ATTACHMENT 4

STRUCTURAL INTEGRITY ASSOCIATES, INC. CALCULATION NO. 0800297.301, REVISION 1

REVISED PRESSURE-TEMPERATURE CURVES

S S	tructural Int	egrity Associa	tes, Inc.	File No.: 0800297.3	01
C	ALCULATI	ION PACKAG	Project No.: 0800297 🛛 Q 🗌 Non-Q		
PROJECT	NAME:				
NMP Mater	ials Update and H	Revised P-T Curves			
CONTRAC	CT NO.:				
7710734 Re	vision 1				
CLIENT:			PLANT:		
Constellatio	n Energy		Nine Mile	Point, Unit 1	
CALCULA	TION TITLE:		1,		· · · · · · · · · · · · · · · · · · ·
Revised Pre	ssure-Temperatu	re Curves			
Notes: This	calculation supersed	des all previous Pressur	re-Temperatur	e curve calculations for the	z Nine Mile Point, Unit 1.
Document Revision	Affected Pages	I Revision Description		Project Manager Approval Signature & Date	Preparer(s) & Checker(s) Signatures & Date
0	1 -46, Appendix: A1 - A2, B1 - B5, C1 - C2 Computer Files	Initial Issue		T. J. Griesbach 12/23/08	E. J. Houston 12/22/08 S. J. White 12/22/08 V. Marthandam 12/22/08
1	8-47, B2	Incorporate Cli Comments	ient	Punotly J. Siesbah T. J. Griesbach 1/26/09	E. J. Houston 1/23/09 S.J. White 1/23/09 Volume Mechan V. Marthandam 1/26/09

Page 1 of 47 F0306-01R0

Table of Contents

1.0	INTRODUCTION
2.0	METHODOLOGY4
3.0	DESIGN INPUTS / ASSUMPTIONS
4.0	CALCULATIONS
4.	1 Pressure Test (Curve A)
4.	2 Normal Operation – Core Not Critical (Curve B)
4.	3 Normal Operation – Core Critical (Curve C)
5.0	CONCLUSIONS
6.0	REFERENCES
APPE	ENDIX A: P-T CURVE INPUT LISTING
APPE	ENDIX B: INCREASED COOL-DOWN RATE P-T CURVE
APPE	ENDIX C: ANSYS SUPPORTING FILES

List of Tables

Table 1: NMP-1 Polynomial Coefficients for Feedwater Nozzle Stress Intensity Distributions	15
Table 2: NMP-1 Beltline Region, Curve A, for 28 EFPY	16
Table 3: NMP-1 Beltline Region, Curve A, for 36 EFPY	18
Table 4: NMP-1 Beltline Region, Curve A, for 46 EFPY	20
Table 5: NMP-1 Bottom Head Region, Curve A, for all EFPY	22
Table 6: NMP-1 Upper Vessel Region, Curve A, for all EFPY	23
Table 7: NMP-1 Beltline Region, Curve B, for 28 EFPY	24
Table 8: NMP-1 Beltline Region, Curve B, for 36 EFPY	26
Table 9: NMP-1 Beltline Region, Curve B, for 46 EFPY	28
Table 10: NMP-1 Bottom Head Region, Curve B, for all EFPY	30
Table 11: NMP-1 Upper Vessel Region, Curve B, for all EFPY	31
Table 12: NMP-1 Curve C Values for 28 EFPY	33
Table 13: NMP-1 Curve C Values for 36 EFPY	35
Table 14: NMP-1 Curve C Values for 46 EFPY	37

•

F0306-01R0

List of Figures

Figure 1: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 28 EFPY	39
Figure 2: NMP-1 P-T Curve A (Hydrostatic Pressure and Lead Tests) for 36 EFPY	40
Figure 3: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 46 EFPY	41
Figure 4: NMP-1 P-T Curve B (Normal Operation – Core Not Critical) for 28 EFPY	42
Figure 5: NMP-1 P-T Curve B (Normal Operation – Core Not Critical) for 36 EFPY	43
Figure 6: NMP-1 P-T Curve B (Normal Operation – Core Not Critical) for 46 EFPY	44
Figure 7: NMP-1 P-T Curve C (Normal Operation – Core Critical) for 28 EFPY	45
Figure 8: NMP-1 P-T Curve C (Normal Operation – Core Critical) for 36 EFPY	46
Figure 9: NMP-1 P-T Curve C (Normal Operation – Core Critical) for 46 EFPY.	47

1.0 INTRODUCTION

This calculation updates the Nine Mile Point, Unit 1 (NMP-1) pressure-temperature (P-T) curves for the beltline, bottom head, and non-beltline (feedwater nozzle / upper vessel) regions. The P-T curves are created for 28, 36, and 46 effective full power years (EFPY) of operation, and are developed using the methodology of the 2001 Edition, 2003 Addenda of ASME Code, Section XI, Appendix G [1], and 10CFR50 Appendix G [2]. This calculation has been developed in accordance with the methodology of the Boiling Water Reactor Owner's Group (BWROG) Licensing Topical Report, "Pressure-Temperature Limits Report Methodology for Boiling Water Reactors" [3].

2.0 METHODOLOGY

A full set of P-T curves are computed, including the following plant conditions: Operating Pressure (Leak) Test (Curve A), Normal Operation – Core Not Critical (Curve B), and Normal Operation – Core Critical (Curve C). The curves are consolidated into three bounding evaluation regions of the reactor pressure vessel (RPV): (1) the beltline, (2) the bottom head, and (3) the feedwater nozzle / upper vessel.

The primary methodology for calculating P-T curves is described in Reference [3]. Therefore, all methodology in this section is obtained from Reference [3] unless otherwise noted. The P-T curves are calculated by means of an iterative procedure, in which the following steps are completed:

- Step 1: A fluid temperature, T, is assumed. The P-T curves are calculated under the premise of an assumed flaw that has extended ¼ of the way through the vessel wall. According to Reference [3], the temperature at the assumed flaw tip, T_{1/4}, is conservatively treated as equal to the assumed fluid temperature.
- Step 2: The static fracture toughness factor, K_{Ic}, is computed using the following equation:

$$K_{lc} = 20.734 \cdot e^{0.02(T - ART)} + 33.2 \tag{1}$$

Where:	K_{Ic}	= the lower-bound static fracture toughness factor (ksi \sqrt{in}).
	Т	= the metal temperature at the tip of the postulated ¼ through-wall
		flaw (°F), as described above.
	ART	= the Adjusted Reference Temperature (ART) for the limiting
		material in the RPV region under consideration (°F).

Step 3: The allowable stress intensity factor due to pressure, K_{1p}, is calculated as:

$$K_{lp} = \frac{K_{lc} - K_{ll}}{SF} \tag{2}$$

Where: K_{Ip}

= the allowable stress intensity factor due to membrane (pressure) stress (ksi \sqrt{in}).

 K_{Ic} = the lower-bound static fracture toughness factor calculated in Equation 1 (ksi \sqrt{in}).

 K_{It} = the thermal stress intensity factor (ksi \sqrt{in}).

SF = the safety factor, based on the reactor condition.

Note: For hydrostatic and leak test conditions (i.e., P-T Curve A), the SF = 1.5. For normal operation, for both a non-critical and a critical reactor (i.e., P-T Curves B and C), the SF = 2.0. When calculating values for Curve A, the thermal stress intensity factor is neglected (K_{It} = 0), since the hydrostatic leak test is performed at or near isothermal conditions (typically, the rate of temperature change is 25°F/hr or less) [3].

For Curve B and Curve C calculations, K_{It} is computed in different ways based on the evaluation region. For the beltline and bottom head regions, K_{It} is determined using the following equation based on the ASME Section XI, Nonmandatory Appendix G method:

$$K_{\mu} = 0.953 \times 10^{-3} \cdot CR \cdot t^{2.5} \tag{3}$$

Where: CR = the cooldown rate of the vessel (°F/hr). t = the RPV wall thickness, unique for each region (in).

For the feedwater nozzle / upper vessel region, K_{lt} is obtained from the stress distribution output of a finite element model (FEM) of the feedwater nozzle, which is the limiting nonbeltline component from a stress point-of-view (neglecting the flange, which is separately covered by application of 10 CFR 50 Appendix G limits). A thermal transient finite element analysis (FEA) is performed for the feedwater nozzle, and a polynomial curve-fit is applied to the through-wall stress distribution in the limiting nozzle corner location at each time point of the thermal transient. The subsequent method to evaluate K_{lt} is given as:

$$K_{lt}^{c} = \sqrt{\pi a} \left[0.706C_{0t} + \frac{2a}{\pi} \cdot 0.537C_{1t} + \frac{a^{2}}{2} \cdot 0.448C_{2t} + \frac{4a^{3}}{3\pi} \cdot 0.393C_{3t} \right]$$
(4)

Where:

а

t

= $\frac{1}{4}$ through-wall postulated flaw depth, a = $\frac{1}{4}$ t (in).

= thickness of the cross-section through the limiting nozzle inner blend radius corner (in).

$$C_{0t}$$
, C_{1t} = thermal stress third order polynomial coefficients, obtained from a C_{2t} , C_{3t} curve-fit of the extracted stresses from an FEM transient analysis.

The thermal stress polynomial coefficients are based on the polynomial form of

 $\sigma(x) = C_0 + C_1 \cdot \left(\frac{a}{a_{\max}}\right) + C_2 \cdot \left(\frac{a}{a_{\max}}\right)^2 + C_3 \cdot \left(\frac{a}{a_{\max}}\right)^3$. In this equation, "a" represents

the radial distance in inches from the inside surface to any point on the crack front, and "a_{max}" is the maximum crack depth, in inches.

The allowable internal pressure of the RPV is calculated differently for each evaluation Step 4: region. For the beltline region, the allowable pressure is determined as follows:

$$P_{allow} = \frac{K_{lp} \cdot t}{M_m \cdot R_i} \tag{5}$$

Where:	Pallow	=	the allowable RPV internal pressure (psig).
	K_{Ip}	=	the allowable stress intensity factor due to membrane (pressure)
	·		stress, as defined in Equation 2 (ksi√in).
	t	=	the RPV wall thickness, unique for each region (in).
	Mm	=	the membrane correction factor for an inside surface axial flaw:
			$M_{\rm m} = 1.85$ for $\sqrt{t} < 2$
			$M_m = 0.926 \sqrt{t}$ for $2 \le \sqrt{t} \le 3.464$

$$M_m = 0.926$$
 Vt for $2 \le \sqrt{t} \le 3.4$
 $M_m = 3.21$ for $\sqrt{t} \ge 3.464$

For the bottom head region, the allowable pressure is calculated with the following equation:

$$P_{allow} = \frac{2 \cdot K_{lp} \cdot t}{SCF \cdot M_m \cdot R_i} \tag{6}$$

Where:

 R_i

= conservative stress concentration factor to account for bottom head SCF penetration discontinuities; SCF = 3.0 per Reference [3].

Pallow, K_{Ip}, t, M_m and R_i are defined in the footnotes of Equation 5.

For the feedwater nozzle / upper vessel region, the allowable pressure is determined from a ratio of the allowable and applied stress intensity factors. The applied factor can be determined from an FEM that outputs the stresses due to the internal pressure on the nozzle / RPV. The methodology for this approach is as follows:

$$P_{ollow} = \frac{K_{lp} \cdot P_{ref}}{K_{lp-app}}$$
(7)

Where:

 P_{ref} = RPV internal pressure at which the FEA stress coefficients (Equation 8) are valid (psig).

 K_{ID-aDD} = the applied pressure stress intensity factor (ksi \sqrt{in}). P_{allow} and K_{Ip} are defined in the footnotes of Equation 5.

The applied pressure stress intensity factor is determined using a polynomial curve-fit approximation for the through-wall pressure stress distribution from an FEA, similar to the methodology of Equation 4:

$$K_{Ip-app} = \sqrt{\pi a} \left[0.706C_{0p} + \frac{2a}{\pi} \cdot 0.537C_{1p} + \frac{a^2}{2} \cdot 0.448C_{2p} + \frac{4a^3}{3\pi} \cdot 0.393C_{3p} \right]$$
(8)

Where:

а

t

= $\frac{1}{4}$ through-wall postulated flaw depth, a = $\frac{1}{4}$ t (in).

= thickness of the cross-section through the limiting nozzle inner blend radius corner (in).

 $C_{0p}, C_{1p} =$ pressure stress polynomial coefficients, obtained from a curve-fit C_{2p}, C_{3p} from the extracted stresses from an FEM unit pressure analysis.

- Step 5: Steps 1 through 4 are repeated in order to generate a series of P-T points; the fluid temperature is incremented with each repetition. Calculations proceed in this iterative manner until the allowable reactor pressure (P_{P-T}) exceeds the maximum possible pressure. The maximum pressure limit is set to 1900 psig, since this value bounds the pre-service hydrostatic test pressure of 1,875 psig (see Section 3.0).
- Step 6: The final P-T limits are calculated using the following equations:

$$T_{P-T} = T + U_T \tag{9}$$

$$P_{P-T} = P_{allow} - P_H - U_P \tag{10}$$

Where:	T_{P-T}	= the allowable coolant (metal) temperature ($^{\circ}$ F).
	UT	= the coolant temperature instrument uncertainty (°F).
	P_{P-T}	= the allowable reactor pressure (psig).
	P_{H}	= the pressure head to account for the water in the RPV (psig).
		Can be calculated from the following expression: $P_H = \rho \cdot \Delta h$.
	ρ	= Water density at ambient temperature (lb/in^3) .
	Δh	= elevation of full height water level in RPV (in.).
	UP	= the pressure instrument uncertainty (psig).

- Step 7: The following additional minimum temperature requirements apply to the feedwater nozzle / upper vessel region, according to Table 1 of 10CFR50, Appendix G [2]:
 - If the pressure is greater than 20% of the pre-service hydro-test pressure, the temperature must be greater than the RT_{NDT} of the limiting flange material plus a temperature adjustment. For Curve A calculations, the temperature adjustment is 90°F; for Curve B, the temperature adjustment is 120°F.
 - If the pressure is less than or equal to 20% of the pre-service hydro-test pressure, the minimum temperature must be greater than or equal to the RT_{NDT} of the limiting flange material.

÷

The P-T Curves for the hydrostatic leak test (Curve A) and normal operation – core not critical (Curve B) can be computed by following Steps 1 through 7. Values for Curve C, the core-critical operating curve, are generated from the requirements of 10CFR50 Appendix G [2] and the Curve A and Curve B limits. Table 1 of Reference [2] requires that core critical P-T limits be 40°F above any Curve A or Curve B limits at all pressures. 10CFR50 Appendix G [2] also stipulates that, above the 20% pressure transition point, the Curve C temperatures must be either the reference temperature (RT_{NDT}) of the closure flange region plus 160°F, or the temperature required for the operating pressure (leak) test from Curve A, whichever is greater.

For P-T Curves A and B, the initial fluid temperature assumed in Step 1 is typically taken at the bolt-up temperature of the closure flange. According to Reference [2], the minimum bolt-up temperature is equal to the limiting material RT_{NDT} of the regions affected by bolt-up stresses. Consistent with Reference [3], the minimum bolt-up temperature shall not be lower than 60°F. Thus, the minimum bolt-up temperature shall be 60°F or the material RT_{NDT} , whichever is higher.

For P-T Curve C, when the reactor is critical, the initial fluid temperature is equal to the calculated minimum criticality temperature in this region. Table 1 of Reference [2] indicates that, for a BWR with normal operating water levels, the allowable temperature for initial criticality at the closure flange region is equal to the reference temperature (RT_{NDT}) at the flange region plus 60°F.

3.0 DESIGN INPUTS / ASSUMPTIONS

All design inputs and assumptions used to perform the NMP-1 P-T curve calculations are summarized in the input listings in Appendix A.

ART values in the NMP-1 beltline region are obtained from a previous Structural Integrity Associates (SI) calculation [4]. The calculations were performed in accordance with Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Revision 2 (RG1.99) [5]. Based on Table 4 through Table 6 of Reference [4], the limiting beltline material is the P2112 lower shell plate. The limiting plate has ART values of 151.4°F, 159.0°F, and 167.4°F for 28, 36, and 46 EFPY, respectively.

NMP-1 has no large or small diameter nozzles (e.g. instrument nozzles) in the RPV beltline where the fluence exceeds $1.0 \times 10^{17} \text{ n/cm}^2$ (E>1MeV).

Non-beltline regions are not subjected to significant fluence; therefore, initial reference temperature (RT_{NDT}) values do not change, and are valid substitutions for corresponding ART values for these regions. Limiting RT_{NDT} values for the upper vessel and flange region are taken from Reference [12c] as 40°F. A complete list of RT_{NDT} values is not available for the bottom head [13]. Of the available data, a value of 40°F is bounding [13]. Since this value is also bounding for the upper vessel and flange region, the limiting bottom head RT_{NDT} is taken as 40°F. This is consistent with References [12.d] and [11, Section 10.3.1.1] which indicate the initial RT_{NDT} for areas of reactor vessel material away from the high flux density region of the core is 40°F.

Page 8 of 47

The inner radius of the RPV, per Reference [6, Table 4-5], is 106.5 inches. The vessel shell thickness is taken as 7.125 inches from the same source. Dimensions for the bottom head radius and thickness are obtained from Reference [10, Appendix A] as 106.719 inches and 8.75 inches, respectively.

The GE design hydro-test is defined as 1,250 psig [14] while the operating pressure test maximum is defined as 1,055 psig [16]. As described by IWB-5220 [15], the system leakage test (Curve A) pressure is taken as the operating pressure. The pre-service system hydrostatic test pressure was taken as 1.5 times the GE design pressure, resulting in a value of 1,875 psig, as confirmed in Reference [12a]. The instrument uncertainties for the Curve A hydrotest are 4°F and 10 psig [17]. For Curves B and C, the instrument uncertainties are 12.2°F and 52.2 psig [17].

The total internal height of the RPV is 766 inches, as shown in Table V-1 of Reference [12b]. The density of the water is assumed to be $62.4 \text{ lb/ft}^3 = 0.0361 \text{ lb/in}^3$. Thus, the static pressure adjustment due to the pressure head of the water in the RPV is conservatively calculated as $766 \cdot 0.0361 = 27.66$ psig for all evaluation regions, which addresses pressure test conditions when the RPV is fully flooded. The maximum cool-down rate of the vessel is 100°F/Hr per Reference [14]. Appendix B presents a bounding curve for a maximum heat-up / cool-down rate of 200°F/Hr .

According to Section 2.8 of Reference [3], the minimum bolt-up temperature for the RPV shall be no lower than 60° F. Since the RT_{NDT} values for all regions highly stressed by bolt preload are all less than 60° F, the initial assumed fluid temperature in the iterative P-T curve calculation process is set equal to 60° F. A temperature increment of 2°F between subsequent iterations is assumed.

The 60°F initial temperature of Reference [3] replaces the previous lower limit of 60°F plus the limiting RT_{NDT} for Curves A and B, which was applied to the previous NMP-1 P-T curves [7a, 7b]. This additional conservatism was required in pre-1971 ASME Section III Code, but is no longer required in ASME Section XI, Appendix G [1] or 10CFR50, Appendix G [2]. When the Pressure-Temperature Limits Report (PTLR) [3] was developed, SI consciously recognized the additional 60°F margin and chose to exclude it, as it is not technically required.

Post processing was performed for a previously developed finite element analyses to extract the necessary polynomial coefficients describing the hoop stress distribution through the feedwater nozzle's limiting corner location (Equations 4 and 8). The thermal and pressure stresses were extracted using ANSYS [8].

Based upon a previous axisymmetric analysis, the limiting nozzle corner location was chosen based upon the highest total stress intensity due to pressure loading [9]. This path (Nodes 584 to 570) is utilized to extract thermal and pressure hoop stresses from the results databases [9]. For thermal stresses, the feedwater nozzle FEM was run with a thermal shock from 550°F to 100°F applied to the nozzle flow path with 100% flow [9]. This represents the thermal shock during the transient "Increase to Rated Power" [14]. It can be seen from Reference [14] that this is the highest thermal shock for the feedwater nozzle. The thermal stresses are taken as function of time during the transient. Each stress distribution is fit with a third-order polynomial as a function of distance into the nozzle. The thermal stress intensity factor (Equation 4) is calculated for all time steps. The most limiting (highest) value is chosen, corresponding to a time of 5,000 seconds. Since operation is along the saturation curve, the

File No.: 0800297.301 Revision: 1 Page 9 of 47

F0306-01R0

thermal stress intensity factor is scaled to reflect the worst-case step change due to available temperature difference. The pressure stresses are taken at steady state. The pressure stress analysis was performed for a 1,000 psig RPV pressure and the results scaled to reflect the operating pressure of 1,055 psig. The supporting * *out* files of Reference [9] show that the path selected defines the nozzle corner thickness to be 7.8427 inches. Thus, the postulated flaw location at 1/4t is 1.9607 inches. Appendix C lists the ANSYS files included in the electronic supporting files. Note that only the finite element model developed in Reference [9] is used in this calculation; the Green's Function was not utilized.

The analyzed transient "Increase to Rated Power" is associated with the startup/shutdown event for the feedwater nozzle [14]. The evaluated shock is from 550°F to 100°F, which represents the design basis definition for this event. Figure 3-3 of Reference [18] shows a plant specific Turbine Roll transient for Unit 1 to be a shock from 485°F to 161°F. Even considering a potential 35°F feedwater temperature, page 4 of Appendix G states that the 161°F temperature would drop to 123°F [18]. Both of these are bounded by the analyzed 550°F to 100°F shock.

4.0 CALCULATIONS

The P-T curves in this calculation were developed using an Excel spreadsheet, which is independently verified for use on a project-specific basis in accordance with SI's QA Program.

The polynomial stress coefficients in Table 1 were applied to Equations 4 and 8. The resulting pressure stress intensity ($K_{Ip-applied}$) and thermal stress intensity (K_{It}) factors are 86.72 ksi \sqrt{in} and 45.60 ksi \sqrt{in} , respectively.

4.1 Pressure Test (Curve A)

The minimum bolt-up temperature of 60° F is applied to all regions as the initial temperature in the iterative calculation process. The static fracture toughness (K_{Ic}) is calculated for all regions using Equation 1. The resulting value of K_{Ic}, along with a safety factor of 1.5, is used in Equation 2 to calculate the pressure stress intensity (K_{Ip}). The allowable RPV pressure is calculated for the beltline, bottom head, and upper vessel regions using Equations 5, 6, and 7, respectively. For the feedwater nozzle / upper vessel region, the additional constraints specified in Step 7 of Section 2.0 are applied. Final P-T limits for temperature and pressure are obtained from Equations 9 and 10, respectively.

The data resulting from each P-T curve calculation was tabulated. Values for the beltline region at 28, 36, and 46 EFPY are given in Table 2, Table 3, and Table 4, respectively. Data for the bottom head region is listed in Table 5, and data for the feedwater nozzle / upper vessel region is presented in Table 6. The data for each region was graphed, and the resulting P-T curves for 28, 36, and 46 EFPY are provided in Figure 1, Figure 2, and Figure 3, respectively.

4.2 Normal Operation – Core Not Critical (Curve B)

The minimum bolt-up temperature of 60° F is applied to all regions as the initial temperature in the iterative calculation process. The static fracture toughness (K_{Ic}) is calculated for all regions using Equation 1. The thermal stress intensity factor (K_{It}) is calculated for the beltline and bottom head regions using Equation 3, and for the feedwater nozzle using Equation 4.

The resulting values of K_{Ic} and K_{It} , along with a safety factor of 2.0, are used in Equation 2 to calculate the pressure stress intensity (K_{Ip}). The allowable RPV pressure was calculated for the beltline, bottom head, and upper vessel regions using Equations 5, 6, and 7, respectively. For the feedwater nozzle / upper vessel region, the additional constraints specified in Step 7 of Section 2.0 are applied. Final P-T limits for temperature and pressure are obtained from Equations 9 and 10, respectively.

The data resulting from each P-T curve calculation was tabulated. Values for the beltline region at 28, 36, and 46 EFPY are given in Table 7, Table 8, and Table 9, respectively. Data for the bottom head region is listed in Table 10, and data for the feedwater nozzle / upper vessel region is presented in Table 11. The data for each region was graphed, and the resulting P-T curves for 28, 36, and 46 EFPY are provided in Figure 4, Figure 5, and Figure 6, respectively.

4.3 Normal Operation – Core Critical (Curve C)

The pressure and temperature values for Curve C are calculated in a similar manner as Curve B, with several exceptions. The initial evaluation temperature is calculated as the limiting closure flange region RT_{NDT} that is highly stressed by the bolt preload (in this case, that of the closure flange region: 40°F per Section 3.0) plus 60°F, resulting in a minimum critical temperature of 100°F. When the pressure exceeds 20% of the pre-service system hydro-test pressure (20% of 1,875 psig = 375 psig), the P-T limits are specified as 40°F higher than the Curve B values. The minimum temperature above the 20% pressure transition point is always greater than the reference temperature (RT_{NDT}) of the closure region plus 160°F, or the temperature required for the hydrostatic pressure test. The final Curve C values are taken as the absolute maximum between the three regions of Curve B P-T curves.

Tabulated overall values for Curve C are provided at 28, 36, and 46 EFPY in Table 12, Table 13, and Table 14, respectively. The corresponding P-T curves for 28, 36, and 46 EFPY are provided in Figure 7, Figure 8, and Figure 9, respectively.

5.0 CONCLUSIONS

P-T curves were calculated for NMP-1 for 28, 36, and 46 EFPY using the methodology in Section 2.0 and the design inputs and assumptions defined in Section 3.0. A full set of P-T curves were computed, including the following plant conditions: Operating Pressure (Leak) Test (Curve A), Normal Operation – Core Not Critical (Curve B), and Normal Operation – Core Critical (Curve C). Calculations were performed for the beltline, bottom head, and feedwater nozzle / upper vessel regions. Values for the

beltline regions were computed at 28, 36, and 46 EFPY. The calculations were performed in accordance with the PTLR methodology approved by the NRC in Reference [3].

Tabulated pressure and temperature values are provided for all regions in Table 2 through Table 14. The accompanying P-T curve plots are provided in Figure 1 through Figure 9.

6.0 **REFERENCES**

- 1. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, <u>Rules for In-Service Inspection of Nuclear Power Plant Components</u>, 2001 Edition including the 2003 Addenda.
- Part 50 U.S. Code of Federal Regulations, Title 10, <u>Energy</u>, Part 50, "Domestic Licensing of Production and Utilization Facilities," Appendix G, "Fracture Toughness Requirements," (60 FR 65474, Dec. 19, 1995; 73 FR 5723, Jan. 31, 2008).
- 3. Structural Integrity Associates Report No. SIR-05-044A, Revision 0, "Pressure-Temperature Limits Report Methodology for Boiling Water Reactors," April 2007, SI File No. GE-10Q-401.
- 4. Structural Integrity Associates Calculation No. 0800297.300, Revision 1, "Evaluation of Adjusted Reference Temperatures and Reference Temperature Shifts."
- 5. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," May 1988.
- 6. MPM Report No. MPM-59838, "Pressure-Temperature Operating Curves for Nine Mile Point Unit 1," May 1998, SI File No. NMP-05Q-207.
- 7. Previous Structural Integrity Associates P-T Curve Calculations for NMP-1:
 - a. NMP-05Q-301, Revision 0, "Benchmark Analysis."
 - b. NMP-05Q-302, Revision 0, "NMP-1 P-T Curves Generated Using Code Case N-640.",
- 8. ANSYS/Mechanical Release 6.1 (w/Service Packs 2 and 3), ANSYS, Inc., April 2002.
- 9. Structural Integrity Associates Calculation No. NMP-09Q-302, Revision 0, "Feedwater Nozzle Green's Functions for Nine Mile Point Unit 1."
- 10. Combustion Engineering, Inc. Report No. CENC-1142, "Analytical Report for Niagara Mohawk Reactor Vessel," SI File No. NMP-09Q-246.
- 11. GE Specification 21A1104, Revision 0, "Reactor Pressure Vessel," SI File No. NMP-09Q-292.
- 12. Nine Mile Point Unit 1 Updated Final Safety Analysis Report:
 - a. Section V, "Reactor Coolant System," Revision 16, Table V-1, p. 3 of 3, November 1999, SI File No. NMP-09Q-231.
 - b. Section V, "Reactor Coolant System," Revision 17, Table V-1, p. 1 of 3, October 2001, SI File No. NMP-09Q-231.
 - c. Section V, "Reactor Coolant System," Revision 16, p. V-12, November 1999, SI File No. NMP-09Q-231.
 - d. Section I, Revision 17, p. I-10, October 2001, SI File No. 0800297.215.
- 13. Westinghouse Report No. DNS-03-001, "Document Transmittal," January 20, 2003, SI File No. 0800297.213.

.

- 14. G.E. Drawing No. 237E434, "Loadings Reactor Vessel," Note: Revision and Sheet Number not legible, SI File No. NMP-09Q-225.
- 15. ASME Boiler and Pressure Vessel Code, Section XI, 2001 Edition w/ Addenda through 2003.
- 16. Email from G. Inch (NMP) to T. Griesbach (SI), "FW: NMP1 Pressure Test Pressure," October 10, 2008 11:58AM, SI File No. 0800297.214.
- 17. Niagara Mohawk letter M97-080 to Dr. Michael P. Manahan, Sr., "Re: Instrument Uncertainty for PT Curves," December 18, 1997, SI File No. NMP-05Q-201.
- 18. MPR Associates Inc. Report No. MPR-1484, Revision 1, "Nine Mile Point Unit 1 Feedwater Nozzle Fatigue Evaluation," March 1999, SI File No. 0800297.216.

Feedwater N	lozzle Pressur	e Stress Coef	ficients	K _{Ip-applied}
E7669 49	C1	1229.00	70 50	(psivin)
Epodwater	-10039.72	Stress Coeff	iciente	80,723 K
c0	c1	c2	c3	(psi√in)
29382.12	-3688.32	150.32	-23.48	45,595

Table 1: NMP-1 Polynomial Coefficients for Feedwater Nozzle Stress Intensity Distributions

.

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		K	Guage	for P-T Curve	P-T Curve
(°F)	K _{le} (ksi-√in)	(ksi-vin)	Pressure (psig)	(°F)	(psig)
56	36.28	24.18	0	60	0
56	36.28	24.18	655	60	617
58	36.40	24.27	657	62	619
60	36.53	24.36	659	64	622
62	36.67	24.45	662	66	624
64	36.81	24.54	664	68	627
66	36.96	24.64	667	70	629
68	37.11	24.74	670	72	632
70	37.27	24.85	673	74	635
72	37.44	24.96	676	76	638
74	37.61	25.07	679	78	641
76	37.79	25.19	682	80	644
78	37.98	25.32	685	82	648
80	38.17	25,45	689	84	651
82	38.37	25.58	692	86	655
84	38.59	25.72	696	88	659
86	38.81	25.87	700	90	663
88	39.03	26.02	704	92	667
90	39.27	26.18	709	94	671
92	39.57	26.35	703	96	675
94	39.78	26.52	718	98	680
96	40.05	26.70	723	100	685
98	40.33	26.88	729	102	600
100	40.62	27.08	723	104	695
102	40.92	27.28	738	105	701
102	40.52	27.20	744	108	701
104	41.56	27.45	750	110	712
108	41.90	27.94	756	117	718
110	42.26	28 17	763	114	725
112	42.63	28.47	769	116	725
114	43.01	28.68	776	118	738
116	43 41	28.94	783	120	746
118	43.91	20.24	791	120	753
120	44.26	29.22	799	124	753
120	44.20	20.01	807	124	769
174	45.19	20.12	815	120	705
124	45.15	20.45	874	120	773
120	45.00	20.45	824	130	767
120	40.10	21.12	222	124	130
120	40.71	31.14	043 852	134	800
134	41.21	31.31	633	130	612
134	47.84	31.09	600	138	826
130	48.44	32.29	8/4	140	836
138	49.06	32.71	885	142	848
140	49.71	33.14	897	144	859

Table 2: NMP-1 Beltline Region, Curve A, for 28 EFPY

File No.: 0800297.301 Revision: 1 Page 16 of 47

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		K _{im}	Guage	for P-T Curve	P-T Curve
(°F)	K _k (ksi∙Vin)	(ksi·vin)	Pressure (psig)	(°F)	(psig)
142	50.38	33.59	909	146	871
144	51.08	34.05	922	148	884
146	51.81	34.54	935	150	897
148	52.57	35.05	949	152	911
150	53.36	35.57	963	154	925
152	54.18	36.12	978	156	940
154	55.04	36.69	993	158	956
156	55.93	37.29	1009	160	972
158	56.86	37.91	1026	162	988
160	57.83	38.55	1043	164	1005
162	58.83	39.22	1062	166	1024
164	59.88	39.92	1080	168	1043
166	60.96	40.64	1100	170	1062
168	62.10	41.40	1121	172	1083
170	63.28	42.18	1142	174	1104
172	64.50	43.00	1164	176	1126
174	65.78	43.85	1187	178	1149
176	67.11	44.74	1211	180	1173
178	68.50	45.66	1236	182	1198
180	69.94	46.62	1262	184	1224
182	71.44	47.62	1289	186	1251
184	73.00	48.66	1317	188	1280
186	74.62	49.75	1346	190	1309
188	76.31	50.87	1377	192	1339
190	78.07	52.05	1409	194	1371
192	79.90	53.27	1442	196	1404
194	81.81	54.54	1476	198	1438
196	83.79	55.86	1512	200	1474
198	85.86	57.24	1549	202	1512
200	88.00	58.67	1588	204	1550
202	90.24	60.16	1628	206	1591
204	9 2.57	61.71	1670	208	1633
206	94.99	63.33	1714	210	1676
208	97.51	65.01	1760	212	1722
210	100.14	66.76	1807	214	1769
212	102.87	68.58	1856	216	1819
214	105.71	70.48	1908	218	1870
216	108.67	72.45	1961	220	1923

Table 2 Continued: NMP-1 Beltline Region, Curve A, for 28 EFPY

.

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		Kim	Guage	for P-T Curve	P-T Curve
(*F)	K _{kc} (ksi∙vin)	(ksi∙√in)	Pressure (psig)	(°F)	(psig)
56	35.84	23.90	0	60	0
56	35.84	23.90	647	60	609
58	35.95	23.97	649	62	611
60	36.06	24.04	651	64	613
62	36.18	24.12	653	66	615
64	36.30	24.20	655	68	617
66	36.43	24.29	657	70	620
68	36.56	24.37	660	72	622
70	36.70	24.46	662	74	625
72	36.84	24.56	665	76	627
74	36.99	24.66	667	78	630
76	37.14	24.76	670	80	633
78	37.30	24.87	673	82	635
80	37.47	24.98	676	84	638
82	37.64	25.10	679	86	642
84	37.83	25.22	683	88	645
86	38.02	25.34	686	90	648
88	38.21	25.47	690	92	652
90	38.42	25.61	693	94	656
92	38.63	25.75	697	96	659
94	38.85	25.90	701	98	663
96	39.08	26.05	705	100	668
98	39.32	26.21	710	102	672
100	39.57	26.38	714	104	676
102	39.83	26.55	719	106	681
104	40.10	26.73	724	108	686
106	40.38	26.92	729	110	691
108	40.68	27.12	734	112	696
110	40.98	27.32	739	114	702
112	41.30	27.53	745	116	708
114	41.63	27.75	751	118	714
116	41.97	27.98	757	120	720
118	42.33	28.22	764	122	726
120	42.70	28.47	771	124	733
122	43.09	28.73	778	126	740
124	43.50	29.00	785	128	747
126	43.92	29.28	792	130	755
128	44.35	29.57	800	132	763
130	44.81	29.87	809	134	771
132	45.28	30.19	817	136	779
134	45.78	30.52	826	138	788
136	46.29	30.86	835	140	798
138	46.82	31.22	845	142	807
140	47.38	31.59	855	144	817

File No.: 0800297.301 Revision: 1 Page 18 of 47

 Table 3: NMP-1 Beltline Region, Curve A, for 36 EFPY

\$

					Adjusted
Guage Fluid				Temperature	Pressure for
Femperature		K	Guage	for P-T Curve	P-T Curve
(°F)	K _k (ksi-√in)	(ksi∙Vin)	Pressure (psig)	(°F)	(psig)
142	47.96	31.97	865	146	828
144	48.56	32.37	876	148	839
146	49.19	32.79	888	150	850
148	49.84	33.23	899	152	862
150	50.52	33.68	912	154	874
152	51.23	34.15	924	156	887
154	51.96	34.64	938	158	900
156	52.73	35.15	951	160	914
158	53.52	35.68	966	162	928
160	54.35	36.24	981	164	943
162	55.22	36.81	996	166	959
164	56.11	37.41	1013	168	975
166	57.05	38.03	1029	170	992
168	58.02	38.68	1047	172	1009
170	59.04	39.36	1065	174	1028
172	60.09	40.06	1084	176	1047
174	61.19	40.79	1104	178	1066
176	62.33	41.55	1125	180	1087
178	63.52	42.35	1146	182	1108
180	64.76	43.17	1168	184	1131
182	66.04	44.03	1192	186	1154
184	67.38	44.92	1216	188	1178
186	68.78	45.85	1241	190	1203
188	70.23	46.82	1267	192	1230
190	71.74	47.83	1295	194	1257
192	73.32	48.88	1323	196	1285
194	74.95	49.97	1352	198	1315
196	76.66	51.10	1383	200	1346
198	78.43	52.29	1415	202	1378
200	80.28	53.52	1449	204	1411
202	82.20	54.80	1483	206	1446
204	84.20	56.13	1519	208	1482
206	86.28	57.52	1557	210	1519
208	88.44	58.96	1596	212	1558
210	90.70	60.47	1637	214	1599
212	93.05	62.03	1679	216	1641
214	95.49	63.66	1723	218	1685
216	98.03	65.35	1769	220	1731
218	100.68	67.12	1817	222	1779
220	103.43	68.95	1866	224	1829
222	106.30	70.86	1918	226	1880
224	109.28	72.85	1972	228	1934

Table 3 Continued: NMP-1 Beltline Region, Curve A, for 36 EFPY

Table 4: NMP-1 Beltline Region, Curve A, for 46 EFPY

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		Kim	Guage	for P-T Curve	P-T Curve
(°F)	K _{te} (ksi∙√in)	(ksi∙Vin)	Pressure (psig)	(*F)	(psig)
56	35.43	23.62	0	60	0
56	35.43	23.62	639	60	602
58	35.53	23.68	641	62	603
60	35.62	23.75	643	64	605
62	35.72	23.81	645	66	607
64	35.82	23.88	646	68	609
66	35.93	23.95	648	70	611
68	36.04	24.03	650	72	613
70	36.16	24.10	652	74	615
72	36.28	24.18	655	76	617
74	36.40	24.27	657	78	619
76	36.53	24.36	659	80	622
78	36.67	24.45	662	82	624
80	36.81	24.54	664	84	627
82	36.96	24.64	667	86	629
84	37.11	24.74	670	88	632
86	37.27	24.85	673	90	635
88	37.44	24.96	676	92	638
90	37.61	25.07	679	94	641
92	37.79	25.19	682	96	644
94	37.98	25.32	685	98	648
96	38.17	25.45	689	100	651
98	38.37	25.58	692	102	655
100	38.59	25.72	696	104	659
102	38.81	25.87	700	106	. 663
104	39.03	26.02	704	108	667
106	39.27	26.18	709	110	671
108	39.52	26.35	713	112	675
110	39.78	26.52	718	114	680
112	40.05	26.70	723	116	685
114	40.33	26.88	728	118	690
116	40.62	27.08	733	120	695
118	40.92 ·	27.28	738	122	701
120	41.23	27.49	744	124	706
122	41.56	27.71	750	126	712
124	41.90	27.94	756	128	718
126	42.26	28.17	763	130	725
128	42.63	28.42	769	132	732
130	43.01	28.68	776	134	738
132	43.41	28.94	783	136	746
134	43.83	29.22	791	138	753
136	44.26	29.51	799	140	761
138	44.72	29.81	807	142	769
140	45.19	30.12	815	144	778

File No.: 0800297.301 Revision: 1 Page 20 of 47

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		K _{im}	Guage	for P-T Curve	P-T Curve
(°F)	K _{ic} (ksi∙√in)	(ksi∙vin)	Pressure (psig)	(°F)	(psig)
142	45.68	30.45	824	146	787
144	46.18	30.79	833	148	796
146	46.71	31.14	843	150	805
148	47.27	31.51	853	152	815
150	47.84	31.89	863	154	826
152	48.44	32.29	874	156	836
154	49.06	32.71	885	158	848
156	49.71	33.14	897	160	859
158	50.38	33.59	909	162	871
160	51.08	34.05	922	164	884
162	51.81	34.54	935	166	897
164	52.57	35.05	949	168	911
166	53.36	35.57	963	170	925
168	54.18	36.12	978	172	940
170	55.04	36.69	993	174	956
172	55.93	37.29	1009	176	972
174	56.86	37.91	1026	178	988
176	57.83	38.55	1043	180	1006
178	58.83	39.22	1062	182	1024
180	59.88	39.92	1080	184	1043
182	60.96	40.64	1100	186	1062
184	62.10	41.40	1121	188	1083
186	63.28	42.18	1142	190	1104
188	64.50	43.00	1164	192	1126
190	65.78	43.85	1187	194	1149
192	67.11	44.74	1211	196	1173
194	68.50	45.66	1236	198	1198
196	69.94	46.62	1262	200	1224
198	71.44	47.62	1289	202	1251
200	73.00	48.66	1317	204	1280
202	74.62	49.75	1346	206	1309
204	76.31	50.87	1377	208	1339
206	78.07	52.05	1409	210	1371
208	79.90	53.27	1442	212	1404
210	81.81	54,54	1476	214	1438
212	83.79	55.86	1512	216	1474
214	85.86	57.24	1549	218	1512
216	88.00	58.67	1588	220	1550
218	90.24	60.16	1628	222	1591
220	92.57	61.71	1670	224	1633
222	94.99	63.33	1714	226	1676
224	97.51	65.01	1760	228	1722
226	100.14	66.76	1807	230	1769
228	102.87	68.58	1856	232	1819
230	105.71	70.48	1908	234	1870
232	108.67	72.45	1961	236	1923

Table 4 Continued: NMP-1 Beltline Region, Curve A, for 46 EFPY

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		K)m	Guage	for P-T Curve	P-T Curve
(°F)	K _{lc} (ksi∙vi	n) (ksi·Vin)	Pressure (psig)	(°F)	(psig)
56	61.75	41.17	0	60	0
56	61.75	41.17	822	60	784
58	62.92	41.95	837	62	799
60	64.13	42.75	853	64	816
62	65.39	43.60	870	66	832
64	66.71	44.47	887	68	850
66	68.08	45.38	906	70	868
68	69.50	46.33	925	72	887
70	70.98	47.32	944	74	907
72	72.52	48.35	965	76	927
74	74.13	49.42	986	78	948
76	75.80	50.53	1008	80	971
78	77.54	51.69	1031	82	994
80	79.34	52.90	1056	84	1018
82	81.23	54.15	1081	86	1043
84	83.19	55.46	1107	88	1069
86	85.23	56.82	1134	90	1096
88	87.35	58.23	1162	92	1124
90	89.56	59.71	1191	94	1154
92	91.86	61.24	1222	96	1184
94	94.25	62.84	1254	98	1216
96	96.75	64.50	1287	100	1249
98	99.34	66.23	1322	102	1284
100	102.04	68.03	1357	104	1320
102	104.85	69.90	1395	106	1357
104	107.77	71.85	1434	108	1396
106	110.82	73.88	1474	110	1437
108	113.98	75.99	1516	112	1479
110	117.28	78.19	1560	114	1523
112	120.71	80.47	1606	116	1568
114	124.28	82.86	1653	118	1616
116	128.00	85.33	1703	120	1665
118	131.87	87.91	1754	122	1717
120	135.90	90.60	1808	124	1770
122	140.09	93.39	1864	126	1826
124	144.45	96.30	1922	128	1884
126	148.99	99.33	1982	130	1944

File No.: 0800297.301 Revision: 1 Page 22 of 47

Table 5: NMP-1 Bottom Head Region, Curve A, for all EFPY

Table 6: NMP-1 Upper Vessel Region, Curve A, for all EFPY

					P-T Curve
Guage Fluid				P-T Curve	10CFR50
Temperature		К,,,,,	Guage	Temperature	Adjustments
(*F)	K _{ic} (ksi∙√in)	(ksi-Vin)	Pressure (psig)	(*F)	(psig)
56	61.75	41.17	0	60	0
56	61.75	41.17	. 4/5	60	375
58	62.92	41.95	484	130	375
60	64.13	42.75	493	130	455
62	65.39	43.60	503	130	465
64	66.71	44.47	513	130	475
66	68.08	45.38	523	130	486
68	69.50	46.33	534	130	497
70	70.98	47.32	546	130	508
72	72.52	48.35	557	130	520
74	74.13	49.42	570	130	532
76	75.80	50.53	583	130	545
78	77.54	51.69	596	130	558
80	79.34	52.90	610	130	572
82	81.23	54.15	624	130	587
84	83.19	55.46	639	130	602
86	85.23	56.82	655	130	618
88	87.35	58.23	671	' 130	634
90	89.56	59.71	688	130	651
92	91.85	61.24	706	130	669
94	94.25	62.84	725	130	687
96	96.75	64.50	744	130	706
98	99.34	66.23	764	130	726
100	102.04	68.03	784	130	747
102	104.85	69.90	806	130	768
104	107.77	71.85	828	130	791
106	110.82	73,88	852	130	814
108	113.98	75.99	875	130	839
110	117.28	78.19	902	130	864
112	120.71	80.47	928	130	890
114	124.28	82.86	955	130	918
116	128.00	85.33	984	130	946
118	131.87	87.91	1014	130	976
120	135.90	90.60	1045	130	1007
122	140.09	93.39	1077	130	1039
124	144.45	96.30	1110	130	1073
126	148.99	99.33	1145	130	1108
128	153.72	102.48	1182	132	1144
130	158.63	105.76	1219	134	1182
132	163.75	109.17	1259	136	1221
134	169.08	112.72	1300	138	1262
136	174.63	115.42	1342	140	1305
138	180.40	120.26	1387	142	1349
140	186.40	124.27	1433	144	1395
142	192.66	128.44	1481	146	1443
144	199.16	132.78	1531	148	1493
146	205.94	137.29	1583	150	1545
148	212.99	141.99	1637	152	1600
150	220.32	145.88	1694	154	1656
152	227.96	151.97	1752	156	1715
154	235.91	157.27	1814	158	1776
156	244.18	162.79	1877	160	1839
158	252.79	168.53	1943	162	1906

File No.: 0800297.301 Revision: 1 Page 23 of 47

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		Kim	Guage	for P-T Curve	P-T Curve
(°F)	K _{ic} (ksi·Vin)	(ksi∙vin)	Pressure (psig)	(*F)	(psig)
48	35.82	11.45	310	60	0
48	35.82	11.45	310	60	230
50	35.93	11.51	311	62	232
52	36.04	11.56	313	64	233
54	36.16	11.62	315	66	235
56	36.28	11.68	316	68	236
58	36.40	11.74	318	70	238
60	36.53	11.81	320	72	240
62	36.67	11.88	321	74	242
64	36.81	11.95	323	76	244
66	36.96	12.02	325	78	246
68	37.11	12.10	327	80	248
70	37.27	12.18	330	82	250
72	37.44	12.26	332	84	252
74	37.61	12.35	334	86	254
76	37.79	12.44	337	88	257
78	37.98	12.53	339	90	259
80	38.17	12.63	342	92	262
82	38.37	12.73	345	94	265
84	38.59	12.84	347	96	268
86	38.81	12.95	350	98	271
88	39.03	13.06	353	100	274
90	39.27	13.18	357	102	277
92	39.52	13.30	360	104	280
94	39.78	13.43	364	106	284
96	40.05	13.57	367	108	287
98	40.33	13.71	371	110	291
100	40.62	13.85	375	112	295
102	40.92	14.00	379	114	299
104	41.23	14.16	383	116	303
106	41.56	14.32	388	118	308
108	41.90	14.50	392	120	312
110	42.25	14.67	397	122	317
112	42.63	14.86	402	124	322
114	43.01	15.05	407	126	327
116	43.41	15.25	413	128	333
118	43.83	15.46	418	130	339
120	44.25	15.68	424	132	344
122	44.72	15.90	430	134	351
124	45.19	16.14	437	136	357
126	45.68	16.38	443	138	364
128	46.18	16.64	450	140	370
130	46.71	16.90	457	142	378
132	47.27	17.18	465	144	385
134	47.84	17.46	473	146	393
136	48.44	17.76	481	148	401
138	49.06	18.07	489	150	409
140	49.71	18.40	498	152	418

Table 7: NMP-1 Beltline Region, Curve B, for 28 EFPY

File No.: 0800297.301 Revision: 1 Page 24 of 47

Cuper Philip				T	Adjusted
Guage Huid		v	C	remperature	Pressure for
Temperature		n _{im}	Guage	for P-T Curve	P-T Curve
(75)	K _{tc} (ksi-Vin)	(KSI-VIN)	Pressure (psig)	(°F)	(psig)
142	50.38	18.73	507	154	427
144	51.08	19.08	517	156	437
146	51.81	19.45	526	158	447
148	52.57	19.83	537	160	457
150	53.36	20.22	547	162	468
152	54.18	20.64	559	164	479
154	55.04	21.06	570	166	490
156	55.93	21.51	582	168	502
158	56.86	21.97	595	170	515
160	57.83	22.46	608	172	528
162	58.83	22.96	621	174	542
164	59.88	23.48	636	176	556
166	60.96	24.03	650	178	570
168	62.10	24.59	666	180	586
170	63.28	25.18	682	182	602
172	64.50	25.80	698	184	618
174	65.78	26.43	715	186	636
176	67.11	27.10	733	188	654
178	68.50	27.79	752	190	672
180	69.94	28.51	772	192	692
182	71.44	29.26	792	194	712
184	73.00	30.04	813	196	733
186	74.62	30.85	835	198	7\$5
188	76.31	31.70	858	200	778
190	78.07	32.58	882	202	802
192	79.90	33.49	907	204	827
194	81.81	34.45	932	206	852
196	83.79	35.44	959	208	879
198	85.86	36.47	987	210	907
200	88.00	37 55	1016	212	936
202	90.24	38.66	1046	214	967
204	92.57	39.83	1078	214	998
206	94.99	41 04	1111	210	1021
208	97.51	42.30	1145	220	1051
210	100 14	43.61	1145	220	1101
210	102.87	49.01	1217	724	1100
212	105 71	16 10	1217	224	1136
214	108.67	40.40	1206	220	1170
210	111 75	47.00	1230	220	1210
220	114.96	49.42 51.07	1330	200	1201
220	119 20	51.02	1381	232	1301
222	10.30	54 43	1420	234	1303
224	121.77	54.45	1473	230	1393
220	129.14	50.25	1572	238	1442
220	123.14	20.12	1575	240	1493
230	133.00	60.07	1625	242	1546
232	137.14	62.11	1681	244	1601
234	141.38	64.23	1/39	246	1659
236	145.79	66.44	1/98	248	1718
238	150.39	68.74	1860	250	1781
240	155.17	71.13	1925	252	1845
242	160.15	73.62	1993	254	1913

Table 7 Continued: NMP-1 Beltline Region, Curve B, for 28 EFPY

1

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		Kim	Guage	for P-T Curve	P-T Curve
(*F)	K _{kc} (ksi∙vin)	(ksi·Vin)	Pressure (psig)	(*F)	(psig)
48	35.45	11.27	305	60	0
48	35.45	11.27	305	60	225
50	35.54	11.31	306	62	226
52	35.64	11.36	308	64	228
54	35.74	11.41	309	66	229
56	35.84	11.46	310	68	230
58	35.95	11.52	312	70	232
60	36.06	11.57	313	72	233
62	36.18	11.63	315	74	235
64	36.30	11.69	317	76	237
66	36.43	11.76	318	78	238
68	36.56	11.82	320	80	240
70	36.70	11.89	322	82	242
72	36.84	11.96	324	84	244
74	36.99	12.04	326	86	245
76	37.14	12.11	328	88	248
78	37.30	12.19	330	90	250
80	37.47	12.28	332	92	252
82	37.64	12.37	335	94	255
84	37.83	12.46	337	96	257
86	38.02	12.55	340	98	260
88	38.21	12.65	342	100	263
90	38.42	12.75	345	102	265
92	38.63	12.86	348	104	268
94	38.85	12.97	351	106	271
96	39.08	13.08	354	108	274
98	39.32	13.20	357	110	278
100	39.57	13.33	361	112	281
102	39.83	13.46	364	114	284
104	40.10	13.59	368	116	288
106	40.38	13.73	372	118	292
108	40.68	13.88	376	120	296
110	40.98	14.03	380	122	300
112	41.30	14.19	384	124	304
114	41.63	14.36	389	126	309
116	41.97	14.53	393	128	313
118	42.33	14.71	398	130	318
120	42.70	14.90	403	132	323
122	43.09	15.09	408	134	329
124	43.50	15.29	414	136	334
126	43.92	15.50	420	138	340
128	44.35	15.72	425	140	346
130	44.81	15.95	432	142	352
132	45.28	16.18	438	144	358
134	45.78	16.43	445	146	365
136	46.29	16.69	452	148	372
138	46.82	16.95	459	150	379
140	47.38	17.23	466	152	387

 Table 8: NMP-1 Beltline Region, Curve B, for 36 EFPY

File No.: 0800297.301 Revision: 1 Page 26 of 47

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		Kim	Guage	for P-T Curve	P-T Curve
(°F)	K _k (ksi-vin)	(ksi-vin)	Pressure (psig)	(°F)	(psig)
142	47.96	17.52	474	154	394
144	48.56	17.82	487	156	403
146	49 19	18 14	491	158	411
148	49.84	18 46	500	160	420
150	50.52	18.80	509	167	429
157	51.23	19.16	518	164	439
154	51.96	19.52	528	166	449
156	57 73	19.92	539	168	459
159	53.57	20.30	550	170	435
150	54.35	20.30	561	170	470
160	54.55	20.72	572	174	401
102	55.22	21.13	572	176	455
164	50.11	21.00	503	170	505
166	57.05	22.07	537	1/4	517
108	50.02	22.33	610	180	551
170	53.04	23.00	629	102	544
172	60.09	23.59	638	184	559
174	61.19	24.14	653	186	573
1/6	62.33	24.71	669	188	589
1/8	63.52	25.30	685	190	605
180	64.76	25.92	702	192	622
182	66.04	26.57	719	194	639
184	67.38	27.24	737	196	657
186	68.78	27.93	756	198	6/6
188	70.23	28.66	//6	200	696
. 190	/1.74	29.41	/96	202	/16
192	/3.32	30.20	817	204	738
194	74.95	31.02	840	206	760
196	76.66	31.87	863	208	783
198	/8.43	32.76	887	210	807
200	80.28	33.68	912	212	832
202	82.20	34.64	938	214	858
204	84.20	35.64	965	216	885
206	86.28	36.68	993	218	913
208	88.44	37.77	1022	220	942
210	90.70	38.89	1053	222	973
212	93.05	40.07	1084	224	1005
214	95.49	41.29	1118	226	1038
216	98.03	42.56	1152	228	1072
218	100.68	43.88	1188	230	1108
220	103.43	45.26	1225	232	1145
222	106.30	46.69	1264	234	1184
224	109.28	48.18	1304	236	1224
226	112.38	49.74	1346	238	1266
228	115.62	51.35	1390	240	1310
230	118.98	53.03	1435	242	1356
232	122.48	54.78	1483	244	1403
234	120.12	56.60	1232	240	1452
236	129.92	58.50	1003	248	1504
238	133.86	ь0.47 са са	1637	250	1557
240	137.97	62.53	1092	252	1013
242	142.25	64.67	1/50	254	16/0
244	146.70	66.89	1811	256	1731
246	151.33	69.21	18/3	258	1/93
248	156.15	71.62	1938	260	1859
250	161.17	/4.13	2006	262	1926

Table 8 Continued: NMP-1 Beltline Region, Curve B, for 36 EFPY

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		K _{im}	Guage	for P-T Curve	P-T Curve
(*F)	K _{ic} (ksi-Vin)	(ksi∙vin)	Pressure (psig)	(°F)	(psig)
48	35.10	11.09	300	60	0
48	35.10	11.09	300	60	220
50	35.18	11.13	301	62	221
52	35.26	11.17	302	64	223
54	35.35	11.22	304	66	224
56	35.43	11.26	305	68	225
58	35.53	11.31	306	70	226
60	35.62	11.35	307	72	227
62	35.72	11.40	309	74	229
64	35.82	11.45	310	76	230
66	35.93	11.51	311	78	232
68	36.04	11.56	313	80	233
70	36.16	11.62	315	82	235
72	36.28	11.68	316	84	236
74	36.40	11.74	318	86	238
76	36.53	11.81	320	88	240
78	36.67	11.88	321	90	242
80	36.81	11.95	323	92	244
82	36.96	12.02	325	94	246
84	37.11	12.10	327	96	248
86	37.27	12.18	330	98	250
88	37.44	12.26	332	100	252
90	37.61	12.35	334	102	254
92	37.79	12.44	337	104	257
94	37.98	12.53	339	106	259
96	38.17	12.63	342	108	262
98	38.37	12.73	345	110	265
100	38.59	12.84	347	112	268
102	38.81	12.95	350	114	271
104	39.03	13.06	353	116	274
106	39.27	13.18	357	118	277
108	39.52	13.30	360	120	280
110	39.78	13.43	364	122	284
112	40.05	13.57	367	124	287
114	40.33	13.71	371	126	291
116	40.62	13.85	375	128	295
118	40.92	14.00	379	130	299
120	41.23	14.16	383	132	303
122	41.56	14.32	388	134	308
124	41.90	14.50	392	136	312
126	42.26	14.67	397	138	317
128	42.63	14.86	402	140	322
130	43.01	15.05	407	142	327
132	43.41	15.25	413	144	333
134	43.83	15.46	418	146	339
136	44.26	15.68	424	148	344
138	44.72	15.90	430	150	351
140	45.19	16.14	437	152	357

File No.: 0800297.301 Revision: 1

Page 28 of 47

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		K _{im}	Guage	for P-T Curve	P-T Curve
(°F)	K. (ksi·vin)	(ksi vin)	Pressure (psig)	(*F)	(psig)
147	45.68	16 38	443	154	364
144	46.18	16.64	450	156	370
144	40.18	10.04	450	150	370
146	46.71	18.90	457	156	376
148	47.27	17.18	405	160	385
150	47.84	17.46	4/3	162	393
152	48.44	17.76	481	164	401
154	49.06	18.07	489	166	409
156	49.71	18.40	498	168	418
158	50.38	18.73	507	170	427
160	51.08	19.08	517	172	437
162	51.81	19.45	526	174	447
164	52.57	19.83	537	176	457
166	53.36	20.22	547	178	468
169	54.18	20.64	559	180	479
100	55.04	20.04	535	182	49.5
170	55.04	21.00	500	102	400
172	55.95	21.51	202	104	502
1/4	50.80	21.97	232	190	272
176	57.83	22.46	608	188	528
178	58.83	22.96	621	190	542
180	59.88	23.48	636	192	556
182	60.96	24.03	650	194	570
184	62.10	24.59	666	196	586
186	63.28	25.18	682	198	602
188	64.50	25.80	698	200	618
190	65.78	26.43	715	202	636
197	67.11	27 10	733	204	654
192	69 50	27.20	752	205	677
104	60.00	20.51	7.52	200	602
196	31.44	20.31	772	208	710
198	/1.44	29.26	792	210	/12
200	73.00	30.04	813	212	/33
202	74.62	30.85	835	214	755
204	76.31	31.70	858	216	778
206	78.07	32.58	882	218	802
208	79.90	33.49	907	220	827
210	81.81	34.45	932	222	852
212	83.79	35.44	959	224	879
214	85.86	36.47	987	226	907
216	88.00	37.55	1016	228	936
218	90.24	38.66	1046	230	967
220	92.57	39.83	1078	232	998
220	94 99	41.04	1111	234	1031
224	97.51	42 30	1145	236	1065
224	100.14	43 61	1180	738	1101
240	100.14	42.01	100	230	1120
228	102.87	44.98	121/	240	1138
230	105.71	46.40	1250	242	11/6
232	108.67	47.88	1296	244	1216
234	111.75	49.42	1338	246	1258
236	114.96	51.02	1381	248	1301
238	118.30	52.69	1425	250	1346
240	121.77	54.43	1473	252	1393
242	125.38	56.23	1522	254	1442
244	129.14	58.12	1573	256	1493
246	133.06	60.07	1626	258	1546
248	137.14	62.11	1681	260	1601
250	141 38	64 23	1739	262	1659
200	145 70	66 14	1709	264	1719
252	143.73	00.44	1/30	204	1701
254	150.39	b8.74	1860	266	1/81
256	155.17	/1.13	1925	268	1845
258	160.15	73.62	1993	270	1913

Table 9 Continued: NMP-1 Beltline Region, Curve B, for 46 EFPY

					Adjusted
Guage Fluid				Temperature	Pressure for
Temperature		K _{im}	Guage	for P-T Curve	P-T Curve
(*F)	K _ĸ (ksi∙Vin)	(ksi∙√in)	Pressure (psig)	(*F)	(psig)
48	57.53	17.97	0	60	0
48	57.53	17.97	359	60	279
50	58.52	18.47	369	62	289
52	59.56	18.99	379	64	299
54	60.63	19.53	390	66	310
56	61.75	20.09	401	68	321
58	62.92	20.67	412	70	333
60	64.13	21.27	425	72	345
62	65.39	21.91	437	74	357
64	66,71	22.56	450	76	370
66	68.08	23.25	464	78	384
68	69.50	23.96	478	80	398
70	70.98	24.70	493	82	413
72	72.52	25.47	508	84	428
74	74.13	26.27	524	86	444
76	75.80	27.11	541	88	461
78	77.54	27.98	558	90	478
80	79.34	28.88	576	92	496
82	81.23	29.82	595	94	515
84	83.19	30.80	615	96	535
86	85.23	31.82	635	98	555
88	87,35	32.88	656	100	576
90	89.56	33.99	678	102	598
92	91.86	35.14	701	104	621
94	94.25	36.34	725	106	645
96	96,75	37.58	750	108	670
98	99.34	38.88	776	110	696
100	102.04	40.23	803	112	723
102	104.85	41.63	831	114	751
104	107.77	43.09	860	116	780
106	110.82	44.62	890	118	810
108	113.98	46.20	922	120	842
110	117.28	47.85	955	122	875
112	120.71	49.56	989	124	909
114	124.28	51.35	1025	126	945
116	128.00	53.21	1062	128	982
118	131.87	55.14	1100	130	1021
120	135.90	57.16	1141	132	1061
122	140.09	59.25	1182	134	1103
124	144.45	61.43	1226	136	1146
126	148.99	63.70	1271	138	1191
128	153.72	66.07	1318	140	1239
130	158.63	68.53	1357	142	1288
132	163.75	/1.08	1419	144	1339
134	169.08	73.75	1472	146	1392
136	174.63	76.52	1527	148	1447
138	180.40	79.41	1585	150	1505
140	186.40	82.41	1645	152	1565
142	192.66	85.54	1707	154	1627
144	199.16	88.79	1772	156	1692
146	205.94	92.18	1839	158	1760
148	212.99	95.70	1910	160	1830
150	220.32	99.37	1983	162	1903

Page 30 of 47

Table 11: NMP-1 Upper Vessel Region, Curve B, for all EFPY

					P-T Curve
Guage Fluid				P-T Curve	10CFR50
Temperature		Km	Guage	Temperature	Adjustments
(*F)	K₁c (ksi∙Vin)	(ksi∙vin)	Pressure (psig)	(*F)	(psig)
48	57.53	16.74	0	60	0
48	57.53	16.74	193	60	113
50	58.52	17.10	197	62	117
52	59.56	17.48	202	64	122
54	60.63	17.88	206	66	126
56	61.75	18.29	211	68	131
58	62.92	18.73	216	70	136
60	64.13	19.19	221	72	141
62	65.39	19.66	227	74	147
64	66.71	20.17	233	76	153
66	68.08	20.69	239	78	159
68	69.50	21.24	245	80	165
70	70.98	21.82	252	82	172
72	72.52	22.43	259	84	179
74	74.13	23.06	266	86	186
76	75.80	23.73	274	88	194
78	77.54	24.42	282	90	202
80	79.34	25.15	290	92	210
82	81.23	25.91	299	94	219
84	83.19	26.71	308	96	228
86	85.23	27.55	318	98	238
88	87.35	28.43	328	100	248
90	89.56	29.34	338	102	259
92	91.86	30.30	349	104	270
94	94.25	31.31	361	106	281
96	96.75	32.36	373	108	293
98	99.34	33.46	386	110	306
100	102.04	34.61	399	112	319
102	104.85	35.81	413	114	333
104	107.77	37.07	427	116	348
106	110.82	38.38	443	118	363
108	113.98	39.83	459	130	375
110	117.28	41.48	478	130	375
112	120.71	43.20	498	130	375
114	124.28	44.98	519	130	375
116	128.00	46.84	540	130	375
118	131.87	48.78	562	130	375
120	135.90	50.7 9	586	132	375
122	140.09	52.89	610	134	375
124	144.45	55.07	635	136	375
126	148.99	57.34	661	138	375
128	153.72	59.70	688	140	375
130	158.63	62.16	717	142	375

File No.: 0800297.301 Revision: 1

Page 31 of 47

F0306-01R0

					P-T Curve
Guage Fluid				P-T Curve	10CFR50
Temperature		K _{im}	Guage	Temperature	Adjustments
(°F)	K _{kc} (ksi∙√in)	(ksi-Vin)	Pressure (psig)	(°F)	(psig)
132	163.75	64.72	746	144	375
134	169.08	67.38	777	146	375
136	174.63	70.15	809	148	375
138	180.40	73.04	842	150	375
140	186.40	76.04	877	152	375
142	192.66	79.17	913	154	375
144	199.16	82.42	950	156	375
146	205.94	85.81	989	158	375
148	212.99	89.34	1030	160	375
148	212.99	84.61	976	160	896
150	220.32	88.02	1015	162	935
152	227.96	91.58	1056	164	976
154	235.91	95.29	1099	166	1019
156	244.18	99.17	1143	168	1064
158	252.79	103.21	1190	170	1110
160	261.75	107.42	1239	172	1159
162	271.08	111.81	1289	174	1209
164	280.79	116.40	1342	176	1262
166	290.89	121.17	1397	178	1317
168	301.41	126.16	1455	180	1375
170	312.36	131.35	1515	182	1435
172	323.75	136.77	1577	184	1497
174	335.61	142.41	1642	186	1562
176	347.95	148.30	1710	188	1630
178	360.79	154.43	1781	190	1701
180	374.16	160.82	1854	192	1775
182	388.08	167.49	1931	194	1851
184	402.56	174 43	2011	196	1937

Table 11 Continued: NMP-1 Upper Vessel Region, Curve B, for all EFPY

F0306-01R0

Plant = 5 (NMP-1	
Curve A Leak Test Temperature = 2 169.2 *F	:
Curve A Leak Test Pressure = 1,055	sìg
Unit Pressure = 1/875 ps	sig (hydrostatic pressure)
Flange RT _{NDT} = , 40.0 °F	:

Table 12: NMP-1 Curve C Values for 28 EFPY

Adjusted P-T			
Curve	Adjusted P-1		
Temperature	Curve		
(°F)	Pressure (psig)		
100	0		
100	113		
102	119		
104	122		
106	126		
108	131		
110	136		
112	141		
114	147		
116	153		
118	159		
120	165		
122	172		
124	179		
126	186		
128	194		
130	202		
132	210		
134	219		
136	229		
138	228		
140	238		
140	248		
142	233		
144	270		
140	281		
150	287		
150	201		
154	295		
156	203		
158	308		
150	212		
160	217		
164	217		
166	322		
160	222		
100	220		
170	244		
172	251		
174	220		
170	221		
100	304		
180	370		
187	3/5		
184	375		
186	375		
188	375		
190	375		

File No.: 0800297.301

Revision: 1

Structural Integrity Associates, Inc.

Adjusted P-T		
Curve	Adjusted P-T	
Temperature	Curve	
(°F)	Pressure (psig)	
192	375	
194	375	
196	375	
198	375	
200	375	
200	457	
202	468	
204	479	
206	490	
208	502	
210	515	
210	529	
212	540	
214	542	
210	550	
218	570	
220	586	
222	602	
224	618	
226	636	
228	654	
230	672	
232	692	
234	712	
236	733	
238	755	
240	778	
242	802	
244	827	
246	852	
248	879	
250	907	
252	936	
254	967	
256	998	
258	1031	
260	1065	
262	1101	
264	1138	
266	1176	
268	1216	
270	1258	
272	1301	
274	1346	
276	1393	
278	1442	
280	1493	
282	1546	
284	1601	
286	1650	
200	1719	
200	1701	
230	1/01	
292	1845	
234	1913	

Table 12 Continued: NMP-1 Curve C Values for 28 EFPY

File No.: 0800297.301 Revision: 1

•

Page 34 of 47

. .

F0306-01R0

Structural Integrity Associates, Inc.

· · · ·

Plant =	NMP-1
Curve A Leak Test Temperature =	176.8 •F
Curve A Leak Test Pressure =	1,055 psig
Unit Pressure =	1,875 / psig (hydrostatic pressure)
Flange RT _{NDT} =	40:0 F
	San an ann an ann an ann an ann ann ann

Adjusted P-T			
Curve	Adjusted P-T		
Temperature	Curve Descure (naio)		
(°F)	Pressure (psig)		
100	0		
100	113		
102	119		
104	122		
106	126		
108	131		
110	136		
112	141		
114	147		
116	153		
118	159		
120	165		
122	172		
124	179		
126	186		
128	194		
130	202		
132	210		
134	219		
136	228		
138	238		
140	248		
142	259		
144	268		
146	271		
148	274		
150	278		
152	281		
154	284		
156	288		
158	292		
160	296		
162	300		
164	304		
166	309		
168	313		
170	318		
172	323		
174	329		
176	334		
178	340		
180	346		
182	352		
184	358		
186	365		
188	372		
190	375		

File No.: 0800297.301 Revision: 1

Page 35 of 47

F0306-01R0

Table 13: NMP-1 Curve C Values for 36 EFPY

Adjusted P-T		
Curve	Adjusted P-1	
Temperature	Curve	
(°F)	Pressure (psig)	
192	375	
194	375	
196	375	
198	375	
200	375	
200	420	
202	429	
204	439	
206	449	
208	459	
210	470	
212	481	
214	493	
216	505	
218	517	
220	531	
222	544	
224	559	
225	573	
228	589	
230	605	
230	672	
234	639	
236	657	
230	676	
200	696	
240	716	
242	710	
244	750	
240	700	
248	807	
250	827	
254	858	
254	895	
250	000	
250	942	
267	973	
264	1005	
264	1035	
268	1058	
200	1108	
270	1145	
274	1184	
276	1224	
278	1266	
280	1310	
280	1356	
284	1403	
286	1455	
288	1504	
290	1557	
290	1613	
292	1010	
234	10/0	
230	1/01	
200	1/55	
300	1828	
302	1979	

Table 13 Continued: NMP-1 Curve C Values for 36 EFPY

.

Plant Curve A Leak Test Temperature Curve A Leak Test Pressure Unit Pressure Flange RT _{NOT}	= NMP 1 = 185.2 = 1,055 = 1,875 = 40.0	 [•]F psig psig (hydrostatic pressure) [•]F
	ALL	s

Table 14: NMP-1 Curve C Values for 46 EFPY

Adjusted P-T	
Curve	Adjusted P-1
Temperature	Curve
(°F)	Pressure (psig)
100	0
100	113
102	119
104	122
106	126
108	131
110	136
112	141
114	147
116	153
118	159
120	165
122	172
124	179
126	186
128	194
130	202
132	210
134	219
136	228
138	238
140	248
140	254
142	257
144	259
140	255
150	202
150	205
152	208
156	271
150	274
150	277
160	280
164	284
166	207
160	291
100	295
170	299 .
172	208
174	308
170	312
170	110
180	322
182	327
184	555
180	339
188	344
190	351
192	357
194	364
196	370
198	375
200	375

.

F0306-01R0

N

Adjusted P-T	Adjusted P.T		
Curve	Aujusteu F-1		
Temperature	Curve Broccuro (neig)		
(°F)	Fiessure (psig)		
200	385		
202	393		
204	401		
206	409		
208	418		
210	427		
212	437		
214	447		
216	457		
218	468		
220	479		
222	490		
224	502		
226	515		
228	528		
230	542		
230	556		
232	570		
234	586		
230	500		
230	612		
240	618		
242	030		
244	672		
240	672		
248	692		
250	712		
252	/33		
254	/55		
256	778		
258	802		
260	827		
262	852		
264	879		
266	907		
268	936		
270	967		
272	998		
274	1031		
276	1065		
278	1101		
280	1138		
282	1176		
284	1216		
286	1258		
288	1301		
290	1346		
292	1393		
294	1442		
296	1493		
298	1546		
300	1601		
302	1659		
304	1718		
306	1781		
308	1845		
310	1913		

Table 14 Contin	nued: NMP-1	Curve C	Values for	46 EFPV
14010 11 00000			1 41403 101	

NMP-1 Pressure Test (Curve A), 28 EFPY

Figure 1: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 28 EFPY

File No.: 0800297.301 Revision: 1

F0306-01R0

NMP-1 Pressure Test (Curve A), 36 EFPY

Figure 2: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 36 EFPY

NMP-1 Pressure Test (Curve A), 46 EFPY

Figure 3: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 46 EFPY

NMP-1 Normal Operation - Core Not Critical (Curve B), 28 EFPY

Figure 4: NMP-1 P-T Curve B (Normal Operation - Core Not Critical) for 28 EFPY

Figure 5: NMP-1 P-T Curve B (Normal Operation - Core Not Critical) for 36 EFPY

File No.:	0800297.301
Revision:	1

Page 43 of 47

NMP-1 Normal Operation - Core Not Critical (Curve B), 46 EFPY

Figure 6: NMP-1 P-T Curve B (Normal Operation - Core Not Critical) for 46 EFPY

NMP-1 Normal Operation - Core Critical (Curve C), 28 EFPY

Figure 7: NMP-1 P-T Curve C (Normal Operation – Core Critical) for 28 EFPY

NMP-1 Normal Operation - Core Critical (Curve C), 36 EFPY

Figure 8: NMP-1 P-T Curve C (Normal Operation - Core Critical) for 36 EFPY

NMP-1 Normal Operation - Core Critical (Curve C), 46 EFPY

Figure 9: NMP-1 P-T Curve C (Normal Operation – Core Critical) for 46 EFPY.

File No.:	0800297.301
Revision:	1

Page 47 of 47

F0306-01R0

Structural Integrity Associates, Inc.

APPENDIX A:

.

P-T CURVE INPUT LISTING

Instrument Uncertainty		Reference
Reactor Vessel Metal Temperature (Hydrotest)	4 °F	[17]
Reactor Vessel Pressure (Hydrotest)	10 psig	[17]
Reactor Vessel Metal Temperature	12.2 °F	[17]
Reactor Vessel Pressure	52.2 psig	[17]
Geometry		
Vessel Radius	106.5 in	[6, Table 4-5]
Vessel Shell Thickness	7.125 in	[6, Table 4-5]
Bottom Head Thickness	8.75 in	[10, p. A-3]
Bottom Head Radius	106.719 in	[10, p. A-6]
Feedwater Nozzle Blend Radius Thickness	7.8427 in	[9, Supporting Files]
Water Elevation - Full Height (pressure head)	766 in	[12b]
ART/RT _{NDT}		
Limiting Bottom Head RT _{NDT} *	40 °F	[13]
Limiting Upper Vessel (Feedwater) RT _{NDT}	40 °F	[12c, p. V-12]
Flange Region (Boltup) RT _{NDT}	40 °F	[12c, p. V-12]
Limiting Beltline ART (28 EFPY)	151.4 °F	[4, Table 4]
Limiting Beltline ART (36 EFPY)	159.0 °F	[4, Table 5]
Limiting Beltline ART (46 EFPY)	167.4 °F	[4, Table 6]
Safety Factors/Stress Concentration Factor		
Core Not Critical (Curve B) Core Critical (Curve C)	2	PTLR [3]
Pressure (Curve A)	1.5	PTLR [3]
Lower Penetrations (SCF)	3	PTLR [3]
Water		
Density	62.4 lb/ft3	Assumed
Operating Pressure	1055 psig	[16]
Pre-Service Hydrostatic Test Pressure	1875 psig	[12a]
Static Pressure Head Adjustment	27.66 psig	Calculated
Temperatures		
Heat Up and Cool Down Rate	100 °F/hr	[11]
Bolt Up Temperature	60 °F	PTLR [3]
* Bottom head RT_{NDT} value bounded by that of the upper vessel/flange		

List of Design Inputs and Source References for NMP-1 P-T Curves at 28, 36, and 46 EFPY

Structural Integrity Associates, Inc.

APPENDIX B:

INCREASED COOL-DOWN RATE P-T CURVE

Page B1 of B5

्रे **Structural Integrity** Associates, Inc.

B1.0 INTRODUCTION

This appendix modifies the Nine Mile Point, Unit 1 P-T curves for a heat-up/cool-down rate of up to 200°F/Hr. A single curve is presented that bounds the beltline, bottom head, and non-beltline (feedwater nozzle / upper vessel) regions and is valid for up to 46 EFPY. The curve bounds the following plant conditions: Operating Pressure (Leak) Test (Curve A), Normal Operation – Core Not Critical (Curve B), and Normal Operation – Core Critical (Curve C). The curve is developed using the methodology of the 2001 Edition, 2003 Addenda of the ASME Code, Section XI, Appendix G [1], and 10CFR50 Appendix G [2]. This appendix has been developed in accordance with the methodology of the BWROG Licensing Topical Report, "Pressure-Temperature Limits Report Methodology for Boiling Water Reactors" [3]. This appendix is provided for engineering purposes only and is not intended to be included in the PTLR.

B2.0 METHODOLOGY

The methodology for calculating the P-T curve described in Section 2.0 remains unchanged. Only the calculation of the thermal stress intensity factor, K_{It} , is affected by the increased heat-up / cool-down rate. K_{It} is computed in different ways based on the evaluation region. As described in Section 2.0, the feedwater nozzle / upper vessel region K_{It} is obtained from the stress distribution output of a finite element model. The transient "Turbine Roll and Increase to Rated Power" consists of a 450°F step change [14], which bounds the increased heat-up / cool-down rate. Thus, the K_{It} calculation for the feedwater nozzle / upper vessel region is unaffected. For the beltline and bottom head regions, K_{It} is determined based on the ASME Section XI, Nonmandatory Appendix G method, using the following equation from Section 2.0:

$$K_{\mu} = 0.953 \times 10^{-3} \cdot CR \cdot t^{2.5} \tag{3}$$

Where: CR = the cooldown rate of the vessel (°F/hr). t = the RPV wall thickness, unique for each region (in).

B3.0 CALCULATIONS

The P-T curve is developed using an Excel spreadsheet, which is independently verified for use on a project-specific basis in accordance with SI's QA Program.

Figure B1 presets the bounding curve for a 200°F/Hr heat-up / cool-down rate. This information is also presented in tabular form in Table B1. The P-T curve bounds the beltline, bottom head, and non-beltline (feedwater nozzle / upper vessel) regions and is valid for up to 46 EFPY. The curve bounds the following plant conditions: Operating Pressure (Leak) Test (Curve A), Normal Operation – Core Not Critical (Curve B), and Normal Operation – Core Critical (Curve C).

Plant = NA	AP-1
Curve A Leak Test Temperature = 2 200	
Curve A Leax Test Pressure = 1.	Door psig
Unit Pressure = 1,	875 psig (hydrostatic pressure)
Flange RT _{NDT} =	0.0 × 3 *F
Adjusted P-T	
Curve	Adjusted P-1
Temperature	Curve Description (secie)
(*F)	Pressure (psig)
100	0
100	46
102	47
104	48
106	49
108	50
110	51
112	53
114	54
116	55
118	57
120	58
177	60
174	62
125	63
128	65
120	63
122	69
134	71
124	71
130	73
138	/5
140	77
142	80
144	82
146	85
148	87
150	90
152	93
154	96
156	99
158	102
160	105
162	109
164	113
166	116
168	120
170	124
172	129
174	133
176	138
178	143
180	148
182	153
184	158
186	164
188	170
190	176
192	182
194	189
196	196
198	203
200	210
200	210
202	218
204	226
206	235
208	243
210	252
210	262
214	277
224	282
210	202
218	273
220	304

.

Table B1: NMP-1 Bounding P-T Curve for 200°F/Hr Heat-up / Cool-Down

File No.: 0800297.301 Revision: 1

Adjusted P-T Curve	Adjusted P-T	
Temperature (°F)	Pressure (psig)	
222	315	
224	328	
226	340	
228	353	
230	367	
232	381	
234	396	
236	411	
238	427	
240	444	
242	461	
244	479	
246	498	
248	517	
250	537	
250	558	
254	580	
254	603	
255	605	
250	657	
260	678	
262	705	
204	705	
200	753	
208	702	
270	972	
774	855	
774	900	
270	070	
278	320	
280	303	
282	1001	
284	1041	
286	1083	
288	1126	
290	11/2	
292	1219	
294	1267	
296	1318	
298	1371	
300	1427	
302	1484	
304	1544	
306	1605	
308	1671	
310	1738	
312	1808	
314	1881	
316	1957	

Table B1 Cont.: NMP-1 Bounding P-T Curve for 200°F/Hr Heat-up / Cool-Down

Figure B1: NMP-1 Bounding P-T Curve for 200°F/Hr Heat-up / Cool-Down

F0306-01R0

APPENDIX C:

ANSYS SUPPORTING FILES

The following list of electronic files is included in the project files:

FILE NAME	DESCRIPTION
NMP_FWN_GEOM.inp	ANSYS input file for creation of nozzle geometry
NMP_FWN_PRES.inp	ANSYS input file for application of pressure loads
NMP_FWN_THSTR.inp	ANSYS input file for application of thermal shock
BR_FLW.OUT	Blend Radius Stress Intensity output file from extraction of Thermal Load Application (Used only to determine nozzle corner thickness)
BR_PRES_FLW.OUT	Blend Radius Stress Intensity output file from extraction of Pressure Load Application (Used only to determine nozzle corner thickness)
map_stress_press.POS	Hoop stress extraction file for Blend Radius location from Pressure Load application
map_stress_therm.POS	Hoop stress extraction file for Blend Radius location from Thermal Shock application
MAP_PRESS_HOOP_1.TXT	Output file containing hoop stresses for Blend Radius location from Pressure Load
MAP_TH_HOOP_1.TXT	Output file containing hoop stresses for Blend Radius location from Thermal Shock
MAP_PRESS_HOOP_1(Scaled).TXT	Output file containing <u>scaled</u> hoop stresses for Blend Radius location from Pressure Load
MAP_PRESS_HOOP_1(Scaled).xls	Excel file containing Blend Radius polynomial coefficients and KIt (<u>scaled</u> hoop stresses) from Pressure Load
MAP_TH_HOOP_1.xls	Excel file containing Blend Radius polynomial coefficients and KIt from Thermal Shock

.

F0306-01R0