CORMIX
THERMAL MIXING ZONE ANALYSIS AND DILUTION STUDY

Chesapeake Bay at Calvert Cliffs Nuclear Power Plant,
Maryland

Alion Science and Technology
and
Blue Hill Hydraulics Incorporated
May 2007
Table of Contents

1. Objective 3
2. Background 4
3. Methodology 4
4. Input Data 4
5. Thermal Mixing Zone Analysis 7
6. Dilution Study 11
7. References 20

Appendix One: CORMIX Input derived from Baseline Data (excerpt) 21
Appendix Two: CORMIX Sample Graphics – Max. Ebb/Flood Results 22
Appendix Three: FLOW-3D® Sample Graphics – Max. Ebb Results 24
Appendix Four: CORMIX Input Records – Prediction File Excerpts 26
Appendix Five: Sensitivity Test - ΔT 30
Appendix Six: CORMIX References 31
Appendix Seven: Selected FLOW-3D® References 34
1. **Objective**

The primary objectives of this study were to: (1) calculate the size of the thermal plume produced by the proposed Calvert Cliffs Unit 3 discharge using the Cornell Mixing Expert System (CORMIX), and (2) to calculate liquid effluent dilution factors.

The analyses were based on average flow conditions in the Chesapeake Bay at the Calvert Cliffs project site, and information describing the configuration, placement, and operation of the proposed Unit 3 diffuser (Figure 1 shows project location).

![Figure 1: Calvert Cliffs Nuclear Power Plant and Vicinity](Map Credit: Wikimapia)

(aerial photograph with roadmap overlay, the yellow circle identifies the CCNPP)

The thermal plume and mixing analysis described herein considers the behavior of the Unit 3 diffuser operating in isolation. As is shown graphically in Figure 3, the estimated size of the Unit 3 thermal plume is quite small relative to the thermal plume created by Units 1 and 2. Because of the separation distance between the two discharge locations, and the fact that the discharge flow rate from Unit 3 is comparatively small, mixing of the Unit 3 effluent should not be affected by existing flows.
2. **Background**

CORMIX is an expert system designed for the analysis of mixing problems in natural water bodies (Jirka *et al.*, 1997).

To study this mixing problem, the program required input describing the size of the estuary in the vicinity of the project, flow speeds in the estuary; discharge flow rate and temperature rise; and discharge geometry. Based on these data, the CORMIX results were compared to state regulatory requirements for thermal mixing. The CORMIX results were also used in the development of a depth-averaged, hydrodynamic, flow model.

The *FLOW-3D®* software system was used to construct a depth-averaged flow model of the estuary near the project (Flow Science, 2007). Model results near the discharge were compared to the CORMIX answers, and calibration parameters were adjusted so that the *FLOW-3D®* results matched closely with the CORMIX results in the near-field. The resulting flow model was used to calculate time-averaged effluent dilution factors at shoreline locations where CORMIX could not be applied (e.g., at locations beyond one tidal excursion length or at the adjacent shoreline).

3. **Methodology**

A three-step approach was used to calculate thermal mixing and effluent dilution for the proposed Calvert Cliffs Unit 3 diffuser. In Step One, required input data was assembled. In Step Two, the CORMIX analysis was carried out and questions regarding the size of the thermal mixing zone were answered. In Step Three, the hydrodynamic flow model was used to calculate effluent dilution factors in the far-field.

Step One: Input Data Preparation

Required data for the analyses were derived from USGS field data, NOAA navigational charts, and reports and design drawings provided by the power station. For reference, a listing of these data is provided in the following section.

Step Two: Thermal Mixing Study (CORMIX)

The extent of the proposed Unit 3 thermal plume was calculated for average flow conditions and the results were compared to state regulations.

Step Three: Calculation of Dilution Factors (*FLOW-3D®*)

Dilution factors for *far-field* shoreline locations were calculated from the results of the tidal flow model.

4. **Input Data**

Input for these studies can be divided into two categories: (1) Receiving Water Baseline Data, and (2) Outfall Baseline Data. So that this analysis can be repeated in the future – the data, and source, used to derive the input are provided in Tables 1 and 2 (Appendix One contains a portion of a CORMIX input file for reference).
Receiving Water Baseline Data

Table 1: Receiving Water Baseline Data for CCNPP Unit 3 Discharge System

<table>
<thead>
<tr>
<th>Input Quantity/Data</th>
<th>Parameter Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathymetry Surrounding Project Site</td>
<td>NOAA Navigational Chart</td>
<td>Chart Number 12264 - Chesapeake Bay, Patuxent River and Vicinity</td>
</tr>
<tr>
<td>Minimum Water Surface Elevation at Discharge Location</td>
<td>10 ft = MSL – 0.6 ft = MLW = 3.05 m</td>
<td>Calvert Cliffs Unit 3 Construction and Operation Station License Application (2007), Environment Report Section 3.4.</td>
</tr>
<tr>
<td>Tidal Excursion</td>
<td>Mean Range = 1 ft = .305 m</td>
<td>NOAA Tides and Currents Website – http://tidesandcurrents.noaa.gov/tides07/tab2ec2c.html#50</td>
</tr>
<tr>
<td>Receiving Water Temperature(s)</td>
<td>Average annual Temperature 57.5 degrees F (14.2 degrees C)</td>
<td>Baltimore Gas and Electric Company (1970), “Environmental Report, Calvert Cliffs NPP.”</td>
</tr>
<tr>
<td>Average Windspeed(^1)</td>
<td>3.28 ft/s = 1.00 m/s</td>
<td>Baltimore Gas and Electric Company (1970), “Environmental Report, Calvert Cliffs NPP.”</td>
</tr>
</tbody>
</table>

\(^1\) Within the framework of a CORMIX analysis, the wind works to promote mixing. However, the calculated trajectory of a plume does not change with varying windspeed (i.e., only mixing rates vary). A low average windspeed was used in this analysis to reduce the amount of mixing caused by the wind. In terms of the analysis results the specification of a low windspeed is conservative.
Outfall Baseline Data

Table 2: Outfall Baseline Data for CCNPP Unit 3 Discharge System

<table>
<thead>
<tr>
<th>Input Quantity/Data</th>
<th>Parameter Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>1,200 ft south of the Unit 3 intake structure</td>
<td>COLA ER Section 3.4 for CCNPP Unit 3</td>
</tr>
<tr>
<td>Discharge Water Temperature ΔT</td>
<td>12 degrees F = 6.667 degrees C</td>
<td>COLA ER Section 3.4 for CCNPP Unit 3</td>
</tr>
<tr>
<td>Discharge Flow Rate</td>
<td>17,633 gpm = 1.1125 m³/s</td>
<td>AREVA RFI-07-153 (dated: 3/19/07)</td>
</tr>
<tr>
<td>Diffuser Type</td>
<td>Multiport</td>
<td>Calvert Cliffs Unit 3 Construction and Operation Station License Application (2007), Environment Report Section 3.4.</td>
</tr>
<tr>
<td>Number of Discharge Ports</td>
<td>3</td>
<td>Ibid.</td>
</tr>
<tr>
<td>Distance of Shore</td>
<td>550 ft = 167.6 m</td>
<td>COLA ER Section 3.4 for CCNPP Unit 3</td>
</tr>
<tr>
<td>Orientation</td>
<td>Parallel to Shoreline</td>
<td>Calvert Cliffs Unit 3 Construction and Operation Station License Application (2007), Environment Report Section 3.4.</td>
</tr>
<tr>
<td>Height of Discharge Ports above Bottom</td>
<td>3 ft = .91 m</td>
<td>Ibid.</td>
</tr>
<tr>
<td>Angle of Inclination</td>
<td>22.5 degrees</td>
<td>Ibid.</td>
</tr>
<tr>
<td>Nozzle Diameters</td>
<td>16 inches = .406 m</td>
<td>Ibid.</td>
</tr>
<tr>
<td>Active Diffuser Length</td>
<td>18.75 ft = 5.715 m</td>
<td>Ibid.</td>
</tr>
</tbody>
</table>
5. Thermal Mixing Zone Analysis

5.1 State of Maryland Thermal Discharge Water Quality Regulations

The State of Maryland has established thermal discharge water quality regulations that limit the spatial extent of thermal plumes (COMAR 26.08.03.03). Criteria applicable to tidal areas are as follows:

- The 24-hr average of the maximum radial dimension measured from the point of discharge to the boundary of the full capacity 2°C (3.6°F) above ambient isotherm (measured during the critical periods) may not exceed ½ of the average ebb tidal excursion,
- The 24 hr average full capacity 2°C (3.6°F) above ambient thermal barrier (measured during the critical periods) may not exceed 50 percent of the accessible cross section of the receiving water body. Both cross sections shall be taken in the same plane,
- The 24 hr average area of the bottom touched by waters heated 2°C (3.6°F) or more above ambient at full capacity (measured during the critical periods) may not exceed 5 percent of the bottom beneath the average ebb tidal excursion multiplied by the width of the receiving water body.

5.2 Results

To determine whether or not the proposed Unit 3 thermal plume would satisfy the State of Maryland thermal discharge water quality standards a series of five CORMIX calculations were carried out. Each of these calculations was completed for a different tidal condition as identified in Table 3, and in each case the length and width of the plume was noted (see Appendix Two for sample graphics). When all of the calculations were finished, the size of the thermal plume envelope was estimated as shown in Figure 2 (following page).

Table 3: Thermal Mixing Zone Results

<table>
<thead>
<tr>
<th>Plume No.</th>
<th>Description</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Max. Ebb</td>
<td>207 ft / 63 m</td>
<td>59 ft / 18 m</td>
</tr>
<tr>
<td>2</td>
<td>Max. Flood</td>
<td>207 ft / 63 m</td>
<td>59 ft / 18 m</td>
</tr>
<tr>
<td>3</td>
<td>Slack</td>
<td>19 ft / 6 m</td>
<td>6 ft / 2 m</td>
</tr>
<tr>
<td>4</td>
<td>Mid. Tide (before slack)</td>
<td>105 ft / 32 m</td>
<td>43 ft / 13 m</td>
</tr>
<tr>
<td>5</td>
<td>Mid. Tide (after slack)</td>
<td>105 ft / 32 m</td>
<td>43 ft / 13 m</td>
</tr>
<tr>
<td>Overall</td>
<td>Thermal Plume Envelope</td>
<td>414 ft / 126 m</td>
<td>69 ft / 21 m</td>
</tr>
</tbody>
</table>

2 The following definitions apply to the length and width of the thermal plume reported in Table 3: length is defined as the along shore distance from the point of discharge to the 2°C isotherm, and width is conservatively defined as the CORMIX calculated plume top-width (2 x BH) measured in the cross-shore direction at the downstream extent of the 2°C isotherm.
A sensitivity test (see Appendix 5) was completed to address concerns related to seasonal temperature changes (i.e., different ΔTs) and their effect on the size of the thermal plume. The maximum ΔT analyzed was equal to 6.67 degrees C (12 degrees F). This is equal to the ΔT used for the thermal analysis of Units 1 and 2. The results of the sensitivity test indicate that the size of the thermal plume envelope (Figure 2) becomes smaller as ΔTs are reduced.³

³ Note: the salinity of the influent water was assumed to be the same as the salinity of the discharge water, so changes in salinity were not considered in the sensitivity analysis (i.e., discharge water density was assumed to be a function of temperature alone).
Figure 3 shows the size of the Unit 3 thermal plume envelope compared to the State of Maryland regulatory limit for radial extent.

![Figure 3: Calvert Cliffs Nuclear Power Plant Thermal Plumes](image)

Note: Scale is not exact.

Table 4 provides a comparison of the State of Maryland regulatory limits to the calculated Unit 3 thermal plume size. In each case, the thermal plume satisfies the state requirement.4

4 As discussed in Appendix 5, the size of the thermal plume should be less and dilution should increase if ΔTs are reduced. Thus, the results presented here are bounding provided that the actual operating ΔT is equal to or less than 6.66 deg. C.
Table 4: Comparison of State of Maryland Regulatory Limits to Calculated Thermal Plume Size

<table>
<thead>
<tr>
<th>Water Quality Standard</th>
<th>Permissible Limit</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>The 24-hr average of the maximum radial dimension measured from the point of discharge to the boundary of the full capacity 3.6°F (2°C) above ambient isotherm (measured during the critical periods) may not exceed one-half of the average ebb tidal excursion.</td>
<td>4,101 ft / 1250 m</td>
<td>< 207 ft / 63 m</td>
</tr>
<tr>
<td>The 24-hr average full capacity 3.6°F (2°C) above ambient thermal barrier (measured during the critical periods) may not exceed 50 percent of the accessible cross section of the receiving water body. Both cross sections shall be taken in the same plane.</td>
<td>16,000 ft / 4,800 m</td>
<td>69 ft / 21 m</td>
</tr>
<tr>
<td>The 24-hr average area of the bottom touched by waters heated 3.6°F (2°C) or more above ambient at full capacity (measured during the critical periods) may not exceed 5 percent of the bottom beneath the average ebb tidal excursion multiplied by the width of the receiving water body.</td>
<td>$1.3 \times 10^7 \text{ ft}^2 / 1.2 \times 10^6 \text{ m}^2$</td>
<td>$2.9 \times 10^4 \text{ ft}^2 / 2.7 \times 10^3 \text{ m}^2$</td>
</tr>
</tbody>
</table>

Note: All of the calculations are based on the size of the thermal plume envelope as shown in Figure 3.
5.3 **Conservative Assumptions**

Two conservative assumptions were used in the thermal plume analysis.

First, the average depth of the receiving water was specified as 13ft/4.0m (See Appendix 1 – HA input parameter); however, the depth of the bay is greater than this in areas where mixing occurs. CORMIX requires that the receiving water be assumed to have a rectangular cross-section, and the average depth of the cross-section cannot be more than 30% greater than the depth at discharge. In this analysis, the depth at discharge was based on design drawing information and the average depth of the receiving water was specified to be 30% greater. As a result of this simplification, the amount of mixing calculated should be less than it would be if the depth of the receiving water was deeper.

Second, the comparisons of thermal plume size to state limits are based on the extent of the thermal plume envelope (see Figure 2) not the size of the instantaneous thermal plume. This adds a safety factor of about two to the analysis. However, in either case the size of the thermal plume is much less than the state’s requirements since the limits are based on the bay width at the discharge location.

6. **Dilution Study**

6.1 **Analysis Procedure**

The CORMIX computer program was designed to study mixing in steady-flows. Recently, however, the program has been adapted for the study of mixing in tidally influenced waters (Nash, 1995). The revised program works well to estimate mixing in near-field regions; however, the approach is not suitable for calculating mixing in areas where the plume’s transit time is much greater than 3.5 hours (i.e., about ¼ of a tidal cycle) unless the transit time is so great that tidal effects can be ignored (note: this approach was used to calculate time-averaged dilution credits in tidal waters 50-miles downstream of the project; however, these estimates are recognized to be conservative – see discussion in Section 6.1.3).

The *FLOW-3D*® computer program was used to construct a depth-averaged flow model of the estuary so that far-field dilution credits could be calculated in areas where CORMIX could not be applied. CORMIX results (i.e., near-field dilutions credits) were used to provide calibration data for the depth-averaged flow model, and subsequent simulation results were used to determine transit times and far-field dilution credits (see Section 6.1.2).

5 *FLOW-3D*® is a finite volume computer program that uses the transient, three-dimensional, Navier-Stokes equations as governing equations (a reduced depth-averaged set of equations can also be solved). The program has been commercially available since the mid-1980s and is currently being used to help resolve problems related to GSI-191.
6.1.1 Calculation of Near-Field Dilution Credits

Near-field Dilution credits were calculated with CORMIX following a procedure similar to the one used to complete the thermal mixing study. A series of five calculations, each associated with a different part of the tidal cycle (e.g., flood, ebb, mid-tide after slack, mid-tide before slack, and slack), were completed. And, the size and extent of mixing zones associated with the 2 degree, 1 degree, and 0.5 degree C isotherms were noted.

As shown in Table 5, the size and extent of the largest area covered by a mixing zone during a tidal cycle was reported.

6.1.2 Calculation of Far-Field Dilution Credits

CORMIX could not be used to calculate dilution credits at shoreline locations listed in Table 6 because the transit times to these locations are much greater than about 3.5 hours. Or, in the case of the Nearest Shoreline and the Southern Property Boundary the time-dependent effects of the tide could not be adequately addressed by the CORMIX tidal routines. Dilution credits, at far-field locations, were instead calculated from the results of a tidal flow model.

The bathymetry of the tidal flow model was the same as that used in the CORMIX calculations. That is, the Chesapeake Bay’s cross section was assumed to be rectangular (4 meters deep and 9,600 meters wide) and prismatic. Receiving water data was also the same as that used for the calculation of near-field dilution credits and the thermal study. Only the discharge geometry and tidal velocities were different.

The discharge geometry (i.e., the multi-port diffuser) was not built explicitly into the tidal flow model since the tidal model was depth-averaged (i.e., the model had only one computational cell in the vertical direction) and the minimum size of the computational cells was larger than the size of the diffuser (note: this second simplification was used to limit the size of the tidal flow model).

Tidal velocities were based on those used to calculate near-field dilution credits and in the thermal study. However, in this case, a drift velocity based on monthly mean inflows to the bay defined at cross-section B of Figure 4(a) was incorporated into the tidal boundary conditions. The drift velocity accounts for the seaward movement of water in the bay and was calculated to be equal to 60,000 cfs divided by the cross-sectional area of the water body (i.e., flows in the tidal model were biased in the seaward direction).

6 A notable exception to this rule applies to the calculation of dilution credits for shoreline locations 50 miles away – CORMIX was used in this case – see Section 6.1.3 for a discussion.

7 NOTE: In a previous CORMIX mixing zone study, performed by Versar, Inc. for the Maryland Power Plant Research Program, symmetric tidal velocities were used and the results of the analysis compared closely with measured data at Calvert Cliffs. For this reason, these same velocities were used as input to the CORMIX analyses reported herein
Figure 4: USGS Flow Data
(a) Stations and Sections, (b) Monthly Mean Inflows
Adjustments to mixing parameters were made so that a close agreement between output from the tidal model and results of the thermal study was achieved. The calibrated tidal model was then used to calculate dilution credits at locations where CORMIX could not be applied (see sample graphics in Appendix Three).

Time averaged dilution credits were calculated from time-series results output at each of the locations of interest appearing in Table 6 after model spin-up (i.e., once the results of the tidal model were quasi-steady). In contrast to this, transit times, were calculated to be the minimum time required for any effluent to reach a location of interest.

6.1.3 Calculation of Dilution Credits at 50-Miles

CORMIX was used to calculate dilution credits at shoreline locations 50-miles away. These locations are well beyond the limit of a tidal excursion, and it is estimated that about three weeks time is required for effluent to be transported to these locations. Since the transit time is much greater than the period of a tidal cycle (550 hours versus 12.6 hours) the CORMIX analysis was based on the drift velocity used in the tidal model. This approach neglects mixing energy provided by the tide and provides a conservative estimate of dilution at the 50-mile limit.

Figure 5 shows “centerline dilution” versus “centerline trajectory distance” downstream of the discharge. The green vertical line identifies the location of the 2 degree C isotherm, and the blue vertical lines identify locations where different CORMIX solution modules were used. The last solution module, number 261, applies to a condition where the plume centerline is attached to the shoreline and only gradual spreading takes place in the downstream direction. Thus, in much of the far-field, the plume extends only a portion of the total distance across the bay and a maximum dilution of 365 is calculated along the shoreline for most of the reach in question.8

8 To contrast this result, a dilution of 1527:1 is calculated for a condition where total mixing occurs in the reach length.
Figure 5: Centerline Dilution versus Distance
(standard CORMIX output reported in SI units - 50 miles equals 80,500 meters)
6.2 Results

Near-field and Far-field dilution credits are provided in Tables 5 and 6.

Shoreline dilution with respect to shoreline position is given in Figure 6. In this figure, shoreline position shown on the horizontal axis is referenced relative to the location of the discharge (i.e., shoreline positions in the seaward direction are positive and shoreline positions in the upland direction are negative).

Table 5: Near-Field Dilution Credits

<table>
<thead>
<tr>
<th>Definition of Mixing Zone</th>
<th>Minimum Dilution at Mixing Zone Perimeter</th>
<th>Area of Mixing Zone(^9) (acres)</th>
<th>Length of Mixing Zone vs. CCNPP Shoreline Boundaries(^{10})</th>
<th>Width of Mixing Zone vs. Bay Width(^{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta T = 2) degree C Isotherm</td>
<td>3.4</td>
<td>0.13</td>
<td>3%</td>
<td>0.1%</td>
</tr>
<tr>
<td>(\Delta T = 1) degree C Isotherm</td>
<td>6.6</td>
<td>2.8</td>
<td>8%</td>
<td>0.4%</td>
</tr>
<tr>
<td>(\Delta T = 0.5) degree C Isotherm(^{12})</td>
<td>13.3</td>
<td>9.0</td>
<td>13%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

\(^9\) The “Area of Mixing Zone” is the largest area covered by the mixing zone during a tidal cycle.

\(^{10}\) The “Length of Mixing Zone” is the greatest along-shore distance covered by the mixing zone during a tidal cycle.

\(^{11}\) The “Width of Mixing Zone” is the greatest cross-shore distance covered by the mixing zone during a tidal cycle.

\(^{12}\) For this scenario the 0.5 degree C Isotherm is located at the limit of applicability for CORMIX. As a result, the length and width measures of the plume for the mid-tide analyses were extrapolated from the CORMIX output data.
Table 6: Far-Field Dilution Credits13

<table>
<thead>
<tr>
<th>Location</th>
<th>Transit Time (hr)</th>
<th>Time Averaged Dilution Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calvert Beach14</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Long Beach3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Northern Property Boundary13</td>
<td>3.5 (conservative)</td>
<td>377 (conservative)</td>
</tr>
<tr>
<td>Nearest Shoreline16</td>
<td>0.8</td>
<td>93</td>
</tr>
<tr>
<td>Southern Property Boundary</td>
<td>1.4</td>
<td>74</td>
</tr>
<tr>
<td>Minimum Shoreline Dilution17</td>
<td>4.0</td>
<td>69</td>
</tr>
<tr>
<td>Cove Point Beach</td>
<td>77</td>
<td>93</td>
</tr>
<tr>
<td>Tidal Waters 50-Miles Downstream18,19</td>
<td>550 (est.)</td>
<td>365</td>
</tr>
<tr>
<td>Shoreline of Chesapeake Bay Opposite of CCNPP20</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

13 The time-average flow of water past the discharge location is based on upstream freshwater inflows equal to 60,000 cfs (USGS).
14 Calvert Beach and Long Beach are located beyond the upstream limit of the tidal excursion.
15 The Northern Property Boundary is located near the upstream limit of the tidal excursion.
16 The transit time for this estimate is difficult to calculate since flows are perpendicular to nearest shoreline – transit time is based on wind-driven surface current of 0.2 ft/s (about 1/10th of typical wind speed).
17 Approximately 8,900 ft south of discharge point.
18 The calculated time-averaged dilution credit assumes that the plume is not laterally well-mixed 50-miles downstream of the discharge point and is, therefore, conservative.
19 The calculated time-averaged dilution credit does not account for freshwater inflows downstream (i.e., seaward) of the discharge location.
20 The plume does not contact the shoreline of the Chesapeake Bay opposite of CCNPP according to this analysis.
Figure 6: Shoreline Dilution

<table>
<thead>
<tr>
<th>Shoreline Location (ft)</th>
<th>Descriptor</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8,000</td>
<td>Northern Property Boundary</td>
<td>377</td>
</tr>
<tr>
<td>-1,200</td>
<td>Cooling Water Intake</td>
<td>101</td>
</tr>
<tr>
<td>0</td>
<td>Nearest Shoreline Location</td>
<td>93</td>
</tr>
<tr>
<td>5,000</td>
<td>Southern Property Boundary</td>
<td>74</td>
</tr>
<tr>
<td>8,900</td>
<td>Minimum Dilution</td>
<td>69</td>
</tr>
<tr>
<td>23,000</td>
<td>Cove Point Beach</td>
<td>93</td>
</tr>
<tr>
<td>> 40,000</td>
<td>Far-Field to 50 Miles</td>
<td>365</td>
</tr>
</tbody>
</table>
6.3 **Conservative Assumptions**

Four conservative assumptions were used in the calculation of time averaged dilution credits and transit times.

First, the drift velocity used in the analyses is based on inflows from upstream locations only. However, as shown in Figure 4, additional water enters the bay at downstream locations in the vicinity of the project. The addition of this water should increase the dilution of the effluent and should increase its drift velocity.

Second, the bay cross-section used for these calculations under estimates the size of the bay in the area of interest. As a result, the dilution of the effluent should be underestimated as well.

Third, the effect of winds to increase mixing was not explicitly included in the tidal model (instead, winds were assumed to be light in the CORMIX analysis, and they did not affect the *FLOW-3D* study, use of both assumptions is conservative).

Fourth, the approach used to calculate dilution credits at 50-miles does not include the effect of tides which could increase mixing in the area of interest.
7. References

Alion Science and Technology (2007), “COLA ER Section 5.3.2 for CCNPP Unit 3,” Warrenville, IL.

AREVA (2007), AREVA RFI-07-153 (dated: 3/19/07), Marlborough, MA.

Calvert Cliffs Unit 3 Construction and Operation Station License Application (2007), Environment Report Section 3.4.

NOAA Tides and Currents Website (2007),
http://tidesandcurrents.noaa.gov/tides07/tab2ec2c.html#50.

Appendix One: CORMIX Input derived from Baseline Data (excerpt)

CORMIX MIXING ZONE EXPERT SYSTEM
Subsystem CORMIX2: Multiport Diffuser Discharges
CORMIX Version 5.0GT
HYDRO2 Version 5.0.0.0 March 2007

CASE DESCRIPTION
Site name/label: Calvert Cliffs
Design case: Discharge System for CCNPP Unit 3 - Ebb Tide
FILE NAME: C:\...RMIX 5.0\MyFiles\CCNPP Unit 3 Discharge (ebb).prd
Time stamp: Tue Apr 3 13:01:37 2007

ENVIRONMENT PARAMETERS (metric units)
Unbounded section
HA = 4.00 HD = 3.05
Tidal Simulation at TIME = 3.150 h
PERIOD= 12.60 h UAmax = 0.305 dUa/dt= 0.097 (m/s)/h
UA = 0.305 F = 0.020 USTAR =0.1517E-01
UW = 1.000 UWSTAR=0.1071E-02
Uniform density environment
STRCND= U RHOAM = 1009.2200

DIFFUSER DISCHARGE PARAMETERS (metric units)
Diffuser type: DITYPE= unidirectional_parallel
BANK = RIGHT DISTB = 167.60 YB1 = 167.60 YB2 =
LD = 5.70 NOPEN = 3 SPAC = 2.85
D0 = 0.406 A0 = 0.130 H0 = 0.91 SUB0 =
2.14
Nozzle/port arrangement: unidirectional_without_fanning
GAMMA = 180.00 THETA = 22.50 SIGMA = 90.00 BETA =
90.00
U0 = 2.859 Q0 = 1.112 =0.1112E+01
RH00 = 1007.8700 DRH00 =0.1350E+01 GPO =0.1312E-01
C0 =0.6667E+01 CUNITS= deg.C
IPOLL = 3 KS =0.7165E-05 KD =0.0000E+00

Notes: (1) Input derived from baseline date is highlighted.
(2) Refer to CORMIX User’s Manual for variable definitions.

Estimated from NOAA Navigation Data – Chart No. 12264 (and maximum CORMIX permissible value based on HD)
Appendix Two: CORMIX Sample Graphics – Max. Ebb/Flood Results

Figure 2-1: Schematic Diagram of Modeled Diffuser

Figure 2-2: Plan View - Ebb Tide Plume
(water quality standard met 63.0 m [207.0 ft] downstream of diffuser)
Figure 2-3: Downstream Distance where Water Quality Standard is Achieved (green line, 54.0 m [177.0 ft])

Figure 2-4: Dilution along Centerline Trajectory of Plume
Appendix Three: *FLOW-3D®* Sample Graphics – Max. Ebb Results

Figure 3-1: Max. Ebb Concentration Distribution
(discharge location is circled)

Figure 3-2: Scalar Concentration at Southern Property Boundary
(release concentration equals 1000 units)
Figure 3-3: Calculated Dilution at Southern Property Boundary
Appendix Four: CORMIX Input Records – Prediction File Excerpts

1. Flood and Ebb Conditions

CORMIX MIXING ZONE EXPERT SYSTEM
Subsystem CORMIX2: Multiport Diffuser Discharges
CORMIX Version 5.0GT
HYDRO2 Version 5.0.0.0 March 2007

ENVIRONMENT PARAMETERS (metric units)
Unbounded section
Tidal Simulation at TIME = 3.150 h
PERIOD= 12.60 h UAmax = 0.305 dUa/dt= 0.097 (m/s)/h
UA = 0.305 F = 0.020 USTAR = 0.1517E-01
UW = 1.000 UWSTAR = 0.1071E-02
Uniform density environment
STRCND= U RHOAM = 1009.2200
DIFFUSER DISCHARGE PARAMETERS (metric units)
Diffuser type: DITYPE= unidirectional_parallel
BANK = RIGHT DISTB = 167.60 YB1 = 167.60 YB2 = 167.60
LD = 5.70 NOPEN = 3 SPAC = 2.85
D0 = 0.406 A0 = 0.130 H0 = 0.91 SUB0 = 2.14
Nozzle/port arrangement: unidirectional_without_fanning
GAMMA = 180.00 THETA = 22.50 SIGMA = 90.00 BETA = 90.00
U0 = 2.859 Q0 = 1.112 = 0.1112E+01
RHO0 = 1007.8700 DRHO0 = 0.1350E+01 GP0 = 0.1312E-01
C0 = 0.6667E+01 CUNITS= deg.C
IPOLL = 3 KS = 0.7165E-05 KD = 0.0000E+00
FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units)
q0 = 0.1952E+00 m0 = 0.5580E+00 j0 = 0.2560E-02 SIGNJ0 = 1.0
Associated 2-d length scales (meters)
lQ=B = 0.068 IM = 29.71 lm = 6.00
lmp = 99999.00 lbp = 99999.00 la = 99999.00
FLUX VARIABLES - ENTIRE DIFFUSER (metric units)
Q0 = 0.1112E+01 M0 = 0.3180E+01 J0 = 0.1459E-01
Associated 3-d length scales (meters)
LQ = 0.36 LM = 19.71 Lm = 5.85 Lb = 0.51
lmp = 99999.00 lbp = 99999.00
Tidal: Tu = 0.3753 h Lu = 49.081 Lmin = 5.847
NON-DIMENSIONAL PARAMETERS
FR0 = 95.53 FRD0 = 39.15 R = 9.37 PL = 3.
(slot) (port/nozzle)
RECOMPUTED SOURCE CONDITIONS FOR RISER GROUPS:
Properties of riser group with 1 ports/nozzles each:
U0 = 2.859 D0 = 0.406 A0 = 0.130 THETA = 22.50
FR0 = 95.53 FRD0 = 39.15 R = 9.37
(slot) (riser group)
2. Slack Condition

222
CORMIX MIXING ZONE EXPERT SYSTEM
Subsystem CORMIX2: Multiport Diffuser Discharges
CORMIX Version 5.0GT
HYDRO2 Version 5.0.0.0 March 2007

CASE DESCRIPTION
Site name/label: Calvert Cliffs
Design case: Discharge System for CCNPP Unit 3 - Slack
FILE NAME: C:\...IX 5.0\MyFiles\CCNPP Unit 3 Discharge (slack).prd
Time stamp: Wed May 16 14:34:58 2007
ENVIRONMENT PARAMETERS (metric units)
Unbounded section
HA = 4.00 HD = 3.05
Tidal Simulation at TIME = 0.000 h
PERIOD = 12.60 h UAmx = 0.305 dUa/dt = 0.137 (m/s)/h
UA = 0.000 F = 0.020 USTAR = 0.0000E+00
UW = 1.000 UWSTAR = 0.1071E-02
Uniform density environment
STRCND= U RHOAM = 1009.2200
DIFFUSER DISCHARGE PARAMETERS (metric units)
Diffuser type: DITYPE= unidirectional_parallel
BANK = RIGHT DISTB = 167.60 YB1 = 167.60 YB2 = 167.60
LD = 5.70 NOPEN = 3 SPAC = 2.85
D0 = 0.406 A0 = 0.130 H0 = 0.91 SUB0 = 2.14
Nozzle/port arrangement: unidirectional_without_fanning
GAMMA = 180.00 THETA = 22.50 SIGMA = 90.00 BETA = 90.00
U0 = 2.859 Q0 = 1.112 = 0.1112E+01
RHO0 = 1007.8700 DRHO0 = 0.1350E+01 GP0 = 0.1312E-01
C0 = 0.6667E+01 CUNITS = deg.C
IPOLL = 3 KS = 0.7165E-05 KD = 0.0000E+00
FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units)
q0 = 0.1952E+00 m0 = 0.5580E+00 j0 = 0.2560E-02 SIGNJ0 = 1.0
Associated 2-d length scales (meters)
IQT = 0.0681M = 29.71 lm = 99999.00
Imp = 99999.00 lbp = 99999.00 la = 99999.00
FLUX VARIABLES - ENTIRE DIFFUSER (metric units)
Q0 = 0.1112E+01 M0 = 0.3180E+01 J0 = 0.1459E-01
Associated 3-d length scales (meters)
LQ = 0.36 LM = 19.71 Lm = 99999.00 Lb = 99999.00
Lmp = 99999.00 Lbp = 99999.00
Tidal: Tu = 0.2975 h Lu = 43.704 Lmin = 5.847
NON-DIMENSIONAL PARAMETERS
FR0 = 95.53 FRD0 = 39.15 R = 99999.00 PL = 3.
(slot) (port/nozzle)
RECOMPUTED SOURCE CONDITIONS FOR RISER GROUPS:
Properties of riser group with 1 ports/nozzles each:
U0 = 2.859 D0 = 0.406 A0 = 0.130 THETA = 22.50
FR0 = 95.53 FRD0 = 39.15 R = 99999.00 (slot) (riser group)
3. Mid-Tide before Slack

CORMIX MIXING ZONE EXPERT SYSTEM
Subsystem CORMIX2: Multiport Diffuser Discharges
CORMIX Version 5.0GT
HYDRO2 Version 5.0.0.0 March 2007

CASE DESCRIPTION
Site name/label: Calvert Cliffs
Design case: Discharge System for CCNPP Unit 3 - Before Slack
FILE NAME: C:\..\MIX 5.0\MyFiles\CCNPP Unit 3 Discharge (mrbs).prd

ENVIRONMENT PARAMETERS (metric units)
Unbounded section
HA = 4.00 HD = 3.05
Tidal Simulation at TIME = -1.575 h
PERIOD= 12.60 h UAmax = 0.305 dUa/dt= 0.137 (m/s)/h
UA = 0.216 F = 0.020 USTAR = 0.1074E-01
UW = 1.000 UWSTAR=0.1071E-02

Uniform density environment
STRCND= U RHOAM = 1009.2200

DIFFUSER DISCHARGE PARAMETERS (metric units)
Diffuser type: DITYPE= unidirectional_parallel
BANK = RIGHT DISTB = 167.60 YB1 = 167.60 YB2 = 167.60
LD = 5.70 NOPEN = 3 SPAC = 2.85
D0 = 0.406 A0 = 0.130 H0 = 0.91 SUB0 = 2.14
Nozzle/port arrangement: unidirectional_without_fanning
GAMMA = 180.00 THETA = 22.50 SIGMA = 90.00 BETA = 90.00
U0 = 2.859 Q0 = 1.112 =0.1112E+01
RHO0 = 1007.8700 DRHO0 = 0.1350E+01 GP0 = 0.1312E-01
C0 = 0.6667E+01 CUNITS= deg.C
IPOLL = 3 KS = 0.7165E-05 KD = 0.0000E+00

FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units)
q0 = 0.1952E+00 m0 = 0.5580E+00 j0 = 0.2560E-02 SIGNJ0= 1.0
Associated 2-d length scales (meters)
IQ=B = 0.068 IM = 29.71 lm = 11.96
Lmp = 99999.00 Lbp = 99999.00

FLUX VARIABLES - ENTIRE DIFFUSER (metric units)
Q0 = 0.1112E+01 M0 = 0.3180E+01 J0 = 0.1459E-01
Associated 3-d length scales (meters)
LQ = 0.36 LM = 19.71 Lm = 8.26 Lb = 1.45
Tidal: Tu = 0.2975 h Lu = 43.704 Lmin = 5.847

NON-DIMENSIONAL PARAMETERS
FR0 = 95.53 FRD0 = 39.15 R = 13.24 PL = 3.

RECOMPUTED SOURCE CONDITIONS FOR RISER GROUPS:
Properties of riser group with 1 ports/nozzles each:
U0 = 2.859 D0 = 0.406 A0 = 0.130 THETA = 22.50
FR0 = 95.53 FRD0 = 39.15 R = 13.24
4. Mid-Tide after Slack

CORMIX MIXING ZONE EXPERT SYSTEM
Subsystem CORMIX2: Multiport Diffuser Discharges
CORMIX Version 5.0GT
HYDRO2 Version 5.0.0.0 March 2007

CASE DESCRIPTION
Site name/label: Calvert Cliffs
Design case: Discharge System for CCNPP Unit 3 - After Slack
FILE NAME: C:\...MIX 5.0\MyFiles\CCNPP Unit 3 Discharge (mras).prd
Time stamp: Wed May 16 14:38:26 2007

ENVIRONMENT PARAMETERS (metric units)
Unbounded section
HA = 4.00 HD = 3.05
Tidal Simulation at TIME = 1.575 h
PERIOD= 12.60 h UAmax = 0.305 dUa/dt= 0.137 (m/s)/h
UA = 0.216 F = 0.020 USTAR =0.1074E-01
UW = 1.000 UWSTAR=0.1071E-02
Uniform density environment
STRCND= U RHOAM = 1009.2200

DIFFUSER DISCHARGE PARAMETERS (metric units)
Diffuser type: DITYPE= unidirectional_paralle
BANK = RIGHT DISTB = 167.60 YB1 = 167.60 YB2 = 167.60
LD = 5.70 NOPEN = 3 SPAC = 2.85
D0 = 0.406 A0 = 0.130 H0 = 0.91 SUB0 = 2.14
Nozzle/port arrangement: unidirectional_without_fanning
GAMMA = 180.00 THETA = 22.50 SIGMA = 90.00 BETA = 90.00
U0 = 2.859 Q0 = 1.112 =0.1112E+01
RHO0 = 1007.8700 DRHO0 =0.1350E+01 GP0 =0.1312E-01
C0 =0.6667E+01 CUNITS= deg.C
IPOLL = 3 KS =0.7165E-05 KD =0.0000E+00

FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units)
q0 =0.1952E+00 m0 =0.5580E+00 j0 =0.2560E-02 SIGNJ0= 1.0
Associated 2-d length scales (meters)
IQ=B = 0.068 IM = 29.71 lm = 11.96
Lmp = 99999.00 Lbp = 99999.00 la = 99999.00

FLUX VARIABLES - ENTIRE DIFFUSER (metric units)
Q0 =0.1112E+01 M0 =0.3180E+01 J0 =0.1459E-01
Associated 3-d length scales (meters)
LQ = 0.36 LM = 19.71 Lm = 8.26 Lb = 1.45
Lmp = 99999.00 Lbp = 99999.00

Tidal: Tu = 0.2975 h Lu = 43.704 Lmin = 5.847

NON-DIMENSIONAL PARAMETERS
FR0 = 95.53 FRD0 = 39.15 R = 13.24 PL = 3.
(slot) (port/nozzle)

RECOMPUTED SOURCE CONDITIONS FOR RISER GROUPS:
Properties of riser group with 1 ports/nozzles each:
U0 = 2.859 D0 = 0.406 A0 = 0.130 THETA = 22.50
FR0 = 95.53 FRD0 = 39.15 R = 13.24
(slot) (riser group)
Appendix Five: Sensitivity Test - ΔT

A test was completed to determine the sensitivity of model results to different discharge temperatures (ΔTs). In all, sixteen different calculations were completed. For each calculation, the distance along the shoreline from the point of origin to the location where a dilution of about 5.1 was calculated was noted. The plume width at this location was also recorded.

As shown in Table 5-1, greater temperature differences (i.e., ΔTs) generally produce larger plumes. The only exception to this rule applies to the slack tide scenario where the plume size is slightly larger for ΔTs less than 6.66 deg. C.

Table 5-1: ΔT Sensitivity Analysis Results
(distance from point of origin and plume top width, units are meters)

<table>
<thead>
<tr>
<th>Flow Condition</th>
<th>Delta T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebb and Flow</td>
<td>197 x 42</td>
</tr>
<tr>
<td>Slack Tide</td>
<td>6 x 4</td>
</tr>
<tr>
<td>Mid-Tide before Slack</td>
<td>232 x 66</td>
</tr>
<tr>
<td>Mid-Tide after Slack</td>
<td>139 x 46</td>
</tr>
</tbody>
</table>

The results of this sensitivity test indicate that the size of the thermal plume envelope (ref. Figure 2) would be smaller, and that dilution factors would be greater if modeled ΔTs were reduced.
Appendix Six: CORMIX References

User's Manual

General Description

Technical Scientific Background (CORMIX1):

Technical Scientific Background (CORMIX2):

Technical Scientific Background (CORMIX3):

Tidal Applications

CorJet Near-Field Integral Model

D-CORMIX Model

Other CORMIX/Mixing Zone References

Appendix Seven: Selected FLOW-3D® References

User's Manual

General Description and Theory