 
procedures per the limitations of the 
subject constraint.

 
e 

NA

s—Repository Closure (Continued)

Postclosure Procedural 
Safety Control
Waste 
Package – 
Final 
Inspection

03-24
Waste Package 
Surface Damage 
Prior to Closure

The emplacement drift ground support 
system shall be inspected prior to drip 
shield installation. Waste packages that 
have come in contact with fallen rock or 
ground support materials will be 
inspected to ensure the damage to the 
waste package corrosion barrier that 
displaces material (i.e., scratches) shall 
be limited to 1/16 in. (1.6 mm) in depth. 
Modifications to the waste package 
corrosion barrier that deform the 
surface, but do not remove material (i.e., 
dents), shall not leave residual tensile 
stresses greater than 257 MPa.

Yes NA 
(Background information: 
Design criteria applicable to
inspection of ground suppo
in emplacement drifts are 
included in Sections 1.3.4.4
and 1.3.4.4.2. Design 
considerations for final 
inspection of waste package
at closure, prior to drip shie
installation, are included in 
Section 1.3.4.7.2. 
Design criteria relevant to 
safeguarding the waste 
package corrosion barrier an
applicable to closure activiti
(final inspection) are related
the removal, remediation, an
re-emplacement of damage
waste packages as stated in
Sections 1.3.2.3 and 1.3.4.8

Emplacement 
Drifts

05-04
No Backfill in 
Emplacement 
Drifts

Engineered backfill shall not be present 
in the space between the drip shield and 
the drift wall.

No No design requirements 
incorporate placement of 
backfill in the emplacement
drifts (i.e., not included in th
repository closure design).

Table 1.3.6-3.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameter

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI 

Design 
Criteria/Configuration

Parameter 
Number and Title

Values, Ranges of Values or 
Constraints
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Part (b) Procedures will be developed 
that will control drip shield handling 
and emplacement activities. The 
placement of drip shields will be 
controlled remotely from the CCCF, 
using the drip shield emplacement 
gantry, and will be verified and 
documented by two independent 
operators. 

ty 

fts 

, 
e 

fts 

 

th 

NA

s—Repository Closure (Continued)

Postclosure Procedural 
Safety Control
Drip Shield – 
Installation 
Inspection

07-02
Drip Shield Design 
and Installation

(a) The drip shield shall be designed to 
interlock and overlap in a manner that 
prevents a liquid drip path from above 
the drip shield to the waste package. 
(b) The drip shield handling and 
emplacement activities shall be 
monitored through appropriate 
equipment. An operator and an 
independent inspector shall verify 
proper drip shield installation. Records 
demonstrating compliance shall be 
maintained.

Yes (a) The design of the drip 
shield interlocking features 
and the assembly are 
provided in Figures 1.3.4-14
and 1.3.4-15. The ability of t
interlock feature that 
describes the capability to 
prevent a liquid path from 
above the drip shield to the 
waste package is described
Section 1.3.4.7.1. 
(Background: Part (b) Drip 
shield handling and 
emplacement activities are 
described in 
Section 1.3.4.7.2.)

Subsurface 
Facility - 
Closure

09-01
Closure of Shafts 
and Ramps

Closure of the shafts shall include 
backfilling for the entire depth of the 
opening. Closure of ramps shall include 
backfilling along the entire length of the 
opening.

No Design criteria for this activi
are defined in 
Section 1.3.6.1.4. Backfill 
methods for ramps and sha
are illustrated in 
Figures 1.3.6-2 and 1.3.6-3
respectively. The extent of th
backfill used in both the sha
and ramps will preclude 
human or animal access to 
the waste because it would
entail a substantial effort to 
remove or bypass this 
material over the entire leng
of the opening. 

Table 1.3.6-3.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameter

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI 

Design 
Criteria/Configuration

Parameter 
Number and Title

Values, Ranges of Values or 
Constraints
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Procedures will be developed for the 
purpose of controlling the closure of 
boreholes and for tracking closure 
activities. These procedures will 
require that site investigation 
boreholes within or near the footprint 
of the repository block will be 
backfilled with material compatible 
with the host rock and plugged. 

s—Repository Closure (Continued)

Postclosure Procedural 
Safety Control
Subsurface 
Facility - 
Closure

09-03
Closure of 
Boreholes

Site investigation boreholes within or 
near the footprint of the repository block 
will be backfilled with material 
compatible with the host rock and 
plugged.

No NA 
(Background information: 
Closure of boreholes will be
performed with material 
compatible with the host roc
DOE will determine at the tim
of borehole closure if 
regulations apply to boreho
closure. Timing of closure o
boreholes will be determine
on a case-by-case basis 
because some boreholes w
continue to be used during th
emplacement and 
postemplacement phases 
(i.e., seismic instrumentatio
boreholes). Where applicab
some boreholes will be close
and plugged prior to 
excavation of the 
emplacement drifts to 
minimize impacts on the 
excavation. If this timing is n
possible for some boreholes
closure may be postponed 
until after excavation or eve
until closure of the repositor

Table 1.3.6-3.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameter

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI 

Design 
Criteria/Configuration

Parameter 
Number and Title

Values, Ranges of Values or 
Constraints
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Design will be developed that will 
ensure that no postclosure 
performance impacts caused by the 
preclosure operations remain prior to 
closure of the repository. Procedures 
for the repository surface restoration 
will be developed in support of a 
license amendment to close the 
repository, and they will conform to 
applicable design criteria at the time of 
closure, and to the bounding 
conditions for land restoration 
established through the Final 
Environmental Impact Statement for a 
Geologic Repository for the Disposal 
of Spent Nuclear Fuel and High-Level 
Radioactive Waste at Yucca 
Mountain, Nye County, Nevada (DOE 
2002). 

s—Repository Closure (Continued)

Postclosure Procedural 
Safety Control
Subsurface 
Facility - 
Closure

09-04
Reclamation of 
Lands Disturbed 
by Repository

Lands disturbed by the repository shall 
be reclaimed to ensure that there are no 
preclosure disturbances that will impact 
postclosure performance. 

Yes NA 
(Background information: 
Lands disturbed by the 
repository will be reclaimed
following the Reclamation 
Implementation Plan (YMP 
2001, Section 1) as 
established in Final 
Environmental Impact 
Statement for a Geologic 
Repository for the Disposal 
Spent Nuclear Fuel and 
High-Level Radioactive Was
at Yucca Mountain, Nye 
County, Nevada (DOE 2002
Sections 2.1.2.4, 4.1.3.2, 
4.1.3.3, and 4.1.4.4).)

OTE: See Table 1.9-9 for additional information on postclosure analyses control parameters. 
CCCF = Central Control Center Facility; DOE = U.S. Department of Energy; NA = not applicable.

ource: BSC 2008a,Table 1.

Table 1.3.6-3.  Summary of Conformance of Subsurface Facility Design to Postclosure Control Parameter

Structure, 
System and 
Component

Postclosure Control Parameter

Relevant 
to ITWI 

Design 
Criteria/Configuration

Parameter 
Number and Title

Values, Ranges of Values or 
Constraints
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DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001
Figure 1.3.6-1.  General Sequence of Repository Closure Activities
— —
1.3.6-21



DOE/RW-0573, Rev. 1 Yucca Mountain Repository SARDocket No. 63–001
Figure 1.3.6-2.  Conceptual Arrangement for Placement of Backfill in Ramps

NOTE: Repository closure activities include backfilling of the ramps with granular material. This figure portrays a 
conceptual approach by which such operation can be accomplished.
— —
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DOE/RW-0573, Rev. 1Yucca Mountain Repository SAR Docket No. 63–001
Figure 1.3.6-3.  Conceptual Arrangement for Placement of Backfill in Shafts

NOTE: Intake and exhaust shafts will be backfilled with granular material as part of the repository closure activities. 
— —
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